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ABSTRACT

ROLES OF GAP JUNCTIONS IN NEURONAL NETWORKS

by
Joon Ha

This dissertation studies the roles of gap junctions in the dynamics of neuronal net-

works in three distinct problems. First, we study the circumstances under which a

network of excitable cells coupled by gap junctions exhibits sustained activity. We

investigate how network connectivity and refractory length affect the sustainment

of activity in an abstract network. Second, we build a mathematical model for gap

junctionally coupled cables to understand the voltage response along the cables as a

function of cable diameter. For the coupled cables, as cable diameter increases, the

electrotonic distance decreases, which cause the voltage to attenuate less, but the

input of the second cable decreases, which allows the voltage of the second cable to

attenuate more. Thus we show that there exists an optimal diameter for which the

voltage amplitude in the second cable is maximized. Third, we investigate the dynam-

ics of two gap-junctionally coupled theta neurons. A single theta neuron model is a

canonical form of Type I neural oscillator that yields a very low frequency oscillation.

The coupled system also yields a very low frequency oscillation in the sense that the

ratio of two cells' spiking frequencies obtains the values from a very small number.

Thus the network exhibits several types of solutions including stable suppressed and

1 : N spiking solutions. Using phase plane analysis and Denjoy's Theorem, we show

the existence of these solutions and investigate some of their properties.
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CHAPTER 1

INTRODUCTION

Individual nerve cells, called neurons, receive inputs from numerous other neurons.

By integrating inputs neurons create new information and sends it out to other cells.

Neurons use electrical signals to process information through changes in voltage

across their cell membranes. The membrane contains ion channels that selectively

allows ions, such as Na+,K+,Ca2+,Cl-, to move across the cell membrane. When

current flows across the cell membrane, it may change the membrane potential to

a more positive value or negative value called depolarization and hyperpolarization,

respectively.

If a neuron is depolarized sufficiently so that the membrane potential goes

above a threshold, the neuron generates an action potential, characterized by a

fast increase and subsequent decrease in membrane potential. The only forms of

membrane potential changes that can spread rapidly over long distances are action

potentials. Neurons transmit their information by firing sequences of action potentials

in various temporal patterns.

Two important morphological features of neurons are the dendrites that receive

inputs from other neurons and the axon that transmits the neuronal information to

other cells. The branching structure of the dendritic trees allows a neuron to receive

inputs from many other neurons through connections called synapses.

Synapses are classified into two major groups: electrical synapses and chemical

synapses. In this thesis, we focus on the former. At electrical synapses, current flows

directly into the post synaptic cell through specialized bridging channels, gap-junction

channels. These channels have low resistance and high conductance. A gap junction

is formed by a pair of connexons, proteins that form aqueous channels between the

1
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cytoplasms of adjacent cells, each cell contributing one connexons. Transmission

across electrical synapses is very fast. There is much evidence showing the presence

of gap junctions in neuronal networks [1]. The role of gap junctions for a two

compartment model neuron has been studied by several authors [2, 3, 4]. Lewis and

Rinzel studied the influence of the strength of gap junctions to promote anti-synchrony

or synchrony in spiking neuron models where the suprathreshold effect of a spike is

artificially modeled [2]. Ermentrout showed that gap junctions between excitable

neurons disrupts the persistent state of network activity [3]. Chow and Kopell

showed the existence and stability of phase-locked neurons coupled electrically with

gap junctions. They showed that the role of gap junctions can be considered as

combining the effects of excitation and inhibition of synapses [4]. To see this, in the

spiking phase of one cell, the coupling current to the other cell is depolarizing, acting

like excitation; in the postpolarization phase, these currents can be hyperpolarizing

like inhibition. So gap junctions have both excitatory and inhibitory effects. They

also showed that the stability of synchronous solution mainly comes from the effects

of spikes. Lewis described the existence and stability of phase-locked solutions as

a function of the coupling strength and a spike effect parameter for two electrically

coupled non-leaky Integrate-And-Fire model neurons [5]. This model allows both

synchrony and anti-synchrony to be stable in some parameter regions.

Weakly connected networks can be reduced to a phase model which is more

amenable to analysis [6]. All-to-all coupled networks [7], chains of oscillators with

the nearest-neighbor coupling [8, 9, 10], and chains of oscillators beyond the nearest-

neighbor [11] have been studied to illustrate phase-locked solutions. Specifically, for

any system of weakly coupled, nearly identical oscillators, Kuramoto used a mean

field approximation to decouple the system [12].

For non-weakly connected networks, Medvedev and Kopell investigated

synchronization in chains of electrically coupled Fitzhugh-Nagumo oscillators [13].
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Their model was motivated by dopamine-releasing neurons [14]. A single such cell

was modeled by a chain of oscillators (compartments) with different gating dynamics.

Between compartments, very strong electrical coupling strength was assumed. This

model showed synchronous oscillations and yielded transient dynamics. Chow and

Kopell [4] also showed that all-to-all coupled network can exhibit a splay-phase state

by using the spiking response method [15].

Yet up to 98% of neuronal surface area is composed of dendritic trees. Most cells

possess highly branched and extensive dendritic trees. A cable theory in the nervous

system has been developed by several authors to understand these extensive systems

[16, 17, 18]. This cable theory can be applied to spatially dependent neurons, axon

or sections of dendrites which closely resemble a cylinder. Rall built a core conductor

model to understand the current flow in nervous cells [17]. The membrane resistivity

of dendrite is very high compared to the intracellular cytoplasm. Thus, the radial and

angular components of the current flow can be neglected. The 3 — D cable problem

can be reduced to a 1 — D problem.

The overall goal of this thesis is to investigate the role of gap junctions in

neuronal networks. We consider three distinct problems all related to the role of gap

junctions in neuronal networks. Two of them are motivated directly by the work of

Nadim and Golowasch [19], while the third is primarily of mathematical interest. We

first describe the first two components.

Gansert, Nadim and Golowasch studied sustained periodic activity in a randomly

connected electrical coupled neuronal network as a function of cable diameter [19].

They extracted a sub-network that contains at least one ring-like structure by using

a detection algorithm, which they refer to as the kernel of network activity. The role

of the kernel of network activity is to localize the sustained activity to be within this

sub-network. They also found the existence of an optimal dendrite diameter such that
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action potentials propagate through the network for diameters in a neighborhood of

the optimal.

We are also interested in understanding sustained activity of gap junctionally

coupled cables network. Here sustained activity means periodic activity. We first

consider non-biophysical gap junctionally coupled neurons to develop rules on network

architecture that will allow sustained activity to occur. We assume several rules

on activity propagation to simplify the structure of the network and show some

simple network architectures that sustain activity. We determine rules on network

architecture that allow activity to be sustained in the context of Graph Theory.

Specifically, we investigate how the sustainment of activity depends on network

connectivity, the refractory period of each neuron and the number of associated paths.

A necessary condition for sustainment of activity is the existence of a closed path.

A node is said to be a cut-off node if its removal from the network leaves it to be

a sub-network that does not contain any closed paths. Thus, whether activity is

sustained can be deduced by knowing whether activity propagates through a cut-off

node. Specifically, given a cut-off node i with n connections, we would like to know

how many in-flowing I(i, t- ) and out-flowing 0(i, t+) currents at a discrete time t are

required for activity to propagate through the cut-off node at time t. We have found

that whether an action potential propagates through a cut-off node with n connections

at a discrete time t ends up with knowing whether the ratio of in-flowing currents to

out-flowing currents associated with these paths is greater than the threshold.

Recently, Nadim and Golowasch have studied how the effectiveness of signal

transmission between two gap junctionally coupled passive linear cables depends on

cable diameter [20]. They determined the voltage response of the second cable in

response to a step voltage clamp at the beginning of the first cable. They measured

the steady state response as a function of the strength of coupling resistance, diameter

of the cable and cell membrane properties. They have showed numerically that there
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exists an optimal diameter of the cable where the signal can be transmitted most

effectively along the coupled cables.

In the second part of the thesis, we determine the voltage response of two gap

junctionally coupled passive cables as a function of cable diameter d. Specifically,

when the proximal end of the first cable is voltage-clamped, we investigate the voltage

response along the second cable and establish a general condition for the existence

of an optimal diameter. In a single cable model, the cable diameter is explicitly

included in the diffusion coefficient which is proportional to \/-d. Thus, as d increases,

the voltage response increases. However, the voltage response of the second cable for

two gap junctionally coupled cables does not simply increase.

The third part of the thesis considers the theta neuron model which is a canonical

form of a Type 1 membrane oscillator that yields a very low frequency oscillation via

a saddle node bifurcation [21]. We have studied the dynamics of two such neurons

coupled by gap junctions. Depending on an intrinsic parameter I of the theta neuron

and on the coupling strength gc , the network exhibits several types of solutions

including stable suppressed, 1 : N and 1 : 1 spiking solutions. Here a suppressed

solution and 1 : N spiking solution are the solutions that have the ratio of two

cells' spiking frequencies as 0 and k, respectively. We use a geometric approach of

dynamical systems to construct many of the above mentioned solutions.



CHAPTER 2

SUSTAINED ACTIVITY IN AN ABSTRACT NEURONAL

NETWORK

We consider a network of identical point neurons coupled by gap junctions where

each uncoupled cell is a near oscillator. An action potential in one cell causes current

to pass between two coupled point cells. When a stimulus is applied to a network,

we would like to know whether activity propagates through the network. In this

section, we determine rules on network architecture that allow activity to continue to

be propagated. In this chapter, we will:

1. Establish general rules on network architecture that allow activity to be

sustained.

2. Provide several example networks that exhibit sustained activity.

3. Identify nodes that are critical for sustained activity (called sup cut-off nodes)

and derive relationships between the refractory state, input/output load on a neuron

and the length of paths associated with sup cut-off nodes needed to sustain activity.

2.1 Assumptions to Build an Abstract Network

We consider an abstract structure without any biological realism. We consider each

cell to be a node within a directed graph. There are several assumptions that we

shall make to simplify the structure of the graph. We will assign rules for how

activity moves through the graph and will thereby consider the network as a discrete

dynamical system.

Assumption 2.1.1 Each cell is identical.

Assumption 2.1.2 When a cell fires, we define the propagation time until the

activity reaches a coupled cell as one unit of time. The propagation time between

any two cells in the network is the same.

6
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Assumption 2.1.3 When a cell fires, the current can flow to any directly

connected cells, which may cause them to fire at the next time step.

Assumption 2.1.4 One cell can be connected to several nearby cells by gap

junctions through multiple branches.

Each branch might not pass enough current to allow the coupled cell to fire.

However, if several in-flowing currents merge in a cell simultaneously, then the total

current at that moment may be large enough to trigger a cell to fire.

Definition 2.1.5 The number of out-flowing currents of node i (cell i) at time

step t is denoted by 0(i, t+) and the number of in-flowing currents of node i (cell i)

at time step t by I(i,

Definition 2.1.6 The degree of node i denoted by d(i) is the number of cells

directly connected to it. Note that d(i)=0(i, t+) + I(i, t- ) where activities pass

through node i at time step t.

Definition 2.1.7 The current flux of node i at time step t is denoted by u(i, t)

r(i,t-) as o(i,t+).

Assumption 2.1.8 When the current flux u(i, t) is above a prescribed threshold,

activity is able to propagate through the node i at the given time step t. We assume

that the threshold is 2 throughout this section.

Assumption 2.1.9 Each cell has a refractory period. In other words, once

a cell fires, there is a subsequent period of time that it cannot fire, independent of

the current flux u(i, t). We assume that the refractory period is two throughout this

section.

Note that each cell has its own initial refractory state (0, 1, 2). A cell having 0

refractory state is ready to fire if a large enough current flows in. On the other hand,

a cell having 1 (2) refractory state needs to wait for one (two) more time steps in

order to be ready to fire. We assume that there is no way for a refractory state 1 or

2 cell to fire even when a large enough current comes in.
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2.2 When Does Activity in the Network Die Off?

We consider a network which is subject to the assumptions in section 2.1. To see the

roles of the assumptions, we look at some simple network structures through which

activity fails to propagate.

Example 2.2.1 Assume that the initial refractory state of each cell is equal to

0 and every cell is connected to all other cells. If a stimulus causes one cell to fire,

then all other cells fire at the next time step (assume the initial current flux at the

stimulated cell is above threshold). Due to the refractory period, no cells are able to

fire at the next time step and the network activity dies. This example implies that

in order for activity to propagate, a network in which all cells have the same initial

refractory state should not have the maximum number of connections at each node.

Example 2.2.2 Assume that the initial refractory state for each cell is equal

to 0 and the network has a circular structure. Thus each node is connected to only

two nearby cells. Then each cell has degree 2 and there are no ways that activity

can propagate through the network. A stimulated cell invokes two nearby cells to fire

and the activity propagates in both directions (clock-wise and counter clock-wise).

Eventually the two activities meet or are next to each other (depending on the number

of cells in a network). At this point, activity cannot propagate through this node due

to the refractory period. Example 2.2.2 shows that the degree of every node should

not be too small. However, if a cell is stimulated and another cell within a distance

1 (2) of the stimulated cell has an initial refractory state 1 (2), then activity arriving

from the stimulated cell to this cell will die off. But activity also propagates from the

stimulated node in the opposite direction and thus can be sustained (the minimum

number of cells required in the network is 5, based on the choice of parameters).

Note that nodes having different initial refractory states within a neighborhood

of the stimulated cell influence network activity. We first analyze network activity
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cell 8

Figure 2.1 Cell 1 is stimulated, activity propagates through cell 9 and thus activity
is sustained.

in the case of the same initial refractory state 0 in a network and then study how a

node having different initial refractory state changes network activity.

Example 2.2.3 Assume that the initial refractory state for each cell is equal to 0

and the network has a structure as shown in Figure 2.1. If cell 1 is stimulated, activity

propagates in both directions (counter clock-wise and clock-wise). The counter clock-

wise activity dies off at cell 9 because u(9, 1) is 3. On the other hand, the clock-wise

activity propagates through cell 2 and cell 3 and then branches after cell 4. When

the activity arrives at cell 9 via the upper branch (cell 5, 6, 9), the current is not

enough to trigger cell 9. However, a second wave of activity comes into cell 9 via the

lower branch (cell 7, 8, 9) at the same moment. Thus the in-flowing current to cell

9 is enough to trigger it since u(9, 6)=1. Activity propagates to cell 10 but it dies

off there because it is unable to back propagate to cell 9 to fire due to its refractory

period. Thus, activity propagates to only cell 1 and the cycle repeats. Therefore, this

network sustains its activity.

Example 2.2.3 shows that even at a node with large degree, if another current

comes into it at the appropriate time, the activity can propagate through the cell.

The appropriate time is related to the length of branches. For example, if the upper
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branch includes only cell 5 and now the length of upper branch is 2, then the upper

activity dies at cell 9 and the lower branch activity also dies there.

From these examples, we conclude that the main parameters that affect whether

a network stays alive are the degree of a node, the refractory period, and the lengths

of paths (branches). Since we assumed that the refractory period is fixed in the

network, neuronal network structure really results from the degree of each node and

length of each path.

2.3 Activity Patterns and Mathematical Descriptions

In the context of graph theory, a graph consists of a set of objects called nodes and

another set called edges. Here we regard each cell as a node and a connection as an

edge. We build a neuronal network based on graph theory and state some definitions

associated with it found in [22].

Definition 2.3.1 A walk is defined as a finite alternating sequence of nodes and

edges, beginning and ending with nodes. Terminal nodes refer to nodes with which a

walk begins and ends.

Definition 2.3.2 A walk is said to be path if no node appears more than once.

Definition 2.3.3 A path is said to be a closed path if its terminal nodes are

the same.

Definition 2.3.4 A network is said to be connected if there is at least one path

between every pair of nodes in a network.

Now we consider networks that can exhibit several types of activities. Throughout

this section, we assume that each cell has initial refractory state 0. We also assume

that there exists one node in a network which is a member of at least two closed

paths. If there is no such node in a network, the activity cannot be sustained as in

example 2.2.2. Note that in the network shown in Figure 2.1, cell 9 is a member of

two closed paths (1  2 3 4 7 8  9 and 1  2 3 4 5 6  9).
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cell 6

Figure 2.2 Cell 1 is stimulated, activity comes back to cell 1 but is unable to
propagate through it. However, activity is sustained within a sub-network(cell 2, 3,
4, 5 and 6).

When a node is stimulated, it may yield several types of activity patterns which

depend on its structure and the location within the network of the stimulated node.

Type 1 Periodic activity: Activity propagates back to the initial stimulated

cell, continues to propagate through the initial stimulated node and thus the activity

is sustained (see Figure 2.1).

Type 2 Triggering activity: There is no periodic activity through a stimulated

node but it triggers periodic sustained activity within a sub-network (see Figure 2.2).

Note that it is possible that activity fails to propagate through the initial

stimulated node even if activity propagates back to it (see Figure 2.2). To see

this, when cell 1 is stimulated, the counter clock-wise activity dies off at cell 5 since

u(5, 1)=3. The clock-wise activity propagates only to cell 3 through cell 2 since

u(5, 2)=- . At t=4, the two activities merge in cell 5. Now u(5, 4) is 1, which is

enough to trigger cell 5. One path of activity propagates back to cell 1 but is unable

to propagate through cell 1 and dies off there. On the other hand, the other path of

activity (cell 5 to cell 2) becomes a cycle (5-2-3-(4,6)-5).
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Figure 2.3 Cell 9 of Figure 2.1 is a sup cut-off node: Over-loaded cell 9's removal
from Figure 2.1 network yields a sub-network that does not contain any closed path.

2.4 Classification of Nodes According to Their Structure

and Activity Propagation through a Sup cut-off Node

In this section, nodes are classified according to their network structure.

Definition 2.4.1 A node i is said to be a cut-off node if its removal from the

network leaves a sub-network that does not contain any closed paths (see Figure 2.3

and 2.4).

A cut off node is very crucial to sustained activity because any activity must

propagate through it.

Definition 2.4.2 A node i is said to be an over-loaded node if 3 < d(i).

Note that 3 < d(i) is equivalent to d(i)-1 < 2 . In other words, if one in-flowing

current is not enough to trigger a node, then it is said to be an over-loaded node.

In order for activity to propagate through an over-loaded node, more than one

current should simultaneously flow in to this node.

Definition 2.4.3 A node is said to be a sup cut-off node if it is a cut-off and

over-loaded node (see Figure 2.3). A node is said to be a sub cut-off node if it is a

cut-off and non over-loaded node (see Figure 2.4).

Whether activity is sustained can be deduced by knowing whether activity

propagates through a sup cut-off node. Specifically, given a sup cut-off node, we



13

Figure 2.4 Cell 4 of Figure 2.1 is a sub cut-off node: non over-loaded cell 4's removal
from Figure 2.1 network leaves a sub-network that does not contain any closed paths.

cell 1 I

Figure 2.5 Cell 7 is not a cut-off but an over-loaded node. Cell 7's removal from
the network leaves a sub-network that still contains a closed path.
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would like to know how many in-flowing currents are required for activity to propagate

through it. Denote the smallest integer greater than a real number x by < x >.

Lemma 2.4.4 < 	 >< 	 < d(i) if and only if activity propagates

through a sup cut-off node i at time step t.

Proof of Lemma 2.4.4

The condition for activity to pass through a sup cut-off node i at time step t is

that d(i)-I(i,ti-) > 1 Then I(i, t- ) > I(i, t- ) is an integer and smaller than d(i).

Thus, < '132 >< I(i, t- ) < d(i).

Now we study a simple network that has only one sup cut-off node (possibly

some sub cut-off nodes but no other over-loaded nodes). First, we determine under

what conditions on network structure activity propagates from a stimulated node to

a sup cut-off node.

Definition 2.4.5 A path is said to be associated with a stimulated node a if

the path begins with node a.

Definition 2.4.6 An edge of node i is said to be associated with a stimulated

node a if there exists a path associated with stimulated node a that ends with node

i.

Let da (i) denote the number of edges of node i associated with a stimulated

node a (see Figure 2.5). For example, the edge between cell 9 and cell 10 is not an

edge of node 9 associated with stimulated node 1.

Lemma 2.4.7 Assume that node i is the only sup cut-off node in a network,

then da (i) is exactly the number of paths associated with a stimulated node a and

ending with node i.

Proof of Lemma 2.4.7

Denote the number of paths associated with a stimulated node a and ending with

i by P(a, i). Obviously, da (i) < P(a, i) because the network is connected. Suppose

that da (i) < P(a, i). Then, some of the edges of i are shared by 2 distinct paths.
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Thus, there exists a second closed sub-network that does not contain node i, which

contradicts the fact that node i is the only sup cut-off node.

Lemma 2.4.7 implies that any two paths beginning with node a and ending with

node i can only merge at node i.

Theorem 2.4.8 Assume that a node i is the only sup cut-off and over-loaded

node in the network and the initial refractory state for each cell is equal to 0, then

I(i, k- ) is exactly the number of all paths with length k which are associated with

node a and end with node i.

Proof of Theorem 2.4.8

Denote the number of all paths with length k which are associated with node

a and end with node i by P(a, i , k). Obviously, I(i, k- ) < P(a, i, k). Suppose that

I(i, < P(a, i , k), then either 1) two waves of activity merge in a node at a time

step t < k or 2) one of them dies off due to the refractory period or at an over-loaded

node. If the two waves of activity merge in node j, then there exists a closed path

including node j that does not contain node i, which contradicts again the fact that

node i is the only sup cut-off node. So 1) can be excluded. In order for activity to

die off due to the refractory period without being merged, the two waves of activity

must come next to each other at a given time step on a path. As in 1), they also

have a node in common. Therefore, there must be a closed path in a network, which

contradicts again the fact that node i is the only sup cut-off node. Hence, 2) can be

excluded.

From Lemma 2.4.4 and Theorem 2.4.8, if a node a is stimulated, then a necessary

and sufficient condition that activity propagates through a sup cut-off node i at a time

step k is < >< P(a, i, k) < d(i). The number of all paths with length k which

start with a and end with i must exceed the smallest integer greater than a third of

the degree of the sup cut-off node i at time step k in order to propagate through the

node i.
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Figure 2.6 Cell 5 is a cut-off and cell 4 has the initial refractory state 2 and
P(1, 5, 3) = 2, R(1, 5, 4, 3) = 1, I(5, 3- ) = 1. Thus activity cannot propagate through
cell 5 at time step 3.

Now we consider the situation where all cells do not necessarily begin in the

same refractory state.

Corollary 2.4.9 If a node b in a neighborhood of a stimulated node a has a

different initial refractory state and R(a,i,b,k) denotes the number of all paths with

length k associated with node a that contain a node b and end with node i, then

I(i, k- ) is P (a, i, k) — R(a, i , b, k).

Example 2.4.10 As shown in Figure 2.6, cell 5 is a sup cut-off node and cell

4 has the initial refractory state 2. The initial states of all other cells are 0. Cell 1

is stimulated and activity dies at cell 5 since u(5, 1) = 3 , but propagates through cell

2 since u(2, 1) = 2. However, at this time step, the refractory state of cell 4 is one.

Thus the activity through cell 2 can only propagate to cell 3. Thus u(5, 3) = s and

the activity dies. If cell 4 were to start in refractory state 1 or 0, then u(5, 3) =

and activity could be sustained.

Lemma 2.4.11 Assume that the same condition as Theorem 2.4.8 holds with

I(i, k- ) = da (i) — 1, if there is only one path 1 beginning with node a and ending with

node i which has no common node with all other paths and has a length less than k,

then activity propagates from a sup cut-off node to a stimulated node. The network

has a periodic activity.
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Proof of Lemma 2.4.11

Since only one path 1 has a different length (less than k) from all other paths

beginning with node a and ending with i, activity along the path dies off at a sup cut-

off node before enough current comes in because the current flux is below threshold.

However, I(i, k- ) is enough to trigger cell i to fire and activity can propagate into

only path 1 due to the refractory period of the nodes in the other paths. Activity

propagates back to a stimulated node a because there are no common nodes with

all other paths and thus path 1 can not invoke any other activity. Once the activity

comes back to the stimulated node a, the cycle repeats.

2.5 Conclusion

The results of this chapter show how network architecture influences the possibility

of whether a network can exhibit sustained activity. The results also show that

understanding architecture alone is not sufficient. One must also take into consideration

the refractory state of each node, together with the location of a stimulating node.

We provided several examples where changing either of these factors led to a network

switching from sustained activity to no activity, or vice versa. We can extend our

results to the case of a threshold N and a refractory state with 0, 1, 2, ... , K where M

and M are positive integers by simply changing d(i)-I(i,t- ) > in Lemma 2.4.4 and

R(a, i , b, k) in Corollary 2.4.9. In the case of network architectures having multiple

sup cut-off nodes, activity must pass through all sup cut-off nodes. Any paths from

one sup cut-off node to another one must not merge in a node other than the two sup

cut-off nodes. Thus we can apply Theorem 2.4.8 to this activity propagation. Hence

the condition that activity is enable to propagate through two sup cut-off nodes is

the same as Theorem 2.4.8. Gap junctionally coupled networks in biological systems

are observed in early embryo development stage [23]. The biological system could

exhibit sustained activity through gap junctionally coupled networks.



CHAPTER 3

GAP JUNCTIONALLY COUPLED CABLES

A cable theory has been developed to understand the current flow in spatially dependent

neurons [17]. We are interested in knowing the voltage response of gap junctionally

coupled cables as a function of cable diameter. In the case of a single cable, the voltage

attenuation along a single cable increases. The cable electrotonic distance decreases

as cable diameter increases. Thus the voltage response increases as cable diameter

increases. However, the voltage response of the second cable of gap junctionally

coupled cables does not follow the rule. Instead there exists an optimal diameter

for which the voltage response can be maximized [20]. Here we build a mathematical

model for gap junctionally coupled cables to understand the voltage response of cables

in response to arbitrary inputs.

Nadim and Golowasch derived the steady state solution in the form of a system

of algebraic equations in response to step voltage clamps. They numerically showed

that there exists an optimal diameter for which the maximum voltage response of

the second cable occurs. They also gave biophysical reasons for the existence of an

optimal diameter.

As mentioned in the previous chapter, Gansert et al. constructed gap junctionally

coupled network of model neurons based on the previous Nadim and Golowasch work

[19]. They numerically showed that an action potential may propagate through gap

junctions for a range of diameters around the optimal value. They also numerically

showed that the propagation time can be minimized around this optimal value. They

observed that activity can be sustained in the kernel of network activity for a range

of optimal diameters.

18
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Figure 3.1 The two cables are electrically end-to-end coupled with diameter d and
coupling resistance Rc.

We study the voltage response of gap junctionally coupled cables as a function

of cable diameter. We have obtained the following results:

1. For any non-negative inputs, we show that there exists an optimal diameter

for which the maximum voltage response of the second cable occurs in response to

both steady state and transient inputs.

2. We derive the exact form of stationary solutions for gap junctionally coupled

cables in response to periodic waves and step voltage clamps.

3. We find a sufficient condition that guarantees the existence of an optimal

diameter for any network architecture of multiple gap junctionally cables.

4. We give mathematical explanations for the existence of an optimal diameter

in terms of voltage flux.

3.1 Two Gap Junctionally end -to-end Coupled Cables

In this section, we consider two passive cables that are coupled by a gap junction

with a periodic wave input. A single linear cable equation is given by [17].

where v(x, t) is the voltage at x at time t, 0 < x < 1, and t > 0, T m is the membrane

time constant and A is a space constant of the cable.

For a single cable case, the solution of equation (3.1) can be uniquely determined

for any two boundary conditions at x = 0 and x = 1, respectively [18]. For example, a
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common situation would be to voltage clamp at x = 0, v(0, t) = vo (t) and to impose

a no flux condition at the sealed end, av,(l,t) = 0.

Assume that two identical cables are connected end-to-end by a gap junction

with a coupling resistance R, and that we clamp a voltage at the beginning of the first

cable. Then the current flow diffuses along the first cable, crosses the gap junction

and then diffuses along the second cable. A coupled model is given by equations (3.2)

and (3.3).

where R, is a coupling resistance. The boundary conditions are

and initial conditions of the coupled system are

Nadim and Golowasch determined a steady state voltage response of the two

gap junctionally coupled cables in response to a voltage clamp as a function of input

amplitude, diameter, coupling resistance, input resistance, terminal resistance, and
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diameter [20]. Their main results show that the voltage response at any location of

the second cable is maximized at a location dependent optimal diameter.

Note if the two coupled cable equations (3.2) and (3.3) are considered to be a

single cable with a gap junction, the voltage response of model (0 < x < 21) has a

discontinuity at the gap junction location x = l. Here we solve each cable equation

separately. First, the voltage response along each coupled cable can be expressed as

the two unknown voltage fluxes which are determined at x 1 = 1 for the first cable and

x² = 0 for the second cable, respectively. Second, we derive a matching condition

across the gap junction to determine the two unknown fluxes.

We solve the above equations (3.2) and (3.3) using Green's function. An explicit

dependency of cable diameter appears in axial resistance ra and space constant A

where

Where d is the cable diameter with unit pm and Ra is the axial resistivity with unit

C2 • cm and R, is the specific membrane resistance with unit C2 • cm ² .

3.2 Derivation of the Solution and a Matching Condition across the

Gap Junction

We assume that current does not leak out through the membranes at the proximal

and distal ends. Thus the current is conserved through the gap junction, I 1a(l, t) = Ic

= I²a (0, t), where the current I1a(l, t) flows out at the end of the first cable (x 1 = l),

the current I²a (0, t) flows in at the beginning of the second cable (x ² = 0) and Ic

flows across gap junction (x 1 = 1 and x² = 0):



We separate the above discontinuous P.D.E (3.2) and (3.3) by denoting the

unknown voltage flux av1(l,t)
 by a(t):

The initial conditions are

and the boundary conditions are

for i = 1, 2 where a(t) is unknown. The corresponding Green's functions of (3.5):
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G 1 and G2 are obtained by the method of images. By using integration by

parts and the boundary conditions of each cable, the solution can be expressed with

an unknown flux a(t).

From equation (3.4), (3.8) and (3.9)

Thus, the discontinuous P.D.E.(3.2) and (3.3) has been reduced to a linear

integral equation for the unknown a(t). Note that the only input to the second cable

for the equations (3.2) and (3.3) with the given boundary conditions is positive and

comes from the end of the first cable. Thus current flows from x 1 = / to x2 = 0.

Therefore, we have a(t) < 0 throughout this chapter. Substituting (3.8) and (3.9)

into (3.10) we obtain

Since the infinite series of Green's functions converges very fast for small times,

the first few terms of (3.6) and (3.7) can be used to solve the linear integral equation
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(3.11). Once we know the voltage flux a(t) from (3.11), the voltage response v ² (x, t)

along the second cable is obtained by (3.9). Once we obtain the two Green's functions

(3.6) and (3.7), we do not have to calculate them for each value of parameters. That

is an advantage to use the integral equation (3.11) rather than solving the problem

by direct numerical methods. Note that the linearity of (3.11) can be used to show

that a(t) is linear with respect to inputs by using Laplace transformation. This fact

is used below.

3.3 Stationary Solution in Response to a Periodic Voltage Clamp

We consider a stationary solution for the boundary conditions:

Since the governing equations (3.2) and (3.3) are linear, a complex-valued boundary

condition I0 exp(iωt) is applied at the beginning of the first cable rather than I0sin(iωt)

in order to make calculation easier.

We expect that a stationary voltage response of periodic input v0 exp(iωt) has

the same frequency as the input frequency w. Thus we assume that the unknown

boundary conditions have the form Aexp(iωt) where A is a constant. So an ansatz

uj(x)exp(iωt) is inserted in the equation (3.5) for j = 1, 2:

where ' = d /dx . Then, (3.2) and (3.3) become two boundary value ordinary differential

equations with the boundary conditions:



where A is unknown and to be determined. Rewriting (3.12), we obtain

Across the gap junction, the matching condition must satisfy:

By solving the above two boundary value problems with the matching condition

(3.16), we obtain a solution along the second cable:

(3.17)

In the case of co = 0, v1(0, t) = v0, the solution u ² (x) is the same as Nadim and

Golowasch have obtained in the form of a system of algebraic equations.

3.4 An Optimal Diameter for Voltage Amplitude along the Second

Cable

We now use (3.17) to show that there exists an optimal diameter for which the

maximum amplitude of the voltage response along the second cable can be achieved.

First, define a new space constant A,, of the passive cable model in response to a

periodic input v0 sin(wt) as:

25
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Our governing model is linear and thus the input v o e iwt is a linear superposition

of v0 cos(wt) and ivo sin(wt). A true stationary solution of the coupled cables equation

along the second cable corresponds to the imaginary part of u2(x)eiwt. Even though

u² (x) is a complex-valued function of x, it is still useful to consider the magnitude

of u² (x). The amplitude of stationary voltage response along the second cable in

response to v0sin(wt) is the magnitude of a complex-valued function u ² (x). Note that

u² (x) also depends on w and d. The phase shift in response to an input v0 sin(wt)

along coupled cable is arg(u² (x)). To see this, denote u² (x) by v(x) + iw(x). Then

u2 (x)e iwt = vcos(wt) — wsin(wt) + i(wcos(wt) + vsin(wt)).

imag(u2(x)eiwt =wcos(wt) + vsin(wt) = \/v²+ w²sin(wt +0)

where tan(Ф) = Define the phase shift of input v0sin(ωt) along coupled cable as

0. Then (4, = arg(u ² (x)).

In this section, we investigate the effects of parameters d and w on the amplitude

of the voltage response. First we understand the effect of d on the amplitude. When

u² is considered to be a function of d, we show that there exists an optimal diameter

for which the maximum amplitude of the stationary voltage response can be obtained.

In Figure 3.2, we plot u ² (x)versus d using the equation (3.17). The amplitude of

the voltage response along the second cable can be optimized at d = d* ti 3.2 for the

set of parameters shown.

Theorem 3.4.1 Fix w and consider a fixed location x ² along the second cable.

There exists an optimal diameter d*(x ² , w) where the amplitude of the stationary

voltage response is maximized.
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Figure 3.2 The voltage amplitude Iu2(x) I plotted from (3.17) along the second cable
is maximized at d = d* ti 3.2 where x 2 = 3, w = 5, 1 = 600µm, v (0 ,t) 40mv, Rm =
40kΩcm² , Ra, 60Ωcm, = 10 8 Q.

Note that we can restate the conclusion of Theorem 3.4.1 simply as Iu 2 (x 2 , w , d)I <

I u2(x2, w, d*) I for any d d* and d > 0.

Proof of Theorem 3.4.1

Fix x along the second cable and also fix the input frequency w. From (3.18),
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From (3.17) and the triangle inequality,

First, we claim that as d approaches oo, I u2(x) I goes to 0. Note that

and

since -5k--5/ goes to 0 in the complex plane. But I 1/ra
	A, 

sinh l / λω I has an indefinite form

. 00 x 0 as d goes to oo. Hence it suffices to show that I 1 / aλω sinh+- I approaches co as

d goes to oo.

Since 	 )I approaches 0 as d goes to 0 and



for a large enough d. Using the complex function identities:

sinhz = sinhxcosy + icoshxsiny

and

coshz = coshxcosy + isinhxsiny

for z = x + iy, note that

and

Hence,

29

As d goes to 0, both
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and

approach 1. Thus,

as d -- 0. Therefore, u ² (x) ---* 0 as d ---+ 0. From (3.17), since 1 cosh(V)I > 0 for

any 0 < d < oo. By the mean value theorem, there exists an optimal diameter d for

which 1u ² (x)I can be maximized.

Note that this does not prove the uniqueness of the optimal diameter value, but

locally shows that there exists an optimal diameter d* (x , w) such that ju ² (x, d) <

Iu² (x , d*)I for each x and w. We plotted the imaginary part of u ² (x) versus d for

different choice of parameters, as in Figure 3.2. The results suggest that the optimal

diameter is in fact unique.

Next, we examine the effects of the input frequencies on the amplitude of

voltage. By fixing x ² along the second cable, we can check how the amplitude 1u ² (x ² )1

varies as we change w. In Figure 3.3, we plot 1u ² (x² )1 versus w. The plot certainly

suggests that 1u ² (x² )1 is monotonically decreasing as is the case of an iso-potential

cell [24]. We do not yet have a proof that 1u ² (x)1 monotonically decreases with w.

But we do have a partial result. We prove that 1u 2 (x)1 -f 0 as w --- oo.

Theorem 3.4.2 Fix x along the second cable. Then, u ² (x)I ---4 0 as w —> oo.

Proof of Theorem 3.4.2
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Figure 3.3 As in an iso-potential cell, the voltage amplitude along the second cable
decreases to zero as input frequency w increases where x 2 = 3, d = 5.

The dominant term is e 2 1 / λωand divide the numerator and denominator by l e21/ λω I 1.

The real part of —4(-) is —8A(ω)cos(α). As w 	 oo, —8A(ω)cos(α) 	 —Do

	

cosh(-,71 l / λω) sinh(I / λω) 	 1 i
since A(w)	 oo and a	 Thus, limω→ 	21	 w	 -4 in the complex

e

plane. Similarly, (2sinh²( l / λω) + 1)-47-. goes to 1 in the complex plane as w 	 oo.
e

The numerator term cosh(I - x / λω) 1 / 21 goes to 0. Therefore I u2(x) I	 0 as w	 oo.

We can obtain the optimal cable diameter where a lt`,92 /x )1 = 0 by a numerical

simulation. Here we plot the voltage amplitude versus d for different coupling lengths.

We observe that the optimal diameter decreases as the coupling resistance R, increases.
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Figure 3.4 The optimal diameter decreases as	 increases where the curves 1, 2 and
3 are plotted with R, = 108Z, 5 x 10 8 C2, 9 x 10 9C2, respectively, where x 2 = 3, w = 5.

Figure 3.5 The phase shift is minimized at d = dps ti 2.1 where x2 3, w = 50.

3.5 Phase Shift as a Function of Diameter

In this section, we observe that for a certain range of w, there exists an optimal

diameter dps for which the phase shift can be minimized by plotting arg(u2(x2))

versus d as seen in Figure 3.5. However, for large values of w, there is no optimal

diameter for phase shift because the curve monotonically approaches the limiting

value from below as shown in Figure 3.6. For approximately, w > 790 with choice of

parameters of Figure 3.5 and Figure 3.6, there is no optimal diameter for phase shift.

In both cases, we find the limiting value of arg(u 2 (x2 )) as d oo.



33

Figure 3.6 The phase shift monotonically approaches the limit value tan-¹(-2rmω)
from below as d —f Do. Thus there is no optimal diameter for this frequency where
x2 = 3, w = 800.

Lemma 3.5.1 ω —" —2τmω  as d -4 Do where u 2 (x) = v(x) + iw(x).v

Proof of Lemma 3.5.1
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Separate imaginary and real parts and denote them by u 2 (x) a-- v + iw. Then

Thus,

Note that

Hence, 0 and P are the dominant terms in ω. Thus divide the numerator andv

denominator of -"Q:, by di sinh(lA / √d). we have
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Hence, we need to know that limd -->oo  3 °	 and limd-->oo  3 P 	. To do so,
d7 sinh(lA / √d) (lA / √d)v d 	 d7 sinh( lA / √d)

check that

3.6 An Optimal Diameter for a Transient Solution

We ultimately want to know whether in response to an action potential invoked at

the beginning of the first cable, the voltage response at the end of the second cable

is above a threshold. To simplify the calculation, we will consider the voltage along

the second cable in response to a rectangular potential wave instead of an action

potential. We show that in this case, there continues to exist an optimal diameter for

voltage. We first show that there exists an optimal diameter of the transient voltage
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response of a step voltage clamp in the sense that for fixed x and t, av(xa' t, d*) = 0 for

some d*. Then we extend the inputs to more general ones including a rectangular

potential wave. In this section, we use the properties of cable equation to show the

existence of an optimal diameter instead of deriving an analytic form of the transient

solution. We now list the properties of cable equation.

Lemma 3.6.1 Let v(x, t) represent the steady state solution of a single cable

equation (3.1) with the boundary condition given by av(0, t) < 0 and av(l,t)/ ax= 0. Then

av(x,t) <O for all 0 < x < / and t > O.ax —
Proof of Lemma 3.6.1

Take the derivative (3.1) with respect to x and put w(x, t) = av (x,t) . Then

τmvtx = λ²vxxx — vx and thus

Tmwt = λ²wxx  - w,w(x, 0) = 0, w(0, t) < 0, w(L , t) = 0.

By the maximum principle of parabolic equation [25], w(x, t) can not attain its

maximum in the parabolic interior points of D = [(x, 010 < x < L, 0 < t < T]

but will do so on the parabolic boundary t = 0, 0 < x < L or x = 0, 0 < t < T or

x = L, 0 < t < T for some finite T > 0. Hence, the maximum w(x, t) over the closure

of D is 0. Therefore w(x, t) < 0.

Lemma 3.6.1 implies that the voltage response decreases along the cable for any

fixed t > 0. A single cable voltage response to a step voltage clamp can be applied

to Lemma 3.6.1. The voltage v(0, t) = v0  is fixed and then current flows down the

cable. Thus av(0,t) / ax< O.

Next, we begin by showing that there exists an optimal diameter even for a

single cable in the case of a current-clamp. However, it does not originate from the

property of gap junctions [26].

Lemma 3.6.2 Let v(x, d) represent the steady state solution of a single cable

equation (3.1) with the current-clamp boundary condition given by a v(0,t) /ax = —raI0
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and av(l,t) = 0. Then there exists a diameter d*(x) such that for each 0 < x < 1,

v(x, d) < v(x, d* (x)) for any diameter d.

Proof of Lemma 3.6.2 With the above boundary conditions, we obtain

v(x, d) = λraI0/sinh(I/λ) cosh(l-x/λ ) where A = 4Rm/Rad	 d/k . First, we claim that as d	 oo,

v(x, d)	 0. Note that cosh(l-x / λ) = cosh(k(l-x) / d) approaches 1 as d goes to oo and

λral0  = La  d3/2 / sinh (Ik / d). Then,
sinh(l/λ) 	 k sinh(Ik/d)•

Hence, limd -->oo v(x, d) = 0. Now,

for 0 < x. Thus limd—>0 v(/, d) = 0. Since v(x, d) > 0 for any d, by the mean value

theorem, there exists an optimal diameter d* for which av(x,d*)/ad = 0.

We can weaken the boundary condition av(0,t)/ax = —rah at x = 0 in the sense

that av(0,t)/ax) is bounded by .4- a > 2, K > 0.d -2-

Corollary 3.6.3 If 0 > av(0,t)/ax > Ad, a > 2 in Lemma 3.6.2 where A(t) is

independent of d and A(t)	 A as t	 oo , then there exists an optimal diameter

d* such that for each 0 < x < 1, av(x,d*)/ad = 0.

Proof of Corollary 3.6.3
λA1/α

It is clear that v(x, d) < 	 d7i cosh(l-x/λ) from the Proof of Lemma 3.6.2. Then
sinh(l/λ)

¹

lim 	d-2- cosh(
/ — x

) = 0
d—>oo sinh(I/λ)	A

in the same way in Lemma 3.6.2 since a > 2. Thus limd-->oo v (x , d) = 0. As d —> 0,

v(x, d) goes to 0 for any a > 0.

Now we claim that the steady voltage response attenuates along the cable.
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Lemma 3.6.4 Let v(x, d) represent the steady state solution of a single cable

equation (3.1) with the voltage-clamp boundary condition given by v(0, t) = v0 and

av(l,t) = 0. Then v(x, d) < v0 for any x > 0 and d. Furthermore, limd-->oo v(x, d) = v0ax

and limd-->0 v(x, d) = 0.

Proof of Lemma 3.6.4
-L

We obtain v(x,d)	 cosh(l-x/λ
 )

v0 	  with the two boundary conditions, v(0, t) = v0cosh(l/λ)
and av(l,t)/ax = 0. It is obvious from the solution that v(x) < v0 because cosh(l-x / λ)) <

cosh(I/λ) for all x. Then limd-->oo v(x) = v 0 and limd-->0 v(x) = 0 follow since A =

Thus in the voltage clamp case, a single cable does not support an optimal

diameter. We compare the steady state solution and a transient solution for a single

cable in both cases of a current clamp.

Lemma 3.6.5 Let v(x, t, d) represent the transient solution of a single cable

equation (3.1) with the current-clamp boundary condition given by av(0,t)/ax= rah av(0,t)/ax

Proof of Lemma 3.6.5

Take the derivative of (3.1) with respect to t and put w(x, t)	 av(x,t)/at . Then

τmvtt = A2vxxt vt and thus

τmwt λ²ωwxx - w, wx (0,t) = 0, wx (L,t) = 0.	 (3.21)

Since v(x, t) > 0 from (3.7) and (3.9) and v(x, 0) = 0, the initial conditions v t (x, 0)

w(x, 0) > 0. Again by (3.7), (3.9) and the positive contribution to the solution from

the initial conditions, w(x, t) > 0. Thus vt (x, t) > 0, which also implies v(x, t) <

v(x, d) for any t > 0.

From Lemma 3.6.2 and Lemma 3.6.5, we immediately figure out the existence

of an optimal diameter d*(x, t) of the transient solution for a single current clamp

cable in the sense that for fixed x > 0 and t > 0, av(x,t,d*)/ad = 0. Note that d(x, t)

depends on x and t.
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Corollary 3.6.6 Let v(x, t, d) be the transient solution of a single cable equation

(3.1) with the current-clamp boundary condition given by av(0,t)/ax= raI0, andav(l,t)/ax=

0. Then for fixed x and t > 0, there exists an optimal diameter d*(x, t) such that

v(x, t, d) < v(x,t, d*(x,t)) for any d.

Here we compare a transient solution of a single cable with a transient solution

of coupled cables at x1 = 1 and x 2 = 0.

Lemma 3.6.7 If v i (x i , t, d) and v2 (x2 , t, d) are the voltage responses of the

two end-to-end gap junctionally coupled cables (3.2) and (3.3), v i (0, t, d) = v0 and

av2 (l,t,d) = 0, then v2 (0, t, d) < v1(l,t,d) < v(l, t, d) where v(l, t, d) is the transientax

voltage response at x = 1 of a single voltage clamp cable, v(0, t) = v0 and av(l,t)/aax = 0.

Proof of Lemma 3.6.7 Define z(x, t, d) = v(x, t, d) — d). We show

z(x, t, d) > 0 for any x and t with the boundary conditions and initial conditions

given by

First we claim that z(l, t) > 0 for all t > 0. Suppose z(1, T) < 0 for some T > 0.

Moreover, without loss of generality, assume that z(l, T) is the minimum value in

0 < t < T. The minimum principle of the parabolic equation, z(0, t) = 0 and

z(x, 0) = 0 implies that the minimum value of z(x, t) in [0, 1] x [0, T] is z(l, T), which

contradicts zx (/, T) > 0. Hence z(l, t) > 0. Again by the minimum principle of

the parabolic equation, z(x, t) > 0. Since a(t) < 0, v2 (0, t) < v i (/, t). Finally, we

combine the above results to show the main result.

Theorem 3.6.8 There exists an optimal diameter d*(x, t) for which v 2 (x, t) can

be maximized along the second cable for fixed 0 < x < 1 and t > 0 in the case of

vi (0, t) = v0 and av2(l,t)/ax
 0.

Proof of Theorem 3.6.8
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0,t)	-- rav1(l,t)-v2(0,t)/Rc>—ratit .By Lemma 3.6.7 and Lemma 3.6.4, 0 >

From Corollary 3.6.6, for fixed 0 < x < 1 and t > 0, there exists an optimal diameter

d* (x, t) such that av2(x,t)/ad = O.

An optimal diameter in case of any non-negative input is now considered. A

given non-negative input can be bounded by a step voltage clamp. Thus for fixed x

and t , the voltage response is bounded by that of the step voltage clamp because the

coupled cables model (3.2) and (3.3) are linear with respect to inputs.

Corollary 3.6.9 For any input v(0, t) = v0 (t) > 0, we can choose a step voltage

clamp V0 > v0(t) for any t > 0. Thus there exists an optimal diameter for the voltage

response in response to v 0 (t).

Proof of Corollary 3.6.9

Since V0 > v0 (t) for any t > 0 and the equations (3.2) and (3.3) is linear with

respect to input, the voltage response of v0 (t) is less than that of a step voltage clamp.

Thus there exists an optimal diameter.

We can extend the existence of an optimal diameter for the two end-to-end gap

junctionally coupled cables to a more general case in a network of gap junctionally

coupled cables. The proof of Theorem 3.6.10 is obvious.

Theorem 3.6.10 Suppose that v(x, t) is the voltage response along a section

of a network of gap junctionally coupled cables. If the voltage flux at the proximal

end from the input is bounded by dwhere a > 1, K > 0 and the voltage flux at

the distal end is non-positive, then there exists an optimal diameter for which v(x, t)

can be maximized along the section of network for fixed x and t.

Example 3.6.11 When two cables are gap-junctionally connected in a middle

position, there still exists an optimal diameter for which the voltage response along

the second cable can be maximized.

As seen in Figure 3.7, the second cable is separated into the two sections, 0 <

x2 < 1 — a and 1 — a < x2 < 1 where a, as measured from the beginning of the first
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Figure 3.7 A gap junction is located in the middle of the cables which still has the
existence of an optimal diameter.

cable, is the gap junction location between the two cables. Assume each end of the

	

second cable is sealed-end av2(0,t)/ax2 	0. Denote the two voltage fluxes ataxe	 av2(l,t)/ax2ax2

x 2 = (1 — a)+, x2 = (1 — a) - by A(t), B(t), respectively. Note that A(t) < C

and B(t) > 0. By the current conservation across the gap location, vi (a,t) -v2(a,t)/Rc (a ,t) =

A() 
	 B(t)/raThen —A(t) + B(t) =	 (a t) — v2 (l — a, t)). Note that v2 (l — a, t) <

ra

v i (a, t) < v0 , — A(t) > 0 and B(t) > 0. Thus —A(t) < ra t and B(t) < rav0/Rc. Thus

0 > A(t) > —ra Rand 0 < B(t) < ra t. Hence if we consider the two sections of the

second cable, the voltage fluxes at the proximal ends are A(t) and B(t), respectively,

which are bounded by K/ d². By Theorem 3.6.10, there exists the optimal diameters for

the two sections.

3.7 Conclusion

The electrotonic distance is proportional to 1/√d and v x (x, t) < 0. When the voltage

is clamped at the beginning of a cable, the voltage response of a single cable just

monotonically increases at a fixed location as d increases. However, for a current

clamp case, the boundary condition at x = 0 is vx (0, t) = —ra h that is bounded by

. As d increases, the input decreases, which allows the voltage response to decrease.

However, the electrotonic distance also decreases, which allows the voltage response

to increase. Thus there exists an optimal value d for which the voltage response can
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be maximized. However, for a voltage clamp case, the input is independent of d and

the electrotonic distance only decreases. So the voltage response just monotonically

increases as d increases. Throughout several results in Section 3.6, the boundary

conditions at v2x (0, t) is bounded by j--2- in the case of two coupled cables, which

guarantees an optimal diameter for the voltage response. Furthermore, given any

gap junctionally coupled networks, whether or not there exists an optimal diameter

along any section of networks can be determined by knowing the voltage flux at the

proximal end of the section from the input.

The results of this chapter show that attenuation of signals in gap-junctionally

coupled passive cables can be minimized at a specific cable diameter. The results

suggest that neurons may regulate their growth such that their diameters lie in a

neighborhood of the optimal diameter, thereby enhancing their ability to transmit

action potentials. We also demonstrated that the phase shift in response to sinusoidal

inputs can be minimized with respect to diameter. This finding has implications for

the arrival timing of inputs to a cable coming from two separate cables. It remains an

open question of how we extend these results to neuronal structures that may include

active soma and axons.

Gansert et al. numerically show that the propagation along the coupled cables

can be minimized around the optimal diameter for voltage amplitude [19]. For a given

threshold, from the formula (3.17), there exists an open interval of diameters such

that the voltage response for the diameter values of the interval reaches the threshold

in a finite time. Since a numerical simulation suggests the voltage flux a' (t) < 0 at

the gap location, the shortest propagation time presumably occurs at the interval of

diameters because the voltage for the diameters outside the interval do not reach the

threshold, which is consistent with Gansert et al. work. But the optimal diameter

for the steady state voltage does not necessarily support the optimal diameter for

the shortest propagation time. In a neighborhood of the voltage optimal diameter, a
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numerical simulation shows that the voltage response for a diameter larger than the

optimal one reaches the threshold first. This can be explained as follows. Divide the

cable equation (3.1) by A 2 . Then for large values of diameters, v(x,t)/λ² can be neglected

since A 2 is proportional to d. So τm/λ² plays a role in a new time constant which is very

small. Thus the voltage for the large values of diameter reaches the threshold fast if

the corresponding steady state voltage response is above the threshold. However, it

again remains an open question to prove this mathematically.



CHAPTER 4

THE DYNAMICS OF ELECTRICALLY COUPLED MODEL

THETA NEURONS

A model of two electrically coupled theta neurons will be introduced. We will provide

a geometric phase space description of the dynamics. We study a wide range of

conductance values between the two electrically coupled model theta neurons. For

a relatively small conductance values, there are several types of solutions (suppressed,

1:multiple, 1:1 solutions) that depend on the uncoupled model theta neurons parameters.

For a large conductance, there is a stable 1:1 spiking solution which is independent of

the corresponding uncoupled system parameters, as long as there are no fixed points

of the system. Due to slow time evolution around origin, the uncoupled system might

have a river which is a trajectory that attracts all other trajectories in a certain region

in phase space. It can be used to estimate potential river properties for the coupled

system.

In this chapter, we will

1. Describe the two dimensional phase space associated with two gap junctionally

coupled theta neurons.

2. Utilize Denjoy's Theorem on circle maps to categorize the dynamics of the

network.

3. Geometrically construct several of the solutions found by Denjoy's Theorem

including 1 : N solutions in which one neuron fires once for every N spikes of the

other, allowing us to address their stability.

44
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4.1 Geometric Set up of Problem

The theta neuron model is a canonical type I neural oscillator:

0' = 1 — cos() + I(1 + cos0),	 (4.1)

where I is an injected current. Note that when I < 0, (4.1) has two fixed points

between -7T and it and when I > 0, there are no fixed points and 0' > 0. In this case

the phase 0 monotonically increases. In order for (4.1) to have an oscillation, we reset

the 0 value with -71 when 0 approaches it from below. When we reset, we say that the

0 neuron has spiked. When two theta neurons are electrically coupled, the equations

become

We first consider the case of H(0 1 , 02 ) = 0 1 — 02 . We analyze the system (4.2)

in the phase space [-7r, 71] x [-71, 71].

The 0 1 nullcline is found by setting the RHS of the first equation of (4.2) to 0

and solving for 02.

	

To find extreme points, we solve af(θ1) = 1 — -1-	
gc

sin(θ1)	sin(θ1) =0, to obtainaθ1 	gc 



Figure 4.1 The lower curve is the 9 1 nullcline that does not have any extreme points
and the upper curve is the 02 nullcline where 11 = -0.01, I2 = 0.02, g, = 1.1.

For fixed g, and I1 , there exists two solutions of (4.4) denoted by 61 (WI <

and π 	 if 0 < 1 97t1 < 1. Note that the shape of the 01 nullcline depends on its

own parameter I 1 and coupling strength g , but is independent of 12. The parameters

dependence of the 02 nullcline is similar to that of 0 1 . There are several properties of

the nuliclines to consider, depending on the parameters gc and I.

We now list several properties of the nullclines.

Property 1: When gc/1-I1 > 1, there is no extreme point for (4.3). Then the 0 1

nullcline is a strictly monotonic function of 0 1 . For fixed h, it holds for large values

of g, (see Figure 4.1).

Property 2: When 1-g-!"- < 1 and -π,<f(θ1*), f(π . - 0 1 *). < 7, there are two

extreme points in the phase space [-7, 7r x 71 (see Figure 4.2). This occurs for

intermediate values of gc.



Figure 4.2 The lower curve is the 9 1 nullcline that has the two extreme points and
the upper curve is the 02 nullcline where I 1 = —0.01, 12 = 0.02, g, 0.5.

Property 3: When gc/1-I1 < 1 and f — 	 < —7, then 01* is the only extreme

point in the phase space [—π, x 	 7]. This occurs for small values g, (see Figure

4.3.

By symmetry, these cases also occur for the 92 nullcline and depend on g, and

Property 4: When 1 .1 (12 ) increases for Properties 1-3, then the 9 1 (02 ) nullcline

moves down (left) with an increase of its extreme point 0 1 * =

Property 5: For fixed I1 < 0(12 < 0) in case of Property 3, the 0 1 (02 ) nullcline

moves down (left) and spreads out to become tangent to the. line 9 1 = 02 as g,

increases. In other words, as g, increases, the θ1 nullcline transitions' from Property

3 to Property 2, to Property 1, before finally becoming tangent to the line 0 1 02

from above (see Figure 4.1-3).
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Figure 4.3 The lower curve is the 9 1 nullcline that has the only one extreme point
and the upper curve is the 92 nullcline where I1 = —0.01, I2 = 0.02, g, = 0.05.

TH2

Figure 4.4 The 0 1 (82 ) nullcline moves down (left) compared to Figure 4.3 where
I1= 0.01, I2 =-- 0.04, g= 0.05. 0.05.



Figure 4.5 - The 0 1 (02 ) nullcline moves down (right) with spreading out compared
to Figure 4.4 where I 1 = 0.01, I2 = 0.04, gc = 0.1.

Figure 4.6 The 0 1 nullclines for different values of gc intersect with the line 0 1 = 92
and the intersection points are independent of gc.
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Figure 4.7 The 0 1 and (02 ) nullcline become tangent to the line 0 1 = 02 where
I1= 0.01, 12 = 0.02, g, = 50.

Property 6: For fixed I1 > 0(12 > 0) in case of Property 3,the 0 1 (02 ) nullcline

moves up (right) and spreads out to become tangent to the line 0 1 = 02 as g, increases.

In other words, as ge increases, the 0 1 nullcline transitions from Property 3 to Property

2, to Property 1, before finally becoming tangent to the line 0 1 = 02 from below.

Property 7: For fixed I 1 < 0(12 < 0) as in case of Property 5, the 01(02) nullcline

intersects with the line 01 	02 at two points, independent of g, (Figure 4.6).

In summary, as g, increases, the 0 1 nullcline moves down and become tangent to

0 1 = 02 from above, but only for negative values of I1 . However, as g, decreases, the

0 1 nullcline moves up and become tangent to the line 02 = 7 again only for negative

values of I. For positive values of I 1 , the Or nullcline moves up and become tangent

to the line 0 1 = 02 as g, increases but the 0 1 nullcline moves down and disappears

from the phase space as g, decreases. On the other hand, for fixed g, as I1 increases,

the 0 1 nullcline moves down to disappear from the phase space.
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-3	 -2	 -1	 0	 1	 2	 3
TH I

Figure 4.8 The 0 1 nullcline is tangent to the line 02 = π at 0 1 = 0 1 * where I1 =
—0.079, /2 = 0.02, 9, = 0.05.

Property 8: For fixed g, > 0 as in Property 3, there exists I1 	 I1top gc \
) such

that the 91 nullcline is tangent to the line 02 = 71 at the extreme point 0 1 * (see Figure

4.8). Note that if 9, is fixed, we suppress its dependence in I 1top.

Property 9: For any given I 1 < 0, g, can be chosen small enough to make the

local maximum of the 0 1 nullcline tangent to the line 82 =

When the system (4.2) has the two fixed points, one globally attracts all trajectory

in the phase space and the other one is unstable. They disappear through a saddle

node bifurcation. Here we do not consider the case. Instead, assume that two

nullclines 0 1 and 02 do not intersect throughout this paper. This implies that there

are no fixed points of the system.

It is valuable to look over the vector field as I l varies with fixed I2 and gc . In

the region where 0 1 ' < 0, 0 1 ' becomes less negative because J. + cos(θ1 ) > 0 as
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Figure 4.9 The flow for I 1 = a on the curve that is a trajectory for I 1 = 0 points
up and and to the right where a > 0.

increases. In the region where 0 1 ' > 0, 0 1 ' becomes more positive as I1 increases. The

above can be systematically summarized as follows.

Lemma 4.1.1 If F is a trajectory with an initial condition on 0 2 = -7 for

I1 = a, then the flow on F for I1 = /3, a < 0 points to the right of F in the 0 1 — 02

phase space (see Figure 4.10).

Proof of Lemma 4.1.1

Since 2-11 = 1 + cos(θ1) > 0 and 0'2 > 0, every trajectory starting at the sameaI1

initial condition as F for I1 = 0 points to the right on F.

Now we consider the network of two coupled neurons. We begin with the case

g, = 0 to analyze river formation for the uncoupled system. The system (4.2) with

g, = 0 yields very interesting trajectories in phase space. The trajectories starting

near the 0 1 (02 ) axis and 0 1 = —7(02 = —π) moves horizontally(vertically) because

the slopes Pi, of the trajectories, except for a neighborhood of the origin, are very

small (large) for small 1I11, 12 1 and 9, values (see Figure 4.10).



Figure 4.10 The trajectories around 0 1 (02 ) axis move up (right) horizontally
(vertically). The left branch of the 0 1 nullcline, 0„, attracts all other trajectories
in the phase space, where I 1 = —0.01, I2 = 0.02, g, = 0.05.

We describe how the above trajectories approach a certain trajectory, called a

river trajectory [27]. Find the 0 1 nullcline of the system (4.2) with g, = 0 by solving:

1 — cos(θ1) + I1 (1 + cos(θ1)) = 0,

where I1 < 0. Denote the two solutions by 0„ and 0„,, respectively, where °sr

corresponds to the stable fixed point of the single theta neuron and Our for the unstable

one.These points correspond to vertical lines in the 0 1 — 02 phase space (see Figure

4.10). We call them a stable river and an unstable river, respectively. As shown in

Figure 4.10, the trajectory starting at (-7, —π) is attracted to the stable 0„. Thus

once a trajectory falls into the region —7F < 01 < 0„, the trajectory must be attracted

into Os,. A trajectory starting between 0„ and Our on 02 = —π moves up and to the

left due to 0 1 ' ,< 0 there. The trajectory also is attracted to the stable river after

resetting. Any trajectory starting with 0 1 , E (0„,, 7T) will be reset into the region

[—Tr, θsr) after a 0 1 spike and a 0 2 spike. Therefore, the trajectory 0 1 = θsr is globally

stable. Furthermore, we estimate how quantitatively the trajectories is attracted to

the stable river when g, = 0.
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Lemma 4.1.2 A trajectory of (4.2)with g, = 0 starting at (-π, —a), a > 0,

passes the point (0„ — b, 0), where b > 0 and satisfies

Proof of Lemma 4.1.2 Integrating the second equation of (4.2) with gc = 0

yields

for I2 > 0, -7T < a < )3 < 71 [27]. Substitute a = —a and )3 = 0 which yields the

left-hand side of (4.2). Substitute v = tanθ1/2, Ii. = —k 2 and integrate,

Next, apply the upper limit with 0s r — b and lower limit with -7T, which yields the

right-hand side of (2.6). Since 0 11 > 0 and 02 > 0 in 01 < 0„, the time it takes for 01

to evolve from 0 1 = —71 to 0 1 = 0„ — b equals the time for 02 to evolve from 02 = —a

to 02 = 0.

Lemma 4.1.3 The trajectory of (4.2) with gc = 0 starting at (01, 02) =

(—c, —π), c > 0, passes the point (01 — d, 0), where d > 0 and satisfies

The proof of the Lemma is similar to the previous one.

When gc >0, there is still some region in the phase space where trajectories are

attracted. We use the next Lemma to see how the flow of the coupled system depends

on gc.
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Figure 4.11 Denote the starting and ending points of the uncoupled system by
(—a, π) and (—e, 0), respectively. Denote also the intersection point of the 0 1 nullcline
with the 0 1 axis by (— f, 0). The flow for the uncoupled system points up and to the
right. All trajectories starting on —π x (-71, —e) or (-π, g) x -71 are sucked into
the interval (—e, —f) where e and f can be calculated from Lemma 4.1.2 and (4.3),
respectively.

Lemma 4.1.4 If F is a trajectory for g, = 0 starting at (-π, —a) for some

a > 0, then the flow on F for g, > 0 and 02 > 0 (fixed I1 and I2 ) points to the right

of F.

Proof of Lemma 4.1.4

The coupling terms —g,(0 1 — 02 ) and —g,(02 — 0 1 ) from (4.2) are positive and

negative, respectively for (0 1 — 02) < 0. Therefore, WI become more positive and 021

less positive. Therefore the flow points to the right of F.

As shown in Figure 4.1 1, the flow of the coupled system on the trajectory for

gc= 0points tothe right. The flow inside the 01nullcline still points up and to the left.

Even if the existence of an attracting trajectory, a stable river, for the coupled system

is unclear at this moment, trajectories are again sucked into the interval (—e, — f) in

the phase space. So we might expect that such a river exists in the coupled system.
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Figure 4.12 The system (4.2) allows a 92 spike but not a 9 1 spike where g,
D.05, I1 = —0.01, /2 = 0.02.

4.2 Suppressed Solution

The trajectory below the 9 1 nullcline moves up and to the left due to 9 1 ' < 0 and

92' > 0. After the trajectory passes through the 9 1 nullcline, the trajectory starts

to move up and to the right. When the trajectory starting at a value 9 1 = a on

92 = -71 reaches 02 = 71 at time t, we can check the variation in the 9 1 value by the

sign of 9 1 (0 — a. The variation of 9 1 along the trajectory might be zero for some I 1

by Lemma 4.1.1, which means that the trajectory does not cross the initial condition

of 9 1 value. In other words, 02 spikes but 0 1 does not spike. We call such a solution a

suppressed solution. To show the existence of such a solution, we will investigate the

situations that the trajectory does not cross , the initial condition. of 0 1 ' value a, which

is enough to guarantee the existence of a suppressed solution.

Assume that g, is fixed throughout this section.
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Lemma 4.2.1 Let I 1 	I1top such that the local maximum of the 0 1 nullcline

is tangent to 02 = 71. There is a forward flow of (0 1 *, —7) that reaches (a, 7) with

0 1 * < a, where 0 1 * is the local maximum point of the 0 1 nullcline.

Proof of 4.2.1

The flow on the vertical line 0 1 = 0 1 * points up and to the left. Thus the

trajectory starting at (0 1 *, —7) does not cross the vertical line. If the trajectory hits

(0 1 *, 7), then it must approach (0 1 *, 7) from the outside of the 0 1 nullcline due to

the flow on the vertical line. So the trajectory must approach (0 1 *, 7) tangentially

because the 0 1 nullcline is tangent to 02 = π. However, the vector field at (0 1 *, 7)

has only a vertical component because it is on the 0 1 nullcline. Thus it is impossible

that the trajectory hits (0 1 *, 7). Therefore, the trajectory hits the point (a, 7) with

a < 0 1 *.

Now we define a function from the open interval J to the open interval M where

J = (-7,a) and M = π) to describe a suppressed solution of the system (4.2)

more concretely where (a, —7) is on the backward flow of (7, 7).

Definition 4.2.2 A function ho is defined from the interval J = (-7,a) to

M = (-π, π) by the flow (4.2) 4)(0 1 , 02 , t) : When 4)(0 1, t) = Ф(θho1, , π, 0) for some

0 1/1° and the smallest t > 0, h0(θ1 ) is defined as θh01.

The trajectory starting at (0 1 , —7) hits (01/1°,7) with some 0 /11° value for the first

time. Then ho is well-defined and continuous because of the continuity of the flow

with respect to initial condition and the uniqueness of the solution. From Lemma

4.2.1, there exists 0 1 such that h0(θ1) — 0 1 < 0 and obviously, h0(-π) — (-7) > 0.

Then by intermediate value theorem, there exists 0.1 such that h0(θs1) — 0 = 0. Put

k0(θ1) E--_- h0(θ1) — 0 1 . Since k0(-π) > 0, k0(θ1*) < 0 and ko (a) > 0, there exist at least

two zeros, called 0 1 ", 0 1 " with 0 1 " < 0 1 " of the function k0 between -71 and a. The

function k0 depends on parameters / 1 , g, and /2.
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Figure 4.13 A diagram of the function k0 shows that there exist two zeros. The
diagram corresponds to the Figure 4.12, where (a, —7) is on the backward trajectory
of (π, 7).

Corollary 4.2.3 Whenever k0 (0 1 ) < 0 for some 0 1 between —π and a, there

exist θss1and 91S 	Or < 01s such that k0 (0 1
ss ) = k0 (0 1 ") = 0.

Corollary 4.2.3 does not prove that there exists at most two such zeros. But it

is evident that for small g, values, the function k 0 has at most two zeros because the

corresponding function k0 of the uncoupled systems of (4.2) has at most two zeros

that are both hyperbolic. Figure 4.13 shows a diagram for the function k 0 with I1 =

hop which makes the local maximum of 0 1 nullcline tangent to 02 =7 and the only

two zeros of function k0 . Therefore, the existence of zeros of function k 0 corresponds

to the existence of suppressed solutions. Obviously, 0 1 " corresponds to the stable

suppressed solution and p lus the unstable one.

Corollary 4.2.4 The stable suppressed solution is globally stable in the phase

space.

By resetting the 02 value to —π, every trajectory falls into (-7, 0) x — 7. Then

the trajectory is attracted to the stable suppressed solution because it does not cross

the suppressed solution.
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From Lemma 4.2.1, note that -A is positive. So there is no suppressed solution

for large enough I1 >0 values, which means that /c o > 0 for such large I.

Corollary 4.2.5 The two suppressed solutions approach each other and disappear

as I1 increases through a value denoted I1 ds.

Now we investigate suppressed solutions by varying conductance gc. Given

some I 1 < 0, the conductance g, can be chosen small enough to let the system have

a suppressed solution from Property 9 and Lemma 4.2.1.

Corollary 4.2.6 For given fixed I 1 < 0, there exists an interval of g, > 0 values

such that the coupled system (4.2) has a stable and unstable suppressed solution.

4.3 1 : N Spiking Solutions

As I 1 increases, the function k0 has no zeros and become positive. In other words,

the two suppressed solutions disappear and they are replaced by 1 : N (the 0 1 spiking

frequency to 02 one) spiking. Finally, as I 1 increases up to I2 , there exists the

synchronous solution.

Until now we have chosen H(0 1 , 02) = 0 1 — 02 . An issue with this choice is that

at 0, = 71, i = 1, 2 when we reset, it yields non-smoothness of the flow. However if

we choose H(01 , 02 ) = sin(θ1 — 02 ), then the flow is smooth. This allows to consider

Denjoy's Theorem associated with circle maps [28]. Since the nullclines and the vector

fields for the case H(01, 02) = 0 1 — 02 are similar to that of H(0 1 , 02 ) = sin(θ1 — 02 )

except near 0 i i = 1, 2, we might expect that the results of the Denjoy's

Theorem carry over to the case H(0 1 , 02 ) = 0 1 — 02 . In the following section, we show

that to be the case.

The rotation number can be interpreted as the average 0 2 rotation of a given

initial condition versus 0 1 rotation under the Poincare map on the 2 — D torus

[28]. Denjoy's Theorem shows that the rotation number number is well defined and
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characterizes the qualitative features of a smooth flow on the torus. We now apply

Denjoy's Theorem to our model.

Denote the flow generated by (4.2) with H(0 1 , 02 ) = sin(θ1 — 02 ) and without

resetting by O(0 1 , 02 , t). For each positive integer n, define the map Пn(θ2) from

(—oo, oo) to (—oo, oo) by Пn(θ) = 0 2 ' : When Θ(-π, 0 2 , t) = 6((2n — 1)π, 0 2 n, 0)

for the smallest t > 0 and some 02 n. Finally we define the rotation number as

ρ(П) = limn, Пn(θ2)/2nπfor the corresponding maps H. Denjoy's Theorem shows

that the map Пn and the rotation number p(H) are well-defined where II is the

corresponding Poincare's map on the 2 — D torus.

Note that the map Пn  is defined on the entire phase plane. Пn(θ2) is the 02 value

when the trajectory starting at (-71, 0 2 ) hits the line 0 1 = (2n —1)π for the first time.

The rotation number can be interpreted as the average of the number of 0 2 rotations

of a point 02 ° under the flow versus 0 1 rotation number and also characterizes the

flow on 2-D torus to describe two possibilities, periodic orbits and dense orbits (see

Figure 4.14).

Denjoy's Theorem The rotation number p(H) is well-defined and is independent

of the initial 02 value. If H is C 2 map, then

(1) p is rational if and only if H has a periodic orbit with some period.

(2) p is irrational if and only if every orbit of H is dense on S'.

(3) ρ(ПI1) is a continuous function of I.

Note that the rotation number ρ(П) is dependent on the parameter I. From

Lemma 4.2.1, p(1-1 /1 ) decreases as I 1 increases. Now we restrict the range of I1 to

the interval (I 1 ds ,12 ) for fixed g, and I2 where the suppressed solutions disappear

at I1 ds. It is evident that as I1 I1ds, oo. From Lemma 4.3.1, as

12, p(11 '1) 1. Thus the rotation number ρ(ПI1) continuously attains the

values from oo to 1 as I 1 increases from I1 ds to 12. Denjoy's Theorem immediately

applies to the case when H(0 1 , 02 ) = sin(θ1 — 02 ) on [-π, co] x [-π, Do], since the
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Figure 4.14 The rotation numbers ρ(ПI1) of the coupled system (4.2) has the value
1 for I1 12 . AsI ----> if s , P(11/1 ) --4 oo.

vector field of (4.2) is sufficiently smooth. What we show below is that the results of

the Theorem also appear to hold in the case when H(0 1 ,02 ) = 01 — 92.

Here we demonstrate 1 : N spiking, periodic 1 : N spiking solutions, dense

orbits and other periodic solutions in the phase plane.

Lemma 4.3.1 There exists the synchronous solution when I1 = I2 .

Proof of Lemma 4.3.1

Consider an initial value problem of the system (4.2) and 0 1 (0) = —7, 02 (0) =

-71. Check the vector fields on the line 0 1 = 02.

WI = 1 — cosθ1 + I1 (1 + cosθ1) — gc(θ1 — 02 ) = 1 — cosθ1 + I1 (1 + cosθ1)

02= 1 — cosθ2+ 12 (1 + cosθ2) — gc(θ2 — 0 1 ) = 1 — cosθ1 + 1-1 (1 + cosθ1)

Hence, WI = 02 on the line 0 1 = 02 . Since the initial conditions of 0 1 and 02 are also

on the line, the 0 1 = 02 is a solution of the system (4.2). Note that all trajectories

starting at the line 0 1 = -71 make 1 : 1 spiking and return to it by resetting. Thus

all trajectories make 1 : 1 spiking.
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Figure 4.15 This shows 1 : 2 spiking solution where I 1 = 0.003, I2 = 0.02, gc = 0.05.

Definition 4.3.2 The system (4.2) is said to have 1 : N spiking during a finite

time interval if it makes N consecutive 0 2 spikes followed by one 0 1 spike for the time

window, where N is a positive integer (see Figure 4.15).

Note that 1 : N spiking does not necessarily imply a periodic solution. We now

construct a 1 : 2 spike solution. Such solutions, given by Denjoy's Theorem, may

actually correspond to dense orbits in the 0 1 — 02 phase space.

Note that the system (4.2) cannot have two consecutive 0 1 spikes as shown in

Figure 4.16 in the cases for I 1 < I2 . Once 0 1 spikes, it resets to 0 1 = -7T. Since the

forward flow of (—π, —7) hits the point (a, 7) where a < 7T by Lemma 4.2.1, Lemma

4.3.1 and I1 < 12. Thus the trajectory can not pass through the forward flow because

of the uniqueness of the solution. Thus there can not be two consecutive 0 1 spikes.

Definition 4.3.3 A function h 1 is defined from the interval R to the interval S

where R = (—π, A) and S = (B, 7) shown in Figure 4.16 by the flow (4.2) 01)(0 1 , 02 , t) :
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Figure 4.16 For I1dp < I1 < I2, a function h 1 is defined from (-7, A) to (B, 7).
Note that the trajectories starting on -71 x (A, 71) have 1 : 2 spiking before their first
returns to 0 1 = —7 and the trajectories starting on 	 x (-7, A) have 1 : 1 spiking
before their first returns to 0 1 = 	 . Note that the backward flow of (7,7) hits C
and the forward flow of (-7, —7) reset to (D,

When (I)(-7, 02, t) = 4)(7, 02 1 , 0) for some 6" and the smallest t >0, h 1 (92 ) is defined

as 02 1 .

Denote the function k 1 (02 ) by h 1 (02 ) — 02. Note also that a function h 2 (02 ) can

be defined similarly from the interval (A, 7) to the interval (-7, B) to capture 1 : 2

spiking. As shown in Figure 4.16, for a small perturbed value I 1 from I2, I2 - I1 < 6,

a trajectory moves up and more to the left. Thus the forward flow of (-7, —7) hits

(D, π) where D < IT and the backward flow hits (-7, C) where C > —7. The effects

of I 1 on the flow are systematically summarized in Remark 4.3.4. The trajectories

starting on —7 x (A, 7), called 1 : 2 domain, yield a transient 1 : 2 spiking and reset

to enter the domain of 1 : 1 spiking. Thus in this set of parameters, a transient 1 : 1

and 1 : 2 spiking co-exists. We describe the dynamics with the k 1 and k2 functions.

Here it is evident that k1(A¯) > 0 and k 1 (-7±) > 0 due to the continuity of flow with

respect to initial conditions. But the sign of k 1 (02 ) between A and -7T is not clear.

Denjoy's Theorem guarantees the existence of a 1 : 1 periodic solution. If k 1 (02 ) < 0

for some -7T < 02 < A and thus there exists a zero of k 1 by the intermediate value
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Figure 4.17 For I1 dp < I1 < I2 , the trajectory starting at approximately
(-π, —1.78) makes 1 : 1 spiking and returns to its starting point, which allows a 1 : 1
periodic solution and it is simulated by XPP, where I 1 = 0.0175, 72 = 0.02, g, = 0.05.

theorem. Hence there exists a 1 : 1 periodic spiking solution for I1 dp < I1 < I2 where

I1 dp is indicated in Remark 4.3.4 (see Figure 4.17). k 2 < 0 for (A, 71), which means

that a trajectory starting at 1 : 2 domain must leave this region by resetting and is

attracted to the periodic 1 : 1 spiking solution. A numerical simulation supports the

existence of this periodic solution as shown in Figure 4.17.

Remark 4.3.4 As in Figure 4.18, limI1-->I2 - A =limI1-->I2 - B = -7,

C -π, limI1-->I2 - D = π and lim 12 C = lim I1 --> I1 12 D, lim 	 12 A =1— 	 , 	 I11-41

-7, IllT11 1 _4 112 B = 7, where I1 2 is the I 1 value for which the forward flow of (-7T, -7)

coincides with the backward flow of (7,7) as in Figure 4.23.

As I 1 	I2 ¯ , A(B) moves up to 7( -π). As I 1 decreases, A(B) moves up to

—7(7). For some I 1 value, C and D coincide. We call the I 1 value I1 dp. Note that

I1 12 < 	 <

Remark 4.3.5 There exists an I 1 dp such that A = B for I1 12 < I1dp < I2.
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Figure 4.18 This shows the vector fields for a smaller I 1 value than Figure 4.16
on some curves that are trajectories for I 1 value of Figure 4.16. The flows on those
curves point up and to the left. Thus A and D decrease but B and C increase as
decreases. By the same argument, as I 1 increases, A and D increase but B and C
decrease.

C	 D

Figure 4.19 For I 1 = I1 dp, the trajectory starting at (-π, A) hits (C, 71), resets to
(C, —π), hits (7,π), resets to (-π, —π), hits (D, 7), resets to (D, —π), hits (π, B) and
resets to its starting position (-π, A). The cycle repeats.
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Figure 4.20 When I 1 = I1 dp, the union of orbits of k 1 and k2 at a certain point of
either domain is dense in [-π, π] where I 1 = I1 dp = 0.005, I2 = 0.02, g = 0.05.

When I1 = I1 dp, the system (4.2) yields a periodic solution as shown in Figure

4.19. In this set of parameters, there exists a periodic solution as shown in Figure

4.19 which is different from 1 : N solution. But k 1 > 0 and thus every trajectory

starting in the 1 : 1 domain can not stay in and enters the 1 : 2 domain. k 2 < 0

and also every trajectory on the 1 : 2 domain must enter the 1 : 1 domain. If we

consider a trajectory that starts at a certain point in the domain 1 : 1 and first

returns to a point in the 1 : 1 domain, it is not clear if its return point is exactly the

starting point. If its return point is the starting point, there exists another periodic

solution which is not 1 : N type but of mixed type where 02 first spikes, then 0 1 and

02 spike simultaneously, then 0 2 spikes, then spikes and the process corresponds

to a repetition. As long as there are no such points for any next cycles, the union of

orbits of k 1 and k2 at a point of either domain must correspond to a dense orbit in

[-π, 7] as shown in Figure 4.20.
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Figure 4.21 When I1 12 < I1 < I1 dp , then k 1 > 0 and thus every trajectory starting
on the 1 : 1 domain enters the 1 : 2 domain. But k 2 (A+) < 0 and k 2 (7 ¯ ) < 0. So
there might be some possibility for the system (4.2) to have a stable 1 : 2 periodic
solution if there is k 2 (02 ) > 0 for some 0 2 .

Figure 4.22 When I0 2 < I1 < I1 dp, a numerical simulation by XPP shows the
existence of a 1 : 2 periodic solution, where I1 = 0.002, 12 = 0.02, g, = 0.05.
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Figure 4.23 For I1 = I1 12 , the forward trajectory of (-π, —7 - ) and the backward
trajectory of (7, 7) coincide. So only 1 : 2 spiking appears.

Figure 4.24 In the case H(0 1 , 02 ) = sin(0 1 —02 ), the 0 1 nullcline enclosing the 0 2 axis
separates the whole phase plane into the two sections. The 0 2 nullcline is the closed
curve that surrounds some part of 0 1 axis where g, = 0.05, I1 = —0.015, I2 = 0.02.
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Since the rotation number ρ(П) takes the values (1, oo), there exists a 1 : N

periodic solution for any positive integer N. Figure 4.2l can be similarly explained

as in Figure 4.16. As I 1 decreases to I 1 12 , only 1 : 2 spiking appears. Furthermore,

we can explain 1 : 3 and even 1 : N spiking for N > 4 in a similar manner.

Now we see how the vector fields and nullclines of the two different functions

H(0 1 , 02 ) = 01 — 02 and H(0 1 , 02 ) = sin(θ1 — 02 ) are compared.

1. Since al are the same for the two different functions H(0 1 , 02 ) = 0 1 — 02

and H(0 1 , 02 ) = sin(θ1 — 02 ), all flow properties that depend on I 1 are the same for

either case H(0 1 , 02 ). Since we have fixed 12 and g, in this section, we expect that

the dynamics of the flow of the two different H(0 1 , 02 ) are quite similar.

2. As shown in Figure 4.24, the 0 1 nullcline separates phase plane into the two

sections where a trajectory starting on the left side of the left branch of the 0 1 do not

cross the branch. Thus there exits 0 1 such that 1c0 (0 1 ) < 0, which allows a suppressed

solution. Decreasing I 1 clearly makes the function /c o more negative as like the case

of H(0 1 , 02 ) = 01 — 02 .

4.4 Conclusion

The results of this chapter demonstrate that even a simple model of two gap-junctionally

coupled theta neurons can exhibit surprisingly complicated behavior. This should be

contrasted with the case of two synaptically coupled theta neurons in which the

typical behaviors are much narrower. Two synaptically coupled model theta neurons

drive the system to be synchronous. Thus the gap-junctional coupling plays a role

of expanding the dynamic capability of this network. Our geometric construction of

solutions allows us to understand the stability of certain solutions that were obtained

from Denjoy's theorem. As shown in Figure 4.1 and 4.2 for large values of g,, the

trajectories in a region of the first quadrant between the two nullclines tend to be
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synchronous. So as g, increases, the two nullclines approach the line 0 1 = 02 and thus

the trajectories between them tend to be more synchronous.

As Figure 4.17, even after the suppressed solutions disappear, the trajectories

are attracted to some region on the left side of the 0 1 nullcline and then are expanded

on the right side of the 0 1 nullcline. It still remains an open question to measure

whether the function hn is contracted. We will use Lemma 4.1.2 and Lemma 4.1.3 in

pursuit of the contraction.



CHAPTER 5

CONCLUSION

5.1 Summary and Discussion

There is much evidence showing the presence of gap junctions in neuronal networks.

The roles of gap junctions in neuronal networks have begun to be understood. At

electrical synapses (gap junctions), current flows directly into the post synaptic cell.

Thus transmission across electrical synapses is very fast.

Gansert, Nadim and Golowasch studied sustained activity in a random network

coupled by gap junctions [19]. By detecting the kernel of network activity, they found

that activity can be sustained within this sub-network. They specifically studied how

activity depends on cable diameter and showed that activity can be sustained through

network in a neighborhood of the optimal diameter. The first part of this thesis was

motivated by this work of Gansert, Nadim and Golowasch.

We first considered a deterministic neuronal network of identical point cells.

We wanted to know whether activity propagates through and is sustained by the

network. Specifically, we investigated how sustainment of activity depends on network

connectivity, the refractory period of each neuron and the number of associated paths.

A necessary condition for sustainment of activity is the existence of a sup cut-off

node. Whether activity is sustained can be deduced by knowing whether activity

propagates through a cut-off node. Nodes having different initial refractory states

within a neighborhood of the stimulated node influence network activity. We have

found that whether an action potential propagates through a cut-off node with n

connections at a discrete time t ends up with knowing whether  P(a,i,t)— R(a,i,b,t)  is
n— P(a,i,t)+R(a,i,b,t)

greater than the threshold. The numerator indicates the number of all paths having

length t other than the paths including node b that is in a neighborhood of the

71
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initiated node a and has a different refractory state. Thus the effective current flux

at a given time t is  P(a,i,t)-R(a,i,b,t) 	An increased refractory period has the effectn— P(a,i,t)+R(a,i,b,t) •

of reducing the network activity passing through a given cell (see example 2.2.2).

However, reducing activity propagation at a certain node does not mean that the

possibility of sustaining network activity decreases (see example 2.2.2). An increased

degree of a node also reduces network activity propagation because a node needs

more in-flowing currents at a given time. We showed that network activity dies off

because the current flux at a given node was too small or because the cell was in a

refractory state when the activity arrived. the propagation time for the two coupled

cables will not be a unit time but can be expressed in terms of diameter and the

strength of coupling resistance. When we replace point cells in network architectures

found in Chapter 2 with spatially dependent neurons, activity might be sustained or

die off by adjusting diameter because it controls the voltage response and the activity

propagation time related to the refractory state.

Nadim and Golowasch have shown that an optimal signal transmission between

two gap junctionally passive cables occurs at a specific cable diameter [20]. We have

built a mathematical model for gap junctionally coupled cables in response to general

inputs. The model has a discontinuity at the gap junction location, which yields a

discontinuous P.D.E. We derived a linear integral equation which is equivalent to the

model. This integral equation has an advantage in that it can be solved for any type

of inputs.

In particular, we have derived an analytic form of the stationary solution in

response to periodic waves. From the solution, we have shown that there exists an

optimal diameter for which the maximum voltage amplitude of the second cable is

obtained. As in an isopotential cell, the voltage response decreases as the input

frequency w increases because this attenuation is due to the distributed membrane

capacitance that soaks up more and more of the current as the frequency increases
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[24]. We have observed that there exists an optimal for which the phase shift can

be minimized for a certain range of input frequencies by plotting the solution. We

have found a sufficient condition for the existence of an optimal diameter of the

voltage response in any network architecture. The sufficient condition requires that

the absolute value of the voltage flux at the proximal end is bounded by -f), a >

1, K > 0 . In other words, the boundary contribution to the solution must vanish as

d increases to oo. A current clamp exactly fits this case. But the voltage response at

the proximal end is fixed for any diameter in the case of voltage clamp. Thus there

is still a boundary contribution to the solution even for large values of diameter. For

gap junctionally coupled cables, the voltage response resembles the case of a current

clamp because the voltage flux at the proximal end is bounded by A-. Hence there

exists an optimal diameter for the voltage response.

Finally we studied the dynamics of two theta neurons coupled by gap junctions.

Depending on an intrinsic parameter I of the theta neuron and on the coupling

strength gc , the network exhibits several types of solutions including stable suppressed,

1 : N and 1 : 1 spiking solutions. Here a suppressed solution and 1 : N spiking

solution are the solutions that have the ratio of two cells' spiking frequencies as 0 and

7k-, respectively. We used phase plane analysis to demonstrate the existence of the

solutions. We observed that two such neurons coupled by a gap junction also yield

a saddle node bifurcation in the sense that the ratio of two cells' spiking frequencies

changes with coupling strength gc and their model intrinsic parameter I from a very

low frequency for a large positive integer N . In other words, there is a transition

between a suppressed solution and 1 : N spiking solution. This is analogous to the

signal transmission of coupled cells done by Lewis and Keener [29]. Furthermore, the

ratio N increases up to 1 as I or g, increases, which is consistent with Denjoy's circle

map theorem [28].
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Figure 5.1 The voltage response v 2 (x, t, d) rises up fast for small times with large
diameter values d 1 , d2 > d*.

5.2 Future Work

Regarding the first project, we will investigate how activity can propagate from a

sup cut-off to the stimulated node for a more general network architecture. In the

case where these are either no or more than one sup cut-off nodes, we will study how

sustainment of activity can be achieved.

We are interested in combining the graph theoretic gap junctionally coupled

network (each cell is isopotential) and the voltage response properties of the two gap

junctionally coupled cables (each cell is non-isopotential) to understand how activity is

sustained through gap junctionally coupled networks. So we will generalize our model

to consider spatially dependent neurons to understand the role of cable diameter in

sustained activity.

Regarding the second project, we will consider a neuron consisting of a passive

dendrite coupled to an active axon. We will then couple two such neurons by gap

junctions along their dendrites. If the voltage response invoked by an action potential

is above a threshold, then the activity is able to propagate through the neuron. Using

the abstract networks that sustain activity found from our graph theoretic work,

we plan to replace the point' cells by these spatially dependent active neurons to

determine how sustainment of activity depends on cable diameter. We hope to prove

the conjecture that by choosing the proper range of diameters, a relevant signal can

be transmitted most effectively.



75

Figure 5.2 A optimal diameter d*(x, t) decreases and approaches the optimal
diameter of the steady state voltage response as t —4 Do.

As seen in Theorem 3.6.8, the optimal diameter d*(x, t) is dependent on t for

fixed x. For the case of a step voltage clamp, from Conclusion of Chapter 3, we

expect that the voltage response rises up fast for a large diameter value (see Figure

5.1). Thus for a small time t, d(x, t) would be large. Hence we conjecture Figure 5.2

and hope to prove it mathematically. From the optimal diameter of the steady state

solution, a given threshold, there exists an interval [d 1 , d2 ] of diameters for which the

voltage responses for d < d 1 or d > d2 values can not reach the threshold (see Figure

5.3). Thus the propagation times for d = d 1 and d2 would be Do. Therefore there

exists an diameter d of the shortest propagation time where the voltage response

reaches the threshold first (see Figure 5.3). From conjecture of Figure 5.1, d would

be greater than d*. It again remains an open question to prove it mathematically.

We are also interested in understanding the dynamics and effects of back propagation

of action potentials from soma-to-dendrite. Specifically, we are interested in sustained

activity where two compartments of an excitable cell burst in anti-phase and then

have refractory states simultaneously. This has been referred to as ping-pong [30].

Reflected waves (back propagation) has previously been observed in an inhomogeneous



76

Figure 5.3 This shows the existence of an optimal diameter d for the shortest
propagation time where the voltage response reaches the threshold first. Note that
d> d*.

excitable cable [31]. This model exhibits wave-transmissions, reflected waves and

block-transmissions as diameter changes abruptly with distance. Cable diameter plays

a role in whether or not back propagation of action potentials occurs. Inhomogeneity

acts like a gap junction. As the diameter of cable 2 increases, the voltage flux at

the proximal end of cable 2 decreases to zero and hence wave-block occurs. However,

there are no optimal diameters for the best signal effectiveness because the cables

are excitable. We want to build a two compartment model that is able to allow two

compartments to have back propagation and refractory states simultaneously.

Regarding the third project, we also observed that there appears to be a stable

river which is a trajectory that attracts all other trajectories in a certain region in

phase space. The stable river is a stable suppressed or 1 : N solution and depends on

I and gc . It globally attracts all trajectories in phase plane and thus allows a stable

suppressed or 1 : N solution to be globally stable. A stable river has previously been

observed in a single theta neuron model by Borgers and Kopell [27]. It remains an

open question why rivers exist in the theta neuron model and is part of the future

work which we will pursue.
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