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ABSTRACT

CHARACTERIZATION OF NATURAL ORGANIC MATTER AND
PRECURSORS TO TRIHALOMETHANES USING

SPECTRAL FLUORESCENCE SIGNATURES

by
Krit Punburananon

Disinfection is an essential process to kill pathogens (i.e., disease causing organisms) in

source water during the production of drinking water. Chlorine is most widely used

disinfectant because it is effective, affordable, and also provides chlorine residual to

ensure that the water is safe through the distribution system. Nonetheless, chlorine reacts

with Natural Organic Matter (NOM) and forms potentially carcinogenic Disinfection By-

products (DBPs). The major chlorination DBPs are dominantly Trihalomethanes

(THMs). However, not all organic compounds are equally reactive to THMs formation.

NOM in water samples collected from the Delaware & Raritan Canal and its

tributaries (Central New Jersey) was isolated by resin adsorption into six fractions:

Hydrophobic acid (HPOA), Hydrophobic neutral (HPON), Hydrophobic base (HPOB),

Hydrophilic acid (HPIA), Hydrophilic neutral (HPIN), and Hydrophilic base (HPIB).

HPIN, HPON, and HPOA were the major fractions in most of samples. Moreover, the

fractions' seven-day THMs Formation Potentials (THMFP) were determined HPOA was

found to be the most reactive fraction to THMs formation in addition to being one of the

most abundant fractions in the source water.

Additionally, the six fractions were also characterized by fluorescence

spectroscopy to obtain three-dimensional fluorescence spectra. The spectra shape and

peak locations are unique characteristics of organic compounds and also called Spectral



Fluorescence Signature (SFS). The SFS is the total sum of emission intensity of a sample

at different excitation wavelengths, recorded as a matrix of fluorescent intensity in

coordinates of excitation and emission wavelengths. Among the six fractions, HPOA

spectra were large and the peak intensity was also high. Therefore, fluorescence

spectroscopy could be a promising technique for characterization of HPOA fraction or

THMs precursors in the source water.

Although a large number of intensities are related to THMs precursors, many of

them are highly correlated by nature. Principle component analysis was then used to

transform the fluorescence intensities into independent parameters called Principle

Components (PCs). Best Subset Algorithm was performed to select the most important

PCs for the prediction of THMFP by multiple linear regression. The prediction of

THMFP using SFS is a rapid, inexpensive, reagent-free technique and thus can be used

for optimization of water treatment processes.
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Watch your thoughts; they become words.
Watch your words; they become actions.
Watch your actions; they become habits.

Watch your habits; they become character.
Watch your character; it becomes your destiny.

Frank Outlaw

Remember, if you ever need a helping hand, you'll find one at the end of your arm.
As you grow older you will discover that you have two hands,

one for helping yourself and the other for helping others.
Audrey Hepburn

What you do speaks so loudly that I cannot hear what you say.
Ralph Waldo Emerson

Saying is one thing. Doing is another.
Montaigne

The secret of getting ahead is getting started.
The secret of getting started is breaking your complex overwhelming tasks

into small manageable tasks, and then starting on the first one.
Mark Twain
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CHAPTER 1

INTRODUCTION

1.1 History and Background

One hundred years ago, typhoid and cholera epidemics were common throughout

American cities. Exposure to microbial contaminants such as bacteria, viruses, and

protozoa (e.g., Giardia lamblia and Cryptosporidium) was likely the greatest remaining

health risk management challenge for drinking water suppliers. Acute health effects from

exposure to microbial pathogens are documented and associated illness can range from

mild to moderate cases lasting only a few days to more severe infections that last several

weeks. These cases may result in death for those with weakened immune systems

(USEPA, 1998b; USEPA, 2006b; Krasner et al. 2006).

Over the past fifteen years, we have also learned that there are specific microbial

pathogens, such as Cryptosporidium, that are highly resistant to traditional disinfection

practices. In 1993, Cryptosporidium caused 400,000 people in Milwaukee to experience

intestinal illness. More than 4,000 were hospitalized, and at least 50 deaths have been

attributed to the disease. There have also been cryptosporidiosis outbreaks in Nevada,

Oregon, and Georgia over the past several years (USEPA, 1998a; USEPA, 2006b).

Therefore, disinfectants became an essential element of drinking water treatment because

of the barrier they provide against waterborne disease-causing microorganisms.

Disinfection is a major factor in reducing these epidemics, and is an essential part

of drinking water treatment today. It is a chemical process used in water systems to

inactivate (or kill) pathogens (i.e., disease causing organisms) found in the source water

(i.e., lake, river, reservoir, or ground water aquifer from which water is drawn and

1
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treated). Disinfection through inactivation usually involves the use of disinfectants such

as chlorine, ozone, and chlorine dioxide, and a combination of chlorine and ammonia

(chloramines) may render many of these organisms harmless (Singer, 1999; Xie, 2007).

However, the disinfectants themselves can react with naturally-occurring

materials in the water (e.g., humic and non-humic) to form unintended organic and

inorganic by-products which may pose health risks (Bull, 1982). Disinfection by-products

(DBPs) are formed when disinfectants (e.g., chlorine) react with NOM, and/or bromide/

iodide present in the source water. Different disinfectants produce different types or

amounts of DBPs (Richardson et al. 2003; Sarai, 2006).

DBPs formed during disinfection with chlorine and chloramines are Total

Trihalomethanes (TTHMs- chloroform, bromoform, bromodichloromethane, and

dibromochloromethane) and haloacetic acids (HAAS — monochloro dichloro trichloro

monobromo dibromo -.) The amount of DBPs formation in drinking water can

change from day to day, depending on the season, water temperature, amount of chlorine

dosages, the amount of plant material in the water (Sharp et al. 2006).

Many of these DBPs have been shown to cause cancer and reproductive and

developmental effects in laboratory animals. More than 200 million people consume

water that has been disinfected in the United States. Because of the large population

exposed, health risks associated with DBPs, even if small, need to be taken seriously. A

major challenge for water suppliers is how to balance the risks from microbial pathogens

and DBPs. It is important to provide protection from these microbial pathogens while

simultaneously ensuring decreasing health risks to the population from DBPs (USEPA,

2006b).



3

1.2 Rules and Regulations for Disinfection By-products

The 1996 Safe Drinking Water Act (SDWA) amendments require USEPA to develop

rules and standards for DBPs in drinking water. Published in December 1998, the Stage 1

Disinfectants/Disinfection By-products Rule (DBPR) required water systems to use

treatment methods to reduce the formation of DBPs and to meet the standards. Maximum

Contaminant Level (MCL), Maximum Contaminant Level Goal (MCLG) of TTHMs,

HAA5, and others DBPs as well as their potential health effects are shown in Table 1.1

(USEPA, 1998b). In addition, MCLG for each of DBP and maximum residual

disinfectant level goals (MRDLG) for each disinfectant listed in Tables 1.2 and 1.3,

respectively (USEPA, 1998b).

While the Stage 1 DBPR is predicted to provide a major reduction in DBPs

exposure, national survey data suggest that some customers may receive drinking water

with elevated, or peak, DBPs concentrations even when their distribution system is in

compliance with the Stage 1 DBPR. Some of these peak concentrations are substantially

greater than the Stage 1 DBPR MCLs and some customers receive these elevated levels

of DBPs on a consistent basis (Krasner et al. 2006). The Stage 2 DBPR sets new

requirements provide for more consistent, equitable protection from DBPs across the

entire distribution system and the reduction of DBP peaks. As in Stage 1, the Stage 2

DBPR focuses on monitoring for and reducing concentrations of two classes of DBPs:

TTHM and HAA5. The concentrations of TTHM and HAAS are monitored for

compliance, but their presence in drinking water is representative of many other

chlorination DBPs that may also occur in the water; thus, a reduction in TTHM and

HAA5 generally indicates an overall reduction of DBPs.
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The second provision of the Stage 2 DBPR is designed to address spatial

variations in DBPs exposure through a new compliance calculation for TTHM and HAAS

MCLs. The MCL values remain the same as in the Stage 1. The Stage 1 DBPR running

annual average (RAA) calculation allowed some locations within a distribution system to

have higher DBPs annual averages than others as long as the system-wide average was

below the MCL. The Stage 2 DBPR bases compliance on a locational running annual

average (LRAA) calculation, where the annual average at each sampling location in the

distribution system will be used to determine compliance with the MCLs (USEPA,

2006a).

The Stage 2 DBPR was released simultaneously with the Long Term 2 Enhanced

Surface Water Treatment Rule (LT2) to address concerns about risk tradeoffs between

pathogens and DBPs (USEPA, 2006b). The purpose of the LT2 rule is to reduce illness

linked with the contaminant Cryptosporidium and other disease-causing microorganisms

in drinking water. This rule applies to all public water systems that use surface water or

ground water under the direct influence of surface water to treat reservoir discharge to

inactivate 4-log virus, 3-log Giardia lamblia, and 2-log Cryptosporidium. These

requirements are necessary to protect against the contamination of water that occurs in

open reservoirs (USEPA, 2006b).

1.3 Objectives

Natural organic matter in source water quality is the major factor impacting DBPs

formation following disinfection. The primary objective is to investigate the use of

fluorescence spectroscopy for characterization of Trihalomethanes (THMs) precursors in
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source water. The secondary objective is to investigate fluorescence spectroscopy

coupled with multivariate statistical analysis as a rapid, inexpensive technique to

determine the amount of THMs precursors and THMs Formation Potential (THMFP) of

water samples. The outcome would help identify the potential water quality problems

rapidly in advance and aid water utilities for source water management as well as

drinking water treatment process optimization.

Table 1.1 MCL, MCLG, and Potential Health Effect of DBPs (USEPA, 1998b;
USEPA, 2006a)



Table 1.2 MCLG for Each DBP (USEPA, 2006a)
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Table 1.3 MRDLG for Disinfectants (USEPA, 1998b)



CHAPTER 2

LITERATURE REVIEW

2.1 Current Research

Current research has been focusing on the characterization of NOM by varied techniques

to identify THMs precursors. NOM in natural water is a complex mixture of various

hydrocarbon structures with attached functional groups (Leenheer and Croué, 2003), and

its composition varies through out the year depending on the source of organics and

environmental conditions (Rodriguez et al. 2004; Sharp et al. 2006). For this reasons,

quick and accurate methods for water characterization must be developed to help water

treatment plants cope with the dynamics of changing source water quality while

maintaining drinking water quality standard. A variety of water characterization

techniques and prediction models were reviewed in this chapter.

2.2 Organic Carbon Analysis

Total organic carbon (TOC) is an aggregate measurement used to quantify the presence

of organic matter in aquatic systems. TOC can be divided into two fractions as dissolved

organic carbon (DOC) and particulate organic carbon (POC). POC is the fraction of the

TOC that is retained on a 0.45 micrometer (µm) porosity membrane (Leenheer and

Croué, 2003). DOC is the organic carbon smaller than 0.45 in diameter. POC

generally represents a minor fraction (below 10%) of the TOC. The proportion of POC

increases with a river's size and flow rate, and DOC concentrations range from 0.1

milligrams per liter (mg/L) in groundwater to 50 mg/L in bogs (Thurman, 1985).

7
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However, Chow et al. (2005) recommended that even a smaller pore size (0.10

urn or smaller) could be used. The operationally defined DOC fraction using 0.45 µm

filter often contains heterogeneous organic carbon compounds that may lead to

inconsistent results when evaluating THMFP. A finer pore size filter provides more

homogeneous DOC properties and enables a better characterization of organic matter.

DOC is a complex mixture of aromatic and aliphatic hydrocarbon structures that

have attached amide, carboxyl, hydroxyl, ketone, and various minor functional groups

ranging in molecular weight from a few hundred to 100,000 Dalton. Heterogeneous

molecular aggregates in natural waters increase DOC complexity (Leenheer and Croué,

2003). DOC concentrations not only depend on the nature of the watershed, but are also

influenced by seasonal variations and POC inputs such as runoff or algae bloom. Most of

the NOM is considered to be slowly biodegradable (Thurman, 1985; Rodriguez, 2004;

Toroz and Uyak, 2005).

2.3 Fractionation of Dissolved Organic Matter by Resin Adsorption

Dissolved Organic Matter (DOM), measured as DOC, is commonly characterized by

fractionation into chemically distinct categories via resin adsorption. This technique has

been widely used to isolate hydrophobic fraction (humic substances e.g., humic and

fulvic acids) from hydrophilic fraction (non-humic substance). This is the basis of a

simple DOM analysis that determines the humic/nonhumic distribution of raw and treated

waters. This isolation technique was first developed by Leenheer (1981) and later

modified by Marhaba et al. (2003) to fractionate low level of dissolved organic carbon

normally found in natural water into six chemically distinct fractions.
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The six fractions of organic matter dissolved in water are classified by their

physical properties and chemical structures as follows (Bengraïne and Marhaba, 2003a):

• Hydrophilic base (HPIB) contains amphoteric proteinaceous materials
containing amino acids, amino sugars, peptides and proteins.

• Hydrophilic acid (HPIA) includes organic compound containing the hydroxyl
acid group.

• Hydrophilic neutral (HPIN) are organic compounds made up of polysaccharides.

• Hydrophobic base (HPOB) is the basic portion of the humic substance retained
by XAD-8 resin at normal pH (-7), which can be eluted by hydrochloric acid.

• Hydrophobic acid (HPOA) is a soil fulvic acid.

• Hydrophobic neutral (HPON) is a mixture of neutral hydrocarbon and carbonyl
compounds.

Hydrophobic fractions are separated from source water into HPOA, HPON,

HPOB by XAD-8 resin adsorption at pH of 2, 7, and 10, respectively. HPIB and HPIA

are separated by adsorption on AG-MP-50 and WA-10 resin, respectively, at pH of 2.

The last fraction left in the effluent of WA-10 resin is HPIN. The flow diagram of

fractionation procedure is shown in the Figure 2.1.

2.4 Ultra Violet Absorption

Chromophores have the functional groups containing the electrons that are promoted

when a molecule absorbs light (11 —> ¶*). In NOM molecules, the vast majority of the

chromophores that absorb in the Ultra Violet (UV) region (X.< 400 nm) are aromatic

groups with various degrees and types of substitution, including mono- or poly-

substituted phenols and various aromatic acids. Theses chromophores are associated

primarily with the humic fraction of the NOM (Korshin et al. 1997). Surface water
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absorption of both visible and UV light is widely attributed to the conjugated (J) bonds

present in NOM molecules, primarily humics, dissolved in the water.

Specific UV absorbance (SUVA or SUVA254) is defined as the sample's UV

absorbance at 254 nm divided by the DOC concentration of the solution. High SUVA

waters are generally enriched in hydrophobic NOM, such as humic substances (Leenheer

and Croué, 2003). Therefore, SUVA is a measure of the aromaticity of DOC and can be

used to estimate the chemical nature of the DOC at a given location. Most research has

focused on UV absorbance at 254 nm, which serves as a rough indicator of overall NOM

concentration (Korshin et al. 1997; Leenheer and Croué, 2003).

The most important application of SUVA254 is in water treatment process. It is

used as criteria to determine if water utility will be required to use enhanced coagulation.

Stage 1 DBPR mandates the use of enhanced coagulation or enhanced softening during

water treatment to reduce TOC from water to reduce DBPs formation (USEPA 1998b;

USEPA, 1999; Croué et al. 2000).

SUVA254 is an average absorptivity for all the molecules that comprise the DOC

in a water sample and has been used as a surrogate measurement for DOC aromaticity.

The assumptions behind these criteria are that SUVA254 is a good indicator of the humic

fraction of the DOC, and coagulation is effective at removing the humic fraction which is

DBPs precursors (Weishaar et al. 2003).

However, NOM in natural water is a complex mixture of various hydrocarbon

structures that have attached functional groups. SUVA254 of NOM is typically broad and

nearly featureless, because the number of possible types of NOM is large and none

possess an easily distinguishable spectrum (Leenheer and Croué, 2003).
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SUVA2 54 was strongly correlated with percent aromaticity in water sample with

R2 of 0.97, but it showed poor relationship with THMFP of neither filter whole water (R 2

= 0.54) nor isolate organic matter (R 2 = 0.41). This implied that the reactivity of NOM

with chlorine was not strongly dependent on the aromaticity of the organic matter

(Weishaar et al. 2003).

It should be noted that not all aromatic molecules react with chlorine to produce

chloroform. Thus, some compounds that contribute to the overall UV absorbance may be

inert with respect to THMFP, and some THMs precursor compounds may not contribute

to the overall UV absorbance (Weishaar et al. 2003). In addition, Ates et al. (2007) also

reported low SUVA water sample having high THMs formation and the organics in those

samples had low molecular weight and low aromatic structure.

2.5 Fluorescence Spectroscopy

2.5.1 Background and Theory

Synchronous florescence spectroscopy, a novel developing technique to obtain the

summation of fluorescence spectra at wide range of excitation wavelengths, provides

much better sensitivity compared to SUVA (Leenheer and Croué, 2003). This

fluorescence spectrum is a three-dimensional (e.g., Excitation (Ex) wavelength vs

Emission (Em) wavelength vs Relative Intensity of response surface) having a wide range

of Ex/Em matrix. This florescence spectrum is a "fingerprint" of natural organic

compounds present in the water sample, called a Spectral Fluorescence Signature (SFS).

Obtaining fluorescence spectrums are straightforward, but interpreting the data is still

under research and being explored.
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Molecules could be excited by absorbed radiation from high energy light source.

These molecules are transferred from ground state to the excited state and then emitt the

excess energy as radiation as they drop back to the ground state as shown in Figure 2.2

(Bourne, 2006). The radiation emitted is called molecular fluorescence (Robinson, 1995;

Skoog et al. 1998). The radiation emitted or the fluorescence is of lower energy than the

stimulating rations, and must be at a longer wavelength (Robinson, 1995; Skoog et al.

1998; Kebbekus and Mitra, 1998). The molecule absorbs at characteristic wavelength and

emits a spectrum which is also a characteristic of the compound. In general fluorescence

is a very sensitive technique, and its detection limits are typically an order of magnitude

better than in UV absorption (Kebbekus and Mitra, 1998).

The most intense and the most useful fluoresecence is found in compound

containing the aromatic functional group with low energy transition levels. Compounds

containing aliphatic and alicyclic carbonyl structures or highly conjugated double-bond

structures may also exhibit fluorescence, but the number of these is small compared with

the number in the aromatic systems (Skoog et al. 1998).

Most un-substituted aromatic hydrocarbons can fluoresce in solution. The simple

heterocyclics, such as pyridine, furan, thiophene, and pyrene do not; on the other hand,

fused ring structure ordinary do. Substitution on benzene ring causes shifts in the

wavelength of absorption maxima and corresponding changes in the fluorescence peaks.

Influence of halogen substitution is striking. The decrease in fluorescence with increasing

halogen atom was observed by Skoog et al. 1998.

The high energy light source is used to excite the samples. Mercury lamps are

used for line source excitation and deuterium or xenon arc sources for continuous source.
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A monochromator is used to select the wavelength for excitation and emission. The

sample is irradiated by UV light, which is absorbed by the molecules. The molecules

become excited and remit the fluorescence in all directions. The fluorescence intensity is

measured at right angles to the radiation that excited the sample (Robinson, 1995). The

simplified schematic diagram of a fluorescence spectroscopy is shown in Figure 2.3

(Bourne, 2006).

The organic molecule adsorbs at characteristic wavelengths and emits a spectrum

which is characteristic or the finger print of the organic compound (Marhaba, 2000). This

spectrum is called spectral fluorescence signature (SFS) and also called emission-

excitation matrix (EEM), which is defined as is the total sum of emission spectra of a

sample at different excitation wavelengths recorded as a matrix of fluorescent intensity in

coordinate of excitation and emission wavelengths. This spectrum is a fingerprint for

each organic compound (Marhaba and Lippincott, 2000; Marhaba and Pu, 2000).

Fluorescence intensities of SFS predominantly depend on the organic matter

concentration, provided that other factors that affect fluorescence intensity (pH, metal ion

interaction, etc.) remain relatively constant (Baker, 2001). Ionic strength in the range of

0-1 M KCl and humic substance concentration in the range of 5-100 mg/L had little

effect on the fluorescence spectral characteristics of the humic substances, while pH

caused a shift of peak locations. Absorbance correction was shown to be essential for

accurate representation and comparison of the SFS of the humic substances at high

concentrations (Mobed et al. 1996).
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2.5.2 Relationship between Fluorescence Intensity and Concentration

The relationship between fluorescence intensity and sample concentration was reviewed

by Robinson (1995) and Skoog et al. (1998). The intensity of fluorescence, F, is

proportional to the radiant power of the excitation beam that is absorbed by the system.

That is:

(2.1)

where Po is the power of the beam incident upon the solution and P is its power after

traversing a length, b, of the medium. The constant K' depends upon the quantum

efficiency of the fluorescence process. In order to relate F to the concentration, c, of the

fluorescing species, we write Beer's law in the form

(2.2)

where c is the molar absorptivity of the fluorescing molecules and εbc is the absorbance,

A. By substitution of Equation (2.2) into Equation (2.1), we obtain

(2.3)

The exponential term in Equation (2.3) can be expanded as a Maclaurin series to

(2.4)

Provided 2.303εbc = A < 0.05, all of the subsequent terms in the brackets are small with

respect to the first; under these conditions, the maximum relative error caused by

dropping all but the first term is 0.13%. Thus, we may write

or at constant P0,
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Thus, a plot of the fluorescence power of a solution versus concentration of the

emitting species should be linear at low concentrations. When c becomes great enough so

that the absorbance is larger than about 0.05, the higher order terms in Equation (2.4)

become important and linearity is lost. Mobed et al. (1996) reported that the humic acid

concentration in the range of 5-100 mg/L had little effect on the fluorescence spectral

characteristics. Although less than a 1% of the aromatic moieties in NOM actually emit

light as fluorophores, three-dimensional SFS is an attractive analytical tool because it is

at least an order of magnitude more sensitive to NOM than UV absorbance (Leenheer and

Croué, 2003).

2.6 Application of Fluorescence Spectroscopy

2.6.1 Applications of SFS for Dissolved Organic Matter Characterization

Synchronous fluorescence spectroscopy provides highly detailed information that can be

used to identify fluorescent compounds present in complex mixtures. Fluorophores are

associated with the humic portion of NOM (Coble, 1996). Two distinct classes of

fluorophores are generally discussed, the humic-like fluorophores and the protein-like

fluorophores. Each type of organic compounds has a unique range of excitation and

emission wavelength. Coble (1996) reported a variety of marine organic compounds

characterized by fluorescence spectroscopy in the Table 2.1. The composition of organics

in water is depending on the origin of the water samples.

Dissolved organic contents were fractionated by Marhaba (2000) into six

fractions: HPOA, HPOB, HPON, HPIA, HPIB, and HPIN using three types of resins:

XAD-8, AG-MP-50, and WA-10. The SFSs of six fractions are summarized in Table 2.2
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(Marhaba, 2000). This showed that each six fractions has a unique SFS, and this

information can be used to characterize organic fractions in water.

Chen et al. (2003) characterized standard Suwannee River fulvic acid and 15

hydrophobic or hydrophilic acid, neutral, and base DOM fractions by fluorescence

spectroscopy. The peaks for each organic substance on the Ex/Em matrix are presented in

Figure 2.4. The matrixes are divided in to five regions: Region I Aromatic protein,

Region II Aromatic protein II, Region III Fulvic acid like, Region IV Soluble microbial

by-product-like, Region V Humic acid-like (Chen et al. 2003).

2.6.2 Applications of SFS for Characterization of Waste Water Contamination to
Natural Water

SFS is a fingerprint of organic compounds, and then it could be potentially used to

identify the source of organics in water. Ma et al. (2001) isolated DOM from natural

water by XAD-8 resin (Supelco, Belfonte, PA) and found that the fulvic acid fractions

predominated in natural waters and accounted for 54-68% of the total amount of

dissolved organic carbon, whereas the humic acid and hydrophilic fractions constituted,

respectively, 13-29% and 9-30% of the total DOC. In addition, they also reported that the

effluent of wastewater was almost devoid of humic acid and the hydrophilic fractions

fraction exceeded fulvic acid. These differences in composition of each organic fraction

could be characterized by shape and intensity of the SFS.

Recent advances in fluorescence spectroscopy have started to differentiate

potential sewerage-related river pollutants from natural water sources. Baker (2002b) has

demonstrated the use of fluorescence excitation-emission matrix to differentiate organic

waste from NOM. Fluorescence spectroscopy was applied to five neighboring rivers,

including one that is impacted by wastewater from a large tissue mill. Two samples were
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taken from the tissue mill effluent and the impacted river. These two samples with

significantly higher fluorescence intensity were dominated by tryptophan fluorescence

and a fluorescence center possibly due to the presence of fluorescent whitening agents

from tissue mill effluent. In contrast, the three other samples exhibited lower fluorescence

intensities typical of river systems with tryptophan (sewage), humic-like (peat derived

color), and fulvic-like NOM.

Beside contamination of industrial waste, the fluorescence spectroscopy can

identify the contamination of non-point source farm or agriculture waste. Baker (2002a)

applied this technique to investigated silage liquor, pig and cattle slurry, and sheep barn

waste. All farm wastes exhibited high intensities of fluorescence that can be attributed to

the protein tryptophan. Silage liquor was characterized by a very high fluorescence

intensity with an initial tryptophan : fulvic-like fluorescence intensity ratio of >20. Cattle

and pig slurries exhibited a lower tryptophan : fulvic-like fluorescence intensity ratio

(-2-5) and lower tryptophan fluorescence intensity, and tyrosine fluorescence was also

observed. Sheep barn wastes had the lowest tryptophan : fulvic-like fluorescence

intensity ratios (0.5-4.0). The ratios of tryptophan : fulvic-like fluorescence intensity

observed from the farm wastes investigated are significantly higher than those observed

in the majority of river waters, suggesting that farm waste pollution events could leave a

signature in river waters due to their distinctively high protein fluorescence intensity.

In addition, Baker (2003) also applied fluorescence spectroscopy to identify

organic contamination from point-source municipality sewer discharges. It was shown

that samples contaminated with sewage had both high tryptophan fluorescence intensity
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and ammonia. The highest levels of tryptophan and ammonia were observed in the

summer, probably because of the low base flow in the river during this time of the year.

These evidences suggest that SFS is a useful tool for detecting, monitoring, and

controlling the impact of organic waste contamination from industrial sources, point

sources, and non-point sources for the watershed of study (Baker, 2002a; Baker, 2002b;

Baker, 2003).

2.6.3 Application of SFS for Characterization of Waste Water

Fluorescence analysis has shown a potential use for sewage treatment plants in an attempt

to provide an on-line monitoring method superior to that of using UV absorption at 254

nm. Reynolds (2002) showed that the fluorescence emission spectra (at Ex wavelength =

280 nm and Em wavelength = 350 and 440 nm) of sewage samples were observed in all

samples. Fluorescence data at 280/350 Ex/Em wavelength correlated well with

corresponding BOD, COD and TOC values (R2 values ranging between 0.93 and 0.98).

Moreover, fluorescence intensity at 280/440 Ex/Em wavelength has been demonstrated to

correlate with non-biodegradable dissolved organic matter (COD-BOD). Within the

treatment process, untreated sewage was shown to have higher fluorescence intensity

than treated sewage.

The fluorescence spectra of domestic waste water, treated effluent of a waste

water treatment plant, and receiving river water were analyzed by Lee and Ahn, 2004.

Ex/Em wavelengths of 220/350 nm and 270/350 nm for protein-like fluorescence and

240/450 nm and 340/450 nm for humic-like fluorescence were suggested as fluorescence

peaks. The protein-like fluorescence peaks showed better correlation between COD

values and fluorescence intensities than the humic-like fluorescence peaks.



19

Baker and Inverarity (2004) studied the relationship between tryptophan-like

fluorescence intensity and chemical water quality of river water from the River Tyne, NE

England. The results showed statistically significant relationships between nitrate,

phosphate, ammonia, BOD and dissolved oxygen. Tryptophan-like fluorescence intensity

at the 280 nm excitation/350 nm emission wavelength fluorescence center correlated with

both phosphate (r = 0.80) and nitrate (r = 0.87), whereas tryptophan-like fluorescence

intensity at the 220 nm excitation/350 nm emission wavelength center correlated with

BOD (r = 0.85), ammonia (r = 0.70) and dissolved oxygen (r = -0.65). The strongest

correlations were between tryptophan-like fluorescence intensity and nitrate and

phosphate (Baker and Inverarity, 2004).

2.7 Disinfection By-Products

2.7.1 Disinfection By-products Formation and Their Behaviors

The disinfection of water using chlorine is a common practice used to destroy

microorganisms and to ensure the capability to maintain disinfection by carrying a

residual chlorine concentration in distribution systems, thus protecting water from

microorganism re-growth. Chlorine is extremely efficient and relatively inexpensive.

However, chlorine reacts with the NOM contained in natural water and generates THMs

and other DBPs (Sarai, 2006).

The operational parameters that influence THMs formation in the distribution

systems are chlorine dose, water temperature, pH, and exposure to disinfectant contact

time of water within the system. It has been concluded that, in terms of water quality, the

fulvic and humic fractions of organic matter constitute major precursors to THMs
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(Christian et al. 1990). The relative contributions to THMs production come from the

humic fraction rather than fulvic fraction since the former reacts more readily with

chlorine.

According to Milot et al. (2000), the rate of THMs production increases three-

time per unit pH. THMs level was higher with increasing temperature. The rate of THMs

formation at 2°C was normally 60-70% less than observed at 22°C (Knocke et al. 1986).

Hence, THMs levels in summer and fall were, on average, about five times higher than in

winter, whereas average HAAs in spring were about four times higher than in winter.

THMs increased and stabilized in the most distant regions of the distribution system,

whereas HAAs begin to increase, and then decrease mainly due to a reduction of

dichloroacetic acid. This decrease was significantly higher in warm waters (higher than

15 °C) than in cold waters (lower than 15 °C), which led to the hypothesis of microbial

degradation of HAAs as water approaches the system extremities (Rodriguez et al. 2004).

Kim and Yu (2005) reported that THMFP was highly influenced by the

hydrophobic fraction, whereas haloacetic acid formation potential (HAAFP) depended

more on the hydrophilic fraction. However the hydrophobic fraction is removed more

than the hydrophilic fraction through conventional water treatment (Marhaba and Van,

2000; Sharp et al. 2006). Therefore residual hydrophilic NOM after conventional

treatment needs to be removed to reduce HAA formation (Kim and Yu, 2005).

2.7.2 Kinetic of Trihalomethanes Formation

Panyapinyopol et al. (2005) fractionated DOM into six fractions and reported that that the

main organic matter components were HPOA and HPIN, which were also the two most

important contributors of THMFP. HPOB and HPIB were the most active precursors, and
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these two base fractions also provided relatively high SUVA. Kinetic study of THMs

formation for six fractions showed linear dependencies between the level of each organic

fraction and the formation potential of THMs, which suggests the reactions between the

organic fraction and chlorine during the chlorination are first order.

The chlorination of HPON and HPIN fractions led to the formation of mostly

chloroform, while other organic fractions formed both chloroform and

bromodichloromethane. The chloroform formation was generated mostly from the HPOB

fraction, while bromodichloromethane formation was mainly from HPIB. The

chlorination of an individual organic fraction resulted in a higher level of THMFP than

that of the raw water and mixed fractions, indicating an inhibitory effect between the

organic species (Panyapinyopol et al. 2005a,b).

In addition, the relationship of NOM molecular weight and chlorine demand to

THMs formation was also reported by Gang et al. (2003). THMs formation increased as a

function of chlorine consumption. A larger number of conjugate bounds in NOM fraction

lead to high chlorine demand for oxidation and substitution thus yielding higher THMs

formation. As the molecular weight of NOM decreased, THMs yield increased. The

possible reason is that the halogenated intermediates formed from the smaller molecular

weight DOCs decompose easily, which could favor formation of more THMs.

2.7.3 Reduction of Trihalomethanes Formation

THMs can be reduced by removing their precursors, the NOM in reclaimed industrial

waste water. Musikavong et al. (2005) studied the removal of NOM by coagulation

process using alum and ferric chloride. Jar-test experiments were conducted using

separate alum and ferric chloride dosages from 10 to 80 mg/L at pH conditions from 5 to
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6.5. The obtained results showed that TOC was gradually reduced from the average value

of about 6.1 mg/L to a level of about 4.0 mg/L by alum and ferric chloride dosages of

approximately 40 mg/L. Moreover, DOC were reduced from an average value of 5.1

mg/L to a level of about 4.0 mg/L by alum and ferric chloride dosages of approximately

40 mg/L.

In addition, chlorine demands at one-day reaction were the same as those of 7-day

demands with a correlation coefficient of 0.98 (n = 10, correlation significant at the 0.01

level). Maximum THMFP percentage removal of 25% and 28% by using alum and ferric

chloride dosages of about 80 mg/L at pH 5.5 and 5 were obtained, respectively

(Musikavong et al. 2005).

2.7.4 Prediction of Trihalaomethanes Formation

Edzwald et al. (1985) first introduced UV as surrogate parameters for TOC and THMs.

General linear regression (GLR) models were developed from samples collected at

Grasse River and Glenmore Reservoir in New York State. However, these models were

season and watershed empirical relationships. The models from two different water

sources were different as shown below.
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Additionally, THMs prediction models could also be developed using chlorine

incubation conditions as predictor variables. The general equation is usually in the forms

of exponential power function (Sohn et al. 2004).

The independent variables (i.e., DOC, Br", Temp, Cl2, pH, and time) correspond

to DOC (mg/L), bromide concentration (µg/L), temperature ( °C), chlorine dose (mg/L),

chlorination pH, and chlorine reaction time (hr) respectively, and the exponent k, a, b, c,

d, e, and f are empirical constant. It is noted that the model for coagulated water from

treatment plant or distribution system may not include pH and temperature, as they are

controlled (Sohn et al. 2004). The THMs prediction models for raw water and coagulated

water were developed by Amy et al. (1998). For raw water, the empirical expression is:

(2.14)

For coagulated water, the empirical expression is:

(2.15)

Uyak et al. (2005) showed that among measured parameters both pH (r = 0.963)

and temperature (r = 0.921) were found to be the parameters of the highest statistical

significance as predictors for THMs formation.
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Toroz and Uyak (2005) showed that in the water distribution network, THMs

levels correlated with TOC, temperature and Cl2 residue. The regression model for THMs

was developed as follows:

THMs = 11.967 (TOC)°398 (Temp) 0.158 (c1)0.702 , 	R2 = 0.909	 (2.17)

In addition, UV can be used interchangeably with DOC in the model (Amy et al. 1998).

2.8 Prediction Models Using SFS

2.8.1 Univariate Regression Model

DOM was fractionated by Goslan et al. (2004) using resin adsorption techniques into

hydrophobic (fulvic and humic acid fractions) and hydrophilic (acid and non-acid

fractions) components. The pH of each sample was adjusted to seven. The raw water was

diluted by deionized water to five concentrations and the SFSs of samples at varied

concentrations were used for model calibration. The prediction of hydrophilic fraction

concentrations may be less accurate due to their lower intensity of fluorescence when

compared with the more hydrophobic fractions. The predicted values of the hydrophobic

concentrations were within 10% error for a particular source water of study. However,

the model was unable to predict fraction concentrations for waters from a different

watershed (Goslan et al. 2004).

2.8.2 Multiple Linear Regression

In many applications, one response from an instrument is related to the concentration of a

single chemical component. This is referred to as univariate calibration because only one

instrument response is used per sample. Multivariate calibration is the process of relating
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multiple responses from an instrument to properties of a sample (Babee et al. 1998). The

samples could be, for example, a mixture of chemical components and the goal is to

predict the concentration levels of the different chemical components from their SFS.

Multivariate calibration offers several advantages over univariate approaches

Where Y is response e.g., TOC, THMFP; X is the fluorescence spectra; e is error; n is

number of samples or observation; m is number of predictor variable. The regression

coefficient matrix, b, can be solved by least square method (Kutner et al. 2004). There

are three cases: m > n, m = n, and m < n (Geladi and Kowalski, 1986).

(1) m > n. There are more predictor variables than samples. In this case, there are an

infinite number of solutions for b to fit the system of equation.

(2) m = n. The number of samples and variable are equal. This gives a unique solution.

(3) m < n. There are more samples than variables. Regression coefficient can be solved.
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Multiple Linear regression (MLR) is the process of calculating the line that best

describes the correlation between variables. This method is based on the flowing

assumptions (Tranter, 2000):

• The relationship is a straight line.

• The predictor variables are independent.

• The response variable, y, has error that is normal distributed.

• The error is independent from y and x.

Marhaba and Pu (2000) developed MLR model using such parameters as peak

intensity, spectral slopes and areas of SFS. Isolation and fractionation of NOM into six

hydrophobic and hydrophilic substances was performed on sampling locations within

three water treatment plants in New Jersey. Fluorescence spectroscopy was performed on

the original non-fractionated samples and fractionated samples.

Model expressions were:

C = -0.0074 + 0.0003548 Area + 3.317 Slope — 0.00445 Slope * Area + 0.10875 HPOA +

0.004 HPOB + 0.16475 HPON + 0.80225 HPIA — 0.225 HPIB 	 (2.21)

The R2 was 0.924 (R2 adjusted was 0.884), indicating good correlation between

the dependent variable (i.e., DOC), and the independent variables (i.e., slope, area, and

fractions' concentration) (Marhaba and Pu, 2000).

2.8.3 Principal Component Regression

One of the problems with MLR is that predictors (variable x) in the methods may be

correlated with each other such as when using the whole spectra as predictors. The

fluorescence spectra at different excitation/emission wavelength are usually highly

correlated by nature, and then general linear regression become inapplicable. This
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problem is called multicollinearity (Tranter, 2000), and it causes the regression

coefficient not to have any effects of the predictor variable on the response but only a

marginal or partial effect. The often-used index to justify co-linearity is the correlation

coefficient (Kutner et al. 2004). If the correlation coefficients between predictor variables

are more than 0.7, multicollinearity can be a problem (Field, 2005).

A possible solution to this problem is to generate the principal components (PCs)

from highly correlated predictors. The PCs are guaranteed to be orthogonal to each other

(a matrix whose transpose equals its inverse) and as they are formed from linear

combinations of original variables. The orthogonal property means that the model is

particularly simple with no interaction terms. In the other words, this technique is to

transform a big set of correlated variables to a small set of uncorrelated principal

components (Tranter, 2000; Brereton, 2003). This data transformation process is called

Principal Component Analysis (PCA).

PCs are calculated in such a way that the first component explains as much

information as possible, and each PC is independent. The number of PC included the

reduced data set is determined by eigenvalue of that PC. The first PC has the highest

eigenvalue (Liu et al. 2003; Brereton, 2003, Minitab, 2004). Based on Kaiser's Criteria,

all PCs with eigenvalue more than one should be included in the reduced data set.

However, others may suggest to retain the PCs with eigenvalues more than 0.7 (Field,

2005). The number of PCs is ideally equal to the number of significant components in the

sample (Geladi and Kowalski, 1986; Brereton, 2003).

The main applications of PCA are to reduce the number of variables and to detect

structure in the relationships between variables. General linear regression can be
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developed on PCs instead of original predictor variables, X. This two-step regression

(PCA and MLR) is called Principal Component Regression (PCR). The general form of

PCR models is shown below.

The principal component obtained from PCA is a function of the original predictor

variable. Transform PC to X and the regression becomes:

PCR has advantages and disadvantages (Beebe et al. 1998; Thermo Electron

Corporation, 2006a), as outlined below:

PCR Advantages:

• It does not require wavelength selection; usually the whole spectrum can be
used.

• Larger number of wavelengths gives averaging effect, making model less
susceptible to spectral noise.

• It can be used for very complex mixtures.

• It could sometimes be used to predict samples with constituents (contaminants)
not present in the original calibration mixtures.

PCR Disadvantages:

• Calculations are slower than most classical methods.

• Although the number of dimensions is decreased, it is still possible to become
inundated with plots. The utility of PCA is limited with data sets with high
inherent dimensionality, because multiple pair wise or three-dimensional plots
must be used to visualize the data.

• Optimization requires some knowledge of PCA; models are more complex to
understand and interpret.

• No guarantee that PC vectors directly correspond to constituents of interest.
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• Generally, a large number of samples are required for accurate calibration.

• Collecting calibration samples can be difficult; must avoid collinear constituent
concentrations.

Table 2.1 Major Fluorescent Components in Excitation-Emission Matrix (Coble, 1996)

Table 2.2 Characteristics of Six DOM Fractions' Peaks (Marhaba, T.F., 2000)



Figure 2.1 Flow diagram of fractionation procedure.
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Figure 2.2 Absorption to an excited state and fluorescence emission.
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Figure 2.3 Schematic diagram of a fluorescence spectroscopy.



Figure 2.4 Location of SFS peaks on Ex/Em matrix. (Chen et al. 2003).
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CHAPTER 3

EXPERIMENTAL

3.1 Research Overview

In this research, water samples were collected from various locations along the Delaware

& Raritan Canal and its tributaries. The samples were characterized by TOC, resin

adsorption, UV absorbance, and fluorescence spectroscopy. THMFP analyses were

performed on all original samples and fractions. Multivariate statistical models were

developed to predict the concentration of organic matter and potential of THMs

formation using SFSs.

3.2 Samples Collection and Preparation

Water samples were collected between October 2006 and June 2008 following rain

events by Middlesex Water Company and the NJIT research team. Figure 3.1 shows the

sampling locations along Delaware & Raritan Canal and its tributaries. Samples were

collected from locations that were suspected to be sources of problematic organics (i.e.,

outfalls) and from various locations along the canal. The samples were kept in the

refrigerator at 4 °C and filtered through Nylon 0.45 um membranes (Advantec MFS Inc.,

Pleasanton, CA) within 24 h of collection.

3.3 Samples Characterizations

Water samples were passed through 0.45 um filter to remove organic particle before

characterization. The experimental diagram is shown Figure 3.2.
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3.3.1 Organic Carbon Analysis

DOC was determined via Phoenix 8000 TOC analyzer (Tekmar Dohrmann, Cincinnati,

OH) using the UV/Persulfate oxidation method (Standard method 5310 C). The

instrument error were controlled to within + 4% RSD by running a 5 mg/L standard every

fifth sample. Three replicates of samples were performed with a variation limit within +

5%. All fraction samples were pH adjusted and diluted to reduce the contribution of

eluent chemicals to DOC if necessary. Mili-Q water (Millipore Corp., Bedford, MA) was

used for all dilutions, sample preparation, and final glassware washing.

3.3.2 UV Absorption

A double beam UV/Visible spectrophotometer, Varian DMS 300 UV/Visible

spectrophotometer, (Varian Inc, Palo Alto, CA) was used in this study to measure UV

absorbance at 254 nm (Standard method 5910 B). SUVA at 254 nm (SUVA254) was

determined as the sample's UV absorbance at 254 nm divided by the DOC of the sample.

3.3.3 Fractionation of Dissolved Organic Matter

The fractionation procedure was first developed by Leenheer (1981) and modified by

Marhaba et al. (2003). The diagram of this complex time-consuming procedure is shown

in Figure 3.3. The general procedure is discussed below.

The amount of XAD-8 (Superlite™ XAD-8, SUPELCO, Supelco Park,

Bellefonte, PA) resin was determined according to Leenheer and Croué (2003) with a

capacity factor of 50 (K'=50) and a porosity of 0.60. XAD-8 resin was intensively refined

with 0.1N NaOH for 24 hour and sequentially extracted with acetone and hexane for

another 24 h in a set of Soxhlet extraction apparatus. The XAD-8 resin was transferred

into columns (2.5 cmx 120 cm, Kontes, Vineland, NJ) in slurry of methanol. The packed
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resin was rinsed with two times 2.5 bed volumes of 0.1N each NaOH first, then H2SO4,

and finished with Milli-Q water until the conductivity and DOC of the effluents are

below 10 µs/cm and 0.2 mg/l, respectively. This resin cleanup is necessary to eliminate

any impurities brought during the resin manufacturing process.

Hydrophobic neutral (HPON) was the first fraction to be fractionated. The water

sample pH was adjusted around 7±0.2 and then filtered by gravity through the XAD-8

resin bed with a flow rate less than 12 bed volumes/h. Sample solution constrained inside

resin bed was displaced with 1 bed volume of Milli-Q water and discarded. The column

was turned up side down and the resin is air-retrieved, stored, and dried in a desiccators.

The HPON fraction was extracted with methanol which is removed later by rotary

vacuum dryer.

The operation for hydrophobic base (HPOB) and hydrophobic acid (HPOA) is

similar to that of HPON. The sample effluent after HPON was de-protonated to pH10

with 10 N NaOH, then loaded through the second XAD-8 resin column. The fraction was

collected with 0.25 bed volume of 0.1N H2SO4, followed by 1.5 bed volumes of 0.01N

H2SO4 at a flow rate less than 2 bed volumes/h, forming a total of 1.75 bed volumes of

this fraction, HPOB. The effluent of the second XAD-8 resin column was acidified to pH

2 with concentrated H2SO4, loaded on the third XAD-8 resin column. Elution of HPOA

was conducted using 0.25 bed volumes of 0.1N NaOH followed by 1.25 bed volumes of

0.0lN NaOH at no great than 2 bed volumes/h. H2SO4 instead of HCl was used for pH

adjustment due to the chloride interference with the UV/Persulfate oxidation of carbon.

The removal of hydrophobic substances was concluded after runs of the three XAD-8

resin columns in series.
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The hydrophilic base (HPIB) fraction was separated by AG-MP-50 cationic resin

(BIO-RAD, Hercules, CA). This fraction was eluted by 1.0 N NaOH. The service flow

rate and the resin regeneration are at no greater than 5 and 2 bed volumes/h, respectively.

Diaion WA 10 (SUPELCO), a weak anion exchange resin, was the final resin

applied to isolate HPIA. Effluents after HPIB fractionation were put through the WA 10

resin for the HPIA. This fraction was eluted by 1.5 bed volume of 0.1 N NaOH and 0.5

bed volume of 0.01 N NaOH. The service flow and elution rates are 8 and 4 bed

volumes/h, respectively.

3.3.4 Fluorescence Spectroscopy

The Hitachi F-4500 fluorescence spectrophotometer (Tokyo, Japan) equipped with

150 W ozone free Xenon lamp was used for the fluorescence measurements. The samples

was kept in a one-cm quartz cuvette of four ml volume sample size and excited from 225

to 525 nm wavelengths with six-nm bandwidth. The SFS matrix consisted of

fluorescence intensity responses recorded between Em wavelengths 231 to 633 nm also

with six-nm bandwidth. This results in 51 Ex wavelengths x 68 Em wavelengths SFS

matrix with a total of 3468 fluorescence intensities.

3.3.5 Trihalomethanes Formation Potential

Chorine demand test was carried out following standard method 2350 B to find the

appropriate amount of chlorine dosing for disinfection of raw water and maintain the free

chlorine residual at 3-5 mg/L. Samples were incubated at pH 7, in the dark, at 25 °C for

seven days according to standard method 5710 B. THMs were measured by Varian GC-

ECD 3400 using EPA standard method 551.1.
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Standard 	 concentrations 	 of four 	 THMs: 	 chloroform 	 (CHCl3),

bromodichloromethane (CHBrCl2), dibromochloromethane (CHBr 2Cl), bromoform

(CHBr3), were prepared at 5, 10, 20, 50, 80, 100, 200, 500, 1000, 2000 µg/L. Highest

purity of 99.99% Methyl tert-butyl ether (MTBE) (Sigma Aldrich, Inc) was the solvent

used for extraction. Bromofluorobenzene and decafluorobiphenyl (Restek, Bellefonte,

PA) were used as internal standard and surrogate, respectively. Other chemicals are

reagent grade supplied by Thermo Fisher Scientific, Inc. The procedure of THMs

measurement can be outlined as follows.

• The samples were adjusted to a pH of 7 + 0.2 using H2SO4 and NaOH before
incubation.

• One ml of pH-seven buffer solution was added to 68 ml incubation bottle
followed by appropriate amount of standard sodium hypochlorite solution
obtained previously from chlorine demand test. The incubation bottle was filled
up completely with the sample.

• Samples were incubated in the dark at 25 °C for THMs formation potential.

• After seven days, ten ml of sample are removed from incubation bottle. The
sample was dechlorinated using sodium sulfite (Na2SO3), and their pHs were
adjusted to pH around 4.5 to 5.5 by the addition of buffer salt.

• Buffer salt for pH 4.5 to 5.5 was prepared by a mixture of two g Na2HPO4, 198 g
KH2PO4, and 1.2 g Na2SO3. The salt was washed by methanol four times, acetone
two times, and MTBE two times to remove the impurity.

• Add 50 µi, of surrogate solution, three ml of MTBE, 20 g of Na2SO4 to the
sample bottle. Shake vigorously for four minutes.

• THMs were extracted from the sample into MTBE phase. Two of MTBE were
sampled and measured by Varian GC-ECD 3400.
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3.4 Development of Prediction Models

Three-dimension fluorescence spectra were obtained to develop the prediction models for

TOC and THMFP using multivariate statistical techniques performed by Minitab

statistical software version 15 (Minitab Inc, State College, PA). Fluorescence intensities

are highly correlated by nature. One assumption of MLR is that predictor variables must

be independent or un-correlated (Kutner et al. 2004). Therefore, MLR cannot be

performed directly to fluorescence spectra. Fluorescence intensities on the selected area

were analyzed by PCA to transform a large number of fluorescence intensities into a few

un-correlated PCs. The number of PCs that were used for further analyses were

determined by their eigenvalues. The PCs with eigenvalues larger than one were kept,

and the rest were discarded (Field, 2005).

Multi-linear regression was used to fit the best equations using the following

criteria: R-square, adjusted R-square, Mallows Cp, and error standard deviation. The best

possible models should have (1) high R-square, adjusted R-square, (2) Mallows Cp

closest to number of predictor variables and constant, and (3) low prediction error. Using

the similar process, DOC and THMFP prediction models were developed from SFS.



Bordentown

Figure 3.1 Sampling locations at Delaware & Raritan Canal and its tributaries.
(Delaware & Raritan Canal State Park, 2008)
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Figure 3.2 Experimental diagram.
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Figure 3.3 Fractionation procedures by resin adsorption (Pu, 2005).



CHAPTER 4

CHARACTERIZATION OF TRIHALOMETHANES PRECURSORS BY RESIN
ADSORPTION

4.1 Introduction

DOM can be categorized into two groups: hydrophobic and hydrophilic, and each group

can be divided into 3 sub-groups: acid, neutral and base. Theses six fractions are HPOA,

HPON, HPOB, HPIA, HPIN, and HPIB. While DOM fractionation technique provides

detailed information about types of DOM, it is expensive, time consuming and not

appropriate for routine monitoring of problematic organics in source water.

In this study, samples were collected at various locks and locations along the

canal, at outfalls or discharge to the canal near Blackwells Mills and Port Mercer, and

also at marsh area near Port Mercer. The map of sampling area is shown in Figure 3.1.

The outfall samples have larger DOC than the canal samples. For this reason, the outfall

samples were diluted by the canal samples to obtain samples with a potential range of

DOC possibly found in the canal.

For all samples, water quality parameters such as pH, conductivity, and DOC

were determined. Additionally, they were characterized by UV absorption, fluorescence

spectroscopy, and also incubated for determination of THMFP. However, due to time

limitation, only a few samples were selected for characterization by resin adsorption.

THMFP were measured by GC-ECD using USEPA method 551.1, and the ranges of

samples' THMFP at various locations are shown in Figure 4.1.
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4.2 Characteristics of Water Samples

Samples were collected from the canal, outfall and marsh area, but only fractionation

samples are presented in this chapter. The water quality parameters are shown in Table

4.1(a) for samples collected at outfalls & marsh area and in Table 4.1(b) for samples

collected from the canal.

Two outfalls along the canal were selected for samples collection: one at

Blackwells Mills and the other at Port Mercer. The outfall at Port Mercer was larger, and

the samples had higher DOC on the same day of collection. Port Mercer outfall then

became the only outfall in later samples collections. The outfall samples basically

contained runoff generated after rainfall event. Runoff pick ups soil contaminants such as

petroleum, pesticides (in particular herbicides and insecticides), or fertilizers, if any,

before storm water discharged to the canal.

As shown in Table 4.1(a), the outfall samples usually had DOC greater than 2

mg/L and SUVA greater than 2 L/mg-m. This indicated that water utilities may require

the treatment of the raw water by enhanced coagulation (USEPA, 1999) when the water

quality from the outfalls influences the canal. This causes the water utilities to use more

chemicals for their treatment processes, and finally increase throughput of the water

treatment. Figure 4.1 shows THMFP of the samples collected from the canal and outfalls.

The outfall samples had higher THMFP (up to 910 µg/L) especially at Port Mercers.

Depending on the flow rate, the discharge from the outfalls could dramatically increase

THMFP of the water in the canal especially after rainfall event.

The samples collected from the marsh area near Port Mercer had substantial high

DOC, conductivity, and THMFP compared to other samples. Although there are no
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discharges from the marsh area directly to the canal, the samples gave us information

about DOM at this location.

The six-fraction distribution is shown in Table 4.2 in terms of fraction

concentrations and in Table 4.3 in forms of percentage using the subscript "a" for outfalls

& marsh area samples, and the subscript "b" for water samples collected directly from the

canal. These four tables show high spatial and temporal variation of six-fraction

concentrations in the samples collected at this watershed. However, useful information

could be drawn from this data. HPOA and HPON were the most abundant fractions in

samples collected at the outfalls or marsh area at 34.82% and 27.50% on average,

respectively, whereas HPIN (32.36% on average) was the highest fraction in the samples

collected from the canal. HPOA contains natural fulvic and humic acids, and HPON

contains tannin or lignin derived from plant degradation (Leenheer, 2004). HPIN could

include proteins such as tyrosine or sugars (Chen et al. 2003; Leenheer, 2004).

A very high HPOA fraction in the samples collected at the outfalls suggested that

the discharges could increase THMs formation of raw water, because HPOA is the major

THMs precursor (Rook, 1975; Singer, 1999; Leenheer, 2004). However, humic fractions

(hydrophobic fractions) are well removed by coagulation processes (Marhaba and Van,

2002; Weishaar et al. 2003).

4.3 Reactivity to THMs Formation

After resin elution, fractions concentration were diluted by Mili-Q water to 1 mg/L, and

then incubated for determination of THMFP. The reactivity of each fraction to THMs

formation is shown in Table 4.4. THMs formation could be reported into two units: mg
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THMs per liter of sample (µg/ L) or µg THMs/ mg of organic carbon (µg/mg). In this

case, the fractions had a made-up DOC concentration of 1 mg/L for consistency and

comparison, and therefore THMs formation of the fraction in µg/mg and that in µg/L

were the same in this case.

It should be noted that the results in Table 4.4 are different from the work

reported by Panyapinyopol et al. (2005). The discrepancy could be from different

laboratory techniques and sources of DOM in the samples. First, the samples were

collected from different watershed and therefore the fractions could have different

composition as well as reactivity to THMs formation. In addition, H2SO4 was used for

elution in this work while HCl was used by Panyapinyopol et. al. (2005). The presence of

chloride ion in the sample could enhance THMs formation during incubation (Munch and

Hautman, 1995).

HPOA was the most reactive among six fractions producing THMs at 132 µg/mg.

HPIN and HPON had moderate activity at 81 and 73 µg/mg, respectively. These three

fractions were not only the three most reactive fractions but also the major three fractions

in most of the samples. However, THMFP of the pure fractionated DOM could deviate

from THMFP of the original mixed fractions in the samples as reported by Chow (2006)

and Chow et al. (2006). The humic substance is operationally desorbed from XAD-8

resin with 0.1N NaOH. The recovery process is likely to be affected by a number of

factors, such as the pH and ionic strength, water—resin volume ratio and possibly minor

variations of the characteristics of the resin. It was indicated by Chow (2006) that

alkaline extractable humic substances had lower THMFP during chlorination. The lower

THMs formation was probably attributed to chemical changes during alkaline extraction
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process in such a way that it decrease in aromaticity of humic substances (Pokorna et al.

2001). Aromatic carbon is generally considered as a major reactive moiety in forming

THMs during chlorination (Norwood et al. 1987). These alterations may destroy some

THMs reactive sites during the extraction process.

4.4 Chapter Summary

The six fractions' concentrations of natural water vary depending on its source. HPOA is

the major fraction in rainfall runoff, whereas it is HPIN for the water in the canal. As

HPOA is the most reactive fraction to THMs formation as well as the most abundant

fraction in the runoff, the contamination of rainfall runoff to source water would increase

THMFP of source water.
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Table 4.4 THMs Formation of Six Fractions (n=6).
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Figure 4.1 The map of sampling locations and the samples' THMFPs along Delaware &
Raritan Canal and its tributaries.



CHAPTER 5

CHARACTERIZATION OF TRIHALOMETHANES PRECURSORS BY
FLUORESCENCE SPECTROSCOPY

5.1 Introduction

Synchronous fluorescence spectroscopy is a technique used to obtain the summation of

fluorescence spectra of varied organic compounds in water samples at a wide range of

excitation and emission wavelengths. This fluorescence spectrum (i.e., SFS of a water

sample) is a "fingerprint" of natural organic compounds present in source water. The

peak location of the spectrum, on the Ex/Em matrix, was used to identify the type of

organic compounds (Chen et al. 2003). The intensities could indicate the compounds'

concentrations (Robinson, 1995; Skoog et al. 1998). However, using SFS for DOM

characterization could be a complicated process due to the interference of water

scattering and the overlap of the spectrum of a variety of DOM in the samples.

Three types of scatterings may interfere with the interpretation of fluorescence

spectrum: Rayleigh, Raman, and Tyndall scattering. Tyndall scatter involves reflection

from colloid as well as particulate matter present in the sample, while Rayleigh and

Raman scatters originate from an interaction between the excitation light and water

molecules (Zepp et al. 2004). Both scattering phenomena occur when a molecule has

been excited to a higher energy state and quickly relaxes, emitting lights (scatters) of

equal or higher wavelength (Larsson et al. 2007). Raman scatter is at a certain energy

difference from the first order Rayleigh scatter. This energy difference is dependent upon

the media in the sample.
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Each sample was collected from different locations and time. Therefore, it could

have various fractions' concentration as well as DOM composition. In this chapter, a

sample was collected for demonstration of using resin adsorption and fluorescence

spectroscopy for characterization of DOM in source water. First, DOM was isolated into

six fractions by resin adsorption and was characterized by fluorescence spectroscopy. The

selection of desirable SFS region on Ex/Em matrix for DOM characterization was

discussed. Also, the application of SFS for identification of DOM and THMs precursors

were demonstrated.

5.2 Fractionation Results

A sample, collected at the intake of Middlesex Water Company in October 2006, was

selected for demonstration of characterization by resin adsorption and fluorescence

spectroscopy. The sample had TOC and DOC of 3.6350 mg/L and 3.4957 mg/L,

respectively. DOM was isolated into six fractions as shown in Table 5.1. The pie chart of

six fractions contribution to the total DOC is shown in Figure 5.l. HPOA, HPIA, and

HPIN were the major fractions in this samples accounting for 33.36%, 30.00%, and

19.78% of total DOC, respectively. HPIB is usually present at lowest concentration, and

it is only 0.0040 mg/L in this sample.

5.3 Fluorescence Scatters

Figure 5.2(a) shows three dimensional Rayleigh scatters and fluorescence spectra of the

sample. Rayleigh scatter lies on a diagonal line of the Ex/Em matrix. The first order

Rayleigh scatter line is centered at the Em wavelength equal Ex wavelength, and second
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order Rayleigh scatter at the Em wavelength equal twice the Ex wavelength. The first-

order Rayleigh had a very high intensity, larger than 5000 au, while the peak intensity of

the sample DOM was less than 2000 au. The second-order Rayleigh scatter also had

higher intensity than DOM spectra but smaller than the first-order scatter.

First order Rayleigh scatter is the emitted light, which has the same energy as the

exciting light. This process, known as elastic scattering, is the most probable one, and,

consequently, it has the highest intensity (Zepp et al. 2004, Rinnan et al. 2005). The

second order Rayleigh is an inelastic process, in which a molecule relaxes to a different

vibrational energy level of the ground state than the original one. If the molecule relaxes

to a higher vibrational level, the emitted light has a lower frequency and higher

wavelength than the exciting light (Larsson et al. 2007).

The two dimensional top-view of Figure 5.2(a) is shown in Figure 5.2(b)

illustrating the location of both scatters and the area of DOM spectra on Ex/Em matrix.

This figure also shows the contour line of SFS, the line of the same SFS intensity, which

easily locates the scatters and peak intensity of the sample.

5.4 SFS Post-Processing

As the scatters were very large compared to SFS of the DOM in the sample, the peak and

shape of DOM spectra can be observed only in a particular angle. For this reason, scatters

were removed as shown in Figure 5.3(a). For a better observation, the figure was rotated

to another angle and its intensity axis was scaled at 2000 au maximum as shown in Figure

5.3(b). Additionally, the area where emission wavelengths were less than excitation
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wavelength should be excluded from the study since by theory emission energy must be

less than excitation energy.

Figure 5.3(c) shows the SFS in Figure 5.3(b) in two-dimensions (top view). The

contour line of SFS showed that the water sample had two peak locations at Ex/Em

matrix of 249/423 and 315/423 (nm/nm) with the fluorescence intensity of 1889 and 1034

au, respectively. These peaks were related to the major organic compounds in the sample.

5.5 Coefficient of Variation of SFS Intensity

Coefficient of variation (CV) is defined as standard deviation divided by the average

(Anderson et al. 2002). It is a measure of dispersion of data. If the data have high CV, it

indicates high dispersion or low precision. CV is usually reported as a percentage (%) by

multiplying by 100. Ten duplicates of SFSs were obtained for the original water sample

and then % CV was computed for intensity values at all Ex/Em data points of SFS.

The %CV of SFS of the water sample in three dimensions is shown in Figure

5.4(a), and in two dimensions (top-view) in Figure 5.4(b). Two areas on the Ex/Em

matrix have shown high %CV or low precision of fluorescence intensity measurement.

These areas are in the low excitation wavelengths regions from 225 to 255 nm and high

emission wavelength regions from 531 to 633 nm. The darkened region in Figure 5.4(b)

shows the area of % CV larger than 10%. Although not shown herein, %CVs of

fluorescence intensity for six fractions were also obtained, and they all have the same

characteristics (i.e., having high % CV on the area of low excitation and high emission

wavelength). It is not a routine to obtain 10 duplicate SFSs for each sample. The
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objective of this work is to specify the useful area of high precision of fluorescence

intensity for DOM characterization and quantitative analysis.

In summary, the useful SFS region for DOM characterization should have the

following characteristics: 1) Not overlap with the scatters, 2) The Em wavelengths longer

than Ex wavelengths, and 3) Having good precision of fluorescence intensity or the area

between 225-489 nm of excitation wavelengths and 291-603 nm of emission

wavelengths.

5.6 Characterization of the Water Sample and Its Six Fractions Using SFS

All the six fractions were eluted from the resins and their concentrations were diluted to 1

mg/L for consistency and comparison; then characterized by fluorescence spectroscopy.

Two and three dimensional SFSs of HPOA, HPON, HPOB, HPIA, HPIN, HPIB were

illustrated in Figures 5.5 to 5.10, respectively. The peak intensity, peak location, and %

CV of the intensity are reported in Table 5.2. The fluorescence peak intensities of the six

fractions at the same concentration were in the following order: HPIB HPOA > HPON

> HPOB >> HPIN HPIA. Figures 5.5 to 5.10 and Table 5.2 show that at the same

concentrations, each fraction possesses unique characteristics of having a unique SFS

shape, intensity, peak location on Ex/Em matrix. The peak location was the characteristic

of each organic fraction. The variety of organic types were characterized by fluorescence

spectroscopy and their peak locations were reported by Chen et al. (2003).

It should be noted that peaks location in Table 5.2 is slightly different from ones

in Table 2.2 reported earlier by Marhaba, 2000. This is probably because SFSs were

obtained from different samples and possibly different set-up of fluorescence photometer.
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Figure 5.3(c) shows that the water sample had two peak locations at Ex/Em

matrix of 249/423 and 315/423 (nm/nm) with the fluorescence intensity of 1889 and 1034

au, respectively. The first peak location was near the location of fulvic acid, whereas the

second peak location around Ex/Em of 315 /423 can be linked humic acid (Chen et al.

2003). It can be concluded that natural fulvic and humic acid were the major fluorophores

in the water sample.

Three-dimensional SFS of 1 mg/L HPOA fraction is shown in Figure 5.5(a) and

its two dimensional SFS is shown in Figure 5.5(b). The peak location of HPOA was at

Ex/Em matrix of 255/423 and 309/423 nm/nm with the intensities of 888 and 544 au,

respectively. These two peak locations of HPOA fraction were also close to the peak

locations of the original sample. This implies that HPOA could be the dominant fraction

in this sample. This conclusion is confirmed by resin adsorption results as shown in Table

5.1.

SFS of 1 mg/L HPON is presented in Figure 5.6(a) and Figure 5.6(b) in two and

three dimensions, respectively. The peak location was at 243/391 Ex/Em matrix at

fluorescence intensity of 617 au. The peak location of HPON did not match to peaks of

any compounds reported by Chen et al. (2003). Leenheer (2004) reported that HPON

fraction was related to tannin or lignin derived compounds of organic matter found after

plant degradation.

SFS of 1 mg/L HPOB fraction is illustrated in Figure 5.7(a) in three dimensions,

and in Figure 5.7(b) in two dimensions. HPOB had only one peak location at Ex/Em

matrix of 237/405 nm/nm with the fluorescence intensity of 318 au. The HPOB fraction
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was reported to be amine or amide having aromatic characteristics (Leenheer, 2004;

Kanokkantapong et al. 2005).

Figure 5.8(a) and (b) show SFSs of 1 mg/L HPIA in three and two dimensions,

respectively. The peak was observed around 237/387 Ex/Em matrix at fluorescence

intensity of 263 au. HPIA was reported to be polyuronic acids (Leenheer, 2004) or low

molecular weight carboxylic acids (Kanokkantapong et al. 2005).

SFSs of 1 mg/L HPIN is demonstrated in Figure 5.9(a) and (b). Only one peak

was observed at Ex/Em matrix of 225/303 nm/nm at fluorescence intensity of 301 au.

The location was near that of tyrosine or aromatic proteins (Chen et al. 2003). Tyrosine is

one of amino acids mostly found in milk or cheese. Leenheer reported that HPIN was

composed of some kinds of sugars (Leenheer, 2004).

Figure 5.10(a) and (b) show SFSs of 1 mg/L HPIB fraction. Two peaks were

observed at 231/309 and 267/369 on Ex/Em matrix at fluorescence intensity of 624 and

884 au, respectively. The first peak was close to tyrosine or aromatic protein and the

second peak was close to peak of tryptophan or protein like biological compounds (Chen

et al. 2003). Although the intensity of HPIB was high compared to that of other fractions,

HPIB was found at low concentration in this sample. Hence, the peak of HPIB cannot be

observed in the total SFS of the sample.

DOC, SFS peak location, and peak intensity are reported in Table 5.2. At the

same concentration of 1 mg/L, the HPOA, HPIB, and HPON had relatively high

intensity. Because HPOA was the highest fraction and it is also very sensitive to

fluorescence spectroscopy, only the peak of HPOA was clearly observed in SFS of the

sample. Although the sample may contain some protein-like organic compounds (e.g.,



61

HPIN or HPIB), their SFSs were not significant compared to SFS of fulvic and humic

acid in the sample.

5.7 Chapter Summary

SFS is a characteristic of each group of organic compounds, as each fraction had unique

chemistry, shape, peak intensity, and locations on Ex/Em matrix. The useful SFS on

Ex/Em matrix for characterization of THMs precursors should not include the area of

scatters, the area where the Ex wavelengths longer than Em wavelengths, and the area of

low precision of fluorescence intensity. After post-processing to remove undesirable

regions, the SFSs can be used to identify organic compound classes in the sample.

HPOA is the major THMs precursor, the most reactive fraction to THMs

formation, and also very sensitive to fluorescence spectroscopy. Consequently,

fluorescence intensities in the region of HPOA spectra could be related to THMs

formation.

This chapter has demonstrated the application of resin adsorption and

fluorescence spectroscopy for characterization of DOM in natural water. Similarly, these

procedures could also be used for characterization of water samples from other

watersheds.



Table 5.1 DOC of the Six Fractions

62

Table 5.2 Fluorescence Peak Intensity and Their Locations for the Water Sample and Its
Six Fractions



Figure 5.1 Pie chart of the six fractions as percent of total DOC.
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Figure 5.2(a) Three dimensional SFS of the water sample shows intensities of the first
and second order Rayleigh scatters.
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SFS peak at Ex/Em
249 nm / 423 nm

Figure 5.2(b) SFS contour of the water sample.
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Figure 5.3(a) SFS of the water sample after the removal of Raman and Rayleigh scatters.



Figure 5.3(b) The same SFS from different angle.
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Figure 5.3(c) SFS contour after scatters removal.
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Figure 5.4(a) % CV of SFS intensity of the water sample in three dimensions.
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Figure 5.4(b) % CV contour of SFS intensity of the water sample.
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Fluorescence Intensity (au)
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Figure 5.5(a) Three dimensional SFS of 1 mg/L HPOA.



Figure 5.5(b) SFS contour of 1 mg/L HPOA.
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Figure 5.6(a) Three dimensional SFS of 1 mg/L HPON.
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Figure 5.6(b) SFS contour of 1 mg/L HPON.
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Figure 5.7(a) Three dimensional SFS of 1 mg/L HPOB.
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Figure 5.7(b) SFS contour of 1 mg/L HPOB.
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Figure 5.8(a) Three dimensional SFS of 1 mg/L HPIA.
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Figure 5.8(b) SFS contour of 1 mg/L HPIA.
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Figure 5.9(a) Three dimensional SFS of 1 mg/L HPIN.
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Figure 5.9(b) SFS contour of 1 mg/L HPIN.
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Figure 5.10(a) Three dimensional SFS of 1 mg/L HPIB.
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Figure 5.10(b) SFS contour of 1 mg/L HPIB.
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CHAPTER 6

PREDICTION OF DISSOLVED ORGANIC CARBON AND
TRIHALOMETHANES FORMATION POTENTIAL

6.1 Introduction

Disinfection of drinking water by chlorine produces DBPs such as THMs and HAAS.

These are undesirable compounds due to their potential toxicity to human health. The

DBPs formation is from the reaction of chlorine with DOM in source water (Rook, 1974).

Fluorescence spectroscopy is a sensitive technique for characterization of THMs

precursors in water samples as discussed in Chapter 5. Consequently, multivariate

statistical analysis of fluorescence spectra for prediction of DOC and THMFP was

explored and demonstrated this chapter. Moreover, DOC and THMFP prediction models

were also developed by MLR using UV as predictor variables. Then, models'

performances were compared. For consistency and comparison, all the models were

developed from the same 40 calibration samples.

6.2 Data Preparation and Model Calibration

Water samples were characterized for DOC, THMFP, and fluorescence spectra. For

models developed using SFS, regions of scatter and undesirable regions of SFS intensity

more than 10% CV were removed as demonstrated in Chapter 5. HPOA was the most

reactive fraction to THMs formation, and also highly sensitive to fluorescence

spectroscopy. Hence, a particular SFS region on Ex/Em matrix covering two major peaks

of the HPOA fraction was selected for quantitative analysis. This region includes Ex

wavelength from 243 nm to 327 nm and Em wavelength from 375 to 459 nm. Prediction
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models for DOC and THMFP were developed by multivariate statistical analysis (i.e.,

PCA & MLR) of fluorescence spectra. Moreover, THMFP prediction model was

developed using UV and DOC by MLR. Similarly, DOC model was also developed using

UV. All statistical analysis and model development were performed using Minitab

statistical software version 15.

Model calibration is the process of constructing a mathematical model to relate

the response or an output of an instrument (such as DOC or THMFP) to properties of

samples or an input (e.g., fluorescence spectra or UV absorption). Prediction is the

process of using the mathematical relationship to calculate the response from given

sample properties (Babee et al. 1998).

Fluorescence intensity or UV absorption can be mathematically related to the

concentration of organic compounds in the sample (Edwald et al. 1985; Robinson, 1995;

Skoog et al. 1998). To construct the models, 40 samples with a wide range of UV,

fluorescence intensity, DOC, and THMFP were used for calibration. A mathematical

relationship was developed to relate the SFS or UV to predict DOC & THMFP of the

samples. Unknown samples were characterized for SFS and UV and then used as the

input to the model. Finally, DOC and THMFP of the samples were predicted.

6.3 Models Development by PCA and MLR Using SFS as Predictors

Fluorescence intensities on selected SFS region are highly correlated, so general linear

regression cannot be performed directly on fluorescence spectra. For this reason,

fluorescence intensities on the selected area were analyzed by PCA to transform a large

number of fluorescence intensities into a few, un-correlated PCs (Johnson and Wichern,
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2007). The number of PCs for further analysis can be determined by their Eigen values.

The PCs having Eigen values larger than one are kept for further analysis, and the rest are

discarded (Field, 2005).

6.3.1 Principle Component Analysis

PCA was performed on 225 highly correlated fluorescence intensities on selected SFS

region and transforms the intensities into a few PCs. As shown in Figure 6.1, only the

first three PCs had Eigen values larger than one those were 218.70, 1.94, 1.74,

respectively. Additionally, the new data of three PCs can explain 98.8% of total variation

of the original data. Each PC is calculated from 225 fluorescence intensities using the

coefficients shown in Table F.1, and three PCs of the 40 calibration samples is in Table

F.2. Now higher correlated 225 fluorescence intensities were represented by only three

independent PCs. Then, MLR on PCs was applied for DOC and THMFP prediction.

6.3.2 Parameters Selection for Regression Analysis

"Best Subsets," an algorithm in Minitabl5, is a technique used for selection of predictor

variables into the regression models based on the following criteria: R-square (R2),

adjusted R-square (Adj. R2), Mallows' Cp, and Root mean square error (RMSE). R2

shows how well the model fit the data. Use R2 for a regression model with single

predictor variable while Adj. R2 for multiple predictor variables. Mallows' Cp is an

indicator to show if the model is over-fitting. RMSE is square root of mean of error

square of prediction values from the model. The best possible models should have (1)

high R2 and Adj. R2, (2) Mallows' Cp closest to number of predictor variables and

constant in the models, (3) low RMSE (Anderson et al. 2002; Moore and McCabe, 2003;

Kutner et al. 2004; Minitab 15, 2007). Then, MLR can be performed to obtain the best
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regression model according to "Best Subsets" results, based on the three above criteria.

Using the same process, DOC and THMFP prediction models were developed from

regression analysis of PCs as shown in Figure 6.2 and Figure 6.3, respectively.

The results of "Best Subsets" in Figure 6.2(a) show the possible seven alternative

regression models for DOC prediction. The best DOC model should include all three

PCs, because it has highest R2 and Adj. R2 , its Mallows' Cp equal to four, and lowest

RMSE. Then regression analysis for DOC prediction was performed using all three PCs

as predictor variables. The DOC regression model is shown below:

DOC = 5.75 + 0.199 PC1 + 0.152 PC2 - 0.940 PC3 (6.1)

As shown in the Figure 6.2(b), the DOC model passes F-test as its P-values less than 0.05

(n=40). This means that at the regression model is statistically significant to DOC (Bee et

al. 1998; Kutner et al. 2004).

The Durbin-Watson statistic is a statistical value used to detect the presence of

autocorrelation in the residuals from a regression analysis. Residuals are defined as actual

values minus predicted values. The Durbin-Watson statistic is a number that always lies

between zero and four. A value of two indicates no autocorrelation. As a rough rule of

thumb, if the Durbin-Watson statistic is less than one, autocorrelation of the residuals

could be the problem (Minitab 15, 2007). Because Durbin-Watson statistic of DOC

model is 1.4, this model shows no problems of autocorrelation or it means that the model

likely includes all the predictor variables in the regression model.

Variance Inflation Factor (VIF) indicates the extent to which multicollinearity

(correlation among predictors) is present in a regression analysis. Multicollinearity is

problematic because it can increase the variance of the regression coefficients, making
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them unstable and difficult to interpret (Kutner et al. 2004). If VIF = 1 (the minimum

value), predictor variables are not correlated. If 1 < VIF < 5, predictor variables are

moderately correlated. If 5 < VIF < 10, predictor variables are highly correlated. If VIF >

10, multicollinearity is a serious problem in the model. The DOC model has VIF = 1.40,

which indicates that multicollinearity is not problematic. In addition, Adj. R 2 shows that

the equation can explain 95.7% of the total variation of raw data. This means the model

fit the data well.

Figure 6.3(a) shows "Best Subsets" results for the THMFP model. Among seven

alternatives, the best THMFP model should include all three PCs, because it has highest

R2 and Adj. R2 , Mallows' Cp equal to four, and lowest RMSE. If regression analysis was

performed using three PCs, the THMFP model is shown in Figure 6.3(b). However, after

regression analysis was performed, PC2 didn't pass the t-test at 95% confidence, as its P-

value was much larger than 0.05. This implied that PC2 was not statistically significant

for THMFP prediction. Hence, only PC1 and PC3 were included in the THMFP model.

Regression analysis was performed again including only PC1 and PC3 as shown in

Figure 6.3(c). The THMFP regression model is shown below:

THMFP = 423 + 19.8 PC1 - 83.6 PC3 (6.2)

The model passed all the criteria, as shown in the ANOVA tables. The model passed F-

test as P-value less than 0.05. The Durbin-Watson statistic showed no autocorrelation

between the residuals. The VIF was equal to one meaning no multicollinearity among

predictor variables. Adj. R2 was also good at 85.81%.

Prediction Sum of Square (PRESS) is used as criterion to justify a good prediction

performance. PRESS is obtained by deleting one data point, estimating the regression
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model from the remaining data sets, and then using the regression equation to predict the

response of the deleted data. PRESS is then the summation of squared prediction error

over all the number of data sets. Thus, a model with small PRESS value fits well as it has

small prediction error. As illustrated in Figure 6.3(b) and Figure 6.3(c), THMFP model

including PC1 and PC3 had higher PRESS, or it had better prediction performance.

Moreover, the "Best Subsets" results in Figure 6.3(a) also showed good values of Adj.

R2, Mallows' Cp, RMSE for THMFP model using PC1 and PC3.

The DOC model's prediction performance was better than THMFP model's as it

had higher Adj. R2, lower PRESS, and lower RMSE. A larger variation of THMFP could

possibly be due to reasons such as halide ions interferences (Richardson et al. 2003;

Chow et al. 2007) or suspended colloidal particles (particles with diameter of 5-200

nanometers) in the samples after filtration (Chow et al. 2005).

Model validation is a measure of the prediction performance of a model. The

validation process is an essential step to make sure that the model works quantitatively

for similar data sets. The validation data set should be treated similarly with respect to

sampling techniques, sample preparation, and water quality measurement methods. Full

cross-validation was done by removing one data point (predictor variables: X, response:

Y) from the calibration data set, then developing the model from the remaining

calibration data set, and estimating the prediction error. The same process was repeated

for the all the data points in the calibration data set (Esbensen, 2004). The full cross-

validation of DOC and THMFP models using SFS are demonstrated in Figure 6.4(a) and

6.4(b), respectively. The diamonds represent predicted results, while the stars are

laboratory results.
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6.4 Models Development by GLR Using DOC or UV as Predictors

MLR was used to develop DOC prediction model from UV absorption. Figure 6.5

presents a strong correlation between DOC and UV absorption with Adj. R 2 of 92.5% and

the regression equation is shown below.

DOC = 0.759 + 25.1 UV, where UV ranges from 0.0748 — 0.6194 1/cm (6.3)

As shown in the above mathematical relationship, when the sample had no UV

absorption, its DOC was 0.759 mg/L. This implied that some organic compounds may

not absorb UV.

Not only DOC but THMFP also had high correlation with UV absorption as

illustrated in Figure 6.6 with Adj. R2 of 85.1%. In contrast, THMFP also has strong

correlation with DOC as shown in Figure 6.7 with Adj. R 2 of 94.5%, respectively. The

mathematical relationships of both correlations are shown below.

THMFP = -65.2+ 2459 UV, where UV ranges from 0.0748 — 0.6194 1/cm (6.4)

THMFP = - 146 + 99.0 DOC, where DOC ranges from 2.3093 to 15.3625 mg/L (6.5)

The intercepts of both equations are negative. This means that the samples could

have a very low level of either DOC or UV absorption while their THMFP values are

zero. As seen in equation 6.4, when THMFP is zero, UV is 65.2 divided by 2459 equal to

0.0265. Or, samples with UV absorptions less than 0.0265 cm -¹ may not produce THMs.

Similarly, if THMFP of a sample is zero in equation 6.5, then DOC is 146 divided by

99.0 and become 1.47 mg/L. This means that from this calibration sample data set, in

average, samples having DOC equal or less than 1.47 mg/L may not have THMs

formation.

One of the assumptions for general linear regression is that predictor variables are

independent of one another or they are not correlated (Kutner et al. 2004). Therefore,
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THMFP model can not include both UV and DOC in the same equation as UV and DOC

are highly correlated as shown in equation 6.3.

6.5 Comparison of Models Performances

The DOC prediction models from SFS and UV absorption are compared in Table 6.1. It

shows that the DOC model from SFS (equation 6.1) has higher Adj. R2 , lower RMSE,

and lower PRESS or it has better prediction performance. This means SFS is a better

DOC prediction than UV absorption.

THMFP prediction models using SFS, UV, and DOC are compared in Table 6.2.

THMFP model from DOC (equation 6.5) has better Adj. R 2, lower RMSE, and lower

PRESS than the other two models, or DOC could be a better predictor variable for

THMFP than SFS or UV absorption based on this calibration data sets. However,

equation 6.5 could give a large error if DOM in the sample is not reactive to THMs

formation, while equation 6.2 targets chemically discrete component to THMs formation

regardless of the total DOM.

Comparing equations 6.2 and 6.4, their Adj. R 2 and RMSE are quite close but

PRESS of equation 6.2 is much lower (612431 vs. 734615). This means that equation 6.2

has better prediction capability or SFS is a better predictor variable than UV absorption

for THMFP estimation.
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6.6 Limitations of the Models

The DOC models from SFS use the principle components calculated from selected 225

fluorescence intensities of DOM in the samples as predictor variables. However, it should

be noted that not all types of organic compounds are equally sensitive to fluorescence

spectroscopy. In other words, the models could be used for similar types of organic

compounds having about the same fluorescence sensitivity. Then, the fluorescence

intensities can be related to their concentrations accurately. Similarly, DOC prediction

using UV absorption would be accurate when DOM in the sample absorb UV.

In addition, not all parameters affecting THMs formation are included in the

THMFP model. Environmental conditions and incubation conditions such as temperature,

pH, chlorine dosage and contact time, trace ions also greatly impact THMs formation

(Amy et al. 1998; Sohn et al. 2004; Uyak et al. 2005). Salinity and pH of the samples also

increase the yield of fluorescence spectra (Zepp et al. 2004). However, these variables

are not included in this model.

The presence of bromide ion (Br") and iodine ion (I -) further enhances the

formation of the bromated and iodated DBP species and thereby increasing total THMs

formation (Richardson et al. 2003; Chow et al. 2007). However, these ions were not

measured in this study nor incorporated in the models.

All samples were incubated at controlled conditions (25 °C, pH = 7, 3-5 mg/L free

chlorine residual, in dark for seven days) according to standard method 5710 B.

Therefore, this model should be used to predict THMs formation at standard incubation

conditions or to give an idea of the impact from DOM to THMs formation. These
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incubation conditions for THMFP usually give the highest yield of THMs formation and

may not reflect the actual conditions in the distribution system.

At very low DOC or low UV absorption (i.e., DOC < l.47 mg/L or UV < 0.0265

-¹
cm ¹ ), THMFP models cannot be applied for THMs formation prediction. However, the

THMFP model from SFS may be applied for all DOC and UV ranges investigated.

6.7 Chapter Summary

DOC and THMFP models give a good prediction, as they passed many statistical criteria

(e.g. t-test, F-test, VIF, Durbin-Watson statistic test) used in model development. In

addition, THMFP model does not account for the effects of interferences, environmental

conditions, or incubation conditions, as discussed previously. The unknown samples

should be collected using the same techniques and treated in the same way with the

calibration samples to ensure good prediction performance.
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Figure 6.1 Principle component analysis of fluorescence intensities.
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Figure 6.2(a) Best subsets results for DOC model.

Regression Analysis: DOC versus PC1, PC2, PC3

Figure 6.2(b) Regression analysis for DOC model.



Best Subsets Regression: THMFP versus PC1, PC2, PC3

Response is THMFP

Figure 6.3(a) Best subsets results for THMFP model.

Regression Analysis: THMFP versus PC1, PC2, PC3
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Figure 6.3 (b) Regression analysis for THMFP model using all three PCs as predictor
variables.



Regression Analysis: THMFP versus PC1, PC3
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Figure 6.3(c) Regression analysis for THMFP model using PC1 and PC3 as predictor
variables.



Figure 6.4 (a) Comparison of laboratory DOC and predicted DOC.
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Figure 6.4(b) Comparison of laboratory THMFP and predicted THMFP.



Regression Analysis: DOC versus UV
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Figure 6.5 Correlations between DOC and UV absorption.



Correlations between THMFP and UV Absorption
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Regression Analysis: THMFP versus UV absorption

Figure 6.6 Correlations between THMFP and UV absorption.



Regression Analysis: THMFP versus DOC
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Figure 6.7 Correlations between THMFP and DOC.



CHAPTER 7

CONCLUSIONS AND RECOMMENDATIONS

7.1 Conclusions

DOM is a complex mixture of aromatic and aliphatic hydrocarbon structures that have

various attached functional groups. However, not all organic compounds are equally

reactive to THMs formation. Resin adsorption was used to isolate DOM in source water

into six fractions. The three major fractions in most of samples were HPIN, HPON, and

HPOA. HPOA fraction showed the highest reactivity to THMs formation, followed by

HPIN and HPON. The other three fractions were usually found at lower concentrations

and were not as reactive to THMs formation.

SFS was applied for the characterization of water samples and was found very

sensitive to the HPOA fraction (i.e., humic and fulvic acids). Not only was HPOA the

most reactive to THMs formation but also one of the most abundant fractions. Following

the removal of scattering and interferences, two hundred and twenty five (225)

fluorescence intensities covering peaks regions of HPOA fraction were selected for the

prediction of THMs formation. PCA was used to reduce a number of fluorescence

intensities into a few PCs. Then, the Best Subset Algorithm was performed to select the

most significant predictor variables into regression models by the following criteria: Adj.

R2, Mallows' Cp, and RMSE. Regression analysis was performed according to the Best

Subset results for DOC and THMFP prediction. The DOC prediction models using SFS

showed better performance over the models that used UV absorption. For THMFP

prediction, either DOC, SFS, or UV absorption could be used as predictor variables. The

THMFP prediction model from DOC showed better prediction performance than the
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model from SFS and UV absorption for the source water investigated. Nonetheless, the

model from DOC cannot be used when DOC < 1.47 mg/L, while the model from

SFS may be applied at all DOC ranges investigated.

SFS is a fast, inexpensive, reagent-free characterization technique compared to

DOC measurement. Moreover, SFS characterized the most reactive DOM to THMs

formation, while DOC measures the total DOM concentration. In cases where DOM is

not very reactive to THMs formation, SFS could give a better THMFP prediction. There

are limitations to the models. Some organic compounds may not be as sensitive to

fluorescence spectroscopy as others. The DOC model could give an accurate prediction

if DOM in the samples is sensitive to fluorescence spectroscopy. The THMFP model

predicted the THMs formation potential based on seven-day incubation at standard

conditions. These conditions may not reflect the real conditions in the distribution system

and may predict the worst case scenarios. However, the models could be used for

qualitative prediction of THMs formation.

7.2 Recommendations

SFS is a rapid, inexpensive, reagents-free technique for characterization of organic

compounds in source water. Thus, this technique could be applied at water treatment

plants and source water location for spatial and temporal characterization. A sample set

can be collected and analyzed for DOC, fluorescence spectroscopy, and THMFP. These

data sets can then be used for calibration and model development. Unknown samples are

characterized by PCA coupled with MLR. DOC and THMFP values are predicted

promptly from the SFS of the water samples. The rapid response from the models would
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determine the organic characteristics and THMFP of the source water, allowing ample

time for the water utilities to optimize their treatment processes to cope with the dynamic

changes in water quality. In addition, the technique can be applied by watershed

managers to better control point and non-point sources of problematic organics that

impact water quality.

Future research could be the development of fluorescence spectroscopy for real-

time measurement of labor-intensive tests of water quality parameters (e.g., COD, BOD,

organic character, and THMFP)



APPENDIX A

STANDARD OPERATING PROCEDURE FOR TOTAL/DISSOLVED ORGANIC
CARBON (TOC/DOC)
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• Performance verification: ±4% of the "real" concentration of standard.

• R2 of the standard curve: > 99.99%.

• Organic free water.
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APPENDIX B

STANDARD OPERATING PROCEDURE FOR UV ABSORBANCE
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APPENDIX C

STANDARD OPERATING PROCEDURE FOR SPECTRAL FLUORESCENCE
SIGNATURES (SFS)
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Set up sample measurement parameters:

108

Response: Auto

PMT Voltage: 950 v

Scan speed: 30000 nm/min.

Conduct sample tests.

Quality assurance for fluorescence:

Signal 
100% and Drift 2%

Noise

• Perform sensitivity test.

• Raman peak wavelength: 398±1 nm

• Perform wavelength Accuracy test.

• Signature peak wavelength: 450±2 nm

• Acid solution (10% HNO 3 and 5% HCl) soaks sample cell overnight, and then
organic-free water rinses cell.



APPENDIX D

STANDARD OPERATING PROCEDURE FOR CHLORINE INCUBATION

Trihalomethane Formation Potential is carried out following the protocols outlined in

Standard Methods 5710 B. Water samples are buffered at pH 7 + 0.2, chlorinated with

excess free chlorine, and stored at 25 + 2 °C for 7 days. The free chlorine residual should

be in between 3-5 mg/L at the end of reaction time. Nitrogenous species may interfere in

the determination of free residual chlorine. Add enough free chlorine to oxidize chlorine

demand substances and leave free chlorine residual at least 3 mg/L.

The free chlorine residual is measured using standard method 4500 F: DPD

Ferrous Tritimetric Method. In this method N,N-diethyl-p-phenylenediamine (DPD) is

used as indicator in the titrimetric procedure with ferrous ammonium sulfate (FAS). The

procedures are outlined below

• Place five ml of each Phospate buffer solution (pH 6.2-6.5) and DPD indicator
solution with 100 ml sample and mix well. Now the solution turns red. If the
sample is added before buffer, the test does not work.

• Titrate rapidly with standard FAS titrant until the red color discharged.

• One ml of FAS is equivalent to 0.100 mg free chlorine.

The incubation procedures are out lined as follows.

• Adjust the pH of the samples to 7 + 0.2 using H2SO4 and NaOH.

• Add 1 ml phosphate buffer solution for each 60 ml of incubation bottle.

• Add appropriate amount of standard sodium hypochlorite solution obtained
previously from chlorine demand test.

• Fill up the incubation bottle completely with the sample.

• Incubate the samples at 25 + 2 °C in dark for seven days
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• After seven days, the samples were dechlorinated using sodium sulfite
(Na2SO3), and their pHs were adjusted to pH around 4.5 to 5.5 by the addition
buffer salt.

• Buffer salt for pH 4.5 to 5.5 was prepared by a mixture of 2 g Na2HPO4, 198 g
KH2PO4, and 1.2 Na2SO3. Then buffer salt is washed by methanol 4 times,
acetone 2 times, and MTBE 2 times to remove the impurity.

• About ten ml of sample was removed, and 3 ml of MTBE, 20 g of Na2SO4 was
added. Shake vigorously for four minutes. THMs were extracted from the
sample into MTBE phase and were measured by Varian GC-ECD 3400.



APPENDIX E

STANDARD OPERATING PRODCEDURE FOR DECTION OF THMFP BY
VARIAN GC-ECD 3400

Determination of the THMs and HANs by Method 551.1 is Liquid-Liquid Extraction Gas

Chromatography (LLE GC). This method is applicable to the determination of

halogenated acetic acids in all drinking, ground, or raw water. Briefly, a 40 mL volume

of sample is adjusted to pH < 0.5 and extracted with 4-mL of MTBE. The haloacetic

acids that have been partitioned into the organic phase are then converted to their methyl

esters by the addition of the acidic methanol followed by slight heating. The acidic

extract is neutralized by a back-extraction with a saturated solution of sodium bicarbonate

and the desired analytes are identified and measured by capillary column gas

chromatography using an electron capture detector (GC/ECD).

1. Scope and Application

• This method is used to determine the concentrations of four trihalomethanes in
extracts from aqueous samples.

• The four trihalomethanes listed below have been tested by this method:
Chloroform, Bromodichloromethane, Bromoform, Dibromochloromethane.

• The THMs are separated with two parallel columns sharing a single injection
port and detected with two Electron Capture Detectors (ECDs).

2. Summary of Method

• A 50 ml of sample is extracted with 3 ml MTBE.

• After extraction, 0.25 ml of extract phase is transferred into a 0.25 ml insert out-
packed with two ml GC vials.

• Extracts are analyzed by injecting one µl aliquot together with  1µl internal
standard into the gas chromatograph equipped with two parallel columns each

111



112

followed with its own ECD.

• The total run is 45 minutes.

3. Interferences

• Sources of interference in this method can be grouped into two categories:
Contaminated solvents, reagents, and sample processing hardware;
Contaminated GC carrier gas, parts, column, and detectors.

• The extracting solvent MTBE has been found containing residual chloroform.
Distillation of MTBE between 50 and 60 °C can decrease but not eliminate
background level of chloroform. Solvent background is examined for
subtraction from sample response.

• Samples, standards, and reagents are stored in sealed amber vials with Teflon
caps to prevent any contamination in the laboratory.

4. Sample Handling and Preservation

• Incubated samples for THMFP are in 68 ml vials capped with Teflon lined
septa.

• Extracted samples are in 0.25 ml clear GC inserts placed into two ml amber GC
vials to protect from light.

• Extracted samples and standards are stored under 4 °C in a refrigerator.

5. Laboratory Apparatus

• Varian 3300 with CAC A200S Auto sampler and injector

• Primary column 30 m x 0.25 mm ID x 1.0 µm (RTX-1301, catalog # 10153)

• Confirmative column 30 m x 0.25 mm ID x 1.0 µm (RTX-1, catalog # 16053)

• EZ CHROM Elite software (Version 2.61)

• Carrier gas: ultra high purity grade He

• Make up gas: Nitrogen

6. Regents and Standards

• MTBE: HPLC grade (Fisher catalog # E127-4)
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• Acetone: HPLC grade (Fisher catalog # A949-4)

• Stock standards

Name	 Compound	 Conc. Catalog #	 Company
(mg/L)

THMs 	 Chloroform
Bromodichloromethane
Chlorodibromomethane 	 2,000 	 3021 	 Restek
Bromoform

LPC 	 Bromodichloromethane 	 30 	 M-551.1-MLPC- 	 AccuStandard
Hexachlorocyclopentadiene 20 	 PAK
G-BHC 	 0.2
Trichloroethene 	 30

IS 	 10,000 	 M-551.1-IS-100X 	 AccuStandard

Surrogate Decafluorbiphenyl 	 l,000 	 M-551.1-SS-100X AccuStandard



• Primary and working standard
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7. Procedure

7.1. Laboratory Performance Check

• Directly inject one LPC working solution into GC for five repetitions under

the following conditions:

Initial column temperature- 	 35 °C

Initial column hold time -	 22 min

Program 1 final column temperature - 	 145 °C

Program #1 column temperature rate - 	 10 °C/min

Program #1 final temperature holding time- 	 2 min

Program #2 final column temperature - 	 225 °C

Program #2 column temperature rate - 	 20 °C/min

Program #2 final temperature holding time-	 1 min

Program #3 final column temperature - 	 250 °C

Program #3 column temperature rate - 	 25 °C/min

Program #3 final temperature holding time-	 3 min

Injector temperature -	 150 °C

Detector temperature -	 290 °C

Detector A initial range - 	 1

Detector B initial range - 	 1
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• Check if LPC performance meets criteria listed in table below.

Parameter 	 Analyte 	 Conc. (µg/ml) 	 Criteria

Sensitivity 	 G-BHC 	 0.00020 	 S/N > 3

Chromatographic 	 Hexachlorocyclopentadiene 0.020 	 0.8 < PGF < 1.15
performance

Column 	 Bromodichloromethane 	 0.030 	 Resolution > 0.50
performance	 Trichlorethylene	 0.030 

1.83x W (1/2) 
PGF (Peak Gaussian Factor) —

W (1/10)

Where W (1/2) is the peak width at half height, W (1/10) is the peak width at

tenth peak height

Rte - Rt1
Resolution  = 	 , Where Rt2 - Rt1 is the retention time difference

(W1 + W2)/2

between the two designated compounds and (W1 + W2)/2 is the average peak

width between them

S/N is defined as the average response of the five runs of LPC working standards

divided by the standard deviation.
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7.2. 	 Initial Calibration

• Initial calibration is to determine target average relative response factor (RRF)
and retention time (R.T.) as followings:

RRF = [Response/conc.]target
[Response/conc.]IS

RT window = average retention time ± 3 standard deviation.

• Five calibration standards, containing each individual component of THM, are
prepared at 0, 5, 20, 50, and 100 µg/L.

• Inject each standard with three repetitions.

• Determine average RRF and RT windows for each compound.

• The initial calibration must confirm a less than 15% relative standard deviation
(%RSD) for each RRF and surrogate response. For internal standard, the % RSD
of response must be less than 10%. Otherwise, investigate possible causes of
exceeding these criteria.

7.3. Method Blank

In this SOP, the method blank is the same as the standard 0 µg/L

7.4. Calibration Verification

• The calibration verification or so-called continuous calibration is to check the
RRF and RT window determined during initial calibration is still applicable.

• Inject a mixture standard of 50 IA µg/L three times (standard solution from
providers other than the one of initial calibration is preferred)

• Calculate RRF and R.T. for each compound.

• Calibration verification should verify that RRF of each target is within ± 20% of
that determined in initial calibration and R.T. falls into RT window determined
in initial calibration. Response of internal and surrogate standards should be less
than ± 20% of those determined in initial calibration.

7.5. Blank and Blank Spike

• The blank sample is different from method blank in that blank sample is subject
to seven days incubation.
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• Blank is to examine possible contamination during incubation.

• Blank spike is prepared at the same time as Blank by adding 34 of primary
standard into Blank to make a final concentration of 50 µg/L for Blank spike.

• There should have no or insignificant amount of target compound able to be
detected in Blank. The relative recovery of each target compound in Blank
Spike should be within ± 10%.

7.6. Matrix and Matrix Spike

Except for original samples, all fraction samples are prepared with MQ water with some

NaOH and H2SO4 (at most 0.1 N NaOH or H2SO4). It is presumed that no matrix

interference presents during incubation and GC identification. It is expected that matrix

of original sample is not harsh enough to result significant interference. This SOP

suggests an optional run for matrix or matrix spike.

7.7. Sample

• When all above runs are confirmed to meet corresponding criteria, runs of
samples can be initiated.

• For every run of 5 samples, a calibration check follows to examine if instrument
is in acceptable running condition.

• An end check must be arranged at the end of each batch.

• Criteria for calibration check and end check is the same as Continuous
Calibration.



APPENDIX F

PRINCIPLE COMPONENT ANALYSIS RESULTS

Table F.1 Principle Component Analysis Coefficients
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Table F.2 Principle Component Scores Values
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