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ABSTRACT

NOVEL POLYPROPYLENE BASED MICROPOROUS MEMBRANES VIA
SPHERULITIC DEFORMATION

by
Kuan-Yin Lin

A novel method for creating a microporous polypropylene membrane via spherulitic

deformation is described. The microporous structure was generated by the combination

of intra-spherulitic and inter-spherulitic deformations. Polypropylene was selected due

to its unique cross-hatched lamellar morphology facilitating inter-spherulitic

deformation. A precursor film with a spherulitic structure was made under low-stress

melt processing condition. A tangential lamellae-rich spherulite was created and

identified with a positive birefringence sign. A sequential annealing process improved

the crystalline structure, and in particular the thickness of the tangential lamellae. The

annealing process proved to be critical for initiating the inter-spherulitic deformation.

The post-extrusion process conditions for initiating inter-spherulitic deformation to

create microporous membranes by lamellar separation are delineated. The processing

parameters are: annealing temperature, extension ratio, stretching rate, and stretching

temperature. A fixed set of extrusion conditions was chosen for producing precursor

films having similar spherulitic properties. A Wide Angle X-ray Scattering (WAXS)

examination provides a quick characterization method for the inter-spherulitic

deformation. Membrane porosity measurements showed a consistent correlation with

the observed a-form orientation index. A highly interconnected solvent-resistant porous

polypropylene membrane having a pore size in the range of 50100 nm and a porosity



of about 0.18 was thereby developed in this study. This concept can be further expanded

by using an a-nucleating agent to reduce spherulite sizes and utilizing interfacial

debonding between two different phases to enhance permeability. A highly methanol

permeable membrane with an estimated porosity of 0.29 was produced with the

nucleated polypropylene samples, and a reasonable permeability was also observed in

the membrane made from an immiscible blend. However, the occurrence of debonding

can also compensate for the energy to create inter-spherulitic deformation. Increasing

extension ratio did not change the microstructure in the non-annealed sample; however,

the lamellae can be further oriented in the annealed samples. Inter-spherulitic

deformation became obvious at slow stretching rates; intra-spherulitic deformation was

more favored at a fast stretching rate. The DSC thermal analysis of the precursor films

showed two significant endothermic discontinuities (Ti at 0 °C and T2 at 40 °C) in the

non-annealed or annealed precursor films; T1 is believed to be the conventional T g of

polypropylene; T2 appears to be the result of the rigid amorphous fraction trapped

within "lamellar wells" where the amorphous phase is surrounded by R-lamellae and T-

lamellae. The lamellae could break down or slip from the lamellar knots as stretching

temperatures are high enough to minimize the effect of the rigid amorphous fraction,

and the annealed lamellae can still be oriented without a catastrophic cold-drawn

deformation.
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CHAPTER 1

INTRODUCTION

1.1 Membrane Fabrication (Dense Membranes)

A membrane is a thin selective layer used to separate different species by size or solubility

differences. Membrane processes can be categorized by the mechanisms adopted for the

separation processes. In general, these mechanisms are divided into two types, namely, the

selection in the pore-flow regime and selection in the solution-diffusion regime as shown in

Figure 1.1. Based on the membrane pore size, an accepted definition for the transition

between these two regimes is about 5-10 A [1, 2]. Membranes can be made from inorganic

materials (ceramic membrane), organic materials (polymeric membrane) and even natural

biomedical materials (cell membrane). This study only focuses on membranes made with

polymeric materials.

In the pore-flow regime, the membrane transport mechanism can be described by a

pore-flow model as a pressure driven process. The typical membrane processes in this regime

are microfiltration, ultrafiltration and microporous Knudsen-flow gas separation where the

separation of permeating species (permeants) is based on their sizes. For example, a

commonly used definition for ultrafiltration membrane is the molecular weight cut-off which

is defined by 95% retention of the permeant that has a specific molecular size.

1



Figure 1.1 Membrane transport mechanisms; pore-flow model (left) and solution-
diffusion model (right) [1].

In the solution-diffusion regime, the membrane transport mechanism is not governed

only by the effect of size exclusion. The "pores" are less than 5 A and are no longer pores in

the ordinary sense. The presence of these pores is actually created by the thermal motion of

polymer chains. Often the permeation is controlled by the solubility of permeants in the

membrane material. Typical membrane processes in this regime are gas separation,

pervaporation and reverse osmosis. A schematic representation of the pore size and their

transport mechanisms is shown in Figure 1.2.



Figure 1.2 Nominal pore size of membrane processes and their mechanisms [1 1.

Membrane fabrication is critically important to membrane separation processes, since

membrane separation relies on the existence of appropriate channels for selected permeants

to pass. For pore-flow membranes, this implies a control of pore size and pore size

distribution. An overview of polymeric membrane fabrication methods is considered later;

the membrane fabrication processes for solution-diffusion membranes is dealt with first.

For solution-diffusion membranes, even though solubility is an important factor for

the separation process, the species permeability can still be improved by enhancing the

diffusivity of the selected permeant; this can be achieved by modifying the chain

configurations of the polymeric materials. For gas separation membranes, it is known that the

permeability of small molecules increases with increasing free volume which exists due to
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imperfections in packing of the polymer chains [3]. From the perspective of modification of

chain configuration, the increase in free volume can be achieved in two ways. Firstly, free

volume can be modified by synthesis of flexible main chains, such as in elastomers, to lower

the glass transition temperature (T g). The free volume increases dramatically above T g due to

the much loosely packed main chains. As a result, the selectivity of the modified membranes

depends mainly on the solubility of the selected permeant.

Secondly, increases in free volume can also be achieved by introducing bulky side

chains into the polymeric material. In this case, T g of the modified material is increased

dramatically, and the increased free volume is due to the hindering effect on the chain

packing and an increasing excess free volume. A membrane with a significantly high T g can

be created, and there is an opportunity to produce a permanent channel with a high selectivity

for the permeants. These two modification methods seem to be contradictory intuitively;

however, both of them have been adapted as standard modification strategies for a long time.

On the other hand, modification to achieve a novel material is not the only way to

improve membrane performance. An alternative strategy is to modify membrane

morphology. Membrane permeability can be dramatically increased by using thinner

membranes. Asymmetric membrane morphology is the final goal since selectivity is provided

by a very thin skin layer and the mechanical properties of the membranes are controlled by a

more porous supporting layer. In the earliest membrane production processes, a solution-

diffusion membrane was usually fabricated by pouring the polymer solution on a flat surface

(such as a glass) and a dense membrane with a substantial thickness was formed after the

evaporation of the solvent. The thickness of the membrane can only be reduced down to a

certain range due to the occurrence of defects during solvent evaporation. Therefore, a defect
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free dense membrane was usually formed with a reduction in permeability, and this is called

a symmetric membrane. For making thinner dense membranes, the idea of interfacial

polymerization provides an important route for making asymmetric membranes. A very thin

selective layer is polymerized on the surface of a porous support which provides mechanical

strength with very little permeation resistance.

Another noteworthy idea toward optimum membrane performance in recent years is

the development of mixed-matrix membranes (MMMs) shown in Figure 1.3(a). The

morphological modification in MMMs is achieved by combining inorganic materials

(zeolites) with polymeric materials, since zeolites are acting as molecular sieves and can have

very high selectivity. These membranes are utilizing zeolites to create permanent channels

with a very high selectivity. In order to activate the function of MMMs, a minimum zeolite

concentration of about 20-30 wt% is necessary to achieve a percolation threshold. The idea

of percolation threshold is shown in Figure 1.3(b).

Figure 1.3 A schematic explanation of gas permeating through mixed-matrix membranes
(MMMs): (a) zeolite concentration is lower than percolation threshold, (b) channels
connected through zeolites are created above percolation threshold [1].
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1.2 Membrane Fabrication (Porous Membranes)

For pore-flow membranes, the fabrication process is very different from those operating in

the solution-diffusion regime. The smallest pore size in this regime is about 1 nm and the

porous structure can not be created via the modification of polymer chains. The membrane

fabrication processes for pore-flow membranes includes: phase separation, etching, sintering,

and melt processing. Each of them uses a state-of-the-art technology to serve this purpose.

Phase separation is the most frequently used and also the most versatile strategy to

produce pore-flow membranes. It can be further categorized into non-solvent induced phase

separation (NIPS) process and thermally induced phase separation (TIPS) process based on

the driving forces used to trigger the phase separation [4]. Phase separation processes can be

applied to many polymers; however, a homogenous polymer solution has to be formed before

initiating any phase separation. The schematic explanation for the TIPS process is shown in

Figure 1.4. First of all, a polymer solution is prepared (Figure 4(a)) and kept at a high

temperature to achieve a homogeneous phase (this applies to the upper critical solution

temperature (UCST) system). The phase separation is achieved by cooling the polymeric

solution. The polymer solution is usually cast on a porous non-woven support with a

thickness less than 1 mm.

The phase separation process adapted in membrane fabrication is usually a liquid-

liquid phase separation. In the TIPS process, the phase separated polymer solution is

separated into two phases when the temperature becomes lower than those for the binodal

curve (as shown in Figure 1.4, inserted). The two phases formed include a polymer-rich

phase and a polymer-poor phase (Figure 1.4(b)). Phase separation has two steps which

include nucleation and growth. In the nucleation step, the phase-separated droplets whose
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concentration depends on the initial polymer solution concentration are formed. Then the

droplets keep growing until they meet each other or are stopped by solidification process.

The polymer concentration inside the nucleated droplets can be a polymer-poor phase if the

initial polymer concentration is higher than the critical point, and can be a polymer-rich

phase within a dilute solution.

The selection of initial polymer solution concentration is important. A low polymer

concentration (below its critical point) can not form a sustainable membrane structure since

the polymer-poor phase is predominant after phase separation. A very high polymer

concentration is not feasible as well, since the polymer solution could be too viscous for the

growth of polymer-poor droplets and restrict the connectivity of pores. Within a suitable

initial polymer concentration range, the droplets of polymer-poor phase can grow and

agglomerate into interconnected structure (Figure 1.4(c)). By carefully selecting the polymer

concentration, there is a chance that the phase separation process could pass the critical point

and enter the spinodal region without the interference from the binodal region. As a result, a

bicontinuous phase-separated phase can be formed with a very good interconnectivity based

porous structure.

A critical step for phase separation processes is to freeze (solidify) the expanding

phase-separated droplets at the suitable moment. A well-controlled solidification step implies

a well-controlled pore structure. Without the solidification step, the phase-separated polymer

solution will eventually form two distinct layers of polymer-rich phase and polymer-poor

phase (Figure 1.4(d)). In the TIPS process, the occurrence of solidification is taken care of by

quenching. As the viscosity of the polymer solution is elevated with a decreasing

temperature, the frozen polymer-rich phase prevents the polymer-poor droplets from further
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expanding. The solidification takes over in the system as crystallization occurs (in

semicrystalline polymers) or as the decreasing temperature is approaching the T g of the

polymer-rich phase.

Figure 1.4 Schematic explanation for using thermally induced phase separation (TIPS) to
produce pore-flow membranes: (a) polymer solution (one phase), (b) (c) (d) phase-separated
polymer solution (two phases). (adapted from [1])

The same fabrication principle can also use a non-solvent as the driving force to

trigger phase separation. In the NIPS process, the polymer is precipitated from the polymer

solution in a nonsolvent bath. The selection of suitable solvent/non-solvent pair for the target

polymer is very important in the NIPS process, since the formation of a porous structure is

mainly determined by the solvent/non-solvent exchange step. The term non-solvent is related
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to the polymer and not to the solvent. The chosen non-solvent and solvent pair should be

completely miscible. The solidification step of the phase-separated polymer solution is

facilitated by the elevated nonsolvent concentration in the cast film.

Similar to the TIPS process, it is essential to create phase-separated droplets with a

polymer-poor phase and surrounded by a polymer-rich phase in order to construct a useful

membrane structure. The created porous structure is frozen by the elevated viscosity of the

polymer solution due to the depletion of the solvent by the non-solvent. The control of pore

size in the NIPS process is far more difficult than that in the TIPS process because of the

rapid solvent/non-solvent exchange. Therefore, a typical recipe for preparing a casting

solution could have more than two components and would be regarded as a commercial

secret by membrane making companies. Typical membrane morphologies created by the

TIPS and NIPS processes are shown in Figure 1.5. The sponge-like porous structure

represents the typical nucleation and growth of phase-separated polymer-poor droplets in the

processes.

From the perspective of morphological modification, a favorable asymmetric porous

structure can be achieved by both processes. In the TIPS process, it can be achieved by

applying an evaporation step prior to the cooling step to generate a polymer concentration

gradient in the cast film. After the solvent is evaporated, the polymer concentration is higher

on the surface of the cast film with a faster solidification step. As a result, asymmetric

membrane morphology with smaller pores close to its surface can be created as shown in

Figure 1.5(a). The asymmetric morphology is easier to achieve in the NIPS process due to

the rapid solvent-nonsolvent exchange step. A successful example is known as the "Loeb-

Sourirajan Process" [4] which used water as a nonsolvent to precipitate cellulose acetate
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from the casting solution. In this process, a very thin skin layer is formed immediately on the

surface as soon as the nonsolvent contacts the casting solution. The membranes can serve the

purposes of ultrafiltration as well as reverse osmosis. The skin layer is more evident in the

NIPS process (Figure 1.5(b)) than in the TIPS process (Figure 1.5(a)).

This skin layer created in the NIPS process has two distinct features. First, the

packing of polymer chains in the skin layer is tight enough so that its morphology is similar

to that of the dense membranes fabricated by the dry casting process. Furthermore, it could

be as thin as that made by the interfacial polymerization process. The porous structure

beneath the skin layer provides mechanical support with very little permeation resistance,

and this integrated membrane structure can be produced in just one step. However, the

processing conditions of the NIPS process need to be carefully controlled in order to prevent

the occurrence of macrovoids which weaken the membrane. The reason for the formation of

macrovoids is believed to be the burst of non-solvent through the skin layer in the

precipitation step.

Even though the NIPS process shows more advantages than the TIPS process, such as

smaller pore, quick processing time and less-troublesome solvent extraction-recycle steps,

the major restriction for the NIPS process is on the selection of the polymeric material for

preparing the casting solution. In general, the mechanical strength of membranes increases

with the molecular weight of the polymer; this also poses difficulties in the polymer solution

preparation due to the decreasing solubility. The crystalline phase of semicrystalline polymer

poses additional difficulties in dissolution. As a result, the NIPS process can only apply to

amorphous polymers such as polysulfone and polyethersulfone. Furthermore, the membranes

made by the NIPS process are vulnerable to solvents (of course, they are made by dissolution
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in a solvent). An additional cross-linking step is often necessary for those membranes if the

feed solution is contaminated by solvents.

Figure 1.5 Typical membrane morphology by TIPS and NIPS processes: (a) TIPS
process (PP), the membrane is placed vertically and the surface is on the right [5], (b)
NIPS process (Poly(methyl methacrylate) (PMMA)), the membrane is placed
horizontally and surface is on the top [6].

The pore-flow membranes can also be fabricated via etching and sintering which are

not always applicable due to the restrictions imposed by the available polymer systems. A

membrane with very narrow pore size distribution can be prepared by etching as shown in

Figure 1.6(a). A dense membrane is made first and then exposed to radiation. Well-defined

cylindrical pores are produced by removing broken polymer chains in an etching bath. The

etching process can only create symmetric porous structures with a low porosity and the

membrane becomes very brittle as porosity increases. The pore size is also limited and can

not be smaller than 0.01 lam.

Sintering is a fabrication method usually adapted for ceramic or metallic materials.

The porous structure is created around the compressed powder; as a result, the pore size is
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dependent on the size of the powder particles. Most polymers can not be processed by this

method since conventional polymeric materials melt down easily under pressure and leave no

voids around them. However, sintering could be very useful for polymeric materials such as

polytetrafluoroethylene (PTFE) which has excellent thermal properties and can not be

fabricated by other processes. A combination of sintering and stretching processes is

necessary. In this "paste extrusion" process, the PTFE powder is blended with lubricants and

compressed at high temperature followed by an extrusion step and a stretching step. A

successful example is the Gore-Tex membrane whose morphology is shown in Figure 1.6(b).

Figure 1.6 Alternative methods to create pore-flow membranes: (a) etching of
polyethylene terephthalate) (PET), (b) sintering (PTFE) [7].

1.3 Membrane Fabrication (Celgard ® Process)

Semicrystalline polymers, such as polyethylene (PE) and polypropylene (PP), are excellent

membrane materials with good mechanical strength, high chemical and thermal resistance

thanks to the presence of a crystalline phase [8]. However, the crystalline region also restricts

the processability in most conventional membrane fabrication methods. The TIPS process

can be applied to semicrystalline polymers with suitable diluents; however, it is a less

attractive process due to large pore sizes and the necessary post-treatments for solvents [8].
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Nevertheless, there is a method which directly utilizes the crystalline phase of semicrystalline

polymers to create a porous membrane without the use of any solvent. This method, also

known as the Celgard® process [9], creates porous structures by deforming the crystalline

region of the semicrystalline polymer. The Celgard® process includes several steps:

extrusion, annealing, and stretching. In order to illustrate the concept behind these steps,

some background studies on polymer crystallization and polymer deformation need to be

explored.

When a semicrystalline polymer crystallizes from a dilute solution in the absence of

stress, the polymer chains tend to pack and form a crystalline layer called "lamella". An

electron microscope image of polyethylene crystallized from dilute solution is shown in

Figure 1.7(a). The thickness of the lamella is about 10 nm and is composed of about 50

repeat units. Since the typical polymer chain length is about 1000 nm, the only explanation

for the conformation of the polymer chains in the lamellar structure is a chain folding model

as shown in Figure 1.7(b). The folding length increases with increasing crystallization

temperature and with annealing.

Polymer crystallized from solution can also form a "shish-kebab" morphology

(Figure 1.7(c)) when a stress field is applied (such as stirring a solution). The model of shish-

kebab morphology (Figure 1.7(d)) suggests the lamellae (kebab) are originated from the

highly oriented filament (shish) which is formed during the flow-induced crystallization.



Figure 1.7 Polymer crystallization from dilute solution: (a) PE in xylene (stress-free
environment), (b) folding chain model of lamellar morphology, (c) PE in xylene (stressed
environment), (d) model of shish-kebab morphology [10, 11].

Polymer can also crystallize from a molten state, where the chain packing and folding

resembles that formed from a dilute solution; however, the aggregated lamellar morphology

is quite different due to a much denser polymer chain population in the molten state. In

general, these lamellae grow radially and form spherulites. The spherulites keep growing

until the growing lamellar front impinges upon other spherulites. An optical microscope

image of polyethylene spherulites is shown in Figure 1.8(a) and its schematic model in
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Figure 1.8(b). The lamellae inside the spherulites are sandwiched by an amorphous layer

(non-crystalline part) which is about of the same dimensions as the lamellae.

Under a high stress environment (such as low temperature extrusion), semicrystalline

polymers can form stacked row lamellar morphology [12, 13] as shown in Figure 1.8(c). Its

schematic model is shown in Figure 1.8(d). The formation mechanism of row lamellar

morphology is similar to that of the shish-kebab morphology. The morphology transition

from spherulites to row lamellae with increasing stress during melt processing is shown in

Figure 1.9. The formation of row lamellar structure is a critical step in preparing the

precursor films of the Celgard® process. This highly regular arrangement of lamellae and

amorphous layers along the extrusion direction provides a regular pattern for deformation.

Figure 1.8 Polymer crystallization from molten state: (a) optical microscope image of PE
crystallization in a stress-free environment [11], (b) model of spherulites [11], (c) electron
microscope image of PE crystallization under a high stress environment [9], (d) model of
row lamellae [14].
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Figure 1.9 Morphology transition from spherulites to row lamellae with increasing stress
during melt processing: (a) stress-free, (b) intermediate stress, (c) high stress [14].

In the Celgard® process, the extruded precursor films are undergoing an annealing

step before stretching. Annealing is a heat treatment where the temperature is maintained

closely below the melting point of the polymer. It is known that annealing can enhance

crystalline structure by allowing the polymer chains to reorganize and form thicker lamellae

with better mechanical strength. Annealing in the Celgard ® process enhances the row

lamellar structure without changing the arrangement of lamellae and the amorphous layers.

In stretching, the amorphous region is opened up as pores, and the lamellae which are much

less deformed act as structure stabilizers. The enhanced crystalline region ensures that the

deformation during stretching occurs in the weaker amorphous region. As a result, a regular

porous structure can be created at a similar scale as in the lamellar arrangement.

A typical polyethylene membrane made by the Celgard ® process is shown in Figure

1.10(a) [9]. The residual threads between the separated lamellae are believed to be tie-

molecules as shown in the model of Figure 1.10(b). Therefore, the pore size and pore density

are regulated by the population of tie-molecules which is proportional to the molecular



17

weight. Interestingly, the hurdle on material accessibility in conventional phase separation

process becomes a pre-required condition in the Celgard® process.

Figure 1.10 (a) Electron microscope image of polyethylene membrane via the Celgard ®
process (b) schematic model of the deformation of row lamellae [9].

1.4 A Novel Membrane Fabrication Method via Spherulitic Deformation

In the Celgard® process, the deformation of row lamellae seems to be the ultimate strategy

for utilizing the crystalline phase to create porous structure. However, there may be another

way to do so. The success of the Celgard® process relies on a highly oriented and regularly

distributed crystalline phase on a lamellar scale [15-18]. The row lamellar morphology

provides a regular pattern for deformation during stretching. The deformed sites are always

in between the lamellae. The concept could be applied to other crystalline morphologies if a

similar regularity can be established, and could be deformed regularly as well.

As mentioned earlier, polymers form either spherulites or row lamellae when

crystallized from the melt. A spherulitic morphology is much more often encountered than a

row lamellar structure. However, to date, there is no report on the use of the deformed

spherulitic morphology as a basis for making a microporous membrane, even though the
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spherulitic structure has been studied for a long time. The possible reasons for that are

summarized below.

Firstly, spherulites do not have the oriented regularity on a lamellar scale along the

extrusion direction. In fact, lamellae grow radially into spherulites from nucleating sites. The

deformation pattern of these radially aligned lamellae is irregular due to the direction of the

lamellar plane (the c-axis). A schematic explanation of this irregularity is shown in Figure

1.11. During stretching, the lamellae are tilted, separated and broken, and finally the c-axis is

aligned towards the stretching direction [19]. For the lamellae residing in the equatorial

regions of the spherulites (based on the stretching direction), stretching would just open up

the lamellae, similar to the deformation in the case of stretching row lamellae. The direction

of c-axis is still preserved as before stretching. On the other hand, for the lamellae residing in

the polar regions, an intense re-alignment is necessary since the c-axis of these undeformed

lamellae is perpendicular to the stretching direction [20]. As shown in Figure 1.11, the

lamellae are broken and aligned along the stretching direction after stretching.
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Figure 1.11 Schematic representation for lamellar irregularity in spherulites. (adapted from
[14, 21])

Secondly, morphological complications in spherulite sizes and spherulite size

distribution pose another difficulty in controlling the locations of the lamellar deformation.

Macroscopically, the deformation of spherulites can be inter-spherulitic or intra-spherulitic as

shown in Figure 1.12. For inter-spherulitic deformation (Figure 1.12(a)), the corresponding

fracture sites form to compensate for the stress generated during stretching around the

spherulites. It is known that the inter-spherulitic region is a weak spot since the

noncrystalline part and impurities are rejected to spherulite boundaries during crystallization.

Therefore, a slowly crystallized sample which has better developed spherulites often shows

inter-spherulitic deformation. For intra-spherulitic deformation (Figure 1.12(b)), the lamellae

inside the spherulites are broken and aligned due to the relatively weak crystalline structure.

The stretched sample shows necking and cold-drawing appearance corresponding to these
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oriented broken lamellae. The sample can be elongated up to several times its original length

and form a highly oriented and tightly packed lamellar structure until the final structure

breakdown occurs. Inter-spherulitic and intra-spherulitic deformations could be catastrophic

in case of lack of tie-molecules.

Figure 1.12 (a) Inter-spherulitic deformation (PE) [22], (b) initial stage of intra-spherulitic
deformation (PP) [23].

The effects of spherulite size and spherulite size distribution on the locations of

lamellar opening can be illustrated by the correlation of yield stress with the corresponding

spherulite size as shown in Figure 1.13. A maximum yield stress appearing at a certain

spherulite size can be interpreted as the resultant effect of intra-spherulitic and

inter-spherulitic deformation [24]. The yield point represents the occurrence of fracture in the

microstructure. In smaller spherulites, the deformation pattern is in the regime of intra-
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spherulitic deformation. The yield stress in this regime represents the occurrence of lamellar

breaking. The increasing yield stress with spherulite size is due to the stronger lamellar

structure in the spherulites. On the other hand, the spherulite boundaries are also becoming

weaker with an increasing spherulite size, which favors the occurrence of inter-spherulitic

deformation. The occurrence of a maximum yield stress indicates that the deformation

pattern shifts from intra-spherulitic to inter-spherulitic in the spherulitic sample.

Figure 1.13 Schematic explanations for spherulitic irregularity. Region I represents the
occurrence of intra-spherulitic deformation, and region II represents the occurrence of
inter-spherulitic deformation [14].

So far, the spherulitic structure seems incapable of being utilized for membrane

fabrication. The non-oriented lamellar morphology with various spherulite sizes are the

major restrictions for that. However, the idea, of using the spherulitic structure might become

practical by changing the morphology of the lamellae. In the Celgard ® process, this is done

by rearranging the lamellar morphology (from spherulites to row lamellae). An alternative

method is to change the lamellar morphology itself within a spherulitic structure. This seems

an impossible task for most of the polymers, since the lamellar growth direction is always
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radial. However, this modification could be achieved by utilizing polypropylene with a-form

crystal structure. a-PP has a unique lamellar pattern among other polymers; it is a cross-

hatched lamellar morphology composed of radial and tangential lamellae as shown in Figure

1.14(a). There are some important features of this mesh-like lamellar pattern that could be

utilized for the fabrication of porous structures.

Firstly, the presence of tangential lamellae strengthens the spherulitic structure. This

can limit the occurrence of catastrophic intra-spherulitic deformation which leads to an

uncontrollable formation of a fibrillar morphology after cold drawing. Inter-spherulitic

deformation leads to a desirable deformed pattern since in this case interconnectivity can be

created easily by the pre-connected spherulite boundaries. Secondly, tangential lamellae

provide extra restraints for the openings created during deformation. As shown in Figure

1.14(b), the residual mesh-like lamellae at a separated spherulite boundary show a web-like

porous structure. Finally, the membrane fabricated via spherulitic deformation should have

better mechanical strength in all directions due to the radially aligned lamellae.

On the other hand, it is known that annealing can enhance crystalline structure by

allowing chain rearrangement with a temperature close to the melting temperature. Annealing

could be important in this study, since both lamellae (R-lamellae and T-lamellae) can be

strengthened and create stronger spherulites. These concepts are summarized in Figure 1.15.



Figure 1.14 Electron microscope images of mesh-like lamellae morphology in a-PP: (a)
inside a spherulite [25], (b) at a separated spherulite boundary [26].
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Figure 1.15 Schematic explanation of a possible membrane fabrication process based on
strengthened a-PP lamellar morphology.
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1.5 A Review of Polypropylene Microstructure

An important task for demonstrating the feasibility of this potential membrane fabrication

process is to generate spherulites with strong lamellar structures to prevent catastrophic

micronecking after the material yields. a-PP with its exceptional cross-hatched lamellar

morphology as shown in Figure 1.16(a) seems to be a suitable candidate. A brief summary of

this unique property of polypropylene is presented below.

From the perspective of polymer chain configuration, polypropylene has the simplest

repeat unit (with the exception of polyethylene), and yet possesses several crystallographic

forms. Polypropylene became an important commercial polymer after the invention of

Ziegler-Natta catalysts in 1950s, which can produce highly stereoregular configurations [27].

Nowadays, with the improvement of catalysts, the commercially available polypropylene

grades usually show a very high fraction of isotacticity; therefore, the term "PP" refers to

isotactic polypropylene only in the following discussion.

The crystal forms of PP are quite complicated and highly dependent on the processing

conditions [28, 29]. PP possesses four crystal forms: a-form, β-form, y-form, and smectic

form [30]. All of these forms involve the same 3i-helix conformation as shown in Figure

1.16, but pack differently when folded into lamellae. Each form can be recognized by its

well-defined Wide Angle W-ray Scattering (WAXS) pattern. The most common crystalline

form encountered in conventional processing conditions is the a-form. The β-form can be

found in some specific processing temperature ranges, or initiated by β-form nucleating

agents [31]. The y-form is obtained for the PP of high molecular weight [32] or crystallized

under high pressure [33]. The smectic form is a transition crystallographic state found under

very rapid cooling [34, 35], and transforms into the a-form at elevated temperatures [36, 37].
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The crystallographic forms and their WAXS spectra are shown in Figure 1.17. Usually,

quantification of these various crystallographic forms can be conducted based on the

intensity of characteristic peaks from WAXS spectra according to Turner-Jones [38].

Figure 1.16 (a) Isotactic Polypropylene, (b) The 3 1 -helix, (c) The 3 1 -helix with only showing
methyl groups [39].
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Figure 1.17 Three different crystallographic forms of PP: (a) lamellar packing morphology
[40], (b) WAXS spectra (characteristic peaks are marked with shadow) [41].

The a-form has a monoclinic unit cell with parameters: a = 6.65 A, b = 20.96 A, c =

6.5 A, 13 99'80 [29]. The significant peaks of the a-form can be found at the scattering

angles 20 of a l : 14.1°(110), a2: 16.9°(040), a3 : 18.5°(130), and a lumped a4: (21.3°(111)

21.8°(131) 21.9°(041)). The a-form is the most stable and frequently encountered crystal

form of PP. The cross-hatched lamellar morphology of radial lamellae (R-lamellae) and

tangential lamellae (T-lamellae) is due to the small mismatch between the a- and c-axis unit

cell parameters [42-44]. The spherulitic characteristics of the a-form are complicated due to

this distinct lamellar feature. The birefringence sign of a-form spherulites can be positive,

negative or mixed depending on the sample thermal history [45]. High temperature enhances

the formation of an R-lamellae predominant spherulite. The T-lamellae predominant
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spherulite shows a positive sign of birefringence and is less deformable [46]. With the aid of

this interlocking morphology the a-form spherulites are more rigid and appear capable of

maintaining their spherulitic morphology upon stressing [47]. As a result, a sample with a a-

form spherulites also appears to be more brittle and vulnerable to impact [48]. The

occurrence of branched lamellar morphology is evident in Figure 1.18(a). The T-lamellae are

branching from the R-lamellae during crystallization. The model of this branching

morphology shows that the a-c plane of the T-lamellae is growing on top of the a-c plane

with a branching angle of 80° [40].

Figure 1.18 (a) Electron microscope image of a-PP with an evident R-lamellae and T-
lamellae morphology. (b) Model for the branching characteristics of R-lamellae and T-
lamellae [40].

The β-form has a hexagonal unit cell. The β-form is thermally unstable with a

melting temperature of 152 °C, and can transform to the a-form at elevated temperature or

under stress [31, 49]. The β-form is known for its ductile response compared to the a-form

[50, 51]. The difference in their mechanical behavior can be understood from their

microstructural features. The spherulitic characteristics of the f3-form resemble those of
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conventional spherulites, such as a sheaf-like lamellar pattern and a negative sign of

birefringence. On the other hand, the a-form with the presence of T-lamellae improves the

strength of spherulites by acting like "knots" and providing anchor spots when the spherulites

deform. A typical lamellar separation in the β-form spherulite is shown in Figure 1.19(a). A

clear β-to-α transition due to the localized melting effect is shown in Figure 1.19(b) [52].

Figure 1.19 (a) Lamellar separation in the β-form spherulites. The conventional sheaf-like
lamellar morphology is evident. (b) A β-to-α transition with a clear lamellar morphology
transformation [52].

The y-form has a triclinic unit cell and is believed to be associated with the formation

of the a-form due to its tilting lamellar angle [53-55]. Since it is seldom encountered under

traditional processing conditions, there are only few reports on the lamellar and spherulitic

characteristics of the γ-form., The smectic form represents a state of order intermediate

between amorphous and crystalline states. The smectic-to-a form transition can be

characterized with an apparent exotherm at a temperature from 65 to 120 °C in DSC scans
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[37]. The smectic form has a nodular-like structure of the order of 10 to 30 nm, and shows a

ductile behavior due to the lack of crystallinity [34].

1.6 Potential Modifications of the Novel Membrane Fabrication Process

There may be two potential modifications to the proposed novel membrane fabrication

process in order to improve the membrane performance. The first modification (modification

I) is to reduce the spherulite size by using nucleated polypropylene. It is known that the

spherulite size of polypropylene can be dramatically reduced by adding nucleating agents as

shown in Figure 1.20. Some very effective nucleating agents are called "clarifying agents"

since a highly transparent film can be produced as a result of the presence of very fine

spherulites (less than 1 [um in size) [56].

Nucleated polypropylene also shows better mechanical properties due to the more

uniform sized spherulites initiated simultaneously from a very large amount of nucleating

sites during crystallization [57]. The a-form and β-form lamellar characteristics of

polypropylene can be preserved by the choice of appropriate nucleating agents without a

change of the crystallization process [58]. Thus, the use of nucleated polypropylene provides

an excellent strategy to improve the performance of the porous membranes via spherulitic

deformations. The porosity and interconnectivity of the membranes should increase with a

decreasing spherulite size.



Figure 1.20 Potential modification I: the use of nucleated polypropylene (image from
Milliken Chemical).

The second modification (modification II) is to utilize interfacial debonding between

two different phases to enhance permeability. The debonded structure could be created by

using an immiscible polymer blend system or a polymer containing fillers [59-61]. It is

known that mechanical properties of polymers can be improved by adding a second

component such as fillers or rubbers. A debonded morphology around the dispersed phase

(the second component) is often found after the sample deformed. Debonding is a matrix

yielding phenomenon due to the poor adhesion between matrix and dispersed phases. This

debonded morphology can be utilized as a permeation shortcut for improving membrane

permeability. A debonded morphology in a PP/CaCO3 composite is shown in Figure 1.21.

A good choice for the second component is a polymeric material which is immiscible

with the polypropylene matrix and can be broken down easily in distinct dispersed domains

by conventional compounding processes. A good dispersion can be achieved by selecting an

30



31

immiscible blend system whose components have similar rheological properties. The concept

in the modification II is similar to that in the MMMs (Figure 1.3); however, the occurrence of

percolation threshold needs to be prevented. A percolated debonded morphology is of no use

for fabricating a membrane with a confined pore size. A porous matrix region between the

debonded openings (Figure 1.21) has to be maintained to ensure the control of pore size.

Figure 1.21 Debonded morphology of PP/CaCO 3 composite [61].

1.7 Scope of the Thesis

The purpose of this study is to investigate the feasibility of creating porous structures in

semicrystalline polymers via inter- and intra-spherulitic deformations. Isotactic

polypropylene is selected because of its unique cross-hatched lamellar structure. A

parametric study of extrusion, annealing, and stretching conditions is reported. The concept

is further expanded by utilizing nucleated polypropylene to reduce spherulite size and a

second immiscible polymer phase. The novel porous membranes are characterized

morphologically and the pore interconnectivity is examined via methanol permeability.



32

CHAPTER 2

EXPERIMENTAL

2.1 Materials

A film extrusion grade polypropylene (PP), Dow H314-02Z, is used in this study. It is a

homopolymer with a reported density of 0.9 g/cm 3 and MFR (melt flow rate) of 2 g/10 min.

A nucleated polypropylene (PPN), Dow H110-02N, with material properties similar to PP is

also used for modification I. A polystyrene (PS), Dow 685D, is used to create the immiscible

blend system for modification II. The properties of the materials are listed in Table 2.1.

Table 2.1 Material Properties

Polymer Grade Source Density Tg T. T, Melt Flow
(g/cm3) (°C) (°C) (°C) Rate

(g/10min)
Polypropylene (PP) H314-02Z Dow 0.9 -5 162 115 2.0

(230 °C,
2.16 kg)

Nucleated H110-02N Dow 0.9 -2 159 130 2.0
Polypropylene (PPN) (230 °C,

2.16 kg)
Polystyrene (PS) 685D Dow 1.04 100 NA NA 1.5

(200 °C, 5
kg)

2.2 Melt Processing and Post Treatments

2.2.1 Precursor Film Extrusion

The precursor films were extruded through a Brabender single screw extruder (D = 0.75 inch,

L/D = 15) equipped with a 15-cm sheet die. The extrusion conditions were selected to ensure

the formation of spherulitic structures instead of stacked row lamellar structures in the
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precursor films. The temperature setting of the extruder was 230 °C, the extrusion speed was

30 rpm, and the die-lip gap was fixed at 100 µm. Take-up rolls were used to collect the

extruded film. The roll temperature was maintained at 90 °C by a circulating water bath. The

distance between the extrusion die and the collecting roll was kept at 2.5 cm. The take-up

speed was kept low to avoid generating additional orientation in the precursor films. The

thickness of the precursor films was about 70 µm. The experimental setup is shown in Figure

2.1.

Figure 2.1 Experimental setup for preparation of precursor films via Single Screw Extruder
and take-up rolls.

2.2.2 Annealing

The precursor films were annealed in an air-circulating oven for 2 hours. A long annealing

time was selected to ensure that a steady temperature was reached. The annealing

temperatures were set at 100 °C, 120 °C, and 140 °C. The appearance and thermal analysis
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results of the annealed samples showed no signs of degradation. Samples designated as (An

100C), (An 120C), etc. indicate annealing at 100 °C, 120 °C, etc.

2.2.3 Uniaxial Stretching

A Tinius Olsen LOCAP universal testing machine equipped with a temperature control

chamber was used for the stretching step. The non-annealed and annealed precursor films

were cut as 7.6-cm wide rectangular sheets before stretching. The stretching direction was

parallel to the extrusion direction, which is designated as the machine direction (MD). The

films were held between two air-pressurized clamps with an initial distance between the

clamps of 2.5 cm. The stretching rates (R s) ranged from 0.25 cm/min to 50.8 cm/min. The

extension ratios (Es) of the films ranged from 100% (from the original length) to 600%. The

stretching temperatures (Ts) were chosen as -20 °C, 25 °C, and 70 °C. Most of the samples

were stretched as Rs = 12.7 cm/min, Es = 200%, and Ts = 25 °C. The stretched membranes

were then held under tension at 90 °C for 10 minutes followed by cooling down to 25 °C for

20 minutes to stabilize the structure. The final membrane thickness was about 10 to 35 p.m.
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Figure 2.2 Experimental setup for preparation of stretched membranes via Tinius Olsen
LOCAP universal testing machine equipped with a temperature control chamber.

2.2.4 Immiscible Blend Preparation

A PP/PS immiscible blend was prepared by compounding in a twin screw extruder.

Polystyrene was chosen as the second component to regulate the stress level of the precursor

films during stretching. The PP/PS 90/10 mixture was dry blended before being fed into a

ZSK 30 W&P co-rotating intermeshing twin screw extruder with screws consisting of

conveying elements, kneading blocks and two mixing sections. The feeding rate was 5.45

kg/hr, and the extruder was operated at 120 rpm. The barrel temperatures of the extruder

were set at 230 °C except for the feeding zone (180 °C) [60]. These extrusion conditions

were chosen in order to correspond to a unity viscosity ratio between PP and PS. The

compounded blend was extruded as a strand and immediately passed through a water cooling

bath. The cooling water temperature was kept around 40 °C. Then, the extrudate was

pelletized and the pellets were dried at 80 °C at least overnight to remove any moisture
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before the membrane fabrication process. The PPN/PS 90/10 immiscible blend was prepared

under the same conditions due to the similar rheological properties of PPN to PP.

2.3 Characterization

2.3.1 Polarized Optical Microscope

Precursor films were analyzed using a Zeiss polarizing optical microscope. For birefringence

measurements, a first order retardation ,-plate was inserted between the polarizers. The

image was collected by a Zeiss image adapter and recorded on the computer.

2.3.2 Scanning Electron Microscope

The SEM images were obtained by a Leo 1530 VP field emission scanning electron

microscope (FESEM). In order to prevent charge accumulation on the sample surface during

examination, all samples were pre-coated with a thin layer of gold/palladium alloy.

2.3.3 Atomic Force Microscope

AFM experiments were conducted on a Nanoscope III scanning force microscope (Digital

Instruments). The Tapping™ mode was used for mapping the surface morphology of the

precursor films.

2.3.4 Wide Angle X-ray Scattering

The wide angle X-ray scattering pattern of the films was recorded by a Philips PW3040 X-

ray Diffractometer with a Cu-Ka radiation (λ= 1.54 A) and a 20 range from 10° to 24°.
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2.3.5 Differential Scanning Calorimetry

DSC tests of the precursor films were carried out on a TA instrument Q100 with sample

weight of about 5 mg. For melting temperature measurements, the heating rate was 10

°C/min and the scan range was from -50 °C to 200 °C. For crystallization temperature

measurements, the samples were first kept isothermally at 230 °C for 10 minutes to erase

their thermal history and then cooled down to 25 °C at 10 °C/min. The crystallinity of the

sample was calculated from enthalpy change values obtained in the heating curve, and by

assuming 209 J/g as the heat of fusion of a 100% crystalline sample [27].

2.3.6 Methanol Permeation Test

Methanol permeation tests were performed in a pressurized permeation cell having a testing

area of 1.77 cm2 . All samples were tested one week after preparation to avoid possible

interference from aging effects. The vessel was pressurized by nitrogen at 0.41 MPa.

Samples were pre-wetted with methanol for 10 minutes before testing. The permeated

methanol was collected in a graduated cylinder, hourly, for three hours since the first drop

appeared on the collecting tube. The methanol flux was determined from permeation data

collected within the second hour.

2.3.7 Porosity Determination

The porosity (c) of the stretched membranes was calculated from the following equations;
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Here cal iso i the calculated density of the stretched membrane based on its fractional
p

crystallinity (xc) obtained from the DSC heating scan; p c is the density of crystalline region

taken as 0.946 g/cm3 ; pa is the density of the amorphous region taken as 0.855 g/cm 3 [27];

Vcal is the calculated volume of a stretched membrane of measured mass M M and density 0„cal,

VM is the measured volume of the stretched membrane with an area of 17.8 cm' and its

measured thickness. The quantity s can be therefore obtained from the difference of Veal and

VM divided by Vcai.
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CHAPTER 3

RESULTS AND DISCUSSION

3.1 Effect of Extrusion and Annealing Conditions on PP Precursor Films

3.1.1 Effect of Extrusion Conditions

A series of tests to determine the appropriate precursor film extrusion conditions were

conducted first. It was found that low-stress extrusion conditions can ensure the

reproducibility of the spherulitic structure, and produce an even-surface precursor film for

stretching. The SEM image of the precursor film extruded at high stress conditions which

resembles the Celgard® process is shown in Figure 3.1. An obvious stacked row lamellar

structure is observed on the surface of this precursor film. The extrusion conditions of this

film were used as reference for creating precursor films with spherulitic features.

Figure 3.1 SEM image of the surface of PP precursor film produced at high stress
extrusion conditions.

The spherulitic morphology of the precursor films, F-PP ("F" is used to designate

precursor films), produced at low stress extrusion conditions can be characterized by the use
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of optical microscope, since the spherulite sizes are in the range of observation. This

examination was conducted on both sides (air-side and roll-side) of the F-PP sample, and the

results are shown in Figure 3.2. The difference between these two sides is in the cooling rate.

The temperature of the air-side is about 25 °C. The roll-side is in contact with the rolls where

the temperature of 90 °C is controlled by circulating water. The surface of roll-side shows

cross dark lines due to the rough surface of the rolls (Figure 3.2(a)). The surface of the air-

side shows granular-like morphology with a size about 10 pm (Figure 3.2(b)). The granular-

like morphology on the roll-side is not evident due to the dark-strips.

In fact, the spherulitic morphology of the precursor film F-PP can be identified from

both surfaces by the presence of a Maltese cross pattern shown in Figure 3.2 (c) and (d). The

size of the spherulites in the precursor films was about 10 µm, and their presence confirms

the choice of the applied extrusion conditions. The birefringence properties of PP can provide

additional important information besides a spherulitic morphology related to the presence of

T-lamellae. A brief explanation is as follows:

The formation of a Maltese cross pattern is due to the birefringence properties of the

lamellae in the spherulites. Birefringence properties represent the anisotropic refractive index

(n) in the material. In semicrystalline polymer, the optical properties along the polymer chain

(c-axis) are quite different from those normal to the chain. For example, in polyethylene, na =

1.514, nb = 1.519, nc = 1.575 [62]. Therefore, many polymers can be considered as an

uniaxial medium which can be represented as a prolate ellipsoid uniaxial indicatrix as shown

in Figure 3.3(a). (For an isotropic medium, the indicatrix appears to be a sphere.) The long

axis in the prolate ellipsoid represents the c-axis due to the high refractive index from dense

packing of chains [11].
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Figure 3.2 Images of spherulites produced at low stress conditions (F-PP): (a), (b) optical
microscope images; (c), (d) polarized optical microscope images; (e), (f) polarized optical
microscope images with a first order ,-plate. (roll-side (a) (c) (e) and air-side (b) (d) (0)
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In polarized optical microscopy, the incident beam from the light source is polarized

by passing through polarizer. Since the analyzer (another polarizer) is placed perpendicular

to the first polarizer, the intensity of the incident beam will be totally annihilated if the

sample shows isotropic optical properties. On the contrary, the incident beam can go through

the cross polarizers only when the sample has birefringence properties. Therefore, the

circular Maltese cross pattern shown in Figure 3.2(c) and (d) is evidence of the existence of

spherulites. The dark strips in the Maltese cross pattern represent the distinct directions of the

cross polarizers. The alignment of the dark strips in the Maltese cross pattern and the cross

polarization implies that the directions of the ellipsoid uniaxial indicatrices inside the

spherulite could be tangential (case II in Figure 3.3(b)) or radial (case III in Figure 3.3(b)).

The direction of the dark strips in the spherulites and the direction of the cross polarizers are

not aligned in the case of a tilt ellipsoid indicatrix (case I in Figure 3.3(b)). Most polymers

with radial growth lamellae exhibit the tangential aligned uniaxial indicatrices as in case II.

Figure 3.3 Birefringence properties of spherulites: (a) prolate ellipsoid uniaxial indicatrix,
(b) possible alignment for Maltese cross pattern [11].
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The birefringence of a spherulite, A s , is defined as nr — n t where nr is the refractive

index parallel to the spherulite radius and n t is the refractive index perpendicular to the radial

direction [62]. If the amorphous phase can be assumed as an isotropic medium, A s is only

related to the orientation of the crystalline phase in the spherulites. Polymers with radial

growth lamellae and tangentially aligned polymer chains (tangential aligned uniaxial

indicatrices) show negative birefringence due to the larger n t (c-axis). A convenient way to

determine the birefringence sign is by observing the color change of the spherulite with the

help of a sensitive tint plate. The plate is made of gypsum with a precise thickness of 565 nm,

and is also called first order ,-plate. A sample of negative birefringence shows a color

change with a second- and fourth-quadrant blue spherulite by inserting a first order ,-plate

from 45° position as shown in Figure 3.4(a). The inserted first order ,-plate is used to create

a path difference of the polarized incident beam, and the birefringence properties of the

sample are amplified with a color change; the incident beam is a white light and a slightly

shift on its wavelength can cause color changes.

Figure 3.4 Determination for birefringence signs: (a) a negative spherulite, (b) models for
color change with inserting a first order ,-plate [62].
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In the case of PP, the birefringence properties of spherulites can be quite interesting

due to the presence of T-lamellae. Since T-lamellae are almost perpendicular to the R-

lamellae (Figure 1.18(b)), the T-lamellae rich a-PP spherulite (case III in Figure 3.3(b))

shows a similar Maltese cross pattern as R-lamellae rich a-PP spherulite (case II in Figure

3.3(b)). Therefore, the Maltese cross pattern of the F-PP sample shown in Figure 3.2(c) and

(d) can only provide the evidence of the existence of spherulitic morphology without the

detail of T-lamellae.

The R-lamellae rich a-PP spherulite is similar to other conventional spherulites and

exhibits negative birefringence with a second- and fourth-quadrant blue. On the other hand, a

T-lamellae rich a-PP spherulite exhibits positive birefringence with a first- and third-

quadrant blue as indicated in Figure 3.4(b). According to Norton and Keller [45], an

α -spherulite shows positive birefringence sign when the fraction of T-lamellae is more than 1/3

of the total lamellae content. The birefringence properties of PP spherulites with varied

crystallization temperature are shown in Table 3.1. They show a complicated formation of

crystal forms with rich birefringence properties. The earlier studies were conducted by

placing the sample on the hot stage where the sample thickness and temperature change were

well-defined. The results might not be able to apply to the melt processing directly; however,

the general principle should still be applicable to a film extrusion process.
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Table 3.1 Difference Types of Polypropylene Spherulites [62]

type Crystallographic form Spherulite birefringence Crystallization
temperature range (°C)

I a Weakly positive <134
II a Weakly negative >138
Mixed a Mixed 134-138
III 13 Negative 110-128
IV f3 Negative 128-132

The birefringence property examination of the F-PP sample is shown in Figure 3.2(e)

and (f). Interestingly, the spherulites near the surface of the roll-side exhibit a second- and

fourth-quadrant blue (negative birefringence) (Figure 3.2(e)) and the spherulites near the

surface of the air-side exhibit a first- and third-quadrant blue (positive birefringence) (Figure

3.2(f)). The thickness of the precursor film is about 70 µm and transition from negative to

positive birefringence is close to the middle of the sample. In order to avoid the interference

from the rough surface of the roll-side, morphological characterization focusing only on the

surface of the air-side is useful for the following two reasons.

Firstly, it provides some estimation on the proportion of T-lamellae in the precursor

film and can identify the spherulites located inside the film as a result of the transmission

mode of the optical microscopy. Secondly, it provides guideline to the setup of the

processing conditions for generating T-lamellae rich spherulites. However, these goals can

only be achieved when the spherulite size is large enough for the optical microscope

examination. The resolution of the observation is also limited by a small spherulite size due

to the interference between each spherulite. This is the reason for the presence of the

spherulitic morphology having features shown in Figure 3.2(c) and (d).
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3.1.2 Effect of Annealing Conditions

The crystallographic configuration of isotactic polypropylene is quite complicated and is

highly dependent on processing conditions. Isotactic polypropylene possesses four

crystallographic forms: a-form, n-form, y-form, and smectic form. Each form can be

recognized by its well-defined WAXS patterns as shown in Figure 1.17(b). The WAXS

spectrum of the F-PP (Figure 3.5(a)) shows a predominant a-form with some traceable

amounts of the 13-form (13 1 : 16.1° (300) and (32: 23.1° (221)). The absences of the y-form and

the smectic form are as expected since the y-form can only be found by crystallization under

very high pressure and the smectic form is generated under extremely fast cooling conditions.

The cross-hatched lamellar morphology of the F-PP sample is shown in the AFM

image of Figure 3.5(b). Even though AFM can provide information of surface morphology

without pre-treatment of the sample, it is often used on a sample with a relatively flat surface

where the roughness is within a scale of manometer. For the F-PP sample, the formation of 3-

D spherulites generates a surface roughness of a micrometer scale and makes AFM a less

desirable method for morphological characterization in this study.
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Figure 3.5 Crystallographic examination of non-annealed PP precursor film: (a) WAXS
spectrum; (b) AFM image.

The WAXS spectra of the precursor films with or without annealing are shown in

Figure 3.6. There was no significant change of the spectrum of the a-form by annealing.

Annealing only improved the crystalline structure, which resulted in sharper and distinct
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peaks. The traceable amount of β-form, the (300) peak, disappeared in the F-PP(An 140C)

sample. Because the β-form is thermally and mechanically unstable, it transforms into the a-

form by heating.

Figure 3.6 WAXS spectra of PP precursor films with or without annealing.

Figure 3.7 shows DSC heating curves of the PP precursor films with and without the

annealing treatment. The results of melting temperatures and crystallinity of these samples

are summarized in Table 3.2. The melting temperature of F-PP is about 162 °C which is

typical for isotactic PP. Annealing changes very little the position of the melting peak.

However, the area under the melting peak, an indication of crystallinity, increases with

increasing annealing temperature as shown in Table 3.2. A characteristic discontinuity was

observed in the thermograms of the annealed samples right before the melting peak.
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There have been several studies on the multiple melting peak behavior of PP.

Suggested explanations include the presence of n-form [50] or the recrystallization of

imperfect crystals during the DSC heating scan [54]. The contribution of the n-form does not

appear to be possible in this case because of its small amount as shown in Figure 3.6. The

occurrence of 13 to a transition at a high annealing temperature, in sample F-PP(An 140C),

also rules out the possible contribution of the β-form to this discontinuity.

An interesting feature is that the onset of this discontinuity can be related to the

annealing temperature (Table 3.2). Similar observations have been reported by Poussin et al.

[63] who studied the effect of thermal treatment on PP and suggested that the shoulder

represents lamellae thickening during annealing. Alamo et al. [64] and Wu et al. [65]

suggested that the low temperature discontinuity is due to the melting of the T-lamellae. In

both studies, the appearance of negative birefringence spherulites (R-lamellae rich) was

observed when the low temperature discontinuity disappeared. Therefore, the corresponding

discontinuity in the annealed sample seems to imply the presence of thickened T-lamellae

formed at the high annealing temperature. The thickness of the R-lamellae did not increase

by annealing since there was no significant shift in the main melting peak.

Another distinct feature was found by analyzing the glass transition temperature of

these samples. Actually, there were two endothermic discontinuities T1 and T2 at 0 °C and 40

°C in all samples (Figure 3.7, insert). The first one resembles the glass transition temperature

of polypropylene which is about -5 °C, and the second one is not related to melting of the

crystalline domains since it would have disappeared with annealing at high temperatures.

The presence of a second relaxation (above T g) of PP has been shown by Dynamic

Mechanical Thermal Analysis (DMTA) [66-68]. The unusual relaxation signal around 50-80
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°C is believed to result from crystal-crystal slip in polypropylene. It is known that DMTA is

more sensitive than DSC in recognizing relaxation processes such as glass transition. This

might be the reason for the lack of data by DSC analysis on this subject. So far, a similar

observation by DSC analysis has only been shown by Hedesiu et al. (Figure 5(a) in Ref. [69])

who did not offer a detailed explanation. A possible explanation for this apparent

endothermic discontinuity observed in the DSC analysis originated from the concept of rigid-

amorphous fraction (RAF). A more detailed discussion on this feature will be followed in

Section 3.5.

Figure 3.7 DSC heating curves of PP precursor films: (a) F-PP (b) F-PP(An 100C)
(c) F-PP(An 120C) (d) F-PP(An 140C).
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Table 3.2 Thermal Analysis of PP Precursor Films

Samples Onset of the discontinuity (°C) T. ( °C) Crystallinity (xc)
F-PP NA 161.9 0.43

F-PP(An 100C) 100.6 162.4 0.48
F-PP(An 120C) 119.5 162.2 0.49
F-PP(An 140C) 141.5 161.5 0.51

3.2 Effect of Annealing on PP Stretched Membranes

3.2.1 Morphological Characterization and Mechanical Response

Images of stretched PP membranes are shown in Figure 3.8. All samples could be stretched

at 25 °C up to 200% of their original length without breaking. The ductile behavior is due to

the low glass transition temperature of PP which is about -5 °C. Typical necking followed by

cold drawing is observed in the M-PP, M-PP(An 100C), and M-PP(An 120C) samples ("M"

is used to designate stretched membranes). In these samples, the cold drawn region is

transparent, and the undrawn region still keeps same features of their precursor films. The

width of the cold drawn region is smaller at a higher annealing temperature. By contrast, a

distinct opaque membrane is shown in the M-PP(An 140C) sample. The whitened deformed

region of M-PP(An 140C) sample covers the entire stretching area, and the width of the

center of the deformed region is smaller than in the other samples. Note that the thickness of

the M-PP(An 140C) sample was about 30 µm vs. about 15 inn for the other samples. The

lower thickness of the stretched membranes with a typical cold drawn feature may be the

result of enhanced packing and orientation of the polymer chains.
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Figure 3.8 Images of stretched PP membranes: (a) M-PP, (b) M-PP(An 100C), (c) M-PP(An
120C), (d) M-PP(An 140C). (the clamp positions are indicated by white dotted lines.)

Optical microscope images of these samples are shown in Figure 3.9. An elongated

morphology is observed in the cold drawn regions of samples M-PP, M-PP(An 100C) and

M-PP(An 120C). A much different morphology, however, is shown in sample M-PP(An

140C). The morphological transition of the M-PP(An 140C) sample is consistent with the

macroscopic visual observations of Figure 3.8. Samples with typical cold drawn behavior

representing the separation and orientation of the lamellar structure are transparent under

visible light. On the other hand, the translucent appearance of the M-PP(An 140C) sample in

Figure 3.8(d) might be resulting from scattering at the interfaces of microdomains. The

domain size of the distinct morphology in the M-PP(An 140C) sample is of about the same

scale as for spherulites in the precursor film, Figure 3.2(d). As a result, this distinct

morphology might be representing the occurrence of inter-spherulitic deformation.
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Figure 3.9 Optical microscope images of stretched PP membranes (400X): 	 M-PP, (b) M-
PP(An 100C), (c) M-PP(An 120C), (d) M-PP(An 140C).

The stress-strain curves of the precursor films during stretching are shown in Figure

3.10. All samples exhibit similar ductile behavior. Furthermore, there is no significant

difference in the Young's modulus of all samples. The stress level of the plateau past the

yield point increases with annealing temperature. This represents a tougher behavior of the

annealed samples due to their enhanced crystalline structure. However, the M-PP(An 140C)

sample has a lower yield strain (-11%) than other samples (-15%), (Figure 3.10 insert)

which represents a less ductile behavior and increased brittleness. This may be related to the

presence of different sites of yielding corresponding to inter- or intra-spherulitic

deformations, respectively. For example, the yielding site for the inter-spherulitic
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deformation of the annealed samples might be initiated at the spherulitic boundaries due to a

more rigid spherulitic structure, and as a result a lower value of yield strain is obtained.

Figure 3.10 Stress-strain curve of stretched PP membranes.

The morphology of the stretched membranes was further examined by SEM. A very

thin Au/Pd coating was applied, and the coating conditions were carefully selected in order to

reveal the thin lamellar structure. Low magnification SEM images of stretched membranes

are shown in Figure 3.11. There is no significant difference between the M-PP, M-PP(An

100C), and M-PP(An 120C) samples. However, a significant morphological difference is

observed in the M-PP(An 140C) sample, which shows discrete dark regions surrounded by

connected bright regions. The domain sizes of the discrete regions are similar in scale to the

spherulite size in the precursor film (Figure 3.2(d)). Further examination of the discrete
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regions at higher magnification (Figure 3.12) suggests that the dark discrete regions may

contain undeformed lamellae and the bright region may be filled up with lamellar openings.

In scanning electron microscopy, a flat surface emits fewer electrons to the detector

compared to a rough surface [70]. Therefore, the surface of the undeformed lamellae is

smoother and appears to be dark, whereas, the bright region appears to be caused by the

uneven lamellar openings. In fact, the cross-hatched lamellar structure of a-PP is observed in

all stretched membranes of Figure 3.12. The lamellar openings are almost non-existent in the

M-PP and M-PP(An 100C) samples, and smaller in the M-PP(An 120C) sample as compared

to the M-PP(An 140C) sample.

F igure 3.11 SEM images of stretched PP membranes (2000X): (a) M -PP, (b) M -PP(An
100C), (c) M-PP(An 120C), (d) M-PP(An 140C).
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Figure 3.12 SEM images of stretched PP membranes (50000X): (a) M-PP, (b) M-PP(An
100C), (c) M-PP(An 120C), (d) M-PP(An 140C).

A high magnification SEM image highlighting the bright regions is shown in Figure

3.13(a). It appears that the dark regions represent the undeformed spherulites and the bright

regions represent the deformed region of the spherulites. Actually, there are two types of

bright regions, a radial-like and a ring-like. The radial-like bright region emanates from the

center of the dark region, and the ring-like bright region engulfs the dark region. Since the

bright regions can be recognized as the lamellar openings, the radial-like pattern would

indicate intra-spherulitic deformation and the ring-like pattern suggests inter-spherulitic

deformation. The occurrence of each deformation pattern has been reported individually, but

the coexistence of them has not been documented. This is important since the anticipated
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catastrophic intra-spherulite deformation during cold drawing appears to be halted up by

inter-spherulitic deformation. As shown in Figure 3.13(b), the lamellar openings are located

between the R-lamellae and the T-lamellae, and the dimensions of these openings are about

50~100nm.

A highlight of debonded morphology around some foreign particles is shown in

Figure 3.13(c). The presence of lamellar openings is still evident inside the debonded

morphology. A detailed discussion on the effect of debonding will be presented in Section

3.7.



Figure. 3.13 SEM images of M-PP(An 140C): (a) spherulitic structure (10000X) (A:
radial-like bright region, B: ring-like bright region, C: foreign particle); (b) lamellar
opening (100000X), (c) debonding morphology around a foreign particle (100000X).
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3.2.2 Crystallographic Characterization

The morphological differences of the M-PP(An 140C) sample were also confirmed by

comparing the WAXS spectra of the precursor films and the stretched membranes. The

WAXS spectra of PP stretched membranes are shown in Figure 3.14. In comparison to the

WAXS spectra of their precursor films (Figure 3.6), a transition was found in the M-PP(An

140C) sample, which is consistent with the observations in the morphological

characterization. The WAXS spectra of the stretched membranes exhibit two distinct

patterns, a broadened-peak pattern in the M-PP, M-PP(An 100C) and M-PP(An 120C)

samples, and a pattern resembling that of the precursor film in the M-PP(An 140C) sample.

The reasons for the difference in the WAXS spectra are discussed below:

Figure 3.14 WAXS spectra of stretched PP membranes.



60

The Wide Angle X-ray Scattering apparatus used in this study for one-dimensional

examination is also known as a powder diffractometer. A simplified view of this 0-20 Brag-

Brentano setup is shown in Figure 3.15(a). The incident X-ray beam is emitted from the X-

ray generator and collected by detector. The sample is stationed and horizontally placed, and

the observation is made by spontaneously moving the generator and the detector at an angle

0. In a typical 0-20 scan, the diffracted incident beam can only be found in the detector when

the condition of Bragg's law (2 = 2d sin 0 ) is satisfied [71]. A sample with a regular d-

spacing will only show one sharp signal in the 0-20 scan. The presence of a peak represents

the slightly varied d-space due to the imperfect packing. The tilted surfaces (Figure 3.15(b)

and (c)) won't show any signal during the scan since the conditions of Bragg's law can not

be matched. As a result, the one-dimensional WAXS examination can only detect a regular

d-spacing parallel to the sample surface. In general, in order to detect the entire possible d-

spacing in the sample, the sample has to be ground into powder to reach a maximum

randomness. This is the reason that this method is also called "powder diffraction".

As mentioned earlier, lamellae grow radially from the center of the spherulite (Figure

1.8(b)), and the spherulite can be regarded as a random sample in powder diffraction.

Therefore, the entire crystallographic forms of PP can be detected in the spherulitic samples

as shown in Figure 1.17(b). On the other hand, the crystallographic properties of the

spherulites become anisotropic when they are deformed and elongated because lamellae are

also broken and oriented at the same time. Some of the earlier peaks might not be found due

to the resulting anisotropy. In other words, the degree of randomness (or the degree of

orientation) of the sample could be described if certain characteristic peaks can be related to

the direction of orientation.
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Figure 3.15 Introduction to one dimensional WAXS examination on inter/intra-spherulitic
deformation: (a) sample position matched Bragg's law, (b) and(c) sample position does not
match Bragg's law, (d) schematic indication of the plane group I (parallel to lamellae packing
direction) [15], (e) aligned broken lamellae along stretching direction [21].

The main crystallographic planes of the a-form (Figure 3.5(a)) can be further

categorized into two plane groups. The plane group I includes α1  (110), a2 (040) and a3

(130) peaks which are normal to the (001) plane (c-axis) as shown in Figure 3.15(d). The

plane group II is the lumped a4 ((111), (041) and (131)) peak which are inclined to the

surface of lamellae [72]. Both plane groups can be detected within the non-oriented

spherulitic samples as shown in Figure 3.6.

For all stretched membranes, broader peaks were observed due to the broken

lamellae. Furthermore, the plane group II is almost undetectable in the M-PP, M-PP(An
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100C) and M-PP(An 120C) samples, but is still apparent in the M-PP(An 140C) sample.

Ideally, in a fully oriented sample (c-axis aligned along stretching direction), only the plane

group I can be detected since powder diffraction only detects the crystallographic planes

parallel to sample surface. In the samples containing deformed spherulites, the broken

lamellae are oriented by cold drawing after the occurrence of intra-spherulitic deformation.

The appearance of the plane group I is expected since the broken lamellae are oriented along

the stretching direction as shown in Figure 3.15(e). At the same time, the absence of the

plane group II should become more evident at a highly oriented sample. This is shown in the

M-PP, M-PP(An 100C), and M-PP(An 120C) samples.

The presence of the plane group II in the M-PP(An 140C) sample represents a less

oriented lamellar structure and a less deformed spherulitic structure. Since all the samples

were stretched far beyond their yielding point without breaking, a less deformed spherulitic

structure implies the occurrence of inter-spherulitic deformation in the M-PP(An 140C)

sample. As a result, the one-dimensional WAXS provide a rapid examination method to

distinguish inter-spherulitic and intra-spherulitic deformation.

On the other hand, the presence of T-lamellae should have no influence on the

WAXS examination. There are two reasons for that. Firstly, the difference between R-

lamellae and T-lamellae is on the lamellar growing direction not on their crystallographic

features (Figure 1.18(b)). Secondly, the disappearance of plane group II is due to the

alignment of broken lamellae towards the stretching direction, and the occurrence of

orientation (initiated by intra-spherulitic deformation and prevented by inter-spherulitic

deformation) is rather dependent on the thickness of the lamellae instead of their types.

Furthermore, the WAXS examination provides an evidence of inter-spherulitic deformation
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within a lamellar scale since the unit cell resides in the lamellae. WAXS examination could

be an important characterization tool since morphological observation would be limited as

spherulites are becoming smaller as in the case of nucleated polypropylene.

The concept of using the crystallographic differences from WAXS spectra to confirm

the occurrence of inter-spherulitic deformation can be further illustrated with the Celgard ®

2400 polypropylene membrane. In the Celgard ® process, the row lamellae are highly oriented

along the stretching direction as shown in Figure 1.8 and Figure 1.10. A comparison of

WAXS spectra of sample with spherulitic structure (F-PP, F-PP(An 140C), and M-PP(An

140C)) and oriented structure (M-PP and Celgard ® 2400 PP membrane) is shown in Figure

3.16. The well resolved peaks of plane group I in the Celgard® 2400 PP membrane (Figure

3.16) imply a better chain packing morphology within the row lamellar structure.



Figure 3.16 Comparison of WAXS spectra of samples with inter/intra-spherulitic
deformation. (Celgard® 2400 represents a fully oriented PP films)

64
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3.2.3 Porous Structure Characterization

Based on the morphological and crystallographic analysis of the stretched PP membranes, the

concept of initiating inter-spherulitic deformation by enhancing inherent spherulitic integrity

has been demonstrated. Furthermore, by taking advantage of the cross-hatched lamellar

structure of α-PP, a novel porous structure with pore size around 50 ~ 100 nm appears to

have been created by the combination of intra-spherulitic and inter-spherulitic deformation.

Preliminary characterization results of the porous structure are shown in Table 3.3.

The pore interconnectivity of stretched membranes was tested by methanol permeation. The

bubble point pressure for the test was not high due to the low surface tension of methanol

vis-à-vis the critical surface tension of polypropylene. The precursor films were tested first

and no permeation was detected up to 24 hours. For the stretched membranes, the methanol

flux decreased with increasing annealing temperature, and became practically zero in the

M-PP(An 120C) sample. The methanol flux was regained in the M-PP(An 140C) sample. From

the previous discussion, the M-PP, M-PP(An 100C), and M-PP(An 120C) samples

underwent intra-spherulitic deformation and showed morphological similarity such as a

transparent appearance (Figure 3.8) and an elongated morphology (Figure 3.9). As

mentioned, the interconnectivity of intra-spherulitic deformation is poor due to its arbitrary

location in spherulites, and should show less permeability in the absence of large defects.

The reason for the high methanol flux in the non-annealed M-PP sample might be due to the

presence of cracks developed during stretching, which are indicated by an arrow in Figure

3.9(a). The declining methanol flux with increasing annealing temperature is the result of

fewer defects in the samples with improved crystalline structure. On the other hand, the M-

PP(An 140C) sample underwent mostly inter-spherulitic deformation. There were no cracks
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shown under the optical microscope (Figure 3.9(d)). The interconnectivity of lamellar

openings could increase significantly by the combination of intra- and inter-spherulitic

deformations. Thus, the regained methanol flux in the M-PP(An 140C) sample appears to be

the result of lamellar openings linked up by inter-spherulitic deformation.

Table 3.3 Thermal Analysis and Methanol Permeation of PP Precursor Films and Stretched
Membranes

Properties T. (°C) Crystallinity
(Xc)

*Methanol permeation
(1/m²hr)^a

Precursor films (F)
F-PP 161.9 0.43 No permeation

F-PP(An 100C) 162.4 0.48 No permeation
F-PP(An 120C) 162.2 0.49 No permeation
F-PP(An 140C) 161.5 0.51 No permeation

Stretched membranes (M)
M-PP 162.0 0.42 9.4 ± 3.6

M-PP(An 100C) 162.6 0.46 4 ± 2.3
M-PP(An 120C) 162.9 0.48 <0.1
M-PP(An 140C) 163.1 0.49 4.5 ± 1

* The methanol permeation results were based on the average of four measurements.

The porosity of the stretched membranes (Table 3.4) can be estimated through

crystallinity results from DSC heating scans. The crystallinity differences between precursor

films and their stretched membranes were not significant, which indicates that most of the

crystalline structure is preserved after stretching. The measured sample mass (M M) is always

lower than the estimated mass (Meal). The difference between M M and M—cal indicates the

presence of voids in the stretched membranes. The porosity of the M-PP, M-PP(An 100C),

and M-PP(An 120C) samples is about 0.02-0.06. The low porosity in these cold drawn

samples is the result of polymer chains packing and orientation which is also shown from the



67

morphological and crystallographic analysis. Polymer chain packing and orientation,

however, is interrupted by inter-spherulitic deformation. Those less deformed spherulites

(Figure 3.13(a)) might prevent the lamellar openings from collapsing, and maintain

interconnectivity of the porous structure, as shown in the M-PP(An 140C) sample with a

porosity about 0.18.

Table 3.4 Porosity Estimation of Stretched PP Membranes

Properties *Xc pcal
(g/cm3 )

**t

(gym)
VM

(mm3)
MM
(mg)

Vial

(mm)

Porosity

(c)
M-PP 0.42 0.893 15 26.7 22.6 25.3 0.06

M-PP(An 100C) 0.46 0.897 15  26.7 23.5 26.2 0.02
M-PP(An 120C) 0.48 0.899 16 28.5 24.9 27.7 0.03
M-PP(An 140C) 0.49 0.900 31 55.2 42.1 46.8 0.18

* Crystallinity measurement to calculate porosity was based on one sample having methanol
permeation value close to the averaged value shown in Table 3.3.
** "t" is the thickness of stretched membrane.

3.2.4 a-form Orientation Index for PP Stretched Membranes

As shown in previous sections, the intra/inter-spherulitic deformation can be detected

morphologically (on a spherulite scale) and crystallographically (on a lamellar scale). With

intra-spherulitic deformation, spherulites are deformed and elongated; therefore, lamellae are

also oriented along the stretching direction. A highly oriented lamellar structure is expected

in the cold-drawn region. On the contrary, spherulites are much less deformed with inter-

spherulitic deformation and lamellae are capable of maintaining their isotropy within the

spherulites. Based on the discussion in section 3.2.2, the presence of plane group II (the lump

a4) in the stretched membranes can provide a qualitative evidence for the occurrence of

inter-spherulitic deformation. The quantitative description of this observation is as follows.
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A quantitative characterization of the lamellar orientation using WAXS spectra was

suggested by Trotignon et al. [50]. The a-form orientation index (A) is defined as follows:

where hα1 and hα1 are the heights of the corresponding crystalline peaks taken from

the amorphous background. A = 1 in a fully oriented sample because there is no a 4 peak in

the WAXS spectrum. According to their results [73], A = 0.57 for an isotropic sample.

A comparison of the A values of the precursor films and the corresponding stretched

membranes is shown in Table 3.5 for a given set of stretching conditions (Rs = 12.7 cm/min,

Es = 200%, and T s = 25 °C). The A value for the non—annealed F-PP sample is 0.82, and

slightly decreased with increasing annealing temperature (A = 0.81 of the F-PP(An 100C)

sample and A = 0.80 for the F-PP(An 140C) sample). The somewhat high orientation index

of the precursor films indicates pre-orientation of the chains induced by the extrusion

process, and rearrangement of these chains at the high annealing temperature. The A value of

the non-annealed stretched membrane (M-PP) was 0.98 which indicates a nearly fully

oriented sample and is consistent with the morphological observations. Annealing

temperatures of 100 °C and 120 °C did not promote inter-spherulitic deformation at the

investigated stretching conditions since A = 0.99 for the annealed stretched membrane

M-PP(An 100C) and A = 0.92 for the M-PP(An 120C) sample. However, a higher annealing

temperature of 140 °C did trigger inter-spherulitic deformation which is shown in the M-

PP(An 140C) sample with an A value of 0.62 representing a high degree of an isotropy of the

lamellar structure even of the film was stretched up to 200% of its original length. This value
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is lower than that of its precursor film F-PP(An 140C), and may have resulted from pre-

oriented lamellae within the spherulites that were able to rebound and restore to a more

isotropic status due to the loosened spherulitic boundary during inter-spherulitic deformation.

The results of crystallinity and porosity of the stretched membranes are also

summarized in Table 3.5 Annealing at 140 °C results in the highest crystallinity for both

unstretched and stretched samples. The porosity of the stretched samples, M-PP, M-PP(An

100C), and M-PP(An 120C) samples is low, about 0.02-M.06. However, a higher porosity

(0.18) is observed in the M-PP(An 140C) sample. The low porosity of the samples with a

high a-form orientation index represents the result of chain orientation and packing in these

stretched membranes. On the other hand, the higher porosity of the sample with a low a-form

orientation index indicates that the porous structure (lamellar openings) was preserved by the

less-deformed spherulites.

Table 3.5 The a-form Orientation Index (A) and Porosity of PP Precursor Films and
Stretched Membranes.

Samples Stretching conditions A Crystallinity
(Xc)

Porosity
(6)Es

(%)
Rs
(cm/min)

Ts
(°C)

F-PP 0.82 0.43 -
F-PP(An 100C) _ 0.81 0.48 -
F-PP(An 120C) 0.80 0.49 -
F-PP(An 140C) 0.80 0.51 -
M-PP 200 12.7 25 0.98 0.42 0.06
M-PP(An 100C) 200 12.7 25 0.99 0.46 0.02
M-PP(An 120C) 200 12.7 25 0.92 0.48 0.03
M-PP(An 140C) 200 12.7 25 0.62 0.49 0.18
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3.3 Effect of Extension Ratio on PP Stretched Membranes

The effect of extension ratio on the intra-spherulitic and inter-spherulitic deformations was

investigated by stretching the precursor films F-PP and F-PP(An 140C) at extension ratios

ranging from 100% to 600% at Rs = 12.7 cm/min and Ts = 25 °C. Results are shown in Table

3.6. Some noteworthy images of the stretched membranes are shown in Figure 3.17. A

typical cold-drawn behavior was observed in the non-annealed stretched membranes showing

transparent cold-drawn and non-cold-drawn regions. The proportion of the cold-drawn region

increases and that of the non-deformed region decreases with increasing extension ratio as

shown in Figures 3.17(a) and (b). For the annealed stretched membranes, an opaque

appearance within the stretched region is observed (Figures 3.17(c) and (d)). The width in the

middle of these samples decreased with increasing extension ratio.

Table 3.6 The a-form Orientation Index (A), Crystallinity and Porosity of PP Membranes
Stretched at Different Stretching Ratios.

Samples Stretching conditions A Crystallinity

()Cc)

Porosity

(c)Es
(%)

Rs
(cm/min)

Ts
(°C)

M-PP 100 12.7 25 0.98 0.42 0.04
M-PP 200 12.7 25 0.98 0.42 0.06
M-PP 300 12.7 25 0.98 0.41 0.02
M-PP 400 12.7 _25 0.99 0.41 0.03
M-PP 500 12.7 25 1.00 0.42 0.02
M-PP 600 12.7 25 1.00 0.41 0.02
M-PP(An 140C) 100 12.7 25_ 0.58 0.50 0.22
M-PP(An 140C) 200 12.7 25 0.62 0.49 0.18
M-PP(An 140C) 300 12.7 25 0.74 _ 0.49 0.11
M-PP(An 140C) 400 12.7 25 0.76 0.48 0.09
M-PP(An 140C) 500 12.7 25 0.87 0.47 0.08
M-PP(An 140C) 600 12.7 25 0.91 0.47 0.06
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Figure 3.17 Images of membranes stretched at different Es: (a) M-PP (Es 100%), (b) M-
PP (Es 400%), (c) M-PP(An 140C) (Es 100%), (d) M-PP(An 140C) (Es 400%). Stretching
conditions were Rs 12.7 cm/min and Ts 25 °C.

Figure 3.18 plots the a-form orientation index versus extension ratio. The A values of

the non-annealed samples were about 1. As mentioned in previous sections, the cold-drawing

behavior represents lamellae breaking and alignment along the stretching direction. The

higher extension ratio simply created more cold-drawn regions, and the lamellae in these

regions remained highly oriented. By contrast, the A values of the annealed samples

increased with increasing extension ratio. The A value of the annealed stretched sample at

100% extension ratio was only 0.58; this low value suggests the recovery of pre-oriented

spherulites in the earlier stage of inter-spherulitic deformation. Note that the annealed sample

could be stretched up to 600% of its original length without fracture. This indicates that the

residual lamellae at the separated spherulitic boundary were strong enough to prevent sample

rupture. The spherulites of inter-spherulitic deformation started to orient with increasing
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extension ratio which implied the occurrence of intra-spherulitic deformation at the late stage

of stretching. As a result, the A value of the annealed stretched sample at 600% extension

ratio was 0.91 which was close to that of the fully oriented sample.

Figure 3.18 a-form orientation index (A) of membranes stretched at different E s . Stretching
conditions were Rs 12.7 cm/min and Ts 25 °C.

The porosity of samples produced at different extension ratios is shown in Figure

3.19. The porosity of non-annealed samples was about 0.02~0.06, and did not show a

significant change with extension ratio. Since increasing the extension ratio of the non-

annealed samples only enlarged the cold-drawn region which was already fully oriented, a

similar porosity is expected. The porosity of the annealed samples decreased with increasing

extension ratio, which is consistent with the opposite trend for the a-form orientation index
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(Figure 3.18). Thus, the highest porosity attained so far was about 0.18 at an extension ratio

of 100%. However, a low extension ratio is not necessarily a good strategy to improve

porosity, since the unevenly deformed region at a low extension ratio (Figure 3.17(c)) could

limit the membrane area available for permeation.

Figure 3.19 Porosity of membranes stretched at different Es . Stretching conditions were Rs
12.7 cm/min and Ts 25 °C.

3.4 Effect of Stretching Rate on PP Stretched Membranes

The effect of stretching rate on intra- and inter-spherulitic deformations was investigated by

stretching the precursor films F-PP and F-PP(An 140C) at a stretching rate ranging from

0.25 cm/min to 50.8 cm/min with Es = 200% and T s = 25 °C. Results are shown in Table

3.7. The effect of stretching rate on the a-form orientation index is shown in Figure 3.20.
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The non-annealed samples showed high A values within the investigated range. For the

annealed samples, intra-spherulitic deformation was only evident at the highest stretching

rate (Rs = 50.8 cm/min). An apparent inter-spherulitic deformation with low A values was

found at other stretching rates.

Table 3.7 The a-form Orientation Index (A) and Porosity of PP Membranes Stretched at
Different Stretching Rates (Stretching Temperature 25 °C).

Samples Stretching conditions A Crystallinity

()Cc)

Porosity
(8)Es

(%)
Rs
(cm/min)

Ts
(°C)

M-PP 200 50.8 25 0.99 0.41 0.02
M-PP 200 25.4 25 0.99 0.42 0.03
M-PP 200 12.7 25 0.98 0.42 0.06
M-PP 200 2.54 25 0.99 N/M* N/M
M-PP 200 1.27 25 0.98 N/M N/M
M-PP 200 0.25 25 0.98 N/M N/M
M-PP(An 140C) 200 50.8 25 0.98 0.47 0.03
M-PP(An 140C) 200 25.4 25 0.69 0.48 0.04
M-PP(An 140C) 200 12.7 25 0.62 0.49 0.18
M-PP(An 140C) 200 2.54 25 0.63 N/M N/M
M-PP(An 140C) 200 1.27 25 0.67 _ N/M N/M
M-PP(An 140C) 200 0.25 25 0.72 N/M N/M
*N/M is not measured due to uneven surface of the sample at very slow stretching rate.
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Figure 3.20 α-form orientation index (A) of membranes stretched at different Rs. Stretching
conditions were Es 200% and Ts 25 °C.

In general, polymers show ductile behavior at low stretching rates and brittle behavior

at high stretching rates. In this study, even though all samples showed a ductile behavior with

no sign of fracture, differences in (apparently) similar ductile behaviors can be distinguished

from their microstructures. The ductile behavior of the non-annealed samples is the result of

lamellae breaking and orientation inside the spherulites. However, the ductile behavior

shown in the samples with inter-spherulitic deformation may be due to the presence of tough

residual lamellae at the separated spherulitic boundary. Inter-spherulitic deformation should

be more pronounced at a low stretching rate, since the generated stress could be transmitted

to a weak site, such as a spherulite boundary. On the other hand, intra-spherulitic

deformation would be more favored to occur at a high stretching rate.
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The porosity of the samples produced at different stretching rates (Table 3.7)

confirms the results from the WAXS analysis. The porosity of the annealed samples

increased with decreasing stretching rate. A low porosity (0.03) of the annealed sample at the

highest stretching rate (Rs = 50.8 cm/min) is attributed to the intra-spherulitic deformation.

Since the surface of the stretched membranes became uneven at stretching rates lower than

2.54 cm/min, porosity at low stretching rates could not be measured. Thus, there is an

apparent limitation in using low stretching rates to promote inter-spherulitic deformation.

The localized effects on specific weak sites, such as the boundaries around larger spherulites

that also endure higher stress, become predominant at much lower stretching rates resulting

in an unevenly deformed structure.

3.5 Effect of Stretching Temperature on PP Stretched Membranes

A low stretching temperature of -20 °C was chosen to observe the mechanical response of the

precursor films below the Tg of PP (about -5 °C). Brittle fracture images of samples stretched

at 12.5 cm/min are shown in Figures 3.21(a) and (b). Based on the results shown in Figures

3.8(a) and (d), a cold-drawn appearance was also expected at stretching temperatures higher

than 25 °C (At an increasing temperature above T g , the amorphous phase is more flexible,

and the broken crystalline phase can be oriented more easily). The image of the non-annealed

sample stretched at 70 °C is shown in Figure 3.21(c). Interestingly, even though it was still

transparent, it did not have the same appearance as the typical cold-drawn pattern shown in

Figure 3.8(a). In fact, it had a narrower width in the middle of the deformed region which

resembled the appearance of the annealed sample shown in Figure 3.8(d). On the other hand,

since the inter-spherulitic region contains a high proportion of amorphous phase due to the
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irregularly impinged lamellae, a high stretching temperature should make them more

vulnerable to deformation, and as a result, promote inter-spherulitic deformation. The opaque

appearance of the annealed sample stretched at 25 °C (Figure 3.8(d)) was expected to be

enhanced at a higher stretching temperature. However, a less opaque appearance is observed

in Figure 3.21(d). Surprisingly, at the high stretching temperature, the non-annealed (Figure

3.22(a)) and annealed samples (Figure 3.22(b)) showed similar WARS spectra with well

divided peaks and a small amount of a4 peak. These inconsistent results of the effect of

temperature were further investigated by thermal analysis of the precursor films.

Figure 3.21 Images of membranes stretched at different Ts: (a), (b) Images of M -PP and
M-PP(An 140C) at T s -20 °C respectively; (c), (d) Images of M-PP and M-PP(An 140C) at
Ts 70 °C respectively. Stretching conditions were E s 200% and Rs 12.7 cm/min.
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Figure 3.22 Crystallographic examinations of inter/intra spherulitic deformation: (a) M-PP,
(b) M-PP(An 140C). Stretching conditions were E s 200%, Rs 12.7 cm/min, and Ts 70 °C.

The results of DSC heating scans of the F-PP and F-PP(An 140C) samples are

represented in Figure 3.23. For both samples, a clear melting peak at 162 °C is evident,

which represents the melting temperature of the major lamellae. For the F-PP(An 140C)

sample, a shoulder with an onset temperature of 141.5 °C is observed which represents the

thickening of lamellae by the annealing process; the onset temperature is corresponding to

the annealing temperature. Similar features are also found in the F-PP(An 100C) and F-

PP(An 120C) samples (Figure 3.7).
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Figure 3.23 DSC heating scan of precursor films (first heating): (a) F-PP, (b) F-PP(An
140C).

As mentioned in Section 3.1.2, a distinct feature of two endothermic discontinuities

T 1 and T2 at 0 °C and 40 °C respectively, was found in both samples (Figure 3.23, insert). In

fact, the two discontinuities were found in all precursor films (annealed or non-annealed)

(Figure 3.7, insert). After keeping the samples at 230 °C for 10 minutes to erase their thermal

history, cooling down to -50 °C and heating for a second time, a single discontinuity is

shown at -5 °C (Figure 3.24, insert), and a melting peak at 160 °C (Figure 3.24). The onset of

F-PP(An 140C) disappeared in the second heating (Figure 3.24(b)). Thus, it is reasonable to

assume that the T i of the first scan represented the conventional T g of polypropylene (-5 °C),

and that T2 is not related to melting of the crystalline domains since it would have
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disappeared with annealing at high temperatures. The presence of a second relaxation (above

Tg) of PP could be explained with the concept of the rigid-amorphous fraction (RAF).

Figure 3.24 DSC heating scan of precursor films (second heating): (a) F-PP, (b) F-PP(An
140C).

The existence of RAF in semicrystalline polymers has been studied for two decades

[74, 75]. Since polymer chains are continuous across the amorphous phase and crystalline

phase, RAF is an interfacial amorphous layer between these phases, whose chain mobility is

restricted due to the locking segments at the crystalline phase (lamellae) (Figure 3.25(a)). As

a consequence, the existence of RAF results in an increase in glass transition temperature or

its broadening. There is little RAF at the spherulitic boundary due to the more mobile entrant

chains from the non-stacked impinged lamellae [76] (Figure 1.8(b)). The amount of
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amorphous phase corresponding to the second endothermic discontinuity suggests that RAF

is built up inside the spherulites, where the amorphous phase between lamellar stacks should

be more restricted due to the intermeshed morphology of R-lamellae and T-lamellae. The

resultant confinement by the lamellar structure could be emphasized by the amorphous

region surrounded by R-lamellae and T-lamellae that could be called lamellar "wells" (Figure

3.25(b)). The expected high proportion of T-lamellae in the spherulites of the precursor film

may be related to fast cooling during the extrusion process.

The effect of stretching temperature on the deformation mechanism of the PP

precursor films with significant amount of RAF can then be explained as follows: (1) As the

stretching temperature is below T g, the samples fracture in a brittle manner due to the frozen

amorphous phase. (2) As the stretching temperature is between Tg and T2, the spherulite

boundary is flexible but the "lamellar wells" are still rigid due to the high proportion of RAF

trapped by T-lamellae and R-lamellae. In the case of weak lamellae (non-annealed sample),

the lamellae around the "lamellar wells" are broken and aligned toward the stretching

direction. The RAF alone is not strong enough to hold up the morphology. As a result, a

typical cold-drawn appearance is shown. However, in the case of strong lamellae (annealed

sample), the combined strength of lamellae and RAF is sufficiently high to hold up the

"lamellar wells" and the spherulitic morphology; as a result, inter-spherulitic deformation is

taken place. (3) As the stretching temperature is higher than T2, the entire amorphous region

is flexible, and the effect of RAF is minimized. The "lamellar wells" can not provide the

strength to sustain the morphology. The lamellae could break down or slip from the lamellar

knots, which would depend on the strength of the lamellae. As a result, the annealed lamellae

can still be oriented without catastrophic cold-drawn deformation.
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Figure 3.25 Origin of enhanced RAF in PP precursor films (a) concept of RAF [74] (b)
lamellar "well" in the cross-hatched α-PP as a possible source for enhanced RAF.

Figure 3.26 shows the effect of the stretching rate on the α-form orientation index at a

stretching temperature of 70 °C. All non-annealed and annealed samples appear highly

oriented. Compared to Figure 3.14 where annealed samples showed low orientation at low

stretching rates at 25 °C, the results support the proposed role of RAF , in preventing

intra-spherulitic deformation. The combination of RAF with enhanced strength lamellae seems to

form a criterion for initiating inter-spherulitic deformation. The results of α-form orientation

index, crystallinity and porosity of samples stretched at 70 °C are summarized in Table 3.8.
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Figure 3.26 a-form orientation index (A) of membranes stretched at different R s . Stretching
conditions were Es 200% and T s 70 °C.

Table 3.8 The a-form Orientation Index (A) and Porosity of PP Membranes Stretched at
Different Stretching rates (Stretching Temperature 70 °C)

Samples Stretching conditions A Crystallinity

()Cc)

Porosity

(c)Es
(%)

Rs
(cm/min)

Ts
(°C)

M-PP 200 50.8 70 0.99 0.41 0.03
M-PP 200 25.4 70 0.99 0.42 0.01
M-PP 200 12.7 70 1.00 0.41 0.02
M-PP 200 2.54 70 1.00 N/M' N/M
M-PP 200 1.27 70 0.99 N/M N/M
M-PP 200 0.25 70 0.99 N/M N/M
M-PP(An 140C) 200 50,8 70 0.95 0.49 0.07
M-PP(An 140C) 200 25.4 70 0.95 0.50 0.04
M-PP(An 140C) 200 12.7 70 0.98 0.50 0.05
M-PP(An 140C) 200 2.54 70 0.98 N/M N/M
M-PP(An 140C) 200 1.27 70 0.99 N/M N/M
M-PP(An 140C) 200 0.25 70 0.99 N/M N/M
*N/M is not measured due to uneven surface of the sample at very slow stretching rate.
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3.6 Modification I: Nucleated Polypropylene

3.6.1 Precursor Films Characterization

The concept of utilizing inter-spherulitic deformation for creating polypropylene

microporous membrane has been validated in the previous discussion. In the proposed

method, an important step is to generate strong spherulites in order to utilize the stretching

process to create an interconnected porous structure along spherulitic boundaries. Under the

inter-spherulitic deformation regime, the size of the spherulite plays an important part for the

permeability of the membrane. A modification aimed at reducing spherulite size with a cross-

hatched lamellar morphology can be achieved by using a-nucleated polypropylene (PPN).

The extrusion conditions of the PPN precursor films were the same as those of the PP

precursor films due to their similar rheological characteristics. These PPN precursor films

were also subjected to annealing before stretching.

The optical microscope images of the F-PPN sample are shown in Figure 3.27. The

polarized optical microscope image of F-PPN does not show any spherulite signs of the

spherulite with the Maltese cross pattern (Figure 3.27(b)). This is due to the interference from

very small spherulites. Based on the observation of the F-PP sample (Figure 3.2(b) and (d)),

the spherulite size can be estimated from the size of the granular-like morphology shown in

the optical microscope image. In this case, the granular-like morphology of the F-PPN

sample that indicates the spherulite size should be less than 5 µm (Figure 3.27(a)).

The WAXS spectra of the F-PPN samples with or without annealing are shown in

Figure 3.28. A clear crystallographic a-form is shown in all precursor films, which is similar

to the F-PP samples shown in Figure 3.6. However, the traceable amount of β-form shown in

the F-PP sample does not appear in the F-PPN sample, which indicates that the nucleating
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agent used in the PPN and can only trigger the formation of the a-form crystal. On the other

hand, the weak a4 peak of the F-PPN samples implies a pre-oriented spherulitic structure in

the precursor film which might be due to the early crystallization triggered by the nucleating

agent.

Figure 3.27 Images of spherulites produced at low stress conditions (F-PPN ) (400X): (a)
optical microscope images, (b) polarized optical microscope images.

Figure 3.28 WAXS spectra of PPN precursor films with or without annealing.
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Figure 3.29 shows DSC heating curves of the PPN precursor films with and without

the annealing treatment. The results of melting temperatures and crystallinity of these

samples are summarized in Table 3.9. The melting temperature of F-PPN is about 157 °C,

and is close to that of F-PP sample. Annealing increases crystallinity, however, the main

melting peak is almost unchanged. The slightly lower melting temperature and crystallinity

of F-PPN samples might be due to the effect of less perfect packing. It is known that the

crystallization temperature of the nucleated PP is higher than that of the non-nucleated PP.

The crystallization temperature of PPN is about 130 °C and that of PP is about 113 °C

(Figure 3.30). In PPN, the number of nucleating sites is increased dramatically and the

growth of lamellae is limited by their interference from one another.

Similarly to the F-PP samples, a discontinuity appears in all F-PPN samples and the

onset of the discontinuity is related to the annealing temperature. As previous discussion in

Section 3.1.2, this discontinuity represents the result of lamellae thickening during annealing.

In addition, the existence of a second endothermic discontinuity (T2) is also shown in the

F-PPN samples (Figure 3.29, insert). This provides another proof for the presence of the

amplified RAF due to the cross-hatched lamellar morphology of a-form.



Figure 3.29 DSC heating curves of PPN precursor films: (a) F-PPN, (b) F-PPN(An 100C),
(c) F-PPN(An 120C), (d) F-PPN(An 140C).

•

Table 3.9 Thermal Analysis of PPN Precursor Films

Samples Onset of the discontinuity (°C) Tn, (°C) Crystallinity ()(c)
0.43F-PPN NA 157.9

F-PPN(An 100C) 101.9 158.0 0.44
F-PPN(An 120C) 120.2 157.5 0.46
F-PPN(An 140C) 142.9 156.4 0.49

87
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Figure 3.30 DSC cooling curves of PPN precursor films: (a) PP, (b) PPN.

3.6.2 Stretched Membranes Characterization

From the characterization of the precursor films, the F-PPN samples exhibit very similar

lamellar characteristics as those in the F-PP samples except of their smaller spherulite size.

The stretching conditions of M-PPN samples were the same as those in the M-PP samples,

i.e. Rs = 12.7 cm/min, Es = 200%, and Ts = 25 °C. The macroscopic visual images of

stretched PPN membranes are shown in Figure 3.31. A transition of the membrane

appearance with increasing annealing temperatures (from transparent to opaque) is observed,

which resembles that of the stretched PP membranes shown in Figure 3.8. As discussed

earlier, opacity seems to represent the occurrence of inter-spherulitic deformation. However,
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a morphological examination of the stretched membrane by optical microscope (Figure 3.32)

did not show this difference due to the presence of very small spherulites.

Figure 3.31 Images of stretched PP N membranes: (a) M-PPN, (b) M-PPN(An 100C), (c) M-
PPN(An 120C), (d) M-PPN(An 140C), (the clamp positions are indicated by white dotted
lines)

Figure 3.32 Optical microscope images of PPN stretched membranes (400X): (a) M-PPN,
(b) M-PPN(An 140C).

SEM images of M-PPN(An 140C) are shown in Figure 3.33. Discrete dark regions

surrounded by continuous bright ones are shown in Figure 3.33(a), and this seems to confirm

the occurrence of inter-spherulitic deformation. The lamellar openings (pores) are evident in
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Figure 3.33(b), and the dimensions of these pores (50~100 nm) are about the same as in the

M-PP(An 140C) sample (Figure 3.13(b)).

Figure 3.33 SEM images of M-PPN(An 140C). (a) 5000X. (b) 100000X.
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The occurrence of inter-spherulitic deformation in the M-PPN(An 140C) sample can

be confirmed by WAXS examination as shown earlier for the M-PP(An 140C) sample

through the presence of the a4 peak. Crystallographic examination is particularly useful in

this case since morphological examination would be limited by the small spherulite size with

non-distinct spherulite boundaries. Furthermore, crystallographic examination detects the

transition on a lamellar scale of the entire sample, and is not influenced by other

characteristics present on the sample surface. The WAXS spectra of the PPN samples are

shown in Figure 3.34. The presence of the a-form is evident in the PPN precursor films

(Figure 3.28). The transition of the membrane appearance (from transparent to opaque) in

Figure 3.31 implies the occurrence of inter-spherulitic deformation in the M-PPN(An 140C)

sample. As expected, the a4 peak appears only in the M-PPN(An 140C) sample. The

disappearance of the a4 peak in the M-PPN, M-PPN(An 100C) and M-PPN(An 120C)

samples is consistent with the oriented appearance shown in Figure 3.31.

Figure 3.34 WAXS spectra of PPN stretched membranes.
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Thermal analysis and methanol permeation results of the PPN samples are shown in

Table 3.10. Similarly to the trend observed in the PP samples (Table 3.3), the crystallinity

increased with increasing annealing temperature, and slightly decreased after stretching.

Interestingly, there was almost no methanol permeation in the oriented PPN samples (M-

PPN, M-PPN(An 100C) and M-PPN(An 120C)) as also observed in the M-PP(An 120C)

sample (Table 3.3). This may imply that the formation of the cracks which caused high

methanol permeation in the other oriented PP samples (M-PP and M-PP(An 100C)) is limited

in the case of PPN samples. On the other hand, a dramatic increase in methanol permeation

was found in the M-PPN(An 140C) sample. The porosity estimations of stretched PPN

membranes shown in Table 3.11 are also increased dramatically to 0.29 due to the occurrence

of inter-spherulitic deformation.

The results of methanol permeation of M-PP samples can be better comprehended by

comparing with M-PPN samples. The comparison by using a-form orientation index and

methanol permeation is shown in Figure 3.35. The occurrence of inter-spherulitic

deformation can be identified from the low A values of the M-PP(An 140C) (Figure 3.35(a))

and M-PPN(An 140C) (Figure 3.35(c)) samples. The high A values of other samples

represent the predominant intra-spherulitic deformation. The separated lamellar structure of

intra-spherulitic deformation can not be utilized as effective porosity because of the random

location of the pores after fibrillation. Therefore, the regained methanol permeation in the M-

PP(An 140C) sample and the significant increase in permeation of the M-PPN(An 140C)

sample are based on same mechanism, i.e. the inter-spherulitic deformation.
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Table 3.10 Thermal Analysis and Methanol Permeation of PPN Precursor Films and
Stretched Membranes

Properties T., (°C) Crystallinity
(Xc)

*Methanol permeation
(1/m²hr)^a

Precursor films (F)
F-PPN 157.9 0.43 No permeation

F-PPN(An 100C) 158.0 0.44 No permeation
No permeation
No permeation

F-PPN(An 120C) 157.5 0.46
F-PPN(An 140C) 156.4 0.49

Stretched membranes (M)
M-PPN 161.9 0.41 <0.1

M-PPN(An 100C) 158.9 0.42 <0.1
M-PPN(An 120C) 158.1 0.44 <0.1
M-PPN(An 140C) 158.6 0.46 18.7 ± 2.2

* The methanol permeation results were based on the average of four measurements.

Table 3.11 Porosity Estimation of Stretched PPN Membranes

Properties *Xc pcal
(g/cm3 )

**t
([1,m)

VM
(mm3 )

MM
(mg)

Vcal
(mm3 )

Porosity
(c)

M-PPN 0.41 0.892 17 30.3 26.1 29.1 0.04
M-PPN(An 100C) 0.42 0.893 18 32.1 28.2 31.3 0.02
M-PPN(An 120C) 0.44 0.895 16 28.5 - 24.1 26.8 0.06
M-PPN(An 140C) 0.46 0.897 33 58.8 41.3 45.7 0.29

* Crystallinity measurement to calculate porosity was based on one sample having methanol
permeation value close to the averaged value shown in Table 3.10.
** "t" is the thickness of stretched membrane.
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Figure 3.35 Comparison of PP and PPN stretched membranes: (a) a-form orientation index
of M-PP samples, (b) methanol permeability of M-PP samples, (c) a-form orientation index
of M-PPN samples, (d) methanol permeability of M-PPN samples.

The effect of stretching ratio on the M-PPN and M-PPN(An 140C) samples is shown

in Figure 3.36 and Figure 3.37, and the porosity of these membranes is summarized in Table

3.11. A surprising similarity between the PP and the PPN systems validate the previous

discussion on the selecting of processing conditions for inter-spherulitic deformation.



Figure 3.36 α-form orientation index (A) of PPN membranes stretched at different Es .
Stretching conditions were Rs 12.7 cm/min and T s 25 °C.
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Figure 3.37 Porosity of PPN membranes stretched at different E s . Stretching conditions were
Rs 12.7 cm/min and Ts 25 °C.
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Table 3.12 The a-form Orientation Index (A) and Porosity of PPN Membranes Stretched at
Different Stretching Ratios.

Samples Stretching conditions A Crystallinity
(Xe)

Porosity
(c)Es

(%)
Rs
(cm/min)

Ts
(°C)

M-PPN 100 12.7 25 0.98 0.40 0.03
M-PPN 200 12.7 25 0.98 0.40 0.04
M-PPN 300 12.7 25 0.98 0.39 0.04
M-PPN 400 12.7 25 0.98 0.40 0.04
M-PPN 500 12.7 25 0.98 0.39 0.02
M-PPN 600 12.7 25 0.99 0.40 0.02
M-PPN(An 140C) 100 12.7 25 0.77 0.45 0.33
M-PPN(An 140C) 200 12.7 25 0.79 0.44 0.29
M-PPN(An 140C) 300 12.7 25 0.83 0.45 0.20
M-PPN(An 140C) 400 12.7 25 0.84 0.44 0.19
M-PPN(An 140C) 500 12.7 25 0.91 0.44 0.08
M-PPN(An 140C) 600 12.7 25 0.91 0.44 0.08

The stress-strain curves of the M-PP(An 140C) and M-PPN(An 140C) samples along

the machine (MD) and transverse directions (TD) are shown in Figure 3.38. Both membranes

have high MD tensile strength and lower TD tensile strength. Along the MD, the M-PPN(An

140C) sample is stronger than the M-PP(An 140C) sample but fails at the lower strain (90%

versus 120%). Along the TD, both samples show similar ductile behavior and can be drawn

up to 500% of their original length. These results seem inconsistent with the assumption of

better biaxial mechanical properties due to spherulitic morphology. However, the presence of

a spherulitic structure in the PP and PPN stretched membranes is evident from the low a-

form orientation index (Figure 3.14 and Figure 3.34). The low strength in the TD might be

due to the presence of pre-oriented spherulitic structures as showing by the relatively high a-

form orientation index in the precursor films (Figure 3.6 and Figure 3.28). As a result, the

different tensile strength values in MD and TD show the importance of generating a less pre-

oriented spherulitic morphology to ensure better biaxial mechanical properties.
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Figure 3.38 Stress-strain curve of the M-PP(An 140C) and M-PPN(An 140C) samples along
machine direction (MD) and transverse direction (TD). (the sample gap was 1.3 cm, and the
sample was stretched by 2.5 cm/min at 25 °C)

3.7 Modification II: Immiscible blend

Modification II of the proposed membrane fabrication method is to create a permeation

shortcut by utilizing a debonded morphology around foreign particles as shown in Figure

3.13(c). The population of the foreign particles can be increased dramatically by adding an

artificial impurity such as an immiscible polymer or inorganic fillers. There are two reasons

for choosing PS as a second phase. Firstly, PS has relatively high glass transition temperature

(100 °C) and is less-deformable during room temperature stretching conditions. Secondly,

the PP/PS viscosity ratio is about unity over a wide range of shear rates, which meets the

requirements for good dispersion [60]. The PP/PS 90/10 blend was mixed by dry blending,

and a twin screw intermeshing extruder was used to improve the quality of compounding.

The PPN/PS 90/10 blend was compounded under the same conditions due to the similar

rheological properties of PPN to PP. The SEM images of the fracture surfaces of pellets of
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PP/PS and PPN/PS blends shown in Figure 3.39 indicate a fine PS phase with a size of about

1 that is well-dispersed in both systems. The blends were then extruded into films,

annealed and stretched at the same conditions used in the PP and PPN systems.

Figure 3.39 SEM image of fracture surface of immiscible blends (5000X): (a) PP/PS 90/10
by weight, (b) PPN/PS 90/10 by weight.
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SEM images of the PP/PS and PPN/PS stretched membranes are shown in Figure

3.40. The highlights of debonding morphology are shown in Figure 3.41. From previous

discussions, inter-spherulitic deformation only occurs in the precursor films annealed at 140

°C. In all samples, a debonded morphology around the dispersed PS phase is evident. The

degree of debonding depends on the size of dispersed phase as a result of the stress

concentration around the dispersed phase. Furthermore, the occurrence of premature

debonding around the larger dispersed phase restricts the occurrence of debonding around

other smaller dispersed domains. Thus, a narrow size distribution of the dispersed phase

seems to be important to ensure a uniform debonded morphology.

Figure 3.40 SEM images of stretched membrane prepared with immiscible blends (5000X):
(a) M-PP/PS, (b) M-PP/PS(An 140C), (c) M-PPN/PS, (d) M-PPN/PS(An 140C) .



Figure. 3.41 SEM images of debonded morphology (50000X): (a) M-PP/PS, (b) M-
PP/PS(An 140C).
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Debonding affects the deformation of the PP matrix phase in several ways. A

precursor film made of an immiscible blend is shown in Figure 3.42(a). In the stretched

membranes (Figures 3.42(b), (c) and (d)), a blank matrix represents the occurrence of

intra-spherulitic deformation (this resembles the non-permeable membrane) and a mesh matrix

represents the occurrence of inter-spherulitic deformation (this resembles the highly

permeable membrane of the sample annealed at 140 °C). The debonded morphology is only

useful when inter-spherulitic deformation is assured.

Case I (Figure 3.42(b) represents good-adhesion between matrix and dispersed phase.

The presence of the dispersed phase increases the stress level in the membrane during the

stretching process and promotes the occurrence of inter-spherulitic deformation. Therefore,

there is no permeation short-cut in this case. Case II (Figure 3.42(c) represents poor-adhesion

between matrix and dispersed phase (this is often the case in an immiscible blend). The

formation of debonded morphology compensates for the energy absorbed by stretching and

limits the occurrence of inter-spherulitic deformation, and as a result, limits the permeability

of membrane. Case III (Figure 3.42(d) represents a combination of debonded morphology

and inter-spherulitic deformation. The membrane should have high permeability and still

show confined porous structure as the loading of dispersed phase lowing than percolation

threshold.
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Figure 3.42 Schematic representation of debonding and inter/intra- spherulitic deformation.

The WAXS spectra of the stretched membranes based on the PP/PS blend are shown

in Figure 3.43. The presence of PS does not affect the WAXS spectrum due to its amorphous

nature. The results of the precursor blend films are similar to those of the a-form

predominant PP films. The results of the stretched blend membranes show a weak signal for

plane group II even if the sample was annealed at 140 °C (Figures 3.41(d) and (f)), which

implies the lack of inter-spherulitic deformation. This might be due to the effect of energy

compensation by the occurrence of debonding.



Figure 3.43 WAXS spectra of immiscible blends: (a) F-PP/PS, (b) F-PP/PS(An 140C), (c)
M-PP/PS, (d) M-PP/PS(An 140C), (e) F-PPN/PS, (f) F-PPN/PS(An 140C), (g) M-PPN/PS,
(h) M-PPN/PS(An 140C).
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The a-form orientation index and methanol permeation of the stretched blend

membranes are shown in Figure 3.44. Comparing with the results of the PP films (Figure

3.35), a higher orientation observed in the blends has relatively high methanol permeation. In

this case, the methanol permeation which represents the membrane interconnectivity is quite

complicated due to the interaction between debonding and intra/inter-spherulitic deformation.

The results of the membrane characterization are summarized in Table 3.13 and Table 3.14.

In general, the porosity of M-PP/PS and M-PPN/PS samples are higher than those of the M-

PP and M-PPN samples due to the debonded morphology. However, no clear conclusion on

the effect of annealing on porosity can be drawn at this moment. The relatively low methanol

permeation in the M-PP/PS and M-PP/PS(An 140C) samples (Figure 3.42(b)) might

represent the combination of debonding with a limited intra/inter-spherulitic deformation. On

the other hand, the high methanol permeation in the M-PPN/PS(An 140C) sample might

represent the optimum combination of these structures as shown in Figure 3.42(d).
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Figure 3.44 Comparison of PP/PS and PPN/PS stretched membranes: (a) α-form orientation
index of M-PP/PS samples, (b) methanol permeability of M-PP/PS samples, (c) α-form
orientation index of M-PPN/PS samples, (d) methanol permeability of M-PPN/PS samples.

Table 3.13 Thermal Analysis and Methanol Permeation of PP/PS and PPN/PS Precursor
Films and Stretched Membranes

Properties Tm (°C) Crystallinity

(Xc)

*Methanol permeation
(1/m²hr)^a

Precursor films (F)
F-PP/PS 161.0 0.41 No permeation

F-PP/PS(An 140C) 160.4 0.49 No permeation
F-PPN/PS 157.8 0.45 	 No permeation

F-PPN/PS(An 140C) 156.2 0.49 No permeation
Stretched membranes (M)

M-PP/PS 163.7 0.41 3.4 ± 1.1
M-PP/PS(An 140C) 163.2 0.46 2.3 ± 0.7

M-PPN/PS 161.9 0.43 13.6 ± 1.7
M-PPN/PS(An 140C) 159.3 0.49 26.9 ± 0.8

* The methanol permeation results were based on the average of four measurements.
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Table 3.14 Porosity Estimation of Stretched PP/PS and PPN/PS Membranes

Properties *Xc peal
(g/cm3 )

**t
(11m)

VM
(mm3 )

MM
(mg)

Vial
(mm3)

Porosity
(ε)

M-PP/PS 0.41 0.893 32 57.0 37.1 41.4 0.38
M-PP/PS(An 140C) 0.46 0.897 32 57.0 39.8 44.6 0.28

M-PPN/PS 0.43 0.895 20 35.6 25.2 27.9 0.27
M-PPN/PS(An 140C) 0.49 0.900 25 44.5 30.2 33.3 0.33

* Crystallinity measurement to calculate porosity was based on one sample having methanol
permeation value close to the averaged value shown in Table 3.13.
** "t" is the thickness of stretched membrane.

The thermal analysis of the blend precursor film, F-PP-PS(An 140C) is shown in

Figure 3.45. The results of F-PP and F-PP(An 140C) are also shown for comparison. A

discontinuity related to its annealing temperature is obvious in the F-PP/PS(An 140C) sample

(Figure 3.45(c)). Since PP and PS are immiscible, it is expected the DSC heating scan will

show two distinct glass transition temperatures for PP (-5 °C) and PS (100 °C), respectively.

On the other hand, an endothermic discontinuity (T2) around 40 °C which represents the

enhanced RAF due to the T-lamellae is also expected. In fact, all featured endothermic

discontinuities are observed in the first heating scan (Figure 3.45(c), insert). Furthermore, the

expected disappearance of T2 in the second heating is also observed in Figure 3.46.

From previous discussions, the T2 indicates the presence of enhanced RAF by the T-

lamellae and the position of T2 should represent the degree of confinement of the RAF. The

higher T., in the F-PP/PS(An 140C) sample than those in the F-PP and F-PP(An 140C)

samples (Figure 3.45, insert) implies a more confined RAF in the blend. Since the stretching

temperature should be limited in-between T g of PP and T2 in order to trigger inter-spherulitic

deformation, a higher T2 in the blend implies an alternative towards the expansion of the

range of suitable stretching temperatures.



Figure 3.45 DSC heating scan of precursor films (first heating): (a) F-PP, (b) F-PP(An
140C), (c) F-PP/PS(An 140C).

107

Figure 3.46 DSC heating scan of precursor films (second heating): (a) F-PP, (b) F-PP(An
140C), (c) F-PP/PS(An 140C).



CHAPTER 4

CONCLUSIONS AND RECOMMENDATIONS

4.1 Conclusions

A novel solventless microporous membrane fabrication method via spherulitic deformation

of PP has been described in this study. The spherulitic structure in the precursor films was

created under low-stress extrusion conditions. A porous structure was generated by annealing

and stretching following the extrusion process. Polypropylene was selected due to its unique

cross-hatched lamellar morphology of a-form. By taking advantage of the feature of

tangential lamellae, a microporous structure was created by combining intra-spherulitic and

inter-spherulitic deformation. A tangential lamellae-rich spherulite was created and identified

with a positive birefringence sign. A sequential annealing process improved the crystalline

structure, and in particular the thickness of the tangential lamellae.

The inter/intra spherulitic deformation was identified morphologically by optical and

scanning electron microscopy. A stretched membrane with additional inter-spherulitic

deformation appears to have higher porosity and better pore interconnectivity than other

membranes containing only intra-spherulitic deformation. A less deformed spherulitic

structure appears to prevent the lamellar openings from totally collapsing and maintain the

interconnectivity. A simple WAXS examination can provide a quick methodological

characterization of the inter-spherulitic deformation. The microscopic evidences representing

the occurrence of intra/inter spherulitic transition on a spherulitic scale can also be detected

on a lamellar scale by WAXS examination. A highly oriented sample showed a high value of
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showed a low value of a-form orientation index. Porosity measurements of the stretched

membranes showed a consistent correlation with their a-form orientation index. A highly

interconnected solvent-resistant porous membrane having a pore size in the range of 50-100

nm and an estimated porosity of 0.18 was developed in the non-nucleated PP samples of this

study.

There are two potential modifications to the proposed novel membrane fabrication

process in order to improve the membrane performance. The first modification is to reduce

the spherulite size by using nucleated polypropylene. The presence of smaller spherulites in

the membrane produced under the same conditions from a-nucleated PPN samples resulted

in higher methanol permeability and an estimated porosity of 0.29. The second modification

is to utilize interfacial debonding between two different phases to enhance permeability. The

debonded structure could be created by using an immiscible polymer blend system or a

polymer containing fillers. The selection of PS as a second phase was based: a) on its

relatively high Tg and, hence, low deformability during the room temperature stretching, and

b) the viscosity ratio of PP/PS of about unity over a wide range of shear rates, which meets

the requirements for good dispersion. High permeability was also observed in the membrane

made from the immiscible blend. However, the formation of debonded morphology

compensates for energy absorbed by stretching and limits inter-spherulitic deformation.

The post-processing boundary conditions for utilizing intra/inter spherulitic

deformation to create microporous membranes by lamellar separation have been delineated.

The investigated conditions included: annealing temperature, extension ratio, stretching rate,

and stretching temperature. A fixed set of extrusion conditions was chosen for producing

precursor films with similar spherulitic properties. The increasing extension ratio did not
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change the microstructure of the deformed region in the intra-spherulitically deformed

sample where the proportion of the cold-drawn region increased and that of the non-

deformed region decreased with increasing extension ratio. However, the microstructure of

the inter-spherulitically deformed sample can be modified by orientation with increasing

extension ratio. In this study, the residual lamellae at the separated spherulitic boundaries

were strong enough to prevent sample rupture. Inter-spherulitic deformation became more

pronounced at slow stretching rates, since the stress generated by stretching would have time

to be transmitted to the weak sites, such as the spherulite boundaries. On the other hand,

intra-spherulitic deformation was more favored at a fast stretching rate.

At high stretching temperatures, the expected typical cold-drawn appearance was not

evident in the non-annealed sample, and a less opaque appearance was found in the annealed

sample. These unexpected behaviors are believed to be related to the rigid amorphous

fraction (RAF) trapped inside the cross-hatched lamellar morphology of the a-PP. DSC

thermal analysis of the precursor films showed two distinct endothermic discontinuities; the

first was at 0 °C (T i ) and the other was at 40 °C (T2). T1 is believed to be the conventional T g

of polypropylene, and T2 represents the significant amount of RAF trapped within the

"lamellar wells" where the amorphous phase is surrounded by R-lamellae and T-lamellae.

The effect of RAF is minimized at stretching temperatures higher than T2, and the amorphous

phase in the "lamellar wells" can not provide sufficient strength to sustain the lamellar

morphology. The lamellae could break down or slip from the lamellar knots, and the

annealed lamellae can still be oriented without catastrophic cold-drawn deformation. The

presence of a second endothermic discontinuity (T 2) is also shown in the PPN and PP/PS
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samples. The higher T2 in the PP/PS sample imply an alternative toward expansion of the

range of suitable stretching temperatures.

4.2 Recommendations

An important part of this work is to illustrate the concept of using a spherulitic morphology

to create controllable porous structures. Approximate processing criteria for initiating inter-

spherulitic deformation and subsequent characterization methods have been explored. The

preliminary results on two modifications (reduced spherulite size and utilization of an

interfacial debonding morphology) have also been included. There are some interesting

topics that could be pursued as a future work.

Firstly, the effect of the orientation on the spherulitic morphology in the extruded

precursor films is important. The presence of spherulitic morphology with low-orientation

morphology is critical to ensure biaxial mechanical properties in the stretched membranes. At

the same time, reproduction of T-lamellae-rich a-spherulites has to be maintained. Secondly,

the annealing conditions are critical and should be investigated in detail. An in-situ annealing

step during precursor film extrusion could be useful for continuous production. Thirdly,

WAXS provides a quick examination on the occurrence of inter-spherulitic deformation and

a systematic and rapid characterization of the pore structure could be used as a feedback to

regulate the processing conditions. Finally, a multiple-step stretching and biaxial stretching

could be used to enhance membrane performance.

On the other hand, an optimization on the nucleating by adding an a-nucleating agent

could be very useful. The efficiency of nucleating can be regulated by the types and

concentrations of a-nucleating agents. Furthermore, the effect of stress concentration due to
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the dispersed domains in the immiscible blend and the corresponding debonded morphology

needs to be addressed in order to maximize the membrane performance.



APPENDIX A

PORE SIZE CHARACTERIZATION

As mentioned in previous sections, the stretched membranes with high permeability (

M-PP(An 140C) and M-PPN(An 140C)) were obtained due to the inter-spherulitic deformation.

The pore size of these porous membranes appeared to be about 50 ~ 100 nm from SEM

micrographs (Figure 3.13(b)). Even though the porous structure beneath the membrane

surface can somehow be revealed by the debonded morphology shown in Figure 3.13(c), the

issue of pore size and pore size distribution needs to be addressed in greater detail.

A preliminary study for pore size characterization was carried on by particle rejection

tests using zein protein [77] and polystyrene (PS) latex microspheres [78]. The nominal size

of zein protein is about 3 nm and the size of PS latex microsphere suspensions (from Duke

Scientific, Fremont, CA) were 30 nm (5003A) and 300 nm (5030A). The experimental setup

for rejection test is similar to those used in methanol permeation test except the feed solution

contained diluted particles. The a-zein protein was dissolved in 70% ethanol solution and the

PS latex microspheres were suspended in methanol. The usage of 70% ethanol solution and

methanol solution through microporous membranes did not show much difference in the

solvent flux during the rejection test. A VARIAN Cary 50 UV-visible spectrophotometer

(Varian, Palo Alto, CA) was used to determine the concentration of the permeant. The results

of rejection test of membranes with inter-spherulitic deformation and their pore features are

summarized in Table A.1.
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Table A.1 Porosity, Methanol Permeation and Rejections of Zein Protein and PS Latex
(300nm) Particles of PP and PPN Based Stretched Membranes.

Samples Porosity
(E)

Methanol
permeation

(1/m²hr)

Rejection (%)
of zein protein

(D = 3 nm)

Rejection (%)
of PS latex

(D = 300 nm)
M-PP(An 140C) 0.18 4.5 ± 1 2 95

M-PPN(An 140C) 0.29 18.7 ± 2.2 1 95
M-PP/PS(An 140C) 0.28 2.3 + 0.7 2 90

M-PPN/PS(An 140C) 0.33 26.9 ± 0.8 2 95

As expected, the zein rejection of these membranes was low and the PS latex (300

nm) rejection of them was quite high, which is consistent with the observation from SEM

micrographs. A traceable amount of PS latex detected in the permeant might be due to the

residual PS latex deposited on the collecting tube. On the other hand, the results of PS latex

(30 nm) rejection of these membranes are not shown in Table A.1 due to inconsistencies in

measurement. The inconsistency of PS latex (30 nm) was observed due to the shifting peak in

UV spectra (Figure A.1). This might be due to agglomeration of the PS latex (30 nm).

However, this inconsistency was not significant in the larger PS latex (300 nm). A systematic

experiment on agglomeration of PS latex microsphere needs to be conducted since the

estimated pore size is about 50 ~ 100 nm based on SEM observation.
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Figure A.1 UV spectra of PS latex (30 nm and 300 nm) in methanol.

An alternative method to measure pore characteristics is using a Capillary Flow

Porometer (Porous Materials, Inc.) which adapted the principle of bubble point measurement.

Pore size and pore size distribution can be detected with an appropriate selection of wetting

solvents. At this time, this method can measure the pore within the range of 10 nm to 20 µm.



APPENDIX B

ALTERNATIVE SELECTIONS FOR IMMISCIBLE POLYMERIC BLENDS

Hydrophobic semicrystalline major phase /Hydrophilic semicrystalline minor phase

System I: Poly(4-methyl-1-pentene)/Polyethylene vinyl alcohol (PMP/EVOH)

The first system chosen to extend the concept of immiscible blends was Poly(4-methy1-1-

pentene) (PMP)/ Polyethylene vinyl alcohol copolymer (EVOH). PMP was used as a

hydrophobic matrix and EVOH as a hydrophilic dispersed phase. The material properties are

listed in Table B.1. Both polymers are semicrystalline with high melting temperatures. The

immiscible blend was prepared by twin screw extruder compounding. Because of the

mismatched rheological properties, a compatibilizer, Lotader® AX8950, was used to improve

the dispersion of EVOH. Scanning electron microscope (SEM) images of fracture surfaces of

the blends, with or without compatibilizer, are shown in Figure B.1. The EVOH dispersed

phase was broken down to about Slim with the help of the compatibilizer, from 5 to 20 µm

without the compatibilizer.
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Figure B.1 SEM images of fracture surface of blends (a) PMP/EVOH (90/10) (b)
PMP/EVOH/AX8950 (90/10/2).

Table B.1 Material Properties

Polymer Used in
system

Grade Source Density
(g/cm3)

Tg

(°C)
T.
(°C)

T,
(°C)

Melt
Flow
Rate
(g/10min)

Poly(4-methyl- I MX002 Mitsui 0.835 20 235 200 22 (260
1-pentene),
(PMP)

Chemical
America

°C, 5 kg)

Polyethylene I F171B EVALCA 1.19 5 , 7 r 182 158 3.7 (210
vinyl	 alcohol and II °C, 2.16
copolymer, kg)
(EVOH)
Polypropylene II H413- Dow 0.9 -5 162 115 2 (230 °C,
(PP) and III 02Z 2.16 kg)
Ethylene-
methyl
acrylate-
glycidyl
methacrylate
terpolymer,

I Lotader
®

AX8950

ATOFIN
A

0.94 NA NA NA NA

(E/MA/MGA)
Functionalized II ADME Mitsui 0.89 NA NA NA 4.7 (230
polyolefin, (PP R® Chemicals °C, 2.16
type) QF551A kg)
Sulfonated PS III Versa- ALCO 0.8 NA NA NA NA

TL®70 Chemicals
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The precursor films of the blends were extruded by a Brabender single screw extruder

equipped with a sheet die. Membranes were prepared by stretching the precursor films at

different stretching rates (Rs), 0.25 cm/min to 6.25 cm/min, extension ratios (E s), 100% to

200%, and stretching temperatures (T s), 25 °C to 80 °C. Figure B.2 represents the SEM

images of stretched membranes at a stretching temperature between the T g-s of PMP and

EVOH. In the PMP/EVOH system, a debonded structure is observed, which indicates poor

interfacial adhesion between the hydrophobic PMP (nonpolar) and the hydrophilic EVOH

(polar) phases. A craze at the tip of the debonded structure might result from the less ductile

behavior of PMP at low stretching temperature, which is close to its T g, and the higher stress

level around the dispersed phase, which is due to its larger size. In the PMP/EVOH/AX8950

system, a less pronounced debonded structure is shown in Figure B.2(b). A series of

experiments by varying stretching conditions was conducted in the PMP/EVOH/AX8950

system. However, no significant morphological differences in the stretched membranes were

found. There was no methanol permeation up to 24 hour of testing in both cases. This might

be a result of the strong adsorption of energy due to the debonding process induced by the

weak interfacial adhesion.
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Figure B.2 SEM images of stretched membranes (a) PMP/EVOH (90/10) (b)
PMP/EVOH/AX8950 (90/10/2). (Rs = 2.5 cm/min, Ts = 25 °C, and Es = 200%)

System II: Polypropylene/Polyethylene vinyl alcohol (PP/EVOH)

The second system selected for the study was Polypropylene (PP)/ Polyethylene vinyl

alcohol copolymer (EVOH). PP was used as a hydrophobic matrix phase and EVOH as a

hydrophilic dispersed phase. A PP-type adhesive resin, ADMER ® QF551A, was used as a

compatibilizer in this system. Because of the significant mismatch in the rheological

behaviors between PP and EVOH, the compatibilizer was chosen for improving the

interfacial adhesion. However, it could still reduce the size of the dispersed phase effectively.

The preparation of immiscible blends, precursor films, and stretched membranes followed

the procedure described in the previous section. The blend morphologies of PP/EVOH and

PP/EVOH/QF551A are shown in Figure B.3. The effect of compatibilizer concentration and

a two-step mixing protocol on the blend morphology are shown in Figure B.4. The size of the

dispersed phase decreases with increasing compatibilizer concentration. From our previous

study, using the two-step mixing protocol can improve the dispersion of the minor phase. In

the two-step mixing process, EVOH/QF551A was compounded and pelletized first, and then

the blend was compounded with PP. The mixing protocol does not show a dramatic change
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on the blend morphologies of the PP/EVOH/QF551A (Figure B.4(b) and (d)). However, it

does alter the morphology of the stretched membrane.

Figure B.3 SEM images of fracture surface of extruded blends (a) PP/EVOH (90/10) (b)
PP/EVOH/QF551A (90/10/2).

Figure B.4 SEM images of fracture surface of extruded blends (a) PP/EVOH/QF551A
(90/10/2) (b) PP/EVOH/QF551A (90/10/5) (c) PP/EVOH/QF551A (90/10/7.5) (d)
PP/EVOH/QF551A (90/10/5), two-step mixing.



121

The morphology of the stretched membranes (two-step mixing protocol, stretching

temperature between T g-s of PP and EVOH) is shown in Figure B.5. The predominant

morphology in these membranes is debonded pores around a dispersed phase. The numbers

of debonded pores around the smaller dispersed phase, Figure B.5(a), indicates poor

interfacial adhesion between PP/EVOH even in the presence of the compatibilizer.

Debonding happened at a lower stress level around the smaller dispersed phase. On the other

hand, the interfacial adhesion can be improved by the two-step mixing. The lack of small

debonded pores in Figure B.5(b) indicates a better interfacial adhesion around the small

dispersed phase. However, the presence of large debonded pores shows the interfacial

adhesion still was not high enough to prevent debonding at the higher stress level around the

larger dispersed phase. There was no methanol permeation up to 24 hour of testing in these

samples. This might be due to the strong adsorption of energy resulting from debonding

induced by the weak interfacial adhesion.

Figure B.5 SEM images of stretched membranes (a) PP/EVOH/QF551A (90/10/5), one-
step mixing (b) PP/EVOH/QF551A (90/10/5), two-step mixing. (Rs = 2.5 cm/min, T s =
25 °C, and Es = 200%) .
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Hydrophobic semicrystalline major phase /Hydrophilic amorphous minor phase

System III: Polypropylene/Sulfonated Polystyrene (PP/Sulfonated-PS)

Following our earlier work with PP/PS system, it was decided to evaluate a polar/nonpolar

system using PP/Sulfonated PS system. The sulfonated PS was obtained as a powder form.

However, attempts to process it in the present of PP by melt mixing equipment were not

successful due to its lack of a distinct softening temperature. Further experiments were not

conducted for this system.
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