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ABSTRACT

A BIOINFORMATICS FRAMEWORK FOR RNA STRUCTURE MINING,
MOTIF DISCOVERY AND POLYADENYLATION ANALYSIS

by
Mugdha Khaladkar

The RNA molecules play various important roles in the cell and their functionality

depends not only on the sequence information but to a large extent on their structure. The

development of computational and predictive approaches to study RNA molecules is

extremely valuable. In this research, a tool named RADAR was developed that provides a

multitude of functionality for RNA data analysis and research. It aligns structure

annotated RNA sequences so that both the sequence as well as structure information is

taken into consideration. This tool is capable of performing pair-wise structure alignment,

multiple structure alignment, database search and clustering. In addition, it provides two

salient features: (i) constrained alignment of RNA secondary structures, and (ii)

prediction of consensus structure for a set of RNA sequences. This tool is also hosted on

the web and can be freely accessed and the software can be downloaded from

http://datalab.njitedu/biodata/rna/RSmatch/server.htm  . The RADAR software has been

applied to various datasets (genomes of various mammals, viruses and parasites) and our

experimental results show that this approach is capable of detecting functionally

important regions.

As an application of RADAR, a systematic data mining approach was developed,

termed GLEAN-UTR, to identify small stem loop RNA structure elements in the

Untranslated regions (UTRs) that are conserved between human and mouse orthologs and

exist in multiple genes with common Gene Ontology terms. This study resulted in 90



distinct RNA structure groups containing 748 structures, with 3' Histone stem loop

(HSL3) and Iron Response element (IRE) among the top hits.

Further, the role played by structure in mRNA polyadenylation was investigated.

Polyadenylation is an important step towards the maturation of almost all cellular

mRNAs in eukaryotes. Studies have identified several cis-elements besides the widely

known polyadenylation signal (PAS) element (AATAAA or ATTAAA or a close variant)

which may have a role to play in polyA site identification. In this study the differences in

structural stability of sequences surrounding poly(A) sites was investigated and it was

found that for the genes containing single poly(A) site, the surrounding sequence is most

stable as compared with the surrounding sequences for alternative poly(A) sites. This

indicates that structure may be providing a evolutionary advantage for single poly(A)

sites that prevents multiple poly(A) sites from arising. In addition the study found that the

structural stability of the region surrounding a polyadenylation site correlates with its

distance from the next gene. The shortest distance corresponding to a greater structural

stability.
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CHAPTER 1

INTRODUCTION

1.1 Objective

The objective of this dissertation is to present a bioinformatics framework conceived for

the study of RNA molecules. This research was aimed specifically towards RNA

secondary structures and the functionality conferred upon the RNA molecule due to this

structure.

To achieve this goal, a tool named "RADAR" which stands for RNA Data

Analysis and Research was developed. It comprises of novel algorithms for the detection

of conserved secondary structures present in RNA sequences which in turn provides

valuable indication of an associated functionality of the molecule. RADAR was tested on

several biological datasets and the results exemplify that the method is successful in

achieving its purpose.

The framework also comprises of a computational approach termed GLEAN-

UTR for the discovery of hitherto unknown RNA structure elements that may be playing

important roles in the cell. It was applied to un-translated regions (UTRs) of human and

mouse genome and yielded several unique results.

Further, the regulatory role of RNA structure in the process of mRNA

polyadenylation was investigated. Polyadenylation is a crucial step in the post-

transcriptional gene regulation of most mammalian mRNAs. This study found some

correlation between polyadenylation strength and structural stability, and attempted to

identify other factors that may increase the efficiency of this process.

1



2

1.2 Overview

Ribonucleic acid (RNA) plays various roles in the cell. Many functions of RNA are

attributable to their structural particularities (herein called RNA motifs). RNA motifs

have been extensively studied for noncoding RNAs (ncRNAs), such as transfer RNA

(tRNA), ribosomal RNA (rRNA), small nuclear RNA (snRNA), small nucleolar RNA

(snoRNA), etc. (1). More recently, small interfering RNA (siRNA) and microRNA

(miRNA) have been under intensive studies (2,3). Less well characterized are the

structures in the un-translated regions (UTRs) of messenger RNAs (mRNAs). However,

biochemical and genetic studies have demonstrated a myriad of functions associated with

the UTRs in mRNA metabolism, including RNA translocation, translation, and RNA

stability. Chapter 2 describes an approach developed to mine novel structures from this

region that are conserved between human and mouse orthologs and exist in multiple

genes with common Gene Ontology term. This methodology was termed GLEAN-UTR

(4) and it uses an RNA structure alignment tool called RSmatch (3) which can efficiently

align RNA secondary structures for motif detection. RSmatch can find the optimal global

and local alignment between two RNA secondary structures using two different scoring

matrices, one for single stranded region and one for the double stranded region. It follows

a dynamic programming algorithm of time complexity O(mn), where m is the size of the

query structure and n is the size of the subject structure.

RSmatch algorithm suffers from a drawback in that it does not allow the users to

specify characteristics specific to the input RNA structures which could enhance the

alignment and thus, improve the results. To tackle this program, the framework includes a

novel method named constrained structural alignment that is capable of performing a



3

dynamic alignment based on user-specified constraints, if provided with the input. This

algorithm is described in Chapter 3 along with the experimental results. The algorithm is

part of the web server and standalone tool RADAR (5) which provides a platform

consisting of multitude of functionality for RNA structure analysis. Chapter 4 describes

this web server. RADAR was tested on several different biological datasets. Chapter 5

describes its application to find conserved structures from viral genome.

The final focus of this work was on polyadenylation which is a very important

process for post-transcriptional regulation of most mRNAs in mammals. Post-

transcriptional regulation is the mechanism that controls/regulates the synthesis of protein

by genes after the RNA synthesis has begun (6). This field of study has become hugely

important since the several discoveries which show that it is a key mechanism that can

rapidly change the expression of genes. Chapter 6 describes the work which investigates

into the factors that may affect the strength of polyadenylation, with an emphasis on the

role played by structure in this process.

This dissertation concludes with a summary of the results obtained, implications

of this work and the future research that would go towards further strengthening it.



CHAPTER 2

MINING SMALL RNA STRUCTURE ELEMENTS IN UNTRANSLATED
REGIONS OF HUMAN AND MOUSE mRNAs USING STRUCTURE-BASED

ALIGNMENT

UnTranslated Regions (UTRs) of mRNAs are involved in various steps of mRNA

metabolism, including mRNA localization, translation, and mRNA stability. Regulation

of gene expression through UTRs occurs at various developmental stages and is involved

in diverse cellular pathways. Several RNA stem-loop structures in UTRs have been

experimentally identified, including the histone 3' -UTR stem-loop structure (HSL3) and

iron response element (IRE). These stem-loop structures are conserved among

mammalian orthologs, and exist in several genes with similar functions. It is not known,

however, to what extent RNA structures like these exist in all mammalian UTRs. This

chapter describes a systematic approach using the tool RSmatch (3), named GLEAN-

UTR, to identify structural elements in human and mouse UTRs that are conserved

between human and mouse orthologs and exist in multiple genes with common Gene

Ontology terms. This approach resulted in 90 distinct RNA structure groups containing

748 structures, with HSL3 and IRE among the top hits based on conservation of structure.

The result indicates that there may exist many conserved stem-loop structures in

mammalian UTRs that are involved in coordinate post-transcriptional regulation of

biological pathways.

4



5

2.1 Background

RNA cis elements residing in the UnTranslated Regions (UTRs) of mRNAs have been

shown to play various roles in post-transcriptional gene regulation, including mRNA

localization, translation, and mRNA stability (7-10). The function of a cis element can be

attributable to its primary sequence or structure. For simplicity, they are called sequence

elements and structural elements, respectively. Well-known sequence elements include

AU-rich elements (ARE), some of which contain one or several tandem AUUUA

sequences and are involved in modulation of mRNA stability (11,12), and miRNA target

sites, which base pair with their cognate miRNA molecules and are involved in the

regulation of translation or mRNA stability (13,14). Well-characterized structural

elements include Internal Ribosome Entry Site (IRES) (15) and Iron Response Element

(IRE) (16) in the 5' UTR, Selenocysteine Insertion Sequence (SECIS) (17), IRE, and

histone 3' UTR stem-loop structure (HSL3) (18) in the 3' UTR. Each element type exists

in multiple genes, and thus can be considered as an RNA motif (similar to the concept of

protein motif). IRE and HSL3 elements are highly similar to one another within each

type; some divergence has been reported for SECIS (17) and there is no extensive

similarity in primary sequence or secondary structure among IRES elements (15). These

characteristics may reflect the ways that the RNA structures function. In addition, various

gene-specific structure elements in 5' or 3 'UTRs have been shown to play roles in RNA

metabolism (7).

Functional RNA sequence elements in the human genome have been heavily

studied in recent years, including elements responsible for pre-mRNA splicing,

polyadenylation, and miRNA target sites (19-23). In contrast, RNA structure elements



6

have been investigated to a much lesser extent, partly due to the difficulties in accurately

predicting and aligning RNA structures, and assessing false discovery rate (FDR). Recent

developments of genome-wide prediction of RNA structures based on aligned genomes

(24,25) or unalignable regions (26) have resulted in large numbers of conserved RNA

structures. On one hand, all methods reported high potential FDR. On the other hand,

these results vary from one another in coverage, indicating that there may exist even

more structures to be discovered. Here, the approach described is not based on genome

alignments, and is dubbed GLEAN-UTR (grouping by structural distance and ontology

for RNA elements in UTRs) to uncover conserved RNA structures in UTRs. The focus

was on detecting small stem-loop structures. The folded RNA structures in UTR

sequences for orthologous genes were compared by using RNA structure alignment tool

RSmatch (3). Similar orthologous structures were then compared in an all-against-all

fashion to derive RNA structure groups. Using cluster analysis and Gene Ontology (GO)

information, the RNA structures that exist in multiple genes that share common

biological pathways were identified. For 10,448 human genes which were analyzed, 90

RNA structure groups, containing 748 distinct RNA structures in 3' or 5' UTRs from 698

genes were obtained. HSL3 and IRE are among the top hits based on conservation of

structure. Using a randomized data set, estimated FDR of 15% for all the structures was

determined. About 12% of the structures overlap genomic regions identified by other

whole-genome wide studies for RNA structures. This bioinformatics study lays

groundwork for future wet lab examination of putative conserved RNA structure

elements in human and mouse UTRs.
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2.2 	 Results

2.2.1 Mining RNA Structural Elements in UTRs

The aim was to identify functional structure elements in human UTRs. Previous studies

have used aligned vertebrate genomes to predict conserved structures in the whole

genome (24,25). However, a recent report indicated that many human genome regions

containing RNA structures cannot be aligned with the mouse genome (26). This suggests

that reliance on genome alignments containing divergent species, such as human and fish,

may result in many false negatives. This situation can be exacerbated for UTRs, which

typically do not exhibit large rates of sequence conservation. To explore approaches other

than using aligned genomes, this method was designed and named GLEAN-UTR, which

is based on the rationale that there exist structure elements in 5' and 3' UTRs that are

encoded by a group of genes involved in the same biological pathways, similar to IRE

and HSL3 structures (see Figure A.1). This method was applied to human and mouse

UTRs. Figure 2.1 shows the overall design and procedure of this method.
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Figure 2.1 The flowchart represents the overall methodology termed "GLEAN-UTR".
The number of RNA structures and structure groups are indicated in each step.
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First, the UTR sequences were extracted from NCBI RefSeq sequences. Then a

"slide and fold" method was used to construct RNA structures in 5' and 3' UTRs (Section

2.4.1). With this method, subsequences in UTRs, 100 nucleotides (nt) long or less, were

folded according to thermodynamic properties using the Vienna RNA package (27).

Adjacent subsequences were overlapped by 50 nt. This method can derive RNA

structures accurately and efficiently for two reasons: (1) Predicting small structures is

more accurate and efficient than for large ones; (2) Structures with size less than 50 nt

were folded twice as subsequences of two different larger structures, further increasing

the chance of getting accurate RNA structures. Further, the setting in the Vienna package

that yields multiple RNA structures with the same minimum energy for a given sequence

was used to further improve the folding accuracy. On the other hand, since only RNA

structures derived from 100 nt subsequences of UTRs was used, the discovery is limited

to small structures, such as short stem-loops. Thus, large RNA structures, such as IRES

and SECIS, are not analyzed in this study. This step resulted in 575,410 RNA structures

from human UTRs and 445,106 RNA structures from mouse UTRs.

Next, the RNA structures from human and mouse orthologs (10,667 pairs in total)

were compared. For each orthologous gene pair, the set of RNA structures from the

human gene were compared with the set of structures from the mouse gene using

RSmatch (3), which aligns RNA structures by taking into account both sequence and

structure information. Alignments with a positive score were kept and the rest were

discarded. In order to assess the significance of the alignments, three values of a structure

alignment were used: size of the alignment, size of the double stranded region of the
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alignment, and RSmatch score of the alignment. The distributions of the values for all

alignments are shown in Figure 2.2.

Figure 2.2 Characteristics of aligned RNA structures in human and mouse UTRs.
Structures in human UTRs were aligned with those in mouse UTRs from orthologous
genes. (A) Distribution of overall structure length. (B) Distribution of ds region length.
(C) Distribution of RSmatch alignment score. Dotted vertical lines are cutoff values
derived from randomized structures.
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Figure 2.3 (A) Distribution of RSmatch scores for all-against-all pair-wise comparisons
of 6,345 human RNA structures. The cutoff value=17, as indicated by a dotted vertical
line. The distribution of scores for the selected structures (2,054 in total) is shown in the
inset. (B) Hierarchical clustering of all 2,054 human RNA structures by the normalized
dissimilarity score. (C) One hundred normalized dissimilarity scores were used to cut the
hierarchical clustering tree to obtain structure groups. Distribution of CoV vs. group size
using (D) real data and (E) randomized data. Horizontal lines in (E) are mean values for
different groups, which were used as cutoff values for selecting structure groups for the
real data.
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In order to select significant structures, a randomization method was applied to

obtain expected values. Since most known RNA sequence elements in UTRs have the

length around 6 nt, the sequences were randomized by shuffling hexamers in UTRs with

the goal of separating sequence conservation from structure conservation. For each

aforementioned value type, the cutoff value was the 95th percentile of all values from the

randomized set. They were found to be 23 nt, 14 nt, and 17 for the size of an aligned

structure, the size of a ds region, and the RSmatch score, respectively. To balance

selectivity and sensitivity, the structure alignments that had at least two of three values

higher than the respective cutoff values were retained. The structure alignments in which

two matching structures had identical sequences were eliminated, as the focus of this

study was to find elements conserved on the structure level, and it was not possible to

differentiate structure conservation from sequence conservation for those alignments. The

reasoning was that the —100 million years since the split of human and mouse ancestors

should have given functional RNA structures enough time to have random mutations in

insignificant parts of the structure and compensatory mutations in the structure, and the

sequences are not expected to be identical unless sequence constraint is also in play. This

step resulted in 6,345 alignments.

Then all-against-all pairwise comparisons of all 6,345 RNA structures were

carried out. To make the approach computationally efficient, this was done only on

human RNA structures obtained from the alignments. Each comparison yielded an

alignment score. The structures that were similar to at least two other structures with the

alignment score > 17 were selected. This step resulted in 2,054 RNA structures (see

Figure 3A for distribution of scores). Both alignments in the single-stranded (ss) and
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double stranded (ds) regions can contribute to the final RSmatch score. To assess the

contribution of sequence to the selection of these structures, the RNA structures were

randomized by swapping nucleotides in both ss and ds regions, while keeping the overall

secondary structure intact. With the same selection criteria, 851 structures from the

randomized set were selected. Thus, about 40% of the selected structures are primarily

due to their structure information, and the remaining 60% are due to both sequence and

structure information.

To group similar RNA structures together, hierarchical clustering was applied to

the data. First, using pair-wise structure alignment scores, normalized dissimilarity scores

were derived to represent distances among the structures (Section 2.4.3). Then a

hierarchical tree was constructed containing all 2,054 structures based on their mutual

dissimilarities (Figure 2.3(B) and Figure B.1). The hierarchical tree can be "cut" to yield

sub trees that represent RNA groups. Figure 2.3 (C) gives the distribution of the number

of structure groups obtained by cutting the tree at every value of normalized dissimilarity

score. Values at every percentile of this distribution were selected to derive 100 cut

heights, i.e. 1st percentile, 2nd percentile, etc. Using these 100 values to cut the tree, 57,

904 groups of structures were obtained, each containing several RNA structures.

In order to find structures that exist in multiple genes involved in the same

pathways, the RNA structure groups were further examined by their Gene Ontology (GO)

information for the biological process category. The hypergeometric test was applied to

measure the significance of association between the genes for a structure group and GO

terms (Section 2.4.4). A structure group was selected for further analysis if the group was

significantly associated with a GO term (p-value < 0.05), and there were at least two
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genes in the group that were annotated with the significant GO term. To measure how

member structures in each selected group are similar to one another, a measurement

called Cohesive Value (CoV) was used, which is the average of all pair-wise similarity

scores among structures in the same group. Figure 2.3(D) shows the distribution of CoVs

against group size for all groups. To assess the significance of the CoVs, the same

numbers of structures from 2,054 structures were randomly selected to form groups and

their CoV values were calculated. For a given group size, this process was repeated 100

times and then the mean value is used as the expected CoV for groups of the given size.

Since the numbers of structures in a group ranged from 4 to 20,the expected values were

derived for groups with 4-20 structures (Figure 2.3(E)). Groups which had a CoV below

the expected values were eliminated. After GO analysis and CoV filtering, 214 structure

groups, corresponding to 1,125 distinct structures were obtained.

Since one structure may exist in several groups due to the 100 height values used

in cutting the hierarchical tree, the groups that overlapped with other groups with a

greater number of structures and lower p-values for the associated GO terms were

eliminated while giving preference to groups that were highly conserved between human

and mouse based on a cross-validation method (Section 2.4.5). This resulted in 90

structure groups in all, corresponding to 748 distinct structures from 698 genes. Of the

structures, 74 are from 5' UTRs and 674 are from the 3' UTRs. Of the groups, 58 groups

contain only 3' UTR structures, 30 groups contain structures from both 5' and 3' UTR and

2 groups contain only 5' UTR structures. The top 10 groups based on CoV are shown in

Table 2.1. All the structure groups identified by this study, including the ones that are
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overlapping with other groups, have been provided in an online database named GLEAN-

UTR. It can be accessed freely at http://datalab.njit.edu/biodata/GLEAN-UTR-DB/.
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HSL3 and IRE are ranked among the top hits with respect to CoV values (1st and

2nd) as can be seen in Table 2.1. This result not only validated the approach, but also

indicated that other groups of RNA structures may also exist, though probably not as well

conserved as HSL3 or IRE. Using the multiple alignment function of RSmatch (3), a

consensus structure was generated for each structure group. In a sense, each structure

group represents a putative RNA structure element type. The sizes of the consensus

structures ranged from 15 to 31. All groups and structures can be searched, retrieved and

viewed through an on-line database named GLEAN-UTR DB (4).

To assess the false data rate (FDR) for this method, all the above steps were

repeated using randomized human and mouse UTR sequences maintaining overall dimer

frequencies, and the number of selected entries at each step was calculated (Figure C.1).

In the last step, this randomized set resulted in 17 groups consisting of 110 human

structures. Thus, the FDR is —18.89% for the groups and —14.71% for the structures. Of

these groups, 3 groups with 14 structures also passed the cross-validation with mouse

orthologs, giving FDR —8.82% for the groups and —5.96% for the structures.

2.2.2 Comparison with other Genome -wide RNA Structure Studies

Three recently carried out studies for finding conserved RNA structure regions in the

human genome (24-26) were selected. Their results were examined for structures that

differed from and overlapped with the results obtained in this study. Using 8-way human-

referenced vertebrate genome alignments, Washietl et al. (24) detected 91,676 conserved

RNA structures (at P > 0.5) using the RNAz program, which identifies RNA structures

with similar thermodynamic stabilities across species. Pederson et al. (25) developed
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phylogenetics stochastic context-free grammar (phylo-SCFG), and identified 48,479

candidate RNA structures using the same genome alignments. Torarinsson et al. (26)

focused on human and mouse genomic sequences that could not be aligned on the

sequence level, and identified conserved structures by FOLDALIGN, a tool that

simultaneously predicts and aligns RNA structures.

Figure 2.4 The Venn diagram shows overlapping structures in UTRs among the results
reported by Washietl et al. (24), Pedersen et al. (25), Torarinsson et al. (26), and this
study. The number in the paranthesis indicates the number of overlapped structures if
only the genomic regions are considered, i.e. without consideration of the strand.

First the structures reported by these studies that are located in UTRs were

identified, and these were compared with structures found by GLEAN-UTR approach. Of

the 1,125 structures that were identified prior to removal of redundant groups (see

above), 131 (12%) structures overlapped with those reported by Washietl et al. (24) and

Pedersen et al. (25) (Figure 2.4 and Table D.1). If only the genomic region is examined

(without consideration of the strand), 219 (19%) structures were found to be overlapping
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with those in these two studies. Of the 178 structures predicted by Torarinsson et al. (26)

that overlapped with UTR regions, none overlapped with the results on this study. A

detailed analysis found that this was caused by differences in human and mouse UTR

coverage (127 cases), gene ortholog information (27 cases), or structure alignment (24

cases).

2.3 Discussion

This chapter describes a systematic approach that was designed to identify RNA structure

elements conserved in human and mouse UTRs which may function coordinately in post-

transcriptional regulation of biological pathways. The approach contains three major

steps: (1) compare RNA structures between orthologous genes; (2) compare RNA

structures among all genes; and (3) select RNA structure groups significantly associated

with certain GO terms. Presumably, mRNAs containing RNA structure elements from the

same group can be coordinately regulated via trans-acting protein factors, like those

having HSL3 and IRE, leading to concerted modulation of a biological pathway. This

method was applied to mining small RNA structures in this study, primarily because

those structures can be more accurately predicted by RNA prediction programs using

only thermodynamic parameters. As more powerful RNA structure prediction programs

become available, particularly those reliant on phylogenetic information for structure

prediction, this approach can be extended to larger RNA structures. The major strength of

this approach is the ability to assign functions to candidate RNA structures in the

genome. In addition, it may help improve the accuracy in RNA structure identification, as
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structures shared by multiple genes can be more reliable than those encoded by a single

gene.

The assessment of FDR is critical in RNA structure analysis (28). Using

randomized sequences, FDR of 15% was estimated for the structures identified in this

study. False negative rate or sensitivity is another important issue, particularly in this

study in which stringent cutoff values were applied at multiple steps. However, it is

difficult to address due to lack of knowledge on true positive structure groups.Two well-

known RNA structure elements, HSL3 and IRE, were examined for sensitivity. For HSL3

and IRE genes that have orthologous gene information, about 35% (6 out of 17) HSL3

elements and 60% (6 out of 9) IRE elements are included in the final result. Thus the

sensitivity can be low for some structure groups and high for others. Several steps can

result in exclusion of conserved functional RNA structures in our method. First, the

current coverage of orthologous genes and UTRs is not complete. In fact, most of the

human HSL3 true positive structures (44 in total) were not even analyzed in this study

due to lack of orthologous gene or UTR information. This will improve as more

comprehensive gene annotations, and more accurate transcription start sites and

polyadenylation sites are available. Second, it is known that RNA structure prediction by

thermodynamic parameters has limitation in accuracy (29). Third, some structures may

reside in genes for which GO information is not adequately annotated.

One potential approach to improve sensitivity is to search the genome with

consensus RNA structures derived from the groups. This idea was tested by first

generating RNA structure patterns for the groups and using them to search human UTRs

by PatSearch (30). Candidate elements were further analyzed for GO terms to ensure
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consistency in their association with biological pathways as the original groups. As

expected, the group size increased exponentially (Figure E.1). While this approach seems

promising in reducing the false negative rate, the control for false positive rate needs to

be further developed. This work is left for future exploration.

About 12% of the structures identified in this work overlap those reported by

other studies (Figure 2.4). Interestingly, each genome-wide approach resulted in a large

fraction of unique structures, suggesting that RNA structure identification is largely

influenced by the chosen method. Many structures in UTRs identified by other studies are

not in our final result (Figure 2.4). This is attributable to several aspects of the design of

our study, in addition to the technical difference and false negative issues described

above. First, this analysis is based on RNA structure groups, and functional structures

located in individual genes are not included. It was found that this is the case for several

recently reported RNA structures in UTRs (31,32). Second, RNA structures with similar

functions but different secondary structures, like IRES, cannot be identified. Third, large

structures, like SECIS, are not examined. Notwithstanding these issues, the structures that

overlap between this study and others are of higher importance for further wet lab

validations (Table D.1).

In summary, the result indicates that there may be present many conserved stem-

loop structures in human UTRs that are involved in coordinate post-transcriptional gene

regulation of biological pathways, similar to HSL3 and IRE structures. This

bioinformatics study lays a ground work for future wet lab validations of putative RNA

stem-loop groups and represents a framework which can be used to analyze RNA

structures identified by other approaches and in other species.
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2.4 Materials and Methods

2.4.1 UTR Sequence and Structure Databases

28,926 human and 26,243 mouse RefSeq mRNA sequences were downloaded from

NCBI. UTRs of RefSeq sequences were extracted according to RefSeq's GenBank

annotation. The information regarding human and mouse orthologs was obtained from

the HomoloGene database (ftp://ftp.ncbi.nih.gov/pub/HomoloGene/) . RNA structures in

the UTRs were prepared by a method called "slide and fold" as described in (3). Briefly,

for each UTR sequence, 100 nt subsequences were taken at every 50 nt nucleotide

position from 5' to 3' resulting in consecutive subsequences overlapped with one another

on a 50 nt segment. Subsequences shorter than 100 nt, e.g. at the 5' or 3' ends, were also

kept. Then all of the subsequences were folded using the RNAsubopt function from the

Vienna RNA package (27), with the setting "-e 0". With this setting, multiple structures

with the same minimum energy can be generated. Using this method, 575,410 structures

from human UTRs, and 445,106 structures from mouse UTRs were obtained.

2.4.2 RNA Structure Comparison

Pairwise comparisons of RNA structures (human vs. mouse and human vs. human) were

carried out by RSmatch (3), with the "dsearch" function and default scoring matrices for

ss and ds regions. Specifically, nucleotide match scores were 1 and 3 in ss and ds regions,

respectively; and mismatch scores were -1 and 1, in ss and ds regions, respectively. Gap

penalty was -6 for both ss and ds regions. This scoring scheme in effect gave more
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weight on matches in ds regions than those in ss regions. Randomization of RNA

structure was carried out by a PERL script.

2.4.3 Cluster Analysis of RNA Structures

To cluster RNA structures, the normalized dissimilarity scores Di,j were calculated

between all structures: Di j=(Smax-Si j)/Smax, where Si,j was the similarity score derived

from RSmatch using the local structure alignment function between structures i and j, and

S. was the maximum similarity score obtained from all structure comparisons. For

cluster analysis, the hierarchical clustering function in R was used (33) with the "average

linkage" method for joining nodes. To select groups of RNA structures, the "cutree"

function was applied to cut the hierarchical tree obtained from R into groups using the

normalized dissimilarity scores, which were also called heights in the tree. Structures in

each group were aligned by the multiple structure alignment function of RSmatch (3)

with default scoring matrices. Structures in the same group were also compared in a

pairwise manner; the average of all pair-wise similarity scores for the group was called

the Cohesive Value (CoV) of that group, which indicated the degree of similarity among

structures in the group.

2.4.4 Gene Ontology Analysis

The biological process (BP) category of Gene Ontology (GO) was downloaded from the

Gene Ontology database (34). The mapping between genes and GO entries was obtained

from NCBI Gene database (35). Hypergeometric analysis was used to assess whether an

RNA structure group was significantly associated with some GO entries.
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Briefly, in the hypergeometric test, there are four parameters: (1) m, the number

of white balls in an urn, (2) n, the number of black balls in the urn, (3) k, the number of

balls drawn from the urn, and (4) x, the number of white balls drawn from the urn. The

probability that x out of the k balls drawn are white from the urn containing m + n balls is

For each RNA structure group M containing multiple genes, all GO entries are examined

to evaluate their associations with M . Through the mapping information between M and

a GO entry G in a GO category C, we are able to calculate four numbers: (1) N1, the

number of genes associated with any GO entry in C, (2) N2, the number of genes

associated with G in C, (3) N3, the number of genes in M associated with any GO entry in

C, and (4) N4, the number of genes in M associated with G in C, where N1 > N2 and N3 >

N4. The p-value of the GO entry G is calculated by p(G) = f(N4, N2, Ni — N2, N3), where

the functionfis defined in Equation 2.1.

2.4.5 Cross-validation with Mouse UTR Structures

After performing the GO analysis and CoV filtering, the selected human RNA structure

groups were cross-validated with their orthologous mouse structures. For each group,

mouse UTR structures corresponding to each human structure in the group were

retrieved. Then the mouse UTR structure which is most similar to the human structure is

selected. All these selected mouse structures are compared by the multiple structure

alignment function of RSmatch which gives the consensus structure. The consensus

structure of human RNA structures was then compared to that of mouse ones. An RNA
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structure group is considered to be highly significant if: (1) the human consensus was

identical to the mouse one or (2) the human consensus was contained within the mouse

one or vice verse. In case (2), a consensus of human and mouse structures was built to

represent the structure group.

2.4.6 Comparison with Structural Elements from other Studies

The datasets for Pedersen et al. and for Washietl et al. were downloaded from their

respective web sites (24,25). The dataset from Torarinsson et al. (26) was obtained from

the authors. BLAT was used to find genomic locations for all structure elements,

including for the ones predicted by this study, and overlapped ones were identified by

their locations.



CHAPTER 3

DETECTING CONSERVED SECONDARY STRUCTURES IN RNA
MOLECULES USING CONSTRAINED STRUCTURAL ALIGNMENT

Constrained sequence alignment has been studied extensively in the past. Different forms

of constraints have been investigated, where a constraint can be a subsequence, a regular

expression, or a probability matrix of symbols and positions. However, constrained

structural alignment has been investigated to a much lesser extent. Here, described is an

efficient method for constrained structural alignment which is applied to detecting

conserved secondary structures, or structural motifs, in a set of RNA molecules. The

proposed method combines both sequence and structural information of RNAs to find an

optimal local alignment between two RNA secondary structures, one of which is a query

and the other is a subject structure in the given set. This allows a biologist to annotate

conserved regions, or constraints, in the query RNA structure and incorporate these

regions into the alignment process to obtain biologically more meaningful alignment

scores. A statistical measure is developed to assess the significance of the scores.

Experimental results based on detecting internal ribosome entry sites in the RNA

molecules of hepatitis C virus and Trypanosoma brucei demonstrate the effectiveness of

the proposed method and its superiority over existing techniques.

29
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3.1 Introduction

In recent years, it is becoming clear that post transcriptional processes at the RNA level

play a major role in determining the complexity of the proteome along with a significant

amount of regulation of gene expression (36,37). Numerous examples of co-regulation of

sets of transcripts in RNA regulons have also been described (38). The identification and

characterization of RNA sequence and structural regulatory elements, therefore, is of

fundamental importance to molecular biology (1,2).

Inspired by the success of proteomics using sequence-based techniques,

researchers anticipated achieving the same level of success in RNA study. Unfortunately,

till now the accomplishment is far from what had been expected. A typical example is

with RNA motif exploration: unlike protein motif searching which can be accomplished

through the development of sophisticated amino acid substitution matrices and sequence

alignment tools, detecting RNA motifs is still at a primitive stage without broadly

accepted methods in the literature. One important reason for the failure of substitution

matrices-based alignment methods in analyzing RNA sequences is that nucleotide bases

do not carry as much functional information as amino acid residues do (39). To properly

characterize an RNA motif, information concerning both distant base interactions and

sequential nucleotide composition is required to define its structure, and hence its

function.

At the sequence level, one important topic is to measure the similarity of two

biosequences (40,41). The next step is to find an alignment between two sequences or

among several sequences. Tools capable of performing sequence alignments include
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BLAST (42), FASTA (43), ClustalW (44), with their primary goal of detecting homologs

from sequence databases.

However, biological activities of many molecules, such as non coding functional

RNAs, are largely dependent on their secondary or tertiary structures. Furthermore, it has

been observed that myriad functions involved in post-transcriptional gene regulation are

accomplished by RNA protein binding mechanisms, which require conserved structural

RNA motifs to be present at the binding sites. Thus, it is biologically justifiable that

conserved RNA motifs in the form of secondary or tertiary structure could be more

important and informative than those in the primary sequence format (45).

This research proposes a new approach to RNA secondary structure alignment

and also applies it to the search for conserved secondary structures, or structural motifs,

in RNAs. The problem tackled here is defined as follows: given a query structure Q and a

set of RNA subject structures, find the subject structures that are most similar to the

query structure where the similarity between the query structure Q and a subject

structures S is measured by the score of local matches between Q and S. When the query

structure is a structural motif or a conserved secondary structure, the problem becomes

finding those subject structures containing the conserved secondary structure and

displaying the locations of the conserved secondary structure in those subject structures.

Central to the approach is an efficient constrained structural alignment (CSA)

method for comparing two RNA secondary structures with quadratic time and space

complexities. The CSA method allows the user to annotate a portion of the query

structure, or the entire query structure, as conserved, and then uses this information, or

constraint, to align the query structure Q with each subject structure S in the given set.
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The constraint guides the alignment process, which dynamically varies the alignment

scores between portions of Q and S to obtain a more accurate alignment between the two

structures.

The RNA structures are obtained by folding RNA sequences using either mfold

(46) or RNAfold (27). In (47) a general edit distance was considered for comparing RNA

secondary structures. RNAforester (48) extended the tree model to a forest model.

Corpet and Michot (49) designed RNAlign to provide more rigorous RNA

structural comparisons at the cost of computing efficiency: 0(n4) in space and 0(n5) in

time where n is the length of the RNA structures to be compared. Several other tools are

available that carry out RNA folding and alignment at the same time, such as Dynalign

(50) and FOLDALIGN (51). These tools can achieve better structure prediction and

alignment at the expense of computing time. In addition, algorithms using derivative-free

optimization techniques, such as genetic algorithms and simulated annealing (52,53) have

been proposed to increase the accuracy in structure-based RNA alignment. Most of these

methods suffer from high time complexities, making the structure-based RNA tools much

less efficient than sequence-based tools.

There are pattern-matching methods for RNA analysis (39,54,55). In (55) a

sequence-scanning technique was proposed, called PatSearch. The pattern present in an

RNA secondary structure is depicted by a series of pattern description units. The

sequences in a dataset are scanned one by one to decide whether the given pattern can

match these sequences. In another related study (39), a profile-based sequence-scanning

algorithm was proposed and implemented under the name ERPIN. Like most statistical

model based methods, ERPIN requires a multiple alignment of sequences with secondary
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structure annotation and infers a statistical secondary structure profile (SSP). This SSP is

then matched with the sequences in the dataset by using a dynamic programming

algorithm to calculate scores of the best matches.

Some probabilistic models, such as stochastic context-free grammars (SCFGs)

(56) and covariance models (CMs) (57), have been applied to RNA structural alignment.

A model is first trained by a set of manually curated sequences with known structural

similarities. The trained model is then used to compare with other related RNA

structures. Since a prior multiple sequence alignment (with structural annotation) is

needed to train the model, its applicability is limited to RNA types for which structures of

a large number of sequences are available, such as snoRNA and tRNA (56,58). In (59)

SCFGs were extended to find homologs of structured RNA sequences using RIBOSUM

substitution matrices derived from ribosomal RNAs to score the matches in single-

stranded (ss) and double-stranded (ds) regions. The pairwise SCFG method requires

computing time as high as 0(n 3) (59). More recently, better algorithms based on the

probabilistic models have been developed (60,61). However these methods do not deal

with constrained alignments as described in the next section.

3.2 Methods

Constrained structural alignment (CSA) constructs the alignment between a query RNA

structure and a subject RNA structure based upon the knowledge of the conserved region

in the query structure. This method has been implemented as part of the web server

RADAR which is described in Chapter 4.
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Figure 3.1 shows the input interface of RADAR for aligning a query structure

with a set of subject structures. The structures are represented in the Vienna style Dot

Bracket format (27). Each position of the conserved region in the query RNA structure is

marked using a special character "*". Figure 3.2 shows the output obtained from the input

data in Figure 3.1, where RADAR compares the query structure with each subject

structure using the proposed CSA method and ranks the subject structures in the dataset

based upon their similarities to the query structure. The top ranked subject structure is

most similar to the query structure, with the maximum alignment score. The score

diminishes as the quality of the alignment decreases. A statistical measure, namely a p-

value, is associated with each alignment score, which indicates the significance of the

score (Section 3.2.5).

c9 RADAR - MozIlW Firefox

Figure 3.1 The input interface of RADAR for the constrained structural alignment. The
first text box contains the query structure. Constrained region of the query is marked
using "*". The second text box lists the subject RNA structures forming the dataset.
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Figure 3.2 Output obtained after performing constrained structural alignment between
the query structure and the subject structures in Figure 3.1. Output shows a summary of
the top ranked alignments including the score, subject structure name and aligned region
for each alignment. Then each alignment is shown one after the other starting with the
top-ranked one.

3.2.1 Extended Loop and Structural Component

The proposed CSA method is built on previously developed RSmatch algorithm for RNA

structural alignment (3). RNAs are modeled using a structural decomposition scheme

similar to the loop-decomposition method commonly used in RNA structure prediction

algorithms (46). Thus pseudoknots are not allowed. An RNA secondary structure is

completely decomposed into units called extended loops (Figure 3.3(A)). An extended

loop, or simply a loop when the context is clear, is a set of structural components (single

bases or base pairs), which are reachable from one another by traversing within the loop
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without crossing any bond. The extended loops considered here differ from the

commonly used loops described by (46) in that the extended loops can be part of a stem

in an RNA secondary structure.

The above obtained extended loops can be organized into a hierarchical tree

according to their relative positions in the secondary structure, where each node

corresponds to an extended loop (Figure 3.3(B)). The tree construction is as follows. The

root node is established as the extended loop containing the 5' most and 3' most bases.

Within the root loop, each base-pair r is used to form a subtree (or child tree) whose root

corresponds to another extended loop containing r. This process is iteratively performed

until no further extended loop can be found and the tree is completely constructed.

Furthermore, we require that the nucleotide pairs be processed from 5' to 3' within the

extended loops. Consequently, the final tree is an ordered tree in which the order among

sibling nodes is important.

In describing the relative positions between two structural components (single

base or base pairs), the precedence and hierarchical relationships between them are taken

into consideration. Let c1 and c2 be two structural components in an RNA sequence and

its secondary structure. It is said that c1 precedes c2 if at the sequence level the 3'-base of

C1 is closer to the sequence's 5'-end than the 3'-base of c2. To specify the hierarchical

relationship of C1 and c2, a mapping from the structural components to extended loops in

the tree needs to be established that will represent the RNA secondary structure. It is

obvious that each single base component can be mapped to a unique loop. However, a

base pair component can be mapped to up to two alternate loops where one is an ancestor

of the other. To resolve this ambiguity, the ancestor loop is chosen as the base pair's
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mapping target. Suppose C1 is mapped to loop el and c2 is mapped to loop e2. The

hierarchical relationship between c1 and c2 is one of the following: (1) C1 is hierarchically

identical to c2 if el and e2 are the same; (2) C1 is an ancestor (descendant, respectively) of

c2 if ei is an ancestor (descendant, respectively) of e2; or (3) C1 and c2 are cousins if e i and

e2 are cousins or siblings in the tree.

Figure 3.3 (A) A hypothetical RNA secondary structure is decomposed into extended
loops. (B) The hierarchical tree comprising of the extended loops for the RNA secondary
structure in (A).

3.2.2 Partial Structure

A structural component is either a single base or a base pair. The partial structure

induced by a structural component a, is a set of structural components Sα such that for

any structural component c єSα  the following three conditions are satisfied: (1) c

precedes a; (2) c is not an ancestor of a; and (3) a itself belongs to S α . Furthermore, since
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a base pair could appear in two extended loops, the partial structure induced by a base

pair could be divided into two smaller substructures: parent structure and child structure

(Figure 3.4). Formally, if the structural component a is a base-pair, its parent structure is

a set of components Pα c Sα (excluding a) such that for any component c E Pα, c's 3'-base

is always 5' upstream of a's 5'-base; its child structure contains a set of components

Cα c Sα (including a itself) such that for any component c є Go c's 5'-base is always 3'

downstream of a's 5'-base. It can be verified that Pα u Cα = Sα and Pα n Cα = (p.

parent structure

Figure 3.4 (A) A hypothetical RNA secondary structure is used to illustrate how partial
structures are determined. (B) The partial structure induced by the single base G is
shown. (C) The partial structure induced by the base-pair C-G consists of 2 parts, a
parent structure and a child structure. The base-pair is included in the child structure.

Using the concept of partial structures, the two given RNA secondary structures

are progressively aligned using a dynamic programming (DP) algorithm by initially

aligning smaller partial structures and expanding each partial structure one structural

component at a time. Ultimately, the two partial structures will become the two overall
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structures, and the DP scoring table will be fully filled with alignment scores from which

we can find the optimal local alignment between the two given RNA secondary

structures.

3.2.3 Scoring Scheme

To measure the quality of an alignment, a scoring scheme must be provided. The

proposed CSA method leaves great latitude for the choice of various scoring schemes.

One important aspect of a scoring scheme is to define an alignment function of two

structural components to measure the quality of matching one component to the other.

The other important aspect is a penalty parameter, which punishes the action of aligning

structural component(s) to gap(s). During the course of computation, one structural

component (single base or base pair) could be matched to a gap; or one parent

substructure or child substructure could also be matched to a big gap. Intuitively, the

bigger the gap, the heavier the penalty is. In this implementation, a basic penalty was

used for the smallest gap involving only one base. Then the larger gap is punished

proportionally to the number of bases involved in the gap. Let p denote the basic penalty

in the following discussions. Let x be a structural component in the query structure and

let y be a structural component in the subject structure. Let h(x, y) denote the alignment

score between x and y. This function can be extended to represent the alignment score

between two substructures DQ, Ds from the query structure Q and the subject structure S,

respectively, as follows:
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where G represents the total number of gaps in aligning Dg and Ds.

In calculating the alignment function h, the constraint, or conserved region,

annotated in the query structure needs to be considered. Refer to Figure 3.1. Each

position of the conserved region in the query RNA structure is marked using a special

character '*' underneath the position. This is termed binary 0/1 conservation since any

position in the query RNA structure is treated to be either 100% conserved (if it is marked

with '*') or not conserved at all. If it has been found, from wet lab experiments or other

sources, that a particular RNA structure contains a motif that needs to be searched for in

other RNA structures from a data set, then that particular RNA structure can be used as a

query structure and that motif region can be marked by * ' to indicate that it is conserved

in the query structure.

Let g(a , ,(3 ) be the alignment score between two structural components a , /3

where no constraint is involved. In our implementation presented here, g(a , )6) is similar

to that defined in (3), as shown below:

g(α, β)=

-1

— 2
3
1
—4

if a, p are single bases and a = p
if a, 0 are single bases and a 013
if a is a single base and 0 is a gap, or vice
if a, p are base pairs and a =13
if a, 13 are base pairs and a *13
if a is a base pair and p is a gap, or vice versa

(3.2)
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The alignment function h in Equation (3.1) is calculated by:

where x (y, respectively) is a structural component in the query RNA structure (subject

RNA structure, respectively), and A is used to increase or diminish the score to take into

account the conserved region in the query structure. When x is constrained, we use x' to

represent the corresponding structural component without the constraint.

With binary 0/1 conservation, A is defined as

1 L
(3.4)

where L is the length of the conserved region and N is the total length of the query RNA

structure.

3.2.4 Recurrence Formulas

This subsection presents scoring formulas for aligning partial structures induced by

structural components from the query structure Q and the subject structure S respectively.

The recurrence formulas in the proposed dynamic programming algorithm take into

account the constraint occurring in the query structure. When a structural component

involved in an alignment is a base pair, only the child and partial structures induced by

the base pair need to be considered (3). The reason is that the parent structure induced by

a base pair can always be derived as a partial structure induced by another structural

component and hence is considered when the alignment score of that structural

component is calculated (3).
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Given the query RNA structure Q and the subject structure S, the proposed CSA

method is a dynamic programming (DP) algorithm that matches partial structures from Q

and S, respectively. Let x be a single base in Q and let y be a single base in S. Let x"

denote the structural component that precedes x. In matching the partial structure Sx with

the partial structure Sy there are three cases: (i) x is aligned with y; (ii) x is aligned with a

gap; and (iii) y is aligned with a gap. Thus the score of matching Sx with Sy can be

calculated by the following equation:

where h(x,y) is defined in Equation (3.3) and p = -2 is the basic penalty for aligning a

base with a gap, cf. Equation (3.2).

Next, consider the situation where x is a base pair and y is a single base. (The

situation where x is a single base and y is a base pair is similar and hence omitted.) As

discussed before, besides the partial structure Sx the child structure G for the base pair x

also needs to be compared. First the structural alignment score between the child

structure Cx and the partial structure Sy is calculated. There are two cases: (i) the single

base component y is aligned with a gap; and (ii) the base pair x is aligned with a gap.

Therefore,
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In aligning the partial structure Sx with the partial structure Sy, there are three

cases: (i) the single base y matches with a gap; (ii) the partial structure Sy matches with

the child structure G; (iii) the partial structure Sy matches with the parent structure P.

Thus,

Then, consider the situation where x is a base pair and y is also a base pair. This

requires the computation of four alignment scores because each base pair corresponds to

two structures: one child structure and one partial structure. While aligning the child

structure Cx with the child structure Cy, it is clear that

since both x and y are the last components in the respective child structures.

Equation (3.9) gives alignment score between the partial structure S, and the child

structure Cy :

The first case corresponds to that y is aligned with a gap. If y does not match with

a gap, it can be shown that, the second and third cases in Equation (3.9) cover all possible
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situations. Similarly, we can calculate the score of aligning the child structure G and the

partial structure Sy as shown in Equation (3.10):

In aligning the partial structure Sx with the partial structure Sy, there are five

cases: (i) the parent structure Px is matched with the parent structure Py and the child

structure Cx is matched with the child structure Cy; (ii) the child structure Cx is matched

with gaps; (iii) the child structure Cy is matched with gaps; (iv) the parent structure Px is

matched with gaps; and (v) the parent structure Py is matched with gaps. Therefore,

It can be shown that this CSA method for aligning the query structure Q and the

subject structure S allowing constraints to exist in Q has a polynomial time complexity of

O(mn) where m is the length of the query structure and n is the length of the subject

structure.
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3.2.5 Computation of p-Value

To determine what match is likely or unlikely to occur by chance, the computation of a

statistical measure, namely a p-value, is incorporated into the CSA method (Figure 3.2).

In (62) it was showed that in the case of a gapless alignment, the distribution of

alignment scores of random sequences is the Gumbel or extreme value distribution (63).

However for a gapped alignment, there is no theory that predicts the distribution of

alignment scores for random sequences. It has been conjectured based on numerical

evidence that the score distribution is still of the Gumbel form (64-66). This assumption

is adopted while computing the statistical measure. For the comparison of random

sequences of sufficient lengths m and n, the number of distinct local alignments with

score at least x is approximately Poisson distributed, with mean

(3.12)

where A and K can easily be calculated (62). The optimal alignment score S' follows an

extreme-value distribution with

(3.13)

Accurate estimation of and K is essential to using these equations. The Island

method (67,68) has been used to do the estimation. As suggested by this method, first the

constrained structural alignments of biologically occurring RNA secondary structures

chosen randomly from Rfam (1) is computed. While performing the alignment between
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two RNA secondary structures, one of the structures are annotated to be constrained.

Thus the scores obtained from the alignments are consistent with the proposed

constrained structural alignment scoring scheme. The local alignment results are several

locally optimal matches, each being comparable to an island in the large sequence. All

the scores that are greater than a threshold c are selected. In this study, the c value is set

to 10. The threshold value is chosen such that it is a reasonable score obtained when

aligning short RNA motifs of the commonly occurring length. Let the set II of such local

alignment islands have cardinality R e and the mean score in excess of c for these islands

be Se :

where S(i) is the score of island i. Then the maximum-likelihood estimator for A. is

where A is the aggregate "area" of the search space from where the local alignments are

taken. If a single pair of structures of length m and n is used, then A = mn. If B such

comparisons are performed, then A = Bmn. Once Ac and Kc  are determined, these values

are used to calculate the p-value for an alignment score x by plugging λ c and Kc in

Equations (3.12) and (3.13). The p-value is the probability, by chance, that there is

another alignment with a similarity score greater than or equal to the score x. The p-value
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is a measure of the reliability of the score x. The smaller the p-value, the more reliable x

is.

3.4 Experiments and Results

The proposed constrained structural alignment method was tested by detecting internal

ribosome entry sites in the RNA sequences of T brucei and hepatitis C virus respectively.

An internal ribosome entry site (IRES) is a nucleotide sequence which functions to allow

for translation initiation in the non-coding region of an mRNA sequence (69). An IRES

element is able to attract the eukaryotic ribosome to close vicinity of a start codon and

thus to initiate its translation. The secondary structure of an internal ribosome entry site

in T brucei mRNA sequences is portrayed in Figure 3.5.

Two different datasets were used in these experiments. For the first dataset Dl, 20

non-redundant untranslated regions (UTRs) of T. brucei mRNA sequences that contain

internal ribosome entry sites were extracted from UTRdb (70). These IRES containing

mRNA sequences, listed in Table 3.1, formed the positive data for the dataset D1. Their

lengths are in the range 85-993 nt. The presence of IRESs in these sequences was

suggested by UTRscan (70) which is a sequence analysis tool provided by UTResource.

UTRscan analyzes user-submitted sequences for the functional elements defined in the

UTRsite database of UTResource. Notice that even though the 20 UTRs of T. brucei

mRNA sequences contain internal ribosome entry sites, there are no known conserved

secondary structures, or structural motifs, in the IRES-containing UTRs. Also, 30 other

sequences were added from UTRdb that were not known to contain internal ribosome

entry sites. These 30 sequences formed the negative data for the dataset Dl. All these 50
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sequences were folded using RNAfold (27). Finally, 5 of the 20 IRES-containing T

brucei sequences were randomly selected and the IRES-containing region in each of the 5

sequences was extracted. These IRES-containing regions were separately folded using

RNAfold and that formed the query structures in our experiment involving Dl.

Figure 3.5 The secondary structure of an internal ribosome entry site in T. brucei mRNA
sequences.
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Table 3.1 The 20 IRES-containing T. brucei UTR Sequences used as Positive Data in D1
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Table 3.1 The 20 IRES-containing T. brucei UTR Sequences used as Positive Data in D1
(Continued)

Table 3.2 The 20 IRES-containing HCV Sequences used as Positive Data in D2
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The second dataset D2 was made up of 20 non-redundant hepatitis C virus (HCV)

sequences, which contained internal ribosome entry sites, from Rfam (1). These

sequences belong to the IRES HCV family in Rfam. Table 3.2 lists these sequences,

which formed the positive data for the dataset D2. Their lengths are in the range 190-267

nt. In Rfam, these 20 HCV sequences share a consensus or conserved secondary

structure. Another 30 sequences were taken from UTRdb and added to the dataset D2.

These 30 sequences did not belong to the hepatitis C virus, and were not known to

contain internal ribosome entry sites. These 30 sequences formed the negative data for

the dataset D2. All these sequences were folded using RNAfold (27). Separately, 5 of the

20 IRES containing HCV sequences were randomly selected from the dataset D2 just the

IRES region from each of the 5 sequences was extracted. These IRES containing regions

were folded using RNAfold (27). The resulting 5 structures formed the query structures

in the experiment involving D2.

On these two datasets D1 and D2 , constrained structural alignment (CSA)

method was applied, first using the binary conservation option (0/1 constraints), and then

using sequence logos, by aligning each of the 5 selected query structures one by one with

the RNA secondary structures in Dl and D2, respectively. (For the binary conservation

option, every base in a query structure was marked with "*"). For comparison purposes,

two other methods were also applied to the same datasets. They were the regular pair-

wise structural alignment method without constraints offered in RSmatch (3) and the

RNAforester structural alignment method (48). Thus, a database search was carried out

with each of these alignment methods by aligning the corresponding query structures one

by one with the subject structures in D1 and D2, respectively. Then, from the top 20 hits,
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i.e. the top 20 RNA subject structures with the largest alignment scores, in a search result,

the true positives and false positives were computed. True positives are those hits in

which an internal ribosome entry site is actually present. False positives are those hits

that appear in the search result as containing internal ribosome entry sites, though in

reality they are not known to contain internal ribosome entry sites. The error rate (e),

defined below, is used to evaluate the effectiveness of an alignment method:

where TP is the number of true positives, FP is the number of false positives, and TP +

FP = 20 in these experiments.

Table 3.3 shows the results and presents the average error rate obtained from

using the 5 different T. brucei query structures for each alignment method. Table 3.4

presents this data for the 5 different queries belonging to the HCV dataset. As can be seen

from the tables, the proposed CSA method with 0/1 constraints gives the lowest average

error rate, outperforming the other three alignment techniques. These results were

obtained by using the optimal structure for each sequence. The alignment algorithms

were also compared by using twenty percent suboptimal structures for each sequence,

and the qualitative conclusion remains the same.

It was observed that there is little similarity shared by the IRES-containing T.

brucei sequences. The average pairwise sequence identity for the 20 IRES-containing T

brucei sequences is 29%. This explains why the three alignment algorithms have high

error rates for the T brucei dataset (Table 3.3). On the other hand, the 20 IRES-

containing HCV sequences are conserved at both the sequence and the secondary
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structure level. The average pairwise sequence identity for the 20 IRES-containing HCV

sequences is 88%. Under this circumstance, all the three alignment algorithms have good

performance; the algorithms have much lower error rates for the HCV dataset (Table 3.4)

than for the T brucei dataset (Table 3.3).

Table 3.3 The Average Error Rate Calculated by using 5 T. brucei Queries against the
Dataset D1

Table 3.4 The Average Error Rate Calculated by using 5 HCV Queries against the
Dataset D2.

* TP = True positive, FP = False positive that occur in the top 20 hits of a search.
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From Table 3.3, it can be seen that among the top 20 hits, the CSA method with

0/1 constraints found 11-14 positive structures and 6-9 negative structures. The consensus

of the found positive structures may suggest a conserved secondary structure or structural

motif in the T brucei UTRs. Figure 3.6 shows the consensus secondary structure together

with its Vienna style Dot Bracket representation of the top 10 positive structures most

similar to query Q1 in Table 3.3 according to the CSA method with 0/1 constraints. The

consensus secondary structure is computed by the multiple structural alignment (MSA)

function of the RADAR tool (5). For the HCV data in Table 3.4, the consensus

secondary structure found by the proposed constrained structural alignment method in

combination with RADAR' s MSA function is consistent with that documented in Rfam

(1).

Figure 3.6 A putative structural motif in T. brucei UTRs obtained from the multiple
structural alignment of the top 10 positive structures that occurred in the search result of
query Q1 in Table 2.3 using the proposed CSA method with 0/1 constraint.
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3.5 Conclusions

Here a constrained structural alignment algorithm for matching two RNA secondary

structures was introduced. A statistical measure was developed for assessing the

significance of alignment scores. The proposed techniques are applied to searching for

internal ribosome entry sites in RNA sequences of T brucei and hepatitis C virus,

respectively. For the HCV sequences, there is a known consensus secondary structure, as

documented in Rfam (1), and our method accurately detected the consensus secondary

structure in the HCV sequences. For the T. brucei sequences, there is little similarity

shared by their IRES containing sequences, and our experimental results suggested the

possible existence of a conserved secondary structure in the IRES containing T brucei

sequences. The results also showed the superiority of the proposed techniques over

existing methods.



CHAPTER 4

RADAR: A WEB SERVER FOR RNA DATA ANALYSIS AND RESEARCH

RADAR is a web server that provides a multitude of functionality for RNA data analysis

and research. It can align structure-annotated RNA sequences so that both sequence and

structure information are taken into consideration during the alignment process. This

server is capable of performing pairwise structure alignment, multiple structure

alignment, database search and clustering. In addition, RADAR provides two salient

features: (i) constrained alignment of RNA secondary structures, and (ii) prediction of the

consensus structure for a set of RNA sequences. RADAR will be able to assist scientists

in performing many important RNA mining operations, including the understanding of

the functionality of RNA sequences, the detection of RNA structural motifs and the

clustering of RNA molecules, among others.

The web server together with a software package for download is freely

accessible at http://datalab.njitedu/biodata/rna/RSmatch/server.htm.

4.1 Introduction

The web server, RADAR (acronym for RNA Data Analysis and Research), performs a

multitude of functions related to RNA structure comparison, including pair-wise structure

alignment, constrained structural alignment, multiple structure alignment, database

search, clustering and consensus structure prediction. The aim behind developing this

web server was to have a versatile tool that provides a computationally efficient platform

56
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for performing several tasks related to RNA structure. RADAR has been developed using

Perl-CGI and Java. In each run, the server can accept at most 50 RNA sequences or

secondary structures for pair-wise structure alignment and constrained structural

alignment and at most 10 RNA sequences or secondary structures for the other functions

where each sequence or structure has at most 300 bases, though the downloadable version

does not have this restriction. For the sample data provided by the server, it takes a few

seconds for most of the server's functions to complete and display results on the web. It

takes about one minute to produce a multiple structure alignment when RNA sequences

are fed as input. The database search function needs several minutes to search the Rfam

database (1); the results of this function are returned to the user via email, rather than on

the web.

4.2 Method

RADAR employs the RSmatch algorithm (3) for computing the alignment of two RNA

secondary structures. Briefly, it decomposes each RNA secondary structure into a set of

basic structure components that are further organized by a tree model. With this model,

pseudoknots are not allowed. A dynamic programming algorithm is employed to align

the two RNA secondary structures. RSmatch is capable of performing both global and

local alignment of two RNA secondary structures. The time complexity of the algorithm

is O(mn), where m and n are the sizes of the two structures, respectively. This method is

an efficient solution to the problem of RNA structure alignment. By using this structure

comparison algorithm, other functionalities were developed such as pair-wise structure

alignment, multiple structure alignment, database search, clustering, constrained
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structural alignment and consensus structure prediction, and incorporated into RADAR.

Pair-wise structure alignment involves the alignment of a query structure with each of the

subject structures in a set. Multiple structure alignment uses the same alignment

algorithm along with a position specific scoring matrix to build up an alignment by

including one structure at a time until no appropriate structure can be included in the

alignment (3). Database search is done by aligning a query structure one by one with the

consensus structures of the non-coding RNA families stored in the release 8.0 of Rfam

(1) to find the consensus structures similar to the query structure. This function returns

the top k hits as the search result, where k is an adjustable parameter. Clustering is done

to compute and display a similarity matrix for a set of RNA secondary structures. A

constrained version of RNA structure alignment has been developed to improve the

sensitivity of the alignment (as described in Chapter 3). This allows the user to annotate a

region of an input RNA structure as conserved. The conserved region, or constraint, is

incorporated into the alignment process to produce biologically more meaningful

alignment results. RADAR also includes a novel method for computing the structure of a

group of closely related RNA sequences. This method is explained below.

4.2.1 Consensus Structure Prediction

This method works in four steps, as described below:

i. Determine individual RNA structures: For the input RNA sequences, compute

their structures having energies that fall within a particular range of the minimum

energy using the Vienna RNA package's RNAsubopt function (27). Therefore, for
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each sequence there can be more than one possible structure. The result consists

of the predicted RNA structures for all the RNA sequences in the input file.

ii. Compute a pair-wise scoring matrix: In this step, the pair-wise alignment scores

between all structures except for the structures that represent the same RNA

sequence are computed. The result is a matrix that gives the score of alignment

for every pair of structures. The score of comparison between RNA structures of

the same sequence is set to 0, since these structures are for the same RNA

sequence and so they are treated as being very close to each other.

iii. Select one structure for each RNA sequence: From the matrix produced in step ii,

select the pair of structures which have the best score. These structures are then

said to be the chosen structures for the RNA sequences they correspond to. The

pair-wise scoring matrix is modified to eliminate all the other structures of these

RNA sequences. Once again the same process of selecting the best pair of

structures and then eliminating the other structures of the sequences they belong

to is carried out. This is repeated until we a structure is selected for each of the

input sequences.

iv. Predict the common RNA substructure: This step deals with predicting the

consensus RNA substructure that is common to as many RNA sequences in the

input file as possible. This is obtained by computing a multiple structure

alignment of the RNA structures selected in step iii.
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4.3 Web Server

The RADAR web server together with a standalone downloadable version is freely

available at http://datalab.nj it. edu/biodata/rna/RSmatch/server.htm.

4.3.1 Input

RADAR accepts, as input data, either RNA sequences in the standard FASTA format or

RNA secondary structures in the Vienna style Dot Bracket format (27). The input data

can be stored in a file to be uploaded to the server or entered directly into the text boxes

provided by the server. Figure 4.1 shows the input interface of RADAR for aligning an

RNA secondary structure with a set of subject structures. When RNA sequences are fed

as input, RADAR invokes Vienna RNA v1.4 (27) to fold the sequences into RNA

secondary structures. Based upon the function chosen, there are different alignment

parameters such as gap penalty, scoring matrix, alignment type (global or local) or

folding parameters such as minimum free energy, sliding window size, etc. that can be

customized by the user. For performing constrained structural alignment, it is required

that users annotate the query RNA structure to indicate which region is conserved by

marking the region with `*'.

4.3.2 Output

Upon completion of a structure alignment job, RADAR presents the alignment result on a

web page where the alignment result can be downloaded to a file on a local machine. In

Figure 4.2, the common region of two RNA secondary structures given in an alignment
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result is portrayed using RnaViz (71), where the local matches in the two structures are

highlighted with the green color. For pair-wise structure alignment and constrained

structural alignment, RADAR ranks the subject structures in the given set based upon

their similarities to the query structure. The top ranked subject structure is most similar to

the query structure, with the maximum alignment score. The score diminishes as the

quality of the alignment decreases.

Figure 4.1 The input interface of RADAR for aligning an RNA secondary structure with
a set of subject structures.

In the case of a multiple structure alignment, RADAR displays the set of RNA

structures followed by the best possible multiple structure alignment obtained from them.

Inference can be made from looking at this alignment about the presence of a common

motif Such knowledge greatly helps in studying and discovering the functionalities of
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RNA molecules. Figure 4.3 shows an example of the output from the RADAR function to

predict the consensus structure for a set of RNA sequences.

Figure 4.2 Figure illustrates a common region between two RNA secondary structures
with green color.

Dale

Figure 4.3 Sample output from RADAR's consensus-structure prediction function for a
set of RNA sequences. The result shows a group of subsequences from the input that
share a common structure. Here the common structure is that of the IRE motif (72).
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The input sequences are shown on the top of the figure and the consensus

structure is shown at the bottom of the figure. The consensus structure is that of an iron

response element (IRE) (72) and all the input sequences are known IRE-containing

sequences. The IRE motif is displayed as a multiple structure alignment where the

alignment shows the positions at which the motif occurs in each input sequence. These

positions indicate the offsets within a sequence. For example, in NM_014585:151-250,

the motif begins at the 55th position and ends at the 77th position of the sequence.

4.4 Conclusions

The RADAR web server provides multiple capabilities for RNA structure alignment data

analysis, which includes pair-wise structure alignment, multiple structure alignment,

constrained structural alignment, database search, clustering and the prediction of a

consensus RNA structure from structure alignments for a set of RNA sequences. The web

server is implemented in Perl-CGI, rather than SOAP, and hence it requires human—

computer interaction.



CHAPTER 5

DETECTING CONSERVED RNA SECONDARY STRUCTURES IN VIRAL
GENOMES: THE RADAR APPROACH

5.1	 Introduction

Conserved regions, or motifs, present among RNA secondary structures serve as a useful

indicator for predicting the functionality of the RNA molecules. Automated detection or

discovery of these conserved regions is emerging as an important research topic in health

and disease informatics. In practice, biologists favor integrating their knowledge about

conserved regions into the alignment process to obtain biologically more meaningful

similarity scores between RNAs. Constrained alignment method (described in chapter 3)

was used for detecting conserved regions in RNA secondary structures of some viral

genomes. The experimental results show that the proposed approach is capable of

efficiently detecting conserved regions in the viral genomes and is comparable to existing

methods.

5.2	 Implementation and Experimental Results

Several experiments have been conducted to evaluate the performance of the proposed

constrained structural alignment algorithm by applying this method to finding structural

motifs in viral genomes. Study of viral genomes has shown that they often contain

functionally active RNA structural motifs that play an important role in the different

stages of the life cycle of the virus (73). Detection of such motifs or conserved regions

would greatly assist the study of these viruses.
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One of experiments designed was to search for a short GC—rich hairpin (tetraloop) which

follows an unpaired GGG element, shown in Figure 5.1, present at the 5' end of the

Levivirus genome (73). Constrained structural alignment algorithm, with the binary

conservation option, was applied to a dataset comprising 6838 RNA structures each with

length 200 nt formed from ten Levivirus genomes and four other randomly selected viral

genomes. The query structure used was the GC—rich hairpin. There were ten structures in

this dataset containing the region of interest. The algorithm was able to correctly identify

8 out of the 10 structures. The same experiment was repeated using the non-constrained

alignment method of RSmatch (3), and it could identify only 6 out of the 10 structures.

These six structures were part of the eight structures found by the constrained structural

alignment (CSA) algorithm. This shows that the CSA method improves upon the

performance of the existing RSmatch method and has a better sensitivity. The Infernal

tool (45) was also applied to this same viral genome dataset. Infernal also detected only 6

out of the 10 structures. Again, these six structures were part of the eight structures found

by the CSA method.
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Figure 5.1 The secondary structure of a GC—rich hairpin that is found to be conserved
within the Leviviridae family (73).

5.3	 Conclusions

The application of the constrained structural alignment algorithm to viral genomes

demonstrates the use of the algorithm in RNA informatics research and its ability to

detect conserved regions in RNA secondary structures. The work described here is part of

a large project aiming to build a cyber infrastructure (http://datalab.njit.edu/bioinfo)  for

RNA structural motif discovery in human, virus and trypanosome mRNAs. Human

immunodeficiency virus type 1 is the causative agent of AIDS and is related to many

cancers in humans. Hepatitis C virus is related to hepatocellular cancer in humans.

Trypanosoma brucei causes African trypanosomaiasis, or sleeping sickness, in humans

and animals in Africa. RNA motifs or conserved structures have been shown to play

various roles in post-transcriptional control including mRNA translation, mRNA

stability, and gene regulation, among others. This cyber infrastructure will contribute to

integrated genomic and epidemiological data analysis, by enabling access, retrieval,

comparison, analysis, and discovery of biologically significant RNA motifs through the

Internet as well as the integration of these motifs with online biomedical ontologies.



CHAPTER 6

THE STRENGTH OF A POLYADENYLATION SITE IS INFLUENCED BY THE
STRUCTURAL STABILITY OF THE SURROUNDING REGION AND ITS

DISTANCE FROM THE NEIGHBORING GENE

Polyadenylation is a crucial step towards the maturation of almost all cellular mRNAs in

eukaryotes. Studies have identified several cis-elements besides the widely known

polyadenylation signal (PAS) element (AATAAA or ATTAAA or a close variant) which

may have a role to play in polyA site identification. This study investigated the

differences in structural stability of sequences surrounding poly(A) sites. It was found

that for the genes containing single poly(A) site, the surrounding sequence is most stable

as compared with the surrounding sequences for genes with alternative poly(A) sites.

This suggests that structure may be providing some evolutionary advantage for genes

containing a single poly(A) sites that prevents other poly(A) sites from arising. In

addition this research shows that the structural stability of the region surrounding a

polyadenylation site correlates with its distance from the closest neighboring gene. The

shorter the distance, higher was the structural stability.

6.1 Background

Polyadenylation is an important post-transcriptional regulation step towards the

generation of mature mRNA transcripts that can be translated to proteins (74). This is a

two step process that includes a specific cleavage at the 3' end of nascent mRNA and

then the addition of poly(A) tail (75). The poly(A) tail is located at the 3'-end of all

mature mRNAs except some histone genes (18,74), and is critical for many aspects of

mRNA metabolism, including mRNA stability, translation, and transport (76,77).
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The polyadenylation process involves the use of two major components: the cis-

elements or poly(A) signals of the pre-mRNA, and the trans-acting factors that carry out

the cleavage and the addition of the poly(A) tail at the 3'-end (78). Sequences flanking

the poly(A) site is called the poly(A) region. Several cis-elements residing near to

poly(A) sites have been found to promote polyadenylation. A hexamer AAUAAA or

AUUAAA or a close variant, usually referred to as the polyadenylation signal (PAS), is

located 10-35 nt upstream of most human poly(A) sites (79). In addition, TGTA, TATA,

G-rich and C-rich elements in upstream or downstream regions have been implicated in

regulation of polyadenylation by different experimental and/or bioinformatics studies

(19,80,81). Some studies have also identified RNA structure to be a critical determinant

of poly(A) site definition (82,83). Here, the primary goal was to further investigate the

role played by RNA secondary structure in polyadenylation and to study the different

types of poly(A) sites for factors that affect their strength.

More than half of all human genes have been found to contain multiple poly(A)

sites (79,84), which leads to alternative gene products, while others have only a single

poly(A) site. The multiple poly(A) sites can be located downstream of the stop codon in

the 3'-most exon, leading to transcripts with variable 3'-untranslated regions (UTRs), or

in internal exons, leading to transcripts with variable protein products and 3'-UTRs (85).

In this study, the analysis deals with the genes that contain only one poly(A) site, referred

henceforth as S-type poly(A) sites, and with genes that have multiple poly(A) sites

downstream of the stop codon in the 3'-most exon. The alternative poly(A) sites are

further classified into three types as follows: 5' most poly(A) site is referred as F-type, 3'
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most poly(A) site is referred as L-type and all other sites between these two are referred

as M-type (Figure 6.1).

Figure 6.1 Different types of poly(A) sites classified according to their location in the
gene. (A) Single poly(A) sites (S). (B) Sites located in the 3'-most exon are classified
into 5'-most site (F), middle site (M) and 3'-most site (L).

Source: Lee, J.Y., Ji, Z. and Tian, B. (2008) Phylogenetic analysis of mRNA polyadenylation sites reveals
a role of transposable elements in evolution of the 3'-end of genes. Nucleic Acids Res, 36, 5581-5590.
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6.2 	 Results

All poly(A) sites used in this analysis have been obtained from the PolyA_DB 2 database

(86). This study only deals with the poly(A) sites of type: Single (S), First (F), Middle

(M) and Last (L) (Section 6.3.1).

6.2.1 Structural Stability of the Poly(A) Region for the Different Types of Poly(A)
Sites

Sequences flanking the poly(A) sites (-200 to +200 and -100 to +100) of type: S, F, M

and L are extracted and their minimum folding free energy (mfe) is computed using

RNAfold (27). Each set of poly(A) sites are divided into conserved and non-conserved

sites (Section 6.3.2) and the density plots of mfe were obtained separately for the

conserved and non-conserved set of each type. From the distribution of the mfe for all the

conserved polyA sites of different types it was observed that the S-type polyA site

sequences showed the maximum stability (Figure 6.2(A-C)).The mfe for the conserved S-

type sequences is significantly less than that of the other types (Wilcoxon test p-value <

2.2e-16 when compared with conserved L-type). The same pattern was also observed for

the poly(A) region of mouse poly(A) sites (Figure 6.3). It also indicated that the S-type

poly(A) region is most stable.

Furthermore the stability of conserved poly(A) regions is more than that of non-

conserved (Figure 6.4). Comparison of the observed stability of S-type sequences with

the expected stability (using 1-order Markov randomized S-type sequences) shows a clear

bias of the observed data towards lower energy (Figure 6.2(D)). Both KS test and
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Wilcoxon test showed that the observed stability of S-type sequences is significantly

more than the expected value (KS test E-value=0, Wilcoxon test p-value = 0.0018).

Figure 6.2 Comparison between the minimum free energy distribution of the poly(A)
region surrounding conserved Human poly(A) sites: (A) between S and L-type (B)
between L and F-type (C) between L and M-type (D) between observed and expected
distribution for S-type. Wilcoxon and mKS tests are used to provide the significance of
the difference.

Note: This work was performed in collaboration with members of Prof. Bin Tian's research group at
UMDNJ.



Figure 6.3 Comparison between the minimum free energy distribution of the poly(A)
region surrounding conserved Mouse poly(A) sites: (A) between S and L-type (B)
between L and F-type (C) between L and M-type.



73

Figure 6.4 Comparison between the minimum free energy distribution of the poly(A)
region surrounding conserved sites with that of the non-conserved sites. Wilcoxon and
mKS test were used to provide the significance of the difference between these
distributions.
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6.2.2 Structural Differences between different Regions surrounding the Poly(A)
Sites

Next, the poly(A) region was divided into subsequences 50 nt long upstream and

downstream of the polyA site (-200 to +200). The resulting 8 regions are labeled as a, b,

c, d, e, f, g and h as can be seen in Figure 6.5. Then the number of base pairs between

each of these regions is found. Base pairing is an indicator for judging the capability of

the region to form stable structures and so it was used to find out how the stability varies

for the regions surrounding the poly(A) site. Figures 6.5(A-D) show heat maps of the

ratio of observed to expected (using 1-order Markov randomized sequences) average base

pairing among the different regions for each type of conserved poly(A) site. An

interesting observation from this is that the "d" region seems to have a general avoidance

for structure with other regions except with itself and with region "e". This avoidance is

most pronounced for the S-type poly(A) site sequences.

To further verify the above results, the free energy contributed by each region

towards the free energy of the structure for the entire sequence was calculated using

RNAeval (27). Here again it was observed that there was higher energy (hence less

structural stability) when the region "d" is involved (Figure 6.5(E-H)). It's also seen that

the conserved S-type sequences have overall lower energies than the others which again

reiterates the previous result that showed S-type poly(A) regions to have the least

minimum free energy.
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Figure 6.5 The sequence 200 nt upstream and downstream of the poly(A) site is divided 
into regions 50 nt long and labeled from a-h. (A-D) Ratio of the observed vs. expected 
base pairing amongst the different regions upstream and downstream of the poly(A) site 
of conserved S, F, L and M-type respectively. (E-H) Ratio of the observed vs. expected 
free energy contributed by the different pairs of regions upstream and downstream of the 
poly(A) site. 
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6.2.3 Differences in the Co-occurrence of cis-regulatory Elements Surrounding
Poly(A) Sites

A previous study had identified several cis-elements that were over-represented in

frequently used poly(A) sites as compared to the weaker poly(A) sites (19). The goal here

was to find a network of co-occurring interactions between these cis-elements (and

possibly other unidentified cis-elements) existing uniquely in the stable poly(A) regions.

This information will further lead to the discovery of cis-elements that co-occur

structurally to provide some functionality.

This analysis was done on the conserved S-type poly(A) regions as they were

found to be the most stable group from previous results. The region 100 nt upstream and

100 nt downstream of the poly(A) site was selected and divided into regions 50 nt long as

before and labeled c, d, e and f (Figure 6.6). Between every pair of regions, the Z-scores

for the co-occurrence frequency of every existing tetramer pair in that region (Section

6.3.3) were computed. The pairs with a Z-score >= 2.5 were selected for further analysis.

These significant interactions were visualized using the program Cytoscape (87). The

network between the different pairs of regions is shown in Figure 6.6. Each edge is

color-coded based on the Z-score of the interaction. The co-occurring tetramers between

regions d-e are largely A-T rich and most of them involve the poly(A) signal (PAS)

element whereas the extreme upstream and downstream regions (cf) contain more GC-

rich tetramers as was also seen previously (19). Some of these pairs are also

complementary to one another suggesting that they may be base-pairing together such as

AAAA-TTTT (de), CCCA-TGGG (cf), CCCA-TGGG (ce).

Several of the tetramers could be selected to extend this network to involve more

regions such as c-d-e, c-d-f so on (Figure 6.6), which shows that there may exist a
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complex circuitry of interactions between cis-elements which occurs during the process

of polyadenylation.

For more detailed analysis, the conserved S-type set was divided into two groups:

1) containing the sites with minimum free energy of their poly(A) region in the first

quartile (minimum free energy < 25 th percentile i.e., most stable), and 2) containing the

sites with minimum free energy of their poly(A) region in the third quartile (minimum

free energy > 75 th percentile i.e., least stable). For each of these two groups all the

significant tetramer pairs (Z-score >= 2.5) between every pair of regions were obtained

(Figure 6.7). It was observed that the co-occurrence of tetramers differs significantly for

these two groups. For the structurally more stable group (I quartile), the number of

tetramer pairs found significantly co-occurring is the highest between two extreme

upstream (c) and downstream (d) regions whereas this is much less for the structurally

least stable group (III quartile). On the other hand the first group has lower number of

significant interactions between the d and e regions (immediate upstream and

downstream of the poly(A) site) as compared to the second group, for which this number

is very high. It also shows that there are fewer interactions amongst the upstream regions

and more interactions amongst the downstream regions for the first group and this is the

opposite for the second group. This difference between these two structurally extreme

groups suggests that the variation in the nucleotide composition in the different regions

may lead to formation or avoidance of structures which might affect poly(A) site

recognition.
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6.2.4 Separation of the Poly(A) Site from the Neighboring Gene is Correlated with
its Structural Stability

This analysis has so far indicated that the S-type poly(A) regions are most stable. Further

investigating into the reasons, it was found that the distance separating the poly(A) site

from its neighboring gene on the same strand (head to tail) as well as the distance from

the closest poly(A) site on the opposite strand (tail to tail) is the least for the poly(A)

regions having the least energy and it is found to be higher for regions with higher

folding energy (Figure 6.8(A)).

Next, the conserved S-type poly(A) sites were divided into two parts: 1) all the

sites for which the closest poly(A) site on the opposite strand is also S-type, and 2) all

remaining S-type poly(A) sites. For the first group, the energy of the poly(A) region and

the distance from the neighboring poly(A) site is lower than that of the second (Figure

6.8(B) and Figure 6.8(C)). Further dividing each group based on their energy, we find

that the distance is closest in both cases for the sequences with least energies and it

increases as the energy increases (Figure 6.8(D)). This suggests that the structure might

be playing a role in strengthening the poly(A) site especially in situations where it

becomes crucial for the transcription termination to occur in a timely manner to avoid

interference with surrounding genes.
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Figure 6.6 The network showing significant (Z-score >= 2.5) co-occurrences oftetramers 
between the different upstream and downstream regions (-100 to + 100) of conserved S
type poly(A) sequences. The Z-score of each interaction is shown by using a color-coded 
scale. 
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Figure 6.7 Number of significant tetramer pairs (Z-score >= 2.5) found between different
upstream and downstream region pairs (-100 to +100) for the conserved S-type poly(A)
sequences having (A) minimum free energy <= 25 percentile (most stable), and (B)
minimum free energy >= 75 percentile (least stable), of the energy distribution.
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Figure 6.8 (A) Conserved S-type poly(A) sites are divided into 4 groups based on the
minimum free energy of its surrounding region. For each group the distance of the
poly(A) site from the transcription start site of the closest neighboring gene on the same
strand i.e. head to tail or from the poly(A) site on the opposite strand i.e. tail to tail
(whichever is smaller) is obtained and plotted. (B) Minimum free energy distribution for
the conserved S-type sequences (-100 to +100) for which the other nearest poly(A) site
on the opposite strand is also S-type (S-S) vs. the conserved S-type sequences for which
the nearest poly(A) site is not S-type (S-others). (C) Box-plot of the energy for the two
groups in (B). (D) Each of the two groups from (B) is further divided into 4 parts based
on minimum free energy distribution and then the box plot of the tail to tail distance for
each of these sets is shown, first for the S-S group and next for S-others group).
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6.3 	 Materials and Methods

6.3.1 Poly(A) Site Dataset

The information about the poly(A) sites was obtained from the PolyA_DB 2 database

(86). All the 54, 686 Human poly(A) sites and 30, 235 Mouse poly(A) sites were

downloaded. The poly(A) sites which are of types: Single (S) and the exonic alternative

polyadenylation sites : First (F), Middle (M) and Last (L) were selected. These poly(A)

sites were identified as described in (79). Briefly, human, mouse and rat cDNA/EST

(NCBI, August 2005 versions) sequences were aligned with their respective genomes

(UCSC; hg17 for human, mm5 for mouse and rn3 for rat) by BLAT (88). Dangling

poly(A) tails (> 8nt) of the aligned cDNA/ESTs were used to find the poly(A) sites. Sites

located in A-rich regions, i.e., six or more consecutive As or seven or more As in 10-nt

window in the -10 to +10 nt region surrounding the site were considered as internal

priming candidates and were not used in this study. cDNA/ESTs without poly(A) tails

were also used if their 3' ends were located within 24 nt from a site supported by

poly(A/T)-tailed cDNA/ESTs. The orientation of a cDNA/EST on the genome was

inferred by its splicing sites as previously described (79).

6.3.2 Identification of Conserved Orthologous Poly(A) Sites

Orthologous poly(A) sites were identified as described in (89) by using UCSC human

versus mouse (hg17 vs. mm5), mouse versus human (mm5 vs. hg17), human versus rat

(hg17 vs. rn3), and rat versus human (rn3 vs. hg17) whole genome alignments (axtNet

files) (90). A pair of human and mouse/rat poly(A) sites were considered orthologous

when (a) the human and mouse/rat sites are located within 24 nt in the human and
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mouse/rat genome alignment; and (b) they are nearest to one another in a reciprocal

manner, i.e., the mouse/rat poly(A) site is the nearest one to the human poly(A) site using

hg17 versus mm5 or hg17 versus m3, and the human one is the nearest to the mouse/rat

one using mm5 versus hg17 or m3 versus hg17. Further, if these orthologous poly(A)

sites are of the same type then we select the poly(A) site pair as being conserved

orthologous poly(A) sites.

6.3.3 Network of Co -occurring Tetramers Using Z-score Calculation

For any given tetramer pair: k1~k2 where k1 falls in region "r1" and k2 falls is region

"r2" surrounding the poly(A) site, first we find the frequency of their co-occurrence, say

its Fk1,r1: k2,r2• We then find the frequency of co-occurrence of k1 in region r1 with all

other tetramers in region r2. Next, the mean (ml) and standard deviation (sdl) of these

frequencies is calculated using which the first Z-score is obtained as follows:

Using a similar procedure, we then obtain the frequency of co-occurrence of k2 with all

the tetramers in region r 1. Again, we obtain the mean (m2) and standard deviation (sd2)

for this distribution. This gives the second Z-score:
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These Z-scores are a measure of the significance of co-occurrence of the pair k1~k2

between regions r1 and r2. We select the pairs where both the z-scores are >= 2.5 to be

significant in this study.

6.3.4 Statistical analysis

Wilcoxon rank sum tests and mKS tests were carried out using the statistical analysis

software R (http://www.r-project.org ). For mKS test, we followed the method described

in (91). Briefly, given a set of values N containing n entries and another set M containing

m entries, the following method was used to assess whether values in M were

significantly higher or lower than those in N. N and M are joined together, and the

combined set (M+N) is ordered from high value to low value. A running sum is computed

across all entries starting at the highest value. A value of v1 was added to the running

sum if the entry is from the set N, and otherwise v2 is added, where v1 = Amin), and v2 =

-√(n/m). Thus, the overall sum comes out to be zero. The maximum and minimum values,

Omax and Omin respectively, of the running sum were used as empirical statistics and

can be considered as observed values. To obtain their significance, we randomly selected

m entries from (M+N), and calculated the maximum and minimum values, Emax and

Emin respectively, which are considered to be the expected values. The process was

repeated 1000 times. The probability for rejecting the null hypothesis that M contains

larger values than N was the fraction of 1000 Emax that were higher than Omax. The

probability for rejecting the null hypothesis that M contains smaller values than N was the

fraction of 1000 Emin that were smaller than Omin. These probabilities were called E-

values in this study.



CHAPTER 7

CONCLUSIONS AND FUTURE RESEARCH

The primary objective of this research was to undertake a bioinformatics approach to the

study of RNA secondary structures and discover novel biological results. This chapter

reviews the findings of this study, implications of the results and the additional research

in future that will further consolidate the work.

7.1 GLEAN-UTR

GLEAN-UTR approach was developed to discover novel putative conserved ncRNAs

from the untranslated regions (UTRs) of orthologous Human and Mouse genes. This

approach resulted in 90 distinct RNA structure groups containing 748 structures (Chapter

2). These groups were formed of RNA sequences that have a similar structure and also

share Gene Ontology annotations of the Biological Process category which indicates a

possibility that the structures in these groups may have some common function in the

biological pathway. The approach also discovered the well known Histone 3' UTR stem

loop structures and the Iron Response element structures as the top two groups in the

results. This provides some validation for the approach that it does group structurally and

functionally similar structures together. However, for the other groups it is hitherto

unknown what function these structures carry out in the cell and if they do so at all. So,

the next step will be to design wet-lab experiments that can find out whether any of these

structures are functional in the cell.
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The GLEAN-UTR approach is generic and can be applied to other species as well

to analyze and identify conserved RNA structures. Recently large numbers of species

have been sequenced and this data is publicly available. Taking advantage of this fact, in

future GLEAN-UTR approach will be used to study other organisms.

This method was applied to mining small RNA structures in this study, primarily

because those structures can be more accurately predicted by RNA prediction programs

using only thermodynamic parameters. With the development of more sophisticated RNA

prediction algorithms, the accuracy will increase and it will also be possible to identify

large conserved RNA structures.

In summary, this study indicates that many more conserved stem-loop structures

are present in human UTRs and they might be involved in coordinate post-transcriptional

gene regulation of biological pathways, similar to HSL3 and IRE structures. This

bioinformatics study lays a ground work for future wet lab validations of putative RNA

stem-loop groups and represents a framework which can be used to analyze RNA

structures identified by other approaches and in other species.

7.2 Method Development

Computational analysis of biological data has opened a great deal of avenues for ground-

breaking discoveries. Development of various software tools, databases and efficient

algorithms in conjunction with statistical analysis has wielded the path towards an

exciting exploration of the complex cellular machinery.
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In order to aid this research of RNA secondary structures, a powerful software

framework was developed termed as RADAR (Chapter 4). This is an online web-based

as well as standalone tool that provides wide range of functions such as database search,

multiple structure alignment, consensus structure prediction, clustering and so on, which

aid in detecting conserved RNA secondary structures. By using this predictive approach,

biologists will be able to reduce the expensive wet-lab experiments by rejecting data that

may not seem interesting while being able to find promising results very quickly. This

tool is based on alignment of RNA structures using a dynamic programming algorithm

(0 (mn)) RSmatch (3). It also incorporates a novel algorithm that improves the structure

alignment function of RSmatch termed as Constrained Structural alignment (Chapter 3)

which significantly increases the specificity of the results and provides more flexibility

for the user to provide special characteristics of the input data as per their requirements.

Several applications of this framework are possible and have been described in

this dissertation (Chapter2, Chapter 3, Chapter 5) resulting in good findings. Since this

tool depends on the accuracy of the RNA secondary structures provided as input, the

performance can be greatly enhanced as newer more powerful methods for prediction are

developed especially the ones based on phylogeny. Currently it also incorporates a p-

value for each alignment as a statistical indicator for the reliability of the results (Chapter

3). This p-value depends on the score of alignment, which is computed by RADAR using

very basic scoring matrices. Development of more complex and biologically obtained

matrices will lead to a better outcome. Finally, through the application of these methods

to various different RNA sequences coupled with biological experiments will lead to a

stronger validation.
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7.3 Polyadenylation Analysis

In Chapter 6 of this dissertation, focus was on the post-transciptional gene regulation

process: Polyadenylation, which is a crucial step towards the maturation of almost all

cellular mRNAs in eukaryotes. The process involves cleavage at 3' end of mRNAs and

addition of poly(A) tail. This study set out to inquire into the questions pertaining to the

strength and usage of poly(A) sites by focusing on Human poly(A) sites. Several genes

have multiple poly(A) sites leading to alternate gene products (Alternative

polyadenylation) and others have only a single poly(A) site. Presumably genes that have

a single (S) poly(A) site would depend more on it to be efficiently detected and cleaved

to have proper functioning. This gives rise to an interesting question as to whether these

poly(A) sites have some evolutionary advantage that gives them a higher strength.

Research undertaken attempts to answer this by investigating into the structural

differences between the S-type poly(A) region as compared to that of multiple poly(A)

sites present in 3' UTR : First (F), Middle (M) and Last (L). It was found that the S-type

region is significantly more stable than the others and further the S-type site which are

also conserved in Mouse have the highest stability as compared to those that are not

conserved. It is known from previous studies that RNA structure is a critical determinant

of poly(A) site definition.

Another factor that might influence the selection of poly(A) site is the distance

that separates it from the neighboring gene on the same strand and distance from the

closest poly(A) site of opposite strand. A correlation was seen between this distance and

the structural stability: shorter the distance, lower is the minimum free energy of the

poly(A) region hence higher stability. It can be hypothesized that a short distance would
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mean that the poly(A) site would be stronger to prevent transcription interference. This

also then means that there is a correlation between structural stability and poly(A) site

strength. Future work involves designing wet-lab experiments that would prove this

theory.

Ths study also found a network of co-occurring interactions between tetramers in

different regions surrounding the poly(A) sites and it was observed that these interactions

differ based on the structural stability of the sequence. Further research need to be done

that would unequivocally model these interactions for different types of poly(A) sites and

tie it to the strength of polyadenylation.



APPENDIX A

HSL3 AND IRE MOTIFS

Figure A.1 shows the secondary structure of the Histone 3' UTR stern loop (HSL3) and

that of the Iron Response Element (IRE).

Figure A.1 The graphical representation of (A) HSL3 motif and (B) IRE motif. The
structures are also represented in the dot-bracket format.
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APPENDIXB 

HIERARCHICAL CLUSTERING RESULTS 

The GLEAN-UTR approach found 2,054 structures that were similar to alteast two other 

structures and satisfied the alignment score cutoff. In order to group the similar structures 

hierarchical clustering was applied. Figure B.l shows the heatmap for the outcome of 

clustering. The results show that several structures are similar to one another and they 

have been clustered together. 

!III RNA Structures • 

r 
I/) 

~ = -(J 

= ... -CJ) 

c( 
Z 
0::: 

1 
Normalized dissimilarity score 

-- --- - ,--- -
0.969 0.977 0.985 

Figure B.1 Heat map for all-against-all comparisons of 2,054 human RNA structures. 
The normalized dissimilarity score is represented by color based on the scale shown at 
the bottom. The structures are in the same order as those shown in the hierarchical 
clustering tree in Figure 5.3(B). 
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APPENDIX C

GLEAN-UTR FOR RANDOMIZED UTR SEQUENCES

Figure C.1 shows the result GLEAN-UTR approach to randomized (using 1-order

Markov model) human and mouse UTR sequences.

UTR sequences

Figure C.1 UTR sequences randomized by 1-order Markov chain were subject to the
same GLEAN-UTR approach as shown in Figure 5.1. The number of structures and
structure groups are shown at each step.
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APPENDIX E

EXTENDING RNA STRUCTURE GROUPS FOUND BY GLEAN-UTR

The 90 structure groups identified by GLEAN-UTR were used to further select additional

similar structures from the human UTRs using PatSearch and then GO analysis. Figure

E.1 shows the increase in group size using this approach.

• Original group size
• New group size after GO analysis

New group size after Patsearch

Figure E.1 The 90 structure groups found by GLEAN-UTR approach were used to
search human UTRs to obtain additional group members using PatSearch. GO analysis
refers to filtering out hits without the same GO term annotation as the original group. The
structure groups are ordered according to the difference between the original group size
and the group size after PatSearch.
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