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ABSTRACT

ON THE ROLLING MOTION OF VISCOUS FLUID ON A RIGID
SURFACE

by
Xinli Wang

This thesis considers two closely related problems. First, the influence of insoluble

surfactant at a moving contact line is considered. This work is mostly motivated by

the air entrainment during the coating process where there is a three-phase contact

point (e.g., air, liquid and solid). For moving contact line problems, when the fluid is

assumed to be an incompressible Newtonian fluid and a no-slip boundary condition

is enforced at the solid boundary, the non-integrable stress singularity arises at the

contact line, which is physically unrealistic. The contact angle of 180 ° is considered

as a special case in which the singularity is absent. The previous work showed that

there exists a non-singular local solution in the vicinity of the contact line for any

capillary number. A simplified asymptotic model is used here to find a global solution

with a 180° contact angle. Also the effects of insoluble surfactant are checked and

numerical results show there exists a critical capillary number above which there is

no steady state solution.

The second problem is viscous droplets rolling down a non-wettable inclined

plane. The recent experiments show that the contact angle is very large (close

to 180° ) when a droplet rolls on a super-hydrophobic surface. The biharmonic

boundary element method (BBEM) is used to implement numerical simulations of

rolling motion. The numerical results agree well with the experimental results and

theoretical prediction. Numerical evidence is also found that the stress singularity at

the contact line is alleviated with a 180 ° contact angle. For droplets with insoluble

surfactant on the surface, the finite volume method is used to track the evolution of



surfactant. It shows that the rolling motion is retarded because of Marangoni force

due to nonuniform concentration distribution of surfactant.
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CHAPTER 1

INTRODUCTION

This work is partially motivated by air entrainment in the coating of an axisymmetric

or three-dimensional fiber or two dimensional tape. The coating is a covering that

is applied to an object to protect it or change its physical properties. An example

would be a coating applied to an optical fiber to alter its index of refraction [37].

Tape

Free Surface	 1	 Free Surface

Fluid velocity

Figure 1.1 Sketch of the tape coating. The heavy line refers to a stagnant layer of
surfactant.

Figure 1.1 shows a schematic of tape or fiber coating. In the figure a tape is moving

vertically downward into coating fluid and the speed of the tape is large enough so

that the free surface deforms into a near cusp shape. Usually the tape can be coated

uniformly when it is moved slowly. However, as the speed exceeds a critical value

which depends on material and fluid properties, it is found that air can be entrained

in the fluid in the form of tiny bubbles or long slender filaments of air that project
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into the coating fluid [37]. These can ruin the coating because flaws in the form

of bubbles, blemishes or voids appear in the coating on the tape or fiber surface.

There has been some progress in understanding this entrainment process, but many

questions remain.

Physical considerations suggest that surfactant can play an important role in

the stability of the contact line and have an effect on the process of air entrainment.

When surfactant is present on the free surface, the properties of the free surface change

because of non-uniform distribution of surfactant (see e.g., [5,16]). This results in

a surface tension gradient, the Marangoni force, which can retard the fluid motion

in the vicinity of the free surface. Suppose, for example, that a given surfactant has

small or zero affinity for the coating material, i.e., the tape in figure 1.1, so that it piles

up at the contact line. The accumulation of surfactant leads to a Marangoni force

on the interface which opposes the downward tangential motion of the coating fluid

adjacent to the free surface. When the fluid motion and interface shape are steady,

and the surfactant is assumed to be insoluble and diffusion free, the Marangoni force

completely retards the tangential flow at the interface, so that effectively a "no-slip"

condition appears at points on the free surface where the surfactant concentration is

nonzero. This is analogous to "stagnant cap" surfaces studied in [43]. Conversely, the

fluid exerts a tangential force or drag on the steady interface. We hypothesize that,

for sufficiently large downward tape velocity, the induced Marangoni force will not be

large enough to counteract the drag on a steady state, no slip surface, and that this

will lead to the nonexistence of a steady interfacial shape, and thus to an entraining

flow.

There are several interesting issues related to this work. First of all, when the

tape is immersed in fluid at high enough velocity, the free surface deforms into a near

cusp shape near the contact line. The presence of a contact line makes mathematical

modeling more complicated. A similar flow, but without complication of the contact
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line, is the deformation of a free surface or inviscid bubble in a straining flow. Jeong

and Moffatt [20] considered the deformation of a free surface in a two-dimensional

flow acted by a vortex dipole in the figure 1.2. The undisturbed fluid occupies the

Figure 1.2 Deformation of the free surface by a vortex dipole.

half-space y < 0 and a vortex dipole of strength a is placed at z = —di (z is a

complex variable). Jeong and Moffatt used complex analysis and conformal mapping

techniques to find an exact analytical solution for the steady shapes of the free surface,

which exist for all finite capillary number Ca0  = d , where is the viscosity and 'y

is the surface tension. They also found that the curvature at P on the free surface is

proportional to e32πCa0. Thus, although the steady shape is smooth for all finite Ca 0 ,

it can have a very large curvature at P, which we refer to as a near cusp. Similar steady

near cusp formation at the end of a bubble in a strain flow was found by Siegel [32].

The flow geometry considered by Siegel [32] is shown in Figure 1.3. Here a four-roller

mill is filled with a highly viscous fluid and the rollers rotated in the directions shown,

which produces a strain flow in the neighborhood of a bubble at the center of the mill.

Exact analytical solutions were found for steady state shapes both with and without

surfactant as well as for the time dependent evolution, for rather general far-field

flows. In the case of certain nonlinear far-field flows produced by four rollers [2] and

without surfactant, linearly stable steady state solutions exist for all capillary number

defined as Ca = where it is the viscosity of the outer fluid, G is a parameter



Figure 1.3 An inviscid bubble in a two-dimensional model of Taylor's four roller
mill.

characterizing the strain rate far from the drop, R is the undeformed drop radius, and

70 is the surface tension. The curvature at the end points A and B is exponentially

Large in the capillary number, which is similar to the Moffatt's result. When insoluble,

diffusionless surfactant is present, it piles up at the end points A and B, and in the

steady state, leads to a no-slip boundary condition near these points. The consequence

Df this was found to be that there is a critical capillary number Ca, above which no

steady solution exists. Siegel [33] also generalized the exact solution to include the

time dependence, and showed that in the presence of surfactant and for Q > Q,, the

Free surface evolves into a transient cusp shape (i.e. with the infinite curvature). This

is suggested to be related to tip-streaming [5] or entrainment. Booty and Siegel [28]

studied the influence of insoluble surfactant on an inviscid axisymmetric bubble with

a small aspect ratio involving in zero-Reynolds-number extensional flow. They find

similar behavior, in that in absence of surfactant steady solutions exist for all Q, and

with surfactant, there is a critical value Q, above which steady solutions no longer
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exist. They also derived time-dependent solutions of asymptotic equations for Q >

Qc , which exhibited the tip-streaming behavior, which is analogous to air entrainment

in the coating problem. These all motivate us to consider effect of surfactant on

coating flow as shown in Figure 1.1.

What we are interested is how the contact line moves on a solid substrate if

the no-slip boundary condition is enforced between the fluid and the solid substrate

including at the contact line. The fluid is assumed incompressible and Newtonian.

When this fluid displaces another immiscible fluid across a rigid solid, a nonintegrable

stress singularity arises at the contact line [6], which is physically unrealistic. From a

mathematical point of view, this singularity of the model comes from the velocity

discontinuity at the contact line where, in the reference frame moving with the

substrate, the solid substrate is at rest but the fluid near the contact line has to

move. There are several proposed ways to remove this singularity. The one most

commonly applied is to relax the no slip boundary condition [9, 26]. Another way

which has received much less attention is to set the contact angle to 71 [11,25]. In view

of the importance of a nearly cusped interface morphology prior to air-entrainment

in coating flows, as depicted in Figure 1.1, we are interested in this second way, i.e.,

setting the contact angle to 7r. Benny & Timson [11] (with a sign error corrected

by Dussan [7]) and Mahadevan & Pomeau [25] showed that there exists non-singular

local solution in the vicinity of the contact line for any capillary number. When

surfactant is present at the fluid interface, we suspect that there is a critical capillary

above which steady shapes no longer exist.

The rest of work is organized as follows. In chapter 2, we consider a simplified

problem involving rolling motion of a viscous fluid onto a rigid surface to analyze the

influence of surfactant on an air entrainment during coating processes. In chapter

3, we consider a viscous drop rolling down an inclined non-wettable plane. The

boundary element method is applied to numerically study this problem. There have
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been a number of numerical studies of drops and films moving down an inclined

solid substrate. Most of them studied thin drops by the lubrication approximation.

Clay and Miksis [34] used a lubrication approximation to study effects of insoluble

surfactant on droplet spreading. They found that surfactant can increase the speed of

the translation of thin droplets. In the absence of surfactant, Homsy and his coworkers

[1] numerically studied a gravity driven two-dimensional viscous flow with a moving

contact line by a boundary element method. The stress singularity at the contact

line is regularized by a numerical slip boundary condition (i.e., effective slip due to

the numerical discretization). Since the effective regularization or slip depends on the

numerical grid spacing, the method [1] does not converge as the mesh spacing near

the contact line decreases. In particular, they found in [1] that the maximum height

of the profile increases linearly as the logarithm of the mesh size decreases. Zhang,

Miksis, and Bankoff [18] considered the dynamics of a viscous drop moving along a

substrate under the influence of shear flow in a parallel-walled channel by using the

front-tracking numerical method. The no-slip condition at the bottom wall is relaxed

by using a Navier-slip law so that the non-integrable stress singularity at the contact

line is regularized. They showed that for small Reynolds and capillary number, steady

state solutions are obtained; for large values of the parameters, the drop surface

appears to rupture. However none of these has considered full numerical simulation

of rolling drops with contact angles at or near 7r, and none have considered the

influence of surfactant on such drop motion. Our particular interest is in developing

numerical methods for nonwetting rolling drops where the stress singularity is removed

by setting the contact angle to 7r. We compare our numerical results to the theoretical

predictions by [25]. Chapter 4 gives the detail of a local analysis in the vicinity of

the contact line with a contact angle of 180 ° . We found a mistake in Mahadevan &

Pomeau's analysis [25]. The stream function in their analysis does not satisfy the

Stokes equation if the leading order pressure is taken to be constant. However a local
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parabolic shape in their analysis is consistent with the lubrication approximation

which is conveniently applied in the numerical calculation. Benney & Timson [11]

found a local non-singular solution for any capillary number. But the local shape

is determined by the capillary number that makes it difficulty to be applied in the

numerical calculation.



CHAPTER 2

MODEL PROBLEM FOR THE CONTACT ANGLE OF H: THE FLOW

IN A CHANNEL

2.1 Introduction

Entrapment of air bubbles during liquid-film coating can lead to flaws such as blemishes

or voids. Recent experimental studies [37] suggest there is a connection between air

entrainment in coating flows and tip streaming [5] - a phenomenon well known in

emulsification technology in which interfacial contaminants (surfactants) can play an

important role. This motivates us to examine, via simplified mathematical models,

the influence of surfactant on air entrapment during coating processes.

U

Figure 2.1 The sketch of the flow in a channel.

We consider the Stokes flow in a channel with boundaries moving at speed U

(Figure 2.1). A fluid is assumed to eject from a source point 0 and be bounded by

the moving boundaries and free surfaces, and insoluble surfactant is present at the

interface. The distance between two boundaries is b, and the length from the source

point 0 to the contact line where the fluid first meets the boundary is L. The outside

region could be air or vacuum. The height of the free surface from the axis (dash line)

is h(x). We assume the flux of flow is constant. The contact angle at the contact line

8
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is assumed to be 7 which means the free surface is tangent to the solid substrate. The

contact angle at the source point 0 could be any angle. The origin of the Cartesian

coordinates is at the source point 0, and the x-axes is on the axis (dash line).

2.2 Governing Equations

The fluid considered here has a large viscosity it, so the flow motion is governed by

the Stokes equations

where p is the pressure and u and v are x and y components of fluid velocity

respectively.

Then we consider the boundary conditions at the free surface. First we introduce

the notation [f]¹2= (f) 1 —(f) 2 that is used to describe the jump in quantities between

region 1 and 2 that are separated by the interface. The fluids in the region 1 and 2 may

be two different fluids (or a fluid and a hydrodynamically passive region, e.g., air).

In this problem, region 1 is vacuum and region 2 is occupied by fluid. The tangential

stress is balanced by the Marangoni force because of non-uniform distribution of

surfactant at the interface and the normal stress is balanced by the surface tension.

The tangential stress balance (TSB) is:

and the normal stress balance (NSB) is:

where 7- '/,  is a unit normal vector pointing into region 1, t is a unit tangential vector,

T is the stress tensor, and K is the curvature of the surface which is defined to be
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positive for convex shapes, V 3 = 7 — -->n Fri• 7) is the surface gradient operator [40],

and a is surface tension which depends on surfactant concentration F. In the two

dimensional (2D) case,

Then the value at the right hand side in the equations (2.2) is

We assume a dilute concentration of surfactant, and employ a simple linear

relationship between a and F as the equation of state, i.e.,

where σ0  is the surface tension of the clean surface, I', is the concentration of surfactant

at the contact point, R is the universal gas constant, and T is the absolute temperature.

The surfactant is considered to be insoluble, or confined to the air-fluid interface

for which the steady-state equation in 2D is

where u 3 is the surface velocity, Ds is the surface diffusivity which is considered to be

a constant on the fluid-air interface, and subindex s of F and a refers to the derivative

with respect to arc length s along the interface. Equation (2.8) is assumed to hold at

the wall as well, but with a different value of D, than at the interface. If we consider

e = -I: << 1 , to the leading order the above equation (2.8) is equivalent to

(2.4)

(2.5)

(2.6)
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ax(uΓ) = DsΓxx, 	 (2.9)

where u is the x-component of the surface velocity.

At the contact point A, it is assumed that surfactant advects onto the solid

boundary only from the free surface since the surfactant is considered to be insoluble

i.e. there is no net flux of surfactant to and from the interface from the bulk flow.

We assume the relative affinity of the surfactant for the boundary depends only on

material properties of the surfactant and wall, e.g., not on velocity. At steady state,

surfactant boundary condition at the contact point can be derived by integrating the

equation (2.9) between a point S on the interface and the contact point A on the wall

Figure 2.2 The sketch of the contact region. A is the contact point and S lies on the
surface.

where Ds (A) is the diffusivity of the solid boundary which is assumed to be 0. It is

further assumed that a certain proportion A of surfactant accumulating at the contact

point A streams onto the solid boundary, which means u(A)Γ(A) = UΛΓc where U

is the velocity of the moving boundary and F is the surfactant concentration at the
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contact point. The parameter A does not depend on the velocity and surfactant

concentration at the contact line. It only depends on the material properties of the

solid boundary. Then putting these two conditions into the above equation (2.11),

finally we obtain the governing equation for the steady surfactant distribution at

x = S:

u(S)F(S) — UΛΓc  = DsΓx(S). 	 (2.12)

2.3 Exact Solution for No Flow

If the interface shape satisfies

then lubrication theory can be applied to simplify the governing equations. We find

the condition under which (2.13) holds by first seeking an exact solution in the case

of no flow, i.e., both the inside fluid and the boundaries do not move. Because the

flow is at rest, the pressure inside the fluid is constant (called hydrostatic pressure)

and the fluid velocities are zero. In this case, the Stokes equations and the tangent

stress balance equation are automatically satisfied. The normal stress balance is

—σhxx = P0, 	 (2.14)

where a is surface tension, h(x) is the equation of free surface, and P 0 is the constant

hydrostatic pressure. The boundary conditions are

Solving the second order ordinary differential equation (2.14) with boundary conditions

(2.15), we get the equation of the free surface:
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At the contact point x = L, we require the contact angle be 7 which means

h' (L) 0. This condition gives a restriction on the hydrostatic pressure:

We then use the following characteristic values to non-dimensionalize equation

(2.2)

After non-dimensionalizing and dropping primes, we get the exact solution of free

surface with the contact angle of 7:

Note that if the hydrostatic pressure P0 satisfies the equation (2.17) with E =

Tb << 1, then the interface shape will be long and slender, and lubrication theory can

be applied to simplify the governing equations. This is done below to compute the

steady interface shape when the surface is coated with insoluble surfactant and the

walls move with a constant speed U.

2.4 Asymptotic Solution

We non-dimensionlize the problem in the following way:
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where L is the length from the outlet to the contact point, U is the velocity of the

moving boundaries, and σ0 is the constant surface tension at a clean or surfactant-free

interface and F, is a representative surfactant concentration. For the numerical

computation of section 2.6, it is convenient to take Γ, equal to the surfactant concentration

at the contact point between the interface and the moving walls. In this way, the

surface tension equation (2.7) becomes a = 1 — ßΓ where 3 = Rio . After plugging all

these characteristic values into the equations and dropping the primes, we obtain the

following governing equations. The Stokes equations and incompressibility condition

become

where Ca = μU  is the capillary number.σ0

The rescaled stress balance boundary conditions (2.2) and (2.3) are given by



(2.21)

at the interface y = h(x) (only the upper interface is considered, the lower interface

shape follows from symmetry).

From (2.12), the dimensionless steady-state equation for the surfactant concentration

is found to be

(2.22)

where Pe = La' - is the Peclet number and cis evaluated on y = h(x).
AD.,

In order to keep the influence of pressure and surfactant at leading order, we

rescale

(2.23)

Thus the leading order systems are:

Governing equations:

(2.24a)

(2.24b)

(2.24c)

Boundary conditions are

(2.25)

( 2 . 2 6 )

at y = h(x).
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The dimensionless steady state equation for surfactant is :

Next we are going to solve the leading order system and find the free surface

shape y = h(x). Starting with the equation (2.24b), we find out that the pressure p

is the function of x and does not depend on y. Then integrate the equation (2.24a)

twice with respect to y, and obtain

where A(x) and B(x) are the functions of integration. According to the symmetry

about y-axis, A(x) is 0. Thus

The constant B(x) will be determined by the flux conservation. Assume the flux to

be q, i.e.,

which leads to

Then the velocity u at the interface will be

and



From NSB equation (2.26), we get px = —hxxx , then

Comparing the equation (2.25) with the equation (2.35), we obtain

17

(2.36)

(2.37)

Integrating the above equation (2.36), we obtain

where C1 is a constant of integration. If we know the condition of hxx at the contact

point, then we will be able to determine C1 . Since we assume the contact angle to

be 71, then hx (L) = 0. A summary of the boundary conditions at the contact point is

given below:

Inserting u from equation (2.34), Γ from equation (2.37), and F, from (2.36) into the

equation (2.27), we finally obtain the governing equation for the free surface,



which can be written in the form of

The boundary conditions for this third order ODE are

The contact angle h'(0) at the outlet x = 0 is determined from the solution of the

boundary value problem (2.41) and (2.42), as is the outlet surfactant concentration

F(0).

Before the shooting method is applied to solve this problem numerically, we

should notice that the flux constant q can be determined. In order to solve the flux q,

we first consider the equation (2.40) at the contact point A where u = —1/3Ca0  hxxxh²+

hhxx -hx /2-C1  =-1- = 1 and F = 1, thus²h	 130

(2.43)
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Substituting hxxx from the above equation (2.43) into the equation (2.34), we obtain
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2.5 Exact Solution for Clean Surface

Here we consider a related special case of flow without surfactant. From the previous

analysis, we know the leading order governing equations

The tangential stress balance is

and the normal stress balance is

The velocity is same as that solved for flow with surfactant. The velocity

equation (2.29) is

Then the derivative of the velocity u with respect to y is

According to the tangential stress balance - no shear, we know

From the normal stress balance, we know



The boundary conditions for the shape of free surface are

Thus the shape of free surface is

This is the same shape as for no flow. The reason is that all normal stress balance

caring about is the hydrostatic pressure.

2.6 Numerical Results

The effects of insoluble surfactant are examined numerically for the steady state

motion. As the capillary number Ca0 decreases, we can consider that the characteristic

velocity U decreases, and the solution will approach the exact solution for no flow or

for flow without surfactant. The Figure 2.3 shows different surface shapes for different

values of Capillary number Ca 0 , and the Figure 2.4 is the close-up of the left one.

The dash-dot line represents the free surface for Ca0 = 10; the dot line represents the

free surface for Ca0 = 1; the dash line represents the free surface for Ca0 = 0.1; the

solid line represents the free surface for Ca0 = 0.01; the empty circles represent the

exact solution of free surface without flow. This numerical calculation in Figure 2.3

show exactly what we anticipated that the solid line (free surface for small Capillary

number Ca0 = 0.01) approaches the exact solution of free surface without flow.
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Figure 2.5 shows that surfactant concentration is more uniform when the capillary

number is small than that of a large capillary number. In Figure 2.5 the dash-dot

line represents surfactant concentration at interface for Ca 0 = 10; the dot line

represents surfactant concentration at interface for Ca 0 = 1; the dash line represents

surfactant concentration at interface for Ca 0 = 0.1; the solid line represents surfactant

concentration at interface for Ca0 = 0.01. People usually use Peclet number Pe

(the ratio of convection to diffusion along the interface) to examine the effects of

surfactant. Here we use Capillary number Ca 0 to examine the effects of surfactant,

which in fact is equivalent to use Peclet number because the large Capillary number

means strong convention along the interface. In Figure 2.5, the solid line (for the

small Capillary number Ca0 = 0.01) means when the convection along the interface

is weak, the surfactant concentration is almost uniform. The dash-dot line (for the

relatively large Capillary number Ca0 = 10) means when the convection along the

interface is relatively large, the amount of surfactant at x = 1 (at the contact line) is

much larger than the amount of surfactant at x = 0 (at the outlet).

In Figure 2.5, empty circles at x = 0 represent the amount of surfactant at the

outlet. We can see that the surfactant concentration at the outlet decreases as the

capillary number increases. Finally the surfactant concentration is negative as the

capillary number is very large in Figure 2.6 where we plot surfactant concentration at

the outlet versus values of Capillary number Ca 0 . This is physically unrealistic, which

means there is no steady state solution. Thus there is a critical value for capillary

number above which the steady state solution does not exist.



Figure 2.3 Free surfaces for different values of the capillary number.
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Figure 2.4 Close-up of free surface for different values of capillary number.
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Figure 2.5 The surfactant concentration varies as the capillary number varies.

Figure 2.6 The solution does not exist for large Ca 0 . The first value of Ca0 is 0.1.



CHAPTER 3

VISCOUS DROPS ROLLING ON A SUBSTRATE

3.1 Introduction

We consider the motion of viscus droplets on an inclined non-wettable plane which

is a free surface problem with a moving contact line. Some researchers [9,25] suggest

that this movement has the form of a rolling or tank-treading motion instead of a

sliding motion. Recent improvements in the fabrication of extremely rough surfaces

have let to the creation of super-hydrophobic surfaces. Experiments show that a

drop resting on a super-hydrophobic surface has a very large contact angle (near

1800 ). In the natural world, there are some plant leaves having super-hydrophobic

properties [4, 45], such as lotus or water lily. Water droplets rolling on these leaves

can carry away contaminating particles completely, resulting in a cleaned surface. It

is called self-cleaning ability. Sliding water droplets are not effective at cleaning a

surface. This self-cleaning effect is potentially useful in practical applications [27]

such as waterproofing of clothes, anti-rain windshields and materials of very low

friction in water, etc. David Quere and collaborators [8, 36] did some experiments

of viscous drops rolling on an inclined non-wettable solid and showed some very

interesting properties of rolling droplets in two different regimes: (a) capillary force

is dominant when the drop size is less than capillary length (σ/pg)¹/²  ; (b)the gravity is

dominant when the drop size is larger than the capillary length (L) 1 /2 (where a is

surface tension, p is liquid density and g is acceleration of gravity). Mahadevan and

Pomeau [25] gave a theoretical prediction of the steady drop velocity by using a rough

scaling analysis. We are interested in performing numerical computations to verify

the conclusions of Mahadeven and Pomeaus scaling theory by using the boundary

element method.

24
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3.2 Governing Equations

Consider a region Q of fluid separated by a surface O from an inviscid or passive

fluid. The fluid may also be in contact with a solid boundary as shown in Figure 3.1.

Figure 3.1 A schematic of a drop rolling on an inclined plane. LA is the advancing
contact angle; R is the receding contact angle.

We assume the dynamics inside the drop is governed by the Stokes equations:

where u(x, y) is the fluid velocity, p(x , y) is the pressure, p is the density (assumed

constant), u is the viscosity and g is the acceleration of gravity.

On the free boundary separating Q from passive fluid, there are three boundary

conditions: kinematic condition; normal stress balance; tangential stress balance. The

kinematic condition means fluid particles stay on the surface. The velocity (ux , uy ) of

a point P on the free boundary equals the velocity of the fluid particle at this point



where ux and uy are the components of velocity u(x, y), W is the stream function

which satisfies

and aΩ is the boundary. The stress balance conditions at the free surface are

where Tip is stress tensor

(3.6)

ni is outward normal unit vector (i.e. pointed into the inviscid fluid), t i is the tangent

unit vector oriented counter-clockwise, σ(Γ)) is the surface tension depending on the

surfactant concentration and ic is the curvature of the surface which is defined to be

positive for convex surfaces. It is assumed without loss of generality that the constant

pressure outside the drop is zero. On the other hand, these stress balance conditions

can be written in the form:

Tangential Stress Balance (TSB):

(3.7)

Normal Stress Balance (NSB):

where un and lit are the normal and tangential components of the velocity, and σ(Γ)

is surface tension which is the function of surfactant concentration F.
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The governing equation for the surfactant concentration is a convection-diffusion

equation [17]:

where t is time, v s = v —n(n•v) is the surface gradient [40], u s is the velocity vector

tangent to the interface, X(s, t) is a parametric representation of the interface, and

D, is the surface diffusivity. Here we have considered the surfactant to be insoluble,

i.e., there is no net flux of surfactant to and from the interface from the bulk liquid.

At the no-slip surface, the velocity of the fluid is equal to the velocity of the

solid wall:

3.3 Biharmonic Boundary Integral Method

There is a large body of literature on the biharmonic boundary integral method

( [15], [29], [30], [38], [39], [41]) solving free surface viscous flow problems. This

method enables us to reformulate the original differential equations which hold on

the entire fluid domain as integral equations on only the domain boundary. Thus we

only need to discretize the boundary rather than the entire domain. This results in

a significant reduction in computational effort. In the plane flow, we introduce the

streamfunction W and the vorticity w.
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Here we define the vorticity to be the negative curl of velocity. Then the Stokes

equations can be written in the well-known form of:

By using the biharmonic boundary integral method, equations (3.13) and (3.14) can

be rewritten as a coupled set of integral equations involving the streamfunction,

vorticity, and their normal derivatives on the domain boundary ( [29], [30]).

where

2. 50(q) refers to the differential increment of aΩ at q.

3. G 1 and G2 are given by

and are the fundamental solutions to

where pp denotes the gradient with respect to p.



4. 71(p) is defined by

where 9 is the internal angle included between the tangents to aΩ on either side

of p. If the boundary aΩ is smooth, then 9 = 7r. The angle 9 can take on other

values at a three phase contact point where the free surface does not always

smoothly connect with the solid substrate.

Now the governing equations only depend on the stream function, vorticity, and

their normal derivatives. In order to define our problem in such a way that the whole

system only depends on the four variables ψ, w and 19:91,-;,), we have to write the

boundary conditions in terms of these quantities. Here we follow the derivation of

the desired boundary equations from Betula [41] and Kuiken [15]. We first consider

the tangential stress balance at the free surface. Substituting the following equations

into the tangential stress balance equation (3.7), we have

which holds on the boundary as In addition, the vorticity at the contour is

We eliminate the second derivative with respect to the normal direction 0- using

equation (3.21) to get the tangential stress balance condition,
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Secondly, we consider the normal stress balance at the free surface. Substituting

the normal velocity in terms of the streamfunction into the normal stress balance

equation (3.8), we get

where the pressure p is unknown. We use the governing Stokes equation to eliminate p.

First differentiate the above equation (3.24) with respect to the tangential direction,

On the other hand, the tangential component of the governing equation is,

where the unit tangent vector is (tx , ty ) and the tilt angle is a. The term (tx sin a —

ty cos a) is the dot product of the gravity vector and the tangent vector. It appears

here because the coordinate system is set up in such a way that x axis is parallel to

the plane surface and y axis is perpendicular to the plane surface, and then the unit

direction of the gravity vector is (sin a, — cos a). Comparing the above two equations

(3.25) and (3.26) and eliminating at  we obtain

It will be convenient in the numerical calculation to express the derivatives with

respect to the tangent direction in terms of derivatives with respect to the contour



arc length s [15, 21].

Then the tangential stress balance condition (3.23) is

The normal stress balance condition (3.27) is

Third, we consider the kinematic boundary condition through which we will

determine how the fluid surface moves in time:

Finally, we describe the boundary condition at the interface between a solid wall

and the fluid. Here we use the no-slip condition which means the velocity of fluid is

equal to the velocity of the solid wall.

In all our calculations, the wall is rest Uwall = 0 where Uwall indicates the velocity of

the wall, which means:

Without loss of generality, we let W = 0 at the wall.
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3.4 Numerical Method

We discretize the boundary polygonally into an N-gon and approximate the flow

variables as being constant over each line of the N-gon. Here we consider all unknown

values at the mid-points so that we can avoid calculating the flow values at the contact

line. Then the governing equation can be written as the summations:

(3.34)

(3.35)

where the flow variables ‘113 	(4)2 and .19`"). are unknown variables, and the integrals

of Green's functions and their derivatives can be evaluated analytically as discussed

later. Then these two equations can be written in the form of matrix equations,

(3.36)

(3.37)

where A, B, C and D are matrices, and 	 , w and an are vectors [29, 30]. The

elements of the matrices are

(3.38)

(3.39)

(3.40)

(3.41)
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where δij is the Kronecker delta, i.e., δij = 1 if i = j, otherwise δij = 0. All these

elements can be calculated analytically. We first define the following values in Figure

3.2:

h

Figure 3.2 Geometry for analytic calculation of integral on straight line segment.
pi is a mid-point and qj is a node.

Then it is straightforward to calculate the integrals in equations (3.38) to (3.41).



So there are 4N unknown variables ψ, 2-, co andancorresponding to the

discretization and 2N equations. The other 2N equations come from the normal and

tangential stress balance conditions. The general centered second-order discretized

derivative operators (see Appendix B) are used for these two equations. We write

them in the form of matrix:

where R, S, T, U, V and W are N x N matrices. At the free surface, we have R

is a tridiagonal matrix, Sid = 0, Tip = —(Sid , V is a tridiagonal matrix as well and

Wig -= 	 b is a vector containing the force of surface tension and the gravity. At

the no-slip interface, assuming Uwall = 0, we have Rid = 1 Vij = 1, Si.? 	0, Tip = 0,

Uij = 0, and b i = 0.

For a given initial shape, we can solve the following vector system by an LU

decomposition.

After solving the values of the stream function, vorticity, and their derivatives,

the velocity field can be obtained by using the stream function and its normal

derivative. Then the nodes are moved according to the kinematic boundary condition.
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Simply we use the forward Euler approximation,

where vx and vy is the x, y components of the velocity. These are not calculated

directly from vx = ay vy = — 2- , but rather are projected from the normal and

tangential velocity which are evaluated directly from v n = -2- and vt = - 2- , where

the values of the stream function and its normal derivative are obtained from the

numerical calculation. The reason that we do not use the derivative with respect to

x and y is sometimes Ax = 0 or Ay = 0.

3.5 Validation of the Code

The code is validated by comparing with several exact solutions. The first problem

is the free creeping viscous incompressible plane flow of a finite region, bounded by a

simple smooth closed curve and driven only by surface tension. Hopper found an exact

solution to this problem by using a time-dependent polynomial conformal mapping

function to describe the coalescence of two cylinders [39]. The initial interface shape

considered by Hopper is two tangentially touching cylinders, i.e., with two cusps. Our

code cannot start from this initial shape with two cusps at t = 0. For the simplicity,

we pick the initial time to be t = 0.147 where the cusps have become rounded. In

Figure 3.3, the star indicates the initial shape at t = 0.147, the solid line indicates the

exact solution at t = 0.551 and the dot indicates the numerical solution at t = 0.551.

It shows Hopper's analytical solution and the numerically computed solution agree

well at time t = 0.551.

In Figure 3.4 and 3.5, we apply the code to simulate the different initial shape

reaching the steady shape. We start with a nephroid and an ellipse in Figure 3.4

and 3.5 respectively. Intuitively, the eventual steady shape would be a circle if the
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only driving force is surface tension. The numerical results for different initial shapes

appear to be circular to the eye, which are obtained for t = 10.

Time=4.040000e-01, N=100, dt=0.001000, SurfaceTension=1.000000

Figure 3.3 Comparison with the exact solution.

Time=10, N=100, dt=0.010000, SurfaceTension=1.000000

x

Figure 3.4 Evolution of a nephroid. T1=0.2, T2=.05, T3=1, T4=1.5, T5=2, and
T6=10.
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Figure 3.5 Evolution of an ellipse. T1=0.2, T2=.05, T3=1, T4=1.5, T5=2, and
T6=10.

In these numerical calculations, we do not use symmetric properties of the flow

directly, i.e., the velocity field is calculated for the entire free surface. However there

is a difficulty that the matrix (3.4) is close to singular. The reason is the existence of

a zero eigenvalue for the system of equations (3.36), (3.37), (3.47) and (3.48), which

seems to be due to the nonuniqueness of the stream function. The difficulty is resolved

by assuming the stream function where the interface intersects the x-axis (which is

a streamline for the flow) is 0, which means we impose one stream function value in

our calculation. The curvature is evaluated by dθ/ds,where 8 is the tangential angle and

s is the arc length (see Appendix A).

The second test problem is the flow of a viscous fluid in a corner. A similarity

solution describing the flow between a planar solid surface and a planar free surface

was derived by [41]. In order to numerically compute the solution for the Moffatt

flow, we truncate the geometry as shown in Figure 3.6 where the no-slip interface

extends from s = 0 to 1 and the free surface from s = 1 to 2 and an arc of a circle
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is used to smoothly connect the sides of the corner. We impose the analytic values

of the stream function and its derivative according to the theoretical solution at the

arc of the circle. Figure 3.7 shows 1F, 2,- , (4.) and an  arclength s for the exact

and computed solution.The corner is at s = 1. As shown in the figure, the numerical

solution matches the exact solution very well: the solid line is the exact solution and

the symbol "+" is the computational solution. The advantage of this calculation is

that vorticity b.) and its derivative co n, are well described by this numerical calculation

even if their values are divergent at the corner.

Figure 3.6 Geometry of the flow in a corner. The angle of the corner is a = 1.

In Figure 3.8, we use the methods described above to simulate a drop spreading

without surface tension on a horizontal plane. The initial shape is part of a circle.

During the calculation, the time step is adaptive in order to make sure that the point

above the substrate touches the substrate exactly. Since the only force is gravity, the

drop will spread forever. Here the final time is t = 32. If we want to go further, more



39

Figure 3.7 Comparison with the exact solution of the flow in a corner.The solid
line is the exact solution. The symbol "+" is the computational solution.

Time=32, N=400, dt=0.010000

Figure 3.8 The drop spreading driven by gravity without surface tension.T=0,
T=1, T=2, T=4, T=8, T=16, and T=32.
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points are need to describe the contact region better. Here the contact angle is not

specified which is different from what we do for rolling droplets. When we calculate

the rolling motion, the contact angle is fixed at 180° .

The third test is to use the code to calculate the velocity field of a steady drop.

A viscous drop is assumed to stick to an inclined plane without motion. Since the

velocity of the drop is zero, the Stokes equation becomes

where p(x , y) is pressure inside the drop, p is fluid density, g is acceleration of the

gravity, and a is a tilt angle. The tangential stress balance is automatically satisfied.

The normal stress balance is,

where a is surface tension, 0 is the tangent angle on the interface, and s is the arc

length along the interface moving in the counterclockwise direction. The pressure

outside the drop is assumed to be zero. Integrating the equations (3.50) and (3.51),

we obtain

where pc is the hydrostatic pressure. Substituting the equation (3.53) of pressure into

the normal stress balance equation (3.52), we obtain

The equation (3.54) is solved numerically to obtain the shape of the motionless

drop. This steady shape will then be used as initial data in the boundary element

calculation to verify that this shape gives an approximate motionless solution to the
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discrete boundary element equations. Since this is a first order ordinary differential

equation, we can not specify both the advancing contact angle and the receding

contact angle. Here we specify the advancing contact angle and integrate the equation

(3.54) along the interface to get the interface shape and receding contact angle. After

the steady shape is obtained, we use boundary element method to calculate the

velocity field on the interface to update the interface. In Figure 3.9, the star is the

initial shape and the circle is the shape at t = 2. This numerical simulation shows

that the drop moves very slowly. This means our code is able to describe the velocity

field of the interface.

Figure 3.9 The calculation by the boundary element method shows that the steady
drop moves very slowly (velocities about 10'). * is the initial shape and o is the
shape at t = 2.

3.6 Rolling Droplets

As noted before, there is a singularity at the contact line when the usual hydrodynamic

assumptions are applied. However the contact angle 71 is considered as a special

case (called rolling motion) in which the singularity is absent. The local analysis
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in [11, 24] showed that the singularity is removed for the rolling motion without a

hydrostatic pressure term. However there is a sign error in their analysis pointed out

by Dussan [7]. Mahadevan and Pomeau [25] considered the leading order pressure

as r 0 to be the constant hydrostatic pressure and derived the shape of the free

surface y(x) from the normal stress balance equation and the stream function ψ in

the vicinity of the contact point:

where U is the characteristic velocity, R is the characteristic length, and r and 0 are

as in Figure 3.10. These results are based on sufficiently small radius r, the capillary

number Ca = --(1-. and the Bond number Bo = P92 . Unfortunately they overlookeda

a balance in the Stokes equation. The stream function they derived satisfies the

biharmonic equation, but it does not satisfy the Stokes equation if the leading order

pressure is taken to be constant. The details of this local analysis are given in chapter

4.

Figure 3.10 The immediate vicinity of the contact point.

All these local analysis and experiments [36] motivate us to consider a rolling

drop with a contact angle of 180 ° as a simple model for the motion of viscous drops

on an inclined non-wettable plane. Numerically the local shape in the vicinity of

the contact line is considered as a parabola. This is a reasonable choice, in view

of the simplicity of enforcing this condition and its consistency with the lubrication
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approximation (see details in Chapter 4). We will show how this local shape affects

the numerical calculation.

Consider first a droplet spreads under the influence of gravity and surface tension

on a flat non-wettable plane. Figure 3.11 shows that the droplet reaches a steady

shape due to the balance of the gravity and capillary force. The numerical results

for time T = 4, T = 8 and T = 16 are already overlapped, which means velocities of

the drop at these time are small (about 10 -3 ). Thus we can consider that the drop

is at the steady state. As a check on the numerics, Figure 3.12 shows the volume

conservation during the process. Here the maximum volume change is about 0.22%.

Figure 3.11 The steady state solution for drop spreading with gravity and surface
tension. T=0, T=1, T=2, T=4, T=8, and T=16.
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Figure 3.12 Volume conservation for a spreading drop.

Next we consider a droplet moving on an inclined plane. In the numerical

simulation, a parabola is used to move the front and back contact lines through the

last tow grid points (See Figure 3.13). In Figure 3.13, the coordinates of p 1 , /32 and p3

P 1

Figure 3.13 Move the contact line by a parabola through the last two grid points.

are (x 1 , 0), (x 2 , y2 ) and (x 3 , y3 ) respectively. These three grid points satisfy a parabola

y = A(x — x1) 2 ,	 (3.57)

where A and x 1 are unknowns which are determined by points p 2 and p3 . The first

derivative at /3 1 is zero y' (x 1 ) = 0 at the contact line which means the free surface of

the drop is tangent to the solid substrate so that the contact angle is 7. Since points
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The boundary element method introduced before is used to update the free

surface. A parabola is used to approximate the shape of free surface in the contact

region so that the contact points can be moved. Every time step, cubic splines are

used to redistribute grid points in order to make the arc length of the boundary

elements nearly equal. In order to keep the consistency, the assumption of a 180 °
contact angle is used in the cubic spline. The plot of velocity field in Figure 3.14

shows that the droplet does roll on an inclined plane instead of sliding.

VELOCITY FIELD AT TIME=1

Figure 3.14 Velocity field of a droplet moving on an inclined plane at T = 1.
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Figure 3.15 A light droplet with p = 0.4 rolls on an inclined plane. Finally it
reaches a steady state. Time = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10.

Figure 3.16 A light droplet with p = 0.4 reaches a steady velocity.
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Figure 3.17 A heavy droplet with p = 2 rolls on the inclined plane. Finally it
reaches a steady state. Time = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10.

Figure 3.18 A heavy droplet with p = 2 reaches a steady velocity.
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There are several interesting phenomena about this rolling drop. A rolling drop

goes to a steady velocity which is determined by the balance between the gravitational

potential energy which accelerates it and the viscous energy dissipation which retards

it. A steady state is reached when these two forces are balanced. The Figure 3.17

shows that a light drop with ρ = 0.4 reaches a steady velocity about 0.26. The Figure

3.18 shows that a heavy drop with ρ = 2 reaches a steady velocity about 0.23. A drop

is called "light" or "small" when the radius of drop is less than the capillary length

( 0- ¹/² 1.58 when the values of parameters are a = 1, g = 1 and ρ = 0.4. On theρg

other hand, a drop is called "heavy" or "large" when the radius of drop is greater

than the capillary length (AN
)
¹/² = 0.71 when the values of parameters are a = 1,

g = 1 and ρ = 2. In these numerical calculations, the tilt angle a = 10 ° .

In Figure 3.16 and 3.18, the velocities are evaluated in such a way that

where Vi+1denotes the velocity at time ti+¹ and Xi denotes the x coordinates at

time ti . Here the time period ti+¹ — t i is not the time step that we use in numerical

calculation. We mostly use t i+¹ — t i = 1. Although this can not accurately describe

the velocities at the beginning, it can describe the velocities well as the drop goes to

a steady state.

Mohadevan and Pomeau [25] use a simple scaling theory to predict the steady

velocity of drops rolling down an inclined plane under the influence of gravity and

surface tension. They obtained a counter-intuitive result that steady velocity decreases

as the radius increases for sufficiently small size droplets. When the drop size is less

than the capillary length (a I ρg)¹/², the drop is almost a sphere because the surface

tension is dominant. Therefore the drop rolls like an elastic ball from the exterior.

Applying this theory to the 2D drops, we have that the steady velocity for sufficiently



small droplets scales as

where Bo = ρg9R² is the Bond number, and a is the tilt angle of the plane. The result

is surprising because the steady velocity of small droplets is inversely proportional to

the drop size even though the driving force of gravitation grows very fast, which is

the order of R3 in 3D ( R² in 2D). But in fact, the viscous force grows faster than the

gravitational force. The reason is that the contact region increases rapidly because

of the growth of gravitational force.

Their theory also predicts that when the radius of the droplet is much larger

than the capillary length (a I ρg)¹/² , the steady velocity does not depend on the size

of the drop. In other words, the velocity does not depend on liquid density and

acceleration of gravity either. These results are similar to the results of a 3D droplet

derived by Mahadevan and Pomeau [25]. Specialized to 2D, the result of Mahadevan

and Pomeau (correcting for some errors in their paper) states that the velocity of

sufficiently large drops scales as

A different argument which leads to (3.62) but does not depend on dimension is given

later in this section.

Since the analysis leading to equations (3.61) and (3.62) is only a rough scaling

analysis, we have performed numerical computations in an attempt to verify the

scaling relations. Instead of changing the size of the droplet, we vary the density

of droplet so that we can have same number of nodes on the boundary for different

droplets. This can equivalently show that the steady velocity of large droplets does

not depend on the drop size. Otherwise, changing the radius of droplets may cause

some numerical error because of different size and number of boundary elements. The
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results of the computation are shown in Figure 3.19. The horizontal axis is the density

ρ varying from 0.2 to 2. The vertical axis is the steady velocity. In this calculation,

other parameters are a = 1, u = 1 and g = 1. In Figure 3.19, it shows that the

velocity decreases as the density increases for small density, while velocity goes to a

constant as the density goes to a large value.

Figure 3.19 The steady velocity of the rolling drop for the different liquid density.

For a large or heavy droplet (called a pancake), Richard and Quere [8] theoretically

gave a more precise result of the steady velocity. It is well known that the contact

angle 9 is determined by the Young relation

where as, σSL and a are the solid/air, solid/liquid and liquid/air interface tension

respectively. If the droplet sits on a hydrophilic solid (which likes water), the droplet

will spread out completely and the contact angle will be very small (close to 0). On

the other hand, if the droplet sits on a super-hydrophobic solid (which does not like

water), the contact angle 9 will be very large (close to 180° ). Roughly speaking,

the surface tension of a solid as is very small because the solid is hydrophobic.
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The roughness of the super-hydrophobic solid makes air be trapped between liquid

and solid. The solid/liquid interface is almost like the liquid/air interface. Thus

the interface tension of solid/liquid is approximately equal to the surface tension of

liquid/air σSL  = a, then cos 9 = —1. This is the reason that the roughness of the

Figure 3.20 Equilibrium shape of droplets on the super-hydrophobic surface: (a)
a droplet in capillary regime; (b) a droplet in gravity regime. 9 is the contact angle.

super-hydrophobic solid leads to a very large contact angle 180 ° . The equilibrium

shapes of a droplet are shown in Figure 3.20. If the drop is small, the capillary

force is dominant and the gravity is negligible. Therefore the pressure in the droplet

is uniform and the shape is almost a sphere. If the drop is large, the gravity is

important and is not negligible. The droplet is flattened by gravity and forms a

", pancake" . The hydrostatic pressure inside the droplet is equal to ρgh where ρ is the

liquid density, g is acceleration of gravity, and h is the depth from the free surface. If

the thickness is h0 , the equation of the balance in horizontal forces is

(3.64)
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Combine the equation (3.63) and the equation (3.64), and solve the thickness [12]

(3.65)

The viscous force in the large rolling drop is approximated by that in the liquid

layer flowing down an inclined plane (see Figure 3.21). The viscous force per unit

volume is p* = px according to Poiseuille law. Two boundary conditions are the

no-slip boundary condition at the plane u(0) = 0 and no shear at the free surface

0au
ay( ) = 0. Then the velocity is

(3.66)

The average velocity is

(3.67)

This yields the viscous force

(3. 68)

Figure 3.21 Liquid layer falls down an inclined plane.

In the steady flow, the shear stress is balanced by the gravity

(3.69)



where a is the tilt angle. Substituting for h0  in equation 3.65, we obtain the equation

Thus the steady velocity of a pancake rolling down an inclined plane is [8]:

In the numerical calculation shown in Figure 3.19, the values of parameters are

0 = 180° , a = 1, u = 1 and a = 10° respectively. According to the theoretical

prediction, the value of the steady velocity in the equation (3.71) is about 0.2315.

On the other hand, the numerical calculation shown in Figure 3.19 shows that the

steady velocity goes to about 0.23 as the drop size becomes very large which has a

very good agreement with the theoretical prediction.

Figure 3.22 Comparison of the theoretical steady velocity to numerical results for
different liquid viscosity.

The Figure 3.22 shows how the steady velocity depends on the liquid viscosity

for the large droplet. The values of parameters we used in the calculation are the
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contact angle 0 = 180° , surface tension a = 1, the tilt angle a = 10° and density

ρ = 2 respectively. The liquid viscosity varies from 0.5 to 3. Here the droplet is

large enough (ρ = 2) for this set of parameters because the radius of droplet in

the numerical calculation is greater than 1 while the capillary length is c-1)9 = 0.7.

In the figure 3.22, the solid line is theoretical calculation using the formula (3.71),

and the circles represent the numerical calculation. First the numerical result shows

that the steady velocity decreases as the viscosity increases. This is because energy

dissipates more when the friction inside the fluid is stronger due to larger viscosity.

More precisely, the steady velocity of large droplets is inversely proportional to liquid

viscosity. It matches the theoretical prediction very well.

Figure 3.23 Comparison of the theoretical steady velocity to numerical results for
different tilt angles. The angle is measured in radians.

The Figure 3.23 shows how the steady velocity depends on the tilt angle for the

large droplet with ρ = 2 and all other parameters are 1. The tilt angle varies from

6° to 20° which is measured in radians in the figure. The solid line represents the

theoretical prediction which is a sine function. The circles represent the numerical
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result. It shows the numerical result matches well the theoretical prediction when

the tilt angle is not very large. The difference between the numerical result and the

theoretical prediction becomes slightly larger when the tilt angle becomes larger. A

likely reason is that for larger tilt angles the drop is less flattened, (i.e., less 'pancake

like').

3.7 Numerical Analysis

The parabolic interface shape is imposed only over a few mesh points, and hence a

small region near the contact line. Our numerical calculation cannot distinguish a

significant difference on the global shape and dynamics in using

for shape near the contact line x = x0 for p near 2. However, the calculation does

distinguish a difference in using a 180° contact angle (i.e., a shape of (3.72)) and a

corner (i.e., the contact angle is less than 180 ° ) and that is crucial.

As we mentioned in the previous section, there is a stress singularity at the

contact line when we assume a Newtonian fluid with the no-slip condition on the

solid surface and the contact angle is less than 180 ° . In the numerical calculation,

this singularity at the contact line can be avoided by calculating all values at the mid

points instead of at the nodes [30]. This gives an effective numerical regularization

of the stress singularity. As shown by Moriarty and Schwartz [19], there is always

some amount of numerical slip in this calculation since the no-slip condition can

only be enforced at discrete nodes, but the no-slip condition is not enforced in the

vicinity of the contact line. Moriarty and Schwartz [19] showed that this kind of

numerical slip is equivalent to the slip model (e.g. Navier-type) in a small region

local to the contact line. Homsy and his coworkers [1] used the above idea to show

that the numerical solution does not converge as the grid-spacing goes to zero, instead
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diverging logarithmically. They found that the maximum height of the free surface

profile increases linearly as the logarithm of the mesh size decreases.

Figure 3.24 The footprint decreases linearly as the logarithm of the mesh size
decreases for the rolling drop with the contact angle being 120°.

Figure 3.25 The footprint approaches slowly to a constant as the logarithm of the
mesh size decreases for the rolling drop with the contact angle being 180 ° .
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We use the footprint which is the length of contact region as the characteristic

parameter instead of the height of the profile used by other paper [1] to get similar

divergence results as the grid-spacing goes to zero. This means the numerical calculation

diverges when the grid-spacing is refined. The Figure 3.24 shows that the footprint

of the drop plotted versus logarithm of the length of the element in the contact

region. The figure indicates that the footprint decreases linearly as the logarithm of

the mesh size decreases for the rolling drop with the contact angle being 120°. The

lack of convergence of the numerically calculated shape as the number of gridpoints

increases is consistent with the notion that there is a stress singularity at the contact

point. In other words, this divergence property will disappear if the singularity is

absent. As we mentioned before, there does not exist this stress singularity with the

contact angle being 7r. In Figure 3.25, the footprint approaches slowly to a constant

as the logarithm of the mesh size decreases for the rolling drop with the contact angle

being 71, which suggests there is no stress singularity at the contact line for the rolling

motion.

In the case when the contact angle is less than 71, so that there is a corner at the

contact point, we evolve the location of the contact point in a manner similar to [23].

The parabolic equation

is used to move the contact line. In this equation (3.73), the coefficients a, b, and c

are unknowns that are determined by the last two grid points and the contact angle.

We assume the contact angle is fixed during the motion.

In Figure 3.26, the last two grid points p ² (x² , y² ) and p3 (x3 , y3 ) and the contact

angle (7r — ζ) are known. The contact line p i (x i , 0) needs to be determined. All these



Figure 3.26 Move the contact line by a parabola.

three grid points are assumed to be on the same parabolic equation (3.73),

It is obvious x ¹ = c. Thus the contact line x ¹ is

3.8 Rolling Droplets with Surfactant

Spreading control of droplets is very important in engineering applications such as

printing and microfluidics. For capillary-related applications, it is quite difficult to

control the spreading and motion of droplets on surfaces. Chemical treatment is

a common way used to tune the wetting and spreading behavior. Recently there

has been much interest in using the influence of surfactant adsorption to turn super-

hydrophobic surfaces into highly wettable surfaces, this is becoming a new and attractive

research field [13, 35, 44]. Paper [35] found that superhydrophobic surfaces remain

in superhydrophobic range for most common surfactants and contact angles do not

decrease significantly on superhydrophobic surfaces. Our work is focused on the

influence of surfactant on the dynamics of rolling motion rather than its effect on

the contact angle. Although our model allows surfactant transport to and from the
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substrate to take place [10], in the simulations presented here, we assume there is no

surfactant coming or going from the solid for the simplicity.

The governing equations are Stokes equations which are written in the integral

form (Equation 3.15 and 3.16). For the simplicity, we use the linear relation between

surfactant concentration and surface tension

where o is the surface tension of a clean surface, Γ0 is the initial surfactant concentration,

and the parameter (3 will be referred to as the sensitivity parameter. The normal stress

balance (NSB) in the terms of the stream function is

and the tangential stress balance (TSB) in the terms of the stream function is

The boundary condition at the solid is as before — the no-slip boundary condition,

and

The finite-volume method [22, 31] is used to track the evolution of insoluble

surfactant on the surface. The evolution of surfactant concentration at the surface is

governed by an advection-diffusion equation [17]. The two-dimension case is
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where the Peclet number Pe = DL and the time derivative is in fixed normal coordinates.

We integrate this equation in two steps. First we solve

which gives the changes in surfactant due to advective and diffusive flux. The

corresponding difference equation is

Second, we integrate

which gives the change in surfactant due to stretcher at the interface. During this

step, the total amount of surfactant is conserved within each boundary element,

since the interface markers move with the local fluid velocity. The new surfactant

concentration is evaluated in the second step as

The Figure 3.27 shows that a drop with surfactant rolls down an inclined plane

(density ρ 1, sensitivity = 0.4, tilt angle a = 10° and Peclet number Pe 100).

In order to clearly observe the effect of surfactant and reduce the impact of larger

velocity at the beginning on surfactant transport at the contact line, the droplet runs

without surfactant from T = 0 to T = 6. The insoluble surfactant is present at the

surface from T = 6. The drop goes to another steady velocity. The Figure 3.28 shows

the rolling drop reaches a steady velocity with and without surfactant. The Figure

3.29 is about the distribution of surfactant on the surface. The amount of surfactant

at the advancing contact line is about ten times of the amount of surfactant at the

receding contact line. The Figure 3.30 is the plot of the curvature at nodes of free
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surface. At the advancing contact line, the curvature is not completely smooth. It

may be because a parabola is not a perfect approximation for the drop shape in the

vicinity of the contact line.

Figure 3.27 Rolling drop with surfactant. T = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12.

Figure 3.28 A rolling drop with surfactant reaches a steady velocity.



Figure 3.29 Distribution of surfactant concentration at T = 12.
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Figure 3.30 The curvature of free surface at T = 12.
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Figure 3.31 The rolling motion is retarded due to the presence of surfactant.

In Figure 3.31, it shows when the sensitivity 0 of surface is larger, the rolling

motion is slower. From previous analysis for the clean drop, we know the steady

velocity of large drop is linearly proportional to surface tension a (see Equation 3.71).

This figure shows the steady velocity decreases not only because of the reduction of

surface tension but also because of the counteraction of the Marangoni force since it

is greater than linear decrease. In this numerical calculation, all parameters are equal

to 1, and the sensitivity 3 varies from 0 to 0.6.



CHAPTER 4

ASYMPTOTIC ANALYSIS IN THE VICINITY OF THE CONTACT

LINE

4.1 Expansion in the Polar Coordinates

In this chapter, we are looking for a local non-singular solution without or with

surfactant at the interface. As we mentioned before, there is a stress singularity at the

contact line for a contact angle 0 E (0° ,180° ) when usual hydrodynamic assumptions

are applied. Several ways have been proposed to remove the singularity. One common

way is to relax the boundary condition of no-slip at the solid. Another way, which

has received much less attention, is to set the contact angle to be 180° . Previous

work [11,24] showed that the singularity is removed for the rolling motion (a 180 °
contact angle) without a hydrostatic pressure term. There is a sign error in their

analysis pointed out by Dussan [7] but the analysis is easily modified to acount for

this. Mahadevan and Pomeau [25] considered the hydrostatic pressure term and

derived the shape of the free surface and the stream function ψ in the vicinity of the

contact point. Unfortunately they overlooked a balance in the Stokes equation. They

derived their solution for the stream function from the biharmonic equation which is

in turn derived from the Stokes equation. But the final result does not satisfy the

Stokes equation with a constant (hydrostatic) pressure at leading order. We will go

through all details in this chapter.

We start with Stokes equation in polar coordinate system as shown in Figure
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(4.3)

(4.4)

(4.5)

(4.6)

where the Laplace operator in the polar coordinate is

By writing velocity Ur and /to associated with stream function,

we obtain the Stokes equation in terms of stream function,

The no-slip boundary condition between fluid and solid substrate is

where U is the boundary velocity.

At the free surface, there are basically three boundary conditions: tangential

stress balance; normal stress balance; kinematic boundary condition. Tangential

stress is balanced by the Marangoni force at the free surface 0 = g(r),

Normal stress is balanced by the surface tension,



Figure 4.1 The shape of free surface in the vicinity of contact line.

The operator in the right hand side of tangential stress balance equation (4.9) is

(4.11)

The dependence of surface tension a on surfactant concentration F is

(4.12)

where F0 is uniform initial surfactant concentration, σ0  is surface tension of clean

surface, and 0 is the sensitivity parameter of surface tension to the surfactant concentration.

The steady state equation for surfactant transport is

(4.13)

where D, is diffusivity of liquid surface, and u s is the velocity along the surface

Integrating along the surface, we obtain

(4.14)

where the contact line is at s = 0. The diffusivity of solid is assumed to be 0

(i.e., D8 (0) = 0). The no-slip boundary condition says u s (0) = —U. We assume a

proportion A of surfactant accumulated at the contact line streams onto the solid.
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This means us(0)Γ(0) = —UΛΓ0 where F0 is the amount of surfactant at the contact

line.

This equation can be read from the standpoint of conservation of surfactant. The left

hand side is the flux of surfactant out of a "pillbox" centered at the contact point,

and the right hand side represents the advective and diffusive flux into the "pillbox".

In the steady state, the flux of surfactant is 0.

In Figure 4.1, the angle 0 between the tangent line and the radial line satisfies

(see Appendix C)

Thus the surface velocity is

Therefore the steady state equation of surfactant transport becomes

4.1.1 Dimensionless Equations

Next, nondimensionalize the above equations by the following characteristic parameters,
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where U is the velocity of the moving boundary and L is an arbitrary length. Then

the non-dimensional Stokes equations (drop tildes) are

Elimination of the pressure yields biharmonic equation,

No-slip boundary condition at 0 = it,

At the free surface 0 = g(r), the tangential stress balance (TSB) is [11],

and the normal stress balance (NSB) is [11],

where the capillary number Ca = L(1 .
0-0

The dependence of surface tension on surfactant concentration is

The steady state equation of surfactant transport is,
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Ds -where the Peclet number Pe =	 For the convenience in following analysis, allDs 

derivatives in equation 4.28 are expressed with respect to the radius r,

4.1.2 Previous Work for Rolling Motion

We expand the variables in the following form,

In the expansion of stream function, the first term r sin 9 is derived from the no-slip

boundary condition. The power q, s and t in the above expansion will be determined

in the following procedure. First plugging the expansion of stream function in the

biharmonic equation, we obtain

Next we try to find the corresponding boundary conditions. First, the solid substrate

is a stream line so the stream function is a constant (assume the constant is 0 without

lost of generality) at 9 = 71,
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The second one is the no-slip condition u r = 1 at 8 = it which implies,

i.e.,

The third one comes from the condition of stream function on the free surface 8 = art .

The free surface is a stream line since we consider the steady motion, i.e., W = 0,

which requires

and leads to

Before we go to the normal stress balance and tangential stress balance, we need

to solve the surfactant concentration. Substituting the expansion of stream function

into the steady equation 4.29 of surfactant transport, we obtain,

As the radius r goes to zero, the leading order is

We can find the solution of surfactant concentration with the boundary condition

F(0) = 1,
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Thus the expansion of the surfactant concentration is,

(4.44)

In order to find the appropriate balances from the normal stress balance and the

tangential stress balance, we need to consider these two boundary conditions together

with pressure solved from the Stokes equation. First plug the expansion of stream

function into the Stokes equations (4.20) and (4.21) and obtain

(4.45)

(4.46)

The tangential stress balance is

(4.47)

and the normal stress balance is

(4.48)

where the curvature

(4.49)

Since the leading order of 9 = g(r) is

(4.50)

then

(4.51)
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and

(4.52)

Therefore the curvature is

(4.53)

Previous work for a clean surface by Mahadevan and Pomeau [25] showed that

the hydrostatic pressure balances the capillary force in the vicinity of the contact line

while the viscous force is not important in the normal stress balance. This requires

that the curvature at the contact line should be constant in the leading order. This

leads

(4.54)

It means that the free surface is a parabola

(4.55)

They derived the stream function (replace A in their analysis with 2a)

This stream function shows there is no singularity in either the force or the stress

at the contact line. Unfortunately, they overlooked the Stokes equation (4.20). It is

easy to verify this result is wrong by plugging this stream function into the Stokes

equation (4.20). It ends up being

This cannot satisfy the condition of pressure being constant at the contact line.
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Benney and Timson [11] found a non-singular solution for clean surface with

a 180° contact angle. The key difference of their work from that of Mahadevan and

Pomeau is that the capillary force is balanced by the viscous force, and that the

pressure is zero or infinite at the contact line. Therefore the hydrostatic term does

not enter into the leading order balance. The pressure is solved from the Stokes

equations. That is

Then the leading order of the normal stress balance yields

and the leading order of the tangential stress balance yields

Their analysis ends up with the biharmonic equation (4.34) with five boundary

conditions (4.35), (4.37), (4.40), (4.59) and (4.60). This eigenvalue problem yields

an expression for q,

For the local analysis for the rolling on motion with surfactant, we conclude

there is no local steady state solution. The tangential stress balance equation (4.47)

yields

This leads to non-bounded pressure at the contact line from the Stokes equation. The

similar analysis to what Mahadevan & Pomeau did leads to a contradiction.
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4.2 Lubrication Approximation at Contact Line

In order to justify our use of constant curvature at the contact line, we show that a

parabolic interface shape with constant curvature and constant pressure at the contact

line are consistent with the lubrication approximation. We consider the rolling motion

of viscous flow without surfactant in the Cartesian coordinates under lubrication

approximation. The contact line is at the origin. Assume

in the contact region. Then we non-dimensionalize the Stokes equations and boundary

conditions by the following dimensionless variables

Substitute into the system of equations and drop prime. Then the dimensionless

Stokes equations are

The tangential stress balance is

(4.66)
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and the normal stress balance is

Rescale

the same idea as we did in Chapter 2. Then the leading order Stokes equations are

The leading order of the equation of the tangential stress balance is

and the leading order of the equation of the normal stress balance is

If the pressure is constat p = P0 in the contact region, we can solve the free

surface shape in the contact region from the normal stress balance. That is a parabola

which satisfies boundary conditions h(0) = 0 and h'(0) = 0. This local argument

holds even when surfactant is incorporated. This shows a locally parabolic shape

with constant pressure and linear surfactant concentration is consistent in lubrication

approximation. Of course, in limit as x and y tend to the contact line, we have

shown in equation (4.57) that the constant curvature and pressure solution is not
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consistent with the governing equations. We find from our numerical simulations

that the global solution is rather insensitive to precise nature of the surface shape

in a small neighborhood of the contact line. We assert that enforcing a parabolic

interface with constant curvature and pressure in neighborhood of the contact line

is a reasonable choice, in view of the simplicity of enforcing this condition and its

consistency with the lubrication approximation.



CHAPTER 5

CONCLUSION

In this thesis work, we first use a simplified mathematical model employing the

lubrication approximation to check the influence of insoluble surfactant on the air

entrainment during the coating process. When the surfactant is present on the

interface as described in chapter 2, it accumulates at the contact line due to the

surface convection. The nonuniform concentration distribution of surfactant results

in a Marangoni force which is opposed to the flow direction. When the surface velocity

driven by the moving solid boundary is large, the fluid drag on the interface (which

is opposed by the Marangoni force) is large. We find that this leads to a critical

velocity at which point the steady solution no longer exists. For the capillary number

above this critical value, we expected but did not investigate the unsteady solution

where the contact line moves along the solid boundary. This is associated with air

entrainment. This suggests that the surfactant can play an important role in the air

entrainment during the coating process and the stability of the moving contact line.

Secondly, we consider viscous droplets rolling down an inclined non-wettable

plane. The biharmonic boundary element method is used to study this problem

numerically. In the numerical calculation, a local shape of a parabola derived from the

lubrication approximation is used to move both the advancing and receding contact

lines. Numerical results match the theoretical prediction of [25] very well. The results

show: (a) the steady velocity is inversely proportional to the squared radius R when

the drop size is less than capillary length (ρ/ρg)¹/²; (b) the steady velocity does not

depend on the radius R when the drop size is larger than the capillary length σ/ρg 
)¹/²

(where a is surface tension, ρ is liquid density and g is acceleration of gravity). When

the surfactant is present on the surface of droplets, the steady velocity is retarded
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by the reduction of surface tension and the Marangoni force due the nonuniform

concentration distribution of surfactant. We also found numerical evidence that the

stress singularity at the contact line is alleviated when the contact angle is 180 ° .

We have also performed a local analysis of solution to the the Stokes flow with

normal stress balance, tangential stress balance and kinematic boundary condition at

the free surface boundary. For the local analysis for the clean surface of rolling motion,

we found a mistake in Mahadevan Pomeau's analysis [25]. The stream function

and the pressure they derived does not satisfy one balance in the Stokes equations.

But the local shape of a parabola is consistent with the lubrication approximation.

We conclude that Benney Timson's solution [11] is the only local solution. Since

the local shape is determined by the capillary number, it is difficult to apply it in

the numerical calculation. In our numerical calculation, we use a parabolic shape

because it is easier and satisfies the lubrication approximation. This works well

since our numerical evidence shows that the stress singularity at the contact line is

alleviated. For the flow with surfactant at the interface, we find that there is no local

solution for the rolling on motion. In our numerical calculation, we pick a parabolic

shape because it is consistent with lubrication approximation and it works well.



APPENDIX A

CURVATURE CALCULATION BY TANGENT ANGLES

In Figure A.1, the vector t i , connecting two mid-points p i-1- ¹ and pi , refers to the

tangential vector at the node q i . We use dΘi/dsito calculate the curvature at the mid-

point pi , where dΘi  is the angle between two tangents t i and t i+¹ , and ds i is the

arclength between q i and qi+1 . The similar way is used to calculate the curvature

at all nodes qi through which I calculate the derivatives of the curvature at the

mid-points.

qi-1 	 qi

Figure A.1 Geometry for curvature calculation. p i is a mid-point, and q i is a node.
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APPENDIX B

CENTRAL SCHEME IN THE NON-EQUAL SPACING

Here are the centred schemes in the non-equal spacing for the derivative operators

--5--;° and b2 where s is the arc length of the boundary. All values such as aψ/as  and

are evaluated at the mid-points pi .

Figure B.1 Boundary elements.

In figure B.1, pi is a mid-point and q i is a node. Define the arc length

The Taylor expansions of 	 ψi and 	 at pi are,
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The equation (B.3) multipling by 4 +1 substracts the equation (B.5) multipling by

and add the equation (B.4) multipling by (s2 — 4+1 ). The numerical scheme for the

first derivative with respect to arc length s is

(B.6)

Similarly, the numerical scheme for the second derivative with respect to arc length

.c 1S

(B.7)

At the contact line, we use the one-side scheme to calculate the curvature at

the free surface and the derivative operators. We use the values 	 and 'i+1

to calculate the value at p i- 1 . The Taylor expansions of 	 and 	 at pi- 1 are

(B.8)

(B.9)

(B.10)

The equation (B.9) multipling by (s i +s i+1 ) ² substracts the equation (B.10) multipling

by s2 , and then adds the equation (B.8) multipling by (s2 — (s i + s i+1 ) ² ). Therefore

the one-side numerical scheme for the first derivative with respect to arc length s is

(B.11)

Similarly, the one-side numerical scheme for the second derivative with respect to the

arc length s is

(B.12)



APPENDIX C

THE ANGLE BETWEEN THE TANGENT LINE AND THE RADIAL

LINE

Figure C.1 The relationship between 0 and 0.

In this figure, the free surface is 0 = g (r) . 0 is the angle between the tangent

line and the radial line. We will show

In the polar coordinate system, the slope of the tangent line is

Notice that 0 = ζ — 0, then
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