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ABSTRACT

I/Q IMBALANCE MITIGATION FOR SPACE-TIME BLOCK CODED
COMMUNICATION SYSTEMS

by
Mingzheng Cao

Multiple-input multiple-output (MIMO) space-time block coded (STBC) wireless commu-

nication systems provide reliable data transmissions by exploiting the spatial diversity

in fading channels. However, due to component imperfections, the in-phase/quadrature

(I/Q) imbalance caused by the non-ideal matching between the relative amplitudes and

phases of the I and Q branches always exists in the practical implementation of MIMO

STBC communication systems. Such distortion results in a complex conjugate term of the

intended signal in the time domain, hence a mirror-image term in the frequency domain,

in the data structure. Consequently, I/Q imbalance increases the symbol error rate (SER)

drastically in MIMO STBC or STBC MIMO orthogonal frequency division multiplexing

(OFDM) communication systems, where both the signal and its complex conjugate are

utilized for the information transmission, hence should be mitigated effectively.

In this dissertation, the impact of I/Q imbalance in MIMO STBC systems over flat

fading channels, the impact of I/Q imbalance in STBC MIMO-OFDM systems and in time-

reversal STBC (TR-STBC) systems over frequency-selective fading channels are studied

systematically. With regard to the MIMO STBC and the STBC MIMO-OFDM systems

with I/Q imbalance, orthogonal space-time block codes (OSTBCs), quasi-orthogonal STBCs

(QOSTBCs) and rotated QOSTBCs (RQOSTBCs) are studied, respectively. By exploiting

the special structure of the received signal, low-complexity solutions are provided to mitigate

the distortion induced by I/Q imbalance successfully. In addition, to mitigate I/Q imbalance

while at the same time to exploit the multipath diversity for STBC OFDM systems over

frequency-selective fading channels, a new encoding/decoing scheme for the grouped linear

constellation precoded (GLOP) OFDM systems with I/Q imbalance is studied.



In Chapter 1, the objectives of the research are elaborated. In Chapter 2, the various

I/Q imbalance models are introduced, and the model used in this dissertation is established.

In Chapter 3, the performance degradation caused by I/Q imbalance of the transceivers in

MIMO STBC wireless communication systems over flat fading channels and the solutions

are studied. A 2 Tx Alamouti system, a 4 Tx quasi-orthogonal STBC (QOSTBC) system,

and a 4 Tx rotated QOSTBC (RQOSTBC) system with I/Q imbalance are studied in detail.

By exploiting the special structure of the received signal, low-complexity solutions are

proposed to mitigate I/Q imbalance successfully.

Since STBCs are developed for frequency-flat fading channels, to achieve the spatial

diversity in frequency-selective fading channels, MIMO-OFDM arrangements have been

suggested, where STBCs are used across different antennas in conjunction with OFDM. In

Chapter 4, the performance degradation caused by I/Q imbalance in STBC MIMO-OFDM

wireless systems over frequency-selective fading channels and the solutions are studied.

Similarly, a 2 Tx Alamouti system, a 4 Tx quasi-orthogonal STBC (QOSTBC) system, and

a 4 Tx rotated QOSTBC (RQOSTBC) system with I/Q imbalance are studied in detail, and

low-complexity solutions are proposed to mitigate the distortion effectively.

However, OFDM systems suffer from the loss of the multipath diversity by converting

frequency-selective fading channels into parallel frequency-flat fading subchannels. To

exploit the multipath diversity and reduce the decoding complexity, GLCP OFDM systems

with I/Q imbalance are studied. By judiciously assigning the mirror-subcarrier pair into one

group, a new encoding/decoding scheme with a low-complexity is proposed to mitigate I/Q

imbalance for GLCP OFDM systems in Chapter 5.

Since OFDM communication systems have high peak-to-average power ratio (PAPR)

problem and are sensitive to carrier frequency offset (CFO), to achieve both the spatial and

multipath diversity, time-reversal STBC (TR-STBC) communication systems are introduced.

In Chapter 6, the I/Q imbalance mitigating solutions in TR-STBC systems, both in the time

domain and in the frequency domain, are studied.
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CHAPTER 1

INTRODUCTION

1.1 Problem Statement

In wireless communication systems, as a result of the multipath propagation, the amplitude

and phase of the received signal vary significantly in time due to the constructive and

destructive superpositions of the replicas of the transmitted-signal. The corresponding

channel is called fading channel, and the transmitted signal can not be recovered reliably

when the channel is in a deep fade [1] [2] [3] [4] [5]. In multiple-input multiple-output

(MIMO) communication systems, when the multiple antennas are put far away, different

channels fade independently, making the spatial diversity available. Recently, the MIMO

space-time block coded (STBC) system is introduced to improve the reliability of the trans-

mission by exploiting the spatial diversity [6] [7] [8].

Within various space-time block codes (STBCs), orthogonal STBCs (OSTBCs) are

studied extensively since they can provide the full spatial diversity with simple linear

maximum likelihood (ML) decodings. Their drawback is that only Alamouti scheme

can provide a full rate transmission if a complex constellation is used. To achieve the

full rate transmission while sacrificing the full spatial diversity, quasi-orthogonal STBCs

(QOSTBCs) are proposed, with low computational pair-wise ML decodings feasible. By

choosing some symbols from a rotated constellation, the rotated QOSTBCs (RQOSTBCs)

can provide the full spatial diversity, full rate, and pair-wise ML decoding properties [9] [6].

Since STBCs are developed for frequency-flat fading channels, to achieve the spatial

diversity in frequency-selective fading channels, MIMO orthogonal frequency division

multiplexing (OFDM) arrangements have been suggested, where STBCs are used across

different antennas in conjunction with OFDM [10] [11] [12] [13]. Consequently, the inter-

1
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symbol-interference (ISI) can be removed by converting the frequency-selective fading

channels into the flat fading channels.

However, OFDM systems suffer from the loss of the multipath diversity by converting

the frequency-selective fading channels into the parallel flat fading subchannels. To exploit

the multipath diversity, the coding across subcarriers of STBC MIMO-OFDM systems is

needed [14]. To reduce the decoding complexity while exploit the multipath diversity,

grouped linear constellation precoded (GLOP) OFDM systems are studied and an optimal

subcarrier grouping is proposed in [15] [16].

Since OFDM systems have the high peak-to-average power ratio (PAPR) problem

[17] [18] and are sensitive to the carrier frequency offset (CFO) [19] [20], to achieve both

the spatial and multipath diversity over frequency-selective fading channels, time-reversal

STBC (TR-STBC) communication systems with equalization, either in the time domain or

in the frequency domain, are studied [21] [22] [23] [24].

Practically, due to the component imperfections, some analog processing problems

result from the low-cost, low-power, and highly integrated implementation of MIMO STBC

systems. The associated impairments with the analog processing should be compensated

in the digital baseband domain. One of the problems is the in-phase/quadrature (I/Q)

imbalance caused by the non-ideal matching between the relative amplitudes and phases of

the I and Q branches, especially in the direct conversion transceiver design [25] [26]. This

distortion results in a complex conjugate term of the intended signal in the time domain and

a mirror-image term in the frequency domain in the data structure, increasing symbol error

rate (SER) dramatically, especially in STBC systems utilizing both the transmitted symbol

and its complex conjugate, hence should be mitigated effectively.

In this dissertation, the impact of I/Q imbalance in MIMO STBC systems over flat

fading channels, the impact of I/Q imbalance in STBC MIMO-OFDM systems and in TR-

STBC systems over frequency-selective fading channels are studied systematically. Since

I/Q imbalance results in a complex conjugate term of the intended signal in the time
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domain, by reformulating the complex-valued signal into a real-valued form with its in-

phase and quadrature parts separately, low-complexity solutions are provided to mitigate

the distortion successfully in MIMO STBC communication systems with I/Q imbalance.

In the frequency domain, I/Q imbalance causes the inter-carrier interference (ICI) between

the mirror-subcarrier pair, by reformulating the received signal over the mirror-subcarrier

pair together, similar low-complexity solutions are provided to mitigate the distortion effec-

tively in STBC MIMO-OFDM communication systems with I/Q imbalance. In addition,

to mitigate I/Q imbalance and to exploit the multipath diversity for STBC OFDM systems

over frequency-selective fading channels, a new encoding/decoing scheme for GLCP OFDM

systems with I/Q imbalance is studied. Moreover, in cyclic prefix (CP) based TR-STBC

communication systems with I/Q imbalance over frequency-selective fading channels, by

using the circulant property of the effective channel matrix, low-complexity solutions, both

in the time domain and in the frequency domain, are proposed to mitigate I/Q imbalance

and to achieve the multipath diversity.

1.2 Organization of Dissertation

The dissertation is organized as follows. The I/Q imbalance models in MIMO systems, both

in the time domain and in the frequency domain are established in Chapter 2. In Chapter 3,

the performance degradation caused by I/Q imbalance of the transceivers in MIMO STBC

wireless communication systems over frequency-flat fading channels and the solutions are

studied. A 2 Tx Alamouti system, a 4 Tx quasi-orthogonal STBC (QOSTBC) system,

and a 4 Tx rotated QOSTBC (RQOSTBC) system with I/Q imbalance are examined in

detail. By exploiting the special structure of the received signal, low-complexity solutions

are proposed to mitigate the distortion successfully. In Chapter 4, the performance degra-

dation caused by I/Q imbalance in STBC MIMO-OFDM wireless communication systems

over frequency-selective fading channels and the solutions are studied. Similarly, a 2

Tx Alamouti system, a 4 Tx QOSTBC system, and a 4 Tx RQOSTBC system with I/Q
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imbalance are examined in detail, and low-complexity solutions are proposed to mitigate

the distortion successfully. In Chapter 5, to mitigate I/Q imbalance while at the same

time to exploit the multipath diversity in OFDM systems over frequency-selective fading

channels, a new subcarrier grouping is proposed with a low-complexity decoding feasible

in the presence of I/Q imbalance. In Chapter 6, the solutions, both in the time domain and

in the frequency domain, of I/Q imbalance mitigation in TR-STBC systems are studied.



CHAPTER 2

I/Q IMBALANCE MODEL OF TRANSCEIVER

2.1 Introduction

Due to the physical characteristics of the capacitor and the resistor used to implement the

analog components, the error in the nominal 90° phase shift and the imbalance between

the amplitudes of the I and Q branches will corrupt the up-converted and down-converted

signal constellations [25]. The imbalance caused by the different amplitudes of the I and Q

channels and by the phase shift error is termed as I/Q imbalance, or I/Q mismatch. Without

being compensated, I/Q imbalance will increase SER of a communication system.

Many methods have been proposed to compensate I/Q imbalance based on different

models [27] [28] [29] [30] [31]. In [27] and [28], a four-parameter model of I/Q imbalance

is used, two describing the amplitude gains of the I and Q channels and the other two

describing the corresponding phases, respectively. Based on this model, the gain and phase

parameters for each channel are grouped together and then are estimated by a nonlinear

regression technique [28]. In [30], an adaptive scheme is proposed to mitigate I/Q imbalance

based on a model involving three parameters where two parameters describe the amplitude

gains of the I and Q channels, and one parameter describes the phase imbalance, respec-

tively. With the same three-parameter model, the amplitude and phase imbalance can be

estimated first with the Cramer-Rao lower bound (CRLB) derived, and then be mitigated

[32]. However, since only the relative value of the amplitude imbalance and the phase shift

are needed to mitigate the resulting distortions, a two-parameter model becomes widely

used [31]. By introducing different filter responses to the I and Q branches, a frequency-

dependent I/Q imbalance model is established and mitigation solutions are provided in [33]

and [34].

5
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Figure 2.1 Upconversion from baseband to passband and downconversion from passband
to baseband. A two-parameter I/Q imbalance model is used.

In this dissertation, a two-parameter frequency-independent I/Q imbalance model is

adopted, and the same transmitter/receiver I/Q imbalance parameters are assumed for all

the transmitting/receiving antennas sharing the same local oscillator (LO). It helps us to

have a deep insight of the impact of I/Q imbalance in different encoding/decoing schemes.

2.2 I/Q Imbalance Model and Effect in Time Domain

As shown in Fig. 2.1, let ET and v;,2- represent the amplitude and phase imbalance parameters

of the transmitter, then the LO output at the transmitter can be expressed as

(2.1)

where αT = 	 + (1 + eT)ejϕT], and 132, = 1[1 — (1 + eT)ejϕT]. Consequently, the up-

converted passband signal for the intended transmission s(t) becomes R{√2s(t)cT(t)} =

R{2ST(t)ejwct}, resulting in the equivalent baseband signal

(2.2)
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containing both the intended signal and its complex-conjugate term.

In the absence of the transmitter I/Q imbalance, €T = 0 and (pi, = 0, then αT = 1

and βT = 0. Consequently, the LO output of the transmitter CT (t) = ejwct is ideal, and the

equivalent baseband signal sT(t) is the intended transmission s(t).

Similarly, the LO output at the receiver can be expressed as

(2.3)

where αR = a [1+ (1+ eR)ejϕR], and OR = a [1 — (1+ eR)ejϕR], with ER and CDR representing

the amplitude and phase imbalance parameters of the receiving antennas. In the absence of

the receiver I/Q imbalance, ER = 0, y R = 0, αR = 1 and OR = 0, then the LO output of

the receiver becomes ideal with cR(t) = e—jwct.

Taking into account the effect of the channel h(t) and the additive noise n(t), the

received data down-converted by cR (t) takes the equivalent baseband form,

(2.4)

As shown in (2.2) and (2.4), the target signal is interfered by its own complex-conjugate

due to I/Q imbalance either at the transmitter or receiver side. Note that the additive noise

n(t) contains the distortion caused by the receiver I/Q imbalance.

The relation between the transmitted signal and the received signal in (2.2) and (2.4)

can be illustrated in Fig.2.2. In the absence of the transceiver I/Q imbalance, αT = αR = 1,

and NT = /3R = 0, the distortion illustrated by the dashed line disappears, and the relation

boils down to r(t) = h(t) 0 s(t) + n(t).

The detailed derivation of the transceiver I/Q imbalance can be found in Appendix

A.

I/Q imbalance causes distortion to the received signal, hence increases SER, especially

when the high order modulation such as 16-QAM, 16-PSK, 64-QAM constellations are
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Figure 2.2 Block diagram of the received signal in the presence of the transceiver I/Q
imbalance in the time domain.

Figure 2.3 Possible observation of the received signal in the presence of I/Q imbalance.
A 16-QAM constellation is used.
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used. Let z(t) denotes the signal with the additive noise in the absence of the receiver I/Q

imbalance. As shown in Fig.2.3, the received signal r (t) in the presence of I/Q imbalance

falls into the wrong decision zone. It shows that I/Q imbalance changes both the amplitude

and phase of the received signal.

2.3 I/Q Imbalance Model and Effect in Frequency Domain

To study the impact of I/Q imbalance in OFDM systems, the I/Q imbalance model and

effect in the frequency domain are needed to be formulated out.

With regard to an OFDM system in the absence of I/Q imbalance, assuming the

length of CP is longer than the channel delay spread, after the removal of CP, the relation

between the transmitted signal and the received signal in the frequency domain can be

formulated as

(2.5)

where R[k], H[k], S[k] and Ñ[k] denotes the received signal, channel response, transmitted

signal and additive white Gaussian noise (AWGN) over the subcarrier k in the frequency

domain, respectively. k is the subcarrier index and K is the size of the discrete/fast Fourier

transform (DFT/FFT) used. The time-domain channel is modeled as a

finite-impulse-response (FIR) filter withL +1 taps, and the transmission and reception schemes of an

OFDM system are illustrated in Fig. 2.4.

With regard to an OFDM system in the presence of I/Q imbalance, according to (2.2)

and (2.4), it can be derived that

(2.6)

and

(2.7)



Figure 2.4 The OFDM transmission and reception schemes.

1 0

Figure 2.5 Block diagram of the received signal in the presence of the transceiver I/Q
imbalance in the frequency domain.

where k' = (—k) K . Eqs. (2.6)-(2.7) show that in the frequency domain, I/Q imbalance

of the transmitter/receiver results in the inter-carrier interference (ICI) between the mirror-

subcarrier pairs {k, k'}. The detailed derivation of the transceiver I/Q imbalance in the

frequency domain can be found in Appendix B.

The relation between the transmitted signal and the received signal in (2.6) and (2.7)

can be illustrated in Fig.2.5. In the absence of the transceiver I/Q imbalance, αT = αR = 1,

and βT = OR = 0, ICI illustrated by the dashed line disappears, and the relation boils down

to equation (2.5).



CHAPTER 3

I/Q IMBALANCE IN MIMO STBC SYSTEMS OVER

FREQUENCY-FLAT FADING CHANNELS

3.1 Introduction

I/Q imbalance, or I/Q mismatch, has been studied extensively. The impact of the receiver

I/Q imbalance is studied in [27] [28]. With training sequences, a method based on the

adaptive interference canceler for the receiver I/Q imbalance compensation is studied in

[29] [35] [36], and a least squares (LS) method is studied to mitigate both the receiver

I/Q imbalance and DC offset in [31]. In addition, a widely linear minimum mean squared

error (MMSE) method is proposed to mitigate the receiver I/Q imbalance in [37]. With

no training sequences used, a blind method using the circular nature of the signal in the

absence of I/Q imbalance is studied in [38] [39] [40]. This kind of blind method is also

extended to the frequency-dependent I/Q imbalance model in [41]. In addition, a blind

maximum likelihood (ML) method is studied to compensate the receiver I/Q imbalance

in [42]. Taking into account I/Q imbalance of the transmitter, a calibration method for the

transceiver I/Q imbalance assisted by a low-cost phase-shifter is studied in [43], and an

adaptive compensation method for the transceiver I/Q imbalance is studied in [44]. Apart

from the above work in single-input single-output (SISO) systems, there are lots of work

dealing with I/Q imbalance in multiple-input multiple-out (MIMO) systems as well. For

example, the impact of the transceiver I/Q imbalance on a 2 x 1 Alamouti system is studied

in [45], and the performance analysis in terms of signal-to-interference ratio (SIR) of a

STBC MIMO-OFDM system is studied in [46], respectively.

In this chapter, taking into account the noise corrupted by I/Q imbalance, the impact

of the transceiver I/Q imbalance on MIMO STBC communication systems is studied, and

the mitigating solutions are proposed. By exploiting the special structure of the received

11
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signal, computationally efficient LS methods are provided to mitigate I/Q imbalance in

MIMO OSTBC and MIMO QOSTBC systems. To mitigate I/Q imbalance and achieve

the full spatial diversity in MIMO RQOSTBC systems, a low-complexity polygon local

searching (PLS) solution is applied. Since only the effective channel state information

(ECSI) is needed in the proposed solutions, the tasks of separately estimating the channel

parameters as well as the I/Q imbalance parameters can be combined, reducing the compu-

tational complexity of the parameter estimation. Simulation results demonstrate that the

distortions caused by I/Q imbalance in MIMO STBC systems can be successfully mitigated

by the proposed solutions.

3.2 Signal and System Models

3.2.1 MIMO OSTBC Systems Without I/Q Imbalance

In MISO/MIMO wireless communication systems, STBCs are used to achieve the spatial

diversity. The technique is categorized into the transmit diversity. Compared to the receive

diversity technique such as maximum ratio combining (MRC) [5], the advantage of the

transmit diversity technique is that the transmitter can be equipped with much more antennas

than the receiver due to the small size of the receiver. Within various STBCs, the 2 x

1 OSTBC scheme, known as Alamouti scheme, is the most popular one [47]. In this

subsection, the 2 x 1 Alamouti scheme will be briefly reviewed before the impact and

solution of I/Q imbalance in STBC MIMO wireless communication systems are studied.

In a 2 x 1 wireless communication system, let the antenna-one transmit s 1 and the

antenna-two transmit s 2 at the time slot 1, then let the antenna-one transmit —4 and

the antenna-two transmit st` at the time slot 2, as shown in Fig. 3.1. The corresponding

codeword can be expressed as

(3.1)
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Assuming channel hi (i = 1, 2) is block flat fading (channel keeps constant during the

encoded block interval), then it can be obtained that

(3.2)

where r[l] denotes the received signal at time slot 1, and ?IN CN(0, σ²ñ) is proper additive

white Gaussian noise (AWGN).

Since

multiply the received data vector in (3.2) with the Hermitian of the channel matrix, it can

be obtained that

with r' [1] and n' [1] denote the output of the received signal and the noise after the multi-

plication. It is easy to show n1[1] ~ CN(0, σ²ñ) . Consequently, {sa l can be decoded

separately by linear ML method as

Here C is the symbol constellation set. Since each symbol {s i}²i=1  is transmitted through

two independent fading channels h 1 and h2 , the diversity order of two can be achieved. The

related theoretical results can be found in [6] [8].

3.2.2 MIMO OSTBC Systems With I/Q Imbalance

With regard to OSTBC systems in the presence of the transceiver I/Q imbalance, the

structure of the received signal is very complicated since in OSTBC systems, both the



Time slot 2 Time slot 1

Time slot 2 Time slot 1

Figure 3.1 A 2 x 1 wireless communication system with Alamouti scheme used.

symbol and its complex-conjugate are utilized, and I/Q imbalance induces the complex-

conjugate term in the data structure as well.

Without loss of generality, assume the same codeword as in (3.1) is used, taking into

account the noise corrupted by I/Q imbalance, the received signal can be obtained from

(2.2) and (2.4) as

(3.3)

(3.4)

14

with n[1] = α*Rñ[l]. Here only 2 x 1 OSTBC systems with I/Q imbalance is

studied for simplicity, and the extension to MIMO OSTBC systems is straightforward.
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In the absence of I/Q imbalance, the equation (3.3) boils down to (3.2). It shows that

due to the term s*a induced by I/Q imbalance, the simple linear ML decoding is no longer

applicable to MIMO OSTBC systems.

3.2.3 Extension to MIMO QOSTBC/RQOSTBC Systems

Without loss of generality, a 4 x 1 QOSTBC system with codeword

(3.5)

is studied, then the received signal corrupted by I/Q imbalance becomes

(3.6)

where 14 and Vq have the following expressions as

Here {ui}4i=1 and {vi}4i=1 can be obtained from (3.4) by letting i = 1, • • • , 4.

To achieve full spatial diversity, assume the same codeword in (3.5) is used, but now

s1 , 82 E C and s 3 , s4 E ejθC, where C is the symbol constellation set. Then the received

signal becomes
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where

Here uq,i and vq , i are the i-th column of U q and Vq , respectively.

Due to the term s*a induced by I/Q imbalance, the pair-wise ML decoding is no longer

applicable to MIMO QOSTBC/RQOSTBC systems as well.

As a summary, the presence of I/Q imbalance forces us to take into consideration a

widely linear relation to effectively decode the transmitted symbols.

3.3 Solutions

3.3.1 Computationally Efficient LS Estimator

To fully capture the symbol information in the presence of I/Q imbalance, both the symbol

terms in (3.3) can be rewritten as

The least squares (LS) estimate of sa can be obtained from

(3.8)

The corresponding Gram matrix can be expressed as

where
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A l = A112, A2 = A212, and GaGa = A312. Here {A }3 and {ga l are real constants.

The property of the Gram matrix Ha IL comes from the special structure induced by the

Alamouti coding scheme [48]. Using the matrix inversion formula

where A = A 1 — GaA2-¹Ga = (A 1 — λ3/λ2)I2 , all the matrices to be inverted are diagonal.

Consequently, the computational complexity to invert Ha Ha is reduced.

Similarly, rewrite both symbol terms in (3.6) as

the LS estimate of sq can be obtained from

(3.9)

The 8 x 8 Gram matrix 	 Hq can be expressed by four 4 x 4 sub-matrices as

(3.10)

Let Dq = Aq — EqBq-¹Eq, according to the matrix inversion formula, B q-1 and Dq-¹ are

involved to compute the inversion of HTq H q . Since all the 2 x 2 sub-matrices composing

Aq , Bq and Eq have the similar structure of Ga , and the summation or multiplication of

matrices with this structure still keeps the structure [48], it is easy to show that B q and

Dq have the similar property of the Gram matrix HTaHa. Consequently, the sub-matrices

to be inverted to have B q-¹ and IV are diagonal, resulting in a low computational matrix

inversion.
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The computational efficient LS estimator is applicable as well when multiple receiving

antennas are used.

3.3.2 Polygon Local Searching Method

However, for MIMO RQOSTBC systems, the full spatial diversity can not be achieved

by only implementing LS estimator. To mitigate I/Q imbalance and achieve the full spatial

diversity, based on the initial estimates obtained by LS estimator, the polygon local searching

(PLS) method proposed in [49] is applied here. The basic idea is the same as the sphere

decoding [50] [5I], i.e, searching the candidate symbols within a shrunk area around the

initial estimates.

Similarly, the received signal of a 4 x 1 RQOSTBC system can be obtained as

where

Let p(fq ; gq ) denote the probability mass function (PMF) of f. q parameterized by the

unknown parameter gq , the ML estimate of gq from f q is

= arg max p(fq ; gq ), 	 (3.11)sq Es

where the set S contains all the possible signal vectors from a given symbol constellation.

Since nr[1] = ft I[1], and ncj[1] = (1 + €R) cos ( p RAQ[ 1] — ( 1 + ER) sin coRki[i], it can be

obtained that nr [1] N(0,, n2 1 ), and nQ [1] N N(0, an2 Q ), where un2 , = 4/2, and o-n2,2 =

(1 + ER ) 2 412, respectively. Consequently, n[1] is not proper complex Gaussian due to

I/Q imbalance. In addition, n I N and n (2 [1] are correlated with the correlation coefficient

p = E {nr [1]nQ [1]} I (o-n, crn(2 ) = — sin çoR. Since the practical values of the amplitude

and phase imbalances are around 1% ti 5% and 1° rs, 5°, respectively, i.e., p 0 and
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σ²nIσ²-'
,2 it is reasonable to treat n[l] as proper, especially in high signal-to-noise ratioσ²NI ~ σ²nQ

(SNR) scenario, then (3.11) boils down to

(3.12)

The initial estimate of sq can be obtained from

Let {gi}8i=1 denotes the i-th row vector of matrix (H9 CIO - 1 HTq according to [49], the

boundary of the shrunk area can be given by

(3.13)

where 4 and 4 denote the i-th elements of the column vector s q and sq , respectively.

Treating the noise as a proper Gaussian, d can be determined by

By searching the candidates within the area defined by (3.13), the ML estimate of sq can

be obtained.

3.3.3 Estimation of Channel and I/Q Imbalance

Since only ECSI such as ui and vi are needed in the proposed solutions, the tasks of

separately estimating the channel parameters as well as the I/Q imbalance parameters can

be combined.

In a 2 x 1 Alamouti system, stack s a, and s*a into the new transmitted signal vector,

according to (3.3), the effective channel matrix can be formulated as Ua Va . Conse-

quently, the relation between the received signal and the transmitted signal keeps the same,

except the change of the dimensionality of the channel matrix and the transmitted signal

vector. Hence, all the channel estimation methods for MIMO OSTBC communication
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systems in the literatures can be applied directly. In this work, the LS channel estimation

based on training is adopted [52] [53]. Reformulate (3.3) as

stack Nt received data vector into a new vector rt, the corresponding observation matrix is

denoted as St [53], then the LS estimate of the effective channel parameters can be obtained

as

To study the performance degradation caused by I/Q imbalance without the compen-

sation, only the effective channel 13,, is estimated by ignoring the term Vasa* in (3.3), i.e.,

Here St is the truncated matrix containing the first two columns of St. Once U„, the

estimate of Ua without considering the effect of I/Q imbalance is available, the linear ML

decoding is applied directly to the output of Uallra.

The extension to MIMO QOSTBC/RQOSTBC systems is straightforward.

3.4 Simulation Results

In the simulations, the worst case, the amplitude imbalance € = 5% and the phase imbalance

cp = 5° at both of the transmitter and receiver are studied. In addition, the block flat

Rayleigh fading channels are assumed. Moreover, The number of training symbol block

Nt = 10, and the number of receiving antennas M = {1, 2} are used. Furthermore,
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0 = 7r/ 4, the optimal rotation for the QAM constellation is chosen for RQOSTBC systems

[9].

Fig. 3.2—Fig. 3.5 show that by applying the linear ML decoding to 2-Tx Alamouti

systems, or to the pair-wise ML decoding to 4-Tx QOSTBC/RQOSTBC systems in the

presence of I/Q imbalance based on 15„ or Uq, the SER performance degrades dramatically.

Fig. 3.2 also shows that the Tx l/Q imbalance and Rx I/Q imbalance cause the similar

performance degradation.

When ECSI is known, I/Q imbalance in 2-Tx Alamouti and 4-Tx QOSTBC systems

can be successfully mitigated by applying the LS estimator, with only a small performance

loss in 4-Tx QOSTBC systems. In addition, based on the initial estimates obtained by

LS estimator, I/Q imbalance in 4-Tx RQOSTBC systems can be successfully mitigated by

applying the PLS approach.

Based on the estimated ECSI, I/Q imbalance can be effectively mitigated by the

proposed approaches as well.

3.5 Conclusions

In this chapter, the impact of I/Q imbalance on MIMO STBC communication systems is

studied, and the effectiveness of the proposed mitigating solutions is verified. The results

show that FQ imbalance causes severe distortion in MIMO STBC communication systems,

and the resulting distortion can be successfully mitigated by the proposed methods.



o W/ transceiver I/Q imb., w/o comp.
—0— w/ Rx I/Q imb. only, w/o comp.
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w/ Tx I/Q imb. only, w/o comp.
O w/o I/Q mb., ML, known ECSI

Figure 3.2 SER versus SNR of a 2 x 1 Alamouti system with I/Q imbalance. 67- = 5%,
(PT = 50, ER = 5%, (PR = 5°, M = 1, and Nt --= 10. A 64-QAM constellation is used. The
number of independent trials is 106.
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o 2x1, w/ I/Q imb., w/o comp.
—0— 2x1, w/ I/Q imb., LS, est. ECSI

2x1, w/ I/Q imb., LS, known ECSI.
0 	  2x1, w/o I/Q imb., ML, known ECSI

—0— • 2x2, w/ I/Q mb., w/o comp.
• • —0— • 2x2, w/ UQ mb., LS, est. ECSI
•. —*— 2x2, w/ I/Q imb., LS, known ECSI

•—0— 2x2, w/o I/Q imb., ML, known ECSI

Figure 3.3 SER versus SNR of a 2-Tx Alamouti system with I/Q imbalance. €7- = 5%,
(PT 50, ER = 5%, (pR = 5°, M = {1, 2}, and Nt = 10. A 64-QAM constellation is used.
The number of independent trials is 106.



— e— 4x1, w/ I/Q imb., w/o comp.
— A— 4x1, w/ I/Q imb., LS, est. ECSI
- 4x1, w/ I/Q imb., LS, known ECSI
	 4x1, w/o I/Q imb., ML, known ECSI
—0— • 4x2, w/ I/Q imb, w/o comp.

•—0— • 4x2, w/ I/Q imb., LS, est. ECSI
4x2, w/ I/Q imb., LS, known ECSI

—0— 4x2, w/o I/Q imb., ML, known ECSI

Figure 3.4 SER versus SNR of a 4-Tx QOSTBC system with I/Q imbalance. ET = 5%,
CPT = 5°, ER = 5%, = 5°, M = {1, 2}, and Nt = 10. A 64-QAM constellation is used.
The number of independent trials is 106.

O 4x1, w/ imb., w/o comp.
— 0— 4x1, w/ imb., LS, est. ECSI
--* 	 4x1, w/ imb., PLS, est. ECSI

	• 

4x1, w/ imb., PLS, known ECSI
a 	 4x1, w/o imb., ML, known ECSI

•—0— 4x2, w/ imb., w/o comp.
•—0— 4x2, w/ imb., LS, est ECSI
•—*— 4x2, w/ imb., PLS, est. ECSI
—*— 4x2, w/ imb., PLS, known ECSI
—0— • 4x2, w/o imb., ML, known ECSI

Figure 3.5 SER versus SNR of a 4-Tx RQOSTBC system with I/Q imbalance. ET = 5%,
(PT = 5°, ER = 5%, (PR = 5°, M = {1, 2}, and Nt = 10. A 64-QAM constellation is used.
The number of independent trials is 106.
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CHAPTER 4

I/Q IMBALANCE IN STBC MIMO-OFDM SYSTEMS OVER

FREQUENCY-SELECTIVE FADING CHANNELS

4.1 Introduction

Since STBCs are originally developed for frequency-flat fading channels, to achieve the

spatial diversity in frequency selective fading channels, STBC MIMO-OFDM systems

have been suggested, where STBCs are used across different antennas in conjunction with

OFDM [10] [11] [12] [13]. However, in the implementation of OFDM systems, there

are some challenges caused by the RF impairments such as I/Q imbalance, phase noise

and carrier frequency offset (CFO), and lots of researchers have been devoted into the

mitigation of them in OFDM systems [54] [55] [19] [20].

Compared to that in the time domain, I/Q imbalance in OFDM systems causes more

distortions, and more works dealing I/Q imbalance in OFDM systems can be found in the

literatures. The impacts of the receiver I/Q imbalance on OFDM, code division multiple

access (CDMA), and multi-carrier MC-CDMA systems are studied in [56] [57], and a novel

code is designed to mitigate the receiver I/Q imbalance for MC-CDMA system in [58].

A method to improve the channel and the receiver I/Q imbalance parameters in OFDM

systems by using unbiased training sequences is studied in [59]. An compensation method

for the transmitter I/Q imbalance in OFDM systems in studied in [60]. The capacity of

OFDM systems with the receiver I/Q imbalance is studied in [61]. An analytical approach

to evaluate the M-QAM bit error rate (BER) as well as the channel capacity of Alamouti

space-time coded OFDM systems with the receiver I/Q imbalance is studied in [62]. Using

the frequency-dependent I/Q imbalance model, optimal training sequences for the joint

channel and I/Q imbalance estimation in OFDM systems are designed in [63].

24
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Taking into account both I/Q imbalance and CFO, an expectation maximization (EM)

based method and a ML method to mitigate the receiver I/Q imbalance and CFO for OFDM

systems are proposed in [64] and [65], respectively. In addition, taking into account I/Q

imbalance and the phase noise simultaneously, the joint mitigation of phase noise and I/Q

imbalance is studied in [66] [67] [68]. Moreover, an I/Q imbalance mitigation method for

mobile space-frequency block coded (SFBC) OFDM systems is studied in [69] [70].

Taking into account the transmitter I/Q imbalance, a widely linear MMSE method is

proposed to mitigate the transceiver I/Q imbalance in OFDM systems in [71]. In addition,

the joint CFO and transceiver I/Q imbalance mitigation in OFDM systems is studied in [72].

Moreover, the effect of the transceiver UQ imbalance on STBC MIMO systems is studied

with no mitigating solutions provided in [45], and the performance analysis in terms of

signal-to-interference ratio (SIR) of STBC MIMO-OFDM systems with I/Q imbalance is

studied in [46], respectively.

Since the distortion caused by the transceiver I/Q imbalance in STBC MIMO-OFDM

systems increases symbol error rate (SER) drastically, especially in high order modulations

or with higher carrier frequencies, hence should be effectively compensated. Inspired by

the work in [73] [74], taking into account the noise corrupted by I/Q imbalance, the impact

of the transceiver I/Q imbalance on the STBC MIMO-OFDM communication systems is

studied systematically, and low-complexity solutions are proposed to mitigate the distortion.

Similar to the work in Chapter 3, exploiting the special structure of the received signal

induced by Alamouti scheme, low-complexity LS solutions are proposed to mitigate I/Q

imbalance in OSTBC/QOSTBC OFDM systems. In addition, the low-complexity PLS

method is applied to RQOSTBC OFDM systems to mitigate the distortions.
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4.2 Signal and System Models

4.2.1 MIMO OSTBC OFDM Systems Without I/Q Imbalance

First a 2 x 1 Alamouti OFDM system in the absence of I/Q imbalance is reviewed. As

we know, OFDM systems convert a frequency-selective channel in the time domain into

K parallel frequency-flat channels in the frequency domain when a K-point DFT/FFT is

performed. Consequently, one SISO OFDM system can be treated as K SISO parallel

communication systems. By introducing another transmitting antenna, apply Alamouti

scheme to any subcarrier k of the two transmitting antennas, the spatial diversity can be

achieved with a linear ML decoding within each subcarrier at the receiver side. The trans-

mission and reception of a 2 x 1 Alamouti OFDM system are illustrated in Fig. 4.1. Corre-

spondingly, the codeword can be expressed as

That is, the transmitter sends S1 [Id from the antenna-one and S2 [Id from the antenna-two

at the time 1 over the subcarrier k, then at the time 2, it sends —S; [k] and ST [k] from the

antenna-one and the antenna-two over the subcarrier k, respectively. Assume the lenth of

CP is longer than the channel delay spread, and the channel keeps steady within the coded

block interval. Let Hi [k] denote the frequency-domain channel response between the i-th

transmit antenna and the receive antenna over the subcarrier k, the received signal at the

time 1 and 2 over the subcarrier k after the removal of CP can be obtained as

Here Rl [k] denotes the received signal at the time 1 over the subcarrier k, andÑ[k] and Ñ[k]~

C,Ar(0, o-2R) denotes the proper AWGN in the frequency domain at the subcarrier k. Since

the channel matrix is orthogonal, multiplying the received signal vector with the Hermitian
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Figure 4.1 A 2 x 1 OFDM communication system with Alamouti scheme used in the
frequency domain.

of the channel matrix, {Si [k]}²i=1, can be decoded separately with the ML method. The

detailed derivation has been given in Chapter 3.

Since Alamouti scheme is performed in the frequency domain, this system sometimes

is named as space-frequency block coded (SFBC) OFDM system [75] [76] [77]. In this

work, the name STBC OFDM system is used for consistence.

4.2.2 MIMO OSTBC OFDM Systems With I/Q Imbalance

In the presence of the transceiver I/Q imbalance, taking into account the noise corrupted

by I/Q imbalance, the received signal at the time 1 and 2 over the subcarrier k (except for

k = 0 and k = K/2) after the removal of CP can be obtained from (2.6) and (2.7) as

(4.2)

where
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where N[k] = α*RÑ[k] + βRÑ*[k]. Note that Sa[k] and Sa [k'] are different data vectors.

The elements of Uct [k] and Va [k] can be obtained by

It shows that in the absence of the transmitter I/Q imbalance, i.e., 13T = 0, Hi*[k] and Ili[k]

will not be involved in wi [k] and ui[k], respectively, hence the model reduces to the model

used in [74]. In addition, in the absence of the transceiver I/Q imbalance, (4.2) boils down

to (4.1)

Similar to in the time domain, the simple linear ML decoding is no longer applicable

due to St: [kil induced by I/Q imbalance.

4.2.3 Extension to MIMO QOSTBC/RQOSTBC OFDM Systems

Without loss of generality, a 4 x 1 QOSTBC system with the same codeword as (3.5) is

studied, then the received signal corrupted by I/Q imbalance can be expressed as

(4.4)

where

Here {ui[k]ll_i and {vi[k]}4i=1 can be obtained from (4.3) by letting i = 1, • • • , 4.
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To achieve the full spatial diversity, assume the same codeword in (3.5) is used,

, S2 E C and S3 S4 E ej9C. Then the corresponding received signal becomes

(4.5)

where

Here wq,j[k] and u,i[k] denote the i-th column of Wq[k] and Uq[k], respectively.

Due to S*q[k] induced by I/Q imbalance, the pair-wise ML decoding is no longer

applicable to MIMO QOSTBC/RQOSTBC OFDM systems.

4.3 Solutions

4.3.1 Computationally Efficient LS Estimator

Rewrite (4.2) as

(4.6)

The LS estimate of Sa[k] can be given as

(4.7)

Since the 2 x 2 sub-matrices to be inverted to obtain (Hall [k]Ha [k])-1 are diagonal, the

low-complexity LS estimator is available, and it is applicable to MIMO OSTBC OFDM

systems as well [48].
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Similarly, it can be obtained from (4.4) that

(4.8)

Similar to (3.10), a low computational inversion of matrix lg. [k] Hq [k] can be obtained.

4.3.2 Polygon Local Searching Method

However, for MIMO RQOSTBC OFDM systems, the distortion can not be mitigated satis-

factorily by only employing the LS method. Again, the PLS method can be applied.

The received signal of a 4 x 1 RQOSTBC scheme can be obtained from (4.5) and

(4.8) as

(4.9)

where

Let p(iiq[k]; gq[k]) denote the PMF of fig [k] parameterized by the unknown parameter

Sig [k] , according to (4.9), the ML estimate of gq[k] from 14 q [k] i s

(4.10)

Since N[k] is a linear superposition of two independent proper Gaussian variables, N[k]

is still a proper Gaussian variable. However, N[k] and N* [k'] are correlated. It can be

obtained that
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Since ER and OR are small, it is reasonable to treat N[k] and N* ] as independent, then

(4.10) boils down to

(4.11)

Let q[k] = (fl q1-1 [lc] fiq [k]) -1fiqff [k] [k]	 G [k] q[k] , to avoid the global searching

within 8, the PLS method based on 4[k] can be applied. It holds that

(4.12)

Let {gi[k]}8i=1 denote the i-th row of -0 [lc], according to [49], the boundary of the shrunk

area can be given by

(4.13)

where fig,i [lc] and Rq,i[k] denote the i-th elements of fig [lc] and fig [k], respectively.

4.4 Simulation Results

In the simulations, the worst case, the amplitude imbalance e = 5% and the phase imbalance

= 5° at both of the transmitter and receiver side are studied. In addition, the FFT size

K = 64, the number of training symbol block Nt = 10, the length of CP L = 3, and 4-

tap FIR channels with hi — CN(0,I4) are used. Moreover, 0 = 7r/4, the optimal rotation

for a QAM constellation is chosen for the RQOSTBC scheme [9].

Fig. 4.2 shows that I/Q imbalance of the receiver causes more distortion than that

of the transmitter. Fig. 4.3,Fig. 4.5 show that by using the linear ML estimator for

Alamouti system or the pair-wise ML estimator for QOSTBC and RQOSTBC systems

with I/Q imbalance without the compensation, respectively, SER of the estimated signal

increases dramatically compared to that of the estimated signal without I/Q imbalance,

resulting in an error floor. However, the resulting distortion can be successfully mitigated

by the proposed solutions.
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0 	 w/ I/Q imb., w/o comp.
w/ Rx I/Q imb. only, w/o comp
w/ Tx I/Q imb. only, w/o comp

—8 	 w/o I/Q imbalance, ML, known CSI

Figure 4.2 SER versus SNR of a 2 x 1 Alamouti OFDM system with I/Q imbalance.
System parameters are: ET = 5%, COT = 5°, €R = 5%, COR = 5°, M = 1, K = 64, L0p = 3,
and Nt = 10. A 64-QAM constellation is used. The number of independent trials is 106.

4.5 Conclusions

In this chapter, the performance degradation caused by the transceiver I/Q imbalance in

STBC MIMO-OFDM communication systems and solutions are studied. It shows that I/Q

imbalance causes severe distortions in STBC MIMO-OFDM communication systems, and

the resulting distortion can be successfully mitigated by the proposed methods.



O 2x1, w/ I/Q imb., w/o comp.

	

--A 	  2x1, w/ I/Q imb., LS, est. ECSI
* 2x1, w/ UQ imb., LS, known ECSI

	

	 2x1, w/o I/Q imb., ML, known ECSI
• • 2x2, w/ I/Q imb., w/o comp.
•-0- • 2x2, w/ I/Q imb., LS, est.ECSI
- *- 2x2, w/ I/Q imb., LS, known ECSI
-  • 2x2, w/o I/Q imb., ML, known ECSI

Figure 4.3 SER versus SNR of 2-Tx Alamouti OFDM systems with I/Q imbalance.
System parameters are: ET -= 5%, (,07-, = 5°, ER 5%, (pR = 5°, M = { 1 , 2}, K = 64,
Lcp = 3, and Nt = 10. A 64-QAM constellation is used. The number of independent trials
is 106.

O 4x1, w/ I/Q imb., w/o comp.
4x1, w/ I/Q mb., LS, est. ECSI
4x1, w/ I/Q imb., LS, known ECSI
4x1, w/o I/Q imb., ML, known ECSI

•-0-- • 4x2, w/ I/Q imb., w/o comp.
•-0- • 4x2, w/ 1.0 imb., LS, est. ECSI
•-41- • 4x2, w/ I/Q imb., LS, known ECSI
•-0- 4x2, w/o I/Q imb., ML, known ECSI

Figure 4.4 SER versus SNR of 4-Tx QOSTBC OFDM systems with I/Q imbalance.
System parameters are: ET = 5%, (PT 5°, ER 5%, (PR = 5°, M -= {1, 2}, K = 64,
Lcp = 3, and Nt = 10. A 64-QAM constellation is used. The number of independent trials
is 106.
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O 4x1, w/ I/Q imb., w/o comp.

	

—0 	 4x1, w/ I/Q imb., LS, est. ECSI
4x1, w/ I/Q imb., PLS, est. ECSI

	

-4(	  4x1, w/ I/Q imb., PLS, known ECSI

	• 

4x1, w/o I/Q imb., ML, known ECSI
–0– 4x2, w/ I/Q imb., w/o comp.
–0– 4x2, w/ I/Q imb., LS, est. ECSI
– *– 4x2, w/ I/Q imb., PLS, est. ECSI

4x2, w/ I/Q imb., PLS, known ECSI
– LI– 4x2, w/o I/Q imb., ML, known ECSI

Figure 4.5 SER versus SNR of 4-Tx RQOSTBC OFDM systems with I/Q imbalance.
System parameters are: ET = 5%, (PT = 5°, ER 5%, çoR = 5°, M = {1, 2}, K = 64,
Lep = 3, and Nt = 10. A 64-QAM constellation is used. The number of independent trials
is 5 x 106.
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CHAPTER 5

A NEW SUB CARRIER GROUPING SCHEME FOR GLCP

OFDM SYSTEMS WITH I/Q IMBALANCE

5.1 Introduction

OFDM systems convert a frequency-selective fading channel into parallel frequency-flat

fading channels, so a simple single-tap equalizer can be applied in the frequency domain

to decode the signals. However, the penalty is that the embedded multipath diversity is lost

at the same time. To exploit the multipath diversity embedded in the frequency-selective

fading channel, the coding across the subcarriers is needed [78]. However, the decoding

complexity is formidable if the coding over all subcarriers is performed. To reduce the

decoding complexity while at the same time to achieve the full multipath diversity, the

grouped linear constellation precoded (GLCP) OFDM communication system is studied

in [15] [16] [79]. In addition, the optimal subcarrier grouping scheme is proposed in [16].

As we know, I/Q imbalance results in a mirror-image term in the data structure in

the frequency domain. In GLCP OFDM systems, the mirror-image term links different

subcarrier groups, hence the symbols transmitted over these subcarriers should be decoded

jointly. In addition, symbols within the same data block have to be decoded jointly as well

due to I/Q imbalance, increasing the decoding complexity dramatically. In this chapter, a

new subcarrier grouping scheme is developed for GLCP OFDM communication systems in

the presence of I/Q imbalance to exploit the potential system diversity existing in multipath

frequency-selective fading channels. Different from existing works along this line [15]

[16], in this chapter the existence of the system I/Q imbalance is specifically considered.

Although there are various I/Q mitigation methods can be found in the literature,

when I/Q imbalance of both the transmitter and receiver is taken into account, the frequency-

domain mitigation method in [74] [80] for OFDM systems is preferred. This method can
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mitigate the transceiver I/Q imbalance at the receiver with only the estimated effective

channel state information (ECSI) available, hence the tasks to estimate the parameters of

the transmitter I/Q imbalance, channels and receiver I/Q imbalance are combined. In this

chapter, adopting this method, a new strategy for subcarrier grouping for GLCP OFDM

systems with I/Q imbalance is proposed by judiciously assigning the mirror-subcarrier pair

into one group, therefore a low-complexity solution to the I/Q imbalance mitigation at

the receiver is applicable. Compared to the optimal subcarrier grouping, the proposed

subcarrier grouping can achieve the full diversity gain with some loss of the coding gain

in the absence of I/Q imbalance. However, in the presence of I/Q imbalance, the proposed

solution can mitigate the distortion and provide a performance comparable to (or better

than) the optimal subcather grouping scheme with no l/Q imbalance.

5.2 GLCP OFDM System With I/Q Imbalance

Without loss of generality, a 2 x 1 space-time-frequency coded (STFC) OFDM system with

I/Q imbalance over the frequency-selective block fading channel hi = [k(0) • • • hi(L)F

with L 1 (Here L is the order of the FIR channel model) is considered. Correspondingly,

the codeword

is used. i.e., the transmitter sends Si [k] from the antenna-one and 82 [k] from the antenna-

two at the time 1 over the subcarrier k, then at time 2, it sends —5'; [k] and SI [k] from the

antenna-one and the antenna-two over the subcarrier k, respectively. Assume the length

of CP is longer than the channel delay spread, and the channel keeps steady within the

symbol block interval. Let 1/, [k] denote the frequency-domain channel response between

the i-th transmitting antenna and the receiving antenna over the subcarrier k, the received

signal within two consecutive time slots over the subcarrier k after the removal of CP can
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be obtained as

(5.1)

where

with

Here S[k] and S[P] are different data vectors except for k = 0 and k = K/2 (Note that the

DC subcarrier k = K/2 is usually not used in practical systems, i.e., S, [K/2] = 0).

Applying the optimal subcarrier grouping [16] to the above transmission system with

M = 2 (M > L 1) subcarriers in each group, the precoded symbols become

where e is the 2 x 2 GLCP matrix.

In the presence of I/Q imbalance, symbols within different subcarrier groups are

coupled together and should be decoded jointly. For example, the eight groups with the

optimal subcarrier grouping for K =16 are {0, 8}, {1, 9}, {2, 10}, {3, 11}, {4, 12}, {5, 13},

{6, 14} and {7, 15} (here each number is the subcarrier index). However, due to the

coupling induced by I/Q imbalance, the decoding has to be performed within the five groups

{0, 8}, {1, 7, 9, 151, {2, 6, 10, 14}, {3, 5, 11, 131 and {4, 121. Note Si [k] and S2[kl can not

be decoded separately due to I/Q imbalance, hence the maximum number of symbols to be

decoded jointly becomes 8.
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5.3 Proposed Encoding/Decoding Scheme

Since I/Q imbalance only induces ICI between mirror-subcarrier pairs, assign each mirror-

subcarrier pair {k, k'} into one group, I/Q imbalance can be mitigated with a low-complexity

decoding. As a special case, {0, K/2} are grouped together. Then the symbol vector after

precoding becomes

As mentioned above, the symbols {Si [k] }²i=1 can not be decoded separately due to

I/Q imbalance. In addition, the proposed precoding links Si [k] and Si [k'] together, conse-

quently, {Si[k], have to be decoded jointly by the ML decoding to achieve the

full diversity.

After precoding, (5.1) can be reformulated as

(5.2)

where S [k] = 	 1{k] g 2[k] ]T . Based on the proper AWGN assumption, the maximum

likelihood sequence estimate (MLSE) can be obtained as

where the set S contains all possible signal vectors from a given symbol constellation set.

Note the number of symbols to be jointly decoded is reduced from 8 to 4. Generally,

using a N QAM constellation, the number of searching to decode each signal vector is

reduced from MAI with the optimal grouping to N2m with the proposed grouping with I/Q

imbalance.
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To sacrifice the optimal performance and reduce the complexity, the least squares

(LS) estimate of :5"[kl can be obtained as

Since only the effective channel state information (ECSI) such as ui [k] and vi [k]

are needed in the proposed solution, the task to estimate the channel Hi [k] and the I/Q

imbalance parameters{αT, 131. °R 1 βR I can be combined [74]. Because Ri [k] is a linear

superposition of ui [k] and vi [k] , their estimates, it, [k] and f)i [k] , can be obtained by sending

training sequences [52].

5.4 Performance Analysis

First, the loss of the coding gain by introducing the proposed grouping in the absence of

I/Q Imbalance is studied, since the full diversity can be achieved with arbitrary subcarrier

grouping as long as M > L + 1 [15]. A 4 x 1 channel vector h := [hT hnT cAr(o,-'2,Rh)

is used, and Rh = BhB/1,1 E C4x4, with rank(Rh) = 4.

With no VQ imbalance, it can be obtained that

For any group k E {k1, k2}, the follows are defined
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Follow the derivation of the pairwise error probability (PEP) of erroneously decoding S [k]

to be S' [k] in [15], the achievable diversity gain and coding gain can be obtained as

With the optimal subcarrier grouping, i.e., k2 -= K/2 + kl, based on the detailed

derivation in Appendix C, it can be obtained that

while with the proposed subcarrier grouping, i.e., k2 = (—ki),K, it can be obtained that

with d[k] := ||Si[k] — S'1 [k] 112 ± ||S2[k] — ,%[k] 1129 and 0 := 27rki/K (k1 = 1, • • • , K/2 —1).

It shows that det(Ae) = 0 only when {Si [k]}²i=1 (k E {k1, k2}) are correctly decoded

with the linear precoding. Since Rh is assumed full rank, A, is full rank as well when

det(Ae) 0. Consequently, the maximum diversity gain Gd = 2(L ± 1) = 4 can be

achieved. However, the coding gain decreases (except k E {0, K/2}) since

It is consistent with the result in [81] that the optimum solution of subcarrier grouping

is unique for M = L + 1.

When compared to the case with no I/Q imbalance, a better performance may be

achieved due to the coupling between mirror-subcarrier pairs induced by I/Q imbalance.

The penalty is that the dimensionality of the signal vectors to be decoded is doubled.

Since we have not been able to provide a general proof, the performance is studied through

simulations.
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Next, the study is extended to other scenario such as L	 3 and M = 4. Corre-

spondingly, rank(Rh) = 8 is assumed. Accordingly, the achievable diversity gain and

coding gain become

With the optimal subcarrier grouping, for any group {ki}4i=1 (ki (i — 1)K/4 k1),

based on the detailed derivation in Appendix C, it can be obtained that

Similarly, the mirror-subcarrier pair is assigned into the same group. Follow the idea

of the optimal grouping, the subcarrier pairs containing k and k + KI4 are assigned into

one group, i.e., the subcarriers fk,k + KI4, —k + 3K/4, —k + Kl (k = 1, • • • ,K14) are

selected and grouped. As the special case, {0, K/4, K/2, 3K/4} become one group. Then

it can be obtained

where 19 := 2πk1/K (k1 = 1, , K/4 — 1). Note det(A,) is a real value since A, is

Hermitian. It shows that det(A,) = 0 only when {Si [k]}²i=1 (k E {k1, k2, k3, k4}) are

correctly decoded, hence, the maximum diversity gain Gd = 8 can be achieved, with the

factor causing the loss of coding gain being

5.5 Simulation Results

In the simulations, the worst case, the amplitude imbalance € = 5% and the phase imbalance

 = 5° at both of the transmitter and receiver side are adopted. In addition, the FFT size
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K = 64, the number of training data block Nt = 10, and the (L + 1)-tap (L = {1, 3})

blocking fading channel with each tap being Rayleigh fading are adopted. Moreover, the

GLCP matrices

are used, respectively.

As shown in Fig. 5.1—Fig. 5.4, without compensation (the dashed curves), I/Q

imbalance degrades the performance dramatically. With no I/Q imbalance, there is some

performance loss by introducing the proposed grouping, compared to the optimal grouping.

However, with I/Q imbalance, the proposed solution can provide a performance comparable

to the optimal grouping scheme with no I/Q imbalance (see Fig. 5.1~Fig. 5.2), or a better

performance (see Fig. 5.3~Fig. 5.4). In addition, the frequency diversity can not be

exploited by the LS method. Moreover, I/Q imbalance can be mitigated successfully with

the estimated ECSI as well, as shown in Fig. 5.5.

5.6 Conclusions

In this chapter, a new subcarrier grouping enabling a low-complexity decoding is proposed

to mitigate I/Q imbalance for GLCP OFDM systems. Analysis and simulation results

demonstrate that in the presence of I/Q imbalance, the proposed solution can provide

a performance comparable to (or better than) the optimal grouping scheme with no I/Q

imbalance.



--)1*-- w/o I/Q imb., Alamouti OFDM, w/o precoding, MLSE
w/o I/Q imb., proposed grouping, MLSE

o 	 w/o I/Q imb., optimal grouping, MLSE
-0- w/ I/Q imb., proposed grouping, w/o comp., MLSE

—A 	 w/ I/Q imb., proposed grouping, w/ comp., LS
v	 w/ I/Q imb., proposed grouping, w/ comp., MLSE

Figure 5.1 SER versus SNR of a 2x 1 GLCP OFDM system with I/Q imbalance. System
parameters are: eT 5%, yoT = 5°, ER = 5%, (pR = 5°, K = 64, L 1, and M = 2. A
16-PSK constellation is used. The number of independent trial is 106.
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X

Figure 5.2 SER versus SNR of a 2>< 1 GLCP OFDM system with I/Q imbalance. System
parameters are: ET = 5%, soT -=--• 5°, ER =- 5%, (PR = 5°, K = 64, L 1, and M = 2. A
16-QAM constellation is used. The number of independent trial is 106.



—*— w/o I/Q imb., Alamouti QFDM, w/o precoding, MLSE
- w/o I/Q imb., proposed grouping, MLSE
	 w/o I/Q imb., optimal grouping, MLSE
—0— w/ I/Q imb., proposed grouping, w/o comp., MLSE

w/ I/Q imb., proposed grouping, w/ comp., LS
— 0— w/ I/Q imb., proposed grouping, w/ comp., MLSE

Figure 5.3 SER versus SNR of a 2 x 1 GLCP OFDM system with I/Q imbalance. System
parameters are: ET = 5%, (pT = 5°, ER = 5%, (ioR = 5°, K --= 64, L = 3, and M = 4. A
16-PSK constellation is used. The number of independent trial is 106.
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Figure 5.4 SER versus SNR of a 2x 1 GLCP OFDM system with I/Q imbalance. System
parameters are: ET = 5%, COT = 5°, ER = 5%, cioR = 5°, K = 64, L = 3, and M = 4. A
16-QAM constellation is used. The number of independent trial is 106.



—a-- w/o I/Q imb., optimal grouping, known ECSI
	 w/o I/Q imb., optimal grouping, est. ECSI
—e 	 w/ I/Q imb., w/ comp., known ECSI

w/ I/Q mb., w/ comp., est. ECSI
w/o I/Q imb., optimal grouping, known. ECS

—0— w/o I/Q imb., optimal grouping, est. ECSI
•—0— w/ I/Q imb., w/ comp., known ECSI

• • —*— w/ I/0 imb., w/ comp., est. ECSI

Figure 5.5 SER versus SNR of a 2x 1 GLCP OFDM system with I/Q imbalance. System
parameters are: €7- = 5%, yoT = 5°, ER = 5%, (pR = 5° K = 64, L = {1, 3}, M = {2, 4},
and Nt = 5. A 16-PSK constellation is used, and the MLSE method is employed. The
number of independent trial is 106.
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CHAPTER 6

I/Q IMBALANCE IN TIME-REVERSAL STBC SYSTEMS OVER

FREQUENCY-SELECTIVE FADING CHANNELS

6.1 Introduction

Space-time block coded (STBC) wireless communication systems provide reliable data

transmissions by exploiting the spatial diversity in flat fading channels [6]. To achieve the

spatial diversity in frequency-selective fading channels, space-time block codes (STBCs)

in conjunction with orthogonal frequency division multiplexing (OFDM) is proposed [82]

[11] [12] [13]. To further exploit the embedded multipath diversity of frequency-selective

fading channels, codings across subcarriers of STBC-OFDM systems are introduced [78]

[14] [15]. However, OFDM has the high peak-to-average power ratio (PAPR) problem and

is sensitive to the carrier frequency offset [83] [84] [20]. Consequently, to achieve both

the spatial and multipath diversity, time-reversal STBC (TR-STBC) schemes are studied

extensively [21] [22] [23] [24].

In time-reversal communication systems, both the signal and its complex-conjugate

are utilized. As we know, I/Q imbalance induces the complex-conjugate term of the

intended signal in the time domain, consequently, the presence of I/Q imbalance in time-

reversal communication systems will change the properties of the original scheme, increase

SER dramatically if no further advanced signal processing technique is employed.

In this work, a new transmission scheme that enables simple yet effective solutions,

both in the time domain and in the frequency domain, is developed to mitigate the trans-

ceiver I/Q imbalance in TR-OSTBC systems over frequency-selective fading channels.

Simulation results demonstrate that the transceiver I/Q imbalance can be compensated

successfully by employing the proposed solutions with known or estimated effective channels.
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6.2 Signal and System Models

6.2.1 Data Structure With CP Aided Transmission

When two transmit-antennas are used to simultaneously transmit K x 1 data blocks si

over frequency-selective fading channels hi [hi[0] • • • hi[L]] (i = 1, 2, L < K),

the received K x 1 data vector containing I/Q imbalance has the following discrete-time

baseband form,

(6.1)

The square matrices Ui and Vi in (6.1) are circulant due to the use of a cyclic-prefix

(CP) preamble copying from the L trailing symbols of the data vector sz at the transmitter.

Specifically, matrices Ui = circfuil and Vi = circIvil are parameterized by the channel

and the transceiver I/Q imbalance parameters as follows,

Here the K x	 [1 vector hi = hT 0TK -L+1 T is a zero-padded channel. Compared toK

the effect of I/Q imbalance on the signal, such effect on the noise is relatively small at

reasonably high SNRs, hence a proper n—C.A/(0, o-n2IK) is adopted.

The matrices Ui and Vi can be diagonalized by the unitary discrete Fourier transform

(DFT) matrix W as Ui = WHAOY, and Vi = WHAviW, with Au, = diag{Wuil, and

= diagfWvil. 	 .

6.2.2 Data Model for the Proposed TR-OSTBC System With CP

In a 2 x 1 TR-OSTBC system, symbol vectors in the 2K x 2 codeword matrix
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Figure 6.1 Structure of the data and its time-reversal complex-conjugate.

are transmitted over two consecutive time slots through two transmit-antennas. Here J,(.) is

a time-reversal conjugate (TRC) operator such that J(s) = Js;" with J being an exchange

matrix, as shown in Fig. 6.1. For any circulant matrix A, it holds that JA*J = AH. Using

the results in (6.1), the received data block in a TR-OSTBC system over two consecutive

time slots can be formulated as i--' = U + V + n i.e.,

The proposed 2 x 1 TR-OSTBC communication system is illustrated in Fig. 6.2. In the

absence of I/Q imbalance, V = 0, symbol blocks {si}²i=1 can be decoded separately due

to the circulant nature of matrices {Ui However,However, the presence of I/Q imbalance forces

us to take into consideration a widely linear relation containing both g and its mirror-image

§' in (6.2) to effectively decode symbols
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Figure 6.2 A 2 x 1 TR-OSTBC communication system.

6.3 Solutions

6.3.1 Time Domain Processing

In the presence of I/Q imbalance, to fully capture the symbol information contained in

(6.2), the data can be re-arranged as

(6.3)

Under additive white Gaussian noise (AWGN) assumption, the optimal maximum-likelihood

sequence estimate (MLSE) of {si}²i=1 can be obtained from

(6.4)

where the set S contains all possible 4K x 1 signal vectors from a given symbol constel-

lation. For a TR-OSTBC system with large data block size K (typically K >> L), to reduce

the computational complexity of MLSE, a low-complexity sub-optimal solution built upon

the filtering idea can be found for the practical implementation.
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Introducing a linear filter F, E{ IIs — Fr||²} can be minimized to obtain the linear

minimum-mean-square-error (LMMSE) estimates of {si }²i=i,

where ol is the signal power per sample. The detailed derivation of FusAmSE can be found in

Appendix E. Its zero-forcing (ZF) counterpart is simply the result of dropping the diagonal

loading factor,

Note that the inversion of the large-size (4K x 4K) matrices in the above LMMSE and ZF

solutions can be avoided explicitly due to the proposed CP based TR-OSTBC scheme. The

block structure of the matrix H in (6.3) results in a block Gram-matrix G = HHT with the

where matrices A, B, C and D are K x K circulant matrices. This can be seen from the

fact that the matrices
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are products and summations of circulant matrices. The Schur complement of G11 in G can

be obtained as G, = G22 —GEGII1G12 = 120E, where E = B— (CTA-1C+DA-1DT)

is also aK xK circulant matrix. Hence only A-1, B-1 and E-1 are involved to invert

matrices (H HT + ci/o-s2 I4K) and H HT. The circulant nature of matrices A, B and E

further indicates that their inversions can be easily calculated using the unitary DFT matrix,

i.e., A-1 = WHA,2-1W with diagonal elements of A°, being DFT of the first column of A.

The performance of the linear filter solutions can be further improved by introducing

nonlinear filters, such as MMSE decision feedback equalizer (MMSE-DFE) and/or ZF-

DFE, to remove the remaining inter-symbol interference (ISI).

As shown in Fig. 6.3, let Ff = LTFusAmsE and Fb = LT -I4K denote the feedforward

filter and feedback filter of MMSE-DFE, respectively, the 4K x 4K lower-triangular matrix

L can be explicitly obtained by the factorization,

Here Ah is a 4K x 4K diagonal matrix used to normalize the diagonal entries of L. The

block symmetric matrix dr- = HTH, with the similar structure as G, can be decomposed

into

where On = 12 0 A, and dr, = 622 - 61'26-n1612 = ® E Hence, obtaining matrix L,

only involves the inversions of K x K circulant matrices, whose computational complexity

again can be dramatically reduced by the DFT operations.
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Figure 6.3 Block diagram of the decision feedback equalizer.

The detailed derivation of MMSE-DFE can be found in Appendix E. Dropping the

diagonal loading factor, the implementation of ZF-DFE is straightforward.

6.3.2 Frequency Domain Processing

By exploiting the structure of (6.2), a frequency domain processing can be applied to

mitigate I/Q imbalance. The equivalent frequency domain data model with a white noise

vector can be formulated as

For a K-point DFT, it holds that

where § is DFT of s, and k' = (—k)K. Assume K is even, let i; 	 Wri, r2 = WJr;,

= Wni, and 1712 =-- WJn. For k = 0, K/2, it can be obtained that
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where Aiim [k] and A„,, [k] are the k-th diagonal entries of um and Ay, , respectively. Refor-

mulate (6.5) as

then the least-squares (LS) estimate of §a can be obtained as

For other values of k, it can be obtained that

Then the LS estimate of gb can be obtained as

It shows that (K/2 + 1) inversions of a 4 x 4 matrix is needed in the frequency domain to

obtain the LS estimate. In addition, due to the special structure of the matrix Ha and Hb, by

using the matrix inversion formula, all the sub-matrices to be inverted to obtain (11H,,)'

and (HrHb)-1 are diagonal [48], reducing the computational complexity further.

The LS estimate of "gi, which is denoted as 	 can be obtained by stacking the

elements of ga and gb correspondingly. Then LS estimate of si can be obtained from

(6.6)
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6.3.3 Estimation of Channel and I/Q Imbalance

Since only the effective channel state information (ECSI) such as ui and v., are needed in

the proposed solutions, the tasks of separately estimating the channel parameters hi well

as the I/Q imbalance parameters {αT, βT, aRI βR} can be combined [74].

During the training period, according to (6.I) (6.2), it can be obtained

(6.7)

where the Nt x (L 1) matrix St,t is the first L 1 columns of a Nt x Nt circulant matrix

circ(st,i), with st,i being the Nt x 1 training data vector sending from the ith antenna.

Consequently, the estimated ECSI can be obtained as

(6.8)

To study the performance degradation caused by UQ imbalance without compen-

sation, only ui is estimated, then 0 and St in (6.7) become

Once 0 is available, the conventional detection for TR-OSTBC systems is performed.

6.4 Simulation Results

In the simulations, L-order channels with hi ~ CN/(0,IL+1) and the data block length

K = 20 with the length of CP L = 2 are used. In addition, SNR 0-.92/an', and the power

loss due to CP is neglected due to the fact K L>> L.
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As shown in Fig. 6.4--,Fig. 6.6, I/Q imbalance causes dramatic performance degra-

dation without the compensation, and the receiver I/Q imbalance causes more performance

degradation than the transmitter I/Q imbalance in such a system. In addition, as our

analysis on the equivalent time and frequency domain model shows that the frequency

domain LS (FD-LS) method provides the same performance as the time domain ZF method.

The LMMSE method improves the performance compared to the above two. Moreover,

further performance improvement can be achieved by introducing nonlinear processings

such as ZF-DFE and MMSE-DFE, compared to their linear counterparts. Furthermore, the

proposed solutions with estimated ECSI can mitigate I/Q imbalance as well, as shown in

Fig. 6.7.

6.5 Conclusions

In this work, the solutions to the symbol detection, both in the time domain and in the

frequency domain, for TR-STBC systems with I/Q imbalance over frequency-selective

fading channels, are developed. Results demonstrate the effectiveness of the proposed

approaches in mitigating I/Q imbalance and improving the SER performance.
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	0 	 w/ transceiver I/Q imb., w/o comp., MMSE-DFE, est. ECSI
—e— w/ Tx I/Q imb, only, w/o comp., MMSE-DFE, est. ECSI

	

--*	 w/ Rx I/Q imb. only, w/o comp., MMSE-DFE, est. ECSI
w/o I/Q imb., MMSE-DFE, est. ECSI

Figure 6.4 SER versus SNR of a 2 x 1 TR-OSTBC system with I/Q imbalance. System
parameters are: ET 5%, (pi, = 5°, ER = 5%, çoR = 5° K = 20, L = 2, and Nt = 20. A
64-QAM constellation is used. The number of independent trials is 105.

• w/ I/Q imb., w/o comp., MMSE-DFE
- w/ I/Q imb., w/ comp., FD-LS

O w/ UQ imb., w/ comp., ZF
I> 	 w/ I/Q imb., w/ comp., LMMSE
* w/ I/Q imb., w/ comp., ZF-DFE

- w/ I/Q imb., w/ comp., MMSE-DFE
O w/o I/Q imb., MMSE-DFE

Figure 6.5 SER versus SNR of a 2 x 1 TR-OSTBC system with I/Q imbalance. System
parameters are: ET = 5%, coT = 5°, ER = 5%, (pR = 5°, K = 20, and L = 2. A 64-QAM
constellation is used. The number of independent trials is 105.



-0- • w/ I/Q imb., w/o comp., MMSE-DFE
w/ I/Q imb., w/ comp., FD-LS
	 w/ I/Q imb., w/ comp., ZF
	  w/ I/Q imb., w/ comp., LMMSE

	• 

w/ I/Q imb., w/ comp., ZF-DFE
w/ I/Q imb., w/ comp., MMSE-DFE

O w/o I/Q imb., MMSE-DFE

Figure 6.6 SER versus SNR of a 2 x 1 TR-OSTBC system with I/Q imbalance. System
parameters are: €7-. = 5%, (,07-, = 5°, ER = 5%, çoR = 5°, K = 20, and L = 2. A 16-PSK
constellation is used. The number of independent trials is 105.
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w/ 	 imb., w/ comp., est. ECSI, N=10

* w/ I/Q imb., w/ comp., est. ECSI, Nt=20

	 w/ UQ imb., w/ comp., est. ECSI, Nt=40

—8— w/o I/Q imb., known ECSI

Figure 6.7 SER versus SNR of a 2 x 1 TR-OSTBC system with I/Q imbalance. System
parameters are: el, = 5%, (,07-, = 5°, ER = 5%, (PR = 5°, K = 20, L = 2, and Nt =
{10, 20, 40}. A 64-QAM constellation is used, and MMSE-DFE is performed. The number
of independent trials is 105.



APPENDIX A

DERIVATION OF TRANSCEIVER I/Q IMBALANCE
MODEL IN TIME DOMAIN

A.1 Derivation of Transmitter I/Q Imbalance Model in Time Domain

Assume the baseband signal intended to be transmitted is

In the absence of the transmitter I/Q imbalance, €7, = 0 and ço7-, = 0, then the up-converted

passband signal is

However, in the presence of the transmitter I/Q imbalance, CT(t) becomes

therefore, the up-converted passband signal becomes

Since R{(.)*} =- R{•}, it can be obtained that

with the equivalent baseband signal in the presence of the transmitter I/Q imbalance being
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A.2 Derivation of Receiver I/Q Imbalance Model in Time Domain

At the receiver side, in the absence of the receiver I/Q imbalance, the down-converted signal

After the lowpass filter (LPF), the high frequency part is removed, hence the transmitted

signal s(t) can be obtained.

However, in the presence of the receiver UQ imbalance, the down-converted signal

becomes

Based on the above derivation, it is straightforward to show that the down-converted signal

of the first part is (40(0 . With regard to the second part, since

the corresponding down-converted signal is Ns* (t).

Consequently, combine the above results, due to the receiver I/Q imbalance, the

equivalent baseband signal can be expressed as



APPENDIX B

DERIVATION OF TRANSCEIVER I/Q IMBALANCE
MODEL IN FREQUENCY DOMAIN

B.1 Derivation of Transmitter UQ Imbalance Model in Frequency Domain

Let ST = | sT[0] ST[1] • • • sT[K — 1] I and s = |s[0] s[1] • • • s[K — 1]]T

denote the discrete data vectors of the equivalent baseband signal and the intended signal,

respectively. Take the Discrete Fourier Transform (DFT) to equation (2.2), it can be

obtained

where .F{.} denotes the K-point DFT operation.

Let ST= | MO] ST[1] • • • ST[K — 	 and g = |S[0] S[1] • • • S[K — 1] 
T

denote the data vectors of ST and s in the frequency domain after the K-point DFT, respec-

tively, since DFT of the complex conjugate of a sequence is related to DFT of the original

sequence through a mirrored relation [85], i.e.,

Consequently, it can be obtained that

B.2 Derivation of Receiver I/Q Imbalance Model in Frequency Domain

Let r = |r[0] r[1] • • • r[K — 1]] and n = n[0] n[1] • • • n[K — 1] T denote

the received data vector and the additive noise vector. After the removal of CP at the
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receiver side, according to equation (2.4), it can be obtained

where the K x K matrix H is circulant. Let h = [ h[0] h[1] • • • h[L] j denote the

channel vector, and h = | hT0TK-L+1 Tdenote the zero-padded channel, then H can

be diagonalized by the unitary DFT matrix W as H = WHAT,W, with  diag{Wh}.

Since WWH = IK, then

Let

Using the property given in (B.1), it is not difficult to show that

R[k] = ozsizH [k]ST[k] + RH* [14 S*T[k'] + N[k], 	 0 < k < K — 1,0 < <K — 1.



APPENDIX C

DERIVATION OF THE DIVERSITY AND CODING
GAIN WITH SUBCARRIER GROUPING

C.1 Derivation of the Diversity and Coding Gain for L 1

Since §[k] and §'[k] are orthogonal matrices, A [k] is an orthogonal matrices as well, it is

straightforward to show that

It is easy to show that

With the optimal subcarrier grouping, i.e., k2 K/2 + k1, 2πk2/K 3 K , then

The determinant of A, can be obtained as
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2π
With the proposed subcarrier grouping, i.e., k2 = (—k1)K = K — k 1 ,	 K

k2 =
.211-k1 

K , then

Note the special pair {k1 = 0, k2 =-- K/2} is also the optimal grouping pair, and det(Ae) —

(4d[k1]d[k2])². Consequently, with the proposed grouping, the determinant of A, can be

generalized as

C.2 Derivation of the Diversity and Coding Gain for L = 3

( C . I)
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and

(C.2)

With the optimal subcarrier grouping, for any group {ki}4i=1 (ki = (i — 1)K/4 + k1),

according to (C.2), it can be obtained that

With the proposed subcarrier grouping, i.e., the subcarriers {k,k+K/4,—k+3K/4,—k+

K} (k = 1, • • • , K/4) are selected and grouped, according to (C.I) and (C.2), it can be

obtained

The result of the special group {0, K/ 4,K/2, 3K/4} is the same as the optimal grouping.

Consequently, the determinant with the proposed grouping can be generalized as



APPENDIX D

DERIVATION OF THE LMMSE FILTER FOR TR-OSTBC
SYSTEM WITH I/Q IMBALANCE

The linear filter FLMMSE is the solution of the equation

Since

according to [86], it can be obtained
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APPENDIX E

DERIVATION OF THE MMSE-DFE FILTER FOR TR-OSTBC
SYSTEM WITH I/Q IMBALANCE

Define e := — A, where A' is the output of the equalizer before the slicer, as shown

in Fig. 6.3. Assume the past decisions are correct, i.e., A A, then

(E.1)

The feedforward filter Ff should be chosen to minimize EIJI e1121. In addition, the feedback

filter Fb should be strict upper-triangular so the successive cancelation can be carried out.

By fixing the feedback filter Fb first, following the similar derivation in Appendix E,

it can be obtained that

(E.2)

Note the result can also be obtained using the orthogonal principle, i.e., E{erT} = 04K

[87] [88].

Using the property that A 	 Ar(o, 414K) and II 	 N/(0, (4i4K) are independent,

i.e., E{ssT} = σs/2I4K, E{snT} = E{nsT} = 0, and E{ 	 = V4K, the feedforward

filter Ff can be obtained as

To implement the symbol-by-symbol detection in the optimal sense, the error signal

at the input of the slicer should be uncorrelated, i.e., E{eeT} should be a diagonal matrix.
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Using the matrix inversion lemma as follows

Consequently,
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Here L is a 4K x 4K lower-triangular matrix, and Ah is a 4K x 4K diagonal matrix used

to normalize the diagonal entries of L.

Hence, the derivation of Ff and Fb are completed.
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