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ABSTRACT

MECHANISMS OF IONIC CURRENT CHANGES UNDERLYING
RHYTHMIC ACTIVITY RECOVERY AFTER DECENTRALIZATION

by
Olga E. Khorkova Sherman

Neuronal networks capable of generating rhythmic output in the absence of patterned

sensory or central inputs are widely represented in the nervous system where they support

a variety of functions, from learning and memory to rhythmic motor activity such as

breathing. To perfectly function in a living organism, rhythm-generating networks have

to combine the capability of producing a stable output with the plasticity needed to adapt

to the changing demands of the organism and environment. This dissertation used the

pyloric network of the crab Cancer borealis to identify potential mechanisms that ensure

stability and adaptation of rhythm generation by neuronal networks under changing

environmental conditions, in particular after the removal of neuromodulatory input to this

network (decentralization). For this purpose, changes in ionic currents during the process

of network activity recovery after decentralization were studied. The previously

unreported phenomenon of coordinated expression of ionic currents within and between

network neurons under normal physiological conditions was described. Detailed time

course of alterations in current levels and in the coordination of ionic currents during the

process of activity recovery after decentralization was determined for pacemaker and

follower neurons. During the investigation of the molecular mechanisms underlying the

post-decentralization changes, a novel role of central neuromodulators and of the cell-to-

cell communication within the network in maintaining ionic current levels and their

coordinations was demonstrated. Finally, the involvement of the two mechanisms of



network plasticity, namely extrinsic (activity-dependent) and intrinsic (neuromodulator-

dependent) regulation, in the recovery process after decentralization was shown. A

thorough understanding of the mechanisms that are responsible for the stability and

plasticity of neuronal circuits is an important step in learning how to manipulate such

networks to cure diseases, enhance performance, build advanced robotic systems, create a

functioning computer model of a living organism, etc. The discovery of a novel

mechanism of ionic current regulation, i.e. the inter-dependent coordination of different

ionic currents, will potentially contribute to this process.
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CHAPTER 1

INTRODUCTION

1.1 Objective

The objective of this dissertation is to identify potential mechanisms that ensure stability

together with adaptation of rhythm generating neuronal networks under changing

environmental conditions.

For this purpose, a model of rhythm generating neuronal network adaptation to

changing environmental conditions, in particular the recovery after decentralization of the

pyloric network of the crab, Cancer borealis, is employed. Since the activity of neurons

is to a large extent determined by the characteristics of ionic currents that they express, it

is expected that the characteristics of ionic currents will change during the process of

restoring the rhythmic output of the network. To elucidate the mechanisms that control

the adaptation of the neuronal network to the changing environmental conditions, the

changes in ionic current levels at the time of significant perturbations in the activity of a

rhythm generating neuronal network, and particularly during the functional recovery of

the network, are investigated. Previously published data indicate that ionic current levels

within and between network neurons could be correlated. If such correlations exist, they

could be involved in the maintenance of stable network output and thus could change

during environmental perturbations. To confirm or disprove this expectation, coordinated

expression of currents within and between network neurons under normal physiological

conditions is investigated. To understand the molecular underpinnings of the observed

current level and coordination dynamics, the role of neuromodulators in the maintenance

1
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of current levels and their coordinations is explored. Next, the role of cell to cell

communication within the network in maintaining ionic current levels and their

coordinations is studied. Finally, the question of the involvement of the two very

important mechanisms of network plasticity, activity-dependent vs neuromodulator-

dependent regulation, in the recovery process after decentralization is addressed.

1.2 Significance

Neuronal networks capable of generating rhythmic output in the absence of patterned

sensory or central inputs are widely represented in the nervous system where they support

a variety of functions, including learning (Singer 1993, Lisman 1997), memory formation

(Klimesch 1999) and rhythmic motor activity such as breathing (Von Euler 1983).

Disturbances in the stable activity of rhythm-generating networks can have pathological

effects. For example, abnormal synchronization of the oscillations among cortical

neurons leads to epileptic seizures (Wong et al. 1986). However, to perfectly function in

a living organism, rhythm-generating networks have to combine stability with the

plasticity needed to adapt to the changing demands of the organism and environment

(harder and Bucher 2007). Finding the molecules that are responsible for the stability

and plasticity of neuronal circuits will be the first step in learning how to manipulate such

networks to cure diseases, enhance performance, build advanced robotic systems, create a

functioning computer model of a living organism and achieve other goals.

Activity of ionic current-conducting channels is generally regarded as a major

mechanism producing membrane potential changes that comprise neuronal output.

Studying the modulation and coordination of ionic current expression within and between
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the network neurons can provide significant insights into the mechanisms underlying

stability and plasticity of the network output. In spite of the potential importance of

coordinated current expression for maintaining the stability and plasticity of rhythm

generating networks, and in spite of multiple indications that such current coordination

might exist (Turrigiano et al. 1995, Szucs et al. 2003, LeMasson et al. 1993, Franklin et

al. 1992, Fengler and Lnenicka 2001, Haedo and Golowasch 2006, Ueda and Wu 2006,

Wierenga et al. 2005, Coleman et al. 1995, DiCaprio and Fourtner 1988, Ramirez and

Pearson 1990, Weaver and Hooper 2003, Schulz et al 2006, Zhang et al. 2003a,

Golowasch et al. 1999b), there have been few direct studies of current coordination

(MacLean et al. 2003, 2005, Schulz et al. 2006).

Many rhythm generating networks, although normally dependent on activity and

neuromodulator inputs from other neurons, can also recover their functions after this

input is interrupted. In some cases such network function recovery leads to the recovery

of the physiological function controlled by the network. An example of function recovery

after removal of the external input to the network (deafferentation) is observed in the case

of vestibular nerve damage in mammals. Vestibular nerve connects to the vestibular

nucleus complex (VNC), which controls balance. The neurons in the VNC typically

display a spontaneous output that initially disappears after deafferentation, but reappears

after a certain time allowing a partial recovery of balance control (Darlington et al. 2002).

However, studying rhythm-generating networks in mammalian systems is

extremely difficult due to the large number and small size of the neurons in these

networks. Mammalian networks are also difficult and costly to maintain in culture.

Invertebrate systems have long served as a solution to these problems in neuroscience,



4

one example being the pioneering work of Hodgkin and Huxley (1952). The

stomatogastric nervous system (STNS) of decapod crustaceans was historically a system

that provided an invaluable input to understanding the function of rhythm-generating

networks (Maynard 1972, Marder 1985, Marder et al. 2005, Marder and Bucher 2001,

Marder and Bucher 2007, Stein 1997). The pyloric rhythm generating network, a part of

the STNS, contains 11-14 neurons (depending on the species) about 50-100 in

diameter receiving a limited number of central inputs through a single nerve. The

network can be easily dissected and maintained in organ culture in a saline solution for

many days while consistently producing neuronal output closely resembling the one

recorded in vivo (Rezer and Moulins 1983, Clemens et al. 1998, Heinzel et al. 1993).

Over the last 35 years the architecture and neuroregulatory inputs of the crustacean

pyloric network have been thoroughly investigated providing an extensive background

for studying the network response to environmental changes (reviewed in Marder and

Bucher 2007). Multiple computer models of the network have been developed which

significantly facilitates the understanding of the relationships between ionic currents and

network activity.

This dissertation takes advantage of the pyloric network model system to

investigate the molecular mechanisms involved in the recovery of the stable rhythmic

network output after environmental perturbations not unlike those encountered in cases of

trauma or axonal degeneration. One such case, in particular the loss of central modulatory

input (decentralization) of the pyloric network, was the focus of this dissertation. The

results presented in this dissertation will potentially have wide implications in

understanding the mechanisms involved in maintaining both stability and plasticity in
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rhythm generating networks, and in understanding how recovery of function can be

optimized.

1.3 Background

1.3.1 Pyloric Network of the Crustacean Stomatogasric Nervous System as an
Experimental Model

The crustacean STNS is a widely used model (Selverston and Moulins 1987; Harris-

Warrick and Marder 1991, Harris-Warrick 1992; Abbott and Marder 1998) in which

neuronal identities and connections are well understood. It was first employed as an

experimental preparation in 1972 (Maynard 1972). The STNS comprises a set of ganglia

(Figure 1.1A) that control the movements of the crustacean foregut. One of these ganglia,

the stomatogastric ganglion (STG) contains the neurons of the pyloric rhythm-generating

network (Figure 1.1B) that controls the filtering of the food. When the STNS is dissected

and maintained in organ culture, the pyloric network expresses a steady rhythm almost

identical to the one observed in vivo (Rezer and Moulins 1983, Clemens et al. 1998,

Heinzel et al. 1993). The pyloric rhythm (Figure 2) recorded from the lateral ventricular

nerve (lvn) consists of a burst of action potentials in the pyloric dilator (PD) neurons,

followed by a burst in the lateral pyloric (LP) and then the pyloric constrictor (PY)

neurons (Harris-Warrick et al. 1992).

There are two PD neurons in pyloric network. Together with the anterior burster

(AB) neuron they constitute the pacemaker kernel of the network (Figure 1.1B). The

neurons in the pacemaker kernel are electrically coupled and can maintain oscillations in

the absence of an external rhythmic input. AB is an interneuron that projects to the
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commissural ganglia (CoG) through the stomatogastric nerve (stn). LP neuron is a part of

the group of follower neurons that need the rhythmic input from the pacemaker kernel to

maintain rhythmic activity (Eisen and Marder 1982, Marder and Eisen 1984, Miller and

Selverston 1982). Neurons in the pacemaker kernel inhibit the LP neuron, causing it to

fire in alternation with the PD neurons.

A

Figure 1.1 Stomatogastric nervous system of crab Cancer borealis. A, Schematic
diagram of the stomatogastric nervous system preparation. Grey circles represent ganglia,
lines represent nerves, a circle with an arrow represents a Vaseline well used for
extracellular recordings. OG, oesophageal ganglion; CoG, commissural ganglion; STG,
stomatogastric ganglion; stn, stomatogastric nerve; lvn, lateral ventricular nerve; ion,
inferior oesophageal nerve, son, supraoesophageal nerve. B, Simplified synaptic
connectivity diagram of the crab pyloric network. AB, anterior burster neuron; PD,
pyloric dilator neuron; LP, lateral pyloric neuron; PY, pyloric burster neuron. Large grey
circles represent neurons of the pacemaker kernel, large white circles represent follower
neurons. Lines with black circles at the ends represent glutamatergic synapses, lines with
grey circles represent cholinergic synapses, zigzag lines represent electrical coupling.

The LP neuron, which is studied in detail in this dissertation, receives a

glutamatergic synapse from the AB neuron and is the only neuron in the pyloric network

that feeds back onto the pacemaker kernel, through a glutamatergic synapse to PD

(Maynard 1972, Selverston et al. 1976, Miller and Selverston 1982, Marder and
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Paupardine-Tritsch 1978) (Figure 1.1B). In lobster, feedback from the LP neuron slows

the pacemaker in a certain range of frequencies (Weaver and Hooper 2002). Thus, the LP

neuron appears to be an important network activity regulating partner in the pyloric

network.

Figure 1.2 Pyloric network output of crab Cancer borealis. Simultaneous recordings
from LP neuron (top trace), PD neuron (middle trace) and lvn (bottom trace). Note
inhibitory postsynaptic potentials from LP on PD trace.

1.3.2 Pyloric Network Decentralization Model

Neurons in the STG receive neuromodulatory inputs from the other three ganglia of the

STNS: the paired CoGs and the single OG (Fig 1.1A). In C. borealis there are about 20

pairs of neurons projecting to the STG (Coleman et al. 1992). Most of the descending

projection neurons produce multiple neuromodulators (Nusbaum et al. 2001). More than

20 of the neuromodulators released by the descending axons from the modulatory

projection neurons have been identified (Katz 1985, Nusbaum et al. 2001, Marder and

Bucher 2001, Nusbaum and Beenhakker 2002). Some of the central neuromodulators are
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not synthesized by the STG neurons, including GABA (Ducret et al 2007, Swensen et al.

2000) and proctolin (Nusbaum and Marder 1989a, b).

When the neuromodulatory input is discontinued, the normal pyloric activity

temporarily ceases, only to reappear again 30 to 100 h later (Rezer and Moulins 1992,

Thoby-Brisson and Simmers 1998, 2000a, 2002, Golowasch et al. 1999b, Luther et al.

2003). This phenomenon resembles that of deafferentation observed in mammals,

including the vestibular nerve damage case described above. Because of this ability of the

pyloric network to spontaneously recover its lost activity, it is expected that studying the

pyloric network decentralization model will contribute to understanding of general

mechanisms involved in maintaining both stability and plasticity of the rhythm

generating networks.

In the pyloric network, rhythm recovery after decentralization proceeds through a

period of unstable activity, termed the bouting period (Luther et al. 2003). It is

characterized by bouts of normal pyloric rhythm interspersed by periods of irregular

activity or complete inactivity. Rhythm recovery in the pyloric network decentralization

model has been suggested not to depend on the preparation's activity since it occurs both

in preparations maintained in a chronically active state by elevated extracellular K ± or by

muscarinic agonist oxotremorine, and in TTX, which stops all action potential generation

(Thoby-Brisson and Simmers 1998). Also, photoinactivation of the pacemaker AB

neuron did not alter the recovery process. If a PD neuron was isolated from all its

network connections by photoablating the AB neuron and the second PD neuron, and

blocking the LP to PD synapse with PTX, it still exhibited the same behavior before and

after decentralization as it did in the intact network: normal bursting with
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neuromodulatory inputs intact, initial cessation of bursting upon decentralization and

rhythm recovery after 5 days in culture (Thoby-Brisson and Simmers 2002). On the other

hand, modeling studies have shown that an activity-dependent mechanism is sufficient to

explain the timing of the recovery as well as the dynamical properties during the bouting

period (Golowasch et al. 1999b, Zhang and Golowasch 2007). This apparent discrepancy

concerning the nature of the mechanism driving the recovery of activity after

decentralization is addressed in Chapter 5.

The recovered network obviously exhibits significantly changed architecture

compared to control network. In recovered preparations, in contrast to the

neuromodulator-intact ones, the follower LP and PY neurons continued to oscillate when

isolated from all their network contacts (Thoby-Brisson and Simmers 2002). These

findings indicate that the essential processes underlying the recovery of the pyloric

rhythm occur at the single cell level, and that these processes lead to changes in the

oscillatory properties of the neurons and of the network as a whole.

After decentralization, the efficacy of cholinergic synapses between PD and PY

and PD and LP neurons and glutamatergic synapses between LP and PD neurons

decreased, while the strength of electrical coupling between the two PD cells remained

unchanged (Thoby-Brisson and Simmers 1998). One possible explanation for these

observations is that decentralization eliminates modulatory inputs that normally increase

synaptic strength. For example aminergic up-modulation of synaptic strength has been

shown in vertebrates (Knapp and Dowling 1987) and invertebrates, the pyloric network

of lobsters in particular (Johnson and Harris-Warrick 1990). The reduction in synaptic

strength can also arise from the reduction in ionic currents involved in the release of
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synaptic neurotransmitters or in the responsiveness of the post-synaptic receptors.

It has been shown that levels of several currents in the preparations recovered

after decentralization are changed, in particular the TEA-sensitive potassium current was

decreased and Ih was increased in PD neurons in lobster (Thoby-Brisson and Simmers

2002). The observed changes in the measured current levels may be caused not only by

the changes in mRNA copy number and translational regulation, but also by channel

redistribution among the neuronal segments, or regulation of their activation state.

Immunocytochemical studies show that the distribution of staining for shal ionic channels

carrying the A-type current, changes after decentralization, with more shal channels seen

in the neuronal somata (Mizrahi et al. 2001).

The existence of transcription-dependent changes during recovery after

decentralization is confirmed by the fact that the rhythm recovery is blocked by the

inhibitors of RNA synthesis acting in a short window of up to 2 h after decentralization

(Thoby-Brisson and Simmers 2000a).

Modeling studies confirm that in the STG decentralization model significant

changes in ionic current expression are expected as the ganglion resumes its rhythmic

activity (Liu et al. 1998, Golowasch et al. 1999b).

1.3.3 Ionic Currents Affecting the Output of the Crustacean Pyloric Network

Several ionic currents are known to play crucial roles in generating oscillatory behavior,

including IKd, IKca, Ih, IA and Ica (Calabrese 1998).

The hyperpolarization activated inward current (Ih) is a mixed cation current

carried by PAIH channel in lobster (Gisselmann et al. 2003, Zhang et al. 2003a) or IH
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channel in crab (Schulz et al. 2006). Ih in C. borealis activates at voltages below —50 to

—60 mV, has slow kinetics and shows no inactivation. Its reversal potential was shown to

be about —20 to —30 mV (Golowasch and Marder 1992a). I h is reversibly blocked by bath

application of 5 mM Cs + . When Ih current was increased by injecting PAIH RNA into a

bursting PD neuron, the cell membrane potential was depolarized, the oscillation

amplitude as well as time to the first spike were decreased, and duty cycle and number of

action potentials per burst were increased (Zhang et al. 2003a). Blockade of Ih current in

isolated respiratory network of mice by Cs + or ZD7288 increased respiratory frequency

and the amplitude of integrated population activity (Thoby-Brisson et al. 2000b).

Postinhibitory rebound in STG neurons is shaped by the interaction of Ih and the transient

A-type current (I A) (Harris-Warrick et al. 1995).

I A in C. borealis LP neuron was described by Golowasch and Marder (1992a). IA

de-inactivates at holding potentials below —60 mV. I A activation steeply increased during

pulses to voltages between —40 and +20 mV, after which it leveled off IA reached its

peak amplitude more rapidly as the voltage was increased. IA in crab was partially and

irreversibly blocked by 4-aminopyridine (4-AP) but was not affected by Ca2+ . Its

maximum conductance was approximately equal to I Kd , and was two fold lower than that

Of IKCa in crab LP neurons (Golowasch and Marder 1992a). I A was completely inactivated

at holding voltages equal or higher than —40 mV, i.e. when voltage pulses were applied

from the holding potential of —40 mV, only I Kd and IKca could be activated. This property

is used to isolate I A from other outward currents. In crustacean STG both IA and Ih play

important roles in determining when a follower neuron recovers from inhibition (Hooper

1997, Harris-Warrick et al. 1995, Tierney and Harris-Warrick 1992). IA sets the bursting
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rate in oscillatory neurons, contributes to the timing of action potentials in the spike trains

and the duration of postinhibitory rebound (Graubard and Hartline 1991, Golowasch and

Marder 1992a, Tierney and Harris-Warrick 1992). Shal channel carrying the A-current

has been cloned from lobster (Baro et al.1996) and crab (Schulz et al. 2006).

The other two currents studied in this dissertation that are also essential for the

rhythmic activity of the neurons are the delayed rectifier (IKd) and the calcium-dependent

potassium current (I KCa). Channels carrying IKd (shah) and IKca (BK-KCa) from lobster

and crab (Schulz et al. 2006) have been cloned. IKc a shows significant Ca 2+ dependence.

In crab IKc a was activated at voltages higher than —30 mV and its maximum conductance

is about two fold higher than that of IKd in LP neurons (Golowasch and Marder 1992a).

I Kca was almost completely blocked by TEA. IKca could be separated from I Kd by

subtracting currents measured in saline containing Cd2+ or Mn2+ from the currents

measured in normal saline (Golowasch and Marder 1992a). Cd 2+ and Mn2+ block the Ca2+

channels, which eliminates Ca2+ influx into the cell and inhibits IKc a . Because of the long-

term potential toxic effects of the blockers, in this dissertation these two currents were

normally not separated and a high threshold potassium current (IHTK), which comprises

I Kd and IKc a, was measured instead.

The calcium current (Ica) affects the intracellular concentration of calcium and

through it IKca and multiple other cellular processes. Ic a in crab STG neurons was

described by Golowasch and Marder (1992a). Its pharmacological and kinetic

characteristics were significantly different from those of known vertebrate calcium

currents. 'Ca was activated at voltages above —30mV. k a in crab could be blocked by 200

μM Cd2+ or 10 mM Mn2+ (Golowasch and Marder 1992a). Ba 2+ permeates Ca2+ channels
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better than Ca2+ , thus Ba2+ currents are larger in amplitude, and IKc a in Ba2+ saline is

inhibited due to the lack of Ca 2+ influx. For these reasons IB a was measured in this

dissertation in lieu of Ica.

1.3.4 Central Modulators of the Pyloric Network: Proctolin

Proctolin is a pentapeptide (Arg-Tyr-Leu-Pro-Thr) that was first isolated from insect

tissues (Starratt and Brown 1975) and later found in Crustacea (Marder et al. 1986).

Using immunohistochemical methods Marder et al. (1986) have shown that proctolin is

located in neuronal somata and axons of CoG and OG neurons but not of STG neurons,

and acts as a modulator of pyloric activity. The modulatory proctolin-containing neurons

were later identified (Nusbaum and Marder 1989a, b) and the distinct motor patterns they

elicit from STG neurons were studied (Blitz et al. 1999). It was shown that the effects of

bath-applied proctolin are roughly equivalent to some of the effects of descending

terminal-released proctolin, (Nusbaum and Marder 1989a, b), but not others (Blitz et al.

1999).

Drosophila genes encoding preproctolin and proctolin receptor have been cloned

(Egerod et al. 2003, Taylor et al. 2004). It is generally agreed that the proctolin receptor

is G-protein coupled and that its activation leads to an increase in intracellular levels of

calcium through an IP3-mediated mechanism and through promoting the entry of

extracellular calcium into the cell. Desensitizing proctolin receptor involves translocation

of beta-arrestin to the plasma membrane and its binding to the receptor (Johnson et al.

2003). At the crustacean neuromuscular junction, application of PKC activator mimicked

the effects of proctolin, which also could be inhibited by the PKC inhibitor BIM1, but not
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a PKA inhibitor H89 (Philipp et al. 2006). Proctolin did not change the intracellular

concentration of CAMP, but reduced the concentration of cGMP. The reduction in cGMP

concentration was not observed in the presence of BIM1 (Philipp et al. 2006). In insects

at least two proctolin receptor subtypes have been identified (Baines et al. 1996).

In many crab STG neurons proctolin evokes an inward current with a peak at

approximately —50 mV and reversal potential of —0 mV. The current is believed to be

carried mostly by Nat , and partially by Kt and CI. Low Ca++/high mg++ saline increases

the amplitude of proctolin current and linearizes its current-voltage relationship

(Golowasch and Marder 1992b). A calmodulin inhibitor increased the amplitude and

altered the voltage dependence of the "proctolin" current (Swensen and Marder 2000).

The so called "proctolin current" is also activated by several other neuromodulatory

substances in the STG (Swensen and Marder 2000) and is thus better named

"neuromodulator-activated current".

1.3.5 Central Modulators of the Pyloric Network: GABA

In C. borealis GABA is synthesized in the three pairs of projection neurons in the CoGs

and is delivered to the STG via the stn (Blitz et al. 1999, Swensen et al. 2000, Ducret et

al. 2007). Stimulation of these neurons causes strong excitation of the pyloric rhythm. In

contrast, when bath-applied to the STNS preparation, or separately to the STG or

CoGs+OG, GABA causes an immediate shut down of the pyloric rhythm (Swensen et al.

2000, Ducret et al. 2007) presumably due to the inhibitory effect it has on the pacemaker

kernel neurons (Swensen et al. 2000).

All pyloric neurons respond to GABA and presumably have GABA receptors,
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however, the pharmacological profiles of these receptors are different from their

vertebrate counterparts. There could also be several subtypes of ionotropic GABA

receptors in crustaceans. In projection neurons dissociated from lobster brain, a GABA-

evoked, Cl-mediated current was described (Zhainazarov et al. 1997). The current

characteristics in a single channel patch were identical to the whole-cell current. The

channel was partially blocked by picrotoxin (PTX), insensitive to bicuculline

(competitive vertebrate GABA A antagonist) and activated by GABAA vertebrate receptor

agonists in the following order: TACA>muscimol>GABA>isoguacine>CACA, as well

as, surprisingly, by GABAc receptor antagonists TRIP, 3APS, I-4AA, but with lesser

potency than GABA (Zhainazarov et al. 1997). GABAB receptor agonists baclofen and

3APA were not effective in activating the crustacean GABA-activated channel. TBPS, a

potent ligand to vertebrate PTX binding site, did not have much effect on the lobster

channel, i.e., lobster GABA receptor was different from both vertebrate B and C

receptors (Zhainazarov et al. 1997). Similarly, most vertebrate GABA antagonists were

ineffective on the GABA-activated channel from the lobster STG, including bicuculline,

phaclofen, 2-hydroxysaclofen and some of the agonists showed little or no response

including baclofen and 3-aminopropanesulphonic acid (Swensen et al. 2000). GABAB-

like receptors were reported in the lobster (Gutovitz et al. 2001, Miwa et al. 1990) and

crab Eriphia spinifrons (Rathmayer and Djokaj 2000) neuromuscular junction.

Metabotropic GABAB-type receptors were also described in other crustacea (Marder and

Paupardin-Tritsch 1978). A functional chloride channel subunit activated by GABA and

inhibited by PTX has been cloned from Homarus americanus (Hollins and McClintock

2000).
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If GABA is applied individually to the LP, PY or VD neurons it causes large

depolarizations that often elicit firing. When applied locally to AB, PD or IC neurons,

GABA caused a slight hyperpolarization and inhibition of bursting activity (Swensen et

al. 2000). These differences could be explained by the presence of different GABA-

activated channels in different pyloric cell types. For example, the reversal potential of

GABA-evoked currents in LP changed from —50 in normal saline to —75 mV in PTX.

The amplitude of the currents evoked at more hyperpolarized holding potentials

decreased in PTX, indicating that, in the LP neuron, GABA activated at least two

different currents, and that PTX partially blocked the one with a more depolarized

reversal potential. Muscimol (a GABA A agonist) evoked a large partially Na-dependent

inward current (reversal potential >-35 mV) that was blocked by PTX.

βguanidinopropionic acid (β-GP) preferentially activated the other one of the two GABA-

evoked currents, with a K + and a components (Swensen et al. 2000). This second

current resembles a GABAB-evoked current. In PD cells GABA may induce a current

active in PTX (Swensen et al. 2000) and reminiscent of bicarbonate responses to GABA

seen in other systems (Kaila and Voipio 1987). PTX produced little change in the

reversal potential of GABA response of the PD cell (Swensen et al. 2000). Muscimol and

β-GP induced an outward current similar to the one induced by GABA and unaffected by

PTX (Swensen et al. 2000).

GABA seems to regulate gap junction coupling in lobster STG. When GABA

synthesis was inhibited by 3MPA, the number of neurons dye-coupled to PD in the adult

preparations increased from approximately 8 to 20, same as the number of coupled

neurons in the embryonic network (Ducret et al. 2007). Bath application of GABA
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decreased the number of neurons dye coupled to PD, to four, and the coupling coefficient

between the two PD cells measured using simultaneous dual electrode intracellular

recordings decreased by more than 50% (Ducret et al. 2007).

1.3.6 Glutamatergic Synapses in the Pyloric Network

Glutamatergic synaptic transmission is a major building block of oscillatory neuronal

networks (Marder and Paupardin-Tritsch 1978). In cultured lobster STG neurons

glutamate evoked an outward current with two kinetically distinct components and a

reversal potential of about —50 mV. Glutamate-evoked conductance increase was

primarily mediated by chloride with a small potassium component (Cleland and

Selverston 1995). In intact STG the reversal potential of glutamate response was —70 mV

(Marder and Eisen 1984).

Although crustacean neurons readily respond to glutamate, the pharmacology of

their receptors significantly differs from those of vertebrate species. Ibotenic acid binds

the same receptors as glutamate, while the agonists NMDA, AMPA, kainate or

quisqualate failed to induce a response. PTX, at 100 μM, completely blocked glutamate

response, while niflumic acid blocked it partially (Cleland and Selverston 1995). An

ionotropic glutamate receptor from cultured lobster neurons mediated recurrent synaptic

inhibition in the STG; it was neither cross-activated nor cross-desensitized by GABA,

and the observed GABA-evoked chloride current was distinct, i.e. the glutamate and

GABA activated chloride channels were different (Cleland and Selverston 1998). The

ionotropic glutamate receptor was weakly blocked by the chloride channel blocker

furosemide and glutamate receptor antagonist CNQX, but not by the vertebrate GABAA
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receptor antagonist bicuculline, or glycine receptor antagonist strychnine (Cleland and

Selverston 1998).

Besides ionotropic c1- and K+ mediated effects, glutamate can elicit modulatory

influences in lobster STG that are apparently mediated by metabotropic,

G-protein/PLC/IP3-dependent glutamate receptors (Levi and Selverston 2006). Activation

of mGluRs in crustacean STG led to acceleration of the gastric rhythm, and increases in

spike frequency and burst duration (Krenz et al. 2000). mGluR agonist L-quisqualic acid

induced a current similar to the proctolin current. In contrast to vertebrate receptors,

internal Ca++ stores did not participate in the invertebrate mGluR response, i.e. G-proteins

could be directly interacting with the effector ion channels (Levi and Selverston 2006).

Agonists to all three groups of vertebrate mGluR had an effect on the gastric rhythm in

lobster STG (Krenz et al. 2000). However, while group I agonists quisqualic acid and

3,5-dihydroxyphenylglycine accelerated the rhythm and were able to reactivate gastric

rhythm in silent preparations, group II agonist L-CCG-I and group III agonist AP4

blocked or slowed down the rhythm (Krenz et al. 2000). The action of group II and III

agonists was partially reversed by their respective antagonists. NMDA antagonist did not

prevent the effects of any of the agonists. PTX did not interfere with group II and III

agonists, while PTX effect on group I agonists was not investigated (Krenz et al. 2000).



CHAPTER 2

MATERIALS AND METHODS

In Chapter 2, materials and methods used in all experiments described in this dissertation

are presented.

2.1 Animal Model

The stomatogastric nervous system of cold-anesthetized Jonah crabs Cancer borealis was

dissected as described (Selverston et al. 1976; Harris-Warrick 1992). The animals were

obtained from local fishermen and kept in seawater aquaria at —14 °C. The stomatogastric

nervous system was pinned onto Sylgard-lined Petri dishes (Sylgard 184, Dow Coming)

and superfused with chilled (10-15 °C) normal Cancer saline with the following

composition (in mM): NaC1 - 440, KCl - 11, CaC12 - 13, MgCl2 - 26, malefic acid - 5,

trizma base - 11 (pH 7.4 - 7.5). In the STNS preparation inferior oesophageal nerves were

always transected. Organotypic cultures of the isolated stomatogastric nervous system

were kept for up to 5 days in an incubator at 4 - 6 °C in normal saline supplemented with

1 g/1 dextrose, 35 u/ml penicillin and 50 u/ml streptomycin. Mn ++ (or Ba++) saline was

made by substituting 12.9 mM Mn++ (or Ba++) for Ca++ , always leaving 0.1 mM Ca++ in

the bath to ensure membrane stability (Golowasch and Marder 1992a). Low

concentrations of divalent cations (≤ 200 1.1M) were added without compensation. Unless

otherwise specified all chemicals were obtained from Fisher Scientific (Fairlawn, NJ).

Picrotoxin (PTX) and 3-mercaptopropionic acid (3MPA) were obtained from Sigma,

19
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tetrodotoxin (TTX) was obtained from Calbiochem (San Diego, CA) and proctolin from

Bachem (San Carlos, CA). Proctolin was bath applied as a 1µM solution in Cancer

saline. 3MPA was diluted in Ringer's saline and applied into a Vaseline well surrounding

desheathed CoGs and OG.

All data reported here are from PD and LP neurons, which are located in the STG.

Two PD neurons and the network's pacemaker anterior burster (AB) neuron are members

of the pyloric network and electrically coupled. No attempt was made here to isolate each

neuron because, although current flow through gap junctions can contribute to ionic

currents measured in any of these neurons, the contribution is negligible at the high

voltages we have used for our measurements (Rabbah et al. 2005). PD neurons were

identified by matching intracellular action potential recordings to their corresponding

extracellular recordings on either the lateral ventricular (lvn) or pyloric dilator (pdn)

motor nerves (Selverston et al. 1976, Harris-Warrick 1992).

Most neuromodulatory inputs to the STG originate in adjacent ganglia connected

to it via a single nerve, the stomatogastric nerve (stn). To remove the neuromodulatory

inputs to the STG (decentralization) the stn was either transected, or action potential

transmission along the nerve was blocked by adding isotonic (750 mM) sucrose + 0.1 μM

TTX to a Vaseline well built around the stn (Luther et al. 2003). The method of

decentralization did not affect the results.

2.2 Electrophysiology

Extracellular recordings were made using stainless steel electrodes placed inside Vaseline

wells built around motor nerves. Intracellular recordings from PD neurons were
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performed using theta glass electrodes filled with 0.6M K2SO4+ 20 mM KCI (15-30 MO

resistance) inserted into the soma. An Axoclamp 2B (Molecular Devices, Union City,

CA) was used for all intracellular recordings and all data were acquired with a Digidata

1200A interface and pClamp 9.2 software (Molecular Devices, Union City, CA).

Unless otherwise stated, all currents were measured in normal saline or normal

saline supplemented with 0.1 TTX. The presence of TTX during voltage clamp

measurements did not affect current amplitudes. TTX washed off completely in

approximately 2 hrs. There was no noticeable effect of short term (less than 30 min) TTX

applications on the process of activity recovery or current density changes after

decentralization. All currents were measured in two electrode voltage clamp as described

before (Golowasch and Marder 1992a).

Leak currents generated at the test potentials Vtest, was subtracted using the P/n

methods: n subpulses of amplitude Vtest/n were applied (n = 4-5) in the opposite direction

from the test pulse, and the sum of the currents measured during the subpulses was added

to the current measured at Vtest•

A high threshold potassium current (IHTK) was defined here as the current

activated in normal saline by applying 800 msec depolarizing voltage steps from a

holding potential of —40 mV, leak subtracted using the P/n method described above. A

large fraction of this current is generated by the Ca-dependent K + current (Ikca)

(Golowasch and Marder 1992a, Haedo and Golowasch 2006). Peak IHTK amplitudes were

measured at 30 ms after the test pulse onset. Because IA is fully inactivated at —40 mV,

IHTK estimated using this protocol is not contaminated by IA. The delayed rectifier current

(I Kd) was defined as the current measured in the same way as IHTK but in Mn ++ containing
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saline. IKca was estimated by subtracting total outward current measured in Mn ++ saline in

response to 800 msec depolarizing voltage steps from a holding potential of —40 mV

from the current measured in the same way in normal saline. Steady state IHTK, IKCa or Ikd

values were measured at the end of the 800 msec pulse at +40 mV. The A current (I A)

was determined in normal saline taking advantage of its strong voltage-dependence of

inactivation, which distinguishes it from IHTK. IA is known to be completely inactivated in

pyloric neurons of C. borealis at —40 mV but nearly completely de-inactivated at —80 mV

(Golowasch and Marder 1992a). Thus, to estimate IA total outward current measured by

applying 800 msec depolarizing voltage steps from a holding potential of —40 mV was

subtracted from the current measured at the same membrane potentials but from a

holding voltage of —80 mV. I A amplitude was measured at 30 ms after the start of the

pulse at +40 mV. To confirm that I A was not contaminated by IHTK, the effects of partially

blocking IHTK with Mn ++ saline or with 10 mM TEA (Golowasch and Marder 1992a) on

our measurements of IA were evaluated. No significant differences from the current

measured in the same cells in normal saline were found (I A in normal saline: 96.1 ± 51.5

nA/nF, in TEA: 87.2 ± 32.0 nA/nF, n = 15, P = 0.4; IA in normal saline: 109.9 ± 29.6

nA/nF, in Mn++ : 105.8 ± 40.0 nA/nF, n= 18, P = 0.5).

The hyperpolarization-activated current (Ih) was activated with hyperpolarizing

pulses from a holding potential of —40 mV. Maximum amplitude was measured at the

end of an 8 sec pulse at —110 mV after leak-subtraction. To determine the leak current

during I h measurements, a linear fit to the I-V curve at —60 to —40 mV was extrapolated

to —110 mV. IB a corresponds to the current flowing through Ca++ channels but carried by

Ba ions, and was calculated as a difference between a current measured as described for
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IHTK, but in low Ca++ saline + 0.1μM TTX + 10 mM TEA + 12.9 mM Ba++ , and the same

current measured in TTX + TEA + Ba ++ + 200 μM CC at 210 msec from the onset of

the test pulse.

The membrane capacitance was determined by integrating the area of the

capacitive current for 12 msec long voltage steps from —50 to —60 mV. Current density

was estimated by dividing the current amplitude by the membrane capacitance. Examples

of raw current traces and I-V curves for all these currents are shown in Fig. 3.2 for PD

and 4.2 for LP (first and second columns, respectively). Day 0 measurements correspond

to initial control measurements taken in every condition tested. In decentralized

preparations, day 0 measurements were taken immediately before decentralization.

Measurement of all five different voltage-gated currents was not always possible in the

same cell. Therefore, the sample sizes of the correlation graphs may differ.

2.3 Activity-Modifying Pretreatments of the STG

Organotypic cultures of the STNS were recorded continuously for up to 2 days on an

electrophysiology setup at 11 - 13 °C in normal or modified saline (see below)

supplemented with 1 g/1 dextrose, 35 u/ml penicillin and 50 u/ml streptomycin. When

low external Na+  solutions were used we replaced 50-60% of the Na +  in the normal saline

with N-methyl-D-Glucamine (Acros Organics, New Jersey). To experimentally modify

the activity of the pyloric network we used several pharmacological methods, including

low Nat, GABA, muscimol, baclofen and proctolin bath applications. These substances

where dissolved immediately prior to use (GABA) or kept as stock solutions at 100-

1000x concentration at 4 °C for up to 2 weeks, then diluted immediately prior to use.
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After dissection of the STNS, and desheathing of the STG, the pyloric rhythm was

recorded for —30 minutes in normal crab saline before any treatment was started. The

solution was then changed and the preparations were superfused with the substance of

choice dissolved in crab saline. To reduce pyloric network activity the injection of

hyperpolarizing current (-2 to —5 nA) into the two pyloric dilator (PD) neurons found in

the ganglion was used. These two neurons are both strongly electrically coupled to the

pacemaker AB neuron (coupling coefficient —0.2, Rabbah et al. 2005) and their

hyperpolarization effectively reduces or eliminates rhythmic activity.

Pyloric frequency was measured cycle by cycle using software developed in our

laboratory (Datamaster) on a LabWindows platform, which determines bursts of action

potentials from extracellular recordings by detecting threshold crossings by the action

potentials. Frequency data for each 5 or 10 minutes of pyloric activity was averaged and

plotted as one bar on a frequency bar graph.

2.4 Statistical Analysis

All data are shown as averages ± standard deviation. Statistical significance was

determined using linear regression analysis, t-tests, or one-way ANOVAs with Tukey

post-hoc tests (SigmaStat 2.03, Aspire Software International, Leesburg, VA). Two-way

mixed design ANOVAs, ANCOVAs and multivariate analyses were performed using

custom functions (SigmaStat 2.03, Excel, Microsoft).



CHAPTER 3

NEUROMODULATORS, NOT ACTIVITY, CONTROL COORDINATED

EXPRESSION OF IONIC CURRENTS

Results presented in Chapter 3 were published in Journal of Neuroscience (Khorkova and

Golowasch 2007).

3.1 Abstract

The ionic currents that determine neuronal activity have been shown to express wide

neuron-to-neuron amplitude variability. Nevertheless, neuronal electrical activity across

individuals is often remarkably similar, and can be stable over long periods. This

apparent random variability of individual current amplitudes may obscure mechanisms

that globally reduce variability and that contribute to the generation of the same neuronal

output. One mechanism that could compensate for this individual variability and may

enhance output stability could be the coordinated regulation of expression of ionic

currents. In this dissertation, studying identified neurons of the Cancer borealis pyloric

network it was discovered that the removal of neuromodulatory input to this network

(decentralization) was accompanied by the loss of the coordinated regulation of ionic

current levels. Additionally, decentralization induced large changes in the absolute levels

of several ionic currents. The loss of co-regulation and the changes in current levels were

prevented by continuous exogenous application of proctolin, a peptide known to be part

of the normal neuromodulatory input to the pyloric network. This peptide does not exert

fast regulatory actions on any of the currents affected by decentralization. Hence
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neuromodulatory inputs to the pyloric network have a novel role in the regulation of ionic

current expression. They can control, over the long-term, the coordinated expression of

multiple voltage-gated ionic currents that they do not acutely modulate. These results

suggest that the loss of current co-regulation after decentralization may remove

constraints on intrinsic plasticity that permit recovery of function.

3.2 Introduction

Neuronal activity is mainly the result of the operation of ion channels, and their

conductance levels are known to be highly variable (Liu et al. 1998, Golowasch et al.

1999a, Golowasch et al. 2002, Schulz et al. 2006). In spite of this variability, neurons and

neural networks can maintain remarkable functional stability under variable conditions

(Davis 2006), can restore their functional levels of activity after perturbations and injury

(Thoby-Brisson and Simmers 1998, Luther et al. 2003, Saghatelyan et al. 2005) and

sometimes show great similarity of activity patterns across individuals (Bucher et al.

2005). It is therefore important to understand how this conductance variability can result

in stable activity. One possibility is that the conductance levels are regulated by activity-

dependent feedback mechanisms. This has been shown at the synaptic (Turrigiano 1999,

Turrigiano and Nelson 2004), neuronal (Turrigiano et al. 1994, Hong and Lnenicka 1997,

Galante et al. 2001, Xu et al. 2005, Davis 2006) and network levels (Thoby-Brisson and

Simmers 1998, Golowasch et al. 1999b, Gonzalez-Islas and Wenner 2006).

Other possibilities include activity-independent mechanisms, such as

developmentally regulated ion channel expression programs (Linsdell and Moody 1994,

Spitzer 2006). Furthermore, it is often found that conductance levels of two or more ionic
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currents are simultaneously regulated as a consequence of neuronal activity changes

(Linsdell and Moody 1994, Desai et al. 1999, Golowasch et al. 1999a, Gibson et al.

2006). Whether such simultaneous changes actually involve a coordinated regulation

between multiple ionic currents is known for only a very small number of cases

(McAnelly and Zakon 2000, MacLean et al. 2003), and the coordinating mechanisms are

unknown. In lobster stomatogastric ganglion (STG) neurons an activity-independent

mechanism seems to coordinate the conductance level of the outward A-current (I A) with

the conductance level of the hyperpolarization-activated inward current (I h), resulting in

the preservation of neuronal and network patterns of activity (MacLean et al. 2003). The

coordination between these currents occurs at the transcript level (Schulz et al. 2006).

3.3 Results

3.3.1 Decentralization Modifies Pyloric Network Activity

The pyloric network of the crustacean STG shows a robust form of stabilization of its

rhythmic activity. Pyloric activity is temporarily interrupted when central

neuromodulatory inputs from other ganglia are removed (decentralization), but can

recover to near control levels hours to days later (Thoby-Brisson and Simmers 1998,

Golowasch et al. 1999a, Luther et al. 2003). An example of these changes in activity is

shown in Figure 3.1. On the left (Control) are extracellular recordings of the main pyloric

motor nerve (lvn) and intracellular recordings of a PD neuron of a preparation in which

the neuromodulatory input nerve is intact, shown at different times in organ culture (days

0, 1 and 4). Only a slight variation in the frequency of the rhythm is observed.
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Figure 3.1 Effects of decentralization on pyloric network activity. All extracellular
recordings were obtained from the lateral ventricular nerve lvn and all intracellular
recordings are from the PD neuron, in normal saline. Control (left panels) and
decentralized (right panels) preparations were recorded at days 0, 1 and 4 in organ
culture. Decentralized day 0 corresponds to activity —15 minutes after decentralization.
On day 1, the decentralized preparations showed bouts of pyloric activity lasting seconds
to a few minutes and repeating at irregular intervals of minutes to hours (top lvn panel)
comprising the so-called "bouting period". During these bouts, pyloric activity was slow
and irregular (bottom lvn panel and PD trace are expanded recordings at time of vertical
arrowhead). Regular pyloric activity recovered after this bouting phase (day 4).
Arrowheads point to —40 mV. lvn recordings monitor the activity of three different
pyloric cells types: LP neuron (largest action potentials), PY neurons (smallest action
potentials) and PD neurons (intermediate action potentials).

If the neuromodulator-containing input nerve (stn) is severed, the pyloric rhythm

ceases in seconds to minutes (Decentralized, day 0). This activity recovers after > 1 day
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in organ culture (Decentralized, day 4). During the process of recovery the pyloric

rhythm undergoes a period of several hours in which it turns on and off irregularly for a

few seconds to minutes at a time, a process termed "bouting" and illustrated in Figure 3.1

(Decentralized, day 1).

3.3.2 Decentralization Modifies Voltage-Dependent Ionic Current Levels

In the lobster Jasus lalandii, the recovery of the pyloric rhythm is correlated with an

increase in the ionic conductance levels of Ih , and a conductance decrease of the TEA-

sensitive K+ current component in PD neurons four days after decentralization (Thoby-

Brisson and Simmers 2002). In Homarus gammarus recovery was associated with an

increase in I A four days after decentralization (Mizrahi et al. 2001). This has been argued

to be partly consistent with the acquisition of bursting properties not normally expressed

by these cells (Thoby-Brisson and Simmers 2002). In lobsters, however, the transitional

bouting phase observed in crabs has not been reported. To establish if similar

conductance changes are observed in C. borealis, several ionic currents were measured

during the entire recovery period.

Figure 3.2 (left panels) shows examples of raw current traces of five voltage-

gated currents we measured in C. borealis PD neurons: Ih , IA, the high threshold Ba++

current (IB a), the Ca-dependent K+ current (IKC a), and the delayed rectifier K + current

(I Kd). Figure 3.2 (center panels) shows examples of current-voltage plots of these currents

before decentralization (open symbols/dashed lines) and 24 hours after decentralization

(solid symbols/lines). Changes in Ih, IB a and IKca (measured at steady state), and in IA

were consistently observed, while IKd did not change. To determine the time course of

these changes, we measured current densities of these voltage-gated currents at 0, 1 and 4
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days in organ culture in control preparations (no decentralization) and in preparations

decentralized immediately after the day 0 measurements were taken. All data points were

normalized to the measurements in the same cell at day 0 (Figure 3.2, right panels).

Significant current density changes occurred over 4 days after decentralization relative to

the changes observed in control preparations (all comparisons made using two-way

mixed design ANOVA): Ih (P < 0.001, n = 39), IB a (P < 0.05, n = 26), IKc a (steady state, P

< 0.05, n = 23) and IA (P < 0.001, n = 62) (Figure 3.2, right panels). I Kd (Figure 3.2,

bottom) and the peak of IKc a (not shown) were not significantly affected over this period

(P = 0.80, n = 22, P = 0.28, n = 23, respectively). The largest changes in decentralized

preparations compared to controls on the same day occurred 24 hours after

decentralization: Ih, IB a and IKca (steady state) increased, and I A decreased (post-hoc

Tukey tests: Ih: P < 0.001, IB a : P = 0.002, IKc a : P = 0.025, IA: P = 0.03). Only the current

density of Ih remained significantly elevated in decentralized preparations after 4 days (P

= 0.007), while the current densities of IA, IB a and IKca all returned to levels

indistinguishable from control non-decentralized preparations (Figure 3.2, right panels).

Current levels in non-decentralized preparations remained generally stable over time in

organ culture except Ih and I A that significantly decreased by day 4 compared to day 0 (P

< 0.01 for both). Changes in decentralized preparations were significant with these trends

taken into consideration.

Because I Kd showed no tendency to change over time in either non-decentralized

(control) or decentralized preparations, and to avoid applications of Ca ++ current blockers

(e.g. Mn++), that could potentially interfere with normal physiological processes, we

henceforth used the high threshold potassium current (IHTK) comprising IKd and IKca as a
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measure of IKc a . The same trends and their significance were observed when IHTK was

used for our analyses (two-way mixed design ANOVA P < 0.05, n = 23) even though the

relative level changes were smaller for IHTK than I Kca (ΔIHTK at day 1: 131.1 + 30.2 %,

ΔIKCa at day 1: 222.4 ± 80.3 %).

In a subset of experiments, measurements were made both immediately prior to,

and 10-30 minutes after decentralization. No significant current density differences were

observed over this brief time span (current densities measured 10-30 min after

decentralization expressed as percent of currents measured before decentralization in the

same cell were: IHTK 101 ± 39%, IA: 98 ± 30%, Ih: 98 ± 31%, all t-test P values were >

0.05, n = 20). This indicates that long-term current changes are not the immediate effect

of the neuromodulatory input removal.

No effects of decentralization or time in organ culture on neuronal input

resistance were observed (Table 3.1). With the exception of I Ba , which sometimes showed

a hyperpolarizing shift in its activation curve, we also did not observe significant changes

in other conductance parameters (not shown).

3.3.3 Co-regulation of Ionic Current Pairs Depends on Neuromodulatory Input

In the experiments reported in this dissertation current densities of all the currents studied

displayed a high level of variability (Ih = —6.0 ± 5.1 nA/nF, IA = 97.5 ± 21.0 nA/nF, IHTK

(steady state) = 105.8 ± 18.9 nA/nF, IKc a=66.2±34.7 nA/nF, IKd = 53.9 ± 26.4 nA/nF, and

I Ba = —1.62 ± 1.92 nA/nF), similar to what has been reported for PD neurons before

(Goldman et al. 2000). Surprisingly, it was found that the densities of Ih, IA and IHTK or
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I Kca significantly correlate with each other at all times during organ culture in non-

decentralized preparations (Figure 3.3A-C and Table 3.2). No other current density

combination proved significantly correlated (not shown). To confirm that correlation of

IA and Ih can not simply be explained by correlation of each of these currents with IHTK,

multivariate analysis was performed. If the effect of IHTK was removed, the resulting

partial correlation coefficient for the IA/Ih pair is still significant (R = 0.50, P < 0.001),

which indicates that there is an independent relationship between IA and Ih. Further, the

multiple correlation among the three currents were determined: it can be described as

IHTK = 120.85 + 0.97*I A + 6.12*Ih.

The strong correlations between IA vs IHTK and Ih vs IHTK observed in control

preparations, however, disappeared one day after decentralization (Figure 3.3 D and

Table 3.2) and the currents remained uncorrelated on day 4 after decentralization (Figure

3.3 E and Table 3.2). In contrast, Ih vs I A remained strongly correlated at all times after

decentralization (Figure 3.3D, E right panels, and Table 3.2) suggesting a mechanism of

co-regulation between Ih and IA that is different from the mechanism that explains the co-

regulation of IHTK and both I A and In.

It was hypothesized that the lack of neuromodulator release, and/or the lack of

rhythmic activity caused by decentralization, must mediate the changes in ionic current

density and ionic current co-dependence shown in Figures 3.2 and 3.3. To test our

hypothesis, we examined the effects of proctolin, one of the naturally released

neuromodulators that can induce rhythmic activity when bath applied or when released

onto the STG by projection neurons (Blitz and Nusbaum 1999), on activity, on ionic

current levels and on current co-regulations.
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3.3.4 Proctolin Prevents Ionic Current Changes and Loss of Co-Regulation Due to
Decentralization

Figure 3.4 illustrates the effects of proctolin on activity in control (non-decentralized,

Figure 3.4A) and decentralized preparations (Figure 3.4B). In non-decentralized

preparation, after 15 minutes in proctolin (column 2) a slight increase in pyloric rhythm

frequency and an increase in PD neuron oscillation amplitude are observed. In

preparations decentralized in normal saline, pyloric rhythm is completely shut down 15

min after decentralization (panel B, column 1). However, if a preparation is decentralized

in the presence of 10 -6 M proctolin, pyloric activity is strong and regular (panel B,

column 2). In these experiments electrodes were removed after recording in proctolin on

day 0 (column 2) and reinserted 24 hours later still in the presence of bath applied

proctolin (column 3). Although regular pyloric activity continues uninterrupted during a

24 hour application of proctolin in both control (Figure 3.4A, column 3) and

decentralized preparations (Figure 3.4B, column 3) upon re-impalement, we observed a

slight decrease in the amplitude of the membrane potential oscillations. This coincided

with a slight decrease in the PD neurons' input resistance (Ri n = 26.3 MO on day 0, =

21.7 MO on day 1 in this preparation). However, on average, input resistances of the

preparations examined in this study were statistically indistinguishable at all stages

(Table 3.1). A strong decrease in the amplitude of the inhibitory synaptic potentials that

PD neurons receive from LP neurons was also sometimes observed (Figure 3.4B, column

3), which is consistent with observations previously reported in lobster (Thoby-Brisson

and Simmers, 2002). Finally, upon washout of proctolin, both control and decentralized

preparations slowed down and decreased the amplitude of the PD neuron membrane
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potential oscillations, consistent with well known effects of proctolin (Hooper and

Marder 1987, Nusbaum and Marder 1989a, b).

The acute application of proctolin did not significantly affect the current

amplitudes of either IHTK, IA or Ih. After 15 minutes of 10-6 M proctolin bath application

in intact preparations current densities were (in % of densities in normal saline in the

same cell): IHTK, 114.9 ± 46.7% (P = 0.273), I A , 95.1 ± 25.0% (P = 0.115), Ih, 114.7 ±

57.8% (P = 0.707). P values are the result of paired t-tests (n = 15). The lack of acute

effects of proctolin on these voltage-dependent currents has also been thoroughly

documented before (Golowasch and Marder 1992b, Swensen and Marder 2000). In these

previous studies proctolin was applied at various times after decentralization. Continuous

application of 10-6 M proctolin for 24 hours in intact, non-decentralized, preparations

produced no significant differences in current densities (in % of densities in the same cell

on day 0): IHTK, 110.8 ± 28.8% (P = 0.431), I A , 91.9 ± 46.1% (P = 0.816), Ih, 110.1 ±

44.2% (P = 0.495). P values are the result of paired t-tests (n = 5). Similar results were

obtained in the preparations decentralized and continuously maintained in the presence of

proctolin for 24 hr (in % of densities in the same cell on day 0 before decentralization):

IHTK, 109.3 ± 30.2% (P = 0.36), IA, 94.0 ± 27.6% (P = 0.36), Ih, 76.8 ± 26.2% (P = 0.24).

P values are the result of paired t-tests, n = 12. Figure 3.5 shows these results (compare

grey and white bars). Here hatched bars show the effects of decentralization in normal

saline for comparison.

Figure 3.6A shows the effects of the continuous bath application of 1μM

proctolin on ionic current co-regulation. Ionic currents were measured, proctolin was

applied, and the preparations were decentralized immediately thereafter. The preparations
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were then maintained in proctolin for 18-24 hours, and current densities were measured

again. In the presence of proctolin, regular pyloric activity was maintained in spite of

decentralization (Figure 3.4D, column 3), and the three current pairs (IA/IHTK, Ih/IHTK and

Ih/IA) remained highly significantly correlated (Figure 3.6A, and Table 3.2), similar to

non-decentralized preparations (Figure 3.3A-C, and Table 3.2) and in contrast with the

effects of decentralization alone (Figure 3.3D-E, and Table 3.2). To determine whether

the uninterrupted activity or uninterrupted neuromodulator supply accounted for the

maintenance of current co-regulation, rhythmic activity was suppressed with 0.1 μM

tetrodotoxin (TTX) applied together with 1 μM proctolin 10 minutes before

decentralization (Figure 3.7 right, Golowasch and Marder 1992b). Bath-applied TTX not

only blocks the generation of action potentials in STG motorneurons, but also blocks the

release of endogenous neuromodulators from axon terminals onto the STG, which

eliminates subthreshold oscillatory activity. Blockade of action potentials only is not

sufficient to block slow subthreshold oscillatory activity in STG neurons (Raper 1979). A

similarly strong correlation of ionic currents in the presence of proctolin + TTX was

observed (Figure 3.6B, and Table 3.2), again similar to non-decentralized preparations

(Table 3.2) or decentralized preparations treated with proctolin alone (Table 3.2). TTX

application alone did not preserve the co-regulation of I A/IHTK and Ih/IHTK, while Ih/IA co-

regulation was again not affected (Figure 3.6C, and Table 3.2), similar to the effects of

decentralization alone (Figure 3.3D-E, and Table 3.2). The preservation of co-regulation

among these three currents in the presence of proctolin (or proctolin + TTX) was

accompanied by the elimination of the current density changes observed after

decentralization (no proctolin application) relative to each current's levels at day 0
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(Figure 3.5, white and black bars). Together with the complete loss of oscillatory activity

in TTX + proctolin, these results indicate that proctolin, and not activity, regulates the

coordinated expression of ionic currents in this system.

These results suggest the possibility that the "non-decentralized" ionic current

density levels and their co-regulation could be rescued by neuromodulators after the ionic

currents have already undergone the decentralization-induced changes in current density

and co-regulation we have observed. To address this possibility two sets of experiments

were conducted. In the first experiment, a reversible TTX/sucrose block of action

potential transmission along the stomatogastric nerve (stn) was used rather than stn

transection (see Methods) to decentralize the preparations. After approximately 24 hours,

current densities were measured. At this point the decentralized preparations have entered

the so-called bouting stage of irregular pyloric activity, described by Luther et al. (2003)

or, in some cases, fully recovered their pyloric rhythmic activity (Figure 3.1,

decentralized day 1 and 4). The stn block was then removed by extensive washing of the

sucrose/TTX block with normal saline and the preparation was maintained in organ

culture for additional 24 hours, at which point current densities were measured one more

time. The effectiveness of the block, and of its removal, was confirmed by stimulating the

stn (on the side of the Vaseline well used for the block opposite to the STG) with 20 sec

long trains of 0.4 msec voltage pulses (1-2 V amplitude) at 10 Hz. The stn block was

deemed effective if stimulation for 20 seconds was unable to elicit change in pyloric

activity, a block was deemed removed if similar stimulation could elicit the pyloric

rhythm or change its frequency, at least for the duration of the stimulus. In the second set

of experiments, preparations were decentralized by stn transection and kept in organ
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culture for 24 hours. At this point current densities were measured. The preparations were

then incubated in bath-applied 1 μM proctolin for additional 24 hours. Currents were then

measured for a second time. The day 2 changes were expressed relative to day 0 using

population averages because currents at day 0 were not measured in these preparations to

avoid more than two impalements per cell (see Methods). The effect of these treatments

on current density levels of IHTK, IA and Ih are shown in Figure 3.8. The restoration of the

full complement of endogenous neuromodulators by the removal of the stn block after 24

hours (Decentralization reversed after 24 hrs) or the addition of exogenous proctolin (24

hrs decentralized then proctolin) were not able to restore the control levels of IHTK or IA

densities observed before decentralization (day 0) or the levels of non-decentralized

preparations at the same time point. In fact, the levels of IHTK and IA remained

approximately equal to the levels observed in decentralized preparations on the same day

in culture (but significantly higher than control in preparations in the case of IHTK and

significantly lower than control preparations in the case of IA , P < 0.05 for both). In

contrast, the current density of Ih was closer to levels observed in control preparations.

These results suggest that the effects of decentralization on ionic current levels are

irreversible past a critical window of < 24 hours.

The effect of the two treatments described above on the co-regulation of currents

is shown in Figure 3.9 (data combined). Not only was the co-regulation of the pairs

I A/IHTK and Ih/IHTK not recovered by continuous proctolin bath application starting 24

hours after decentralization, or by re-establishing normal action potential transmission

along the stn, but the robust co-regulation we observed of the Ih/IA pair was further lost

(compare right panels in Figure 3.3 and Figure 3.9). These results suggest that prolonged
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removal of neuromodulators causes a restructuring of the signaling pathway connecting

the neuromodulator receptors and their ion channel effectors.

3.4 Discussion

The results reported here reveal a hitherto unknown role of neuromodulators, namely that

of controlling the co-dependence of ionic currents (in this particular system of IHTK, IA

and Ih). It is shown in this dissertation that this effect is likely to be mediated by

neuromodulators (such as proctolin) directly rather than indirectly via electrical activity

changes. Proctolin is known to activate a peptide-specific current (Golowasch and

Marder 1992b, Swensen and Marder 2000) via a metabotropic receptor (Swensen and

Marder 2000). Acute effects of proctolin on other ionic currents have not been previously

reported. The results reported in this chapter suggest that proctolin has effects on several

other voltage-gated currents expressed by PD neurons that are not acutely apparent and

are revealed when neuromodulatory input (including proctolin) to the STG is removed.

At this point it is unknown whether the acute effects of proctolin on the peptide-activated

current and the long-term effects on the amplitude and co-regulation of other voltage-

gated currents are mediated by the same or by distinct signaling pathways linked to

proctolin receptor.

An activity-independent mechanism linking I A and Ih has been shown in PD

neurons in lobster (MacLean et al. 2003), apparently acting at the transcription level

(Schulz et al. 2006). The results reported in this chapter are consistent with this

mechanism since the IA/Ih co-regulation does not appear to be significantly affected by

the loss of rhythmic activity. However, here it is shown that I A and Ih both co-vary with
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IHTK, in a manner that appears to be independent of the co-variation between I A and 1h and

of activity, but controlled by the neuromodulatory input to the pyloric network.

Furthermore, the loss of current co-regulation after decentralization can be prevented by

exogenous neuromodulators only during a critical window lasting for an as yet

undetermined period no longer than 24 hours after decentralization. This period coincides

with the critical window after decentralization during which RNA synthesis is required

for rhythmic pyloric activity recovery in lobster (Thoby-Brisson and Simmers 2000).

Thus, a possible mechanism underlying the co-regulation of currents by neuromodulator

could be the simultaneous regulation of the expression of multiple genes (cf. Adams and

Dudek 2005) in conjunction with a relatively fast turnover rate of the channels involved.

Alternatively, ion channels can also express enzymatic activity, which could regulate

inter-ion channel activation directly (Runnels et al. 2001, Cai et al. 2005). The existence

of multi-molecular complexes including ion channels, enzymes and cofactors capable of

recruiting and activating enzymes (Catterall et al. 2006, Levitan 2006) may provide the

molecular framework for the coordinated regulation of multiple channels.

The data reported here show that most ionic currents affected in PD neurons by

decentralization show transient current density changes that are maximal at a time during

the recovery (day 1) when pyloric rhythm displays a high degree of instability

characterized by intermittent bouts of pyloric activity (Luther et al. 2003). Preliminary

evidence indicates that this is also true for other neuronal types in the network. These

transient changes may in fact be responsible for bouting behavior, as suggested by similar

current changes during bouting observed in a conductance-based model of PD neuron

decentralization (Zhang and Golowasch 2007).
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Sustained rhythmic activity in non-decentralized preparations is in large part driven by an

additional inward current activated by neuromodulators (Golowasch et al. 1992b,

Swensen and Marder 2000). This neuromodulator-gated current is activated by proctolin

and is thought to be inactive in decentralized preparations due to the abolished release of

neuromodulators, yet rhythmic activity slowly recovers back to near control levels

(Thoby-Brisson and Simmers 1998, Luther et al. 2003). It is in principle possible that the

neuromodulator-gated current activated by proctolin after decentralization becomes

constitutively active and independent of the peptide, thus reactivating the pyloric rhythm.

Alternatively, two effects may compensate for the prolonged removal of neuromodulator-

gated currents and help restore rhythmic network activity: 1) A subset of the voltage-

gated ionic currents irreversibly change in amplitude relative to control levels during the

recovery after decentralization (i.e. Ih), this may be sufficient to restore the neuron's ionic

current balance and rhythmic activity. 2) The change in co-regulation of a subset of

voltage-gated currents (i.e. Ih, I A and IHTK) after decentralization may be sufficient to alter

the balance of conductances to a state that restores rhythmic activity in key neurons, such

as the PD neurons that are strongly coupled to the pacemaker AB neuron. As a

consequence the entire network may recover its rhythmic pattern of activity. Data

obtained in this dissertation (Chapter 4) indicate that different neurons in the network

respond differently to long-term decentralization. Additionally, synaptic changes may

also occur as suggested by Thoby-Brisson and Simmers (2002).

Thus, the pyloric network recovery of activity is likely the result of a complex

interplay and balance of ionic current and synaptic changes across the entire network. It

is possible that the high degree of consistency of pyloric network activity across
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individuals (Bucher et al. 2005) is the result of conductance co-regulation set by

neuromodulatory input. On the other hand, our data indicate that coordinated expression

of ionic currents is not by itself necessary to ensure a stable neuronal output since stable

output was restored even in the absence of their coordinated expression. Perhaps it is

precisely the loss of co-regulation that, in combination with other synaptic and/or ionic

current changes, releases certain constraints imposed on the network under normal

conditions to allow the recovery of rhythmic activity to within functional levels.

Although a large degree of ionic current variability can theoretically sustain specific

types of neuronal activity (Goldman et al. 2001, Prinz et al. 2004), a restriction of the

global current variability by co-regulation can help to ensure the maintenance of activity

within functional limits (Goldman et al. 2001, MacLean et al. 2003, Burdakov 2005,

MacLean et al. 2005) in the intact system. However, the release from the co-regulated

condition plus significant current density changes of a subset of ionic currents may be

required to ensure the recovery of specific activity patterns, such as the pyloric activity

pattern, when one of the ionic currents responsible for rhythm generation is lost (i.e. the

neuromodulator-gated current (Swensen and Marder 2000)). Ionic current co-regulation

may also play other, as yet unidentified, roles, e.g. gain adjustment (Burdakov 2005).

Finally, conductance parameters other than those identified in this work, which could

contribute to the restoration of the functional output of the network, may also be subject

to co-regulation (e.g. McAnelly and Zakon 2000). These results highlight the complexity

of the balance of conductances and their properties in the generation of neuronal activity,

and that potentially many important factors regulating neuronal activity remain to be

identified.
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Table 3.1 Input Resistance (in MO) Changes during Organ Culture and Decentralization

Table 3.2 Linear Regression Analysis of Ionic Current Density Coordinated Regulation

IA VS IHTK Ih VS IHTK Ih VS IA
R2 P n R2 P n R2 P n

Control, day 0 * 0.48 <0.0001 95 0.37 <0.0001 94 0.4 <0.0001 89

Control, day 1 0.49 0.007 12 0.81 0.002 8 0.54 0.009 11

Control, day 4 0.73 <0.001 22 0.44 0.002 21 0.50 <0.001 28

Decentralized, day 1 0.06 0.07 52 0.02 0.22 48 0.55 <0.001 51

Decentralized, day 4 0.05 0.35 19 0.01 0.76 19 0.56 0.0002 18

Control + Proctolin, day 1 0.88 0.01 5 0.92 0.02 5 0.89 0.05 5

Decentralized +
Proctolin, day 1 0.87 <0.0001 11 0.87 <0.0001 11 0.83 0.0002 10

Decentralized + Proctolin
+ TTX, day 1 0.73 0.002 9 0.65 0.05 6 0.87 0.0006 8

Control + TTX, day 1 0.009 0.75 12 0.05 0.500 10 0.52 0.007 12

Low R2 values are shown in bold. Notice that these correspond only to decentralized and
TTX-treated preparations (TTX effectively decentralizes the STG by blocking action
potential transmission along the stn). Proctolin was bath applied at 1μM and TTX at 0.1
1-1.M. * Day 0 corresponds to pooled data of preparations measured on day 0 before
decentralization for all experiments. Similar correlations and statistical significance were
obtained for subsets of day 0 measurements corresponding to each experimental set listed
below.
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Figure 3.2 Decentralization affects most ionic current densities in PD neurons. Left
panels: examples of raw current traces. Currents are (from top to bottom) Ih, IA, IBa, Ikca
(steady state) and IKd. Center panels: examples of current-voltage plots of the five
currents (IKCa measured at steady state). Open symbols/dashed lines are currents
measured before decentralization. Solid symbols/lines are currents measured in the same
cell 24 hours after decentralization. Right panels: current densities measured in
decentralized (solid symbols/lines) and non-decentralized preparations (open
symbols/dashed lines) at days 0, 1 and 4 in organ culture. Current densities on day 1 and
4 are normalized to values measured in the same cell on day 0, no cell was impaled more
than twice. A two-way mixed design ANOVA and post-hoc Tukey tests were used to
compare data from decentralized and non-decentralized preparations day by day
(comparisons for control preparations at different times are discussed in the text) : * P <
0.05, ** P < 0.01, * * * P < 0.001. Number of experiments is shown next to each point.
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Figure 3.3 Co-regulation of voltage-gated currents depends on continuous
neuromodulatory input. Each point corresponds to current densities of the two indicated
currents measured in an individual PD neuron. Not all current pairs were always
measured in each cell, which resulted in different sample sets for the different current
pairs. A, Currents measured on day 0 before decentralization. B, Currents measured after
1 day in organ culture in non-decentralized preparations. C, Currents measured after 4
days in organ culture in non-decentralized preparations. D, Currents measured 1 day after
decentralization. E, Currents measured 4 days after decentralization. Lines are the result
of linear regression analysis in each case and are plotted only for cases when correlation
slopes were statistically significant (P 5_ 0.05) (R2 and P values are reported in Table 3.2).
All currents densities are expressed in nA/nF.
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Figure 3.4 Effect of proctolin on pyloric rhythm activity. All extracellular recordings
were obtained from the lateral ventricular nerve lvn and all intracellular recordings from a
PD neuron. A, Non-decentralized preparations. B, Decentralized preparations. Cells
were impaled and left to recover until all traces were stable. Recordings were obtained on
day 0 before (column 1) and 15 minutes after application of 1 μM proctolin (column 2).
The electrodes were removed and proctolin was left continuously in the bath for 24
hours. The PD neurons were then reimpaled and recordings were allowed to stabilize
(column 3). Proctolin was then washed out for —15 minutes before a new recording was
made. Arrowheads point to —40 mV.



Figure 3.5 Neuromodulator prevents current density changes due to decentralization.
Current densities on day 1 normalized to day 0 values are shown for IHTK, IA and Ih.
Control: non-decentralized preparations. Decentralized in normal saline: preparations
were decentralized on day 0 in normal saline. Decentralized in proctolin: preparations
were decentralized on day 0 in bath-applied lμM proctolin. Decentralized in proctolin +
TTX: preparations were decentralized on day 0 in bath applied 1 μM proctolin + 0.1 μ,1\4
TTX. Bars represent average of at least 12 experiments ± SD. Stars indicate statistically
significant changes compared to day 0 (two-way mixed design ANOVA, * P 0.05).
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Figure 3.6 Exogenous neuromodulator bath application prevents the loss of current
density co-regulation in decentralized preparations. Each point corresponds to current
density values of the two indicated currents measured in an individual PD neuron. Not all
current pairs were always measured in each cell, which resulted in different sample sets
for the different current pairs. A, Decentralization in continuously bath applied 1 μM
proctolin. B, Decentralization in continuously bath applied 1M proctolin + 0.1 μM
TTX. C, Non-decentralized preparations in continuously bath applied 0.1μM TTX.
Proctolin and TTX bath application were maintained for 18-24 hours and measurements
were made thereafter. Lines are the result of linear regression analysis in each case and
are plotted only for cases when correlation slopes were statistically significant (P 0.05)
(R2 and P values are reported in Table 3.1). All currents are expressed in nA/nF.
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Figure 3.7 Effect of tetrodotoxin on proctolin-induced pyloric rhythm. Extracellular
recordings were obtained from the lateral ventricular nerve lvn and intracellular
recordings from a PD neuron. Left: decentralized preparation in normal saline + 1 μM
proctolin (bath applied). Right: same preparation 15 min after addition of 0.1 μM TTX.
Addition of TTX completely blocks all activity in the pyloric network as can be seen
from the extracellular lvn and intracellular PD neuron recordings. Arrowheads point to
—40 mV.
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Figure 3.8 Neuromodulator applied past a critical window after decentralization does not
restore control current densities. "Control 48 hrs in NS": non-decentralized preparations
were kept in organ culture for 48 hours in normal saline (n = 5). "24 hrs decentralized
then 24 hrs in NS": preparations were decentralized and the kept in organ culture for 24
hours in normal saline (n = 20). "24 hrs decentralized then 24 hrs proctolin": preparations
were decentralized and placed in organ culture for —24 hours. Current densities were then
measured (day 1) and placed in bath applied 1 μM proctolin (n = 12). "24 hrs
decentralized then reversed for 24 hrs": sucrose/TTX block of the input nerve stn was
removed after 24 hr and the currents were measured. 18-24 hours later currents were
measured again (n = 14). Bars represent current densities (± SD) normalized to day 0
using population averages. Currents were compared to levels on day 0 using a mixed
design two-way ANOVA (* P ≤ 0.05).
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Figure 3.9 Effect of neuromodulators on the co-regulation of ionic currents after long-
term decentralization. Each point corresponds to current density values of the two
indicated currents measured in an individual PD neuron. Not all current pairs were
always measured in each cell, which resulted in different sample sets for the different
current pairs. Experiments were conducted as described in Figure 8. ANCOVA analysis
of the data from the two sets of experiments showed no difference in the linear
regressions and data were pooled together. Shown on each panel are coefficients of
determination (R 2) and statistical significance (P) of the regression slopes. All currents
are expressed in nA/nF



CHAPTER 4

COORDINATED EXPRESSION OF IONIC CURRENTS WITHIN NEURONS
AND ACROSS NEURONAL TYPES IN A RHYTHM-GENERATING NETWORK

4.1 Abstract

How do rhythm-generating neuronal networks coordinate the activity of their neuronal

components to produce a coherent output, especially when exposed to constantly

changing environmental conditions? To address this question the pyloric network of the

crab Cancer borealis was studied. It was found that the maximum amplitude levels of

several ionic currents, namely IHTK, IA and Ih, were each coordinated (or co-regulated)

between the two PD cells of the pyloric network. IHTK and IA, but not Ih, were also

coordinated between two different neuronal types (PD and LP neurons) in the pyloric

network. The INTER-cellular PD to LP neuron co-regulations of IHTK and IA, were

disrupted if the preparations were treated with picrotoxin (PTX), a chloride channel

blocker that abolishes cell to cell communication through glutamatergic synapses.

Experimental blockade of the central neuromodulatory input (decentralization), which

normally includes GABA, and treatment with 3MPA, an inhibitor of GABA synthesis,

did not significantly affect the INTER-cellular IHTK and IA co-regulation. However, both

of these treatments reversed the Ih co-regulation between the two PD neurons, which

became disrupted or reversed, and between the PD and LP neurons, which became

established. Neither PTX, nor 3MPA treatment affected the intracellular co-regulation of

IHTK/IA , IHTK/Ih and IA/Ih current pairs, while decentralization abolished co-regulation of

distinct current pairs in different cell types. These results indicate that the glutamatergic
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feedback synapses from the LP neuron to the two PD cells were necessary to maintain the

coordinated expression of HTK and I A currents both between LP and PD and, either the

glutamatergic feedback synapse from the LP neuron to the two PD cells and/or strong gap

junction connections between the two PD neurons were required to maintain co-

regulation of IHTK and I A between the two PD neurons. Coordination in Ih between the

neurons was determined by GABA signaling and was not as crucial for the maintenance

of regular pyloric output as the coordination in IA or IHTK. These results indicate that

INTER- and intracellular current coordinations are maintained by different mechanisms.

4.2 Introduction

Rhythmic pattern-generating neuronal networks are widely represented in the animal

kingdom, controlling the function of many vital organs, such as heart, lungs, digestive

system, etc. The rhythmic output of these networks depends on the coordinated activity

of the multiple neurons comprising the networks. Does interneuronal coordination in the

network extend to the level of ionic currents that determine the neuronal activity and thus

the network output?

Multiple pieces of evidence suggested that interneuronal current coordination

might exist. It has been shown extensively in biological and model neuronal networks

that the expression of ionic channels is regulated by a feedback loop in which neuronal

activity regulates synaptic strength and expression of ionic currents. Changes in synaptic

strength and ionic current levels can, in turn, affect neuronal activity levels (Turrigiano et

al. 1995, LeMasson et al. 1993, Franklin et al. 1992, Fengler and Lnenicka 2001, Haedo

and Golowasch 2006, Ueda and Wu 2006, Wierenga et al. 2005). Modification of cellular
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or synaptic properties of any of the network neurons, not only of the pacemakers, has

been shown to disrupt the output of the whole network (DiCaprio and Fourtner 1984,

Ramirez and Pearson 1990, Marder et al. 2005a, Weaver and Hooper 2003). Given such

highly developed cross-neuronal regulation in rhythm generating networks, and given the

existence of co-regulation between ionic currents within one neuron, it is reasonable to

expect that ionic current levels might be coordinated between the network neurons.

In fact, it has been shown that copy numbers of mRNAs for two ionic channels

(IH, the channel carrying hyperpolarization-activated current (Ih) and shal, the channel

carrying the fast transient potassium current, IA) are closely correlated between the two

PD neurons in the C. borealis pyloric network of an animal despite the high variability of

copy numbers of these mRNAs between animals (Schulz et al 2006). In several instances

it has also been shown that mRNA levels could correlate with the expressed channel

conductance (Schulz et al. 2006, Baro et al. 1997, MacLean et al. 2005, Zhang et al

2003). However, coordination of ionic currents between different neurons, particularly

between different cell types, has not been directly shown before.

If interneuronal current coordination exists, what does it depend on? Ih levels

were significantly different between the two PD neurons when one of them did and the

other did not receive PAIH RNA microinjection even after 5 days in culture (Zhang et al

2003). This brings up the possibility that current expression levels in each neuron could

be pre-set in the course of development and do not respond to the dynamics of the

environment and cell to cell communications in the network. On the other hand,

modeling studies of the pyloric circuit indicate that establishing or destroying synaptic

connections ultimately leads to changes in ionic current levels (Golowasch et al. 1999b)
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This question was addressed in this dissertation by determining the status of INTER-

cellular current coordination before and after changes in cell to cell communication, and

before and after changes in the neuromodulator environment of the neurons.

Previously it has been shown that IA/Ih pair at the RNA level (Schulz et al. 2006)

and IA/Ih, I HTK/I A and IHTK/Ih current pairs at the current level (Khorkova and Golowasch

2007) are co-regulated in individual identified PD cells. If current expression is also

coordinated between cells, are these two types of coordination regulated by similar

mechanisms?

Here it is shown that the densities of several currents in the pyloric network are

coordinated, in particular IHTK, IA and I h are all correlated between the two PD neurons,

while IHTK and IA, but not Ih, are correlated between LP and PD neurons. At the same

time IHTK/IA, IHTK/Ih, and IA/Ih pairs are correlated within LP neurons. To further

investigate the molecular mechanisms underlying the INTER-cellular current

coordination, the role of the glutamatergic synaptic connections between the network

neurons was studied in preparations treated with picrotoxin (PTX). Since PTX is also

known to inhibit GABA responses the effects of GABA were tested by

pharmacologically depleting GABA-releasing neurons of their GABA content. To

determine if the central neuromodulator supply that is normally essential for pyloric

rhythm generation plays a role in the INTER-cellular current coordination currents were

studied in a pyloric network with neuromodulator supply blocked. Intracellular current

co-regulation during all these treatments were monitored to establish if intra- and INTER-

cellular current coordination involved shared mechanisms.
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4.3 Results

4.3.1 Pyloric Network of the Crustacean STNS as an Experimental Model

To study the INTER-cellular coordination of ionic currents in a rhythm generating

network the PD and LP neurons of the pyloric network of the Jonah crab (Cancer

borealis) were used. As shown in chapter 3, when the STG is dissected together with the

commissural (CoG) and oesophageal ganglia (OG) as shown in Figure 1.1A, the pyloric

network retains its normal activity (shown with intracellular recordings from the LP (left)

and the PD neuron (right) in Figure 4.1 Control) for up to 10 days in organ culture. In the

pyloric network the two PD neurons and the network's pacemaker anterior burster (AB)

neuron are electrically coupled to form a pacemaker kernel (Figure 1.1B). The activity of

the follower LP neuron is driven by the AB neuron of the pacemaker kernel through a

glutamatergic inhibitory synapse, and the LP neuron is the only follower neuron that

provides feedback to the pacemaker kernel, in particular to the kernel's PD neurons, also

through a glutamatergic synapse. The cholinergic PD to LP synapse is not sufficient to

induce rhythmic firing in LP neurons (Miller and Selverston 1982, Eisen and Marder

1982).

In the intact preparations pyloric activity is dependent on central neuromodulatory

input comprising more than 20 known components (Kushner and Maynard 1977, Belz et al.

1984, Nusbaum and Marder 1989a, b, Li et al. 2003). GABA was found to be one of them

(Nusbaum et al. 1989, Swensen et al. 2000, Cournil et al. 1990). STG neurons do not produce

GABA on their own (Ducret et al. 2007, Swensen et al. 2000).
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Figure 4.1 Changes in pyloric activity observed in decentralized, PTX-treated and
3MPA-treated preparations after 24 h in culture. Top traces for each condition represent
lvn recordings, bottom traces represent intracellular LP recordings in the left column, and
PD recordings in the right column. In control extracellular traces, action potentials with
the largest amplitude are generated by LP, with medium amplitude by PD, and the
smallest amplitude by pyloric constrictor neurons (PY). Twenty four hours after
decentralization pyloric activity was unstable, with periods of complete silence, irregular
pyloric rhythm (shown here in Decentralized) and bouts of regular pyloric activity of
different duration. PTX treatment evoked tonic firing in LP and eliminated inhibitory
postsynaptic potentials in PDs, but the rhythmic bursting of PDs was not affected. 3MPA
did not cause significant qualitative changes in pyloric activity. Scale bars: horizontal 1 s,
vertical 40 mV. Black arrows correspond to -40 mV.
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This study concentrated on the currents that were previously shown to be

expressed in pairwise coordination in PD neurons, namely IHTK, IA and Ih (Chapter 3).

These currents can be measured in normal saline, thus excluding the possibility that the

chemicals used to isolate the currents are affecting the coordination process. Examples of

raw traces and current/voltage (I-V) plots for the ionic currents in LP cells are shown in

Figure 4.2 (see Chapter 3, Figure 3.2, for examples of raw traces and I-V plots for PD

cells).

As a first step the INTER-cellular current coordinations between the two PD and

between PD and LP cells of the pyloric network were investigated.

4.3.2 Current Levels in the Two PD Neurons Are Closely Coordinated

In this dissertation it was found that in the intact STG preparations IHTK, IA and I h were

closely correlated between the two PD neurons (Figure 4.3, Table 4.1). The overall

current levels were very similar between these two neurons (currents in PD2 neurons, as

% of currents in PD1 neurons, both on day 0 in culture, were: IHTK = 109 ± 45, I A = 114 ±

36, Ih = 134 ± 110, or in absolute levels (nA/nF), IHTK-PD1 = 89 ± 43, IHTK -PD2 = 88 ± 39,

IA-PD1 = 94 ± 42, IA-PD2 = 101  ± 43, 	 = — 9 ± 7, Ih- PD2 = —9 ± 6.6, all paired t-test p >

0.05, n = 57). The first cell impaled during the experiment was referred to as PD1 neuron,

and the second as PD2 neuron. Similar results were seen if each PD cell was randomly

distributed between groups 1 and 2. To achieve this, each PD cell pair (two PD neurons

from one ganglion) was assigned a random number. The list of all pairs was then sorted

in ascending order and divided in half, then the order of PD cells in the second half was

inverted. The results obtained from randomized pairs were as follows: currents in PD
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neurons from group 2, as % of currents in PD neurons from group 1 were: IHTK = 107 ±

40, IA = 109 ± 36, Ih = 158 ± 260, or in absolute levels (nA/nF), IHTK-PD1 = 88 ± 41, IHTK-

PD2 = 89 + 40, IA-PD1 = 97 ± 45, IAPD2 = 98 ± 40, Ih-PD1 = —9 ± 7.6, 1h- PD2 = —8 ± 5.8, all

paired t-test p > 0.05. Randomization did not significantly affect the INTER-cellular

current correlations reported in Table 4.1.

Current density correlations for the two PD cells were completely preserved in control

preparations after 24 hr in culture (Table 4.1), and current levels between PD1 neurons

and PD2 neurons at that time remained close (currents in PD2 neurons, as % of currents in

PD1 neurons after 24 h in culture, were: IHTK = 102 ± 24, IA = 92 ± 55, Ih = 150 ± 124, or

in absolute levels (nA/nF), IHTK-PD1 = 86 ± 28, IHTK-PD2 85 ± 27, IA-PD1= 144 ± 83, IA-PD2

= 99 ± 24, Ih-pm1 = —10 ± 8, Ih-PD2 = — 14 + 10, all paired t-test p > 0.05, n = 11).

Figure 4.2 (next page) Decentralization evokes complementary changes in PD and LP
current densities. Currents are (from top to bottom) Ih, IA, IBa, IHTK(steady state) and 'Ka.
First column, Examples of raw current traces from LP neurons. Second column,
Examples of current-voltage plots in LP neurons (see Figure 3.2 for raw data and I-V
plots of PD neurons). IHTK measured at steady state. Open symbols/dotted lines are
currents measured before decentralization. Solid symbols/lines are currents measured in
the same cell 24 h after decentralizaton. Third column, Time course of current density
changes in non-decentralized preparations. LP, solid symbols/lines; PD, open
symbols/dotted lines. Fourth column, Time course of current density changes in
decentralized preparations. LP, solid symbols/lines; PD, open symbols/dotted lines.
Current densities are normalized to values measured in the same cell on day 0; no cell
was impaled more than twice. Stars indicate results of the comparison of current densities
between decentralized and non-decentralized preparations at the same day in the same
cell type using two-way mixed design ANOVA and post-hoc Tukey tests (*p<0.05,
**p<0.01, ***p<0.001). Comparisons for non-decentralized preparations at different
times to the same cell type at day 0 are discussed in Results. The number of experiments
is shown next to each point.



Figure 4.2 (continued)
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4.3.3 IA and IHTK, but not I I, Levels Are Coordinated between LP and PD
Neurons

Under normal physiological conditions IA densities in LP and PD cells from the same

ganglion were correlated, and IHTK densities showed a linear correlation after a log/log

transformation, which indicates that IHTK densities in these two cells are coordinately

0changing according to the relation IHTK-pD=10(0.6443*log1HTK_ Lp+0.6052) (Figure 4.4, Table 4.2).

Although there was no discernible correlation between PD and LP neurons in Ih current,

the shape of the distribution suggested that extremely high Ih levels in PD corresponded

to low current density values in LP, and vice versa (Figure 4.4).

As shown in Figure 4.5, while IHTK and IA currents were coordinated between PD

and LP neurons, the average current density levels in each cell type were significantly

different (LP currents, as % of PD currents in the same ganglion on day 0 in culture were:

IHTK = 143 + 78, n = 78, IA = 77 + 37, n = 62, Ih = 134 ± 244, n = 55; or in absolute levels

(nA/nF), IHTK-PD = 88 ± 48, 1HTK-LP = 110 ± 55,p =0.001;IA-pD =91 ± 46,IA-Lp =63 ± 30,

p < 0.001; Ih-pD = — 10 ± 9, Ih-LP = —6 ± 4, p = 0.005; if measurements from both PDs were

available for a ganglion, they were averaged; all p are from paired t-tests).

An approximately 2:1 ratio between IKc a (the major component of IHTK) and IA

conductances, close to the one observed in this dissertation, was reported in LP cells

(Golowasch and Marder 1992a). mRNA levels for Shal (that codes for IA) were also

higher in PD neurons compared to LP neurons and correlated with IA conductance levels

in LP neurons in crab (Schulz et al. 2006) and lobster (Baro et al. 1997). Marder et al.

(2005b) have shown significantly higher levels of the mRNA coding for IKc a (BK-KCa;

approximately 400% higher) and lower levels of Shal (about 50% lower) in LP cells

compared to PD cells, with a similar 3-4 fold animal to animal variation within the cell
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types. Shab mRNA levels (that codes for I Kd), in contrast, did not correlate with I Kd levels

(Schulz et al. 2006). While Schulz et al. (2006) show that in crab shab mRNA levels were

higher in LP neurons compared to PD neurons, in our experiments there was no

significant difference between the two cells in IKd levels. These data indicate that

differences in current levels between PD and LP cells are very stable and reproducible in

preparations of different origin and that the current ratios between cells may be

coordinated at the RNA level.

In single neurons of each type (PD and LP neurons) IHTK/IA, IHTK/Ih and IA/Ih

current pairs were correlated at day 0 in culture and 24 h later (Figure 4.6 and Table 4.3

for the LP neuron and Figure 4.7 , Table 4.4 for the PD neuron).

4.3.4 LP and PD Exhibit Complementary Current Level Changes after
Decentralization

Previously in this dissertation it was shown that neuromodulatory input plays a

significant role in maintaining intracellular current correlations (Chapter 3). To study the

effects of neuromodulators on the INTER-cellular current coordination, and to determine

the relationship between current coordination and pyloric activity, current coordination in

decentralized preparations were studied.

In decentralization experiments STG was disconnected from the CoGs and OG by

stn transection (decentralized), which caused the normal activity of the pyloric network to

temporarily stop. This interruption was caused by the cessation of neuromodulator release

from the axonal termini of the CoG and OG neurons. After 24 to 50 h of irregular and/or

intermittent pyloric activity (so called `bouting period', Figure 5.1), the regular pyloric

activity resumed.
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It was shown previously in this dissertation that in PD neurons density levels of

several currents dramatically changed 24 h after decentralization, the timeframe that

corresponded to the significant interruptions and bouting activity in the pyloric activity

(Chapter 3). By day 4 in culture when the regular pyloric activity had resumed, most PD

neuron current levels had returned to control.

Current density changes in LP neurons followed the same overall temporal

pattern, but the direction of change in each current was different and somewhat

complementary to the alterations observed in PD neurons (Figure 4.2). In particular, in

PD neurons 24 h after decentralization, the Ih levels were increased, while I A levels were

decreased (p<0.001 for Ih, p<0.05 for IA; two-way mixed design ANOVA with post-hoc

Tukey tests was used in all LP and PD current level comparisons shown below). In LP

cells at 24 h after decentralization, Ih current density was decreased, while IA density was

elevated relative to control levels (p<0.05 for Ih and IA). By day 4 after decentralization Ih

levels in PD neurons remained elevated (p<0.05, Figure 4.2), while in LP neurons they

increased back to control levels (p>0.05, Figure 4.2). IA levels returned to control by day

4 in both cell types (p>0.05 for both). IHTK and IB a levels were elevated in both cell types

at 24 h after decentralization (for PD, p<0.05 and p<0.01 respectively; for LP, p<0.001

and p<0.05 respectively). However, by day 4, IB a level in PD neurons returned to control

(p>0.05, Figure 4.2) and in LP neurons it dropped below control levels (p<0.001, Figure

4.2). IHTK levels in PD neurons by day 4, in contrast, were indistinguishable from controls

(p>0.05), while in LP neurons IHTK levels remained elevated at that time (p<0.05, Figure

4.2). There was no change in IKd levels in either cell type at any time studied (p>0.05 for

both cell types, Figure 4.2).
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There were also complementary differences in the changes of intracellular current

correlation status in LP and PD neurons 24 h after decentralization (Figure 4.6 and Table

4.3 for LP neurons, Figure 4.7 and Table 4.4 for PD neurons). While in PD neurons

correlation between IHTK/IA and IHTK/Ih current pairs disappeared after decentralization,

and the IA/Ih pair correlation was preserved, in LP cells the opposite took place: IHTK/IA

correlation was preserved, while IHTK/Ih and I A/Ih correlations disappeared.

In the non-decentralized (control) preparations kept in culture for 4 days there

were no statistically significant differences in the levels of any of the LP neuron currents

when compared to day 0 in the same cell (all p>0.05), while in PD neurons, Ih and IA

levels significantly decreased by day 4 (p<0.05 for both currents, Figure 4.2 ).

This data indicate that significant and complementary changes in current levels

and intracellular current coordinations occur in both PD and LP cells after

decentralization and at the time of irregular pyloric activity (bouting). Does

decentralization lead to changes in the INTER-cellular coordination of current levels

reported in 4.3.2 and 4.3.3?

4.3.5 Disruption of Neuromodulator Supply Correlates with Changes in INTER-
Cellular Coordination of In

The INTER-cellular coordination of currents 24 h after cessation of the neuromodulator

supply caused by decentralization was examined (Figure 4.3, 4.4, Table 4.1, 4.2). At that

time coordination in Ih between the two PD cells had disappeared, while IHTK and IA

correlations were unchanged (Figure 4.3, Table 4.1). Overall current levels however

remained similar in both PDs (currents in PD 2 cells, as % of currents in PD1 cells, both

measured 24 h after decentralization, were: IHTK = 98 ± 30, IA = 120 ± 48, Ih = 97 ± 123,
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Or in absolute levels (nA/nF), IHTK-PD1 = 92 ± 36, IHTK-PD2 = 89 ± 37, IA-PD1 = 90 ± 43, IA-

PD2 = 93 ± 36, Ih-PD1 = —9 ± 11, Ih-PD2= —7 ± 10, all paired t-test p > 0.05, n = 15). Similar

effects on PD/PD current coordinations were observed when preparations were treated

with TTX for 24 h (Table 4.1).

Ih coordination status between PD and LP cells was also altered 24 h after

cessation of the neuromodulator supply (Figure 4.4, Table 4.2). While Ih was not

coordinated in control preparations, after decentralization its coordination status was

changed and showed a strong correlation. Decentralization did not affect IHTK and IA

current correlations between LP and PD neurons (Figure 4.4, Table 4.2).

The differences in I A and IHTK levels between the two cell types were maintained,

but the significant difference in Ih current levels between PD and LP neurons disappeared

after decentralization (LP neuron currents, as % of PD neuron currents in the same

ganglion, 24 h after decentralization: IHTK = 145 ± 52, n = 23, IA = 84 ± 57, n = 22, Ih =

168 ± 196, n = 20; or in absolute levels (nA/nF), IHTK-PD = 90 ± 45, IHTK-LP = 118 ± 46, p =

0.0003, IA-PD = 100 ± 50, IA-LP = 71 ± 31,p = 0.0007, Ih-PD = -5 ± 5, Ih-Lp= —3.7 ± 3.7,p =

0.5; if measurements from both PD neurons were available for a ganglion, they were

averaged; all p are from paired t-tests).

4.3.6 IHTK and IA , but not Ih , Coordination between Neurons is PTX-Sensitive

To determine if INTER-cellular communications are important in maintaining current

coordination between cells, non-decentralized STG preparations were treated with

picrotoxin (PTX) for 24 h. PTX blocks the conduction of a glutamate-activated chloride

channel, thus effectively stopping glutamate-driven inhibitory connections between the

pacemaker AB neuron and the follower LP neuron, and preventing the feedback from the
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LP cell to the PD neurons of the pacemaker kernel. Due to the loss of the rhythm-

generating input from AB neurons, after PTX treatment, LP neurons exhibited a

`decentralized'-type, irregular activity, while the pacemaker PD neurons continued their

rhythmic bursting, although at a slower pace (Figure 4.1). Current levels in LP and the

two PD cells in each ganglion before and 24 h after the beginning of PTX application

were measured.

INTER-cellular correlations of currents were significantly affected after the 24 h

incubation in PTX (Figure 4.3, 4.4, Table 4.1, 4.2). IHTK and I A correlations between the

two PD cells disappeared, while Ih correlations were preserved (Figure 4.3, Table 4.1).

Overall current levels in the two PD cells however remained similar (currents in PD2

neurons, as % of currents in PD1 neurons, after 24 in PTX, were: IHTK = 111 ± 72, IA =

115 + 55, Ih = 90 ± 53, or in absolute levels (nA/nF), IHTK-PDI = 128 ± 77, IHTK-PD2 = 112 ±

56, IA-PD1 = 104 ± 80, IA-PD2 = 89 ± 37, Ih-PDI = —12 ± 10, Ih-PD2 = —7 ± 5, all paired t-test p

> 0.05, n = 15).

Figure 4.3 (next page) Current densities are coordinated between the two PD neurons.
Control preparations. Density levels of the three currents were closely correlated in
control preparations. Decentralized preparations. Decentralization disturbed coordination
of Ih between the two PDs, leaving IHTK and I A coordinations intact. PTX-treated
preparations. Treatment with PTX eliminated coordination between IHTK and I A currents,
leaving Ih coordination intact. 3MPA-treated preparations. Treatment with 3MPA
disturbed coordination of Ih, leaving IHTK and I A coordinations intact. Each point
corresponds to current density (in nA/nF) measured separately in each of the PD cells
from the same ganglion on day 0 in culture for control preparations and 24 h after the
beginning of each treatment for the treated preparations. Current coordinations in control
preparations after 24 h in culture did not differ from those seen on day 0 (Table 4.1). Not
all currents were always measured in each ganglion, which resulted in different sample
sets for each current. Left panels, IHTK. Center panels, IA . Right panels, Ih. R, R2, and p
values for the regressions and the numbers of experiments for each treatment condition
are listed in Table 4.1
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IHTK and IA correlations between PD and LP cells also disappeared after PTX

treatment (Figure 4.4, Table 4.2) and the normally pronounced differences in current

levels of the two neuronal types (Figure 4.4) became statistically not significant (LP

neuron currents, as % of PD neuron currents in the same ganglion after 24 h incubation in

PTX: IHTK = 143 ± 97, n = 15, IA = 80 ± 52, n = 15, Ih = 184 ± 178, n = 15; or in absolute

levels (nA/nF), IHTK-PD = 141 ± 82, IHTK-LP = 154 ± 96, p = 0.65, IA-PD = 116 ± 86, IA LP =

65 ± 27, p = 0.06, Ih-PD = —12 ± 19, Ih-Lp = —15 ± 16, p = 0.63; if measurements from both

PD neurons were available for a ganglion, they were averaged; all p are from paired t-

tests).

Figure 4.4 (next page) Current densities are coordinated between PD and LP neurons.
Control preparations. Density levels of IA and logIHTK, but not Ih were correlated in
control preparations. Decentralized preparations. Decentralization reversed the
coordination status of Ih, inducing coordination of this current between PD and LP
neurons, while leaving iHTK and IA coordinations intact. PTX-treated preparations.
Treatment with PTX eliminated coordination between IHTK and IA currents, leaving Ih
coordination status unchanged. 3MPA-treated preparations. Treatment with 3MPA
reversed the coordination status of Ih, inducing coordination of this current between PD
and LP neurons, while leaving IHTK and IA coordinations intact. Each point corresponds to
current density (in nA/nF) measured in PD and LP cells from the same ganglion on day 0
in culture for control preparations and 24 h after the beginning of each treatment for the
treated preparations. Current coordinations in control preparations after 24 h in culture
did not differ from those seen on day 0 (Table 4.2). If measurements for the two PD cells
were available for a given ganglion they were averaged. Not all currents were always
measured in each ganglion, which resulted in different sample sets for each current. Left
panel, IHTK. Center panel, IA. Right panel, Ih. R, R2, and p values for the regressions and
the numbers of experiments for each treatment condition are listed in Table 4.2.
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4.3.7 PTX-Sensitive Chloride Channel Is Involved in Setting Current Levels of
STG Neurons

In addition to the effects of glutamate synaptic block on the INTER-cellular coordination

of ionic currents, a 24 h incubation in PTX caused significant changes in the current

density levels of both LP and PD cell types compared to day 0 levels (currents after 24 h

in PTX, as ()/0 of currents in the same cell on day 0, were, in PD neurons: IHTK 128 ± 41,

p= 0.005, IA = 87 ± 30,p = 0.02, Ih = 209 ± 214,p = 0.02, n = 28 and in LP: IHTK = 127 ±

30, p = 0.05, IA = 131 ± 43, p = 0.04, I h = 54 p = 0.05, n = 28; all p are from paired

t-tests). The changes in current levels after incubation in PTX resembled changes

observed 24 h after decentralization in both PD and LP (Figure 4.3 and Chapter 3).

Figure 4.5 Average current density levels in LP and PD neurons from the same ganglion
in control conditions. Black bars, PD currents. Open bars, LP currents. Error bars
represent standard deviation. Stars represent the results of paired t-tests comparisons of
the two cell types, **p<0.01, ***p<0.001.

In contrast to decentralization, PTX incubation did not affect intracellular current

correlations in either cell (Figure 4.6, 4.7, Table 4.3, 4.4). This indicates that, as opposed

to the current levels, the intracellular current correlations do not depend on the activity of
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the PTX-sensitive channel, but are likely maintained by central neuromodulators and thus

disappear only after decentralization, but not after PTX treatment.

PTX did not regulate the current levels acutely (currents after 15 min in PTX, as

% of currents in normal saline in the same cell, were: IHTK = 101 ± 29, IA = 94 ± 14, Ih =

121 ± 70, all paired t-test p > 0.05, n = 8). Short incubations in PTX did not affect

intracellular current correlations (Table 4.3, 4.4).

Effects of PTX completely disappeared after 24 h wash in NS (after-wash

currents, as % of currents in the same cell on day 0, were: I HTK = 123 ± 73, IA = 111 ± 38,

Ih = 96 ± 81, all paired t-test p > 0.05, n = 9). Intracellular current correlations were

preserved after the wash (Table 4.4).

Figure 4.6 (next page) Intracellular current density correlations in LP neurons are altered
by decentralization, but not by PTX or 3MPA treatments. Left column, IHTK to IA
correlations. Center column, IHTK to Ih correlations. Right column, IA to Ih correlations.
Control preparations. Density levels were correlated in all three current pairs in control
preparations. Decentralized preparations. Decentralization eliminated the coordination of
the IA/ Ih pair, while leaving IHTK/IA and IHTK/Ih coordinations intact. PTX-treated
preparations. Treatment with PTX did not affect any of the three coordinated currents
pairs. 3MPA-treated preparations. Treatment with 3MPA did not affect any of the three
coordinated current pairs. Each point corresponds to current density (in nA/nF) measured
in the same LP cell on day 0 in culture for control preparations and 24 h after the
beginning of each treatment for the treated preparations. Current coordinations in control
preparations after 24 h in culture did not differ from those seen on day 0 (Table 4.3). Not
all currents were always measured in each ganglion, which resulted in different sample
sets for each current. R, R2, and p values for the regressions and the numbers of
experiments for each treatment condition are listed in Table 4.3.
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These results indicate that setting of current levels and INTER-cellular

coordination of the HTK and A currents in PD and LP neurons involves activation of a

PTX-sensitive chloride channel, possibly through the glutamatergic interaction between

the cells. However, since PTX is also known to affect GABA signaling in the STG

neurons, an additional experiment was needed in which the effects of GABA and

glutamate could be separated.

4.3.8 GABA Participates in Coordinating Ih Levels between the Cells

It has been shown previously that PTX in crab STG neurons not only abolishes the

effects of glutamate, but also partially inhibits the effects of GABA (Swensen et al.

2000). Bath applications of glutamate or GABA, however, are not equivalent to their

targeted release at specialized axonal terminals (Ducret et al. 2007). To circumvent this

problem, 3-mercaptoprorionic acid (3MPA), a competitive inhibitor of glutamate

decarboxylase, one of the GABA synthesis enzymes, was used to establish which of the

two neurotransmitters plays a role in maintaining INTER-cellular current coordination

through the PTX-sensitive chloride channel. 3MPA has been shown to abolish GABA

synthesis in the STG without affecting glutamate or acetylcholine signaling (Ducret et al.

2007; M. Nusbaum, personal communication).

Twenty four-hour 3MPA treatment of the CoG and OG ganglia did not

significantly interfere with the pyloric activity except for some decrease in cycle length

(1.42±0.59 sec in control after 24 h in culture vs 2.61±1.51 sec after 24 h 3MPA

treatment, t-test p=0.02, Figure 4.1). Preparations treated with 3MPA for 15 min (data not

shown) or 24 h did not exhibit any significant changes in current levels compared to same
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cell values before treatment (currents after 24 h in 3MPA, as % of currents in the same

cell on day 0, were, in PD neurons: IHTK = 92 ± 16, IA = 91 ± 40, Ih = 105 ± 137, n = 15

and in LP neurons: IHTK = 119 ± 28, IA = 111 ± 51, Ih = 125 ± 157, paired t-test p > 0.05

in all cases, n = 10). Intracellular current correlations were also not affected by 3MPA

treatment (Figs. 4.6, 4.7 and Tables 4.3, 4.4).

PD to PD and PD to LP neuron current correlations however, changed to resemble

the situation seen in decentralized preparations After both decentralization and 3MPA

treatment, IHTK and I A correlations remained intact between the PD neurons, but the Ih

correlation changed to an inverse correlation from that observed in control preparations

(Figure 4.3, Table 4.1). As for the PD to LP neuron correlations, IHTK and IA coordination

was also unaffected, but correlation in Ih, normally absent, resembled the effect seen in

the decentralized preparations (Figure 4.5, Table 4.2). The similarity of effects produced

by decentralization and 3MPA treatment, and the differences between these two

treatments and PTX, indicate that INTER-cellular coordination of Ih is determined by

GABA and not PTX, while INTER-cellular coordination of IHTK and I A depends on the

glutamatergic signaling via the PTX-sensitive chloride channel, and not GABA.

Figure 4.7 (next page) Intracellular current density correlations in PD neurons are not
affected by PTX or 3MPA treatments. Left column, HTK to IA correlations. Center
column, HTK to Ih correlations. Right column, I A to Ih correlations. Control preparations.
Density levels were correlated in all three current pairs in control preparations.
Decentralized preparations. Decentralization eliminated the coordination of the IHTK/IA
and IHTK/Ih pairs, while leaving IA/ Ih pair coordination intact. PTX-treated preparations.
Treatment with PTX did not affect any of the three coordinated current pairs. 3MPA-
treated preparations. Treatment with 3MPA did not affect any of the three coordinated
current pairs. Each point corresponds to the density of indicated currents (in nA/nF)
measured in the same PD cell on 24 h after the beginning of each treatment. Current
coordinations in control and decentralized preparations are replicated from Chapter 3.
Not all currents were always measured in each ganglion, which resulted in different
sample sets for each current. R, R2, and p values for the regressions and the numbers of
experiments for each treatment condition are listed in Table 4.4.



Figure 4.7 (continued)

74



75

4.4 Discussion

4.4.1 INTER-cellular Correlations

The possible existence of INTER-cellular current correlations could have been implied

from previous modeling work (Turrigiano et al. 1995, LeMasson et al. 1993, Turrigiano

et al. 1995, Franklin et al. 1992, Fengler and Lnenicka 2001, Haedo and Golowasch

2006, Ueda and Wu 2006, Wierenga et al. 2005) especially from experiments showing

that the abundances of both IH and Shal mRNAs strongly correlated between the two PD

neurons (Schulz et al. 2006). However, INTER-cellular coordination at the current level

has not been studied directly before. Here it was shown that there was, indeed, significant

coordination of IA, IHTK and Ih currents between the two PD cells of the network, and IA

and log(IHTK) coordination between the LP and PD cells. The non-linear coordination of

IHTK between PD and LP neurons is such that at lower levels HTK currents are closely

coordinated, while at higher levels a wider range of IHTK-PD/IHTK-LP combinations is

observed. This could be due to the existence of threshold setting mechanisms the

molecular nature of which is not clear at this time. The initial hypothesis about the nature

and role of switching the correlation mode between high and low current values could be

gained through computer modeling of the interaction between the two cells. Ih was not

clearly coordinated between LP and PD neurons under control conditions.

The apparent INTER-cellular current coordination could simply be the function of

pre-set stable current levels determined at the speciation of each neuronal type, and not

the result of an active maintenance process. Some of the facts indeed seem to point in the

direction of a passive pre-set coordination hypothesis. For example, in this dissertation
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stable ratios of current levels within cell types and stable ratios of the levels of the same

current between PD and LP neurons were observed (Fig 4.5). Other authors have reported

similar results which indicates that current level ratios are stable across different

preparations, labs and culture conditions (Golowasch and Marder 1992a, Schulz et al.

2006, Baro et al. 1997, Marder et al. 2005b). Additionally PAIH cRNA microinjection

experiments demonstrated that Ih levels in the control (uninjected) PD cell did not rise to

the same levels as in the microinjected PD cell in the same preparation over several days

in culture, in spite of the fact that gap junction and chemical synapse connections remain

intact between the cells in the network (Zhang et al. 2003).

However, the experiments reported here have demonstrated that the INTER-

cellular current coordination status can change in an adult network in response to changes

in the cell to cell communications and neuromodulator supply to the network, and thus is

dynamically set and maintained according to the network activity status. The tables

summarizing changes in INTER- and intracellular coordination status are shown in

Figures 4.8 and 4.9 respectively.

4.4.2 Mechanisms of INTER-cellular Coordinations

INTER-cellular PD-to-PD and PD-to-LP neuron current coordinations could be based on

either glutamatergic LP to PD neuron communication, gap junction communications

between the two PDs (through transport of small regulatory molecules such as IP3, or

Ca2+ (Saez et al. 1989), glutamate, K + , Na+ , or NO 3 - (Beblo and Veenstra 1997)) and/or

the action of central neuromodulators. All three mechanisms could be interrelated since

neuromodulators are known to affect the permeability of gap junctions (Ducret et al.,
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2007) and the efficiency of chemical synapses (reviewed in Engelman and MacDermott

2004), synaptic communication in turn is known to affect the release of neuromodulators

and neurotransmitters (reviewed in Nusbaum et al. 2001), and the selectivity of gap

junctions is known to be voltage-gated (Qu and Dahl 2002).

PD/PD 	 PD/LP

CONTROL

DECENTRALIZED

3MPA

PTX

IHTK IA Ih IHTK IA Ih

IHTK IA Ih IHTK IA Ih

IHTK IA In IHTK IA Ih

IHTK IA Ih IHTK IA Ih

Figure 4.8 INTERcellular current density correlations between PD and LP neurons. Dark
squares correspond to cases where current correlations are present, empty squares
correspond to cases where correlations are absent. R, R2, and p values for the regressions
and the numbers of experiments for each treatment condition are listed in Table 4.1 and
4.2.

In this dissertation the initial hypothesis that the glutamatergic communication

between cells plays the primary role in the maintenance of INTER-cellular coordinations

was based on the previously published modeling results showing the importance of

synaptic communications in establishing the ionic current levels via activity-dependent

mechanism (LeMasson et al. 1993, Golowasch et al. 1999). Experimentally this

hypothesis had to be verified in two steps because bath applications of glutamate or
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GABA are not equivalent to their targeted release at specialized terminals (Ducret et al

2007). To circumvent this problem a set of two experiments was conducted, one

including incubation in PTX, which blocks both glutamate and GABAA-type activated

channels, and the other including incubation in 3MPA, an inhibitor of GABA synthesis,

to establish which of the neurotransmitters plays what role in maintaining PTX-sensitive

INTER-cellular current coordination. The results demonstrate that INTER-cellular IA and

IHTK coordinations depend on a PTX-sensitive mechanism, most likely through

glutamatergic signaling between cells, since these correlations were abolished by PTX,

but not 3MPA treatment. Interestingly, the IHTK and I A INTER-cellular coordinations

destroyed by the loss of synaptic communication after PTX treatment, are unaffected by

decentralization or, at least in case of PD/PD coordinations, TTX treatment, both of

which also affect synaptic communication. One possible explanation could be that a

component of the central neuromodulator supply (which is lost both after decentralization

and during TTX, but not PTX, treatment) is necessary to make IHTK and I A INTER-

cellular coordinations sensitive to the loss of synaptic communications. Possible

experiments aimed at identifying such neuromodulator may include application of TTX

(to remove endogenous neuromodulators and to exclude the effects of activity) together

with known neuromodulators, for example proctolin, and determining if the INTER-

cellular IHTK and IA coordinations are affected in this case.

The fact that in our experiments PTX disturbed the coordination of IHTK and IA

currents between the two PD neurons, indicates that a glutamatergic synapse from the LP

neuron, and not the gap junction coupling between the PD cells, as suggested by Schultz

et al. (2006), may be important in maintaining the PD/PD neuron current coordination.
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Glutamate from the presynaptic cell (LP) activates an ionic channel in the postsynaptic

cell (PD), and the resulting current may affect the ionic current balance in the

postsynaptic cell. Since little is known about the pharmacology of gap juctions in

Crustacea, experimental photoinactivation of LP cell might provide some insight into this

question. The ablation of the LP neuron would specifically remove the glutamate input

that PD neurons receive from LP without affecting the GABA input from descending

axonal terminals. Significant role of LP in current coordination between the two PD

neurons will be confirmed if after LP ablation coordination of currents between PDs is

lost. If the LP ablation does not mimic the effects of PTX, a gap junction blocker active

in Crustacea, β-glycyrrhetinic acid (Rabbah, personal communication), which blocks gap

junctions between PD neurons well, but also has other mild effects, can be used. During

this treatment the status of intracellular coordinations can serve as control.

Here it is shown that intracellular coordination of Ih is likely to be governed by a

different mechanism than coordinations of IHTK and IA, since Ih coordination status both

between PD neurons and between PD and LP neurons was not affected by PTX, which

completely inhibits the glutamate effects, but only partially weakens GABA signaling

(Duan and Cooke 2000). The Ih coordination status however was reversed by the two

conditions that eliminated the GABA supply to the pyloric network: decentralization and

3MPA treatment. Interestingly, the presence of GABA appeared to maintain the PD/PD

neuron Ih coordination, but destroy PD/LP neuron Ih coordination. The direct

involvement of GABA in maintaining INTRA-cellular coordination would gain

additional support if GABA staining were present in descending axonal termini in control

and PTX-treated preparations, and absent in decentralized and 3MPA-treated
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preparations. Besides direct participation in Ih coordination, GABA could be altering the

strength of gap junction connections, at least in the case of coordination between the two

PD neurons. The strength and number of gap junction connections of the PD neurons has

been shown to increase in the absence of GABA (Ducret et al. 2007), thus both

decentralization and 3MPA treatment could have increased the number of cells

electrically coupled to the PD neurons affecting the Ih balance between them. This could

be further investigated by using the dye permeability technique described by Ducret et al.

(2007), or by blocking the gap junction connections using β-glycyrrhetinic acid (Rabbah,

personal communication).

4.4.3 Mechanisms of Intracellular Coordinations

The possibility of intracellular cross-current correlations at both RNA and current levels

in one of the pacemaker kernel neurons (PD) was shown by MacLean et al. (2003, 2005)

and Schulz et al. (2006). Our previous results have directly shown that IHTK/IA, IHTK/Ih

and IA/Ih current pairs are correlated in PD (Chapter 3). It was of interest in this case to

establish if such intracellular correlations at the current level are specific to the

pacemaker neurons or present in the follower cells too and if INTER- and intracellular

current correlations are maintained by similar mechanisms.

Here it is shown that intracellular current coordinations are maintained not only in

the pacemaker kernel neuron (PD), but also in a follower neuron (LP). However,

intracellular current coordinations in the pacemaker and follower neurons change

differently in response to decentralization. While in PD neurons the coordination of

IHTK/I A and IHTK/Ih pairs is destroyed and of I A/Ih pair is preserved after decentralizaton, in
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LP the opposite happens: coordinations of IHTK/IA and I HTK/Ih pairs is preserved and of

IA/Ih pair is destroyed. This implies not only that mechanisms maintaining coordinations

of each of these ionic current pairs are different, but that they are also different in PD and

LP neurons.

Intracellular current coordinations were not affected by PTX or 3MPA treatment,

but were altered after decentralization, which supports the conclusion that INTER- and

intracellular coordination processes are maintained by different mechanisms. It is likely

that while the INTER-cellular coordinations of IHTK, IA and Ih are maintained through cell

to cell glutamatergic communication and GABA signaling, the intracellular co-regulation

of the current pairs depends on neuromodulators other than GABA, which is in

agreement with our previous results (Chapter 3).

4.4.4 Mechanisms Controlling the Process of Recovery after Decentralization

Taken together, the findings reported here demonstrate that decentralization-induced

changes occur as a complex process governed by both the loss of neuromodulator supply

(see also Chapter 3) and the type of synaptic signals exchanged by the follower neurons

and the pacemaker kernel. The disappearance of intracellular current coordination after

decentralization could be attributed to the loss of one (proctolin) or more central

neuromodulators (see also Chapter 3). Decentralization-induced changes in current levels

are possibly mediated by altered synaptic signals received by LP and PD cells, possibly

in an activity-dependent manner, as indicated by the fact that PTX treatment sets LP and

PD currents to resemble 'decentralized' levels without affecting intracellular current co-

regulation. The loss of another central neuromodulator, GABA, induces the reversal of Ih
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coordination status between the two PD neurons and between LP and PD neurons, while

the activity-dependent mechanism may play a role in the initiation of the recovery

process (Zhang et al. 2007). Several lines of evidence suggest that decentralization—

induced changes require participation of transcriptional events. It has been shown that

recovery after decentralization requires RNA synthesis within a two hour window

immediately after decentralization (Thoby-Brisson and Simmers 2000a). I A and Ih

currents in the two PD cells are coordinated at the RNA level (Schulz et al. 2006). In the

experiments described here none of the agents affecting current levels or coordinations,

e.g. proctolin (Chapter 3), TTX, PTX, 3MPA, affected these currents acutely, which

implies participation of a slower, possibly transcription-based event. Modeling studies

indicate that de-coregulation of ionic currents could be initiated by the loss of

neuromodulators in a separate event, not mediated through the alterations in ionic current

levels. Further investigation of the process of recovery after decentralization may include

the experiments studying the effect of transcription inhibition on the levels and

coordinations of ionic currents, and measurements of mRNA levels of these ion channels

as a function of neuromodulatory input, using single cell RT-PCR. Cytoplasmic Ca 2+

oscillations are known to mediate the effects of different factors on transcription

(reviewed in Surmeier and Foehring 2004). One possible future research direction may be

studying the effect of altering Ca2+ oscillations on the recovery after decentralization

using the Ca2+ clamp technique described by Dolmetsch et al. (1998).
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4.4.5 Functional Implications

What could be the function of the elaborate current coordination patterns in the rhythm

generating networks? It is reasonable to suggest that current coordination is needed to

restrict the degree to which currents in a neuron could be changed by the environmental

influences. In fact, the variability of currents observed in biological neurons producing

similar output is much smaller than would be expected based on modeling studies

(Golowasch et al. 2002, Prinz et al 2004).

PD 	 LP

Figure 4.8 Intracellular current density correlations in PD and LP neurons. Dark squares
correspond to cases where current correlations are present, empty squares correspond to
cases where correlations are absent. R, R2, and p values for the regressions and the
numbers of experiments for each treatment condition are listed in Table 4.3 and 4.4.
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In the experiments described here there was no clear association between the

presence of normal pyloric activity and the presence of inter- and intracellular current

coordinations of all currents. This diversity in the relationships between the coordinations

of different ionic currents and the rhythmicity of pyloric output could be explained by the

differences in characteristics of these currents and the roles they play in producing the

pyloric output, and by the overall complexity of coordination mechanisms implemented

in the pyloric network. For example, less stringent coordination of Ih levels between cells

and the smaller effect of Ih coordination on pyloric activity could be attributed to the

slower kinetics of Ih compared to IA and IHTK (Golowasch and Marder 1992a). The

oscillation in a two cell theoretical model was much less sensitive to increases in I A

compared to increases in I h (Zhang et al. 2003). Relaxation of the tight current

coordinations could be a necessary step in acquiring the new stable current configuration

after a change in the network environment alters the existing current levels. In fact

modeling studies (Zhang and Golowasch 2007) show that the absence of current

correlations facilitates the recovery of model neuron after decentralization. On the other

hand, current coordination increased the stability of activity in model neurons (Soto-

Trevino, personal communication).

The presence of coordination between ionic currents indicates the necessity of a

"higher level " approach to treatment of conditions caused by deafferentation of central

pattern generators: apparently, increasing or decreasing the levels of just one current may

not be enough to achieve the balance between the network cells necessary for the

recovery of the network function.
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Only coordinations between PD and LP cells of the network were studied here

while more neurons are known to contribute directly (e.g. PY) or indirectly (e.g. neurons

in gastric and oesophageal networks) to the generation of pyloric rhythm (Marder 2000,

Blitz et al. 1999, Nusbaum and Marder 1989a,b). Studying current coordinations in all

relevant neurons will help better understand the role of coordinations in pyloric rhythm

maintenance. Full understanding of the current coordinations between neurons in the

pyloric network will be an important step in understanding how the immense diversity of

ionic current levels observed in the individual neurons is translated in a rhythmic output

remarkably stable under changing environmental conditions.

Table 4.1 Parameters of the Linear Regression Analysis of Current Coordinations
between the Two PD Cells of the Pyloric Network

HTK IA 4

R2 R p N R2 R p N R2 R p N

Control day Oa 0.46 0.68 <0.001 57 0.54 0.74 <0.001 52 0.56 0.75 <0.001 52

Control day 0
(randomized)

0.46 0.67 <0.001 57 0.54 0.73 <0.001 52 0.61 0.78 <0.001 52

Control 24 h 0.61 0.78 0.004 11 0.56 0.75 0.01 10 0.5 0.7 0.02 10

24 h after
decentralization

0.53 0.72 0.003 14 0.36 0.6 0.02 14 0.02 0.14 0.6 15

24 h in PTX 0.02 0.14 0.6 12 0.007 0.08 0.8 15 0.66 0.81 0.001 12

24 h in 3MPA 0.72 0.52 0.02 9 0.8 0.64 0.05 6 0.53 0.72 b 0.06 7

24 h in TTX 0.85 0.92 0.02 5 0.91 0.95 0.04 4 0.05 0.24 0.7 5

a Day 0 corresponds to pooled data from all preparations measured on day 0. Similar
correlation parameters and statistical significance values were obtained for each subset of
day 0 measurements corresponding to experimental set listed above
b negative slope
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Table 4.2 Parameters of the Linear Regression Analysis of Current Coordinations
between the PD and LP Cells of the Pyloric Network

Log HTK IA 4

R2 R p N R2 R p N R2 R p N

Control day 0 a 0.41 0.64 <0.001 78 0.43 0.65 <0.001 62 0.003 0.05 0.7 55

Control 24 h in
culture

0.56 0.75 0.01 10 0.52 0.72 0.01 11 0.07 0.23 0.5 10

24 h after
decentralization

0.52 0.72 0.0001 23 0.52 0.72 0.0001 22 0.58 0.77 <0.001 20

24 h in PTX 0.0024 0.04 0.9 15 0.005 0.07 0.8 14 0.01 0.12 0.6 15

24 h in 3MPA 0.69 0.83 0.01 8 0.49 0.7 0.01 12 0.76 0.87 0.0009 10

a Day 0 corresponds to pooled data from all preparations measured on day 0. Similar
correlation parameters and statistical significance values were obtained for subsets of day
0 measurements corresponding to experimental set listed above
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Table 4.3 Parameters of the Linear Regression Analysis of Intracellular Pairwise Current
Coordinations in the LP Cells of the Pyloric Network

HTK/IA 	HTK/Ih	 IA/Ih

R2 R p N R2 R p N R2 R p N

Control day 0 a 0.63 0.79 <0.001 75 0.4 0.63 <0.001 69 0.51 0.71 <0.001 70

Control 24 h 0.58 0.76 0.002 12 0.45 0.67 0.01 12 0.6 0.77 0.001 14

24 h after
decentralization

0.56 0.75 <0.001 24 0.09 0.3 0.2 19 0.05 0.24 0.28 21

24 h in PTX 0.52 0.72 0.01 11 0.69 0.83 0.005 9 0.57 0.75 0.004 12

24 h in 3MPA 0.76 0.87 0.0008 10 0.58 0.76 0.04 7 0.75 0.86 0.002 9

15 min in PTX 0.37 0.61 0.03 12 0.69 0.83 0.02 7 0.55 0.79 0.02 9

a Day 0 corresponds to pooled data from all preparations measured on day 0. Similar
correlation parameters and statistical significance values were obtained for each subset of
day 0 measurements corresponding to experimental set listed above
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Table 4.4 Parameters of the Linear Regression Analysis of Intracellular Pairwise Current
Coordinations in the PD Cells of the Pyloric Network

HTK/IA HTK/Ih IA/Ih

R2 R p N R2 R p N R2 R p N

Control day 0 a 0.48 0.69 <0.001 95 0.37 0.61 <0.001 94 0.4 0.63 <0.001 89

Control 24 h 0.49 0.7 0.007 12 0.81 0.9 0.002 8 0.54 0.73 0.009 11

24 h after
decentralization

0.06 0.24 0.14 36 0.02 0.14 0.34 34 0.51 0.71 <0.001 32

24 h in PTX 0.81 0.9 <0.001 22 0.4 0.63 0.005 18 0.4 0.63 0.001 22

24 h in 3MPA 0.44 0.66 0.01 12 0.65 0.8 0.004 10 0.4 0.63 0.01 15

15 min in PTX 0.66 0.81 0.004 10 0.6 0.77 0.02 8 0.7 0.84 0.03 6

PTX washed 0.8 0.89 0.0009 9 0.67 0.82 0.01 8 0.89 0.94 0.001 8

a Day 0 corresponds to pooled data from all preparations measured on day 0. Similar
correlation parameters and statistical significance values were obtained for each subset of
day 0 measurements corresponding to experimental set listed above



CHAPTER 5

ACTIVITY AND NEUROMODULATORS CONTROL THE RECOVERY OF
RHYTHMIC OUTPUT IN A RHYTHM-GENERATING NEURONAL

NETWORK

This chapter is the result of collaboration with Rutgers University PhD student Yili

Zhang and a former Rutgers University PhD student Rosa Rodriguez. Parts of the

experiments reported here were performed by Y. Zhang and R. Rodriguez. However, in

general, this was a joint effort and the parts are not easy to separate without losing the

general perspective of these results. Therefore the results are presented as a whole while

acknowledging that not all of them were exclusively obtained by the author.

5.1 Abstract

Rhythm-generating neuronal networks control vitally important rhythmic behaviors,

including breathing, heartbeat and digestion. Understanding how these networks recover

from perturbations has important theoretical and practical implications. Both

experimental and modeling studies indicate that rhythm recovery after the loss of central

neuromodulatory input (decentralization) could be driven entirely by activity-dependent

mechanisms. This hypothesis was tested by examining the effects of altering the network

activity patterns for several hours prior to decentralization on rhythm recovery in the

pyloric network of the crab Cancer borealis. It was found that pretreatments that alter the

network activity through shifting the ionic balance and membrane potential of the cells,

such as hyperpolarization of the pacemaker neurons, and incubations with GABAA-

specific agonists or in low Na + saline, advanced the time of rhythm recovery. This is

consistent with recovery process being triggered in advance of decentralization at the

89
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beginning of the pretreatment period through a strictly activity-dependent mechanism.

However, pretreatment with GABA, which also interrupted the pyloric activity, not only

accelerated rhythm recovery, but additionally delayed the time of activity turnoff.

Pretreatment with a metabotropic GABA B receptor agonist delayed the activity turnoff,

but did not affect the time of recovery. These results demonstrate that the recovery

process cannot be explained solely by activity-dependent mechanisms. Here an activity-

and modulator dependent model of the recovery process proposed. Further, it is shown

that the effect of proctolin pretreatment on the process of recovery after decentralization

is consistent with the assumptions of such model.

5.2 Introduction

Studies in both vertebrates and invertebrates have shown that neuronal networks that

control rhythmic behaviors such as breathing, heartbeat, swimming, feeding, walking,

and flying, remain functional even when they are isolated from the organism and receive

no rhythmic neuronal input from the environment (Marder and Bucher 2001, Luther et al.

2003).	 It has previously been shown that the pyloric network, located in the

stomatogastric ganglion (STG) of decapod crustaceans, shows this type of recovery of

rhythmic activity after a severe perturbation, namely the removal of central

neuromodulatory input (decentralization), to the pyloric network (Golowasch et al. 1999,

Luther et al. 2003, Thoby-Brisson and Simmers 1998). The recovery of activity occurs

within several hours to days of decentralization and achieves levels and characteristics

similar to those observed in control preparations (Golowasch et al. 1999b, Luther et al.

2003, Thoby-Brisson and Simmers 1998). Previous experimental work showing that
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neurons of the pyloric network respond to changes in activity with changes in their

intrinsic properties (Turrigiano et al. 1994, Haedo and Golowasch 2006) and in their

ionic currents (Golowasch et al. 1999b, Haedo and Golowasch 2006) and modeling work

showing that recovery of activity could be based entirely on activity-dependent

mechanisms (Golowasch et al. 1999b, Zhang and Golowasch 2007) suggest that recovery

could be strictly an activity-dependent process. However, other data exist that show that

once initiated, recovery process is activity-independent (Thoby-Brisson and Simmers

1998, 2000) and that if the supply of one of the central neuromodulators, proctolin, is

maintained after decentralization, the recovery process may not be initiated (Khorkova

and Golowasch 2007).

In this chapter the activity-only vs neuromodulator-only hypotheses of pyloric

rhythm recovery are tested by examining the effects of modifying the preparation's

activity before decentralization on the recovery of pyloric rhythm after decentralization.

The results presented in this chapter show that the recovery process is not governed

solely by activity-dependent mechanisms. It is reported here that some aspects of the

recovery process are regulated by neuromodulators. Based on these results, a

neuromodulator- and activity-dependent recovery hypothesis is proposed and further

confirmed by showing that the results of a proctolin-pretreatment experiment can be

predicted based on the assumptions of this hypothesis.

5.3 Results

As described in Chapter 1, if the STG is isolated from the rest of the STNS by blocking

action potential transmission along the stn, neuromodulator release is abolished and the
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activity of the pyloric network decreases considerably or stops (Figure 3.1, 4.1, 5.1).

Over time the pyloric rhythm resumes and stabilizes (Figure 3.1, 5.1) after a period

characterized by the repeated turning on and off of the rhythm, henceforth called

`bouting' (Figure 5.1, 3.1, Luther et al. 2003). The recovered pyloric network activity is

independent of the central neuromodulatory input.

In this study the hypothesis that the process of recovery of the pyloric network

activity can be altered by the type of network activity that precedes decentralization was

examined. Activity changes were induced experimentally using GABA, hyperpolarizing

current injections into pacemaker neurons and low Na+ saline solutions.

5.3.1 Experimental Protocols

All experiments described below followed the same protocol: after recording the normal

pyloric network activity for at least 30 min, a pharmacological agent or a manipulation of

the membrane potential of pyloric neurons was applied. The pharmacological agents were

then washed rapidly with normal saline (or external current injection discontinued) until

pyloric network activity was recovered (typically within 5-10 min). Only then was the

STG decentralized by blocking the input stomatogastric nerve (stn).

Although decentralization using the protocol described here most often resulted in

complete cessation of rhythmic pyloric activity, sometimes after stn blockade the pyloric

rhythm frequency simply decreased to a much lower but stable level. Thus, bouting

activity was defined as the activity characterized by the transient activation or

acceleration of pyloric rhythmic activity after decentralization. We call each activation or

acceleration event a "bout" (Figure 5.1, 3.1).
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Time (hrs)

Figure 5.1 Pyloric rhythm frequency changes recorded via lvn after decentralization. The
frequency before decentralization in this preparation was —1.1 Hz. The pyloric rhythm
stopped immediately after decentralization. Bouting began —17 hrs after decentralization
with two short bouts followed by two much longer ones. The inset shows frequency
changes immediately after decentralization (note different time scale).

Two parameters to characterize the recovery process were used: the rate of

rhythmic activity turnoff (Figure 5.1, inset) and time to the first bout (Figure 5.1). The

rate of activity turnoff was defined as the time needed for reduction in pyloric rhythm

frequency to half of the pre-decentralization level (t1 /2). Time to the first bout (tb out) after

decentralization was chosen as a readout of the recovery rate because it is significantly

shorter than time to stable recovery, and thus reduces the possibility of contribution by
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random factors affecting the viability of the preparation, to the experimental outcome

(Luther et al. 2003).

5.3.2 Activity Suppression by Hyperpolarization or Low Sodium Advances
Recovery after Decentralization

To determine if the activation of pyloric rhythm recovery is a purely activity-dependent

process, an attempt was made to reduce or eliminate pyloric activity during several hours

preceding decentralization. The reasoning behind this was that the reduced pyloric

activity before decentralization should advance the activation of the activity-dependent

recovery mechanisms and thus accelerate the recovery after decentralization.

Hyperpolarization of the two PD neurons in the network, which are strongly

electrically coupled to the pacemaker AB neuron, or reduction in the extracellular Na +

concentration, were used to inhibit pyloric activity prior to decentralization (Figure 5.2,

Table 5.1).

In preparations in which both PD neurons were hyperpolarized to -70 mV with

current injection for 5 h prior to decentralization, the average time to half-maximal

pyloric frequency was not different from control values (control t 1/4 = 0.25±0.26 h,

hyperpolarized t1/2, 0.21±0.18 h, p >0.05, n = 12, Tukey post-hoc test; Table 5.1, Figure

5.2A). However, the average time to first bout in hyperpolarized preparations was

significantly shorter than that of the controls (control tb out = 6.19±4.76 h , hyperpolarized

tbout 1.60±1.72 h,p < 0.05, n=12, Tukey post-hoc test, Table 5.1, Figure 5.2A).

When preparations were incubated in Cancer saline containing 40% Na+ for 5 h

prior to decentralization, results similar to those observed in preparations hyperpolarized

before decentralization were obtained (Figure 5.2B, Table 5.1). The time to half maximal
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frequency t1/2 was 0.29±0.34 h, which was not significantly different from the control or

hyperpolarized PD preparations (p>0.05 in both cases, n=11, Tukey post-hoc test, Table

5.1). However, the average time required to produce the first bout in these low Nat

treated preparations was 1.20±0.96 h, which was significantly shorter than in controls (p

< 0.01, n=7, Tukey post-hoc test, Table 5.1, Figure 5.2B).

Table 5.1 Parameters of the Recovery Process in Controls and Preparations with
Different Pretreatments before Decentralization

Treatment prior to	 Time required to	 Time to first bout	 Number of
decentralization	 reduce the	 (hours)	 experiments

frequency by half
(hours)

Control
GABA for 18 h
GABA for 5 h
GABA for 1 h
Baclofen
Muscimol
Hyperpolarized

Low sodium saline

Proctolin

0.25±0.26 6.19±4.76 18

2.27+3.21* 3.91±4.60 10

1.08±1.05 1.98±1.30* 10

0.72+0.85 1.9+0.84* 9

5.89±8.64** 6.74+8.18 7

0.38±0.27 2.05±1.60* 6

0.21+0.18 1.60±1.72* 12

0.29±0.34 1.20±0.96* 11

0.16±0.14 2.34+1.88* 7

Values represent average ± SD

* significantly different from control P<0.05;

** significantly different from control P<0.01

5.3.3 Pretreatment with GABA Affects Both Time to First Bout and Time of
Activity Turnoff

Treatment of non-decentralized pyloric network with 1 mM GABA stops the pyloric

rhythm completely and reversibly (Figure 5.3A), similar to hyperpolarization or low Na +

saline treatment.
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However, when preparations were treated with 1mM GABA for 1-18 h prior to

decentralization, the half maximal time of pyloric rhythm cessation showed a time-

dependent and statistically significant increase compared to control preparations (p <

0.05, one-way ANOVA, Table 5.1), while in hyperpolarization and low Na + saline

pretreated preparations no effect on time to activity turnoff was observed. The

decentralization of untreated (control) pyloric networks resulted in the rapid cessation of

the pyloric rhythm (t1/2 = 0.25±0.26 h, n = 18). Short term (<18 h) pretreatment with

GABA did not significantly increase t112 (0.72±0.85 h for 1 h pre-treatment, 1.08±1.05 h

for the 5 h pretreatment, p > 0.05 for both, Tukey post-hoc test, n = 9 and n=10

respectively). After approximately 18 h of GABA incubation, t1/2 increased to 2.27±3.21 h

(p < 0.02, post-hoc Tukey test, n = 10) (Table 5.1). Furthermore, in preparations pre-

treated with 1 mM GABA overnight, decentralization sometimes never completely

interrupted the rhythmic activity, but only reduced its frequency (Figure 5.3A).

After decentralization in control preparations, tbout was 6.19±4.76 h (n = 18),

while in preparations treated with 1 mM GABA for 1, 5 or 18 hours, tbout decreased to

1.9±0.84 h, 1.98±1.30 h, and 3.91±4.60 h, respectively. These effects were statistically

significant (p < 0.05, one-way ANOVA, post-hoc Tukey test results comparing each

pretreatment with control are shown in Table 5.1). It is important to note that when

activity never completely stopped after GABA pretreatment, bouts were discernible as

transient frequency increases of more than two fold over the background frequency,

easily distinguishable from random frequency variation or transient artifacts (see Figure

5.3).
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If the recovery process were solely activity-dependent, in GABA-pretreated

preparations only the advanced recovery time would be observed, as in hyperpolarized or

low sodium saline treated preparations, with no effect on the rhythm turnoff time.

However, the experimental results also showed a significant increase in the time to

pyloric activity turnoff after decentralization, which indicated a possible involvement of a

different, activity-independent mechanism. Additionally, short term (<18 h) pretreatment

with GABA only reduced the time to first bout, while time to half frequency was not

significantly affected. The difference in the time of onset of these two effects also

supported the possibility that they may be mediated by two different mechanisms.

Figure 5.2 Examples of post-decentralization changes in pyloric rhythm frequency in
different pre-inhibited preparations. A. Preparation was hyperpolarized for —5 hours
before decentralization. B. Preparation was incubated with 40% Na + solution for —5 hours
before decentralization. Insets in both panels show t 1/2 at a finer time scale.

Pyloric network neurons express at least two types of GABA receptors, an

ionotropic type GABAA and a metabotropic type GABA B (Swensen et al. 2000).
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Therefore, the contribution of the two different receptor types to the two observed effects

was investigated using specific GABA receptor agonists.

5.3.4 Metabotropic GABAB Receptor Agonist only Increases Time to Rhythm
Turnoff

Pretreatment of the STG with the GABAB receptor agonist baclofen (0.5 mM) for 5 h

before decentralization never resulted in the complete cessation of pyloric rhythmic

activity (Figure 5.3, n = 7) and t 1/2 in these preparations was significantly increased

compared to controls (thy2  5.89±8.64 h, p <0 .01 , t- test) (Figure 5.3B, C, Table 5.1). In

contrast, the average time required to produce the first bout was not significantly different

from control preparations Nom = 6.74±8.18 h; p >0.05, t-test, Figure 5.3C, Table 5.1).

Therefore, the baclofen pretreatment affects the time course of pyloric activity turnoff

after decentralization but not the rate of pyloric rhythm recovery as estimated by the time

to generate the first bout of activity (Figure 5.3C). Participation of the slower

metabotropic process in controlling the time course of activity cessation is also supported

by the slower onset of this effect after GABA pretreatment (Table 5.1).

5.3.5 Ionotropic GABAA Receptor Agonist only Reduces Time to First Bout

Pretreatment of the STG with the GABA A receptor agonist muscimol (0.5 mM) for 5 h

before decentralization almost always resulted in the complete termination of rhythmic

activity after decentralization (Figure 5.3D). After decentralization, t 1/2 was 0.38±0.27

hours, with no significant difference from control (p > 0.05, n = 6, Tukey post-hoc test,

Table 5.1).
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Figure 5.3 Examples of post-decentralization changes in pyloric rhythm frequency in
different neuromodulator pre-treated preparations. Black triangle A indicates the time of
decentralization. A. Preparation was incubated with 1mM GABA for 18 h before
decentralization. After decentralization, there was a significant delay in rhythmic activity
turnoff and the first bout appeared significantly faster than in control. B. Extracellular lvn
recording (for 20 or 60 seconds) of pyloric network activity recovery in GABA pretreated
preparation. C, Top trace, lvn recording in 0.5 mM baclofen. Preparation was incubated
with 0.5mM baclofen for —5 hours before decentralization. After decentralization, there
was a significant delay in rhythmic activity turnoff but no decrease in time to first bout
compared to control. D. Preparation was incubated with 0.5mM muscimol for —8 hours
before decentralization. After decentralization, there was no delay in rhythmic activity
turnoff but the first bout appeared significantly faster than in control.

However, the average time to first bout was significantly shorter than in control

preparations (tbout = 2.05±1.60 h, p = 0.05, n = 6, Tukey post-hoc test, Table 5.1), similar

to low Na+ and hyperpolarization treatments, which indicates activity-dependent
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regulation. Participation of the faster ionotropic signaling process in controlling the time

course of activity recovery is also supported by the faster, already after 1 h, onset of this

effect after GABA pretreatment (Table 5.1).

5.3.6 An Activity- and Neuromodulator-Dependent Hypothesis of the Recovery
Process Regulation is Supported by Proctolin-Pretreatment Experiments

The experimental results reported above led to the formulation of an activity- and

neuromodulator-dependent hypothesis of the recovery process regulation (Zhang,

personal communication). This hypothesis postulates the existence of two cooperating

sensor mechanisms controlling the process of recovery after decentralization, one

activity-dependent and the other neuromodulator-dependent. Based on the assumptions of

this model, proctolin pretreatment should have resulted in a time of activity turnoff not

different from control, but shortened time to first bout (see Discussion and Figure 5.4 for

the more detailed description of the model-based predictions).

The results of biological experiments agreed with the predictions made using the

activity- and neuromodulator-dependent hypothesis. In the proctolin pretreatment

experiments crab STNS preparations were incubated in 1M proctolin for 1-18 hours

before decentralization. After proctolin pretreatment all preparations turned off their

rhythmic activity immediately after decentralization with no significant difference from

control (t1/2=0.16±0.14 h, p > 0.05, t-test, n= 7, Figure 5.5, Table 5.1), and their time to

first bout was reduced compared to control (tbout=2.34±1.88 h, p < 0.05, t-test, n= 7,

Figure 5.5, Table 5.1).
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5.4 Discussion

Both experimental and modeling work suggested that the recovery after decentralization

might be mediated solely through the activity dependent mechanism that triggers the

readjustment of intrinsic properties of pyloric neurons (Luther et al. 2003; Golowasch et

al. 1999b). If the bursting activity was perturbed in a model neuron, the function of ionic

channels that underlie the generation of neuronal activity was altered to favor the

recovery of activity (Liu et al., 1998). Modeling studies have shown that an activity-

dependent feedback mechanism, which detects the intracellular calcium concentration

changes and then regulates calcium and potassium channels, is sufficient to generate a

recovery of neuronal activity after decentralization, including the intermittent bouts of

activity that precede the stable activity recovery in biological experiments (Zhang and

Golowasch 2007). However, other data indicate that the process of recovery maybe

activity independent and that neuromodulators may be involved in its regulation (Thoby-

Brisson and Simmers, 1998, 2000, Khorkova and Golowasch, 2007)

In this study the possibility that the process of pyloric activity recovery after

decentralization is determined by a strictly activity-dependent mechanism was examined.

For this purpose the type of network activity that precedes decentralization was

experimentally altered using GABA, proctolin, hyperpolarizing current injections into

pacemaker neurons and low external Na+ solutions.

These experiments demonstrated that when only ionotropic GABA A receptors

were activated during pretreatment, only the time to first bout was changed, and not the

time to half-maximal frequency after decentralization. On the other hand, if during

pretreatment only GABA B metabotropic receptors were activated by baclofen, only the
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rate of activity termination after decentralization was significantly affected, but not the

rate of activity recovery. It appears therefore that two separate and in principle

independent signaling pathways control the effects of GABA pretreatment on the

recovery after decentralization, one activated via GABA A, and another via GABAB

receptors. GABA A signaling is mediated by an ionotropic effect and consequent changes

in the ionic balance of the cell, pre-activated the recovery mechanisms which lead to

decreased time to first bout, similar to the effects of other activity-altering treatments

(hyperpolarization and incubation in low Na + saline). GABAB signaling, probably acting

through a G-protein pathway (Swensen et al. 2000, Duan and Cooke 2000) controls the

rate of activity termination, possibly by increasing the stability of the network activity

under conditions in which the neuromodulatory input is present (Zhang, personal

communication).

These experimental results provided the basis for a hypothesis of the recovery

process as a complex event, different aspects of which governed by different

mechanisms. These are an activity-dependent mechanism that regulates the onset of the

rhythm recovery process, and a G-protein mediated mechanism responsible for the rate

with which preparations decrease their activity after decentralization (Zhang, personal

communication). A schematic diagram of this hypothesis is shown in Figure 5.4. The

hypothesis postulates the presence of two sensors that regulate calcium conductance, SA

and SNm, with different time constants. SA detects the activity-dependent changes of a cell

via [Ca]Cyt changes, that depend on four components: Ca ++ influx through calcium

channel located in the cytoplasmic membrane, Ca++ diffusion and buffering through the

cytoplasm, Ca++ release from ER through the IP 3-sensitive calcium channel on the ER
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membrane, and Ca++ reuptake by a calcium pump on the ER membrane (Figure 5.4). SNM

is a neuromodulator-dependent sensor. Neuromodulators, e.g., GABA or GABAB

receptor agonists, bind to the G protein-coupled GABA B receptors. The activated G

proteins regulate SNM, which triggers a signaling pathway that in turn increases calcium

conductance.

At the moment of decentralization, the inward current normally activated by

neuromodulators (INM) is abolished, which hyperpolarizes the neuron and stops its

activity. However, the loss of neuromodulator-evoked current could be compensated for

by one of the inward currents, if such current could be sufficiently elevated prior to

decentralization. Calcium current can be one such current since it does not lose it's

activity after neuromodulator turnoff. In case of sufficient upregulation of the calcium

current the neuronal activity will be sustained after decentralization. However, if the

levels of calcium current are not sufficient to depolarize the cell beyond the threshold

required for the generation of activity, neuronal activity will stop. The loss of rhythmic

activity after decentralization would activate the SA sensor, that in turn would initiate the

slow increase in Gca . Gca increase gradually depolarizes the neuron and eventually leads

to bursting activity recovery.

Following this model, when neuronal bursting is inhibited without

decentralization, the activity-dependent feedback system will detect the loss of neuronal

activity through the drop in cytoplasmic calcium concentration and readjust the neuronal

conductances, namely Gca . SA -dependent upregulation of Gca prior to decentralization

will shorten the time needed to reach the depolarization level needed for bursting and

thus will accelerate the appearance of the first bout. The hypothesis further assumes that
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the elevation of Gca caused by the activity-dependent regulation is not sufficient by itself

to reach depolarization level needed to maintain bursting in the absence of the

neuromodulatory input.

However, if during pretreatment G-protein-coupled GABA B receptors are also

activated, as in baclofen- or GABA-pretreated preparations, the second sensor, S NM, is

engaged, forcing Gca to increase even further so as to be able to maintain activity in the

absence of neuromodulators. When exogenous GABA is washed off before

decentralization, SNM activation will begin to slowly decrease, eventually leading to the

hyperpolarization of the neuron and the loss of activity, but with a significant delay

relative to the control condition in which S NM is not as strongly activated.

The activity and neuromodulator-dependent recovery hypothesis was

implemented in a model neuron (Zhang, personal communication). The process of

activity recovery, as well as the effects of hyperpolarizing and neuromodulatory

pretreatments in this model neuron closely resembled the recovery and pretreatment

results seen in biological experiments (Zhang, personal communication).

The biological relevance of the activity- and neuromodulator-dependent

hypothesis of recovery was tested by using it to predict the results of a biological

experiment, in which pre-incubation with the neuromodulator proctolin is followed by

decentralization after proctolin wash off. Recall that the neuromodulator proctolin

activates an inward current (Golowasch and Marder 1992b), probably via a G-protein

coupled pathway (Swensen et al. 2000) which depolarizes pyloric neurons and activates

the pyloric rhythm (Nusbaum and Marder 1989a, b). According to the activity- and

neuromodulator-dependent hypothesis (Zhang, personal communication), pretreatment
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with proctolin should have the following effects. During proctolin pretreatment, the

activity-dependent feedback system will detect the upregulated status of neuronal activity

through SA and downregulate Gca . Meanwhile exogenous proctolin, acting through a

G-protein-coupled receptor activates S NM, but the increase of Gca through SNM is offset by

its decrease through SA. As a result, at the time of decentralization Gca will likely not be

high enough to maintain the pyloric activity in the absence of neuromodulator input.

However, Gca will be higher than in control conditions. This will lead to proctolin-

pretreated preparations having shorter time to first bout, but no extra delay in activity

turnoff after decentralization. The experimental results matched the outcome predicted on

the basis of the activity- and neuromodulator-dependent hypothesis, which supports the

existence of the two independent feedback systems controlling the recovery after

decentralization.

Interestingly, according to the activity- and neuromodulator-dependent

hypothesis, although the effects of hyperpolarization and low Na+ saline pretreatment

were similar, they were brought on by the activation of different mechanisms. While

hyperpolarization of PD neurons only activated SA through activity-dependent changes in

intracellular calcium concentration, low Na+ saline treatment also decreased the activity

of SNM due to the fact that the endogenous neuromodulator supply is interrupted when

action potential transmission along the stn is blocked by low Na+ concentration.

Decreased activity of SNM was not able to offset the increased activity of SA because

normal physiological levels of neuromodulators provide only minor contributions into

modulating Gca.
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In this study it was only possible to provide a rough outline of both activity- and

neuromodulator-dependent mechanisms controlling the process of recovery after

decentralization. The choice of calcium-mediated regulation to be the core of the activity-

and neuromodulator-dependent mechanism was prompted by vast number of studies

placing calcium at the intersection of activity and neuromodulator-dependent regulatory

mechanisms (reviewed in Adams and Dudek 2005). However, a number of alternative

mechanisms, including the ones not involving calcium signaling could be responsible for

the postdecentralization events. Further experiments are needed to confirm the activity-

and neuromodulator-dependent hypothesis and identify the exact signaling pathways

involved in the activity- and neuromodulator-dependent feedback systems. Some of the

experiments directed at this goal could include experimentally determining the kinetics of

the calcium conductance changes at different times during specific GABA receptor

agonists pretreatments, and after decentralization. Establishing the molecular identities of

activity- and neuromodulator-dependent sensors will also require further investigation. It

is likely that the roles of SA and SNM are not played by single proteins but by signaling

pathways including multiple proteins. Some of the potential candidates to participate in

the SA signaling pathway could be synaptotagmin I, known to participate in fast effects of

the changes in conductance of the calcium channels (reviewed in Koch and Bellen 2003).

Frequenin could be a possible player in the SNM pathway. It is known to participate in the

regulation of calcium channel activity by the GPCRs and is involved in the regulation of

potassium channels (reviewed in Burgoyne et al. 2004). Lobster frequenin has been

cloned, which would facilitate the initiation of the RNAi experiments. It has been shown

that frequenin RNA microinjection modifies the properties of the transient A current in
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lobster STG neurons (Zang et al. 2003b). Another protein family of interest is potassium

channel interacting proteins (KChIPs) that are known to modulate the properties of the

transient potassium current in response to calcium signaling and thus affect the stability

of rhythmic neuronal output. One of these proteins, KChIP3 is known to be

downregulated in epilepsy, while a KChIP2 null mouse is highly susceptible to cardiac

arrythmias, both diseases involving disregulation of the rhythmic output of the neuronal

networks (reviewed in Burgoyne et al. 2004).

The results described in this dissertation demonstrate that the process of recovery

after decentralization is governed by a complex regulatory mechanism, integrating both

activity- and neuromodulator-based inputs. Multiple and redundant regulatory

mechanisms are very common in biological systems, and could be an evolutionary way to

ensure the uninterrupted function of the vitally important organs in the face of the

constantly changing environmental conditions.
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Figure 5.4 Schematic diagram of intracellular activity- and neuromodulator-dependent
regulation. GK, GCa and GNM are the conductances of IK, Ica and INM , respectively. ER
here represents a generic intracellular Ca ++ store. IP 3RCa is the activated status of IP 3

sensitive Ca++ receptor/channel on ER membrane, and Ca ++ pump on ER membrane
represents the intracellular Ca ++ uptake process. The shaded arrow labeled Diff stands for
the Ca++ diffusion.SA is the activity-dependent Ca++ sensor. SA detects changes of [Ca] cyt ,
and in turn regulates GCa and Ca++ pump. SNM is the neuromodulator sensor triggered by
neuromodulators that also regulates GCa . Diagram courtesy of Y. Zhang.
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Figure 5.5 The recovery process after decentralization in the proctolin pre-treated
preparation. Black triangle A indicates the time of decentralization. Before
decentralization, luM proctolin was added to the preparation for —1 hour. After
decentralization, there was no significant delay in rhythmic activity turnoff, but the first
bout appeared faster than in controls (Table 5.1).



CHAPTER 6

CONCLUSION

6.1 Summary of Results

The goal of this dissertation was to investigate the mechanisms that ensure stability and

adaptation of a rhythm-generating neuronal network under changing environmental

conditions. Since the activity of a rhythm generating network depends on the coordinated

activity of the neurons comprising this network, and neuronal activity in turn is generated

by the coordinated action of ionic currents expressed by the neurons, the regulation of

ionic current expression was the primary focus of this investigation.

To achieve the goal of this dissertation, changes in neuronal ionic currents were

studied at the time of significant perturbations in the activity of the pyloric rhythm-

generating neuronal network. In the process of this investigation, coordination in

expression of currents within and between network neurons under normal physiological

conditions was demonstrated. Alterations in current levels and current coordinations in

the process of pyloric network recovery after decentralization and in response to

treatments with neuromodulators provided insights into molecular mechanisms

underlying the observed current level and coordination dynamics. Next, it was shown that

synaptic communication plays an important role in maintaining ionic current levels and

their coordination within the network. Finally, an experimental characterization of the

dual role of activity and neuromodulators in the process of recovery was carried out. Part

of this work, carried out in collaboration with Yili Zhang and Rosa Rodriguez, has been

used by Y.Zhang to develop a computer model that captures this phenomenon. Y.Zhang's

110
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computer model was based on a conceptual model incorporating the assumption of two

independent mechanisms working in parallel. This dissertation presents additional

experimental that support this model.

The contribution of this dissertation to the understanding of the mechanisms

employed by the nervous system to ensure stability and adaptation of the rhythm-

generating networks is outlined below in more detail.

6.1.1 Discovery of Ionic Current Coordination within and between Cells

In this dissertation it was shown for the first time that ionic current pairs within one

neuron and same name ionic currents in different neurons are expressed in coordinated

fashion in a rhythm-generating network.

In particular, HTK/I A , HTK/I h and IA/Ih current pairs were coregulated in both

pacemaker PD and follower LP neurons. IKd and Ic a on the contrary did not correlate with

any other current or to each other in either neuronal type (Chapter 3). Between the two

PD neurons IHTK, IA and I h were coordinated, while between PD and LP neurons only

logIHTK and IA, but not Ih were coordinated under normal physiological conditions

(Chapter 4). Decentralization and treatment with glutamate and GABA signaling

inhibitors caused significant alterations in the status of both intra- and intercellular ionic

current coordination (Chapter 3, 4). Changes in the current coordination status in

response to the modifications of neuronal environment proved that the observed current

coordination is not a passive function of pre-setting of current levels in each neuronal

type during development, but an actively maintained and regulated process.
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6.1.2 Novel Functions of Neuromodulators in Rhythm Generating Networks

In this dissertation a novel role of central neuromodulators in a rhythm generating

network was demonstrated for the first time, namely that of controlling intra- and

INTER-cellular current coordinations in the network (Chapter 3, 4). Results reported in

Chapter 3 demonstrate that proctolin maintains the coregulation of IHTK /IA and IHTK /Ih

pairs in PD cells and IA/Ih pair in LP cells. GABA regulated the intracellular coordination

of Ih between the two PD and PD and LP neurons (Chapter 4).

6.1.3 Novel Function of Glutamatergic Synaptic Communications in Rhythm
Generating Networks

The results reported in this dissertation identify a new function of the glutamatergic

synapses present in a rhythm generating network: they were involved in maintaining the

coordination of IHTK and IA currents between the two PD neurons and PD and LP neurons

(Chapter 4). The silencing of synaptic communications between AB and LP and LP and

PD neurons using PTX treatment completely abolished coordination in IHTK and I A in

both PD/PD and PD/LP neuronal pairs (Chapter 4).

6.1.4 Mechanisms Involved in INTRA-cellular Current Coregulation

The results reported in this dissertation show that coordinations of different current pairs

within neurons of different types are controlled by independent mechanisms and that at

least some of these coordinations are maintained by centrally released neuromodulators,

in particular proctolin, in an activity-independent manner (Chapter 3).

When central neuromodulatory supply to the pyloric network was interrupted



113

after decentralization, correlation between IHTK and Ih and IHTK and IA in PD cells and Ih

and IA in LP neurons was eliminated. However, correlation of IHTK /IA, IHTK /Ih and IA/Ih

current pairs in either cell was not affected by decentralization if one of the

neuromodulators normally released from descending axonal terminals (proctolin) was

continuously bath applied (Chapter 3). Continuous bath-application of proctolin together

with TTX, which completely eliminated pyloric activity, produced the same results as

application of proctolin alone, indicating that the effect of proctolin was not activity-

dependent. The intracellular current coordination status was not affected by treatments

with the glutamate and GABA A-type ionic current blocker PTX and by the GABA

synthesis inhibitor 3MPA (Chapter 4). These results indicate that intracellular

coordinations of IHTK /Ih and IHTK "A current pairs in PD and IH/IA pair in LP are

maintained by neuromodulators such as proctolin, while IA/Ih coordination in PD cells,

and IHTK /Ih and IHTK /IA in LP cells are regulated by different mechanisms. None of the

studied intracellular coordinations depended on glutamatergic cell to cell communication

or GABA signaling.

6.1.5 Mechanisms Involved in Intercellular Current Coordination

This dissertation provides evidence that coordination of currents between neurons is

maintained by independent mechanisms for each current and between each pair of

neurons. Some of the coordinations were determined by GABA while others were driven

by glutamate-mediated mechanisms. Inter- and intracellular current coregulations were

controlled by non-overlapping mechanisms.

In particular, IHTK and IA INTER-cellular coordinations depended on
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glutamatergic synaptic communications, while Ih coregulation status was determined by

GABA (Chapter 4). Decentralization and 3MPA treatment affected only the coordination

of Ih, but not IHTK and IA between the two PD cells and PD and LP cells. Treatment with

PTX abolished IHTK and IA coordinations in both neuronal pairs without affecting the Ih

coordination status. Additionally while IA, IHTK and I h showed linear correlation between

the two PD neurons, the type of coordination was different for each of the three currents

between LP and PD neurons (linear for I A , log/log for IHTK and absent for I h). GABA

regulated Ih coordination between both PD/PD and PD/LP neuronal pairs, establishing

coordination between the two PD cells and eliminating it between PD and LP cells.

Glutamatergic synaptic and possibly gap junction communication between cells was

important for the maintenance on IHTK and I A coordinations in both cell pairs (Chapter 4).

6.1.6 Mechanisms Involved in Setting Ionic Current Levels

Results reported in this dissertation demonstrate that modification of the ionic current

levels induced by changes in the network environment was driven primarily by altered

synaptic and possibly gap junction communication between the cells in the network

(Chapter 3, 4).

Decentralization, which affects both neuromodulator supply to the pyloric

network and the type of synaptic communication exchanged by the cells in the network,

induced significant and complementary changes in current levels and intracellular current

coordinations in both LP and PD neurons (Chapter 3, 4). PTX treatment affects the

activity at the glutamatergic synapses in the network, but leaves the neuromodulatory

supply intact. PTX treatment did not change the intracellular current coordinations, but
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led to ionic current level changes that closely resembled changes induced by

decentralization (Chapter 4). Taken together, these results indicate that intracellular

current coordinations were maintained by the central neuromodulatory supply, and the

current levels in both the LP and PD cells were set through activity-dependent effects

induced by glutamatergic synapses. In seeming contradiction, continuous application of

proctolin+TTX after decentralization, which theoretically creates a situation similar to

PTX treatment (silent glutamatergic synapses together with uninterrupted

neuromodulator (proctolin) supply), did not induce changes in current levels or their

coordinations. This could be explained by the failure to initiate post-decentralization

recovery process in the presence of proctolin (Chapter 3). This possibility is supported by

the fact that PTX effects on currents and their INTER-cellular coregulations were

completely reversed after PTX wash off, as opposed to the effects of decentralization

(Chapter 4).

6.1.7 Post-decentralization Changes Occur during a Critical Window

Results reported in this dissertation demonstrate that modification of the ionic current

levels and their coregulations induced by the complete removal of neuromodulator input

(decentralization) and glutamatergic and GABAergic blockade is a process that occurs

within a relatively short time window (Chapter 3) that coincides with the critical window

for post-decentraliztion RNA synthesis described by Thoby-Brisson and Simmers

(2000a). While continuous presence of neuromodulator after decentralization protected

the preparations from decentralization-induced changes, application of proctolin or

restoration of the full central neuromodulator supply 24 h after decentralization, the time
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past the critical window, did not restore pre-decentralization current levels or

coregulation status (Chapter 3).

6.1.8 Decentralization Leads to Restructuring of Signaling Pathways

The data presented in this dissertation shows that neuromodulators, such as proctolin,

produce different long term effects on current levels and their coordinations depending on

the state (non-decentralized or undergoing recovery) of the preparation. Long term bath

application of proctolin did not induce any changes in current levels in control

preparations, but produced significant changes in current levels when applied to the

recovered preparations (IHTK remained at 'decentralized' level, IA levels were

significantly decreased compared to 'decentralized' and control levels, and Ih levels were

reduced compared to 'decentralized' and equal to control levels, Chapter 3). This

indicates that signaling pathways that link proctolin receptors to their effector ionic

channels were restructured in the process of recovery after decentralization

6.1.9 Recovery after Decentralization is Controlled by Activity- and
Neuromodulator-Dependent Mechanisms

Experiments described in this dissertation have shown that the process of recovery after

decentralization was initiated by an activity-dependent mechanism, while activity turnoff

process was neuromodulator controlled (Chapter 5). When activity of the pyloric network

was interrupted for several hours prior to decentralization by hyperpolarizing the

pacemaker kernel neurons or by incubating the preparations in low sodium saline or in

GABA or GABA A agonist solutions, the recovery of the preparations was advanced.

GABA or GABAB receptor agonist preincubation did not affect the onset of recovery
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process but delayed the activity turnoff after decentralization (Chapter 5). Thus, it

appears that the rather drastic perturbations used reveal two processes, that regulate the

pyloric network activity on two different time scales (one slow and neuromodulator-

dependent mechanism, and one relatively fast and activity-dependent). Previous work

shows that in fact activity dependent changes occur in a relatively fast time scale of

several hours (Golowasch et al. 1999, Haedo and Golowasch 2006, Turrigiano et al.

1994, 1995). As for effects of neuromodulators, only their acute effects have been

previously studied (Golowasch et al. 1992b, Swensen and Marder 2000). Here we show a

heretofore unknown mechanism of action of neuromodulators that operates on a much

slower scale (up to 18 h) than previously known.

6.1.10 Current Coregulations Contribute to both Stability and Plasticity of the
Network

Results reported in this dissertation indicate that both gain and loss of current

coordinations may be associated with stabilization of network output (Chapter 3, 4). For

example, after decentralization, some of the intracellular current correlations were lost at

the time of the maximal pyloric rhythm disturbance (about 24 h after decentralization,

Chapter 3). However, intracellular ionic current correlations were not regained at the time

of stable activity recovery after decentralization (approximately 100 h after

decentralization, Chapter 3). Coordination of I h current between LP and PD cells was

absent under normal physiological conditions. However, during 3MPA treatment that did

not significantly affect the pyloric activity (except for reduction of its frequency),

coordination of I h current between LP and PD cells was established. Additionally,

perturbations in pyloric activity after decentralization or PTX treatment corresponded to
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disturbances in only some of the inter- and intra-cellular current coordinations (Chapter

3, 4).

These results indicate that while maintenance of strict ionic current correlations

could play a role in restricting the range of current fluctuations both within and between

the cells in the network and thus stabilize the patterned activity (see Bucher and Marder

2006), the relaxation of such correlation could facilitate the process of finding a new

current equilibrium after a significant perturbation, that will re-enable the network to

produce the lost patterned activity with a different set of ionic currents, and different

ionic current levels (Chapter 3, 4).

6.2 Implications of the Results in the Context of Rhythm Generating Network
Biology

In the history of neuroscience many of the insights gained from studying simple model

systems were invaluable in understanding more complex organisms. For over 35 years

the pyloric network of crustaceans was one of such model systems (Marder and

Calabrese 1996, Selverston 2005).

One of the mammalian systems closely resembling the pyloric network is

respiratory system, especially in such aspects as the presence of pacemaker neurons,

modification of intrinsic neuronal properties by neuromodulators and reconfiguration of

network architecture in response to changes in environment (Marder 2000, Ramirez et al.

2004).

In this dissertation novel aspects of network architecture, namely coordination of

current expression within and between cells, have been described. The phenomenon of

current coordination would have been extremely difficult to observe in a more complex
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mammalian system due to significantly larger numbers of participating neurons and

difficulties in their identification. This dissertation also elucidated the complexity of

molecular processes that govern intra- and inter-cellular current coordination, identifying

two types of mechanisms: one involving neuromodulators such as proctolin and GABA,

and the other involving activity-dependent mechanisms and glutamatergic cell to cell

communications. Even such initial survey of current coregulation mechanisms would

have been extremely difficult in a more complex system.

Important features of the process of recovery after decentralization, relevant to

many pathological events involving trauma or neurodegeneration in mammals, were

established in this dissertation. These features included decentralization-induced changes

in the levels and coordination of ionic currents, critical time window of recovery

initiation, restructuring of the neuromodulator-activated signaling pathways during the

recovery process, control of recovery by both activity- and neuromodulator-dependent

mechanisms, etc. These results have expanded and deepened the existing knowledge of

the recovery process (Rezer and Moulins 1993, Thoby-Brisson and Simmers 1998, 2000,

2001, Mizrahi et al. 2001, Luther et al. 2003).

One of the long term goals in biology is the construction of the exact computer

model of the living organism that would allow predicting the effect a given event or

treatment would have without actually administering them to a living organism. The

significance of simple model systems like the pyloric rhythm generating network of the

crustaceans, in the process of developing the whole organism model cannot be

overestimated. Many computer models of this system capable of reproducing different

aspects of experimentally observed behaviors have been built (Abbott and LeMasson
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1993, LeMasson et al. 1993, Siegel et al. 1994, Liu et al. 1998, Soto-Trevino et al. 2006,

Zhang and Golowasch 2007). Besides serving as building blocks in the whole organism

computer model, these 'local' models provide deeper understanding of the biological

mechanisms involved in experimentally observed behaviors and provide a blueprint for

the new directions in experimental work. The results obtained in this dissertation will

potentially assist in building a model neuronal network that will be used to further

understand the mechanism of activity recovery. The results described in this dissertation

will also be used to plan further biological experiments aimed at uncovering the details of

molecular mechanisms involved in the process of recovery after decentralization and

identifying the biological molecules involved in this process.
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