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ABSTRACT

THE ROLE OF SHORT TERM SYNAPTIC PLASTICITY IN
TEMPORAL CODING OF NEURONAL NETWORKS

by
Lakshmi Chandrasekaran

Short term synaptic plasticity is a phenomenon which is commonly found in the

central nervous system. It could contribute to functions of signal processing namely,

temporal integration and coincidence detection by modulating the input synaptic

strength, This dissertation has two parts. First we study the effects of short term

synaptic plasticity in enhancing coincidence detecting ability of neurons in the avian

auditory brainstem. Coincidence detection means a target neuron has a higher firing

rate when it receives simultaneous inputs from different neurons as opposed to inputs

with large phase delays. This property is used by birds in sound localization. When

there is no plasticity from the inputs, the firing rate of the neuron, depends more on

input frequencies and less on phase delays between inputs. This leads to ambiguity

in localizing the sound source, We derive a mathematical model of a reduced avian

brainstem network and show that inputs with synaptic plasticity, to the coincidence

detector neuron, play a vital role in enhancing coincidence detecting ability of the

bird. We present comparisons to experiments. In the second part of the thesis,

we prove the existence and stability of a n cluster solution in a m-cell network, in

the presence of synaptic depression. The model used to represent a single neuron is

based on the Hodgkin-Huxley model for the spiking neurons and we use techniques

from geometric singular perturbation theory to show that any n-cluster solution must

satisfy a set of consistency conditions that can be geometrically derived. The results

of both problems are validated using numerical simulations.



THE ROLE OF SHORT TERM SYNAPTIC PLASTICITY IN
TEMPORAL CODING OF NEURONAL NETWORKS

by
Lakshmi Chandrasekaran

A Dissertation
Submitted to the Faculty of

New Jersey Institute of Technology and
Rutgers, The State University of New Jersey — Newark

in Partial Fulfillment of the Requirements for the Degree of
Doctor of Philosophy in Mathematical Sciences

Department of Mathematical Sciences
Department of Mathematics and Computer Science, Rutgers-Newark

May 2008



APPROVAL PAGE

THE ROLE OF SHORT TERM SYNAPTIC PLASTICITY IN
TEMPORAL CODING OF NEURONAL NETWORKS

Lakshmi Chandrasekaran

Dr. Amitabha Bose, Dissertation Advisor 	 Date
Professor, Department of Mathematical Sciences, NJIT

Dr. Farzan Nadim, Committee Member 	 Date
Professor, Department of Mathematical Sciences, NJIT and Department of
Biological Sciences, Rutgers-Newark

Dr. Victor Matveev, Committee Member 	 Date
Assistant Professor of Mathematical Sciences, NJIT

Dr. Horacio G. Rotstein, Committee Member 	 Date
Assistant Professor of Mathematical Sciences, NJIT

Dr. Jonathan Rubin, Committee Member 	 Date
Associate Professor of Mathematics, University of Pittsburgh



BIOGRAPHICAL SKETCH

Author: 	 Lakshmi Chandrasekaran

Degree: 	 Doctor of Philosophy

Date: 	 May 2008

Undergraduate and Graduate Education:

• Doctor of Philosophy in Mathematical Sciences,
New Jersey Institute of Technology, Newark, NJ, 2008

• Master of Science in Applied Mathematics,
New Jersey Institute of Technology, Newark, NJ, 2008

• Master of Science in Mathematics,
University of Madras, Tamil Nadu, India, 2003

• Bachelor of Science in Mathematics,
University of Madras, Tamil Nadu, India, 2001

Major: 	 Mathematical Sciences

Presentations and Publications:

L. Chandrasekaran, V. Matveev and A. Bose "Coding by interspike interval in a
globally inhibitory network," Submitted, Physica D

L. Chandrasekaran and A. Bose "Analysis of clustered solutions in a globally in-
hibitory network of spiking cells," SIAM conference on Applied Dynamical
Systems, Snowbird, UT, May 27-31, 2007.

L. Chandrasekaran and A. Bose "Analysis of clustered solutions in a globally in-
hibitory network of spiking cells," Workshop on Mathematical Neuroscience,
Center de Recherches Mathematiques, University of Montreal, Canada,
September 16-19, 2007.

iv



Success usually comes to those who are too busy to be looking for it.
-Henry David Thoreau (1817-1862)

v



ACKNOWLEDGMENT

I would like to thank all the people who have been helpful throughout my career in

NJIT. First of all, I would really like to thank my advisor, Dr. Amitabha Bose for

being very patient, for having more confidence in me than I had in myself and for

being a constant source of guidance, encouragement and motivation, throughout this

process. Dr. Bose is the best advisor I could have ever had.

I would also like to thank my committee members Dr. Farzan Nadim, Dr.

Victor Matveev, Dr. Horacio Rotstein and Dr. Jonathan Rubin for taking the time

to read my thesis and for all their valuable comments and suggestions. I would like

to thank Dr. Victor Matveev especially, for all his feedback and help with MATLAB

simulations for the globally inhibitory network project. Many thanks to Dr. Eliza

Michalopoulou for providing me with her laptop to work on and helping me download

all the software that I needed during all these years.

I wish to take this opportunity to thank many of the members in the Depart-

ment of Mathematical Sciences. In particular, special thanks to Dr. Daljit Ahluwalia

for his support and dedication to all the graduate students in our department. Thanks

to Ms. Susan Sutton for all her timely help and support throughout my graduate

life here in NJIT. Thanks to Mrs. Padma Gulati for being so enthusiastic and being

excited for me for all my accomplishments, In general, I would like to thank the staff

of the Math department for all their help.

I would like to thank all the graduate students in the Department of Mathe-

matical Sciences who have helped me in some way or the other. I would especially

like to thank Anisha Banerjee for taking her time and helping me with MATLAB

programming, for all her help with THEN and for being a good friend through all

these years. I would also like to acknowledge Joon Ha with whom I have had many

discussions on concepts in dynamical systems and for his time that he spent on having

vi



them. Thanks to Muhammad Hameed for helping me with LATEX I would like to

thank Christina Ambrosio and Filippo Posta for a good UFO( style file. It does a

great job of laying out my dissertation, so I can spend more time on improving the

content. A special thanks to Rudrani Banerjee for taking the time out and teaching

me how to use software for statistical calculations during the last stages of completing

my thesis. Many thanks to Nick Kintos, Jyoti Champanerkar, Soumi Lahiri, Kamyar

Malakuti, Rashi Jain, Matthew Causley, Yogesh Joshi and Tsezar Seman who have

been of help to me in some way or the other.

Last but not the least, I would like to thank my parents and sister who have

encouraged and supported me always and made it possible for me to finish my dis-

sertation. I would like to thank my sister who has always boosted my confidence,

for being proud of me and for telling me that I could accomplish whatever I wanted

to. Thanks to my cousin Karthik, uncle Chandran, and aunt Ramani for all their

help throughout my stay here in USA. Finally, I would like to thank God for all the

blessings in my life, for providing me with all the wonderful opportunities and helping

me achieve my dreams.

vii



TABLE OF CONTENTS

Chapter 	 Page

1 INTRODUCTION 	  1

1.1 Role of Short Term Synaptic Depression as a Timing Device  	 6

1.2 The Problem of Coincidence Detection  	 7

1.3 Mechanisms Involved in Coincidence Detection 	  10

1.4 Aim, Model and Results 	  12

1.5 Globally Inhibitory Network  	 14

1.6 Aim, Model and Results 	  15

2 COINCIDENCE DETECTION IN THE AVIAN AUDITORY BRAINSTEM 16

2.1 Model  	 18

2.1.1 Role of Depression from NM to NL 	  22

2,1.2 Conclusions  	 44

3 INHIBITION FROM SON TO NM 	  45

3.1 Model 	  48

3.1.1 Role of Inhibition from SON to NM 	  51

3.1.2 Conclusions  	 60

4 GLOBALLY INHIBITORY NETWORK 	  62

4.1 Model 	  63

4.1.1 Coupled Equations 	  66

4.1.2 Reduction to Slow Manifold 	  68

4.2 Results  	 71

4,2.1 Existence of a n-cluster Solution  	 72

4.2.2 Stability and Basin of Attraction of Solutions  	 79

4,2.3 A Complementary Discrete Map Approach 	  83

4.2.4 Conclusions  	 86

5 CONCLUSION 	  87

viii



TABLE OF CONTENTS
(Continued)

Chapter 	 Page

5.1 Summary of Results and Discussion 	  87

5.2 Future Work 	  91

6 APPENDIX 	  94

REFERENCES 	  96

ix



LIST OF FIGURES

Figure 	 Page

1.1 Avian auditory brainstem morphology. Figure courtesy: Grothe, 2003 , 	 9

2.1 Avian auditory network architecture 	 18

2.2 Sigmoid showing a∞ vs ieff 	20

2.3 D and s vs t for large P. D is the solid trace and s is the dotted trace.
For large P, D recovers strongly and the maximum steady state value of
D is .95 and is close to 1.   21

2.4 D and s vs t for small P. The solid trace is D and dotted trace is s. For
small P, recovery of D is weaker compared to large P case and maximum
steady state value of D is .85 in this case.   21

2.5 V vs t: a cell spikes when V = 1 and after that V is reset to 0.  	 23

2.6 Schematic of the NM-NL subnetwork; on the right spikes of the individual
NM neurons are shown. The lower spike train is offset by 0 = to/P from
the upper one.   24

2.7 NL firing rate for low frequency NM inputs for high and low synaptic
conductance: NL firing rate depends weakly on phase delays for high gsyn . 25

2.8 NL firing rate for high frequency NM inputs for high and low synaptic
conductance: NL firing rate saturates for phase delays < 90° for high gsyn 25

2.9 NL firing rate without depression: the firing rate curves are spread apart
for different P values. The solid horizontal and vertical lines are discussed
in the text. The parameter values are g syn = .5, Tic = 5.   26

2.10 NL firing rate with depression: the firing rate curves are clustered for
different P values compared to the non depressing case. The solid hori-
zontal and vertical lines are discussed in the text. The parameter values
are gsyn = .5, τk = 5, r = .75, rd = 15.   27

2.11 Variation in &max with and without depression at 0 = 60°. 	  30

2.12 Derivative of s max and sdmax with respect to P. 	  31

2.13 smax vs P vs 0 without depression 	  31

2.14 smax vs P vs 0 with depression 	  32

2.15 Spike times and interspike intervals.  	 37



LIST OF FIGURES
(Continued)

Figure 	 Page

2.16 NL firing rate without depression: firing rate curves are spread apart.
MATLAB simulation for the parameter value of τk = 4. 	  38

2.17 NL firing rate with depression: firing rate curves are clustered and are
more phase dependent. MATLAB simulation for parameter values of
Tk = 4, r = .92 and rd = 15  39

2.18 NL firing rate without depression: firing rate curves are spread apart 	
XPP simulation for τk = 4. 	  40

2.19 NL firing rate with depression: firing rate curves are clustered. XPP
simulation for T k = 4, r = .92 and Td = 15 	  41

2,20 NL firing rate without depression: firing rate curves are spread apart 	
MATLAB simulation for T ic = 4. 	  42

2.21 NL firing rate with depression: clustering of firing rate curves. MATLAB
simulation for r = .83, τk = 4 and 'Td = 15 	  43

3.1 SON-NM-NL network with inhibition. The input to left NM is stronger
than the right side. Thick lines (connections) on the left indicate NM is
driven strongly compared to the right NM.  47

3.2 Plot of SON inhibition; there are 3 SON spikes. For every SON spike, s
is reset to 1 following which, s decays.  	 50

3.3 Solving for P; intersection of left hand side and right hand side of equation
(3.4).  	 50

3.4 Period 'P' as a function of applied current with and without inhibition. In
the case with inhibition, as current I increases, inhibition delays NM pe-
riod for currents ranging from (1.2 to 1.3) to lie within [8, 9.26] compared
to the no inhibition case where P E [7,3, 9] 51

3.5 NL firing rate for various applied currents to both NM cells-no SON in-
hibition. XPP simulation with son = 0.  	 53

3.6 NL firing rate for various applied currents to both NM cells-with inhibi-
tion. XPP simulation for g30 	.08 and Ts = 20. 	  54

3.7 NL firing rate for various applied currents to both NM cells-without SON
inhibition. MATLAB simulation with 0,s0n = 0.  	 55

3.8 NL firing rate for various applied currents to both NM cells-with SON
inhibition. MATLAB simulation with

.J s0n = .08 and Ts = 20.  	 56

xi



LIST OF FIGURES
(Continued)

Figure 	 Page

3.9 NL firing rate for different applied currents on one side of NM-without
SON inhibition. In all the input biased cases, the firing rate curves are
deviated from the case when I = 1.2 on both sides. The value of gson = 0. 58

3.10 NL firing rate for various applied currents on one side of NM cell-with
SON inhibition. There is less deviation of the firing rate curves in the
input biased cases when compared to I = 1.2 on both sides. The value of
gson — .08 and τs = 20  59

4.1 An m-cell globally inhibitory network. Each synapse from P to I is excita-
tory, and each from I to P is inhibitory and displays short-term synaptic
depression.   63

4,2 Pyramidal cell v-w phase plane and singular orbit. The double arrows
denote a fast transition between silent and active stated. A single arrow
denotes the slower transition in each of those states. The horizontal axis
is v and the vertical axis is w.   65

4.3 Representative trajectories on the w — g slow manifold. Two cells begin
at t = 0 and evolve toward the jump curve. When P1 hits the curve at
t t - , it is reset to w = /A,* at t = t+, while P2 is reset vertically to the
position shown. The cells then continue to evolve toward the jump curve.
The dotted horizontal lines show that at any moment in time, the cells
lie on the same g-level.   70

4.4 Clustered solutions in a 4-cell network  73

4.5 The curve Cw on the w — g slow manifold. If the leading cell begins on Cw

at w = w0 , g = g0 and hits the jump curve at t tg0 , then the trailing cell
starting at w = 'Lurk , g = g0 will reach w = Iv0 at this time. The dotted
horizontal lines show that at any moment the two cells lie on the same
g-level.   74

4.6 The curves t in and tg0 for two different cases. The concave up grey curve
is tin , the concave down curve is 4 0 for the case τw = 5 and the sigmoidal
curve is tg0 for the case τw = 0.4. Points of intersection of either of the 40

curves with the t in, curve represent 2-cluster solutions. Note that in the
case of small τw there are multiple intersections.   76

4.7 Existence of multiple cluster solutions. The concave up t in curve intersects
the various 40 curves corresponding to different sized cluster solutions;
equation (4.21) solved for n = 1, 2, 3 and 4. As the number of clusters
decreases, the inter-spike interval associated with the solution increases. 79

xii



LIST OF FIGURES
(Continued)

Figure 	 Page

4.8 Clustering of two initial conditions. At t = 0 the two cells start at (w i , go ),
When the first cell reaches the jump curve at t = tf , we calculate an upper
bound for the second cell to reach the jump curve given by the time to
vertically travel to the jump curve. If this time is less than the synaptic
delay time, then the two cells will merge together into the same cluster. 82

4.9 Convergence to a 2-cluster solution. A. The intersection of the two curves
represents a 2-cluster solution found by solving (4.14) and (4.21). The
filled circles are different iterates of the one-dimensional map of interspike
intervals as they converge to the intersection point. B. The corresponding
time traces of the recovery variable w of the four cells shows how the
interspike interval approaches the value 35.5.   85



CHAPTER 1

INTRODUCTION

The brain is a biologically complex entity. There is an astounding variety of neu-

rons and types of communication that takes place between them. A brain has about

10 11 neurons [25]. An ultimate challenge of biological sciences is to understand the

biological basis of mental processes and consciousness by which we learn, remember,

act and perceive. A remarkable unity has emerged within biology in the last two

decades. The investigation of genes and inferring the amino acid sequences from the

proteins that encode them have shown us some unanticipated similarities between the

proteins present in the nervous system and those in the rest of the body [30]. This

has provided researchers with the ability to outline a general plan for the function

of cells. Therefore, the next and even more challenging step in this field is to unify

the study of behavior - the science of mind, in particular neural science, which is the

science of the brain [30], This is the step which will lead us to a unified scientific

approach towards the study of behavior, based on the belief that all behavior is an

output of brain function.

Neuroscience is a field which is dedicated to the study of the nervous system.

The main focus in neuroscience is to understand how the neurons transmit signals,

how these signals are synthesized, integrated and how this leads to emergence of

higher complicated functional activities in the brain. This interest and curiosity in

the investigation of neuronal activity by neuroscientists worldwide, stems from a de-

sire to understand the behavior, consciousness and perception of the higher functions

in the brain [42], [25].

Much of the current view that we have about neurons, originated in the last

century. Ramon y Cajal and Camillo Golgi are two of the pioneers in the study of
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neurons from the late 1800s. Golgi developed a way to stain the neurons using sil-

ver salts that could reveal their structure under a microscope. Using this staining

technique, Ramon y Cayal was able to investigate each individual cell, thus reveal-

ing that the nervous tissue is not a continuous web but it is a network of discrete

cells. In this way, Cajal developed some of the major concepts and much of the

early evidence, for the principle that, it is the individual cell, which is the elementary

signaling element of the nervous system [30]. This principle was referred to, as the

'neuron doctrine'. There was more evidence supporting this theory of neuron doctrine

through experiments in the 1920s, by embryologist Ross Harrison [30]. Thus Ramon

y Cajal provided much of the early evidence required for our basic understanding of

the nervous system.

The nervous system consists of two main kinds of cells : the glial cells(glia)

and the nerve cells(neurons). Glial cells are much more in number compared to the

neurons. They basically surround the neurons. Glia is not known to be directly

involved in information processing but play other vital roles such as promoting sig-

nalling between the neurons, releasing some chemical substances, like growth factors

which help in the nourishment of nerve cells and guiding migrating neurons during

brain development [30]

A typical neuron consists of a cell body or the soma, dendrites and an axon.

Neurons are living cells and exhibit metabolism like in many other cells. The soma

consists of vesicles, nucleus and mitochondria. The dendrites and axon are part of

the neuron's unique features. The dendritic processes can be immense and reach out

to vast areas of the brain and the length of the axons can be longer than a meter.

Neurons receive signals or inputs via dendrites. The dendrites process information

that they receive and accumulate them in the soma and send impulses to other neu-

rons via the axon [25]. An axon can convey electrical signals through distances that

range from .1mm to 3m. These electrical signals are referred to as action potentials
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which are rapid nerve impulses having an amplitude of roughly 100mV and duration

of 1ms [30].

Action potentials are the basic mechanism by which neurons communicate.

The action potential, commonly known as an impulse, is a short electrophysiological

event that occurs due to the fact that a neuron's membrane has active properties.

The initiation of the action potential takes place at a specialized trigger region at

the origin of the axon which is known as the axon hillock, the initial segment of the

axon from where they are sent down the axon without any distortion at the rate of

1 — 100m per second [30].

These signals are typically stereotyped throughout the nervous system even if

they are triggered by a variety of events that occur in the environment. Therefore,

signals conveying information about vision are the same as those that convey infor-

mation about audition [30]. So here we encounter a principle brain function since the

information that action potentials convey is not determined by the form of the signal,

but it is mainly dependent on the pathway that a signal takes to reach the brain. The

brain functions by analyzing and interpreting the patterns of incoming signals which

helps in creating our everyday sensation of touch, smell, sound, sight and taste [30].

A single neuron receives multiple signals from other neurons and also signals

to many others. The term synapse refers to the junction between an axon of a neuron

and a dendritic branch of another neuron. To transmit information between different

cells, neurons use two kinds of synapses- chemical and electrical synapses. A chemical

synapse consists of pre and post synaptic parts which are separated by a synaptic

cleft. When an axon terminal receives an input, it triggers a chain of physiological as

well as chemical reactions in the presynaptic neuron. This leads to release of chem-

ical substances called neurotransmitters from vesicles, into the synaptic cleft. These

neurotransmitters diffuse across the cleft to reach the postsynaptic cell. They in turn

react with the receptors present in the postsynaptic membrane and produce changes
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in the membrane potential of the postsynaptic neuron [42].

Although chemical synapses are generally known to be a prevalent form of

synaptic transmission, there are certain cells in the retina and also the rest of the ner-

vous system linked by specialized junctions. These are the junctions where synapses

are transmitted electrically [42] and are referred to as gap junctions. Electrical

synapses occur when pre and postsynaptic membranes are positioned very close to

each other and are linked by channels which connect intracellular fluids of both the

cells. This close connection leads to the ability of action potentials to spread directly

from cell to cell without the usage of chemical transmitters [42].

A synapse could be categorized into two types- either excitatory or inhibitory.

It is called excitatory when an increase in its membrane potential causes an increase

in the postsynaptic membrane potential which is biologically termed depolarization.

When there is depolarizing activity it generally facilitates the generation of an action

potential in the postsynaptic membrane. On the other hand, a decrease in postsynap-

tic membrane potential hyperpolarizes the cell, or decreases the membrane potential

of the postsynaptic neuron. This implies that the presynaptic synapse is inhibitory,

in other words it tends to suppress the activity of the postsynaptic cell.

The efficacy of a synaptic transmission is not a fixed quantity but it can vary

depending on the patterns of ongoing activity. This ability of the synaptic strength to

change and become weak or strong as a function of frequency of firing of the neuron

is known as short term synaptic plasticity [42]. The two main kinds of plasticity are

synaptic facilitation and synaptic depression. If there are short trains of presynaptic

action potentials, it could either lead to facilitation of release of transmitter from a

presynaptic terminal or depression of release or a combination of both. Short term fa-

cilitation is known to persist for several hundreds of milliseconds, whereas depression

is known to last for seconds. If a train of stimuli is applied to the presynaptic neuron

the amplitude of the resulting postsynaptic potential could either increase or decrease
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owing to synaptic facilitation or depression respectively [42]. They are referred to as

short term, since their period lasts for as little as a few tens of milliseconds up to tens

of minutes [42].

Short term changes that occurs in the amplitude of synaptic potentials have

been under extensive study at synapses in the peripheral nervous system like those of

the autonomic ganglia or the ones in the vertebrate skeletal muscle [42]. Nonetheless,

it has been shown that these changes do occur in the entire central nervous system

as well [42].

On the other hand, it has been observed in the central nervous system, that

repetitive activity can lead to changes in the synaptic efficacy which can last longer

that those seen at the peripheral synapses [42]. They are found to occur in particular

locations in the brain. They are intriguing since their occurrence over a long period

of time suggests that somehow maybe associated with memory. There are two types

of long term plasticity: long term potentiation and long term depression [42].

There has been experimental evidence suggesting that the phenomenon of

short term facilitation is related to residual calcium [42]. Due to repetitive stimula-

tion there is continued calcium accumulation in the presynaptic cell which leads to

a progressive increase of transmitter release. Therefore, facilitation has been shown

to occur due to increase in the probability of transmitter release by the presynaptic

terminal.

Short term depression like facilitation is also thought to be presynaptic in

origin. Sometimes repetitive activity in the presynaptic cell could also result in

depression [42]. Depression occurs when the release of neurotransmitter from the

presynaptic cell, with each stimulation is very high. Thus every time the presynap-

tic neuron fires, a large number of neurotransmitters are released. This results in

depletion of vesicles in the presynaptic cell and there are fewer vesicles available for

release during the next spike. As a result, there is reduction in the amplitude of the
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postsynaptic EPSP, upon repeated stimulation [42]. For our purposes we are basically

interested in understanding the effects of the synaptic plasticity and our focus will

not be on its mechanisms.

1.1 Role of Short Term Synaptic Depression as a Timing Device

Short-term synaptic plasticity which is commonly found in the central nervous system

could contribute to the functions of signal processing, namely coincidence detection

and temporal integration. In the case of temporal integrators where the output firing

rate mainly depends on an sum of the recent synaptic inputs, it is plasticity that

modulates their net input synaptic strength. This modulation could directly lead to

the control of function of neural networks and signalling gain [13].

Common instances of temporal discrimination can be found in coincidence

detection, input rate filtering, oscillatory networks- the setting of phase offset, cycle

period and regulation of spontaneous oscillatory activity [20]. The behavior of an

organism depends on these computations. Some of the important applications are in

sound localization, sensory input selection and rhythmic motor tasks like the crus-

tacean pyloric rhythm [41] and mammalian intestinal peristalsis [59], [20]. Synaptic

depression is known to play a role in enhancing temporal coding. But it is hard

to predict the effect that depression has on a neuronal input-output transformation

since it is mainly dependent on the kinetics of depression and also the relevant con-

text [1],[6]. Context refers to activity patterns of the individual synaptic inputs and

also the intrinsic properties of the postsynaptic membrane [20]. Synaptic depression

is so versatile as a timing device, that it successfully helps to explain its omnipresent

nature in the nervous system.

In this thesis we are primarily interested in understanding the role of short

term synaptic plasticity in temporal coding of neuronal networks. We shall consider

two distinct set of problems. One focuses on the coincidence detection in the avian
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auditory brainstem. The other centers on the multistability of solutions in a globally

inhibitory network.

1.2 The Problem of Coincidence Detection

We first study the phenomenon of coincidence detection. The barn owl uses differ-

ences in timing and intensity of a sound which reaches its ears to locate the azimuth

and the elevation of the sound source [31]. There are 'space-specific neurons' present

in the inferior colliculus (IC) region situated in the auditory midbrain of a bird. These

neurons are excited only if sounds emanate from a specific region of space having a

particular combination of interaural time difference (ITD) and interaural intensity

difference (IID). ITD which is the difference in the time of arrival of sound to both

the ears (in submilliseconds) and IID which is the difference in the intensity of sound

arriving at the two ears, is commonly used by both birds and mammals as critical

cues for sound localization along the azimuthal direction and elevation of the sound

source. For both birds and mammals, the processing of ITD presents a huge challenge

in processing of temporal information. In vertebrates except for an electric system

in some fish, no other neural system even comes close to requiring precise temporal

resolution to encode ITDs [22]. The duration of an action potential is almost equiva-

lent to two orders in magnitude greater than the minimal ITDs (< 10μs) that can be

resolved by humans or the barn owls. As a result, the ITD processing structures in

both birds and mammals are in need of well suited model systems to study the rules

underlying precise temporal processing [22].

There exists four primary nuclei in the avian auditory brainstem for sound

processing which includes nucleus magnocellularis (NM) and the nucleus angularis

(NA), the two major neurons in the cochlear nucleus forming the auditory pathway

to the IC. Figure 1.1 shows the network architecture of the avian brainstem [22].

The NM neurons are the avian analog of the mammalian anteroventral cochlear
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nucleus. NM neurons preserve the temporal characteristics of the acoustic inputs and

thereby provide necessary information for coincidence detection of interaural time

differences. A coincidence detector neuron is one that has higher firing rates when

it receives simultaneous or near synchrony inputs. In the avian system nucleus lami-

naris (NL) cells are coincidence detectors and interpret the phase difference of inputs

from the NM neurons on both sides of the brain.

The NM cells have the appropriate physiological and anatomical features which

makes them best suited for coding temporal information [61]. First of all NM cells

have secure excitatory transmission. There are two or three calcyine terminals, that

project onto each NM neuron from the auditory nerve. These terminals generate

suprathreshold currents [70]. Second due to the fact that the NM neurons have spher-

ical somata and very few or no dendritic processes there is hardly any attenuation

or electronic filtering of excitatory input. The third property of NM neurons is that

there is existence of robust low voltage activated K+ currents which activate rapidly

and inactivate slowly. This helps in the fast recovery of NM cells from excitation and

prevents the temporal summation of all the multiple inputs [47], [32], [63]. There

have been physiological studies to indicate independent processing of phase coding

and sound intensity occurring in the auditory brainstem of the barn owl [57]. The NM

neurons project bilaterally, sending excitatory inputs to the NL neurons via axons of

variable length thus acting as delay lines and are responsible for phase coding [55],

Traditionally, it is believed that ITDs are encoded by an array of coincidence detector

neurons that receive excitatory inputs from both the ears via axons of systematically

varying lengths which are the 'delay lines', such that a topographic map of the az-

imuthal auditory space is created [5], [26], [29]. As a consequence neurons which are

tuned to the same best frequency display different best ITDs (the ITD at which a

neuron has a maximal firing rate) thus almost covering the entire physiological range

[22], This concept of delay lines was proposed by Jeffress, in 1948 [26], He outlined a
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Figure 1.1 Avian auditory brainstem morphology. Figure
courtesy: Grothe, 2003

model, that transformed differences that arose in acoustic timing into that of a neural

spatial gradient. In other words, this model transformed a time code into a space

code.

NA is responsible for encoding sound intensity information to provide cues for

sound localization [57]. Both the NA and NM cells receive excitatory input from the

auditory nerve (AN) [4], [48], [8], [9], [27], [28]. This form of synaptic connection

between the auditory nerve onto the neurons in the cochlear nucleus has a huge im-

pact on the transmission of sound. By using embryonic brain slices of the chick and

trains of stimulation injected electrically, Carr and her co-workers have investigated

the short term plasticity of these inputs to the NA of the birds where the intensity

information is encoded [10]. They found that these glutamatergic excitatory inputs

exhibited a mixture of short term plasticity namely synaptic facilitation and depres-

sion. They observed that the balance of short term facilitation and depression at the

NA synapses helped in maintaining the amplitude of postsynaptic response through-
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out the electrical trains at firing rates greater than 100 Hz, which are considered

to be high. In the minority of synapses which only exhibited depression, there was

saturation of postsynaptic response with increasing intensities which then limited the

range of the intensity information conveyed. Therefore, it is evident that short term

synaptic plasticity plays a major role in modulating the strength of the synapse by

filtering information which is contained in the firing patterns of the neurons,

Carr et al. [10] performed experiments to study the steady-state relationship

of input rates of the synapses to the cochlear NA. It was evident from these balanced

synapses that they conveyed rate information in a linear fashion thereby transmitting

intensity information encoded in the form of a rate code in the NA nerve. There have

been studies related to quantitative models of short term plasticity like depression

and facilitation which help in identifying potential effects such as adaptation, detect-

ing change, and filtering of signals [1], [65], [12], [15], [64].

Zhang and Trussell [70] did voltage clamp experiments in the avian nucleus

magnocellularis and observed that the chick auditory nerve synapses onto the nucleus

magnocellularis (NM) of the cochlear nucleus and expresses strong short-term depres-

sion. The NM cells send bilateral bouton-like excitatory synapses onto the nucleus

laminaris (NL), a group of specialized cells for coincidence detection of interaural de-

lays in birds. In fact, NL neurons are the first to calculate the ITD for locating sound

source in birds [11]. This feature of coincidence detection is an important property in

many neural functions such as direction of visual movement [46], computing of ITD

[26], pattern recognition [23] and echo suppression [54] in small mammals. The NL

neurons are homologous to the medial superior olive (MSO) in mammals.

1.3 Mechanisms Involved in Coincidence Detection

There are two mechanisms which have been suggested to maintain the sensitivity of

ITD in NL neurons despite sound level variations,The first mechanism is that the
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synapse from NM to NL exhibits synaptic depression which suggests that depression

plays a role in characterizing the timing circuits [33], [13]. It is shown in [7] that in a

NL cell that received synaptic depression, there is increased consistency in response

to ITD over a threefold range of input discharge rate. When there is no depression

ITD sensitivity decreased with increased rate of input. Cook et al. [13] performed ex-

periments on the chick brainstem. They observed that synaptic depression from NM

to NL could play a role in preserving coincidence detection in NL neurons. In order

to test this hypothesis of depression being a gain control mechanism, they went on to

model the NM-NL network to perform simulations. They had an extensive model for

the NL cell. Their NL cell had a 20μm diameter soma and had nine dorsal and ventral

dendrites. Each of these dendrites received a uniform distribution of NM synapses

around their midpoint. Their results show that in the absence of depression when the

NM firing frequency and synaptic conductance is low then the NL neuron does not

fire at all for any phase delay between NM inputs. If the NM firing frequency is high,

and synaptic conductance is high, then the NL firing rate saturates and remains high

and does not change at all for phase differences < 90°. This showed that in order

to provide appropriate coincidence detection at high and low NM firing frequencies,

the conductance needs to be varied. But [13] showed that depression from NM to NL

provides a mechanism to automatically adjust the synaptic conductance inversely to

the NM firing frequency. This is because high frequency NM inputs recover weakly

from depression and low frequency inputs exhibit stronger recovery from depression.

Therefore, this leads to better coincidence detection among the NL neurons since

they depend less on input frequencies and it is the degree of input synchrony (phase

difference) variable that is encoded by the NL neuron [13].

The second mechanism for maintaining ITD sensitivity of NL neurons is the

presence of SON inhibition to NM synapses which can enhance coincidence detection

of the NL neurons. The superior olivary nucleus (SON) which is located in the ventro-
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lateral part of the avian brainstem receives excitatory inputs from NA and NL and it

sends inhibitory synapses back onto NA, NL and also NM [49]. It has been observed

that the morphological and physiological property of the SON neurons make them

suitable for temporal integration. It is found in [49] that the direct stimulation of

the SON evokes a long lasting inhibition among the NL neurons. Therefore, there is

blockade of intrinsic spike generation among the NL neurons. These findings indicate

the existence of GABAergic inhibitory feedback to the NL neurons. A mechanism by

which SON evoked inhibition affects ITD is discussed in [49],

It has been shown through experiments [35], that in the absence of SON inhi-

bition to NM, high sound levels could strongly drive each NM. As the result, a high

firing rate from either side might lead to "false alarms" in NL neurons. That is, if

there is coincident firing of many NM fibers from any one side, that alone can evoke

spiking among NL neurons thus creating ambiguity among NL neurons in being able

to discriminate binaural coincidences from strong monaural excitation. The presence

of SON can potentially prevent strong unilateral excitation since the SON inhibition

is proportional to the activity of NM. Therefore, the experiments in [35] suggest that

if there is increased activity of NM neurons on one side, that will lead to stronger

recruitment of SON inhibition which could eventually reduce NM activity [44].

1.4 Aim, Model and Results

Our primary goal is to fully comprehend how synaptic plasticity, in NM excitatory in-

puts to the NL neurons and the SON inhibitory inputs to the NM neurons contributes

toward improving ITD sensitivity among NL neurons. We explore this phenomenon

of coincidence detection by first constructing a qualitative firing rate model. This

model is straightforward to work with because it focuses only on the average firing

rate of the neurons and not their individual membrane properties. In particular, we

investigate how the firing rate of a model NL cell can be made to be more dependent
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on ITD than on input frequencies. We find that in the absence of depression, when

there is high synaptic conductance for high frequency NM inputs, the NL firing rate

is very high and saturates for phase differences < 90°. Also in the low conductance,

low frequency NM input case, the NL firing rate depends weakly on phase delays of

inputs. These results are consistent with the findings of the Cook et. al [13] paper,

When we include synaptic depression from NM to NL we find that depression plays

a role of gain control mechanism. Since the high frequency inputs exhibit weak re-

covery and low frequency NM inputs recover strongly from depression, now the NL

firing rate is more dependent on phase delays than input frequencies as shown in

[13]. We obtain estimates on some main parameters that affect the firing rate curves,

namely the depression time constant, synaptic conductance and the parameter which

determines the extent of the depression variable.

We then model the NM-NL network using integrate and fire neurons, We ob-

tain similar observations to the firing rate model. In the presence of depression from

NM to NL, the NL firing rate curves behave more as a function of phase and are

less input frequency dependent, compared to the no depression case. We use XPP to

perform simulations and validate it with a semi-analytical solution of the integrate

fire equation using MATLAB, There is qualitative agreement between our XPP and

MATLAB results. We make parameter estimations for the integrate and fire neurons

similar to the firing rate model to find that there is an interplay between the depres-

sion time constant and the parameter that controls the extent of depression.

We extend this model of integrate and fire neurons to incorporate inhibition

from SON to NM. We investigate whether SON affects the period of the NM neurons

or if it promotes phase locking among the NM neurons during high intensity inputs

to NM neurons. Either or both of these implications of the SON feedforward synapse

to the NM neurons would play a major role in determining the firing rate of the NL

neuron, thereby affecting coincidence detection. We are also interested in investigat-
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ing the monaural excitation problem. The way we incorporate monaural excitation in

our model is by increasing the applied currents on one side of the model. As a result,

increased applied current leads to higher frequency firing of those NM neurons.

Our results show that when the NM neurons, on one side of the brain receives

high frequency inputs compared to the other side, there is ambiguity among the NL

neurons in discriminating between strong monaural excitation versus binaural coin-

cidence detection. We then include SON inhibitory input to the NM neurons. We

know from literature, that the activity of SON on a particular side of the brain is

proportional to the amount of NM excitation on that side [61]. Therefore, whenever

the NM cell on one side is driven more compared to the other, SON inhibition is more

on that side. We find that SON tends to equalize the firing rate of NMs on both sides

over a range of applied currents which depend on the parameters of the system.

1.5 Globally Inhibitory Network

The second part of the thesis concerns multistability of solutions in a globally in-

hibitory network of spiking cell. Considerable attention has been given to the idea

that neurons convey information in their patterns of activity to downstream tar-

gets. There are two general ways in which this information is transmitted. One

way is through the firing rate of individual or groups of neurons. In this scenario,

downstream neurons interpret the changes in firing rate to discern the behavior of

the upstream network. The second way that neurons may transmit information is

through their spike times [3], For example, two neurons may fire at the same rate,

but a downstream target neuron may determine the degree of synchrony of the cells

based on the difference of their spike times. Coincidence detection is a classic example

of this phenomena whereby a downstream target neuron will only fire if it receives

inputs from different neurons within a very small window of tune,
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1.6 Aim, Model and Results

In this section, we will consider a globally inhibitory network that is loosely based

on the CA1 hippocampal structure. The network consists of m uncoupled pyramidal

cells that all synapse onto a common interneuron. The interneuron sends inhibition

that exhibits short-term synaptic depression (STSD) to each of the pyramidal cells.

The main result of this chapter is to show how short term synaptic depression

allows the globally inhibitory network to exhibit multiple stable solutions, all for the

same set of parameters. In particular, we show that in a network of m pyramidal

cells, there can exist stable cluster solutions of size n < m for any n. A n-cluster

solution is one in which the network breaks up into n out-of-phase groups. Within

each group the cells are fully synchronized, but the clusters are separated by a well

defined interspike (intercluster) interval. Cluster solutions are distinguished by the

fact that different clustered solutions have different interspike intervals and these

different intervals are fully determined by the extent of synaptic depression associated

with that cluster. We will show that the interspike interval decreases with the number

of clusters. Short term synaptic depression allows there to be m different interspike

intervals thus implying that the network can transmit m different codes. This work

extends to the work of [68] and also Rubin and Terman [51] who show that a globally

inhibitory network without depression displays bistability between a synchronous and

a single clustered solution.



CHAPTER 2

COINCIDENCE DETECTION IN THE AVIAN AUDITORY

BRAINSTEM

In this section we first describe the model used to study the role played by synaptic

depression in enhancing coincidence detection in the NL neurons. A fundamental way

by which animals and birds perceive their presence in the environment is through

localizing a sound source. This provides them with a mechanism of locating where

their mate or their prey is or the direction from where they could be threatened by

a predator. From early literature, we know that the difference of time of arrival of

sound to both ears (ITD) is a major cue for sound localization [11]. There have been

physiological observations in both owls and mammals which have confirmed the phase

locking of action potentials to input stimulus in the brainstem. This property of phase

locking generates the sensitivity of interaural-delay [38]. Therefore, it is evident that

the timing of inputs plays a critical role in binaural sound information processing.

Over the past few years it has been identified by researchers that depressing synapses

influence temporal discrimination to a great extent [20]. One of their major roles is

in auditory coincidence detection [13], [33].

The relevant auditory neurons having synaptic connections from the auditory

brainstem through the inferior colliculus (IC) neurons in the auditory midbrain can

be seen from 2.1, As shown in the figure, the auditory nerve (AN) sends feedforward

excitatory synapses onto the cochlear neurons nucleus magnocellularis (NM) and

nucleus angularis (NA) [22]. AN does not send direct synapses onto the NL neurons

but the NM cells send a depressing synapse onto the NL neurons. The IC receives

excitatory inputs from both the NA and NL neurons. We are first interested in

modeling the behavior of NL neurons in response to the excitatory input from NM.

16
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The second factor which is believed to be instrumental in enhancing coincidence

detection among the NL neurons is the inhibitory feedback from SON located in the

auditory brainstem to NL. As indicated in the figure, SON receives excitatory inputs

from the NA and NL cells. SON sends feedback inhibitory synapses onto NM, NA

and also the NL cells.

Cook et al., [13] explored the effects of synaptic plasticity in the NM to NL

synapse. They studied the NL firing rate in the presence of synaptic depression using

a multi compartment model. Their model NL cell had a 20 — μm diameter soma that

has nine ventral and dorsal dendrites. Each of the dendrites had a uniform distribution

of the NM synaptic inputs around their midpoint. They connected a myelinated axon

to the soma through an initial segment so that unambiguous counting of propagated

action potentials could be done. Through simulations they observed that firing rate

saturation in response to high intensity inputs in the case of high synaptic conductance

resulted in the steep decline of output rate as a function of phase delay. They showed

that this problem can be avoided by using smaller synaptic conductance. However in

this case at low intensity inputs, the firing rate of NL cells is almost zero for increasing

phase delays. This indicated that a different post synaptic potential amplitude is

required to generate coincidence detection among NL neurons. They found that this

problem could be resolved by including synaptic depression and also that the intrinsic

properties of the NL neuron contributed towards enhancing coincidence detection.

Their findings suggest that the inclusion of depression provides a balance between

high sustained input rate and low steady state post synaptic potential amplitude.

The result is that, in the presence of depression, the output (firing rate of NL cell) is

more a function of input synchrony and less dependent on input rate or alternatively

input frequency. We are interested in determining how much of their results can be

explained simply as a result of synaptic depression. In other words we shall disregard

much of the intrinsic properties of the NL neuron.
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Figure 2.1 Avian auditory network architecture.

2.1 Model

To begin with, we use a firing rate model similar to [56], to describe the activity of

a single NL neuron receiving depressing excitatory inputs from the two NM neurons.

NM1  represents inputs from the left side of the brain and NM2 represents inputs

from the right side. The general equation which governs the activity of an NL neuron

is given by,

Here a is the activation variable pertaining to the NL cell. The NM cell's
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input to NL, c/ o° is a sigmoid shown in Figure 2.2 and expressed as

The parameter a is the half-activation value of a. The parameter Jeff determines

the input to the NL neuron from the NM cells described by Ieff = gsyn * s where

gsyn is a parameter for synaptic conductance. Ta is the time constant with which the

network activity reaches the value aor,(/ef f ). We model the NL cell in such a way that

it receives inputs from two NM cells defined by S 1 and s 2 where s = s1 + s 2 . S1 is

the variable measuring the strength of synaptic input to the NL cell from NA, and

s2 measures the strength of the input from NM2 . We assume that the input from

NM2 arrives with a delay of t 0 where t o E [0, P/2], P is the period of NM activity.

The value of the sigmoid's steepness is given by ka . As ka becomes smaller, the sig-

moid gets steeper. The negative (positive) sign in front of the exponent determines if

the sigmoid is increasing or decreasing thus indicating excitatory or inhibitory input.

First we consider the input to NL to be non-depressing and we do not explicitly model

the activity of the NM cell but instead we just model its synapse onto the NL cell.

Whenever an NM cell spikes the associated s i variable is reset to equal one. Between

spikes s i is described by

for i = 1, 2, where Tk denotes the time constant of decay of either synapses.

When the synapses are depressing, a variable D measures the level of synaptic

depression [1] and is independent of s. When an NM cell spikes s is set equal to D

and D is reset to rD. Here r is a positive parameter which is less than 1 and denotes

the decrement of the D variable due to depression when the synapse is active. This

can be summarized by noting that when there is a spike by a NM neuron, say at time



Figure 2.2 Sigmoid showing a c, vs ief.f.

t, the variables Di and s i obey

When the cell is silent, the synapse recovers from depression, and its effect on the

post synaptic cell decays.

Figures 2.3 and 2.4 are illustrations of the dynamics of the depression and the synaptic

input variables as a function of period P.

20
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Figure 2.3 D and s vs t for large P. D is the solid trace and s is the dotted trace.
For large P, D recovers strongly and the maximum steady state value of D is .95 and
is close to 1.

Figure 2.4 D and s vs t for small P. The solid trace is D and dotted trace is s.
For small P, recovery of D is weaker compared to large P case and maximum steady
state value of D is .85 in this case.
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When the firing frequency of NM is low (high P) , then its synapse is strong.

But if NM fires at a high frequency then its synapse will be weak. Therefore, it can

be seen from Figures 2.3 and 2.4 that at a low NM firing frequency the D variable

reaches its steady state with a maximum at a value closer to 1 than when when NM

firing frequency is high. In Figure 2.3 maximum of the steady state value of D is .92

and in Figure 2.4 the value is closer to .82. These figures are obtained by simulating

equations (2.4) and (2.5) and using XPP [17].

When we move away from firing rate models we will use an integrate and fire

model to describe activity of the neurons. The general equation describing a model

neuron is:

If v(t-) = 1 there is a spike and after that, v is reset to 0, i.e v(t+) = 0. I denotes the

applied current that the cell receives. The general equation of v, which is the voltage

of a cell receiving synaptic input is the following:

where En, is the reversal potential of the synaptic current, s denotes the synaptic

strength and gsyn is the maximum synaptic conductance. Figure 2.5 shows a typical

voltage trace of a cell using an integrate and fire model.

2.1.1 Role of Depression from NM to NL

Using the model described in the previous section where one NL cell receives exci-

tatory inputs from NM cells of the left and right ear, we now study how the firing

rate of the NL cell depends on the phase delay of the inputs from the NM cells. As

we can see in Figure 2.6, there are NM neurons from the left and right ear sending

depressing excitatory synapses onto the NL neuron. The input period of both NM
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Figure 2.5 V vs t: a cell spikes when V = 1 and after that V is reset to 0.

cells is given by P. If NMI , spikes at t = 0, P, 2P.... then we assume there is a time

delay of t0 for the input NM2 , i.e. it fires at t = t0 , P + t0 , 2P + t0  The phase

difference of the inputs is given by 0 = LA.

We first study the activity of the NL cell using the firing rate model. We

calculate the firing rate value as follows, Our time constant value Ta is chosen small

so that the NL activation variable a can be approximated by ao„(/eff ) at steady state.

We compute the firing rate at every sample phase location, by simply calculating the

maximum amplitude of a when it reaches steady state. This equals a c„,(Ief f ) when

Iq .t. is evaluated at a maximum of these synaptic inputs.

Figure 2,7 shows the firing rate of the NL cell in response to low frequency

input with P = 20 in the presence of high and low synaptic conductance. Figure

2.8 illustrates the NL firing rate as a function of high frequency NM inputs in the

presence of high and low synaptic conductance. As is evident from Figure 2.7 when

the synaptic conductance is low at gsyn = .2, the firing rate of the NL cell only de-



Figure 2.6 Schematic of the NM-NL subnetwork; on the right spikes of the indi-
vidual NM neurons are shown. The lower spike train is offset by c = to /P from the
upper one.

pends weakly on phase delays. But we can see from Figure 2.8 that for high synaptic

conductance at gsyn = .5, for high frequency NM input the firing rate curve saturates

for phase delays less than 90°, These findings are consistent with the results shown

in Cook et. al, [13].

We want to study how these firing rate curves change as both a function of

frequency and phase. Thus we will study the problems for various values of P. Figure

2,9 illustrates the firing rate of a NL cell as a function of phase delay without synaptic

depression with gsyn = .5.

Figure 2,10 shows the NL cells's firing rate as a function of phase delay in

the presence of depression with gsyn = .5. In the figures, the parameter P indicates

different NM periods used in our simulation. It is evident from the figures that in

the case of no depression, as the input frequency decreases, the NL firing rate curves

spread out. Alternatively with depression, with decreasing frequency, the firing rate

curves begin to overlap and only gradually deviate from each other as phase delay

increases. Thus the inclusion of depression in our model makes the firing rate of the

NL neurons more frequency independent and instead more dependent on phase delay



Figure 2.7 NL firing rate for low frequency NM inputs for high and low synaptic
conductance: NL firing rate depends weakly on phase delays for high g, syn .

Figure 2.8 NL firing rate for high frequency NM inputs for high and low synaptic
conductance: NL firing rate saturates for phase delays < 90° for high gsyn•



Figure 2.9 NL firing rate without depression: the firing rate curves are spread
apart for different P values. The solid horizontal and vertical lines are discussed in
the text. The parameter values are gsyn = .5, τk = 5.

as in [13]. The reason for the clustering of firing rate curves in case of depression is

that when we include synaptic depression, if there is high input frequency then the

recovery of the NM neuron's synapse from depression is weaker. This decreases the

firing rate of the NL neuron. When the NL neuron receives low input frequency there

is stronger recovery of the NM neuron's synapse from depression which increases the

firing rate of the NL neuron. This provides a balance of the postsynaptic response

which is measured by the firing rate of the NL cell. As a result of depression, there

is a decrease in the NL firing rate in spite of the high frequency inputs and we find

an increase in NL firing rate during low frequency inputs.

The bird interprets these results in the following way. Whenever the NL neuron

in the auditory brainstem receives sound inputs there is a corresponding firing rate

associated with it. The bird transforms the rate value to a phase location in space as

indicated in the Figures 2.9 and 2.10. In Figure 2.9 we have drawn a horizontal line



Figure 2.10 NL firing rate with depression: the firing rate curves are clustered for
different P values compared to the non depressing case. The solid horizontal and
vertical lines are discussed in the text. The parameter values are gsyn = .5, τk = 5,
r = .75, rd = 15.

across the firing rate curves that corresponds to a certain firing rate value, namely .55.

The bird interprets this value and tries to match it to a location in space which can

be inferred from the x axis of phase delays in our figure. It is evident from Figure 2.9

that the value .55 corresponds to multiple locations in the phase space as indicated

by two vertical lines. In this case, the range of possible phases is 82° to 141°. This

causes ambiguity for the bird in being able to localize the sound source.

We repeat this exercise in Figure 2.10 and we can see that the firing rate value

of ,55 corresponds to a narrower range of phase location. Here the range of possible

phase values is 63° to 83°. Therefore, in the case of Figure 2.10, which is obtained by

including synaptic depression from NM to NL, the bird is able to locate the sound

source more accurately compared to Figure 2.9. This shows how depression enhances

the coincidence detecting ability of the NL cell.

To understand better how depression acts as a gain control mechanism, we
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analytically quantify how the firing rate depends on phase difference, period and the

parameters of depression and recovery in the following way.

In the case of no depression if NM 1 (left NM cell) spikes at t = 0 and has

decayed till t = t0 and NM2 spikes at t = t0 then inputs to the NL cell are given by

where to is the time lag in the inputs, and falls in the interval [0, P/2]. Therefore, the

maximum of inputs is described by the equation

where smax behaves as a function of P through

0 denotes phase delay of inputs and ranges from 0° to 180°. We calculate the

slope of smax as a function of P as given in the following equation:

It should be noted from equation (2.9) that dsmax/dP is negative, implying that smax(to)

is decreasing as a function of P. This is true in the non depressing case. This is also

evident from Figure 2.11 and helps to explain the reason for the dependence of smax

on input periods P. In the absence of depression, a smaller smax implies a lower firing

rate for the NL cell.

In the case of depression, &max will depend on D. We first calculate the steady

state value of depression, D. We consider equations (2.4) and (2.5) that describes

the dynamics of D. When the NM neuron spikes D is reset to rD where 0 < r < 1.
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To be very specific, D(t+) is equal to rD(t-) where D(t-) is determined by equation

(2.5) since at t- the NM neuron is silent and so D recovers and approaches 1 with

a time constant of τd. Therefore, we solve for D from equation (2.5) and obtain the

maximum value of D. This is the maximum steady state value of D and we name it

D*. Solving equation (2.5) with initial condition D(0) = D o , we find

At steady state we impose that Do = rD*. We substitute for D0 in equation (2.10)

to obtain the following.

In this case of depression, from NM to NL, when NM2 spikes at to the synaptic input

at t0 is given by:

If NM1 spikes at t = 0 and decays until to , then its input at t o is described by:

The maximum of the two synaptic inputs is then given by the following equation.

where to follows equation 2.8. Figure 2.11 shows the variation of Smax and Sdmax with

respect to P (over a certain range), for a fixed phase 0. As we can see from Figure

2.11 that for a fixed phase, Smd ax with depression varies less with respect to period P

than the smax without depression. Since firing rate a is a function of sniax (through
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Figure 2.11 Variation in smax with and without depression at 0 = 60°.

equation (2.1)) it can be seen that the firing rate in this case with depression varies

less as P increases. To explain why, we calculate the derivative of sdmax in equation

(2.13), as a function of P and obtain the following expression.

It is clear from equation (2.9) that without depression smax is decreasing. But with
sdmax/dP

depression from equation (2.14) it can be seen that dsdmax/dP can have a zero. In general,

this derivative can be made small over a range of P values as shown in Figure 2.12.

We plot equations 2.9 and 2.14 in MATLAB to study their variation with respect to

P, for a fixed phase 0. It is evident from Figure 2.12 that the curve dsdmax/dPin general;

is closer to 0 compared to the curve of dsmax/dP

Figures 2.13 and 2.14 are three-dimensional representation of smax vs P vs 0

for the cases of no depression and with depression respectively. We can infer from the



Figure 2.12 Derivative of smax and sdmax with respect to P.
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Figure 2.13 smax vs P vs q without depression.
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Figure 2.14 smax vs P vs 0 with depression.

Figures 2.13 that when there is no depression the s max curve appears spread out both

with respect to 0 and P and the derivative of smax„ seems to be always negative with

respect to P and 0. In contrast, from Figure 2.14 we can observe that at least for

certain range of q5 values approximately from 90° to 150° and also a range of P values

from 10 to 15 the sdmax curve appears to be flat, compared to the non depressing case,

Also we can see that there is a variation in the slope of sdmax with respect to P. This

shows that over a range of P values depression plays a role in making the NL firing

rate curves respond more to phase delays than input frequencies.

The value of sdmax and its derivatives clearly depends on a number of param-

eters. To get an understanding of how they may affect these quantities, consider a

fixed phase delay of 60°. The main parameters of interest for this model are τd,

τk and r. To begin with, we discuss the role of r. It is evident from equation (2.11),

that if r = 1 then there is no depression since the value, D* = 1. For fixed values of

-rd and τk, if r is close to 1 then since the low frequency inputs recover strongly from
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depression, there is no effect of depression. But the high frequency inputs experience

the effect of depression since their recovery from depression is weaker. For instance,

in our firing rate model when τd and τk are fixed and if we let r = .85 then the range

of periods for which the s dmax curve is almost independent of P lies between [4, 12].

But if we let r = .7, then the depression affects lower frequency inputs because the

high frequency inputs are in a highly depressed state as r decreases. In this case, the

range of periods for which Sax remains nearly constant is P E [8, 30].

Next, we fix r and τk and vary τd. In the extreme cases, if τd ---> oc, then from

equation (2.11), D* 0 which implies that the NM synapses are in the depressed

state for a very long time and therefore, have no chance of recovery. On the other

hand if rd 0, equation (2.11) gives us that D* —4 1 which indicates there is no

depression. However it should be noted that there exists an interplay between the

parameters r and 'Td. If r is very close to 1 then a larger value of 'Td is required for

the lower frequency NM inputs to experience the effect of depression. Similarly if the

value of r is smaller, in order for the depression to take effect on the high frequency

NM inputs, a smaller value of 'rd is required. Therefore, smaller values of τd affect

only high frequency inputs since the depression variable recovers quickly and larger

values of τd affect low frequency inputs since the depression variable takes more time

to recover. For example if 'Td = 15 for fixed values of r = .85 and 7-k = 5 the sdmax

curve remains nearly constant for values of P in the range of [4, 12]. If τd is increased

to 30 for the same fixed values of r and τk, we observe that the range of P for which

the sdmax curve is almost constant as a function of P has shifted and lies between

[10, 22].

Finally, we fix r and 'Td and look at the effect that the parameter τk has on

the clustering of the NL firing rate curves. In extreme conditions, if τk ---> oc then

the value of smax equals two and it is proportional to D* and if τk --> 0 then s it ax is

equal to D*. As it is evident in both the cases, the Sdmax curve cannot be independent
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of P since smdax is proportional to the depression variable alone. In other words small

values of τk for large P values are not preferred since the synapse in this case decays

too quickly and P remains in the silent state for a long time. Similarly if the P values

are small and in comparison, if τk value is too large then the synapse does not decay

at all and remains always close to 2. Therefore, intermediate values of τk are required

such that sdmax remains constant over a range of values of P.

From this discussion it is evident that the simple firing rate model gives us a

good insight about the role played by these parameters in promoting the clustering

of NL firing rate curves by making them frequency independent and more phase de-

pendent. We can perform similar study of the role of these parameters for any other

phase value as well as shown in our three dimensional figures.

Although by observation it is evident that, Figure 2.10 exhibits more cluster-

ing and is mostly frequency independent compared to Figure 2.9, we wish to quantify

the firing rate curves in both these cases. To do that, we used straightforward statis-

tical techniques. In both the figures, samples were taken at every 30° of phase values

ranging from 0° through 180°. We took the averages of all the four firing rate values

at every sample value which is given in the following expression.

In our case, n = 4 since we have four firing rate curves, for each of the seven sample

0 values, in Figures 9 and 10. In our calculations D* = 1 when there is no depression

and D* equals the value of the expression in equation (2.11) when there is depression.

Thus we obtain an averaged firing rate curve with averaged value, a(i) for each of the

value of phase difference, 0.

We next compute the standard deviation of these values from those corresponding
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values on the averaged curve at every sample phase value, given by equation (2.16)

where j = 1, ..7. Each count of j corresponds to every sample phase value, 0. There-

fore, this calculation provides us with 7 standard deviation values at each value of 0

Following this, we find the coefficient of variation, C.V. given by

where S and X are the pooled standard deviation and pooled mean of the data frorr

our population. The pooled mean X and variance 82 are calculated in the following

way.

Standard deviation, S is the square root of variance S2 . It turns out that C.V. =

for Figure 2.10 with depression and C.V. = 13.5 for Figure 2.9 in the no depression

case. Since 6.88 < 13.5, we can see that the firing rate curves in the case of depression

are more clustered than when there is no depression. It should be noted that we car

also explore the dependence of C.V. on the parameters of interest.

We now study the network in Figure 2.6 with a spiking model namely the

integrate and fire model. The equation describing the dynamics of the NL neuron is

When v(t-) = 1, the neuron spikes and we reset v(t+) = 0. Again we would like to

calculate the firing rate of the NL cell. This requires us to solve for the unknown
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spike times for a given period of NM input P. The way we compute the firing rate of

NL is the following. We fix an upper bound for the interspike interval called isi and

determine all NL spikes denoted by m whose interspike intervals, isi, are less than

isi. We calculate the interburst frequency where the spikes are considered to be in a

burst only if isi < isi. Therefore, the firing rate is then defined as

such that isi < isi.

We denote the sum of synaptic inputs by s(t) = 8 1 (0 + s2 (t) where s 1 (t) and

s2 (t) behave in the following way in the case of no depression:

For t < to

and if t > t0

where to E [0, P/2]. The term, e-(P-t0)/τk in the expression of s2 (t) when t < to

denotes the transient of the input from the previous cycle. In other words, our

expression for both s 1 and s2 are considered when the synapse has reached steady

state. We choose s 2 to equal e - (t-t0)/τk when t > t0 to indicate that at t = to , s 2 = 1.

We solve for the first spike time, denoted t 1 . Using the integrating factor method

[50], imposing that a spike occurs when v(t i ) = 1 with v(0) = 0 we first obtain.



Figure 2.15 Spike times and interspike intervals.

Rearranging terms, we obtain the following expression:

where E = Esyn — I. The LHS and RHS of (2.22) each define curves that can be

plotted as a function of t 1 . At their intersection we obtain the value t 1 corresponding

to the first NL spike time. Then we update for t 1 in equation (2.22) in the following

way. We take into consideration the amount of time for which the synaptic input has

decayed, we let s(0) = e-t1/τk. We then solve for the next spike time t 2 by setting

v(0) = 0 and v(t 2 ) = 1. After solving for t2 , we can solve for t 3 by setting v(0) = 0,

v(t3 ) = 1, s(0) = e-(t1+t2)/τk and so on. The times t 1 , t2 and t3 etc. are all interspike

intervals. In other words the next spike time is T2 = t 1 + t2 implying that the second

isi = t2 . We compute the n th interspike interval tn, until t 1 t2 tn+i > P

or until ti > isi for some j as shown in Figure 2.15. We then compute the firing

37
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Figure 2.16 NL firing rate without depression: firing rate curves are spread apart.
MATLAB simulation for the parameter value of τk = 4.

rate using (2.20). We used this procedure to numerically solve for the spike times

using MATLAB. Figure 2.16 shows the phase vs NL firing rate relationship without

depression. In this figure we can see that the firing rate curves plotted for various

NM periodic input P values are spread apart. Especially for high frequency NM

inputs(low P) values like P = 4, it is evident from the figure that the NL firing rate

is weakly dependent on the phase delays.

In the case of depression from NM to NL, the synapses s 1 (t) and s 2 (t) obey

the following equations: For t < to
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Figure 2.17 NL firing rate with depression: firing rate curves are clustered and are
more phase dependent. MATLAB simulation for parameter values of τk = 4, r = .92
and τd = 15. -

and if t > to

where D* denotes the maximum (steady state) value of depression as described in

equation (2,11). Figure 2.17 illustrates the NL firing rate curve when there is depres-

sion from NM to NL. From these two Figures 2.16 and 2.17 it is evident that the

firing rate curves in the case of depression are clustered and therefore, behave more

as a function of phase and less dependent on the input frequencies. We performed

similar statistical analysis using equations (2.15)-(2.17), on these curves to show that

depression enhances coincidence detection by making NL firing rate curves behave

as a function of phase and less dependent on input frequencies. The coefficient of

variation C.V. = 8.82 in the non-depressing case while in the case with depression
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Figure 2.18 NL firing rate without depression: firing rate curves are spread apart.
XPP simulation for τk = 4.

C.V. = 5.45. Clearly since 5.45 < 8.82, the firing rate curves are more clustered in

the case when there is depression from NM to NL than the no depression case.

We have also performed simulations with the no depression and depression

cases from NM to NL using XPP with the same set of parameters that we used in

MATLAB. Figures 2.18 and 2.19 are from our simulations for both the cases. The co-

efficient of variation in Figure 2.18 and 2.19 are 8.84 and 5.49, respectively. Again we

can conclude that in the case of depression, firing rate curves display more clustering

than the non-depressing case.

The coefficient of variation analysis indicates that our simulation results from

XPP qualitatively agree with the MATLAB results. Similar to our firing rate model,

parameter estimations for r, τd, τk can be made for this model also, which affect the

firing rate curves of the NL in the same way.

As mentioned earlier, when r = 1 equation (2.11) shows D* = 1 which implies

there is no depression. For fixed values of τd = 15 and τk = 4, when r = .92 we obtain
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Figure 2.19 NL firing rate with depression: firing rate curves are clustered, XPP
simulation for τk = 4, r = .92 and τd = 15.

Figure 2.19 where there is clustering of firing rate curves for P E [4, 12]. If we decrease

r to equal .83 for the same fixed values of τd and τk, the firing rate curves cluster

for P E [10, 20]. This is because, when r is closer to one, since the low frequency

NM inputs recover strongly from depression, they do not feel the effect of depression.

But in this case, since the high frequency NM inputs exhibit weak recovery from

depression, they experience the effect of depression which leads to suppression of

the net synaptic strength over an input period P. Since the period of NL spike is

effectively a function of this synaptic strength s(t), from (2.22) this leads to reduction

in the number of NL spikes over a summation of interspike intervals which is less than

P, see (2.1). In other words, the firing rate 'of NL is reduced for all the high frequency

periods in a certain range. This leads to clustering of NL firing rate curves for high

frequency NM inputs when r = .92, for fixed -rd and τk.

On the other hand, when r = .83 the high frequency NM inputs are highly

depressed and unable to recover from depression. But since the low frequency NM
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Figure 2.20 NL firing rate without depression: firing rate curves are spread apart,
MATLAB simulation for τ k = 4.

inputs recover strongly from depression, their effective synaptic strength increases

when compared to the non depressing case. Again from equation (2.22), since the NL

firing rate is a function of the net synaptic strength s(t), there is an increase in the

NL firing rate over low frequency NM input periods in a certain range. Therefore, we

find clustering of NL firing rate curves for higher NM period(low frequency) values,

in this case. This is illustrated in Figures 2.20 and 2.21

Next, we explore the effects of varying τd and fixing the other parameters in

our simulations. As per our earlier discussion using the firing rate model, in the

extreme case when yd ---> ∞ from equation (2.11) we obtain D* 0. This means

there is too much depression and the NM 'inputs are always depressed and have no

chance to recover. Also when, τd ---> 0, equation (2.11) gives us D* 1 which implies

existence of no depression, If we fix r = .93, τk = 4 and let τd = 15, then as described

earlier, we obtain clustering of NL firing rate curves for P E [4, 12]. Now if we let

τd = 30 there is clustering of firing rate curves for P E [14, 22]. Here the interplay
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Figure 2.21 NL firing rate with depression: clustering of firing rate curves. MAT-
LAB simulation for r .83, τk = 4 and τd = 15.

between r and τd plays an important role in formation of the clustering of firing rate

curves. If we let r be close to one then we require a large value of τd for the lower

frequency NM synapses to experience the effect of depression. In contrast, if value of

r is chosen to be smaller, then a smaller value of τd is needed so that depression can

affect the higher frequency NM inputs.

Finally, we fix r and τd and investigate the effect of τk on the clustering of

the firing rate curves, For extreme cases, when τk -f 0 then both s 1 (t) and s2 (t)

approaches 0 which nullifies their strengths, Similarly if τ k cc then s 1 (t) and

s2 (t) are proportional to D*. So it is obvious that in these cases we cannot get the

NL firing rates to be independent of input periods, P. Therefore, this implies that

for large values of P we cannot let τk to be small, since this makes the synapse to

decay quickly. As a result of this, the synapse remains in the silent state for a longer

time thus not being able to experience the effect of depression, Similarly for small P

values, large τk values are not preferred since the synapse hardly decays and always
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remains close to D*. So from this analysis it is evident that intermediate values of

τk are required so that the synaptic input variables s i (t), i = 1, 2 feel the effect of

depression.

2.1.2 Conclusions

From both these models, the firing rate and integrate and fire, it is obvious that in

the absence of plasticity from the NM synapse to NL, the firing rate is more input

frequency dependent and less dependent on phase delay. The inclusion of depression

from the NM input to NL presents a gain control mechanism by which clustering of

these firing rate curves are obtained, This makes them more dependent on the phase

delays thereby enhancing the coincidence detecting ability of the NL neurons.



CHAPTER 3

INHIBITION FROM SON TO NM

In this chapter, we will explore the inhibitory effects of SON onto the NM cells. Rubel

et al. [35] have studied the role of GABAergic terminals in the NM and NL neurons

and showed that they originate from the superior olivary nucleus (SON). The SON

is located in the ventrolateral region of the avian brainstem and receives excitatory

inputs from NA and NL. SON sends inhibitory synapse onto NA, NL and NM. The

SON cells exhibit a high degree of functional homogeneity. SON cells are excited by

stimulation of the fiber tracts from the NL and NA neurons.

The SON morphology shows extensive dendritic arborization within its nucleus

when compared to the NM and NL neurons. In the SON, the excitatory synaptic po-

tentials are slow in comparison with the EPSPs of NM and NL cells [69], Findings

in [35] suggest that the NM, NL and NA neurons may be affected by two type of

inhibitory neurons- the local interneurons and the SON. They observed that the exis-

tence of a unilateral connectivity between SON with NM, NA and NL cells influenced

the NM and NL neuronal physiology. Particularly when there is increase in the activ-

ity of the NA cell, it could augment the GABAergic SON'S effect on both the NM and

NL cells. This leads to a relatively new belief that binaural information processing

could be more dependent on intensity cues as well.

The NM neurons relay phase-locked inputs to the NL cells for binaural co-

incidence detection. There have been many studies to reveal the physiological and

anatomical properties of the NM neurons which makes them suited for this purpose.

It has been shown in [62] that NM receives depolarizing GABAergic input from SON

by performing experiments in chick brainstem slices that were taken between the em-

bryonic day and few days, post hatching. But Trussell et. al [62] suggests that even if

45
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GABAergic inhibition is depolarizing, IPSPs may still be inhibitory if their net effect

is to suppress the excitatory signals without themselves generating excitation. The

NM-NL-SON-NA network is modeled by Dasike et al. [14] using leaky integrate-and-

fire neuron for all the individual cells, They suggest that SON is suited to perform

gain control. In [14], the depolarizing effect of SON has been specified in an indirect

way by decreasing membrane time constant and increasing voltage threshold in their

model cells without directly changing the membrane voltage. In spite of including

the depolarizing effects of SON, results in [14] demonstrate that the net effect of SON

on NM is inhibitory and moves the NM cells away from threshold.

Despite all this work on understanding the effects of SON, the role of SON

inhibition in enhancing coincidence detection has not been fully explored. To support

this theory of inhibition improving coincidence detecting ability of NL cells, studies

in [40], [69] demonstrate that the strength of SON input to NM is proportional to the

amount of NM excitation. These discoveries are consistent with the fact that SON

plays the role of a gain control mechanism suggested in [44], [35], [61].

One theory is that during cases of input bias, multiple axons could deliver af-

ferent impulses, to each coincidence detector neuron [44]. These signals could arrive

at the NL cell simultaneously and could pose problems for the coincidence detecting

system. This is because when there is high afferent impulse rate, it increases the

chance of same-side coincidence which the NL cell may fail to distinguish in compar-

ison to binaural coincident inputs [44]. The other theory is that in the absence of

inhibition when there are biased high sound levels each NM neuron on one side of

the brain is strongly excited. This causes an increase of each NM firing rate, on the

side with biased input and this leads to stronger drive among the NL neurons on that

side, causing "false alarms" among the NL neurons [61]. Rubel et. al [61], suggest

that coincident firing of NMs from one side alone is enough to evoke action potentials

in the NL neurons, which deteriorates the ability of NL cell in discriminating between
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Figure 3.1 SON-NM-NL network with inhibition. The input to left NM is stronger
than the right side. Thick lines (connections) on the left indicate NM is driven
strongly compared to the right NM.

strong unilateral excitation vs binaural coincidence. It has been suggested that SON

inhibition can serve as a mechanism in preventing strong monaural excitation. This

is also due to the fact that, the amount of SON input is proportional to the excitatory

drive that the NM neurons receive. Thus SON plays a role in suppressing too much

excitation on one side due to input bias and thereby balances the NM firing rate on

both sides [69]. This implies the potential for an alternate mechanism to make the

NL firing rate mainly phase dependent, namely that SON inhibition may narrow the

frequency range of NM cells, even when there is input bias without the presence of

synaptic depression from NM to NL.

The existence of reciprocal SON innervations shown in [35], [24] implies that

inhibition on each side is not entirely independent. But for our purposes we consider

a simplified model as shown in Figure 3.1 where we investigate the role of SON in-

hibition in suppressing excessive NM activity by modulating NM frequency on one
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side during input bias and how that affects coincidence detecting ability of the NL

neurons. This will be explored in two different ways: 1) With equal NM frequency,

2) With unequal NM frequency.

3.1 Model

To study this problem, we introduce SON on both the sides of the brainstem. The

SONS send inhibition onto the NM cells corresponding to the left and right NM

neurons which synapse onto the NL neurons, as shown in Figure 3.1.

Although much is known regarding the NM-SON-NL circuitry, much remains

open. For example, the firing frequency relationship between the NM and SON

neurons and the timing of these SON inputs to the NM cells has yet to be empirically

categorized. We make an assumption regarding the timing of the SON and NM inputs.

Our goal is to show that this assumption aids in making NL a better coincidence

detector.

Assumption:

SON fires n times every time a NM neuron spikes. We arbitrarily choose n = 3.

This assumption indicates the strength of the SON synapse onto the NM cell.

The choice of the ratio of number of SON spikes to NM spike is random. Therefore,

the SON synaptic strength based on n number of spikes can be adjusted by our

choice of parameters namely τsandgson son which will be discussed in the latter part of

this section. We let the variable s denote the synaptic input from the SON.

When SON spikes, s = 1 and between spikes s is described by

We use the following integrate and fire equation to describe the activity of the NM

cell,
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where I denotes the input applied current, s0n denotes the maximum synaptic con-

ductance variable and s denotes the inhibitory synaptic input to the NM cell. E inh

is the reversal potential of the synaptic current. An increase in the SON inhibitory

input decreases the firing rate of NM cell, The strength of SON inhibition in the

network of the auditory brainstem is proportional to the amount of excitatory drive

that the NM receives [61], this implies that the frequency of SON also increases. The

way we incorporate this in our model is by letting the timing of SON inputs to NM be

an inverse function of I. In other words, if I increases, then there is tighter discharge

of SON inputs since the times relative to NM firing time at which the SON inputs

synapse onto NM are a decreasing function of I.

In our model since we have arbitrarily chosen three SON inputs per NM input,

the synaptic variable satisfies the following equation.

Here t 1 , t2 and t3 are discharge times of the SON spikes. We arbitrarily choose t 1 	.1,

t2 and t 3 to be inverse functions of I in the following way: t 1 = ;42- and t2 = 	 •

Figure 3.2 shows a plot of s. As we can see, from Figure 3.2 that to begin with, s = 0.

At t t 1 , s(t+) = 1. After s decays towards 0. This is followed by another reset

of s to 1 at t = t 2 . Again after t+2, s decays towards 0 until t = t3 . At t = t3 , s has

similar reset to 1 following which it decays.
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Figure 3.2 Plot of SON inhibition; there are 3 SON spikes. For every SON spike,
s is reset to 1 following which, s decays.

Figure 3.3 Solving for P; intersection of left hand side and right hand side of
equation (3.4).
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Figure 3.4 Period 'P' as a function of applied current with and without inhibition.
In the case with inhibition, as current I increases, inhibition delays NM period for
currents ranging from (1.2 to 1.3) to lie within [8, 9.26] compared to the no inhibition
case where P E [7.3, 9].

3.1.1 Role of Inhibition from SON to NM

From equation (3.2), we solve for vnm using the integrating factor method, imposing

the fact that vnm(P) = 1 and v,,,(0) = 0 we obtain the following expression,

After simplifying, we can reduce equation (3.3) to the following.

In (3.4), the only unknown is P the period of a NM spike. We would like to know how

it depends on I. We numerically solve (3.4) using MATLAB. Figure 3.4 shows a graph

of the LHS vs the RHS of the equation. Clearly in the no inhibition case, as the applied

current increases the frequency of NM firing increases, in other words P decreases.
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This can actually be seen from equation (3.4) from the following calculation. If there

is no SON inhibition then as0n = 0, in equation (3.4). Therefore, equation (3.4)

reduces to

Solving equation (3.5) we obtain

As we can see from equation (3.6) that as I increases, P decreases. But when SON

inhibition to NM is introduced, the NM activity is suppressed, which delays the

period of NM cells for a range of applied currents, for a given set of parameters, In

other words when there is inhibition in the network, it succeeds in preventing the NM

cells from responding with increased excitability to a range of high intensity inputs as

illustrated in Figure 3.4. Without inhibition when applied current is increased, we see

a decrease in the period P of NM or in other words, increase in NM firing frequency.

P value here ranges from [7.3,9]. We are interested in investigating if we can minimize

this range of P for increases in applied current, by introducing inhibition. For our

purpose, we fix the reference period to be P = 9. We are interested in determining

the appropriate parameter regimes which will provide us with a range of P (with

SON inhibition) that is very close to P = 9.

When SON inhibition with a"s0n = .08, is included for applied currents in the

interval [1.23, 1.3], from Figure 3.4 we can see that it has succeeded in reducing the

firing frequency range of NM and therefore, the period P lies between [8, 9.3], It

should be noted that, when 0"s0n = .04, P E [7.6, 8.75] for the same range of applied

currents as the previous case, The cases of two different 0s0n are presented here to

illustrate that parameters play an important part in determining the range of NM

firing frequencies in the presence of inhibition. The role of other key parameters will
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Figure 3.5 NL firing rate for various applied currents to both NM cells-no SON
inhibition. XPP simulation with 0,son = 0.

be discussed at the end of this section.

We modeled the network shown in Figure 3.1 in XPP, using integrate and

fire neurons for the NM and NL cells. The SON inhibitory input is described as in

equation (??). First, we calculated the firing rate of the NL cell by applying equal

applied currents to both NMs in the absence of SON inhibition. We then studied how

P changes with I as shown in Figure 3.5. Then we introduced inhibition from SON

to NM cells and calculated the firing rate of the NL cell, as shown in Figure 3.6. It

can be seen from Figure 3.5 that in the absence of inhibition when increased current

is applied to both the NM cells, their excitability increases. This leads to an increase

in the NL firing rate and the curves are spread apart. In contrast, from Figure 3,6 it

is evident that in the presence of inhibition, the NM cells' activity is suppressed and

as applied current is increased the overall range of their firing frequencies is reduced,

for the given set of parameters. This leads to clustering of NL firing rate curves,

When there is no inhibition, for increasing applied current values lying in [1.2, 1.35],
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Figure 3.6 NL firing rate for various applied currents to both NM cells-with inhi-
bition. XPP simulation for asort = .08 and τs = 20.

P E [6.65, 9]. But when we introduce inhibition we obtain a narrower NM period

range of [7.25, 9.26]. Particularly at I = 1.24, the period is larger, P = 9 (as opposed

to P = 8 in the original case from Figure 3.4 ) which matches, with the period of

original applied current value of I = 1.2, Therefore, the two NL firing rate curves are

exactly the same and overlap with one another.

The coefficient of variation calculations that we performed give us the values

4.98 for the case with no inhibition, referring to Figure 3.5 and 4.4 for the inhibition

case which is Figure 3,6. We can see that the firing rate curves are more clustered

when inhibition is included.

We solved equation (2.21) with MA LAB for changes in NM frequency due to

increasing applied current with no inhibition and obtained the Figure 3.7. We then

used both equations (2,21) and (3.4) to calculate the NL firing rate in the presence of

SON inhibition to the NM cells and obtained the Figure 3.8. Again we can see that

in the no inhibition case, the NL firing rate curves are more spread apart than the
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Figure 3.7 NL firing rate for various applied currents to both NM cells-without
SON inhibition. MATLAB simulation with a,son = O.

case with inhibition. Without inhibition, when applied current is increased from 1.2

through 1.35 the NM period P E [6.6, 9]. Upon inclusion of SON inhibition we obtain

a narrower range of P that lies between [7.3, 9.3]. In particular, we obtain a NM

period value of P = 9 when I = 1.24 with inhibition, in the MATLAB case as well, as

opposed to the original case of P = 8 for I = 1.24 from 3.7. Therefore, the NL firing

rate curves for these two values of applied currents exactly overlap with each other.

The coefficient of variation values for Figures 3.7 and 3.8 are 5 and 4.5 repectively,

again showing that inhibition helps in clustering of the firing rate curves by narrowing

the range of NM periods to lie closer to our frame of reference, P = 9. As we can

see from the figures and statistical calculations that our results from MATLAB agree

qualitatively with our results obtained using XPP. When there is increased input on

both sides of the NM neurons it leads to their higher excitability. This causes an

increase in the NL activity and without SON inhibition their firing rate curves are

spread apart. But in the presence of inhibition, there is reduction of NM activity even
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Figure 3.8 NL firing rate for various applied currents to both NM cells-with SON
inhibition. MATLAB simulation with gson = .08 and τs = 20.

when they receive stronger inputs and this leads to clustering of NL firing rate curves.

It should be noted however, that in all these simulations, our model does not include

NM depression to NL. But in spite of that due to the presence of SON inhibition we

obtain clustering of NL firing rate curves making them more independent to changes

in NM frequency compared to the non facilitating case. This shows that inhibition

from SON inhibition to the NM plays a role of an indirect gain control mechanism and

enables the NL neuron to serve as better coincidence detectors even in the absence of

NM synaptic depression.

We know from [61] that, during monaural excitation there is an increase in

the firing rate of each NM on one side of the brain. This suggests that there is

an increase in the firing frequency of the NM neuron on that side. Therefore, now

we study the problem of monaural excitation by increasing the applied current on

one side of the NM neuron. We investigate how it affects the firing rate of the NL

neurons by performing simulations in XPP, Figure 3.9 illustrates the firing rate of the
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NL neurons when we increase applied current on one side of the NM cell.

Our original case is when both the NMs receive the same applied currents,

which we arbitrarily choose to be i = 1, 2 and therefore, their periods are the same

i.e. P = 9. In this case, we can see the corresponding firing rate of the NL cell from

Figure 3.9. Now we model monaural excitation by increasing the applied current to

one NM cell, which results in the increase of NM firing frequency on that side. For

example, suppose an applied current value of I = 1.24 is input to the NM cell on

the left side while the right side still has the same applied current value of I = 1.2.

This leads to an increase in the left NM firing frequency or lowers the NM period.

Thus, the left NM period is, P = 8.1 and the right NM period remains P = 9. In

such a situation of different NM firing frequencies on both sides, the way we measure

phase difference is as follows. We calculate the phase delay with respect to the left

NM period. We let P1 be the left NM period and P2 be the right NM period where

P1 < P2, Let the time lag between inputs be t. Now t obeys the following equation.

Since P1 < P2 we also have that f < to , where t0 = 3%20 . Therefore, we obtain an

increase in the NL firing rate in this case of input bias, since the time lag T between

both the inputs is less compared to the original case (equal P on both sides) which

has a time lag of t 0 . As applied current I is increased from 1.2 to 1.24, 1.3 etc, on

one side, there is an increase of NM firing frequency on that side. Therefore, we can

see that the increased frequency NM firing leads to a higher NL firing rate, This is

evident from Figure 3.9. Thus, from these higher firing rate curves, it seems that

the NL neuron responds falsely to increased NM firing rate on one side as though

the inputs arrive coincidentally from both sides. This is because, NL is faced with

ambiguity between ideally timed inputs and strong unilateral input. Consequently,

this could lead to false location of the sound source.
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Figure 3.9 NL firing rate for different applied currents on one side of NM-without
SON inhibition. In all the input biased cases, the firing rate curves are deviated from
the case when I = 1.2 on both sides. The value of 01

,J son = 0.

In order to counter the over excitability of NM on one side, SON inhibition is

introduced in our model, as seen in Figure 3.1. Figure 3.10 illustrates the NL firing

rate curves when SON inhibition to the NM is introduced, in the monaural excitation

case. Since SON inhibition strength is proportional to the amount of excitatory drive

that NM receives, the inhibition is more on the side of the NM that receives higher

applied current input. This serves to equalize NM activity on both sides over a range

of applied currents (which is dependent on our choice of parameters) which is evident

from Figure 3.10. We can see from Figure 3.9 that without SON inhibition, during

increase in applied current, P1 ranges from 6.65 to 9, whereas we have been able to re-

strict the period P1 to lie between [7.25, 9.26] with the inclusion of inhibition. Again,

when I = 1.24 on the left side with inhibition, we obtain the left NM period P 1 to

equal the right NM period of P2 at the period value of 9. This results in overlapping

of NL firing rate curve when I = 1.24 on the left side and I = 1.2 on the right side,
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Figure 3.10 NL firing rate for various applied currents on one side of NM cell-with
SON inhibition. There is less deviation of the firing rate curves in the input biased
cases when compared to I = 1.2 on both sides. The value of gson = .08 and τs 20.

with the original curve for equal applied current of I = 1.2 on both sides. This is

evident from Figure 3.10. This shows that even in the presence of input bias with

the presence of SON inhibition, the NM activity can be balanced on both sides for

a range of applied currents i and that we can obtain a reduced range of NM periods

which lie closer to our reference value of P = 9.

We performed coefficient of variation calculations for Figures 3.9 and 3,10.

The main difference in this calculation compared to our coefficient of variation anal-

ysis in Chapter 2 is that, here we do not consider an averaged curve. Instead, we

are interested in finding out the amount of deviation of all the curves in comparison

to our reference curve where P 1 = 9. Therefore, our calculations are with respect to

the coefficient of variation of all the curves from the curve with P 1 = 9. We obtain

the coefficient of variation values of 3 and 1.6 for Figures 3.9 and 3.10, respectively.

This shows that in the case of inhibition to NM, the NL firing rate curves are more



60

clustered and closer to the curve P = 9, which is our frame of reference.

As we discussed earlier, this range of P is dependent on our choice of param-

eters like gson and τs . In order to better understand the role played by inhibition in

controlling the periodic ranges of the NM cell, we will perform some analysis on the

parameters of this problem.

At first, we analyze the role played played by the parameter gson. Originally for

'son = .08, P lies between [7.25, 9.26]. But when we decrease gson its effect on sup-

pressing the NM period reduces, For example if we fix gson = .02, then P lies between

[6.8, 8.5]. On the other hand increasing gson leads to too much inhibition on the NM

firing activity. As a result for example, if we let gson = .2, then P E [8.23, 11.35].

Having analyzed gson , we study the effect of the inhibition decay time constant

τs , next. In the extreme case, for τs 0, s 0 very quickly. Therefore, when the

value of τ, is close to 0, there is little effect of SON inhibition on the NM cell. On the

other hand if τs is large, then the strength of inhibition is more and this leads to too

much suppression of NM firing rate, As an example, originally if we let τ s = 20 then

for I = 1.24, we obtain P = 9, for other parameters fixed. But if we let τs = 1, for in-

stance, then it suppresses the NM firing rate less and therefore, its period is P = 8.25

for the same value of applied current. This analysis shows that intermediate values

of τs are preferred so that the SON synapse feels appropriate strength of inhibition.

3.1.2 Conclusions

Our results in this section show that there could be an alternate mechanism to make

the NL firing rate behave more as a function of phase difference in NM inputs, namely

inhibition from SON to NM. As we mentioned earlier, our model network in this

section does not include depression from NM to NL. First, despite the absence of

depression, we see clustering of NL firing rate curves in the presence of varying NM

frequency inputs. This shows that inhibition aids in making the NL firing rate rela-
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tively insensitive to changes in NM frequencies and depend more on phase relationship

between inputs. In the monaural excitation we have demonstrated through simula-

tions that, without SON inhibition, the NL neuron faces ambiguity in distinguishing

between ideally timed binaural inputs vs strong unilateral inputs. With the inclusion

of SON inhibition to NM, the excessive activity of NM neurons due to strong unilat-

eral input, is eliminated and thereby coincidence detecting ability of the NL neuron is

enhanced. We, therefore, propose an indirect role of gain control mechanism played

by SON through its inhibition to the NM, in eliminating the confounding effects of

monaural excitation and preserving the spatial coding property of the NL cell.



CHAPTER 4

GLOBALLY INHIBITORY NETWORK

The ability of a network of neurons to be able to convey multiple pieces of information

(temporal codes) is of paramount importance given that the brain is of finite size,

For reasons of efficiency it is advantageous for a single network to be able to create,

store and transmit multiple codes rather than just one. This leads to the question

of how these codes are constructed within the neuronal network and how does a net-

work decide which code to transmit. Mathematically, it is equivalent to asking a

very straightforward and general question: What are the circumstances under which

a neuronal network exhibits multistability of solutions?

In this chapter, we model a globally inhibitory network that is loosely based

on the CA1 hippocampal structure. The network consists of m uncoupled pyramidal

cells which send excitatory synapses onto a common interneuron. The interneuron

sends inhibitory synapse exhibiting, short-term synaptic depression (STSD) to each

of the pyramidal cells.

At first, we describe the mathematical model that we use for cells and as

well as the model for synaptic depression. We also exploit time-scale separations to

reduce the analysis to a particular slow manifold of the system. Then, we show a

few simulations of clustering, and then follow up with mathematical analysis proving

the existence and stability of n-cluster solutions. Using methods of geometric sin-

gular perturbation theory, we show that any n-cluster solution must satisfy a set of

consistency conditions that can be geometrically derived.The basin of attraction of

these solutions is analyzed, as is a one-dimensional map based approach for finding

solutions. We will use a combination of analysis, simulations and numerical solutions

of derived equations. The key aspect underlying our results is that the inhibitory

62
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Figure 4.1 An m-cell globally inhibitory network. Each synapse from P to I
is excitatory, and each from I to P is inhibitory and displays short-term synaptic
depression.

synapses in the network exhibit frequency dependent short-term synaptic depression.

We show how there is a functional relationship between the level of synaptic depres-

sion, the number of clusters and the interspike interval between neurons. Implications

for temporal coding are discussed.

4.1 Model

We describe the mathematical model that we use for cells and as well as the model

for synaptic depression. We also exploit time-scale separations to reduce the analysis

to a particular slow manifold of the system.

We consider uncoupled pyramidal cells which make excitatory synapses onto

a common interneuron; Figure 4.1. The interneuron sends a depressing synapse onto

each of the pyramidal cells. The general set of equations that governs the activity of
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each pyramidal cell and the interneuron are given by

where 6 << 1. f is the term which contains various ionic currents. The term w ∞ (v)—w

is associated with the opening and closing of a potassium channel with the cell. The

term τw (v) is the w decay time constant.

The nullclines of the above equations (1) are obtained by setting the right hand

side equal to zero. The v nullcline is a cubic shaped curve denoted by C as shown

in Figure 4.2. The local max and min values are denoted (v rk, wτk ) and (vlk, wlk),

respectively. The w nullcline is an increasing sigmoid denoted by S.

We assume the following: Above and below the curve C, f < 0 and f > 0,

respectively. Below and above S, (woo — w) > 0(< 0). Near the left branch of the

cubic where f = 0 we require aw < 0 and g to be nonzero everywhere except at the

minimum and maximum of the cubic. If S intersects C at only one point and this

intersection takes place in the middle branch then it is an unstable fixed point causing

the cell to undergo oscillations. We will choose parameters such that an isolated P

cell has nullclines with this geometry; Figure 4.2. If S intersects C on either the left

or the right branch the fixed point is stable. We choose parameters so that I has a

fixed point on its left branch,

Equation (4.1) possesses a stable periodic solution if its fixed point lies on the

middle branch. By taking E to be small it is easy to construct this solution using

geometric singular perturbation theory. Let 0 in equation (1) to obtain the slow

subsystem :



65

Figure 4.2 Pyramidal cell v-w phase plane and singular orbit. The double arrows
denote a fast transition between silent and active stated. A single arrow denotes the
slower transition in each of those states. The horizontal axis is v and the vertical axis
is w.

Now if time is rescaled to t = Eτ and then if 	 0, we obtain

The singular periodic orbit consists of 4 parts. There are two slow (solutions

of (4.2)) and two fast (solutions of (4.3)) parts. These fast transitions are initiated

from the right and left knees of the cubic nullcline; Figure 4.2. If E is sufficiently small

in the original equation (4.1) then we obtain a relaxation oscillation. In this case, the

periodic orbit lies 0(6) close to the singular solution.
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Before describing the coupled equations, we make an assumption to make our

P cells display spiking behavior. As in [34], we take s∞ (v) to be small whenever

v > vrk . This will cause each P cell to spend a small amount of time in the active

state and thus make the width of an action potential be small.

4.1.1 Coupled Equations

Each pyramidal cell receives inhibitory input from the interneuron whenever the latter

fires. The interneuron, in turn, receives excitatory input whenever a pyramidal cell

fires. We will assume that the I cell fires if and only if a P cell fires. Each P cell

obeys

while the interneuron obeys

The parameters girth , gexc , Einh and Eexc denote maximum synaptic conductances

and the reversal potentials of the relevant synapses. In our model, the excitatory

synapse from any P to I is non-depressing, For simplicity, we assume that each is

instantaneous and thereby model it using s∞  given by

where vθ is a synaptic threshold lying between v lk and vrk

The inhibitory synapse from I to any P is modeled as a depressing synapse,

This means that the effective maximum strength of the synapse is a function of the
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frequency of the interneuron. Whenever I fires, the synapse depresses or weakens.

Between spikes of I the synapse recovers. Thus if I fires with high frequency, then

its synapse is weak. While if it fires at low frequency, then its synapse will be strong.

To model this, for our analysis, we use a standard phenomenological model due to

Abbott et. al. [1]. We use a variable D to measure the extent of depression of the

synapse and another variable s to incorporate the effect of the synapse onto the P

cells. Both depend on the activity of I. In between spikes of I, D recovers toward

the value one with time constant τa

When I spikes at say t	 t, we reset D to rD, where 0 < r < 1. Specifically,

D(t+) = r D(t-). The synaptic variable s decays toward zero with time constant τk

between I spikes.

At an I spike, s is reset to D by s(t+) = D(t- ). Note in (4.4), the variable s appears

with a delay of At, s(t — At). Delay of the inhibitory synapse is a necessary condition

to obtain stable synchrony for fast rising synapses [58] and will play an important

role in the stability of the clustered solutions obtained here.

The Abbott model for D and s assumes that each action potential has zero

spike width. However, the simulations in this paper utilize a biophysical model of a

CAI pyramidal cell due to Ermentrout and Kopell [18] that have a non-zero spike

width. In the appendix we show the equations that are used for simulations and

discuss what modifications on the variables D and s are necessary to incorporate

non-zero spike width.
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4.1.2 Reduction to Slow Manifold

We make three main assumptions to conduct the analysis

Al) I fires if and only if any P cell fires.

A2) Spikes of both P or I have zero time width.

A3) Inhibition affects each pyramidal cell only when the cell is in its silent state,

It should be noted that assumptions A2 and A3 are just for ease of the analysis. Re-

laxing either or both of them does not qualitatively change the results. The practical

effect of A3 is that when a P cell returns to the silent state, it does so with w = Wrk,

the value of the local maximum of the cubic C. Assumption Al, while not necessary

to obtain clustering, drastically simplifies the analysis allowing us to focus only on

the spike times of the P cells. Specifically, we can ignore the I dynamics all together

and simply track how its synapses onto each P affect the network behavior,

Due to these assumptions, we can understand the dynamics of the entire sys-

tem by focusing on the behavior of the P cells in their silent state. To do that, we

define a two-dimensional w — g slow manifold on which we study the evolution of the

P cells. Define g = ginhs, where g denotes the conductance of the inhibitory synapse.

The pyramidal cell P obeys a specific set of slow equations when it is in its silent

state. These equations govern the behavior between spikes of I.

Since av —g is nonzero for all points except at the left knees of the null surface,

the first equation of (4.9) can be solved for v in terms of w and g, v = F(w, g). This
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equation is valid for P in the silent state. The second and third equations of (4.9)

are used to find the evolution of w and g which can then be used to calculate v.

The two-dimensional w — g slow manifold (Figure 4.3) has five boundaries: 1)

The line g = 0 which is the case when the P cell receives no inhibition; 2) The line

g = ginh , this is the value of maximum inhibition that a P cell can receive; 3) the

curve of critical points which represents the points of intersection of the w nullcline

with the left branch of the cubics for different values of g. This curve of critical points

exists only for particular interval of g E [g,ginh] where the value g is the minimum

value of g which produces a cubic that intersects the w nullcline in the silent phase;

4) the jump curve that represents the w position of the minimum value of the cubic

corresponding to different values of g. The slope of the jump curve is negative as is

shown in [58]; 5) the return curve w = wrk that represents where a P cell returns to

from the active state. The return curve is vertical, by assumption A3 as inhibition

affects only the left branch of the cubic nullcline C and not the right branch.

In Figure 4.3, we show an example of representative trajectories from two

P cells on the slow manifold. At any moment in time, both cells receive the same

amount of inhibition and thus lie on the same horizontal g-level line. Assume for a

moment that the synaptic delay from I to P is given by At = 0. If the cells start as

shown at t = 0 and P1 reaches the jump curve at t = t - , then at t+, both P1 and

P2 are reset to g(t+) = gD(t-) (because I fires whenever any P fires). P2 is reset

vertically, so its w value is unchanged, while P1 is reset to w = wrk representing that

it has spiked.

We will be interested in the steady state behavior of the network. It turns out

that the clustered solutions are periodic solutions of the governing equations. This

means that I fires periodically with a determinable interspike interval. As we will

show below, the length of the interspike interval will depend on the number of clusters

as well as various network parameters. We can calculate the maximum and minimum
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Figure 4.3 Representative trajectories on the w — g slow manifold. Two cells begin
at t = 0 and evolve toward the jump curve. When P 1 hits the curve at t = t - , it is
reset to w = ?pH, at t = t+, while P2 is reset vertically to the position shown. The
cells then continue to evolve toward the jump curve. The dotted horizontal lines show
that at any moment in time, the cells lie on the same g-level.

values that the depression and synaptic variables take over one cycle of a periodic

solution. The minimum D value occurs just after an I spike, while the maximum

occurs just prior to an I spike. Denote the interspike interval of I by t in . Suppose

at t = 0 a spike has just occurred and D(0) = Dmin . On the interval t E (0, tin ),

D follows (4.9), so D(tin ) = 1 — (1 — Dmin)exp(-tin/τa-tn/τ a). After the next I spike,

D(t+in) = rD(t-in). Thus by periodicity, we require Dmin = rD(t i-n ). Solving for D.

yields

from which it easily follows that Dmax obeys
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It should be noted that in both equations above, the value t in, is not a priori known.

In fact, in the analysis below we will determine t in and show that it depends on the

cluster size.

If we denote the right-hand side of (4.11) by h(t in ), it is easy to check that

dh/dt in, > 0. Therefore, Dmax increases with t in and h(t in ) can be inverted to solve

for t in as a function of Dmax.

4.2 Results

In Figure 4.4, we show two sets of voltage traces from a 4-cell network. The bottom

trace shows a stable 4-cluster solution. Notice that the distance between successive

spikes is small. The interspike interval in this case is about 27 ms. The top trace shows

a stable 2-cluster solution in the 4-cell network with interspike interval of 34 ms. In

this simulation, three cells have synchronized, but remain out of phase with the other

cell. The cluster sizes and the specifics of why a particular cell is within a particular

cluster has to do with our choice of initial conditions. By changing initial conditions,

we could, for example, obtain a 2-cluster solution with each cluster containing two

cells. Note that the distance between spikes is larger in the 2-cluster case, as can be

seen by viewing the activity of I given by the vI trace. Both simulations are obtained

for the same set of parameters (see Appendix). Moreover, in simulations not shown we

can obtain 1- and 3-cluster solutions as well, with corresponding interspike intervals

of 70 and 30 ms. The distance between spikes decreases with the number of clusters

in the network. Further, the size of an individual cluster does not affect this distance.

Below, we will mathematically explain why this network is capable of producing

multistability of solutions.
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4.2.1 Existence of a n-cluster Solution

We first prove the existence of a 2-cluster solution. For this argument we need only

consider two P cells. We shall also assume that the synaptic delay from I to P is

At = 0, a condition we will later relax when discussing stability of solutions. To

prove the existence of the 2-cluster solution, we will derive two different necessary

conditions and show that when both are satisfied, the solution exists. Assume that at

t = 0, the leading cell starts on the w — g slow manifold at (w0 , g0 ), while the trailing

cell starts at (wrk , g0 ). There exists a time tg0 (w0 ) for the leading cell to reach the

jump curve. We would like to determine if the trailing cell can reach the original w

location, w 0 , of the leading cell after this time. That is we want to determine if there

exists a w0 such that

Clearly if we fix g0 and let the initial position of the leading cell approach the jump

curve, tg0 (w0 ) —f 0. However, the trailing cell starting at w rk would need a large

amount of time to reach w 0 . Alternatively, if we let the initial position of the leading

cell approach the return curve, then tg0 (wrk) > t0(wrk ), in this limit, where the latter

time satisfies Wlk = wrk exp( —t0(wrk)/τw). Now the trailing cell would need very little

time to reach the initial position w0.
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Figure 4.4 Clustered solutions in a 4-cell network.

Moreover as w0 is smoothly increased from the jump curve to w rk , the time

tg0 (w0 ) is a strictly increasing function. Thus by the intermediate value theorem and

monotonicity, there exists a unique value w* such that tg0 (w*) satisfies (4.12),

The above argument holds for any initial value of g 0 . Thus we can extend it to

any g E [0, :q]. Doing so allows us to establish the existence of a curve Cw = {(w, g) :

w = w*(g0 )} for which the time for the leading cell from this curve is exactly the time

for the trailing cell to reach w* satisfying (4.12); Figure 4.5. Thus if one cell starts

on Cw and the other at wrk , both with the same g 0 value, then in the time tg0 (w*) the

leading cell reaches the jump curve, and the trailing cell reaches the initial w* value

of the leading cell. It is easy to establish that Cw is negatively sloped in the w — g

plane.

What we next want to know is whether the time tg0 (w*) allows the synapse

from I to recover sufficiently to be reset to g 0 . Note that the value of g is "slaved"

to the value of D, since g is reset at spike time to g(t+) = -gD(t-) = gDmax , and
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Figure 4.5 The curve Cw on the w — g slow manifold. If the leading cell begins
on Cw at w = w 0 , g = g0 and hits the jump curve at t = tg0 , then the trailing cell
starting at w = wrk , g = g0 will reach w = w0 at this time. The dotted horizontal
lines show that at any moment the two cells lie on the same g-level.

therefore, periodicity in g is ensured if D(t) is periodic. Thus g0(t+in) = =q Dmax , where

Dmax satisfies the periodicity condition (4.11), and we obtain

This relation can be inverted to find t in as a function of g0 given by

Thus given an initial g0 value, equation (4.14) determines the length of the interspike

interval needed for the synapse to recover to be able to be reset to g 0 .

To briefly summarize, we have now determined two different times, tg0 (w*)

from Cw to the jump curve and t in (g0 ) for the necessary reset time length. We want

to know if there exists a g0 value (say g*) that satisfies these two times simultaneously,
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tg.(w*) t in . If one cell begins at (w*, g*) and the other at (wrk , g*), then in the time

tg.(w*) = tin (g*), the leading cell will reach the jump curve and be reset to (wrk, 9*),

while in the same time, the trailing cell will evolve toward the jump curve and be

reset to (w*, g*). Thus we will have established the existence of the 2-cluster solution.

Since we already have an analytic expression for t in , let us focus now on ob-

taining one for t g0 (w*). As noted earlier, the jump curve is negatively sloped. As in

[34], we assume the jump curve is linear, and can be written as g + Mw = c where

M and c are the negative slope and intercept in the w — g plane. These constants

can be calculated since the jump curve passes through the points (0, :g) and (w l k, 0).

Assuming that a cell starts on Cw at (w0 , g0 ), we find that tg0 satisfies

In the above equation, there are three unknowns, tg0 , w0 and g0 . But two are related

in that equation (4.12) must be satisfied. Substituting into (4.15), we obtain

Note that in (4.16), we now have a relationship for tg0 solely as the function of the

unknown g0 . This forms one of the two necessary conditions for the 2-cluster solution,

The other is contained in equation (4.14). Figure 4.6 shows a plot of tg0 and t in versus

the initial conductance g0 for two different values of τw . The intersection of the t in,

curve with a tg0 curve represents a 2-cluster solution where the value tg0 = tin provides

the interspike interval of the I cell or correspondingly, the time distance between the

different P cells. Interestingly, in the case τw small, there can be three intersection

points as shown in Figure 4.6, yielding three potential interspike intervals for a 2-

cluster solution. The stability of these solutions will be addressed below. Note that

the curve t in is affected only by parameters associated with the synapses from I and

thus there is a single curve for both values of rw . The curve tg0 on the other hand is
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Figure 4.6 The curves t in and tg0 for two different cases. The concave up grey
curve is t in , the concave down curve is tgc, for the case τw = 5 and the sigmoidal curve
is tg0 for the case rip = 0.4. Points of intersection of either of the tg0 curves with the
tin curve represent 2-cluster solutions. Note that in the case of small τw  there are
multiple intersections.

affected by the synapse from I (first term on the left-hand side of (4.16)), the intrinsic

properties of each P cell (second term on the left-hand side) and the interplay of the

two ("g on the right-hand side).

To get a better understanding of this, consider (4.16). If we take g 0 = 0, then

the equation simplifies to one in which an explicit solution for tg0 can be obtained as

Thus in this case, the time tg0 is solely dependent on the intrinsic properties of each

P cell. In general if τ„, is very small, then tg0 can be made small whenever g 0 < g , not

just for g0 = 0. From (4.16), the second term on the left hand side will still dominate

the determination of t g0 since the first term will always be less than q. Thus for small

τ„„ (4.17) applies and one expects the curve to have near zero slope and a small value
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for all g0 < "g. Alternatively, if τip is larger, then the curve tg0 can be made to intersect

the vertical axis g0 = 0 as at large a value as one wants, consistent with what is shown

in Figure 4.6. Next let us consider what happens to tg0 if g0 ≥  ^g. If τw  is small, the

synapse plays no role in determining tg0 until g0 ≥  g. Then the synapse is the sole

determinant of tg0 . In fact in this case, one can easily estimate tg0 from (4.16) as

I g0
t g0 =τk lngo/^g. (4.18)

Here the value of τk becomes important. Small (large) τk implies a small (large) tg0 .

However, for any value of τk , tg0 is bounded from above as g0 is bounded by :g. If τip is

not small, then (4.16), in general, cannot be simplified. Nonetheless, it is easy to see

that tg0 is bounded as g0 since the first term in (4.16) is bounded in this limit.

Next let us consider the curve t in (g0 ). As can be seen from (4.14), this curve

is only affected by the parameters associated with the synapse, depression and the

synapse's recovery from depression. Consider two different limits, g 0 0 and g0

In the former, t in —> 0, while in the latter, tin ∞ . Moreover its easy to show that

dtin/dg0 > 0 implying that the curve is unbounded and monotone increasing. Since

t in (0) = 0, tg0 (0) > 0, tg0 ( .0) is bounded, tin (g0 ) is unbounded as g0 and both

curves are continuous, the curves must intersect at least once. This intersection

corresponds to a 2-cluster solution

We have derived a consistency condition that must be satisfied for the 2-cluster

solution. The above procedure, however, does not define a map whose fixed points

correspond to a solution. Indeed, the curve tg0 only yields information when the

leading cell starts on Ca, and the trailing cell starts at wτk . Thus, the stability of

the solution cannot be obtained simply by checking the derivatives of tg0 and t i, at a

point of intersection. In Section 4.2.3 below, we will derive an actual one-dimensional

map involving the interspike interval to determine the existence of cluster solutions.
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Prior to assessing stability, let us show how the above argument can be ex-

tended to prove the existence of clusters of size n < m in a network of rn pyramidal

cells. The curve t in is not affected by the number of cells, nor the number of clusters

in the network. The curve t g0 however will be. Suppose we seek an n-cluster solution.

Now instead of having a single curve C w , we can find n — 1 curves EachEach curve is

defined so that if a cell starts on C„, at t = 0 and reaches the jump curve at tg0 (w0 ),

then a cell starting on Cwt would reach the initial w position of the immediately pre-

ceding cell starting on Cwj-l at time tg0 (w0). This allows us to generalize equation

(4.12) for 1 < j < n to

where w wn = Wrk. By successive substitutions into (4.19), we obtain

Thus the time tg0 for the n-cluster case must satisfy the generalization of (4.16) given

by

Equation (4.21) is valid for any n < m. For any value n, the curve of solutions

satisfying (4.21) is qualitatively similar to the curve obtained for the 2-cluster case;

see Figure 4.7. The main difference is that if n 1 < n2 , then the curve for the n 1 case

lies strictly above that for the n 2 case. All of these curves will still have at least one

intersection with the curve tin (g0 ), thus guaranteeing the existence of an n-cluster

solution for any n < m. Note that this argument does not depend on, nor does it

determine, the size of each cluster. For example if m = 4, there can exist two distinct

2-cluster solutions displaying the same interspike interval. One has clusters of size 1

and 3 and the other has clusters of size 2 and 2.
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Figure 4.7 Existence of multiple cluster solutions. The concave up t in curve inter-
sects the various tg0 curves corresponding to different sized cluster solutions; equation
(4.21) solved for n = 1, 2, 3 and 4. As the number of clusters decreases, the inter-spike
interval associated with the solution increases.

4.2.2 Stability and Basin of Attraction of Solutions

We have shown the existence of multiple cluster solutions all for the same set of

parameter values. The major question to now answer is whether any of these solutions

are stable. If so, then what are their basins of attraction?

Let us first address the question of stability. Until now, we have set the

synaptic delay from I to P to be At = 0. If we continue with this restriction, then

in an m cell network, all solutions are unstable except the m cluster solution. The

reason for this is straightforward. Suppose two cells are very close to one another

at the moment that one of them is at the jump curve. With zero synaptic delay, an

arbitrarily small difference between these cells will be expanded since the trailing cell

will be reset vertically in the w — g phase plane, while the leading cell will be reset

to Wrk. Thus a non-zero synaptic delay is a necessary condition for stability of an
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n-cluster solution for n < m. This is consistent with several other modeling studies

[34, 51, 58], Therefore, let us assume that Δt > 0. In [34], it is shown that the

stability of the synchronous solution is guaranteed by the fact that the jump curve is

negatively sloped in the w — g slow manifold. That same analysis establishes here that

any of the n-cluster solutions are also stable. Consider a perturbation to 2-cluster

solution in a m-cell network in which one cluster of cells lies at w 1 = w*(g0 ) on Cw ,

a second cluster lies at w2 = Wrk with g g0 and a single cell lies along the line g 0

at w3 = w = w1exp(Δt/τw). Note that the "w"-time distance between w 1 and w3

is exactly At. Now evolve these cells so that the leading cell hits the jump curve at

time t = t 1 . The w-time distance between w1(t1) and w3 (t1 ) is still Δt since both

cells follow the same linear equation. However, time distance for the perturbed cell

starting at iv to the jump curve is less than Δt. This is because as time evolves,

the cell at iv will not stay on the line g = g0 but will instead have g(t) < g0 for

t 1 < t < t 1 + Δt. Because the jump curve is negatively sloped, this cell will have to

travel less in the w distance to reach the jump curve and will be able to reach it in

time less than At. When the cells are eventually synaptically reset at t = Δt, they

will be near the return curve w = wrk and the new w-time distance between the cells

will be less than Δt. This argument can be extended to arbitrary perturbations of the

2-cluster solution and, in general, to n-cluster solutions, thus implying their stability.

The above stability argument says nothing about the basin of attraction of

specific n-cluster solutions. However, the analysis in [34] begins to address the issue.

To understand whether two initial conditions will merge into the same cluster, let us

consider again the dynamics along the w — g slow manifold. Consider two cells with

initial conditions given by (w1 , g0 ), (w2 , g0 ), w 1 < w2 and Δw0 = w2 — w 1 ; Figure

4.8. Suppose the leading cell (the one starting at (w1 , g0 )) reaches the jump curve

after time t = tf with g = gf. The difference in the w values of the two cells at this

time is Δw(tf ) = Δw0 exp(—t f /7-,v ). Since the cells always have the same g level, the
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trailing cell will lie on the horizontal line g = gf. If the trailing cell can reach the

jump curve in less than At, it will be able to fire prior to being inhibited, resulting in

the two cells being more synchronized than when they began. Let (w 2 (tf ), gs ) denote

the point on the jump curve where the vertical line w = w 2 (tf ) intersects it, assuming

that the perturbation of w 2 (0) from w 1 (0) is small. Lett satisfy gs = gf exp( -- E/τk)•

The time t is an upper bound for how long the trailing cell needs to reach the jump

curve. It is an upper bound because this time is computed by assuming that the

trailing cell travels vertically on the slow manifold and that its w variable does not

change. Since the trajectory is not vertical, the trailing cell will actually reach the

jump curve with g > gs , and the time of evolution from gf to that point will be less

than t. Let Δg = gs - gf . Then using the linear approximation for the jump curve,

Δg = -MΔw, we obtain

Solving for t, we obtain

Thus if t < At, the trailing cell will reach the jump curve before the inhibition from

the leading cell affects it. Therefore,

or alternatively

provides a condition which when satisfied allows the two P cells to be in the same

cluster.
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Figure 4.8 Clustering of two initial conditions. At t = 0 the two cells start at
(w i , g0 ). When the first cell reaches the jump curve at t = tf , we calculate an upper
bound for the second cell to reach the jump curve given by the time to vertically
travel to the jump curve. If this time is less than the synaptic delay time, then the
two cells will merge together into the same cluster.

Although (4.25) only provides an estimate for whether two cells will synchro-

nize, it can be used to infer several things about the basin of attraction of a n-cluster

solution in a m-cell network. First note that if Δt = 0 then (4.25) can never be sat-

isfied. This implies that a synaptic delay is a necessary condition to obtain clusters

of size n < m. Moreover as the delay Δt —> 0, (4.25) becomes harder to satisfy, and

as a result, the basin of attraction of the m cluster solution grows as that solution

becomes globally attracting. Second, observe that the right-hand side of (4,25) grows

exponentially with tf and linearly with gf , both of which can be estimated for a

particular n-cluster solution. For example, suppose τk is very large, implying that

the synaptic decay rate is very slow. In (4.25), the term 1 - exp(-Δt/τk) would be

small but bounded away from zero. For this case, the synchronous, 1- and 2- cluster
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solutions will be the ones with the largest basin of attractions, while the solutions

with more clusters will have very small basins. For the solutions with large num-

ber of clusters, the synapse from I would be very weak and thus gf would be small.

Moreover, tf would be determined solely by τ„, and could be small if τw is. Thus Δw0

satisfying (4.25) would be small. Alternatively, for the synchronous or few cluster so-

lutions, tf would be much larger due to the fact that τk is now setting this time. The

value gf would also be larger since the I synapses would have more time to recover

between spikes. As a result, Δw0 would be larger than in the large cluster solution

case. Therefore, cells with larger differences in w can be brought together into the

same cluster due to the slow decay of inhibition. In the opposite scenario where τk is

too small, the term 1 — exp(-Δt/τk ) would not be so small. Thus even when t f and

gf are small, the right hand side of (4.25) isn't necessarily. Thus the many cluster

solutions have larger basin of attractions in this limit.

Equation (4.25) can also be used to assess the basin of attractions of the

different types of 2-cluster solutions that exist for τw small. In this case, based on the

argument above, the 2-cluster solution with the largest interspike interval will have

the largest basin of attraction. The same analysis shows that for the case τw small,

there can exist 2 or 3 n-cluster solutions as well. Again, the one with the largest

interspike interval will have the largest basin of attraction relative to the others,

4.2.3 A Complementary Discrete Map Approach

The above analysis relies on the satisfaction of consistency conditions embedded in

computing the times t i, and tg0 . We now present a complementary method to study

existence and stability of cluster solutions. Suppose we consider a network of m cells,

where each cell lies on the slow manifold of the system at some initial conditions

(w2 (0), g(0)). As time evolves, we record the time interval T at which the P cell

closest to the jump curve reaches the threshold. All cells that reach the jump curve
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within the At synaptic delay interval of T are assumed to spike, and their wi values

are reset, as is the I P synaptic conductance variable, g. This iterative process

is then repeated, leading to a sequence of inter-spike intervals {Ti }. If this sequence

converges to say T*, then we will have obtained a stable solution in which the time

T* denotes the time between I spikes.

We numerically calculated such an inter-spike interval sequence by evolving

four cells on the slow manifold with the linear equations (4.9), solving the equation

for the time T needed for each cell to reach threshold. The minimal among these

T values represents the next inter-spike interval, We continue to evolve the slow

manifold equations during the synaptic delay interval Δt, resetting the w value of each

cell that reaches the jump curve to wrk . As described above, the common synaptic

conductance value g is reset to gj = -gD(t-) at time t + Δt, where D(t) is

evolved according to Eq. 4.7. One instance of this iterative process is shown in

Figure 4.9 where the solution converges to a 2-cluster solution with T* 35.5. In

panel A, the filled circles indicate different pairs (gj , Tj ) which are shown to converge

to the intersection of the curves t in, and tg0 , representing a periodic solution. These

curves are computed from equations (4.14) and (4.21) using MATLAB with n = 2

(because we seek a 2-cluster solution). Panel B shows the dynamics of the w i values

of the four cells and documents how the interspike interval changes from cycle to

cycle. Parameter values for the map and for the MATLAB solution were matched to

those used for the XPP simulations shown in Figure 4.4 (values given in Appendix).

By varying parameters and initial conditions, we can obtain convergence to other

cluster solutions. The values for the interspike intervals that are obtained by this

method fairly well approximate what we obtained by numerically solving the full set of

equations in XPP. In particular, from (4.14) and (4.21), we obtain interspike intervals
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Figure 4.9 Convergence to a 2-cluster solution. A. The intersection of the two
curves represents a 2-cluster solution found by solving (4.14) and (4.21). The filled
circles are different iterates of the one-dimensional map of interspike intervals as they
converge to the intersection point. B. The corresponding time traces of the recovery
variable w of the four cells shows how the interspike interval approaches the value
35.5,

of 71, 35.5, 26.5 and 22 ms for the 1- through 4-cluster solutions, respectively. These

compare with the values 70, 34, 30 and 27 obtained from XPP. The method presented

is conceptually simple, but yields less information about properties of the n-cluster

solution. In particular, even if we find a T* implying the existence of a clustered

solution, we have no way of a priori knowing how many clusters this solution will

have. Thus we consider the map-based method to be complementary, rather than an

alternate, to the above analytic method.
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4.2.4 Conclusions

Short-term synaptic plasticity and global inhibition are ubiquitous features in a vari-

ety of neural systems, in particular the mammalian cortex and hippocampus, and our

results of the globally inhibitory network problem, elucidate the possible functional

roles of the interplay between these two properties of neural circuits. We show that

such interplay can lead to a highly non-trivial network activity profile, and suggest

that global inhibition characterized by short-term synaptic depression can endow a

neural network with a multitude of stable activity states representing different neural

codes or memory states. Oscillatory networks often have components that interact

through inhibition. This is a common feature leading to anti-phase oscillations in

central pattern generating networks [37]. These type of networks often involve recip-

rocally connected pairs of neurons. But in other networks, inhibition from a single

neuron or groups of neurons can reach a large number of targets. For example, a

variety of interneurons in the hippocampus provide feedback inhibition to a large

number of pyramidal cells from whom they receive excitation [19]. In Drosophila, it

is postulated that a globally inhibitory network exists to help in odor discrimination

[52]. Weakly electric fish use a global feedback mechanism to discriminate between

communication and prey stimuli [16]. Mathematical modeling has shed light on the

role of the global inhibition in the hippocampus [34], in the thalamus [51] and in scene

segmentation [68], to name only a few. The present study builds on these works to

propose novel ways in which global inhibition can be utilized by a network.
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CONCLUSION

5.1 Summary of Results and Discussion

Short-term synaptic plasticity is widely observed in neuronal networks [71]. It has

been shown to play a role in a variety of computational tasks as reviewed by Grande

and Spain [20]. In particular, it has been suggested to be important for sound lo-

calization and coincidence detection in the avian auditory brainstem [13], in novelty

detection in the rat barrel cortex [45] and in phase maintenance in the crab pyloric

network [36]. These results all provide examples of neurons involved in temporal cod-

ing. Namely, they describe situations in which the relative timing of neuronal firing

is critical for the correct functioning of that network and for downstream circuits.

A great example of temporal coding of neuronal networks is coincidence detection.

Short-term synaptic plasticity commonly occurring in the central nervous system has

been shown to contribute towards coincidence detection to a large extent [13], [20].

In this work, we have neglected all the intrinsic properties of the NL cell for coinci-

dence detection. We have also not considered a very extensive model for the neuron

involving soma, dendrites as the model in [13] did. Nor have we considered inputs

from many NM neurons on either side. Instead we have used a very straightfor-

ward non-biophysical firing rate model and integrate and fire neuron model for our

SON-NM-NL network. Using these simple models through simulations and simple

mathematical analysis, we have shown that with the inclusion of synaptic depression,

the NL firing rate can be made to behave more as a function of phase delays of inputs

as opposed to the change in input frequencies. In other words depression plays a role

of gain control mechanism in the NM-NL network. This is because high frequency

NM input strength is reduced due to weak recovery and low frequency NM inputs

87
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exhibit stronger recovery in the presence of depression. Therefore, depression aids the

NL firing rate in behaving more as a function of phase delays in NM inputs and being

less sensitive to changes in input frequencies. As a result there is improvement in the

ability of the NL cell to locate the sound source. Thereby we have shown that NL

preserves spatial coding. Our simulation results have a good qualitative agreement

with the experimental results in [13] and [20].

One of the many other interesting problems in the auditory brainstem is that of

monaural excitation. When the NM cell on one side of the brainstem receives stronger

drive than the other side, it has been observed from the literature [24] and [61], that

the NM activity on that side of the brain is stronger than the other. As a result

there is ambiguity among the NL neurons in being able to distinguish between strong

monaural excitation versus binaural coincidence detection. Through the literature,

we know that the GABAergic SON plays a role in affecting coincidence detection [44],

[24], [61] during cases of input bias to the NM cell. Studies in [14] suggest that the

other main mechanism which maintains interaural time difference sensitivity among

NL cells apart from depression from NM to NL, is that of SON feedback inhibition.

It has been observed that the strength of SON activity is proportional to the NM

activity on that side [61]. Therefore, when the NM firing rate is greater on one side

than the other during input bias, there is stronger recruitment of SON activity on

that side. Thus SON plays a role in suppressing too much excitation on one side due

to input bias and thereby balances the NM firing rate on both sides [61] and [69].

Thus SON plays the role of an indirect gain control mechanism by controlling the

activity of the NM cells and eliminating the ambiguities among the NL cell caused

by input bias.

Even though there is much evidence from past literature showing the existence

of GABAergic inhibition from SON to NM, there still are a few unknowns about the

relative timing of SON and NM spike times. We studied this problem by making use
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of some assumptions regarding the timing of SON inputs to the NM and also the

existence of plasticity from SON-NM synapse. We have modeled monaural excitation

by increasing the applied current on one side of the NM neuron. In the monaural

excitation case, as suggested by [44] [61] and [24] we have shown through our sim-

ulations, that when there is input bias it leads to ambiguity of the NL neurons in

discriminating between binaural coincidence detection and strong unilateral inputs.

As a consequence of this, there could be false location of sound source by the NL cell,

We have shown the inclusion of facilitating inhibitory synapse from SON to NM helps

to eliminate this ambiguity by suppressing the excess discharges in the target NM

neuron, for a range of increasing applied currents which are dependent on our choice

of parameters. In other words, without any inhibition it is obvious that when the

applied current to a cell is increased, that causes an increase in the firing frequency

of the cell. When we increase the applied current input to NM on side, it leads to

increase in the NM firing frequency on that side or decrease in the period of the firing

of NM cell. We do not change the applied current to the other NM and fix the NM

firing frequency in this side as our frame of reference. We compute the NL firing

rate curves for the various unequal NM firing frequency cases. We have shown that

without inhibition there is larger deviation of these NL firing rate curves from our

original NL firing rate curve with equal NM firing rates on both sides. But when we

include facilitating SON inhibition to the NM cell which receives input bias, there is

suppression of the NM firing rate to a certain extent, depending on the choice of our

parameters. This leads to clustering of the NL firing rate curves to the original curve

of frame of reference. The clustering of NL firing rate curves in the case of inhibition

has also been shown through our coefficient of variation calculations. This shows

that the SON inhibition to NM could serve as a mechanism to offset inaccuracies in

the NL firing rate caused by ambiguities during input imbalances to the NM cells,

Therefore, we have proposed a theory of gain control mechanism through the SON
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facilitating synapse to the NM neurons which indirectly enhances the coincidence

detecting ability of the NL neurons, in the presence of input bias and even in the

absence of depression from NM to NL.

Our work on the second project involving globally inhibitory network, at-

tempts to provide further insight on how synaptic depression affects temporal coding

properties of neurons. We find that synaptic depression allows a globally inhibitory

network to create and transmit at least m different temporal patterns, all for the

same set of parameter values. These patterns can be construed as codes because each

pattern can transmit a different interspike interval (ISI) that a downstream target

could interpret. For example, if there is a long ISI, the downstream target could infer

that the globally inhibitory network is in the synchronized state. As smaller ISIS are

transmitted, the downstream neuron would be able to infer that the network has bro-

ken up into progressively more clusters. Thus, the timing of spikes of the interneuron,

encoded in the ISI, codes for the overall state of the network.

We derived mathematical criteria and techniques to prove the existence and

stability of cluster solutions. To prove existence, we showed that when two different

sets of timing constraints are met, then a cluster solution will exist. Interestingly, one

of the constraints, equation (4.14) is completely controlled by the inhibitory synapses

from the global inhibitor. The other constraint, equation (4.21) is determined by

parameters associated with both the globally inhibitory synapse, but also by param-

eters associated with the P cells. We showed how adjusting either sets of parameters

can lead to different ways in which the two constraints could simultaneously be met.

Stability of the solutions followed from the geometry of the slow manifold, namely

that the jump curve is negatively sloped in the w — g phase plane. This is a common

feature for many Hodgkin-Huxley type neurons.

An important aspect of our modeling was a reduction to the w — g slow man-

ifold of the system. This allowed us to solve a linear set of differential equations on
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that manifold to derive equations (4.14) and (4.21). We then used a combination

of analysis and numerics on these equations to show the existence and stability of

cluster solutions, We also used the slow manifold to define a one-dimensional map

involving ISIS. This map is easy to numerically compute and provides an example of

the stability of solutions together with their basin of attraction. Despite the apparent

severity of the reduction procedure, the resulting simplified model was still capable

of making qualitatively and quantitatively accurate predictions for the full model.

Indeed simulation results using the full set of model equations compared quite well.

5.2 Future Work

There are several open questions in this problem of coincidence detection which are

very interesting and useful to consider. In this work of monaural excitation we have

considered only the change in NM firing rates when there is input bias. An immediate

extension of this problem could be in investigating if there are multiple NM neurons

firing at the same time as suggested in [44] on the side receiving intense input, how

does this affect the coincidence detecting ability of the NL cell? This translates to

increasing the synaptic conductance of the NM on the side which receives stronger

input, as opposed to increasing their firing rate. In this case, the ambiguity lies in the

NL cell responding with higher firing rates when there is synchrony of inputs from

one side, as opposed to looking for coincident inputs from both sides. The most chal-

lenging case for the NL neuron in this problem would be if there is increase in both

the NM firing rate, as well as the synaptic conductance on the side which receives

intense input compared to the other side. During this asymmetry in bilateral inputs

it would be interesting to study what mechanism does the NL cell have to distinguish

between strong unilateral excitation versus binaural coincidence detection of inputs

and preserve its property of spatial coding.

We know from the literature that there is reciprocal inhibition among the
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SONs to both the right and left sides of the brainstem [7]. This implies that SON

inhibition to NM on each side is not independent. For instance, if the SON activity

depends on the left side sound level it also has to depend on the amount of opposite

SON inhibition (from the right side). Burger et al. [7] conjecture that disparities in

input periods among the NM neurons can be reduced by reciprocal SON inhibition

even if sounds located off the midline generate differences in interaural sound intensi-

ties [7]. Therefore, another issue to explore would be to include reciprocal connections

among the left and right ear SONs to observe their effect on the NM neurons and the

NL firing rate.

We would also like to include NL excitatory feedback onto the SON and study

if it affects the firing rate of the SON neurons thereby having an impact on the NM

cell dynamics.

In the present work we have not explored the effect of IID in the processing

of sound. Like the NM neurons, there is another group of major neurons, nucleus

angularis (NA), in the auditory brainstem which have a specialized function of en-

coding sound intensity information. NA also receives inhibition from SON and sends

excitation back to SON. It has been shown experimentally that short term synap-

tic facilitation and depression at the NA synapse are instrumental in affecting the

encoding of sound intensity information [10]. To gain a better understanding of the

phenomenon of coincidence detection, we would like to model the NA cells using a

spiking neuron model and add both facilitation and depression to the NA synapse.

So far we have only been looking at sound processing in the auditory brain-

stem. We want to extend our model by including cells from the higher regions of

the brain, namely the auditory midbrain known as inferior colliculus (IC). The IC is

sensitive to ITD and receives excitatory inputs from NL cells. The external nucleus

of IC has space specific neurons which receive inputs from a wide range of frequency

channels that are selective to a unique ITD [67]. It would be interesting to model
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how sound information is processed among these cells in IC.

Another interesting aspect of future work could be to include NL dendrites in

our model as it has been observed from the literature that dendrites play a signifi-

cant role in enhancing the coincidence detecting ability of the NL cell [2], [21]. The

extensive cell morphology and the spatial distribution of the NM inputs has been

shown to strengthen the computational power of the NL cells with a capability far

superior than the point neurons [66]. The way that dendrites enhance coincidence

detection among NL neurons is the following. A NL neuron which linear summates

inputs would not be able to distinguish between inputs arriving coincidentally from

the same neural source versus that of inputs arriving simultaneously from two inde-

pendent neural sources. The presence of dendrites helps to distinguish between the

two different scenarios as observed by modeling studies in [21] and [53]. This is be-

cause when inputs arrive at the same dendritic compartment they sum in a non-linear

fashion due to the decrease of the driving force with depolarization [2]. Therefore, the

total synaptic current obtained by various inputs that arrive coincidentally at nearby

sites on the same dendrite is smaller than the total current that is obtained from all

these inputs if they were to arrive at different dendrites [66]. As a result the NL firing

rate is higher in the case, when inputs arrive simultaneously at two different sources

on the dendrites compared to coincident arrival of inputs from the same source on

the dendrites [66].

Furthermore, it has been illustrated in the literature that ion channels for ex-

ample, low-threshold potassium channels reduce response to less in-phase inputs [14].

The present model of integrate and fire neuron in my study of coincidence detection

does not include any ion channels. It would be interesting therefore, to study this

phenomenon of coincidence detection with a more realistic biophysical model for the

NM-NL cells with the inclusion of ion channels.
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APPENDIX

The model used to represent a single neuron (which could be excitatory and in-

hibitory) is based on the Hodgkin-Huxley model for the spiking neurons. This was

developed by Traub and Miles [60] and then reduced to a single compartment model by

Ermentrout and Kopell [18]. C dt = I0-gl(v-V1)- gk w4 (v - Vk) — g Nam3∞ (v)h(w)(v-

VNa) - Lyn and t = (w∞ (v) — w))/τw (v). The gating variable for potassium acti-

vation w is defined by w ∞ (v) = aw (v)/(aw (v) + bw (v)) and τ-w(v) = τw when the cell

is in its silent phase. When the cell is in its active phase τw (v) = τr , where τw = 25

ms and τr = 1 ms, aw (v) = .032(v + 52)/(1 - e-W) and bw (v) = .5e - 5 74-t) . The

sodium activation curve at steady state is given by m ∞ (v) = am(v)/(am (v) + bm (v))

where am (v) = .32(v + 54)/(1 - e-(v+54)/4) ) and bm(v) = .28(v + 27)/(e '127 - 1). The

inactivation curve is given by h = max(1-1.25w,0). The parameter values used in

the simulation are: C = 1 μF cm -2 , 9Na = 100 ms VNa = 50 mV, gK = 80

ms cm -2 ,VK = —100 mV, gL = .1 ms cm', VL = —65.625 mV for the pyramidal

cells and VL = -64.6 mV for the interneuron. The injected current I0 = 0.5 for the

pyramidal cells and 10 = —0.5 for the interneuron. The synaptic delay At = 0.5.

The synaptic parameters are 9 inh = 2 ms cm -2 , Visyn = —80 mV, agesyn = 5 ms C77/ 2

and 1/esyn = 0 mV, τb = 1 MS,τa = 100 ms and τk = 5 ms. We use XPP for all our

simulations [17]. To solve (4.14) and (4.21)using MATLAB, we use the Abbott model

for depression. For Figs. 4.6 and 4.7. We set r = .6, τw = 5, 7-k = 3, τa = 10, ginh = 5 ,

= .8, /Du, = .2 and wrk = .8 For Fig. 4.9 where we compare to the XPP simulations,

we take r .236. This value is calculated by noting that in the simulations, each

action potential has length of about 1.2 ms. We let r = exp(-1.2/τb), where τb = 1.
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We also chose the values of g = .01, wlk = .05 and wrk = .85 by estimating these

values from our simulations.
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