
New Jersey Institute of Technology New Jersey Institute of Technology

Digital Commons @ NJIT Digital Commons @ NJIT

Dissertations Electronic Theses and Dissertations

Fall 1-27-2008

Ontology learning for the semantic deep web Ontology learning for the semantic deep web

Yoo Jung An
New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/dissertations

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
An, Yoo Jung, "Ontology learning for the semantic deep web" (2008). Dissertations. 840.
https://digitalcommons.njit.edu/dissertations/840

This Dissertation is brought to you for free and open access by the Electronic Theses and Dissertations at Digital
Commons @ NJIT. It has been accepted for inclusion in Dissertations by an authorized administrator of Digital
Commons @ NJIT. For more information, please contact digitalcommons@njit.edu.

https://digitalcommons.njit.edu/
https://digitalcommons.njit.edu/dissertations
https://digitalcommons.njit.edu/etd
https://digitalcommons.njit.edu/dissertations?utm_source=digitalcommons.njit.edu%2Fdissertations%2F840&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.njit.edu%2Fdissertations%2F840&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/dissertations/840?utm_source=digitalcommons.njit.edu%2Fdissertations%2F840&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of
the personal information and all signatures from
the approval page and biographical sketches of
theses and dissertations in order to protect the
identity of NJIT graduates and faculty.

ABSTRACT

ONTOLOGY LEARNING FOR THE SEMANTIC DEEP WEB

by
Yoo Jung An

Ontologies could play an important role in assisting users in their search for Web pages.

This dissertation considers the problem of constructing natural ontologies that support

users in their Web search efforts and increase the number of relevant Web pages that

are returned. To achieve this goal, this thesis suggests combining the Deep Web

information, which consists of dynamically generated Web pages and cannot be indexed

by the existing automated Web crawlers, with ontologies, resulting in the Semantic

Deep Web. The Deep Web information is exploited in three different ways: extracting

attributes from the Deep Web data sources automatically, generating domain ontologies

from the Deep Web automatically, and extracting instances from the Deep Web to

enhance the domain ontologies. Several algorithms for the above mentioned tasks are

presented. Experimental results suggest that the proposed methods assist users with

finding more relevant Web sites. Another contribution of this dissertation includes

developing a methodology to evaluate existing general purpose ontologies using the

Web as a corpus. The quality of ontologies (QoO) is quantified by analyzing existing

ontologies to get numeric measures of how natural their concepts and their relationships

are. This methodology was first applied to several major, popular ontologies, such as

WordNet, OpenCyc and the UMLS. Subsequently the domain ontologies developed in

this research were evaluated from the naturalness perspective.

ONTOLOGY LEARNING FOR THE SEMANTIC DEEP WEB

by
Yoo Jung An

A Dissertation
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy in Computer Science

Department of Computer Science

January 2008

Copyright © 2008 by Yoo Jung An

ALL RIGHTS RESERVED

APPROVAL PAGE

ONTOLOGY LEARNING FOR THE SEMANTIC DEEP WEB

Yoo Jung An

Dr. James Geller, Dissection Advisor	 Date
Professor, Department of Computer Science, NJIT

Dr. Narain Gehani, Committee Member 	 Date
Professor, Department of Computer Science, NJIT
Dean, College of Computing Sciences, NJIT

Dr. Dimitrios Theodoratos, Committee Member 	 Date
Associate Professor, Department of Computer Science, NJIT

Eli% Brook Yi-fang Wu, Committee Member 	 Date
Associate Professor or, Department of Information Systems, NJIT

Dr. Yugyung Lee, Committee Member	 Date
Associate Professor, Department of Computer Science Electrical Engineering,
University of Missouri at Kansas City

BIOGRAPHICAL SKETCH

Author:	 Yoo Jung An

Degree:	 Doctor of Philosophy

Date:	 January 2008

Undergraduate and Graduate Education:

• Doctor of Philosophy in Computer Science
New Jersey Institute of Technology, Newark, NJ, January 2008

• Master of Science in Computer Science
New Jersey Institute of Technology, Newark, NJ, January 2004

• Master of Science in Consumer Science
Dongguk University, Seoul, Korea, August 1995

• Bachelor of Science in Home Economics Education
Kookmin University, Seoul, Korea, February 1993

Presentations and Publications:

Journal Articles:

Yoo Jung An, Kuo-Chuan Huang and James Geller,
"Naturalness of Ontology Concepts for Rating Aspects of the Semantic Web,"
Communications of the International Information Management Association,
vol. 6, no. 3, pp. 63-76, 2006.

Yoo Jung An, Kuo-Chuan Huang, and James Geller
"Comparative Anatomy of Ontologies: the Semantic Naturalness Perspective,"
Second Review for Publication.

iv

Conference Papers:

Soon Ae Chun, Yoo Jung An, James Geller, and Sunju Park,
"Fuzzy Virtual Card Agent for Customizing Divisible Card Payments,"
Proceedings of E—Commerce and Web Technologies, 6th International
Conference, EC—Web 2005, Copenhagen, Denmark, 2005, 287-296.

Yoo Jung An, James Geller, Yi-Ta Wu and Soon Ae Chun,
"Semantic Deep Web: Automatic Attribute Extraction from the Deep Web Data
Sources,"
Proceedings of the 22nd Annual ACM Symposium on Applied Computing, SAC
2007, Seoul, Korea, 2007, 1667-1672.

Yoo Jung An, James Geller, Yi-Ta Wu and Soon Ae Chun,
"Automatic Generation of Ontology from the Deep Web,"
Proceedings of the 6th International Workshop on Web Semantics, WebS07,
Regensburg, Germany, 2007, 470-474.

Posters:

Yoo Jung An, Kuo-Chuan Huang, and James Geller,
"Rating the Naturalness of Ontology Taxonomies,"
Proceedings of the 20th International FLAIRS Conference, Key West, Florida,
2007, 176-177.

v

ACKNOWLEDGMENT

My sincere and foremost thanks go to Professor James Geller. His continuous guidance

and support allowed me to complete this dissertation successfully.

I am also grateful to the committee members, Dr. Narain Gehani, Dr. Dimitrios

Theodoratos, Dr. Brook Yi-fang Wu and Dr. Yugyung Lee for reviewing the dissertation

thoroughly and invaluable suggestions.

I extend my thanks to my fellow graduate students and colleagues at the Semantic Web

and Ontologies lab. I benefited a lot from their invaluable discussions and

encouragement.

Many parts of this dissertation have been published or submitted for publication. I extend

my thanks to a co-author Dr. Soon Ae Chun for an excellent collaboration. I will also give

a special thanks to Dr. Yi-Ta Wu and Kuo-Chuan Huang who have worked on the

implementation.

Thanks are also due to Professor David Nassimi, Professor Andrew Sohn and Dean of

College of Computing Sciences, Professor Narain Gehani for the teaching assistantship

throughout my graduate years.

Finally, I am deeply grateful to my husband Dr. Sung-Hyuk Cha and my parents Jung

Pyung An and Kum Hong Choi and my family for support and love.

vi

TABLE OF CONTENTS

Chapter Page

1 INTRODUCTION 1

1.1 Motivation 1

1.2 Approach 2

1.3 Overall Research Work 4

1.4 The Process for Constructing the Semantic Deep Web 	 6

1.5 Organization 7

2 AUTOMATIC ATTRIBUTE EXTRACTION FROM THE DEEP WEB 	 9

2.1 Introduction 9

2.2 Definitions 12

2.3 Automatic Attribute Extraction (AAE) from the Deep Web Data Sources 	 19

2.3.1	 Approach to AAE 19

2.3.2	 PVA Extraction 24

2.3.3	 UVA Extraction 26

2.3.4	 Final Attribute Determination Using Synonyms 	 27

2.4 Results 32

3 AUTOMATIC GENERATION OF ONTOLOGY FROM THE DEEP WEB 	 45

3.1 Introduction 	 45

3.2 Related Work 47

3.3 Generating a Domain Ontology from the Deep Web 49

3.4 Results 56

vii

TABLE OF CONTENTS
(Continued)

Chapter Page

4 INSTANCE EXTRACTION FOR ONTOLOGY-BASED DEEP WEB SEARCH 	 62

4.1 Introduction 	 62

4.2 Related Work 64

4.3 Enriching a Domain Ontology for the Semantic Deep Web 67

4.3.1	 Approach to Instance Extraction 	 67

4.3.2	 Ontology Representation in Web Ontology Language 	 72

4.4 A Web Search with Domain Ontology-based Query Extension 76

4.4.1	 Problem Formulation for the Assessment of Ontology-based Web
Search 	 79

4.4.2	 Algorithm 81

4.4.3	 Experimental Assessment 83

4.4 Limitations 86

5 ONTOLOGY EVALUATION: NATURALNESS PERSPECTIVE 	 89

5.1 Introduction 89

5.2 Naturalness Formalization 93

5.2.1	 Naturalness of Concepts 93

5.2.2	 Naturalness of IS-A Relationships using Frequencies of Concept
Pairs 	 96

5.2.3	 Naturalness of IS-A Relationships using Rule Mining 	 99

5.2.4	 Naturalness of Concept Pairs Connected by Semantic Relationships 	 102

5.3 Methodology 	 103

viii

TABLE OF CONTENTS
(Continued)

Chapter 	 Page

5.3.1 Data Sources 	 103

5.3.2 Phase I: Extract Data 	 108

5.3.3 Phase II: Analyze Data 	 120

5.4 Experimental Results on Existing Large Ontologies. 	 124

5.4.1 The Naturalness of Concepts 	 124

5.4.2 The Naturalness of Concept Pairs by IS-A Relationships 	 129

5.4.3 The Naturalness of Concept Pairs by Semantic Relationships 	 131

5.4.4 Overall Ranking 	 132

5.5 Experimental Results for Naturalness of Domain Ontologies 	 135

5.6 Limitations	 137

6 SUMMARY AND CONTRIBUTIONS 	 139

6.1 Automatic Attribute Extraction from the Deep Web 	 141

	6.2 Automatic Generation of Ontology from the Deep Web 142

	

6.3 Instance Extraction for Ontology-based Deep Web Search 142

6.4 Ontology Evaluation: Naturalness Perspective 	 143

7 FUTURE WORK.. 	 145

7.1 Limitations and Restrictions 	 145

	

7.2 Open Problems 147

APPENDIX PARTIAL LISTS OF CONCEPT PAIRS AND SEMANTIC TYPE
RELATIONS 	 150

REFERENCES 	 153

ix

LIST OF TABLES

Table	 Page

2.1	 Quality of Top-30 Querying Results in Both Attribute Sets in Query 1-7... 	 40

3.1	 Size Information after First Phase of the ODO Algorithm 	 59

4.1	 Instances of Extracted Relationships 	 71

4.2	 Case Study Results 	 86

5.1	 The Descriptive Statistics I: Concept Occurrence 	 124

5.2	 The T-test for the Difference of Means between OpenCyc vs. WordNet for
Concepts 	 125

5.3	 The T-test for the Difference of Means between OpenCyc Class vs. WordNet
for Concepts 	 126

5.4	 The T-test for the Difference of Means between OpenCyc Individual vs.
WordNet for Concepts 	 126

5.5	 The T-test for the Difference of Means between UMLS Semantic Network
vs. WordNet for Concepts 	 126

5.6	 The T-test for the Difference of Means between UMLS Metathesaurus vs 	
WordNet for Concepts 	 127

5.7	 Results of the ANOVA lest to Examine the Variance among the Different
Ontologies for Concepts 	 128

5.8	 Results of the ANOVA Test to Examine the Variance between Multi-Word
labels and Single-Word labels for Concepts 	 128

5.9	 Descriptive Statistics II: Pair Occurrence in IS-A Relationships 	 129

5.10 The T-test for the Difference of Means between OpenCyc Class vs. WordNet
for IS-A pairs 	 130

5.11 The T-test for the Difference of Means UMLS Semantic Network vs.
WordNet for IS-A pairs 	 130

LIST OF TABLES
(Continued)

Table 	 Page

5.12 The T-test for the Difference of Means between OpenCyc Class vs. UMLS
Metathesaurus for IS-A pairs 	 130

5.13 The T-test for the Difference of Means between UMS vs. WordNet for IS-A
pairs 	 131

5.14 The T-test for the Difference of Means between OpenCyc Class vs. UMS for
IS-A pairs 	 131

5.15	 The Descriptive Statistics III: Pair Occurrence in Some Semantic
Relationships 	 131

5.16 Results of the ANOVA Test to Examine the Variance among the Different
Ontologies for Semantic Relationships 	 132

5.17 Naturalness of Concepts in Domain Ontologies 	
136

5.18 Naturalness of IS-A Relationships in Domain Ontologies 	 137

xi

LIST OF FIGURES

Figure Page

1.1 The main components of the Semantic Deep Web 	 5

1.2 Semantic Web layer cake 	 5

1.3 Approach to building the Semantic Deep Web 	 7

2.1 The frame work for extracting attributes of Deep Web sources 	 12

2.2 A simple form example 	 13

2.3 HTML corresponding to Figure 2.2 	 15

2.4 Three important issues in attribute extraction 	 21

2.5 Automatic attribute extraction components 	 23

2.6 An example of obtaining PVA 	 25

2.7 An example of obtaining the UVA 	 27

2.8 An example of performing the synonym analysis 	 30

2.9 An example of obtaining the Final Attributes 	 32

2.10 Evaluation architecture 	 32

2.11 Interface for performing AAE 	 35

2.12 Interface for ranking Deep Web data sources 	 36

2.13 Interface for accessing WordNet 	 37

2.14 An example of automatic and manual attribute sets obtained from the query
interface of a Web data source

38

2.15 The top-30 sources in two different attribute sets 	 41

2.16 The top-15 attributes with both attribute sets for Query 1 	 43

2.17 The top-10 attributes in different attribute sets 	 43

xi i

LIST OF FIGURES
(Continued)

Figure Page

3.1 The framework for generating domain ontologies 	 47

3.2 An example of generating a SF with common nearest ancestor "person" 	 50

3.3 An example of generating a Schema Fragment with common ancestor
"action" 	 51

3.4 The process of the domain ontology generation algorithm 	 55

3.5 Interface of Algorithm 3.1 57

3.6 Interface for accessing WordNet 	 58

3.7 The SFs of common ancestors "person" and "action," respectively 	 59

4.1 The frame work for generating an enriched domain ontology 	 64

4.2 A flow for generating data level ontology fragments 	 68

4.3 A sample Web site with a dynamic query interface 	 69

4.4 A sample web site with results 	 70

4.5 A domain ontology with instances and relationships 	 76

4.6 Work flow of domain ontology-based Web search 	 77

4.7 User feedback interface 	 78

4.8 (a) Ideal case for the user's term, (b) typical case for the user's term, (c)
ideal case for the extended term, and (d) typical case for the extended term 	 79

4.9 Search result page before using Algorithm 4.1 	 83

4.10 Search result page after using Algorithm 4.1 	 84

4.11 The search results along with different types of query terms 	 87

5.1 Step 8: evaluating the quality of domain ontologies 	 92

LIST OF FIGURES
(Continued)

Figure	 Page

5.2	 (a) Partial OpenCyc diagram (b) a part of the Semantic Network (c) an
example of IS-A relationships in the Metathesaurus (d) an example of
assignments of semantic types to concepts in the Metathesaurus of the
UMLS 106

5.3	 The flowchart of our analysis 	 108

5.4	 Descriptive graph to show the naturalness of ontologies 	 134

xiv

CHAPTER 1

INTRODUCTION

1.1 Motivation

Different users use different search terms according to their knowledge and intuition to

find relevant Web pages that they are looking for. The numbers of relevant Web pages

returned to users differ dramatically, mainly depending on the terms entered into

conventionally available Web search engines. Many Web pages returned to users may be

completely irrelevant, and it takes too long for users to identify the relevant Web pages

by going through too many results. It is necessary to develop a methodology such that the

number of returned Web pages becomes smaller while the overall number of relevant

Web pages becomes bigger.

Quoting the famous scientist (Hawking 2002), Galileo Galilei, "where the senses

fail us, reason must step in." This quote can be interpreted as follows in the Web search

problem. Different keywords or terms entered by users can be interpreted as "senses."

Sometimes, the returned Web pages do not satisfy the users, i.e., there are too many

returned Web pages many of which are irrelevant. These cases correspond to "where the

senses fail us." Thus some logical methodology must step in to find more relevant Web

pages. The methodologies of this dissertation are based on utilizing ontologies.

Ontologies can provide semantics to the next generation of the World-Wide Web,

and thus, are considered as an important topic of Web research. Recently, the Semantic

Web (Berners-Lee et al. 2001) has become a major research issue in several sub-

disciplines of Computer Science and Information Systems. The goal of the Semantic

1

2

Web is to automate many tasks that humans perform with the World-Wide Web today.

The vision of the Semantic Web relies on agent programs like softbots roaming the Web,

finding data and services, combining them and returning them to their user. These agents

will need some human-like knowledge to perform their tasks. For this purpose,

ontologies will be sprinkled all over the Semantic Web.

It is imperative to build ontologies to achieve this goal, yet, very few domain

ontologies are currently available and most are too small to be good resources. What is

worse, existing ontologies often provide unnatural concept labels (Lee and Geller 2005).

Ontologies have often been constructed in one of the following two ways. Either,

they are manually developed by experts in the domain. This approach to building domain

ontologies has two disadvantages: 1) It is extremely time consuming to construct

ontologies by hand, and 2) domain ontologies are generally based on the view point of

the expert, and are subjective, and limited to some degree by the available expertise. The

other approach to building ontolgies is using text mining techniques on numerous Web

pages. In this approach, extracted concepts are prone to errors and relationships among

concepts are hard to be extracted.

1.2 Approach

This thesis presents a method for the automatic extraction of ontologies from sources

beyond unstructured text Web page sources. A large number of Web sites (i.e., Web data

sources) provide a considerable amount of information with the support of backend

databases and dynamic query schemes. The contents of the databases are dynamically

retrieved by programs and accessible and searchable by manual query interfaces. At the

3

present time, they are not included in the results returned by search engines or indexed by

Web crawlers. Thus, there exists a large amount of Web information that is not "visible"

to general search engines. This "hidden" information in Web sites has been called the

Deep Web (Singh 2002). Sometimes, the Deep Web is called the "hidden" or "invisible"

Web. Accessing and utilizing the hidden Deep Web information is of interest and a

contribution of this dissertation.

This dissertation considers the problem of searching Web pages faster and

retrieving better results than currently available Web search engines by combining

Semantic Web techniques and information from the Deep Web. Historically, research on

the Semantic Web and on the Deep Web has happened in parallel, with little interaction

between the two fields. This dissertation introduces the Semantic Deep Web, focusing on

the semantics of information in Deep Web sources.

Automatic generation of domain ontologies from a variety of sources (e.g.,

existing ontologies, Deep Web data sources, etc.) is a challenging research topic that is

attacked in this dissertation. This dissertation demonstrates three different aspects of

utilizing Deep Web sources. The first aspect is to extract Web page attributes of Deep

Web front ends automatically (An et al. 2007a). The second aspect is to extract

ontologies from the Deep Web automatically (An et al. 2007b). The last aspect is to

extract instances from the Deep Web automatically to enrich the ontologies by extending

them downwards.

Furthermore, an evaluation methodology for existing ontologies has been

developed in this research. It was tested with several major, popular ontologies, namely

OpenCyc, WordNet and the UMLS. Then it was applied to the automatically generated

4

domain ontologies. Thus, this dissertation presents research on the creation on of a

"Semantic Deep Web," identification of Deep Web sources, automatic generation of

domain ontologies from the Web sources (An et al. 2007c), automatic instance extraction

from the Deep Web and a novel methodology for the evaluation of existing ontologies

(An et al. 2006, An et al. 2007b).

1.3 Overall Research Framework

Ontologies could provide a useful semantic layer for the Deep Web. On the other hand,

the contents of domain ontologies can be enriched by Deep Web sources. Thus, the Deep

Web and ontologies can mutually benefit each other, in the view of this dissertation.

Hence, this thesis introduces a framework of the Web as the Semantic Deep Web (An et

al. 2007a). Before discussing all the aspects for the Semantic Deep Web in depth, the

main components of the Semantic Deep Web are given in Figure 1.1. Focusing on

ontologies, two main aspects, the Deep Web and ontologies extend the WWW to the

Semantic Deep Web.

The Semantic Deep Web, which is derived from a combination of aspects of the

Deep Web and the Semantic Web, focuses on the search interfaces of the Deep Web and

the ontology approach of the Semantic Web. An ontology provides semantic support by

using controlled terms for concepts in a certain domain.

Figure 1.1 The main components of the Semantic Deep Web.

5

Figure 1.2 Semantic Web layer cake (Bjelogrlic et al. 2006).

It should be noted that the Semantic Deep Web is not the same thing as the Deep

Semantic Web. Researchers (Bjelogrlic et al. 2006) have distinguished between the

Shallow Semantic Web and the Deep Semantic Web, referring to parts of the Semantic

Web layer cake as shown in Figure 1.2. Hereby, the upper layers that are more Artificial

6

Intelligence oriented have been referred to as Deep Semantic Web. Here, on the other

hand, a semantic layer is added to the Deep Web which was newly introduced in this

research, independent from the Semantic Web. Thus, one could take the Semantic Deep

Web and classify it into a Shallow Semantic Deep Web (SSDW) and a Deep Semantic

Deep Web (DSDW). This dissertation considers only the Shallow Semantic Deep Web.

The Semantic Deep Web was first presented in previous work (An et al. 2007a).

As the main components of the Semantic Deep Web, this dissertation research

investigates 1) Attributes of the Deep Web data sources and how to automatically extract

them; 2) Domain ontologies in E-commerce and how to automatically generate them

from the Deep Web. 3) Deep Web search and how to automatically extract instances from

the Deep Web and include them in the domain ontologies and finally 4) A methodology to

evaluate the naturalness of existing general purpose ontologies, as well as the naturalness

of the desired E-commerce ontologies.

1.4 The Process for Constructing the Semantic Deep Web

The proposed approach to constructing the Semantic Deep Web is depicted in Figure 1.3.

In steps 1 (An et al. 2007a) and 2 (An et al. 2007c), attributes are automatically extracted

from query interfaces of several domain-specific Deep Web sources, and domain

ontologies are automatically generated based on attributes of the query pages and

WordNet. In order to enhance a domain ontology, instances and new concepts based on

results obtained by querying suitable Deep Web sites are added to the domain ontology in

steps 3, 4, 5 and 6. As a new Web site is visited, new instances and concepts can be

recognized and merged into the ontology. In step 7, the question is addressed how to

7

access Deep Web data from a site which is not designed to cooperate with existing

crawling algorithms. In step 8, a novel approach is presented to evaluate the quality of

several ontologies (WordNet, UMLS, etc.) to get numeric measures of what may be

called "naturalness" (An et al. 2006; An et al. 2007b); the "naturalness" measurement

was applied to the enriched domain ontologies as well.

Figure 1.3 Approach to building the Semantic Deep Web.

1.5 Organization

The rest of this dissertation is organized based on the steps described in Figure 1.2.

Thereby, the outline of this dissertation is described as follows. Chapter 2 presents a

method to extract attributes from the Deep Web automatically, i.e., step 1 in Figure 1.3,

which was published in (An et al. 2007a). Chapter 3 introduces a method to generate

ontologies automatically from the Deep Web, i.e., step 2 in Figure 1.3, which was

published in (An et al. 2007c). Chapter 4 covers the steps 3, 4, 5, 6, and 7 which extract

instances from the Deep Web automatically to enrich the ontology by extending them

downwards. Results of an experimental assessment of the enriched ontology will also be

reported to check whether the proposed method increases the number of relevant result

Web pages. Chapter 5 presents a statistical evaluation of the naturalness measurements. A

8

summary and conclusions are in Chapter 6. Finally, future work and limitations are

discussed in Chapter 7.

CHAPTER 2

AUTOMATIC ATTRIBUTE EXTRACTION FROM THE DEEP WEB

2.1 Introduction

This chapter introduces automatic attribute extraction from the Deep Web, utilizing an

ontology to determine attributes to access the Deep Web.' The Automatic Attribute

Extraction method (1) identifies attributes that are used by query Web page designers,

called Programmer Viewpoint Attributes, and (2) attributes that are presented as labels to

users, called User Viewpoint Attributes. An ontology enriches the candidate query

attributes by providing synonyms and by matching attributes used by designers and users.

Dynamic query interfaces with HTML <form> elements have been the major

method for accessing the Deep Web. In (Ntoulas et al. 2005), information in Deep Web

sites was categorized as being represented either in textual or structured databases. While

a textual database needs a single input keyword for searching text documents, a

structured database typically requires a user to fill in several input fields of a query

interface, so that the system will produce and return a search result. In order to display a

set of data, complex forms need to be serialized, to ensure the syntactic correctness of a

user's request before extracting data from the backend database. This dissertation work

focuses on such structured databases.

The recent interest in the Deep Web has resulted in a new research focus on

information hidden inside Web-accessible databases. For example, Ipeirotis (2004) has

' This chapter's contents were published in (An et al. 2007a).

9

10

studied information hidden behind query interfaces, focusing on hidden-Web text

database.

Retrieval of information from the Deep Web is often desired. For example, a Web

user may be looking for a cheap airline ticket. For this purpose she needs to scroll

through prices after entering necessary values (e.g., departure date and time) into a query

form on a website. Information about airline tickets she or he is viewing is "structured

(Arasu and Garcia-Molina 2003)" such that she or he can see the results organized by

different criteria. Some users prefer cheap flights, while other users prefer direct flights or

want to fly only with certain airlines. To locate an appropriate website, most users would

enter a few keywords ("cheap tickets") into a general purpose search engine such as

Google. Typically such a search will locate the major existing airline reservation

websites.

However, a user may still be unsatisfied with the query results. The reason is that

the websites found by a general purpose search engine are usually the most popular sites.

This does not guarantee that these sites will have the lowest ticket prices. A new startup

may offer better prices, but it will be almost impossible to locate this site, because it will

be hidden among the thousands of results of a general search engine. The user wants to

find the Web data sources, even non-popular ones, which are most relevant to her needs.

This is one example of the "information extraction problem (Arasu and Garcia-Molina

2003)."

In order to support this kind of Web search requirement, researchers involved in

Web technology have studied several issues regarding the Deep Web. These include how

to understand the context of queries and give proper responses (Singh 2002), how to best

11

processes queries to return relevant pages (Singh 2002), how to create dynamic pages that

need computation on the fly, how to support simultaneous searches (Ghanem and Aref

2004), and how to classify the content of Web databases (Ipeirotis 2004). These

approaches reflect different characteristics of the Deep Web.

Understanding the attributes and contents of Deep Web data sources is also

important in order to locate the most relevant Deep Web data sources for a user, since

these sources use different attributes to access contents. Kabra et al. (2005) presented an

attribute co-occurrence framework to rank and select Deep Web data sources based on the

users' requirements. They first construct a co-occurrence graph to indicate the

relationships between pairs of attributes. Then, an attribute relevance score is calculated,

indicating how likely it is that a query interface with this attribute will be of interest to

the user. Finally, the score for each data source is obtained based on all the attribute

relevance scores. Although Kabra et al.'s algorithm successfully allows the user to input

an imprecise initial query, the attributes of their data sources were obtained manually. The

reason why they manually determined the attributes of each used website is that

automatic attribute extraction has been proven to be a difficult task (Raghavan and

Garcia-Molina 2001),

The newly proposed approach in this dissertation is to extract attributes

automatically by using the viewpoint of the user and the viewpoint of the (Web

application) programmer and reconciling the results obtained in this way with the help of

an ontology. Ontologies, together with agent technologies, are primary ingredients of

what Berners-Lee et al. (2001) have called the Semantic Web. Historically, research on

the Semantic Web and on the Deep Web has happened in parallel, with little interaction

12

between the two fields. The Semantic Deep Web, combining the Semantic Web and the

Deep Web is introduced in this dissertation work.

Figure 2.1 The frame work for extracting attributes of Deep Web sources.

Chapter 2 is about a part of the overall system architecture in Figure 2.1 and

marked as Step 1. The rest of this chapter is organized as follows. In Section 2.2,

definitions of terms used in this chapter and the rest of the dissertation are given. The

Section 2.3 presents the approach to the automatic attribute extraction from the Deep Web

data sources, including Programmer Viewpoint Attribute (PVA), User Viewpoint Attribute

(UVA), and final attribute extraction algorithms. Finally, Section 2.4 presents the

implementation of the algorithms and the effectiveness of final attributes for user queries.

2.2 Definitions

In this section, the terms that appear in this research are delineated. Before describing the

newly developed approach to automatically extracting the proper attributes from Web

data sources of the Deep Web, the meaning of the ambiguous term "attribute" is first

clarified. In the general sense, an attribute of a Web data source is any item of

13

information that describes this source. The more specific meaning of "attribute" is

derived from the HTML/XML syntax. A tag of HTML consists of a mandatory name

between angular brackets, which may be followed by optional attribute/value pairs. As an

example, the Web page in Figure 2.2 is generated by the HTML code in Figure 2.3, which

contains several attribute/value pairs. Thus the tag <SELECT> contains the attribute

"size" with the value 2. The attribute and the value of such a pair are separated by an

equal sign (=).

Departure
Newark
ArIington

Where is your departure city?

Search by:
fare
schedule

Figure 2.2 A simple Form Example.

In order to reduce the confusion that might be caused by this ambiguity, the two

meanings of "attribute" based on two possible viewpoints are distinguished. A user sees

the text of a Web data source and the text areas into which she is supposed to enter

information. Usually a text string is close to (above or next to) each text area, indicating

what kind of information needs to be filled into this text area. A user normally does not

see the attribute/value pairs of the HTML code, although she could, of course, view the

HTML source of the page. The latter is typically not done, unless it is needed.

14

On the other hand, a Web application programmer will primarily need to look at

the attribute/value pairs used within HTML forms, as those pairs define the only way for

accessing the form information from within the application. While the programmer might

occasionally look at the form itself, he will try to compress everything he needs to know

about the form into the attribute/value labels of the form. Thus, he has every interest in

making those labels meaningful. Following this distinction, Programmer Viewpoint

Attributes (PVAs) are distinguished from User Viewpoint Attributes (UVAs). PVAs are

extracted from within HTML tags whereas UVAs are the results of analyzing the text of

the Web form, especially as it is associated with text entry areas. It should be noted that

in (World Wide Web Consortium 1999) elements on a form are called "controls" which

are used as a medium for user interaction.

In the process of locating Deep Web sources, many attributes will be extracted,

some of which might not be used in the final analysis. Such attributes are referred to

candidate attributes. Both PVAs and UVAs are utilized to achieve the following three

goals: (1) to semantically categorize the encountered Deep Web data sources, (2) to

recommend Deep Web sources which are likely to be of interest to the user, and (3) to

solve this limited form of the "information extraction problem." By comparing PVAs and

UVAs and using an ontology to recognize synonyms, it becomes easier for the program to

ascertain the meaning of the entry fields on a Deep Web data source. The final results of

the attribute analysis involving both PVAs and UVAs are referred to as Final Attributes,

or in short, FAs.

15

The simple <FORM> in Figure 2.3 shows the HTML code of a number of

common form elements. The <LABEL>, <SELECT>, <OPTION> and <INPUT>

elements all contain PVAs.

<FORM action= "..." method= "...">
<P><LABEL for "departure_city">Departure

</LABEL>
<SELECT size= "2" name= "depart_city">

<OPTION selected value= "cityl">Newark</OPTION>
<OPTION>Arlington</OPTION></SELECT><P>

Where is your departure city?

<INPUT type= "text" id= "origin"><P> Search by:

<INPUT type= "radio" name="searchBy" value="fare"> fare

<INPUT type="radio" name="searchBy" value= "schedule"> schedule<P>
<INPUT type= "submit" value= "Go"> </P> </FORM>

Figure 2.3 HTML corresponding to Figure 2.2.

Comparing Figure 2.2 and Figure 2.3 again, it becomes immediately clear that

both viewpoints indicate that this form might be related to an airline reservation system,

but in slightly different ways. Figure 2.2 mentions "Departure City" according to the user

viewpoint. Figure 2.3 mentions departure_city according to the programmer viewpoint.

During PVA extraction, the values of the id, name and value attribute/value pairs

of HTML INPUT and SELECT elements are used to generate the PVAs. For example,

"depart_city," "origin," "searchBy," and "schedule" are selected for PVA extraction.

During UVA extraction, the English text is used to form a set of UVAs. For example,

"Where is your departure city?" provides relevant information. Finally, by comparing

PVAs and UVAs, if necessary by looking up synonyms, FAs can be determined. For

example, "departure city" will become one of the FAs.

Following are the definitions used in this dissertation work.

16

Definition 1 (Web Data Source): A Web Data Source is a set of Web pages

{DS1,DS2,...,DS„} written in HTML, with each DS, containing a set of HTML form

elements HFi. ❑

Definition 2 (Inner Identifier): An inner identifier is the value of an attribute/value pair

of a tag, where the attribute is "name," or"id". The attributes of some tags (e.g.,

<SUBMIT>, <RESET>, <HIDDEN> or <IMAGE>) are excluded. ❑

II ,k is used to denote the set of k inner identifiers of one Web data source.

Example: For <SELECT size=2 name="depart_city">, the inner identifier is

"depart_city."

Definition 3 (Keywords): A label L consists a set of keywords, KL, that represent all the

domain-specific content words that are found between the begin tag <LABEL> and/or

<SELECT> and the end tag </LABEL> and/or </SELECT>. The set of key words of a

Web Data source, denoted as KW ={KL1, KL2, 	 KLk}where k is the number of

keywords is defined as the union of all keywords of all labels in a Web Data Source. ❑

Example: For <LABEL for="departure_city">Departure</LABEL> the set of keywords

consists of {Departure}. For <OPTION value="0000" selected>Any Time</OPTION>

the set of keywords consists of {Any, Time}.

KW is used to break inner identifiers that may consist of several words into these

constituting words. For example, if KW={ seat, infant} and an inner identifier is given as

"abcinfantwithseat2" this will be broken down into a sequence abc, infant, with, seat, 2.

An inner identifier may consist of several words, combined with a separator or

just concatenated, e.g., departure_month, departureMonth, or departuremonth. In order

17

to increase the likelihood of matches, the component words of an inner identifier are

allowed to be attributes themselves or as pairs or triples (n-tuples) in their original order.

Thus, for departure_month, the following three are considered possible attributes:

"month," "departure," "departure month." These possible attributes are candidate

attributes for this domain.

Definition 4 (Inner Identifier-based Candidate Attribute): An Inner Identifier-based

Candidate Attribute, IICA, is a candidate attribute which has been derived from an inner

identifier. ❑

Based on the bag of all IICAs of all Web Data Sources, the Programmer View

Attributes, or PVAs in short are defined as follows.

Definition 5 (Programmer Viewpoint Attribute): A Programmer View Point Attribute,

PVA, is an Inner Identifier-based Candidate Attribute that occurs more than once in the

bag of all IICAs. ❑

In order to eliminate spelling errors and apparently unimportant attributes,

candidate attributes that occur only once over all sampled HF, are dropped. So as to

increase the likelihood of matches, synonyms of PVAs are added to the set of all PVAs.

Definition 6 (Synonym of PVA): A synonym of a programmer viewpoint attribute,

SOPVA, is a (set of) words from an ontology that are synonyms of the PVA. ❑

WordNet is used as the ontology in this dissertation. The set of SOPVAs contains

synonyms of all PVAs including the PVAs themselves in a singular format.

18

Up to now, attributes that have been extracted are based only on information

within starting tags. Now let's turn to attributes based on the free text between pairs of

HTML tags. For this purpose, <OPTION> tags and <LABEL> tags shall be ignored.

Most such free text will be derived from locations close to <INPUT> tags, as those

usually indicate what values are expected in an input field.

Definition 7 (Free Text-based Candidate Attribute): A free text-based candidate

attribute FTCA is a sequence of English words and symbols (such as or /) found

between a pair of tags in close proximity to an <INPUT> tag. ❑

FTCA, shall be used for the set of free text based candidate attributes of one Web

data source. The fuzzy term "close proximity" shall be employed because HTML often

contains intervening tags such as
 which are meaningless separators.

Definition 8 (User Viewpoint Attribute): A User Viewpoint Attribute, denoted as UVA,

is a sequence of English words derived from an FTCA by eliminating special symbols. ❑

UVA, represents the set of user viewpoint attributes of one Web data source.

Different special symbols require different forms of processing. Most special symbols

can be replaced by blanks. However, when a slash occurs, then the free text is broken

into two separate User Viewpoint Attributes.

Definition 9 (Synonym of UVA): A synonym of a user viewpoint attribute SOUVA is a

(set of) words from an ontology that are synonyms of the UVA. ❑

SOUVA, represents the set of synonyms of user viewpoint attributes of one Web

data source where the UVAs themselves are included in a singular format.

19

Definition 10 (Final Attribute): A final attribute, FA, is an element of SOUVAi which

has a sub-string (or a sub-string of one of its synonyms) matches one element of SOPVA

with larger than a % block occupancy rate of the elements among all consecutive

characters of the UVA, where 0 < a 100. a is a factor that may affect the total number

of final attributes. That is, the smaller a is, the larger the number of final attributes. ❑

Example: it can be determined whether a target UVA "departure date" can be considered

as a final attribute or not where a =50%. Suppose there exists a target PVA "departure"

in SOPVA. Then, since the sub-string "departure" in the target UVA is larger than 50%

(9/14) of the target PVA's length, the target UVA "departure date" will be considered as

one of the final attributes of the Web data source.

FA, represents the set of final attributes of one Web data source and is used to

describe the Web source to a user or a search engine. The union final attribute, UFA, is

used to denote the union of all sets of final attributes. The detailed procedures for

deriving the FAs will be presented in the following Sections.

2.3 Automatic Attribute Extraction (AAE) from Deep Web Data Sources

2.3.1 Approach to AAE

In this section, an overview of the Automatic Attribute Extraction (AAE) algorithm,

which is based on the following three primary observations, is presented.

(1) The query interface between the clients (users) and the server provides a way
for the users to submit their requirements.

(2) The context provided by the English language text in the query interface not
only describes the services of the Website, but also assists the users with entering
their requirements correctly.

20

(3) HTML tags often contain attribute/value pairs after the tag name. The values,
called inner identifiers, within these HTML markup elements are developed by
programmers and will presumably be named in a way that the programmers can
easily remember the usages of data entry fields and the corresponding data to be
expected.

The query interface has the purpose of processing the user's query actions.

Therefore, it is likely that there exists a hidden database table containing the hidden

attributes in a Web data source which correspond to fields in the query interface. The

context provided by the English language text in the query interface is utilized to inform

the users what information to enter into the form. Thus this text must describe the kind of

data to be entered into the associated form field. These data items will then be used for

query, insert, or update operations in a hidden backend database. There is a clear tradeoff

between the usefulness of the attribute/value pairs within HTML elements and the free

text between them. The free text must be in a format understandable to humans,

otherwise humans could not use the interface at all. On the other hand, free text in a form

often appears in phrases or even full sentences which are harder to process than single

words. Values of attribute/value pairs typically come as single words. However, because

the user cannot see these words, the interface builders often use inner identifier names

which are not meaningful to users, such as FIELD3 or REDINFSO. Thus, inner

identifiers have not been a major research issue in previous papers. However, they may

provide important clues and are utilized in this dissertation work to contribute to a novel

approach towards attribute determination.

Processing free text to derive UVAs is difficult for a machine due to at least the

following two problems. First, it is difficult for a computer to distinguish the useful key

words from the unnecessary words of a Web data source, since a word might be

21

important in certain applications, but useless in other areas. For example, when booking

an airline ticket, "from" and "to" are important key words. However, in most other

contexts, "from" and "to" would be considered stop-words and eliminated from

consideration together with "the", "this," "an" and other stop-words. Secondly, it is

difficult to determine the precise relationship between a key word, its corresponding

hidden attribute and the corresponding column in the hidden database. In some interfaces,

a key word might be a synonym for the corresponding attribute in the hidden table, but

this would be a lucky case. In many cases only the programmer will know why he named

a specific field in a specific way.

The newly developed approach to extracting the proper attributes for a Web

source is shown in Figure 2.4. In Figure 2.4, there is an overlapping area between the

UVAs and PVAs. That is, the final attributes will be determined by comparing UVAs and

PVAs. In order to perform the goal of automatically determining the proper attributes for

a Web data source, it is necessary to make use of all the information available in a

flexible way. For example, the Web page designer might have called an input element

"departureCity" in the HTML input markup element, <input name="departureCity" class

="smallform" type="text" size="20" value=""> indicating that the meaning of the input

element is "departure city," which is close to the more useful "departure airport."

Figure 2.4 Three important issues in attribute extraction.

22

Therefore, in order to automatically extract the attributes for each Web data

source, a three-stage algorithm has been developed. Given a set of Web data sources, the

PVAs are obtained from the inner identifiers of all the Web data sources. Secondly, the

UVAs are obtained from the free text within the query interface. Lastly, the final

attributes (FAs) of each Web data source are determined based on PVAs and UVAs by

utilizing an ontology (WordNet). Note that, PVA and UVA extraction, and FA

determination are all achieved automatically.

Figure 2.5 graphically displays the high level Automatic Attribute Extraction

algorithm, the pseudo-code of which is shown in Algorithm 2.1. The details of each step

will be described in Sections 2.4, 2.5 and 2.6. Looking at Figure 2.5, it becomes clear that

the given algorithm does not treat PVAs and UVAs in a symmetrical way. Only one PVA

set is matched against several UVA sets. This avoids the inefficiency of mapping n PVA

sets against m UVA sets. It is the assumption that the PVA set is used as reference set,

because it is likely to be more precise than the UVAs. The reason for that is that terms in

the PVA are likely to be tied to terms from an underlying database schema.

Figure 2.5 Automatic attribute extraction components.

Algorithm 2.1: Automatic Attribute Extraction
Procedure AAE
begin

for each DS, do begin

Obtain HF, from DS,

Obtain II ,k from HF, (Alg. 2.2)

end
Obtain KW
Obtain PVA and SOPVA (Alg. 2.3)
for each DS, do begin

Obtain UVA, and SOUVAi

Obtain FA, by comparing SOPVA and SOUVAi

end
end

23

24

2.3.2 PVA Extraction

While inner identifiers can be easily obtained from HTML elements by a program, they

cannot be directly used for further analysis since they are usually comprised of several

words and symbols. Therefore, the inner identifiers have to be further separated into

several independent words. The algorithm 2.2 shows steps for separating a set of inner

identifiers of a Web data source DS, . The pre-condition for this algorithm is the existence

of KW as defined in definition 3. The automatic derivation of KW is relatively simple by

text extraction, thus detailed description is omitted.

Algorithm 2.2: Separating the Set of Inner Identifiers
function SS//(): IICA, ;

begin Remove the duplicated inner identifiers in set //i .

for each inner identifier in //i do begin
if the inner identifier contains special symbols

(:,/,{,},@,[,],>,$,&,#,+,\,•,=,?,;,*,_,{,",},<, etc.) then
separate the inner identifier into several sub-strings;

if each sub-string contains a Capital letter
(i.e., camel case) then

break each sub-string into several sub-strings;
for each sub-string do begin

for each key word of KW do begin
if the key word is located in the sub-string then

break each sub-string into several sub-strings with
respect to the key word; end end

obtain the separated inner identifier which is a string
containing several sub-strings

end
for each separated inner identifier do begin

count the number of sub-strings, ss, in the separated
inner identifier

for index i = 1 to ss do begin
extract a string which is composed of i-word consecutive

words from the separated inner identifier, and
add the string into the set IICA, ; end

end
Remove the duplicated strings in IICAi ; return IICAi

end

25

After obtaining the inner identifier based candidate attributes of each Web data source,

the set of PVAs is obtained from all sets IICAi by the Algorithm 2.3.

Algorithm 2.3: Obtaining PVA
function OPVA(all of IIi): PVA;

begin
for each //i do begin

Obtain IICAi by calling function SSII(//i) (Algorithm 2.2)

end
for IICA in PVA do begin

if IICA appears one time in the PVA then
Remove the IICA from the set PVA

if IICA contains several copies in PVA, then
Keep one copy and Remove the duplicated ones

end
return PVA

end

Figure 2.6 An example of obtaining PVA.

26

Figure 2.6 shows an example of obtaining the Programmer Viewpoint Attributes.

Suppose there are two Web data sources DS, and DS,. First, two inner identifier sets,

//i and 112 are extracted from HF1, and HF2 , respectively. IICA1, and I/CA, can be

derived from //1 and 112 accordingly by splitting the inner identifiers using the

Algorithm 2.2. Finally, the set PVA is obtained by the Algorithm 2.3.

2.3.3 UVA Extraction

The User Viewpoint Attributes are utilized to determine the final attributes of each Web

data source, and they are obtained from the free text within the query interface. The

procedure of obtaining the UVA for each Web data source, shown in Algorithm 2.4,

requires that the free text between two HTML tags which potentially embodies semantics

is added into the set FTCAi. The text between <OPTION> and </OPTION> should be

ignored since it does not describe attributes but instances.

Algorithm 2.4: Obtaining UVA
function OUVA(HF,): UVAi ;

begin
Remove all the text between <option> and </option> from HF, .

Obtain all free text between two HTML tags from HF, and add them as strings into

set FTCAi .

for each string in set FTCAi do begin
if a string contains special symbols then
Separate the string into sub-strings with respect to the symbols, to obtain
several free text based candidate attributes (FTCAs);
Add all FTCAs into set UVAi

end
Remove the duplicated FTCAs in UVAi

return UVAi

end

1. Extract the
Candidate Strings UVAi

27

Figure 2.7 shows an example of obtaining the UVAs. The candidate strings

between the HTML markup elements are extracted to form the FTCAi. Therefore, four

candidate strings in FTCAi are generated. After checking the special symbols in each

candidate string, seven candidate attributes in the set UVAi are available.

A Web Data Source DS;

<form> Departure Date/Return Date<select 	
<option....>Morning</option>Adult/Child/Infant
<input> Select your trip typeRound Trip
<input ...> </form>

FTCA

Departure Date/Return Date
Adult/Child/Infant
Select trip type
Round Trip

2. Seperate the
Candidate
String

Departure Date
Return Date
Adult
Child
Infant
Select trip type
Round Trip

Figure 2.7 An example of obtaining the UVA.

2.3.4 Final Attribute Determination Using Synonyms

This section presents the procedures to obtain the synonyms of PVA and UVA, using the

WordNet ontology and to determine the final attributes.

2.3.4.1 Ontology-based Attribute Expansion. An ontology is employed for processing

text from the query interfaces of Deep Web sources in this paper, while the Deep Web is

28

studied as a source for building domain ontologies in (Wu et al. 2005; Davulcu et al.

2003). In addition, an ontology is used to efficiently filter words from the Deep Web data

sources. The ontology adds a semantic layer to the Deep Web.

WordNet is a lexical ontology and contains more than 166,000 words. Each word

consists of a string and a corresponding sense (Miller 1995). In this paper, WordNet is

utilized for finding matches between PVAs and UVAs, based on synonyms. It is also used

for eliminating stop words to allow correct attribute retrieval. Among the WordNet

categories, (nouns, verbs, adjectives, and adverbs), nouns and adverbs are prevalent based

on the observation that semantics are mostly carried by nouns and adverbs (Varelas et al.

2005).

Obtaining the final attributes by comparing PVAs and UVAs involves additional

difficulties. (1) Some candidate attributes in PVAs are abbreviations. For example, "dep"

and "yr" are widely used to indicate "departure" and "year." (2) Some candidate

attributes in UVAs appear in different forms (singular and plural) for example, "adults"

and "adult."

When WordNet is used to remove improper words, two rules are used to filter the

candidate attributes. First, each individual word of a candidate attribute is examined to

see whether or not the word has a noun meaning in WordNet. If it has a noun meaning,

the word will be kept, otherwise, the word is discarded. However, some useful words

may be discarded due to the first rule. For example, "from" and "to" would be discarded

since they do not have noun meanings in WordNet. In order to solve this problem, the

second rule is used to keep those important words. That is, if a word does not have a noun

meaning, but it is a preposition, the word will be kept.

29

The algorithm for obtaining the synonym for each candidate attribute of PVA or

UVAi is shown below where SCA indicates the synonym of candidate attribute.

Algorithm 2.5: Obtaining Synonyms of PVA or UVA
function PSA (PVA or UVAi): SOPVA or SOUVA,;

begin
for each candidate attribute in PVA or UVAi do begin

Set SCA to be an empty string
if the candidate attribute (CA) contains more than one sub words then begin

for each sub-word in the CA do
if (the sub-word has a noun meaning in WordNet) or

(the sub-word has an adverb phrase in WordNet)
then add the simple format of sub-word into SCA;

if SCA is not an empty string then add one row into
SOPVA or SOUVA, with the format of SCA # SCA

end
else begin

if (the candidate attribute has a noun meaning in
WordNet) or (the sub-word has a adverb phrase in
WordNet) then

if CA is plural then begin
replace the CA by its singular format
choose all synonym of the first sense of the CA

from WordNet to form SCA, add one row into
SOPVA or SOUVAi with the format of CA # SCA

end
end end

Figure 2.8 is an example of performing the synonym analysis by utilizing

WordNet. Each row in SOPVA or SOUVAi was separated into two sub-strings by the

symbol "#." The string before "#" is the singular format of the PVA/UVAi , and will be

called target PVA/UVA in this proposal. The remaining strings after "#" are the synonyms

of the target PVA/UVA.

PVA or UVAi

adults
metropolis
dep time
rtn date
departure date
select trip type
round trip

SOPVA or SOUVAi

adult # adult, grownup
metropolis # city, metropolis, urban center
time # time
date # date
departure date # departure date
select trip type # select trip type
round trip # round trip

30

Synonym
Analysis

by Wordnet

Figure 2.8 An example of performing the synonym analysis.

2.3.4.2 Final Attribute Extraction. 	 After obtaining the synonym sets, SOPVA and

SOUVAi, the final attributes are derived by comparing each row in SOUVAi to all the

rows in SOPVA.

A two-step comparison is used to determine the final attributes by checking for

overlap. First, the comparison between PVA in SOPVA and UVAi in SOUVAi is

performed and secondly the synonyms of both sets are compared.

In the first comparison, a target UVA in SOUVAi is considered as a final attribute

if there exists one target PVA in SOPVA such that a sub-string of the target UVA is

exactly matched by the target PVA and this sub-string contains more than a % of all

consecutive characters of the target UVA. For example, we want to determine whether a

target UVA "departure date" can be considered as a final attribute or not where a =50%.

31

Suppose there exists a target PVA "departure" in SOPVA. Then, since the sub-string

"departure" in the target UVA is larger than 50% (9/14) of the target PVA's length, the

target UVA "departure date" will be considered as one of the final attributes of the Web

data source.

In the second comparison, a target UVA in SOUVAi will be considered as a final

attribute if one of its synonyms is exactly the same as one of the synonyms of a target

PVA. For example, a target UVA "metropolis" in SOUVAi will be considered as a final

attribute since one of its synonyms is exactly same as one of the synonyms of a target

PCA "city" in SOPVA. The algorithm for final attribute extraction is presented below, and

Figure 2.9 shows an example of extracting the final attributes.

Algorithm 2.6: Final Attribute Extraction
function FAD (SOUVAi , SOPVA,): FA,;

begin
for each row in SOUVAi do begin

Obtain the target UVA
bContinue = True
for each row in SOPVA do begin

Obtain the corresponding target PVA
/*the first comparison*/
if the target PVA is a sub-string of the target UVA then

if (the length of the PVA >= a % of the length of target UVA) then begin
Add the target UVA to FAi set; break;

end
1* the second comparison*/
if one of the synonyms of the target PVA is same to one of the synonyms

of the target UVA then begin
Add the target UVA to FA, set; break;

end
end

end

Chap 2 Manual Attributes Kabra' s

Kabra's OIA_E" Automatic Attributes

Compare
Results

32

SOUVAi 	SOPVA

adult # adult, grownup
metropolis # city, metropolis, urban center
time # time
date # date
departure date # departure date
trip type # trip type
round trip # round trip

adult # adult, grownup
city # city, metropolis, urban center
departure # departure, going away,

going, leaving
departure city # departure city
round # round, unit of ammunition,

one shot

Find the overlapping attributes

adult
A metropolis

 departure date
round trip

Figure 2.9 An example of obtaining the Final Attributes.

2.4 Results

Evaluation Architecture

In addition, in order to test whether the FAs can be used to identify Deep Web sources,

Kabra et al. (2005)'s Online Iterative Algorithm (OIA) was implemented in this chapter.

The algorithm gets user query terms and attributes and outputs a list of Web data sources

in the order of the relevance to the user query. The reason of adapting OIA is that if the

FAs (by the AAE algorithm) can be substituted for attributes which were selected by

human experts with a perfect precision result, it can be claimed that the FAs are effective.

As seen in Figure 2.10, the FAs, which are called AAE attributes, will be compared with

the manual attributes retrieved for this comparison, based on the results OIA produced.

Kabra 's Manual Attributes Kabra's OIA

Figure 2.10 Evaluation architecture.

33

Kabra et al. (2005) presented an attribute co-occurrence matrix representing

frequencies of co-occurring attributes over the different Web data sources. This matrix is

passed to an algorithm which ranks Web data sources. Their algorithm, consisting of

three main steps (Equation 2.1, 2.2 and 2.3) is employed in this dissertation.

The attribute co-occurrence matrix, is computed, based on co-occurrences

of a pair of attributes over Web data sources. Let countSources(ai n aj) denote the

number of Web data sources which contain both attributes a, and a ., then, the w (,,„,) is

computed as:

where k is the size of a set of attributes and ai,aj,ax , and ay E {FAi .The Final Attributes

FAi are the ones derived in this dissertation.

Next, the relevance of an attribute a j to a user query denoted by P[a j] was

calculated (Kabra et al. 2005) as:

where d is the decay factor, and 0 d < 1.

Lastly, each Web data source will have a relevance score for the user query,

denoted by score(DS,). The score(DSi) is computed by the following equation, and the

higher score(DSi) is, the higher a Web data source is ranked. Note that each Deep Web

data source was manually annotated by a set of key words which can be matched to

attributes.

34

(2.3)

where I FAi I indicates the number of final attributes.

With aforementioned equations the OIA (Kabra et al. 2005) were implemented.

The OIA algorithm outputs the top 30 Web data sources for each sampled user query

based on FAi. Its results, focused on the effectiveness of FAi will be discussed below.

Implementation of Algorithms

The algorithms was implemented with Borland Delphi and C++ Builder. Borland Delphi

is used to automatically download the Web data sources, extract the PVAs, UVAs and

FAs respectively.

The interface of the main algorithm developed in Borland Delphi is shown in

Figure 2.11 and Figure 2.12. Figure 2.11 shows the interface of the module that extracts

the final attributes from a set of Web data sources. The detailed explanation for the

function of each button is shown below according to the AAE algorithm:

1. The Button labeled "Step 0: Load From DeepWeb" is used to load a list of
Deep Web data sources. Each text contains a Deep Web data source, DS, written
in HTML.

2. The Button labeled "Step 1: Form Label Analysis" is used to extract label
elements from the set of HTML form elements HF,

3. The Button labeled "Step 2: Obtain PVA (Auto)" is used to perform the
Algorithm 2.2 (i.e.,Separating the Set of Inner Identifiers) and the Algorithm 2.3
(i.e., Obtaining PVAs).

4. The Button labeled "Step 3: Get Final Attributes (Auto, Ori)" is used to
perform the Algorithm 2.4 (i.e., Obtaining UVA) and to find a string matches
between PVA and UVA.

35

5. The Button labeled "Step 4: Synonym (for PVA, UVA)" is used to perform the
Algorithm 2.5(i.e., Obtaining Synonyms of PVA or UVA).

6. The Button labeled "Step 5: Get Final Attribute (WordNet)" is used to perform
the Algorithm 2.6 (i.e., Final Attribute Extraction) using synonyms.

7. The Button "Step 6: Calculate Wij" is used to calculate the attribute co-
occurrence matrix.

Figure 2.11 Interface for performing AAE.

36

Figure 2.12 Interface for ranking Deep Web data sources.

Figure 2.12 shows the interface of the module which compares the performances

of the automatically and manually extracted final attributes. The detailed explanation for

the function of each button is shown below:

1. Button "Step 7: Btn_LoadParameters" is used to load the attribute co-
occurrence matrix. There is an option to choose either manually or
automatically extracted attribute sets.

2. Button "Step 8: Ranking Analysis" is used to select the first 30 data sources
closely relative to a simulated user query and the first 15 attributes in the order
of P[a j] .

In order to access the WordNet database, an interface developed in C++ Builder

was developed, shown in Figure 2.13. Algorithm 2.5 calls the executable file to obtain the

synonym information from WordNet.

37

Figure 2.13 Interface for accessing WordNet.

Effectiveness of Attributes

In order to examine the effectiveness of attributes the automatic attribute extraction

(AAE) algorithm extracted, two experimental attribute sets were generated. One was

manually obtained by an experienced Web programmer, another one was automatically

obtained by the AAE algorithm. They are named "manual attribute set" and "automatic

attribute set" afterward in this dissertation. The Deep Web data sources were downloaded

from the URIC Web integration repository (Chang et al., 2003) which contains 477 Web

data sources in 8 domains, airfares (49 documents), automobiles (97), books (67), car

rentals (25), hotels (39), jobs (52), movies (78), and music records (70). Figure 2.14

shows an example of manual and automatic attribute sets extracted from one of the Deep

Web data sources in (Chang et al., 2003). There are three query interfaces in the Web data

source, and the sizes of automatic and manual attribute sets are 28 and 17, respectively.

Query 1
Query 2
Query 3
Query 4
Query 5
Query 6
Query 7

(from, to, departure date, return date)
(author, title, ISBN)
(make, model, price)
(song, album, artist)
(title, actor, director)
(from, to)
(from, to, adult, child)

Figure 2.14 An example of automatic and manual attribute sets obtained from the query
interface of a Web data source.

The seven test queries used in this dissertation are from Kabra et al.'s paper

(2005) as follows:

The relationships between each query and its corresponding query domain are

(Query 1, airfare), (Query 2, books), (Query 3, automobiles), (Query 4, music records),

(Query 5, movies), (Query 6, airfares), and (Query 7, airfares).

39

Measuring how well the AAE algorithm works, compared with a human,

depended on a set of keywords of a user query. The rate of correctly found Deep Web

sites relevant to a user's interests, called precision (Hawk 1999), is regarded as a measure

for the effectiveness of the attributes that the AAE extracted.

Table 2.1 shows precision and recall values for the top-30 query results in both

attribute sets in Queries 1 — 7. Precision and Recall were computed as follows :

Note that retrievedWebDataSources is the number of Web data sources returned by Kabra

et al.'s ranking algorithm and fixed to the 30-top sources. The relevantWebDataSources is

the number of Web data sources which are properly matched to a sampled query.

Note that the TotalRelevantWebDataSources is the total number of Deep Web sites which

belong to a certain domain e.g., TotalRelevantWebDataSources for the airfare domain is

49 in the UIUC Web integration repository (Chang et al. 2003) which is the test data set

used in this chapter. The experts (Chang et al. 2003) manually assigned every website in

the test data set to a domain.

The differences between the manual set of attributes and the automatic set of

attributes were small, with a range of 0 to 0.27 precision difference for the top-30 sources

retrieved. The "manual attribute set" shows 0.96 average precision while the "automatic

attribute set" shows 0.74 average precision.

40

Table 2.1 Quality of Top-30 Querying Results in Both Attribute Sets in Query 1— 7.

Manual Attribute Set Automatic Attribute Set
No. of
Relevant
Web data
sources

Precision Recall	 1 No. of
Relevant
Web data
sources

Precision Recall

Query 1
(Airfare) 30 1.00 0.61 24 0.80 0.49

Query 2
(Books) 30 1.00 0.45 21 0.70 0.31

Query 3
(Automobiles) 30 1.00 0.30 30 1.00 0.31

Query 4
(Music) 27 0.90 0.39 23 0.77 0.33

Query5
(Movies) 28 0.93 0.36 20 0.67 0.26

Query 6
(Airfare) 28 0.93 0.57j 18 0.60 0.37

Query 7
(Airfare) 30 1 0.61 19 0.63 0.39

As another comparison technique, the ranking method from Kabra et al.'s paper

(2005), as shown in Figure 2.15, which takes a set of attributes as an input, can be

utilized for comparing two different sets of attributes. As mentioned earlier, the set of

attributes automatically generated by the algorithms presented in this chapter can be

compared with the set of attributes manually selected by experts. This method has the

advantage that it is based on visualization.

41

Figure 2.15 The top-30 sources in two different attribute sets.

The X axis represents the Web data source indices, i.e., indexed Web sites. The Y

axis represents the queries. It plots the top-30 sources for each test query for both manual

and automatic attribute sets, respectively. Note that, the Web data sources are indexed

according to their domain groups: airfares (sources 0 — 48), automobiles (49 — 145),

books (146 — 212), car rentals (213 — 237), hotels (238 — 276), jobs (277 — 328), movies

(329 — 406), and music records (407 — 476).

Hence, if the plot points x for a certain query number appear together within the

Web source indices of the same domain group, the given attribute set can be claimed to

be useful for locating relevant Web data sources with respect to the query. If the plot

points x for a certain query number appear randomly in the Web source indices of the

different domain groups, the given attribute set is less useful for locating relevant Web

data sources with respect to the query.

The manual attribute set in Figure 2.15(a) is analyzed first. For Query 1, 2 and 3,

all the top- 30 sources are matched to the corresponding domains. That is, the 30 x are

consecutive in a certain range of the source indexes. For example, Query 3 is about

automobiles and the index numbers of Web data sources which are ranked as being

42

highly relevant to this query should be between 49 and 145. The 30 x are visible in this

range. However, for Query 5 the domain of which is movies, one x which represents a

Web data source fell into the domain of books. This case makes the range of source

indexes for movies overlap with the range of source indexes for books by the one x

In the analysis of the automatic attribute set in Figure 2.15(b), the results in

Queries 1 — 7 seem to show that the selected Web data sources are related to the clients'

interests. However, they are not as good as the manually extracted attribute set since there

are some overlapping sources in different queries. It is not surprising to get these results,

due to the following reasons. First, the final attribute set of each Web data source is

obtained by comparing each UVAi in SOUVAi to each PVA in SOPVA, as shown in

Figures 2.5 and 2.9. Therefore, it is possible to get some improper attributes for the Web

data sources. For example, "from" and "to" are the two best-match attributes to the Web

data sources in the airfare domain. However, they may appear in the domains of

automobiles and books because the condition "price range from $X to $Y" sometimes

appeared in the query interfaces. Secondly, the score of a Web data source is highly

associated with the size of the final attribute set of a Web data source. Therefore, it is

possible that the size of the final attribute set of a Web data source is large, due to the

automatic attribute determination strategy. That is, there are some improper attributes

selected by the AAE algorithm. Therefore, the results of the automatic attribute set (with

a size of 1825) are not as good as the manual attribute set (with a size of 526) in the

imprecise and incomplete querying condition.

43

Figure 2.17 The top-10 attributes in different attribute sets.

When a user enters a complete query like Query 1, 87% of attributes among the

top-15 attributes are the same in the two attribute sets, as shown in Figure 2.16. Figure

2.17 shows the top-10 attributes that are associated with Queries 1 — 7 in both automatic

and manual attribute sets.

Based on the results of comparison tests conducted, it can be concluded that the

AAE can automatically extract attributes which can be used in identifying Web data

sources in a similar way as human experts do. The evaluation of automatically extracted

44

attributes will be further considered, focusing on domain ontologies in Chapter 5 and the

utility in Deep Web search, together with better assessment tests, in Chapter 4.

In conclusion, a new algorithm which can work like an expert Web programmer

in extracting attributes from the query interfaces of the Deep Web by reconciling PVAs

with UVAs was developed in this chapter. As a result, 1,825 final attributes from 477 Web

data sources (Chang et al. 2003) in eight domains (airfares, automobiles, books, car

rentals, hotels, jobs, movies and music records) were automatically extracted.

A manual review of the AAE algorithm showed that the results were sensible.

However, one needs to keep in mind that the test data sets were relatively small,

compared to the numbers of sites available in these domains on the Web. Thus, for larger

sets of Web sites, a human review of the algorithm results will be necessary. The attribute

extraction for realistic domains should therefore be considered as a semi-automatic

process.

CHAPTER 3

AUTOMATIC GENERATION OF ONTOLOGY FROM THE DEEP WEB

3.1 Introduction

Chapter 3 introduces a novel approach to the automatic generation of domain specific

ontologies by analyzing Deep Web sources. An approach and an algorithm of automatic

ontology construction for Deep Web pages to enhance the representation of the Deep

Web's source contents will be presented. This process is performed after extracting

attributes of 447 Deep Web data sources, described in Chapter 2. The domain ontologies

based on these attributes from Deep Web, are considered as features of the Semantic

Deep Web in this dissertation work.'

Finding relevant e-commerce sites and accessing, retrieving and maintaining the

huge amount of existing Deep Web information raise challenging research issues. Most of

the Deep Web can only be accessed through dynamic query interfaces, which contain

HTML form elements. For this, identifying a relevant rich set of keywords to represent

the Deep Web contents of a site is crucial, since a wrong or sparse set of keywords may

result in many irrelevant search results, thus forcing users to sift through them to find the

pages that match their interests. Identifying a rich set of keywords for the Deep Web is

also needed to overcome the bias of the current search engines towards popular sites,

based on a link-based analysis of the sites. The link-based indexing of Web sites retrieves

popular sites, but not necessarily the sites satisfying the user's service or information

needs.

1 This chapter's contents were published in (An et al. 2007a).

45

46

The Web form interface pages are considered as Deep Web services that indirectly

reflect the real content types of the Deep Web. A set of attributes was automatically

extracted from such interface pages in (An et al. 2007a). On the other hand, annotating

(indexing) these Deep Web services with rich semantic concepts (keywords) will yield

Web search results which include these service pages, thus facilitating access to the Deep

Web contents.

To achieve this, Semantic Web technology, specifically ontologies, to annotate the

Deep Web pages are utilized. Ontologies have been used to annotate Web services

(Sabou et al. 2005; Patil et al. 2005; HeB and Kushmerick 2004), which support Web

agents' automation of tasks such as composing Web services and customizing a workflow

of services. However, constructing an ontology, i.e., a machine readable form of human

knowledge, automatically from textual input remains a grand challenge. Web ontologies

are needed to fulfill the vision of the Semantic Web, which is the automation of tasks on

the Web that currently require human effort (Dou et al. 2005).

Because of ontologies' promise of sharing knowledge among humans and

programs, ontologies, especially domain specific ontologies in e-commerce, will play a

control role on the Semantic Web (Dou et al. 2005) and the Deep Web. In order to

support the Semantic Web vision, the building of many domain specific ontologies is

desirable. However, building ontologies is difficult, time-consuming and error-prone.

Rather than using a manual approach, automatic generation of ontologies from Web

sources would be a better approach, but this is a well-known difficult task (Wu et al.

2005).

The use of ontologies will help to recognize user interests and address them

47

correctly. For example, in the book sales domain, "From" means the lower end of a price

range, while it usually means andeparture city (or date) in the travel domain. This shows

that the content of an ontology, even if it is limited to e-commerce, needs to be domain-

specific. In Chapter 3, a novel approach to the automatic generation of domain specific

ontologies is presented. It is intended that the domain ontologies derived from the Deep

Web should convey domain characteristics of Web pages accessing the Deep Web.

Figure 3.1 The framework for generating domain ontologies.

Chapter 3 is about Step2 of the grand system architecture in Figure 3.1. The rest

of this chapter contains sections as follows. In section 3.1, related work is presented.

Section 3.2 shows the algorithm for automatically generating a domain ontology from the

Deep Web. Finally, section 3.4 presents how the algorithm was implemented and its

experimental results.

3.2 Related Work

Building an ontology automatically from Web pages has been attempted in (Davulcu et

al. 2005; Wu et al. 2005; Sabou et al. 2005; Roitman and Gal 2006). Two approaches to

build an ontology are either building from scratch or building by reusing existing

48

ontologies (Pinto and Martins 2004). Approaches in (Davulcu et al. 2005; Wu et al.

2005; Sabou et al. 2005; Roitman and Gal 2006) are examples of building ontologies

from scratch, with the adaptation of some existing Artificial Intelligence methods.

OntoMiner (Davulcu et al. 2005) can derive XML hierarchical semantic tree structures

from Web sites to find concepts by using a partitioning algorithm. In order to mine IS-A

relationships among the concepts (Davulcu et al. 2005), their algorithm uses frequency

information of how strongly a pair of concepts is linked in the sub-structures of a

hierarchical tree which assembles the XML semantic trees of each Web site. Schema

learning (Nestorov et al. 1998; Garofalakis et al. 2000) was presented as a background

study in culling a structure out of a Web site.

A DOM tree corresponding to the schema of a Web site was considered for

building the ontology in (Wu et al. 2005; Roitman and Gal 2006). OntoBuilder (Roitman

and Gal 2006) turns a Web site into a hierarchical structure on the fly and performs

matching between ontologies which correspond to each Web site. DeepMiner (Wu et al.

2005) also uses the DOM tree in extracting concepts and instances from Web sites, based

on the relative positions of the concepts in the tree. Compared with (Davulcu et al. 2005),

the IS-A relationship is not specified in (Wu et al. 2005), but a clustering algorithm to

explore new concepts over interfaces of Web sites is described for a domain-specific

ontology. The common feature of (Davulcu et al. 2005; Wu et al. 2005; Roitman and Gal

2006) is that methodologies to bootstrap an ontology from the Web are discussed without

presenting a final ontology. Thereby, scalability of the methodologies to a considerable

number of Web sites is willing to be an issue.

In this dissertation, a novel approach to the automatic generation of domain

49

specific ontologies is presented. Contributions of the proposed approach are twofold:

improved processing of users' queries (Handschuh 2003) and ontology usage for

semantic annotation of Web services, as will be discussed now. First, Web sites

themselves provide an environment for users to learn domain specific terms, which

implicitly reflect users' understanding of the domain. Therefore, extracting frequently

used concepts across many Deep Web sites implies that the domain ontologies of these

sites exhibit an important feature, domain consensus, which makes the ontologies usable

(Missikoff 2002). Next, the newly proposed approach to generating a domain ontology

can be used for semantic annotation of Web services, since mapping service descriptions

to concepts of the ontologies is essential for the discovery of services (Patil 2004).

3.3 Generating a Domain Ontology from the Deep Web

A domain ontology is generated, based on the automatically obtained final attributes

(Chapter 2), by the following substeps. In the first substep, duplicates will be removed

from the final attributes obtained by the Automatic Attribute Extraction algorithm for

each of the eight subdomains (see below). Then, a superclass or parent of each attribute

will be derived from WordNet. Here "attributes" refers to as the Web page attributes, as

before. However these attributes appear as concepts in WordNet. In addition,

"hypernym," which is the term used in WordNet, is referred to as "superclass," or

"parent" in this dissertation. The final attributes are assembled into several groups of

concepts which form DAGs (directed acyclic graphs) based on their nearest common

ancestors. Let's call these small DAGs schema fragments (SFs). Note that each of the

SFs contains at least one vertex, and the roots of all SFs are final attributes. The domain

50

ontology will be generated by iteratively merging the SFs into a final single DAG. This

process terminates when only one DAG is left or a certain maximum number of iterations

has been reached. Note that in each iteration, the first hypernym of a root becomes the

new root of the SF. Figures 3.2 and 3.3 show examples of generating subgroups based on

nearest common ancestors in the airfare subdomain.

Figure 3.2 An example of generating a SF with common nearest ancestor "person".

In Figure 3.2, there are six final attributes (adult, child, infant, passenger, senior,

traveler) obtained by the AAE algorithm (An et al. 2007a). By retrieving their hypernyms

from WordNet, it is found that those attributes can be presented by a DAG whose root is

"person." Note that, the concept "juvenile" is derived from WordNet to create a

51

connection between "child" and "person." Figure 3.2(a) shows the six final attributes.

Figure 3.2(b) shows three SFs constructed from the six final attributes. Figure 3.2(c)

shows the first iteration of adding a new root. The new root "person" is the hypernym of

the root in the previous iteration and comes from WordNet. The final SF of the 6

attributes is generated in the second iteration as shown in Figure 3.2(d). This is done by

finding that person is a hypernym of juvenile in WordNet and adding an IS-A connection

between them. A dashed ellipse stands for a concept derived from WordNet. Because

WordNet was already used when deriving final attributes, it is guaranteed that the root of

each SF will be found in WordNet.

Figure 3.3 An example of generating a Schema Fragment with common ancestor

"action".

52

Figure 3.3 shows another example of generating a domain ontology. The eight

attributes (arrival, departure, return, leave, going, travel, cruise, flight) obtained by the

automatic extraction algorithm (Figure 3.3(a)) are taxonomically interwoven by

examining hypernyms, and "action" is found as the nearest common ancestor of all these

attributes in WordNet. Figure 3.3(b) shows four schema fragments in which the root of

each schema fragment is again one of the eight final attributes. Note that, the direct

hypernym of "return" is "arrival" in WordNet. During each iteration, hypernyms are

added to each schema fragment as new roots as shown in Figures 3.3(c) and (d). The final

schema fragment of the eight attributes is generated in the third iteration, as shown in

Figure 3.3(e).

A function for obtaining the domain ontology (called ODO) is shown in

Algorithm 3.1. Following below are the descriptions of functions used in the algorithm.

Algorithm 3.1: Obtaining Domain Ontology

function ODO(FA: set of final attributes represented as graph nodes) returns DAG

{

//Phase 1 (Initial Schema Fragment Generation):

forest = } ; // forest is a set of DAGs and 'forest' is the number of DAGs in it

tempDAG; // tempDAG is a variable which temporarily holds a newly created DAG

initForest (FA);

for (all pairs (i,j), i E FA, j E FA, i j) do{

if (is-child in WordNet(i, j)){

tempDAG = insertIS-Alink(i, j);

forest = forest u {tempDAG} ;

delete vertexes i and j from the forest;

} else if (is-child in WordNet(j, i)) {

tempDAG = insertlS-A link(j, i);

53

forest = forest L.) {tempDAG};

delete vertexes i and j from the forest; } }

//Phase 2 (Schema Fragment Merge):

iterationCounter = 1;

const threshold; // indicates a certain number of iterations

while (I forest'	 and (iterationCounter< threshold) do {

for each DAGi do { DAGk = addlS-Alink(DAGi); }

// DAGi is a DAG where i is the root of DAGi

II k E WordNet and k e FA

for (all pairs (DAGi, DAGj), i # j) do {

if ((m = find-parent in WordNetDAG(DAGi, j) is not null) {

// m is a parent of j where m E DAG i

DAGn = mergeDAGs(DAGi, m, DAGj) where 1 = k or 1 # k ;

forest = forest L) {DAGn }

forest = forest \ {DAG, DAGj }

} else if (m =find-parent in WordNetDAG(DAGj, i)) {

II m is a parent of i where m E DAGj

DAGn = mergeDAGs(DAGj, m, DAGi);

forest = forest u{DAGn }

forest = forest \IDAGi , DAG j 1} }

iterationCounter= iterationCounter+1;

} // end of while

}

• initForest(FA): used to initialize a forest with Unique Final Attribute(s).
is-child in WordNet(i, j): used to find an IS-A relationship in WordNet. It return
true if i is a hypernym of j in WordNet, otherwise, it returns false.

• insertIS-Alink(i, j): used to create a DAG by inserting a new IS-A link between j
and i. The direction of the edge between j and i is from j to i.

54

• addlS-Alink(DAGi): used to add a new root to DAGi (i.e., DAG where i is the
root) by inserting the IS-A link from i to its hypernym k, retrieved from WordNet.
It returns a newly created DAGk where k is the root.

• find-parent in WordNetDAG(DAGi, j): used to find an IS-A relationship between
vertex j and each vertex of DAGi in WordNet. It returns a vertex m if the IS-A
relationship exists between m and j (i.e., m is a parent of j in WordNet
where m E DAG,).

• mergeDAGs(DAGi, m, DAGj): used to merge DAGi and DAGj by inserting an
IS-A relationship between the root j of DAGj and a vertex m where m belongs to
DAGi. It returns a DAGn where n = i and m are children of j.

The algorithm consists of two phases (Figure 3.4): initial schema fragment

generation and schema fragment merge. In the initial schema fragment generation,

several initial schema fragments shaped as DAGs are generated based on the nearest

common ancestors of all attributes by referring to hypernym links in Wordnet. If one of

the attributes is a superclass of another attribute in WordNet, an IS-A relationship

between them is inserted. The result is a new DAG, consisting of two vertexes and the IS-

A link. The child of the IS-A link is removed from the set of DAGs. The parent becomes

the root of the new DAG and is also removed. Note that, in this phase, the roots of all the

SFs must be attributes.

55

Figure 3.4 The process of the domain ontology generation algorithm.

In the schema fragment merge phase, the algorithm relies on repeated calls to a

function mergeDAGs. This process of merging DAGs is continued by trying to locate an

IS-A link (in WordNet) from the root vertex of DAGi to a node in DAGj. If this is

successful, a new combined DAG is created and it contains all nodes of both and a new

IS-A link connecting them. DAGi and DAGj are deleted. This process is continued as

long as links are found in WordNet. Ideally, the result of this process consists of one or a

few large DAGs. If no common concepts are found in a pair of DAGs, a new root is

added to be the parent of the two roots (found in WordNet). For an example in Figure 3.3

(c), the DAGs rooted in "arrival" and "going" have no nodes in common. Thus,

56

"accomplishment" is added to be a new root above them. This process continues until

either a merge becomes possible, or the WordNet root "entity" is found.

3.4 Results

This section demonstrates how the algorithm is implemented with its experimental results

for the automatic domain ontology generation. Therefore, the automatically extracted

attribute sets in each of the eight subdomains are considered as seeds for the ontology

construction, with WordNet providing the missing links.

Implementation of the Algorithm and GUI

The algorithm is implemented in Borland Delphi and C++ Builder. Borland Delphi is

used to automatically download the Web data sources, extract the PVAs and UVAs and

generate the domain ontologies. The graphical user interface (GUI) of the main algorithm

(Algorithm 3.1: Obtaining Domain Ontology) developed in Delphi is shown in Figure

3.5.

Here is a succinct guide for the GUI to generate a domain ontology. First, a user

needs to load the attributes which were automatically extracted in Chapter 2 in the

interface by indicating a directory path to access them. The button labeled "Schema Level

— 1st Level" performs the Phase 1 (i.e., Initial Schema Fragment Generation) of

Algorithm 3.1 and the button labeled "Schema Level — Final" performs the Phase 2 (i.e.,

Schema Fragment Merge) of Algorithm 3.1. In addition to generating a domain ontology

in OWL format, the interface provides a user with a space to trace IS-A relationships for a

given attribute. For example, the derived domain ontology for the "airfares" domain

57

contains 525 attributes that are visible information on the interface. Furthermore, an

attribute "adult" among those attributes is shown to be a root of a schema fragment in

Phase 1, but not a root in Phase 2 which completes generating the domain ontology. The

attribute has 2 parents with index numbers "379" and "385," and has 4 children with

index numbers "74," "92," "133," and "161."

Figure 3.5 Interface of Algorithm 3.1.

In order to access the WordNet database, the interface, developed in C++ Builder, is

shown in Figure 3.6. That is, the main algorithm calls the executable file to obtain the

synonym/hypemym information from WordNet.

58

Figure 3.6 Interface for accessing WordNet.

Generation of Domain Ontology

As shown in Section 3.3, the ODO algorithm consists of two phases. In Figure 3.7, parts

of two automatically generated schema fragments with the same common ancestors are

given. The sample concepts shown in Figures 3.3 and 3.4 are marked by the ellipses in

Figure 3.7.

Number of

concepts

SFs SFs

(One node)

Leaves Added

from

WordNet

Airfares 173 16 27 74 379

Automobiles 212 11 23 105 582

Books 220 11 30 101 558

Car Rentals 120 14 14 50 323

Hotels 311 15 32 158 811

Jobs 306 3 31 151 880

Movies 193 2 15 91 595

MusicRecords 157 16 27 69 306

59

60

Table 3.1 shows the results for the eight subdomains after the initial schema

fragment generation phase of the algorithm. The column "Number of Concepts" indicates

the unique single-word attributes obtained in each automatic attribute set. If an attribute

contains two words, it is separated into two new attributes. "SFs" and "SFs (One node)"

indicate the total numbers of schema fragments of multiple nodes and one node,

respectively. "Leaves" indicates the total number of attributes which belong to leaves of

SFs. "Additional concepts from WordNet" indicates the total number of concepts

obtained from WordNet in order to connect the schema fragments.

In the schema fragment merging phase of the ODO algorithm, which corresponds

to the second step (i.e., iteration) in Figure 3, 146 additional concepts were taken from

WordNet to form the final result, that is, the domain ontology for the Airfares domain. In

addition, 120 concepts for Automobiles, 135 concepts for Books, 121 concepts for Car

Rentals, 140 concepts for Hotels, 99 concepts for Jobs, 62 concepts for Movies and 216

concepts for the Music records domain, respectively, were derived from WordNet to

merge all SFs to generate a domain ontology for each domain.

Concepts (i.e., attributes of the Deep Web data sources) are harvested from many

Web sites and the concepts are iteratively interwoven into the IS-A skeleton (i.e.,

hyponym structure) of the well-known WordNet ontology. As a result, domain ontologies

in the eight subdomains were generated with a considerable size and information about

concepts and IS-A relationships of the concepts. The concepts in the generated ontologies

do not have multiple parents in their hierarchical structures. Because the most frequently

used sense of each concept was selected from WordNet in locating IS-A relationships

between concepts, the hierarchical structures of the generated domain ontologies are

61

trees. In the theory of algorithms, a tree is considered a special case of a directed acyclic

graph (DAG). However, the theory was expressed in the most general terms used in

ontologies.

In conclusion, eight complete domain ontologies were successfully automatically

generated. In all, 1,825 concepts were interwoven into the IS-A relationships of WordNet

and 5473 concepts directly from WordNet were included in the generating process.

One weakness of our algorithm is that it does not distinguish between (two word)

phrases and other sequences of words. The reason that this is acceptable in our

environment is that our post processing with WordNet would not allow the use of a two

word phrase as a concept. However, this kind of limitation should be relaxed in the

future. Then it will become important to recognize phrases (with two or more words) as

carrying a distinctive meaning.

One aspect of significance of the presented approach is that a domain ontology is

automatically built by analyzing the Web data sources. As a result, the generated domain

ontology is (so far) a subset of WordNet, but it is pruned to represent the domain. More

importantly, this ontology forms the foundation for adding new domain-specific concepts

that do not exist in WordNet.

Another aspect of significance of this approach is that domain ontologies from

many Deep Web sites will improve the processing of user queries. Unlike other research

(Davulcu et al. 2003; Wu et al. 2005), this dissertation work generates ontologies in the

OWL format, which can be edited with existing tools (e.g., Protégé) to be applied in Web

search and other applications.

CHAPTER 4

INSTANCE EXTRACTION FOR ONTOLOGY-BASED DEEP WEB SEARCH

4.1 Introduction

In the previous Chapters 2 and 3, the search interface attributes of many Deep Web sites

have been extracted to automatically build domain ontologies for the Semantic Web. The

concepts extracted from Deep Web sites were iteratively interwoven into the concept

hierarchy (hyponym structure) of WordNet. The focus in Chapter 3 was to build a

domain ontology with carefully selected concepts in a certain domain. Chapter 4

introduces a method to extract instances from the Deep Web, especially from structured

backend databases to enrich the domain ontology generated in Chapter 3. 1

The Semantic Web is the next generation of the World-Wide Web, in which many

tasks that humans perform with the WWW are automated. By automatically combining

information from software agents, which find data and services, the Semantic Web

satisfies more sophisticated needs of Web users. The Semantic Web depends heavily on

ontologies, each of which is a computer implementation of human-like knowledge

(Gruber 1995). The major components of an ontology include concepts and their

instances (Davulcu 2003) and relationships between concepts. The software agents on the

Semantic Web will need some human-like knowledge to perform their tasks. Thus, the

success of the Semantic Web critically depends upon the existence of a sufficient amount

of high-quality semantics contained in ontologies (McDowell 2006) which can be shared

between application programs and humans.

' This chapter's contents were submitted for publication.

62

63

The Deep Web is a great source for extracting ontologies because of two reasons.

The Deep Web contains a great amount of information, and instances from the Deep Web

provide rich, high-quality semantics, based on the designed, structured data

representations of the backend databases. In other words, it is easier to pin down the

semantics of a data item that was derived from a relational table than for a data item

coming from a free-text Web page. The ontologies enriched with Deep Web instances are

then applied for Web search to improve the search results by better Deep Web sites. The

search terms entered by a user, when augmented with domain ontology instances, are

expected to better describe the user's interests.

Relating back to the architecture in Figure 4.1, in this chapter, in order to enhance

a domain ontology, instances and new concepts based on results obtained by querying

suitable Deep Web sites are added to the domain ontology. As a new Website is visited,

new instances and concepts can be recognized and merged into the ontology. This chapter

will also address the question how to access Deep Web data from a site which is not

designed to cooperate with crawling algorithms. The newly proposed approach to this

problem is as follows. Hidden instances from the Deep Web are obtained by probing an

entry field and evaluating error messages returned by its front-end Web page.

It will be shown that the proposed method assists users with finding more relevant

Web sites. In order to justify this claim, a domain ontology-based Web search system was

implemented. The assessment was conducted by comparing the number of relevant Deep

Web sites returned by a general purpose Web search engine, with a user's search terms

only, as opposed to the results returned by entering search terms extended with terms

from an ontology containing instances extracted from the Deep Web.

64

Figure 4.1 The frame work for generating an enriched domain ontology.

Thus, chapter is about Steps 3, 4, 5, 6 and 7 of the grand system architecture

(Figure 4.1). The rest of this chapter is organized as follows. Section 4.2 presents related

work. Section 4.3 describes the novel approach, which enhances a domain ontology for

the Semantic Deep Web (steps 3 to 6 in Figure 4.1). Section 4.4 presents an algorithm

that extends the list of search terms, given by a user, with the help of the enhanced

domain ontology, to obtain better search results. Finally, Section 4.5 discusses some

limitations of the presented algorithm.

4.2 Related Work

Information in structured databases of Deep Web sites can be searched through query

interfaces which ask a user to fill in proper input fields and return a corresponding result

to the user. This dissertation focuses on such structured databases. Especially, this chapter

addresses the problem of how to extract these structured data from the Deep Web to

automatically enrich a domain ontology that can support better search engines.

Bootstrapping techniques in building ontologies have been exploited in (Davulcu

65

et al. 2005; Wu et al. 2005; Roitman and Gal 2006). On the other hand, visual layouts of

form elements and the sequence of forms across pages in a Web site may convey some

implied semantics but the depth and width of semantics inferred from query interfaces in

some research (He et al. 2004; Modica et al. 2001) appears limited. For example, the

schema tree which represents a query interface on a Deep Web site is mostly of depth of 3

in (He et al. 2004). It will be argued that, in addition, automatic extraction of semantics

from Deep Web sites needs to be performed on result pages after a form has been

submitted, especially when extracting instances and their corresponding concepts.

Instances are individuals which belong to concepts in an ontology. OntoMiner

(Davulcu et al. 2003) finds URLs on a partitioned segment of a Web page (e.g., a home

page of a hotel) which are linked to instances. From each segment, labels which are

concepts and their sub-labels with corresponding values are extracted as instances and

encoded in XML. In a case where there is no conspicuous label to cover sub-labels in a

Web page, a classifier needs to be developed. The observed precision and recall values

for this instance mining were 80% and 91%, respectively based on a manually collected

set of instances in (Davulcu et al. 2003). On the other hand, a result page after a search,

called data page, is a source for extracting instances in DeepMiner (Wu et al. 2005).

Identifying instances is done by a naïve Bayes classifier, thus frequency is a major tool

for finding a concept and its instances on a newly generated result page. The <table>

construct in HTML and DOM trees are complimentarily used to identify pairs of concepts

and their instance(s) in view of the relative positions of elements. In (Wu et al. 2005),

precision and recall were also used to measure mining performance. Of course, data to

compute these measures were manually obtained, for example, the number of concepts

66

and instances found in all sampled result pages. At most 41 concept and instance pairs

from all result pages represented in seven Dom trees in a certain domain were mined and

evaluated in (Wu et al. 2005). Instance extraction in both Davulcu et al. (2003) and Wu et

al. (2005) is limited to the Web pages not using the backend database and a small number

of instances, consequently, an expanding the bootstrapped domain ontology with many

instances would be difficult.

In contrast to most ontology learning work, which focuses on Web documents, as

in (McDowell et al. 2006, Omelayenko 2001, Weber and Buitelaar 2006), the focus in

this research is on the Deep Web. Normal ontology learning work depends on linguistic

analysis or machine learning methods, which might be difficult for a Deep Web

application due to the structure and inaccessibility of the content. Yet, automatically

extracting the semantics of Deep Web sources is an important next step for the

advancement of E-Commerce.

In this dissertation work, concepts in an ontology, which was automatically

generated from the Deep Web in (An et al. 2007c), will be used to extract instances for

these concepts. The significant difference of the approach, compared with (Davulcu et al.

2003; McDowell et al. 2006; Wu et al. 2005) is that the newly proposed method extracts

instances by dynamically probing backend databases of a Deep Web site. This approach

is, at least in principle, scalable to very large backend databases.

67

4.3 Enriching a Domain Ontology for the Semantic Deep Web

4.3.1 Approach to Instance Extraction

In ontology engineering, concepts and instances are distinguished. In a graph

representation of an ontology, concepts are denoted by intermediate nodes and the root

while instances are always leaf nodes. (Without instances, a concept may be a leaf.). The

previous work (An et al. 2007c) and Chapter 3 dealt with the schema level while Chapter

4 deals with the data level, as instances extracted from Deep Web result pages are

utilized. While the schema level extraction finds concepts such as `city,' `airport code,'

etc., the data level extraction results in instances such as 'Newark,' 'EWR,' etc. A data

level domain ontology fragment is a set of instances with a corresponding concept whose

source is a Deep Web site.

The newly proposed method for extracting instances from the Deep Web is based

on developing "robots" (agents, softbots) that send many queries to the same Web site to

extract as many data values as possible. Suppose a robot encounters an input field and is

not certain what kind of values should be entered. The robot may enter random values or

leave the input field empty and then submit the page to the server, to elicit an informative

response.

Figure 4.2 A flow for generating data level ontology fragments.

Figure 4.2 shows the workflow for generating the data level ontology. First, a

robot needs a robot image to initialize its search for Web data sources. The concept

discovery of the robot is guided by a human in its initial stage. In order to help the robot,

initial pairs of concepts and their corresponding instances have to be defined, that is

called a robot image in this dissertation. Once the robot selects a Web data source, it

submits input values into the fields of the query interface. This process is called

"generating probing queries." If the input values are not suitable for the form, most Web

sites display error messages. The analysis of the error messages often gives useful clues

to the robot to guess suitable input values and launch better probing queries. Thus, the

queried Web sources may provide rich information about concepts, instances and

69

semantic relationships. This information is recorded as a data level ontology fragment

which is used to refine the prior ontology.

Consider a Web site with a dynamic query interface, such as a flight reservation

system. Prior to launching probing queries, the crawling program generates an exhaustive

list of suspected candidate airport codes in the range from AAA to ZZZ with the

assumption that airport codes consist of three alphabetical characters. The probing

program submits the form with a candidate airport code as shown in Figure 4.3, gets a

result in HTML and parses it. Next, the program extracts available instances (e.g., airport

code, airport name, etc.) from the result Web page given in Figure 4.4. If the candidate

airport exists, it will be contained in the HTML page. Otherwise, an error message or a

"similar" airport will be returned. This step is referred to as "crawling instances."

Figure 4.3 A sample Web site with a dynamic query interface.

70

Figure 4.4 A sample web site with results.

In order to extract such instances, a Web crawling system was implemented. The

crawling system consists of an applet and JavaScript which run on the research server to

communicate with a probing agency. The probing agency contains a HTML form which

is compatible with the query form of a Deep Web source site and appears in a Web

browser. The applet with JavaScript automatically fills in the HTML form of the probing

agency and then, the agency connects to the Deep Web source site and submits the form

to it. Once the probing agency receives a search result page from the source site, the

JavaScript code reads the result page and extracts instances with concepts and

71

relationships.

As a result of running the probing agency, the system extracted 1090 valid

airports, where flights of the airline company may originate. Results are such that the

following information has been extracted: 1) An airport code and its name; 2) A city

where the airport is located and a country the city is located in; and 3) The neighboring

airports that are close to the airport (e.g., LGA, JFK and EWR are neighbors). Table 4.1

shows relationships and corresponding classes with the numbers of instances the system

extracted from the Deep Web, using the interface shown in Figure 4.2. Concepts in the

first column and their corresponding concepts in the third column are in relationships

named in the second column. Instances of the relationships were extracted and the

number of the relationships is in the fourth column of the Table 4.1.

Table 4.1 Instances of Extracted Relationships

Class Name Relationship Class Name No. of Instances

city hasAirport Airport 1090

city isCityOf country 997

city isCityOf province 362

airport_code isAirportCodeOf airport 1090

country hasCity city 997

province hasCity city 362

country hasState province 61

province isStateOf country 61

airport hasAirportCode airport_code 1090

airport isAirportOf city 1090

airport code nearBy airport code 102

airport nearBy airport 102

airport sameAs airport_code 1090

72

In summary, many instances and relationships from a Deep Web site were extracted by

the novel probing method which was illustrated in Figure 4.2.

4.3.2 Ontology Representation in Web Ontology Language (OWL)

All information of domain ontologies was defined and represented in OWL. In Section

4.3.2, elements of OWL will be introduced which were used in this dissertation and then

the automatic creation of the enriched domain ontologies will be described in an

implementation view.

4.3.2.1 Introduction to OWL. OWL is a Web standard language for ontologies for

supporting the Semantic Web, which is endorsed by the W3C (World-Wide Web

Consortium 2007). OWL is built on top of the Resource Description Framework (RDF),

and helps computers to process Web information (Patel-Schneider 2004).

In OWL, a concept, an instance and a relationship of an ontology are called

`class', 'individual' and 'object property' respectively. An IS-A relationship between two

classes is defined as a 'subclass' of a class and consequently, a set of individuals of the

subclass is considered as a subset of the set of individuals of its super class. Some

constructs of OWL are as follows:

(1) Class, Subclass and Individual: Below, 'city' is described as a class and it is a
subclass of a class, 'group' and one of its individuals is 'Newark'

<owl:Class rdf:ID= "city">
<rdfs:subClassOf

<owl:Class rdf:ID= "group"/>
<rdfs:subClassOf

<owl:Class>
<city rdf:ID= "Newark"/>

73

(2) Object Property: Below, the property `hasAirport' has a domain of 'city' and a
range of 'airport.' The object property `hasAirport' relates individuals of the
`city' to individuals of the 'airport' such that a city 'Newark' has an airport,
`Newark International Airport.'

<city rdf:ID= "Newark">
<hasAirport>

<airport rdf:ID= "Newark_International_Airport">
<isAirportOf rdf:resource= "#Newark"/>

</airport>
</hasAirport>

</city>

(3) The built-in Property, equivalentClass: An axiom that a class is equivalent to
another class indicates that both classes have the same meaning. For example,
`city' is an equivalent class of 'metropolis' such that both classes have
precisely the same individuals.

<owl:Class rdf:ID= "city">
<rdfs:subClassOf>

<owl:Class rdf:about= "#group"/>
</rdfs:subClassOf>

<owl:equivalentClass>
<owl:Class rdf:ID= "metropolis"/>

</owl:equivalentClass>
</owl:Class>

<owl:Class rdf:about= "#metropolis">
<owl:equivalentClass rdf:resource= "#city"/>

<rdfs:subClassOf>
<owl:Class rdf:about= "#group"/>

</rdfs:subClassOf>
</owl:Class>

(4) The built-in Property, sameAs: Two individuals can be stated to be the same.
In the below example, the individual 'Newark International Airport' is stated
to be the same as 'EWR.'

<airport rdf:ID= "Newark_International_Airport">
<owl:sameAs>

<airport_code rdf:ID= "EWR"/>
</owl:sameAs>

</airport>

(5) The built-in Property, someValuesFrom: A particular class may have a
restriction on a property that at least one value for that property is of a certain

74

type. In the below example, the class 'departure city' has a someValuesFrom
restriction on the `hasAirport' property such that some values for the

'hasAirport' property should be an individual of the class 'Airport.' In other
words, it is necessary for a class 'departure city' to have at least one airport
that is an individual of the class 'Airport.'

<owl:Class rdf:ID= "departure_city">
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty>

<owl:ObjectProperty rdf:ID= "has Airport"/>
</owl:onProperty>

<owl:someValuesFrom rdf:resource= "#airport"/>
</owl:Restriction>

</rdfs:subClassOf
<rdfs:subClassOf rdf:resource= "#city"/>

</owl:Class>

(6) The built-in Property, has Value: For example, in the below example, a set of
individuals whose main office is in Seoul (i.e., hasMainOfficeIn' property
Seoul) forms a class, 'Korea_Originated_Airlines.'

<city rdf:ID= "Seoul">
<hasAirport>

<airport rdf:ID= "Seoul_Kimpo_International_Airport">
<isAirportOf rdf:resource= "#Seoul"/>

</airport>
</hasAirport>

</city>
<owl:ObjectProperty rdf:ID= "hasMainOfficeIn"/>

<owl:Class rdf:ID= "Airlines_Originatedln_Korea">
<rdfs:subClassOf rdf:resource= "#airline"/>

<rdfs:subClassOf
<owl:Restriction>

<owl:onProperty rdf:resource= "#hasMainOfficeIn" />
<owl:hasValue rdf:resource= "#Seoul" />

</owl:Restriction>
</rdfs:subClassOf

</owl:Class>

There are many other built in OWL properties and restrictions (World-Wide Web

Consortium 2004) but the above introduced constrcuts are used for the domain ontologies

in this dissertation.

4.3.2.2 Implementation. Programs were implemented in order to write a domain

75

ontology in OWL. In Chapter 4, among eight domain ontologies automatically generated

in Chapter 3, the airfares domain ontology was enriched with instances and relationships.

In all, 1090 instances of airports, 1090 instances of airport codes, 997 instances of cities,

61 instances of provinces and 147 instances of countries with many relationships, as

shown in Table 4.1 were extracted from the Deep Web for enrichment.

In order to load this information into the domain ontology, a program was

implemented using the Protégé API (Stanford Medical Informatics 2007a) and the

Protégé — OWL API (Stanford Medical Informatics 2007b). In detail, classes employed in

the loading program are as follows.

(1) RDF:Property: An RDF Resource representing an rdf:Property or an instance
of a subclass of rdf:Property such as owl:ObjectProperty and
owl:FunctionalProperty. This is used for the sameAs property.

(2) OWLObjectProperty: This class implements the RDFProperty interface which
provides abstract methods to create new properties, and get or set the domain
of the property, get or set the range of the property. In addition, instances can
be located in the proper domain and range of each property of a class.

(3) Cls: This Protege Class is used to locate the classes where instances are to be
added.

(4) Instance: This Protege Instance (Individual) class is used to write all instances
such as airport instances, city instances, etc.

After writing all information in OWL, the enriched domain ontology can be graphically

displayed and edited using Protégé — OWL editor (Stanford Center for Biomedical

Informatics Research 2007). As shown In Figure 4.5, 1090 airports are listed and for

each airport individual, all its object properties are visible. For the airport , 'John F.

Kennedy International airport', its property, hasAirportCode of 'JFK,' isAirportOf 'New

York,' and nearBy 'White Plains Westchester County Airport', 'La Guardia International

76

Airport,' and 'Newark Liberty International Airport' are visible in the Protégé —OWL

editor.

Figure 4.5 A domain ontology with instances and relationships.

4.4 A Web Search with Domain Ontology -based Query Extension

In order to assess the usability of the enriched domain ontology, a domain ontology-based

Web search system was implemented. Figure 4.6 illustrates the work flow of the Web

search system with the enriched domain ontology.

Suppose that a user typed 'New York' and 'Seoul' into the search input textboxes

on the input form (1) to find the air fare between these two cities. The query is parsed (2)

into the ontology client (3). The ontology server (4) receives a request from the ontology

client (3) to find the semantics of the key words the user typed, and to search for them in

the domain ontology (5). Next, the ontology server (4) displays related semantics in the

HTML viewer (6), as shown in Figure 4.7, and thus, a user can view semantic choices

77

and select a few assertions to specify his own interests. Based on the assertions that a user

chose, the extended query submitter (7) sends a new query to the Web search engine (8).

Figure 4. 6 Work flow of domain ontology-based Web search.

78

Figure 4.7 User feedback interface.

For example, if a user clicks on assertions related to airport codes or airports, the

extended query submitter (7) will create an extended list of key words (i.e., "New York",

NYC, "Seoul", SEL). The assumption that a user inputs only "New York" and "Seoul" as

query terms to search for a flight which operates from "New York" to "Seoul" relies on

an observation in (Jansen et al. 2000). It was reported that a user, on average, enters 2.1

terms for a Web search.

79

4.4.1 Problem Formulation for the Assessment of Ontology-based Web Search

This section attempts to formulate the problem for how to assist users to search Web sites

better. Two versions will be presented.

Let S be a string of terms which a user entered for searching. Let M be the set of

Websites that the user would consider as matches for his or her search and Ws be all

Websites returned by a search engine using S. For a perfect Web search engine, Ws

should be equal to M. In reality, I Ws I»I M I , i.e., while there are a few Websites that the

user considers as matches, most Web search engines would return large numbers of

Websites. It is hoped by the users that Ws D M as shown in Figure 4.8 (a) but in reality a

Web search engine might miss some Websites in M as depicted in Figure 4.8 (b), i.e., Ws

would include only a subset of M denoted as M;, = Ws n M . The set M — Ws contains

all misses by the Web search engine using the user's term.

Figure 4.8 (a) Ideal case for the user's term, (b) typical case for the user's term,
(c) ideal case for the extended term, and (d) typical case for the extended term.

80

Let Ws, be all Web sites found by the Web search engine using the extended list

of terms which is expected to be logically better than the user's terms. There might exist

some Web sites in Ws, — Ws and some other Web sites in Ws — Ws,. It would be ideal if

all Web sites, w in Ws — Ws, are irrelevant Web sites, i.e., w E M C and the set Ws, — Ws

includes all misses M — Ws as shown in Figure 4.8 (c). A relaxed version is given in

Figure 4.8 (d). Let MwsE be the intersection of Ws„ and M, denoted as MW = Wse nM •

Note that Figure 4.8 (c) is a special ideal case of Figure 4.8 (d).

Consider the following problem, "Find the extended terms so that the Web search

results using the extended terms are better than those using the user's terms." This

problem can be formalized as follows. Given S (the list of the user's terms), find SE (an

extended list of S) such that I WsE I-1 Ws I and I MW 1>1 Msw I.I First, it should be noted that

the inequality I Wse 11 Ws I will make browsing faster because the user needs to check a

smaller number of returned Web sites for the matches. Next, it should be also noted that

the inequality I mwSE 1>1 MwSm I guarantees that the results will be better since the user

would find more relevant Web sites, i.e., matches to his or her query. The smaller number

of I W SE I, together with the larger number of 1 .114.E I, are sufficient conditions for

improved Web search results from a user's point of view. Coming up with such an

algorithm is infeasible and nearly impossible to be validated. In other words, finding

I MW I is practically impossible because no user will be able to validate the entire I Ws

number of Web pages for matches for most searches in case that a large number of Web

sites are returned by a search engine.

However, it is feasible for users to review and validate the first one hundred Web

81

sites for the matches manually. The number of matches in the first one hundred Web sites

is without and with extension are denoted as I (Msw)100 I and I (Msew)100 respectively.

Then the following version of the problem formalization becomes feasible. Given S (the

listof the user's terms), find SE (an extended list of S) such that W SE N W S and

MwsE)100 l>1 (MW)100 I •

4.4.2 Algorithm

Let a domain ontology D be defined as < C, , CID , PD,PID > where CD is the set of

concepts in the domain ontology, CID is the set of individuals of CD , PD is the set of

object properties in the domain ontology, and P D is the set of instances of object

properties. In this structure, for example, New York isCityOf JFK belongs to PI D

The algorithm for extending a set of query terms that a user inputs, with the help

of the domain ontology, is as follows.

Algorithm 4.1: Extending User Query Terms

Input: S: a string with user terms for searching, where S = ft ,} i = 1, 2, ..., k and

t, is a term.

D = <CD , CID , PD' PI D > Domain ontology

Output: SE: an extended string of S.

Steps:

(1) Compose S into a set of candidate instances, L = {prase, = , 2 , i = 1, 2, ...,k

in a lexical order

(2) Initialize a set of instances, I Temp , a set of instances of properties, IPTemp and

a set of properties, PTemp as empty sets.

(3) for each candidate instance prase, do {

82

if phrase, E CID then

I Temp = Temp U phrase, ; }

(4)for each element k in ITemp do {

PTemp = PTemp U Get Set of Properties (k);

for each element m in PTemp do

'PTemp = IPTemp v Get Set of Instances of Property (k, m); }

(5) Display a set of IPT to a user, to select from

if an element 1 in IPT is selected then

Extract an involved instance from 1 ;

// for example, "John F. Kennedy International Airport" is extracted from

// "New York hasAirport John F. Kennedy International Airport"

Extend the original search string to SE by appending the instance;

return SE; II SE can now be plugged into a search engine such as Google.

The algorithm processes a user query string and separates it into phrases (i.e., Step

1). For example, for the string, "Where is New York," the set of the phrases is {"where,"

"where is," "where is new," "where is new york," "is," "is new," "is new york," "new,"

"new york" and "york."} Next, if a phrase matches the name of an instance of the domain

ontology (i.e., Step 3), extract the properties of the instance by using the Protégé API (i.e.,

Step 4). For example, an instance "New York" has object properties such as isCityOf,

hasAirport, hasAirportCode, etc. and the instances of these object properties are New

York, John F. Kennedy International Airport, and NYC, respectively (i.e., Step 5). These

are included into the original query terms a user typed in, and the extended query is

submitted to the search engine.

83

4.4.3 Experimental Assessment

The success of Algorithm 4.1 can be assessed in two ways: amount and relevance. The

first condition for the successful scenario is W SE	 s I . The Web site list displayed to

the user should be much smaller when the extended list of terms is used, compared to

when only the user's terms were used. The relevance condition is MW 1.4 In the

ideal case, i.e., M c Ws, as shown in Figure 4.7(c), only the first condition is sufficient.

Unfortunately, M is not easily accessible and thus efficiency of the newly proposed

approach will be supported by a case study with experimental results.

Using Google with the user terms S = {'New York', 'Seoul'} resulted in a display

containing only a few flight reservation Web sites. Then the system extended the query

string to SE = {'New York', 'John F. Kennedy International Airport', 'Seoul', 'Seoul

Incheon International Airport' } with respect to the user selections of semantics in Figure

4.7.

Search results (47-0000) for new cork seoul

Page:
• newyorkseoul.com - Home

Mambo - the dynamic portal engine and content management system.
• New York (NYC) to Seoul (SEL) - Cheats Flights. Discountcount Arline ...

Fare Compare processes millions of flights and airfares daily. This page displays
the cheapest discounted airline ticket & flight information for New York ..

• A New Lifestyle. in South Korea: First Weekends. and Now Brunch
SEOUL_ South Korea. Nov. 1 — When she returned to Seoul in 2000 after 10 years
in New York City, Park Su-j introduced her fellow South Koreans to an exotic ...

• China's Youth Look to Seoul for Inspiration - New York Times
South Korea has been defining the tastes of many Chinese and other Asians for
the past half decade.

• April 4. 2006 - Newark. New Jersey - The second study on digital ...
Seoul and New York Top the Rankings in Municipal E-Governance. Rutgers-SKKU
E-Govemance Performance Index Ranks Seoul *1.. April 11, 2006 - Newark,

• Seoul Travel Glide - Hotels. Restaurants. Sightseeing its Seoul ...
Plan your trip to Seoul with The New York Times Travel Guide, featuring the best
hotels, restaurants, museums, shopping, bars and more in Seoul.

• cityofsound: New York: Seoul Survivor?
It was ostensibly a piece on the shattering modernity of Seoul, yet also reflected
bleakly on a diminished sense of what New York now stands for.

Figure 4.8 Search result page before using Algorithm 4.1.

84

Search results (267) for "seoul"john f. kennedy international airport" "seoul incheon international airport" "new York"

Page: 13.11:21
• Incheon International Airport - 	 the free encyclopedia

Airport limousines operate around the clock from Seoul to Incheon, 	 2001,
a Korean Air Flight 85 bound for John F. Kennedy International Airport was ...

• World's busiest airports by international passenger traffic
Seoul Incheon International Airport • Incheon, South Korea, ICN 27661598, —8 1°.
... John F. Kennedy International Airport • New York City, United States ...

• Airlines find in Asia - Emirates. Jet Airways (India": Singapore
... CA. New York - John F. Kennedy International Airport, NY. Seoul-Incheon
GA. Seoul-Incheon International Airport Los Angeles International Airport, ...

• Airlines and low-budget airlines: Swiss International Air Lines ...
.... Dubai Los Angeles international Airport, CA, New York - John F. Kennedy
International Airport. NY, Seoul-lncheon International Airport, London-Heathrow ...

• Thai Airways
Seoul (Incheon International Airport). Southeast Asia ... New York City (John F.
Kennedy International Airport). Oceania Australia

• Air China
Seoul (Incheon International Airport) Air China codeshares an all All Nippon
Airways (ANA) Eights ... New York City (John F. Kennedy International Airport) ...

• Korean Ai Fight Reviews
New York. NY (John F. Kennedy International Airport) - JFK to Bangkok ...
Seoul-Incheon International Airport (ICI) to Osaka (Kansai Airport) - KIX 54 words

Figure 4.10 Search result page after using Algorithm 4.1.

In this case, 1 W SE 1= 267 <1 Ws 1= 4,770,000 which clearly satisfies the first

condition. Next, finding IMws I is literally impossible because no user will validate the

entire 1 Ws 1 number of Web pages for a match. Thus, the first one hundred Web sites

were manually reviewed and the relevant web pages, denoted as 1(Mws)1001, in the first

one hundred Web sites were counted. With the initial query string, 1 Web sites in the first

seven result pages were flight reservation related as shown in Figure 4.9, while five Web

sites from the first 7 result pages are sites relevant to flight reservations as shown in

Figure 4.10. Unfortunately, SE
(11/1 W S)100	 W)100 does not imply 1 MW S MW	 •

is impossible to validate Imws m w SE 1 either theoretically or experimentally. However,

the inequality 1(M, s)100 11 (MW
SE

)100
is more appealing thanI MWS M w I because

most users would review the first hundred returned Web pages. In other words, no one

would review the entire list of returned Web pages spending hours of time and effort.

85

Table 4.2 lists the case study's results. For example, when a set of user query terms

{"New York" "Seoul"} was submitted to the search engine, 4,770,000 was the number of

search results while only 267 search results were returned when a set of extend query

terms {"New York" "John F. Kennedy International Airport" "Seoul" "Seoul Incheon

International Airport"} was submitted. This means, human and search engine processing

of the initial user query took longer time than for the extended query terms. With respect

to relevance, the initial user query returned nine relevant Web sites in one hundred result

pages, while the extended query terms returned forty five relevant Web sites in one

hundred result pages for the topic flight reservation. In total, for the five cases, the

returned more specific results to the user.

Preliminary experiments suggest that Web search results returned by a general

purpose search engine such as Google were improved by the newly proposed approach.

More sites relevant to a user's needs could be located. The fact I (mw s)100 I-1 `MW SE)100

justifies the claim of 'more relevant sites' and I (mws)100 151 (MwsE)100 I together with

WSE I<IW SI supports the claim of 'faster' whenIWsl and IWSEI are so small that users

would review all returned Web sites. Users would need to examine fewer results and

would find more relevant Websites early on in the result pages.

86

Table 4.2 Case Study Results
S SE IWs I IWsEI 1(141.1 1(Mwse)100

"New

York"

"Seoul"

"New York" "John F. Kennedy

International Airport" "Seoul"

"Seoul Incheon International

Airport"

4,770,000 267 9 45

"New

York"

"London"

"New York" "John F. Kennedy

International Airport" "London"

"London Heathrow International"

247000000 236 3 3

"New

York"

"Paris"

"New York" "John F. Kennedy

International Airport" "Paris"

"Paris"

186000000 66100 4 8

"New

York"

"Miami"

"New York" "John F. Kennedy

International Airport" "Miami"

"Miami International Airport"

119,000,000 24,600 4 4

"New

York"

"Tokyo"

"New York" "John F. Kennedy

International Airport" "Tokyo"

"Narita International Airport"

118,000,000 503 1 8

4.5 Limitations

In an additional experiment, it is observed that up to some number of query terms, the

number of relevant sites can be increased. However, after that, the number goes down

dramatically, because of a set of too specific, long query terms. It appears that there exists

a point up to which a query string should be extended or, similarly, how many semantic

choices should be selected. Figure 4.11 shows the correlation between the number of

relevant Websites and the number of query terms. Hereby, dynamically adjusting the

length of an extended query to guarantee a good result brings another research issue.

87

Figure 4.11 The search results along with different types of query terms.

Naturally, the cases used for assessing the performance of domain ontology-based

Web search are limited in this dissertation. For example, some users prefer cheap flights,

while other users prefer direct flights or want to fly only with certain airlines. However,

the main purpose of implementing the Web search system is to show improvements due

to the use of instances in a domain ontology. Research issues when locating search results

for a specific Web user interest include how to understand the context of the query, how

to give proper responses (Singh 2002), how to best processes queries to return relevant

pages (Singh 2002), how to create dynamic pages that need computation on the fly, how

to support simultaneous searches (Ghanem and Aref 2004), etc. All these are emerging

issues for research on searching the Deep Web.

While a large number of instances was extracted from the structural database of a

specific Deep Web site, there are many databases of E-Commerce Web sites which a

crawling program cannot access, due to access restrictions. Session tracking by a Web

site is a known barrier for a Web crawling program, as a site may use cookies to trace

88

interactive progress of a client (Liddle et al. 2002). In addition, JavaScript may arbitrarily

change a data representation which is independent of the visual interface shown to a

client. This is another barrier against automatic analysis programs (Liddle et al. 2002). In

fact, while the crawling program was tested, several problems were detected in reading

HTML results from a number of Web sites. A message, "Please activate scripting" means

that the site detects a Web browser of a client and its script option before it answers a user

query. Thus, a crawling program needs a facility of a kind of Web browser. On the other

hand, a message of "Permission denied" was encountered when the JavaScript program,

which runs on a university server, directly read result pages which were displayed on the

screen (i.e., client side) but streamed from a company Website. This method of access is

called cross-site scripting. It causes security breaches, and thus, is prohibited.

Automatic downloading of Web documents from a hidden Website, studied in

(Ntoulas et al. 2005), is relatively easier than retrieving information from a structured

backend database in an interactive fashion. In fact, a crawling program, which failed to

read a Deep Web page's HTML content on the fly, could automatically download Web

content (http://www.jamia.org/cgi/reprint/M2314v1.pdf) from a textual database such as

PubMed, without a security related error message. Considering this paper's research

result, namely that ontology instances extracted from the Deep Web contribute greatly to

locating relevant Websites, community wide efforts are necessary to extract large

numbers of instances from the Deep Web. Only a collective approach can make the

Semantic Deep Web a reality.

CHAPTER 5

ONTOLOGY EVALUATION: NATURALNESS PERSPECTIVE

5.1 Introduction

This chapter deals with aspects of the quality of ontologies (QoO) which is increasingly

becoming a research issue on the Semantic Web, specifically the notion of naturalness of

ontologies will be focused. The term naturalness introduced by McCray et al. (2001) was

regarded as the acceptance of the ontology by domain experts. In this dissertation, by

extending this idea to regular (non-expert) Web users, naturalness will be refined to be a

measurable and desirable property of ontologies. Furthermore, by conducting the

measurement and comparative analysis of the naturalness on several existing, major

ontologes, a mechanical approach is proposed to improve ontology usability on the

Semantic Web. 1

In his original work on ontologies, Gruber (1993) stressed that ontologies are

about knowledge sharing. The question must be raised whether existing ontologies are

constructed so that they may succeed at this task. In a recent study, Zeng et al. (2005)

showed that communication through terminologies can be significantly facilitated if

words labeling concepts are comprehensible to users. Finding concepts which are likely

to be recognized by users is a new trend in ontology engineering, which is different from

the traditional approach of building terminologies understandable mainly by experts of a

domain. The latter case could cause difficulties in understanding and using ontologies for

emerging user communities on the Semantic Web.

This chapter's contents were published in (An et al. 2006; An et al. 2007b).

89

90

In recent papers (Lee and Geller 2005; An et al. 2006), it has been pointed out that

unnatural concepts make it difficult to use an ontology and they contradict the desiderata

of an ontology, which include explanatory power for the purpose of sharing information.

Specifically, this thesis concentrates on the concepts and concept pairs used in IS-A

relationships and semantic relationships in existing ontologies. It should be noted that this

dissertation is limited to ontologies with concepts that are labeled in English. In (An et al.

2006), it was observed that many labels correspond to English words that can be located

in a dictionary. However, this is often not the case for concepts with names consisting of

several words. Concept labels for which dictionary lookup fails to find an entry and for

which the compositional meaning is difficult (if not impossible) to derive from its

components, in a consistent manner for different participants in an act of communication,

were also found. Thus, a sender of such a label might assume a different meaning than

the one understood by a receiver. For example, it is hard to judge what the exact meaning

is of Partially Intangible Individual (Cycorp 2005).

This thesis focuses on an ontology's role in knowledge sharing supported by an

explicit specification of a conceptualization. The key idea of naturalness is based on this

practical definition (An et al. 2006). Some researchers (Staab and Maedche 2000) have

made efforts in explicating the meaning of semantic relationships by using axioms.

However, this declarative knowledge with universal truths about concepts cannot provide

answers for all the forms of knowledge inquiries (Mizoguchi 1996). It is widely assumed

that ontologies represent information in a form that is at least similar to how human

knowledge is represented (Smith 1982). To many researchers, an ontology concept is a

meaningless label unless it is given a definition. However, any definition itself will

91

contain logical symbols and other labels. Logical symbols do not cause a problem

because they are domain independent. However, how can the defining labels themselves

be defined? This leads to an infinite regression or circular definitions. Thus, it is assumed

that at some level labels have to be understandable by being known to the recipient

(program or human). As there are labels that are better known, which are called "more

natural," and labels that are less well known to humans, the more natural labels are

preferred to be used even for programs. It is noted that meaning and naturalness of

concepts are orthogonal. This will be discussed in more detail in Section 5.2.

Note that the distinction between primitive and defined concepts is not employed

in this research. It is easy to give precise definitions in mathematically oriented domains.

However in real world applications the number of primitive concepts is often greater than

the number of defined concepts. This results in a structure with a large number of

concepts for which no definition is attempted, as they are primitive. Thus the distinction

is not really helpful for us.

McCray et al. (2001) introduced the idea of naturalness as the acceptance of the

ontology by domain experts. In this dissertation, this idea is extended to regular (non-

expert) users. Thus the acceptance of an ontology by Semantic Web users is desirable.

However, it is impossible to consult many users whether they understand ontology

concepts and relationships. In all, a mechanical way to measure this naturalness is

necessary.

The use of ontologies as part of the Web is desirable, since it could support

finding better answers for users' queries. For example, ontologies may supply generalized

terms for a user's Web search terms. An answer for a query could be derived by using

92

specialization and/or generalization relationships between the concepts of an IS-A

hierarchy. Finding broader or narrower concepts of a given concept is an important

recommended Web search strategy (UC Berkeley 2006). Hereby, the concept pairs in an

IS-A relationship should be closely related and it is assumed that they tend to co-occur on

Web pages. Under this assumption, which needs further investigation, the naturalness of

an IS-A hierarchy may be quantified by co-occurrence of IS-A-connected concepts on

Web pages. This idea is discussed in the ontology community (An et al. 2007).

According to Kalfoglou and Hu (2006), application ontologies are converging

with the Web. Thus the knowledge provided by ontologies should be refined dynamically

by the understanding of Web users.

Figure 5.1 Step 8: evaluating the quality of domain ontologies.

This chapter is about a part of the grand system architecture in Figure 5.1 marked colored

Step 8. This chapter is organized as follows. Section 5.2 presents a literature review and

refines the research questions about the quality of ontologies, especially naturalness. A

proposed methodology is described in Section 5.3. The results of the study are shown in

Section 5.4. Especially, an evaluation of the quality of the automatically generated

93

ontology with the methodology developed in this dissertation is presented in Section 5.5.

Limitations are presented in Section 5.6.

5.2 Naturalness Formalization

This section introduces the notion of naturalness as an objective Quality of Ontologies

based on their concepts, IS-A relationships and semantic relationships.

5.2.1 Naturalness of Concepts

Knowledge engineers use formal or semi-formal languages in order to build ontologies

(Colomb 2002). A language provides us with interchangeable words, so the words, which

are comprehensible by users, are an important factor when ontologies (Lewis 1983) are

evaluated. Naturalness of the concepts used in an ontology is addressed in (An et al.

2006), based on the question whether the concept labels are comprehensible to the users.

In (An et al. 2006), the following measure of the naturalness of an ontology was

proposed. If an ontology consists of (a majority of) labels that can be found in a

dictionary lookup, then this ontology is more natural than an ontology for which this is

not the case. In order to assign a numeric value to naturalness, it is necessary to know

how often a term is used, e.g. by searching a large corpus. In recent years, the Internet

has become popular as an ersatz corpus, and, luckily, Google provides us with frequency

information also. The Google# has been often used in ontology evaluation or matches

(An et al. 2006; Gligorov et al. 2007).

Here, it is claimd that the higherGoogle#(ci), the more natural the concept c, is.

For example, a Google search for DNA finds 118,000,000 hits, while a search for

94

Deoxyribonucleic Acid finds only 1,750,000 instances. Note that naturalness and

meaning are orthogonal. Thus DNA and Deoxyribonucleic Acid have the same meaning.

Yet, DNA, commonly used in the popular press nowadays, is a more natural term to most

people than Deoxyribonucleic Acid (An et al. 2006).Two terms may have identical in

meanings, however, they may be of vastly different naturalness. Thus, varicella and

chicken pox are identical in meaning. However human subjects (Chun and Geller 2008)

consider chicken pox is much more natural.

One purpose of this paper is to formalize the notion of "naturalness." Researchers

are often challenged by the existence of a term that is widely used in everyday life, yet no

formal definition exists for it. Thus, before Newton, "force" must have been used in

everyday language, without users understanding its relation to mass and acceleration.

Similarly, the term "naturalness" seems to be well understood in everyday language. A

small pilot experiment (Chun and Geller 2008) was performed where humans were asked

to judge which term from a pair of terms was more natural to them. This was done for 37

pairs. Not one of the subjects asked for additional clarification, beyond the one given,

what "natural" is supposed to mean. Subjects were also in good agreement with each

other concerning naturalness. On average, 78% of subjects agreed on naturalness

judgments. One goal of this paper is to provide a criterion for naturalness that is

independent of human subjects' judgments.

Zheng et al. (2005) stressed the importance of consumer-friendly display of

medical terms. In their experiment they used medical terms from MedlinePlus and

showed that terms more likely to be entered by "end users" as search terms are more

likely to be understood by human subjects than less common synonyms of those search

95

terms. Their paper stresses the importance of (medical) concepts being understandable to

non-expert human users. Zheng et al.'s term "consumer-friendly" appears to be roughly

equivalent to this dissertation's use of the term "natural," except that the term does not

assume a reference population ("non-expert users").

Regarding the choice of a proper corpus for finding concept pairs, in (Brewster et

al. 2002), the Internet and glossaries are reported to be practical resources. That is

because concept pairs randomly selected from a domain specific ontology are rarely

found in related journals or texts. Practically, the documents on the Internet have been

used as alternative corpus to automatically extract hyponyms in (Agirre et al. 2000) and

examples of concepts (Leacock et al. 1998; Mihalcea and Moldovan 1999). Accordingly,

in the analysis, the Web, indexed by Google, is adapted as the benchmark corpus for

measuring naturalness.

Let's settle on the assumption that most people who make the effort of setting up

a Web page have the desire to be understood by other Web users, i.e., they would make

their best efforts to use understandable terms. Over 6 billion Web pages indexed by

Google support this assumption by the law of large frequency numbers. It can be shown

that understandable terms occur more often than obscure terms. Zeng et al. (2005) made

the assumption that users of a Web site prefer familiar expressions as search terms and

thus frequency of used words implies the respective degree of user comprehensibility of

the words. In (An et al. 2006) the assumption was that a term that is widely used is more

likely to be natural.

Let L --={1,,1 2 •••,/,,} be a set of labels which appear in an ontology where 1, is a

label and ILI = n be the size of L or the total number of labels. Then the naturalness of

96

concepts for a certain ontology, 0 is defined as follows:

5.2.2 Naturalness of IS-A Relationships using Frequencies of Concept Pairs

This thesis work uses a similar but more complex approach for naturalness of IS-A

relationships. An IS-A relationship is a binary relation which takes two concepts. A

notation X Y is used to denote that X IS-A Y. If an ontology contains the relationship

X IS-A Y then this would be considered as a natural statement if many documents that

contain both X and Y are not found. If very few documents that contain both X and Y are

found then X IS-A Y would be considered as unnatural relationship. An analysis in this

dissertation is based on the number of search results for concept pairs returned by Google.

For example, let X and Y be two concepts shown in an ontology in which X and Y are in

an IS-A relationship. Google#(X n Y) will be used, called Concept Pair Google Number

(CPGN) in this dissertation, indicating the number of co-occurrences of X and Yon the

Web pages. CPGN is the number of Web pages found when human query Google for both

X and Y in the search. An estimate of this number is reported by Google at the top of

every search result.

Let A be a set of IS-A relationships which appear on an ontology where

a, = P, 	 C, is an IS-A relationship Pi >C, and IAI be the size of A or the number of IS-

A relationships. P, and C, are concepts such that P, IS-A C, . Then the naturalness of IS-A

relationships for a certain ontology, 0 is defined as follows:

97

(5.2)

Clearly, an IS-A relationship is asymmetric where X>Y holds but not

necessarily Y X. As one of reviewers for this manuscript pointed out, CPGN treat the

IS-A relationship as a symmetric relation where both x Y and Y X holds or no one

can tell the direction by CPGN. This concern is imperative and problematic in building

ontologies using co-occurrences of concept pairs (Maedche & Staab 2000), but not for

evaluating existing ontologies. It is stressed that our task is not finding IS-A relationships

by finding co-occurring concepts C and P in the same Web page. Indeed, when finding

co-occuring concepts, whether C P holds, P C holds, no relationship at all holds, or

the relationship between C and P is not an IS-A relationship is can not be known. Rather,

it is already known that an IS-A relation between C and P holds in a given direction.

Otherwise it would have to be assumed that the designers of the ontology that are being

evaluated have made a gross mistake.

Assuming that C P is correct in that an IS-A relationship between these two

concepts really holds, the question is only whether this is a natural IS-A relationship. If

Web search indicates that there are very few Web pages that contain C and P together,

then it may be concluded that there is no strong evidence that any relationship between C

and P holds. Therefore, an IS-A relationship is not likely. However, such a relationship

was asserted by an ontology designer (who is assumed not to have been grossly

negligent). Therefore, it is concluded that the asserted IS-A relationship is correct but is

likely not natural in our sense.

98

One might also wonder why the terms X and Y are allowed to occur anywhere

within the document, possibly not connected by an IS-A link, or worse, possibly not

connected at all. Wouldn't it be better to look for a sentence frame of the form "X is a Y"?

While this approach has intuitive appeal, there are two problems with it. (1) IS-A

relationships can be expressed in many different ways, not just by an explicit statement.

Thus "animals such as dogs and cats" expresses two IS-A statements. (2) A few

experiments querying Google with such sentence frames such as "Xes are Ys" have been

done and it is found that they work reasonably well for one-word concepts. However,

many concepts are expressed by two or more words, e.g. Amino Acid. For sentence

frames involving multi-word X and Y concepts, Google returned small hit counts, and in

many cases no hits at all. For example, Google returns no document with a search string,

"Amino Acid Sequence is a Molecular Sequence" or "An Amino Acid Sequence is a

Molecular Sequence" while it returns 1,070,000 Web documents with a search expression

consisting of the two strings "Amino Acid Sequence" and "Molecular Sequence."

An Initial Experiment: It is assumed that if X, and Y., are indeed in an IS-A

relationship then they are closely related and tend to co-occur. In order to support this

assumption, one simple experiment was conducted in which the concept pairs in IS-A

relationships and non-relevant concept pairs were compared with respect to CPGN. For

each concept pair (X, Y.,), a non-relevant concept pair was generated as (X Z k) or

(Z k , Y.„) where Zk is a randomly selected concept. A group of these non-relevant concept

pairs is the control group to verify the assumption that the naturalness of an IS-A

relationship can be approximated by a Google search. The result of the comparison shows

that submitting concept pairs with IS-A relationships to Google results in conspicuously

99

higher numbers of frequency results than for non-IS-A-related concept pairs (see

Appendix). So, it can be concluded that CPGN can be used as one measurement to

distinguish pairs connected by IS-A relationships from random pairs. Thus, frequencies

of co-occurrences by Google search are applied to the measurement of naturalness. The

lists of concept pairs used for this experiment are in the Appendix. Therefore, low CPGN

values indicate that the existence of an IS-A relationship is unlikely. Thus, frequencies of

co-occurrences by Google search to the measurement of naturalness are applied.

5.2.3 Naturalness of IS-A Relationships using Rule Mining

A co-occurrence frequency based rule mining technique has been used to build some

ontological relationships in (Maedche and Staab 2000). In this thesis's approach, the

support and the confidence values are used to determine the degree of association

between the concepts of a pair.

The rules for determining the support and the confidence for each concept pair are

shown below. Once again, it is assumed that if X, and Yj are indeed in an IS-A

relationship then they are closely related and tend to co-occur. If the absolute number of

co-occurrences is low, this would not be useful. If X, occurs many times without /7j , this

is also not useful. For the successful assessment, there should be many co-occurrence

instances, and Y., needs to appear reliably most of the time when X, appears. These two

parameters are measured in rule mining by support and confidence (Maedche and Staab

2000).

100

Confidence: The confidence of the X Y relationship, denoted by

Confidence(X y) , presents the percentage of the obtained CPGN relative

to Google# (X). Google# (X) indicates the frequency result when only one word "X" is

passed to Google. Therefore, the Confidence(X y) is defined as

The support of the X Y relationship, denoted by Support(X y) , presents the

importance of a concept pair frequency result among all the concept pair frequency

results. It can be obtained by several steps as shown below. Let Total _Google#(Ox) be

the summation of Google# (X ; A) of all the selected concept pairs in an ontology,

called O„ . It can be obtained by

where X, and Y., are the concepts in Ox such that the X . 	 relationship holds, and

Xi#yj . The support of the X > Y relationship can be obtained by dividing the

summation of all frequency results in k ontologies, {O, , O2 ,• • • ,O,} .

(5.5)

(5.6)

101

Note that "all" means "all sampled". The ontologies that are used in this chapter are too

large to process all pairs of concepts exhaustively. Typically in our experiments in later

sections, when two ontoglogies O, and 03 are compared.

Following the results of the initial experiment described above (and in the

Appendix), it is assumed that the naturalness of an ontology is correlated with the

Confidence(X Y) of all concept pairs. However, a problem arises if the analysis is

performed directly on the obtained confidence values, since the confidence only provides

the relation between the concepts of a pair without considering all other concept pairs.

For example, Confidence(X, Y,)= 100% can be obtained from a concept pair for

X, y for which Google# (X ,)= 2 , Google# (Y) = 2000 , and Google# (X, A V,) = 2 .

On the other hand, Confidence(X 2 Y2) = 90% can be obtained from another concept

pair for X2 Y2 in which Google# (X 2) = 1000, Google# (Y2) = 2000, and

Google# (X, A Y) = 900. If the confidence results are concerned only, the concept pair

X, Y, is better than X2 Y2 . However, this is not correct. Therefore, in order to

correctly analyze the QoO, it is necessary to consider the issue how much one can rely on

the obtained confidence results. The degree of natural association (DoNA),

DoNA(X Y), of the concept pair was developed to solve the above problem, and is

defined as

DoNA(X Y) = Support(X Y)x Confidence(X y) (5.7)

Then the second measure of naturalness of IS-A relationships for a certain ontology O

will be called Rulemining-based Naturalness of IS-A Relationships, and is defined as

follows:

102

(5.8)

Note that, once one obtains the DoNA, the analysis of the natural association of concept

pairs in ontologies will be conducted by the statistic methods (Section 5.3.2).

5.2.4 Naturalness of Concept Pairs Connected by Semantic Relationships

A similar approach as in section 2.2 is used for pairs of concepts connected by semantic

relationships. An ontology contains not only hierarchical classifications but also other

relationships which enrich data semantics. In (Seta et al. 1997), taxonomy and axioms are

regarded as the major components of an ontology. The taxonomy consists of IS-A

relationships and axioms define rules, constraints and relationships among concepts.

There are various ways to represent data semantics. Different domain exerts may perceive

the same domain in slightly different ways (Mizoguchi and Ikeda 1996). If an ontology

on the same topic is designed by different knowledge engineers, there will be natural

variations between the results, as each one is bringing his own perspective to the task.

Generally, the knowledge engineers need to explore related concepts (Brewster et

al. 2003; Hearst 1992). In addition, frequencies of co-occurrences of the concepts may be

used to compute a "semantic distance" between the non-taxonomic concepts (Brewster et

al. 2003). Thus, in this paper, naturalness of concept pairs connected by semantic

relationships is measured by CPGN described in the above section. Google# (X, n Y1) is

obtained where X, and Y., are semantically related. It is assumed that if the sampled

concepts which are defined as semantically related have a high frequency in the

103

benchmark corpus, Google, the semantic relationship of X, and Y, is natural. That is, the

higher the Google# (X ; Yj) is, the more natural the semantic relationship is.

Let S be a set of semantic relationships which appear in an ontology where s, is a

semantic relationship X <=> Y and 151 is the size of S, i.e. the number of semantic

relationships. Then the naturalness of semantic relationships for a certain ontology, O is

defined in eqn (9) which is analog to eqn (2):

The definition of the semantic relationships is based on the ontologies subject to

our analysis. Let R be the set of all binary relationships of all ontologies in the domain.

The set of semantic relationships, S = (IS-A — inverseIS-A} . Note that R is provided by

ontologies in two different ways; while some ontologies provide explicit table listing all

binary relationships, others provide on a list of functions. The set S for the UMLS is

given in Appendix and the set S for the WordNet and the OpenCyc is described in Section

5.3.1.

5.3 Methodology

5.3.1 Data Sources

Three major ontologies, WordNet, UMLS and OpenCyc are investigated in this

dissertation.

5.3.1.1 WordNet. WordNet is a large scale lexical reference system for the purpose of

natural language processing. It contains 117,798 nouns in the version 3.0 and the average

104

number of children for each noun is 1.027. Therefore, it can serve 117,798*1.207 parent-

child pairs (Princeton University, 2006). The WordNet 2.0 which is a version for

Windows was used for the experiment.

In WordNet, there are other relationships, such as substance_meronym,

substance_holonym, part meronym, part_holonym and entailment, entailed by, derived

and cause (Didion, 2003). Generally, holonymy is the part-whole relationship such that X

is in Y or X is a part of Y. Meronymy is holonymy's inverse. For example, brain cell and

brain are in a part_holonym relationship while law of gravitation and gravitational

constant are in a part_meronym relationship. These relationships and their corresponding

concepts are the subjects of this analysis.

5.3.1.2 OpenCyc. OpenCyc is the open source version of CYC, which is for general

knowledge processing. The name CYC is based on the word EnCYClopedia, and CYC

was built with the intention of providing encyclopedic knowledge of concepts and

reasoning rules. OpenCyc had 47,000 concepts in the initial release, and 300,000 in the

release 0.9 (Cycorp, 2005) which was used for this experiment.

Individuals, also known as instances, represent objects in the domain of interests.

Classes provide an abstraction mechanism for grouping resources with similar

characteristics (Bechhofer 2004). Classes are organized into a superclass-subclass

hierarchy, which can usually be shown as a Directed Acyclic Graph structure. Subclasses

specialize their superclasses; superclasses generalize their subclasses. A class maybe

associated with a set of individuals, which are the leaves in the hierarchical structure and

can not have any sub-individuals. For example in Figure 5.2 (a), consider the classes

105

"Canine Animal" and "Dog" and the individual "German Shepherd Dog." Dog is a

subclass of Canine Animal; Canine Animal is the superclass of Dog. It can be said that,

'All members of the class Dog are members of the class Canine Animal'. German

Shepherd Dog is one of the instances of Dog, which can not have any members.

In OpenCyc, predicate and function-denotational are kinds of relations (Cycorp

2006) which are constraints and relations between concepts. For example, a predicate,

performedBy which is preceded by a concept, PettingAnAnimal limits a following

concept to be a Person. So, only if individuals conforming to the above concepts are in a

sentence like PettingAnAnimal, performedBy Person is the sentence semantically well-

formed (Cycorp 2002). In the analysis, predicate relations are only considered and

function-denotational relations are discarded since functions are used to generate new

concepts.

Figure 5.2 (a) Partial OpenCyc diagram (b) a part of the Semantic Network (c) an
example of IS-A relationships in the Metathesaurus (d) an example of assignments of
semantic types to concepts in the Metathesaurus of the UMLS.

5.3.1.3 UMLS (Unified Modeling Language). The UMLS is a large-scale knowledge

base used in Medical Informatics. The UMLS consists of several parts of which we are

interested in the Metathesaurus and the Semantic Network with its semantic relationships.

The Metathesaurus had 1,436,586 concepts and 7.2 million terms in the version of

2007AB (U.S. National Library of Medicine 2007b) and the Semantic Network has 135

terms, with 612 relationships. There are 135 IS-A relationships between semantic types,

54 IS-A relationships between relationships of the Semantic Network, and 423 non-IS-A

relationships of the Semantic Network (Lister Hill National Center 2006). As the

Semantic Network is a tree with two roots, Entity and Event, there are 133 IS-A links;

107

Entity has 99 descendants and Event has 34 descendants. The version of 2005AB was

used in this dissertation.

The UMLS Semantic Network contains semantic types and is used to provide the

consistency for the Metathesaurus concepts. Each Metathesaurus concept is assigned at

least one semantic type. The relationships between the semantic types provide the

structure of the Semantic Network which in turn provides important implications for

interpreting the meaning of the Metathesaurus concepts. When assigning semantic types

to Metathesaurus concepts, the most specific semantic type in the structure is used (U. S.

National Library of Medicine 2006). Figure 5.2 (b), (c), and (d) show examples of IS-A

relationships of the Semantic Network, the Metathesaurus and semantic type assignments

of the Metathesaurus, respectively.

In the UMLS Metathesaurus, concepts are closely connected by certain

relationships since they have common properties even in their definitions. Most of

relationships come from the same sources called intra-source relationships (U.S. National

Library of Medicine 2007a). For example, there are over 25 million of relationship

instances between two concepts in the major relationships files, "mrrel.rrf' and the

relationships such as inverse_isa, has _permuted term, permuted term_of and sib _in_isa

are ignored in this analysis. The general labels of relationships can be found in the UMLS

file, "mrdoc.rrf." On the other hand, the UMLS Semantic Network contains the

relationships between pairs of semantic types. 423 relationship instances can be found

such as, treats, prevents, complicates and so on.

Even though the UMLS is strictly speaking not an ontology, it is close enough for

our purposes to treat it in the same way as the other terminologies. In summary, the

108

following seven components are used in this dissertation: (1) WordNet, (2) UMLS

Semantic Network, (3) UMLS Metathesaurus, (4) sets of pairs (p,r) where p is a concept

of the UMLS Metathesaurus and r is a Semantic type of the UMLS Semantic Network

and r is assigned to p in the UMLS, (5) OpenCyc Class, (6) OpenCyc Individual, and (7)

OpenCyc (complete).

The flow of this research is briefly described in Figure 5.3. Since the necessary

data comes from different sources, several programs were implemented to gather the data.

Figure 5.3 The flowchart of our analysis (An et al. 2006).

5.3.2 Phase I: Extract Data

To retrieve words (concepts) and their relationship from WordNet, JWNL (Open Source

Technology Group 2006b), an API (application programming interface) for accessing

WordNet-style relational dictionaries, is used to access the WordNet database (Princeton

University 2005). For OpenCYC, the database server (Cycorp 2005) is run on a local host

109

and the OpenCYC API (Open Source Technology Group 2006a) was used to access the

database. The UMLS offers a SQL query capability in XML format to directly get records

from its database, hosted at umlsks.nlm.nih.gov, by using Java Remote Method

Invocation. The table "mrrel" in the UMLS database is used to store all IS-A records for

the Metathesaurus. After all records are stored in a local database, relationships between

Metathesaurus and Semantic Types can then be built. The UMLS API (U. S. National

Library of Medicine Aug. 2005) is used to retrieve the assignments of semantic types for

each Metathesaurus term. To retrieve relationship between semantic types, the "srstr"

table in the UMLS database has all the necessary records. In a similar way, all sampled

non IS-A relationships were extracted from the UMLS Semantic Network and UMLS

Metathesaurus. Note that the Metathesaurus of the UMLS, which contains IS-A

relationships was used in its entirety. But some semantic relationships mentioned

previously were removed in the analysis of semantic relationships. For semantic types,

the Semantic Network was also used in its entirety, as it is of moderate size.

5.3.2.1 Approximating the Naturalness of Concepts for an Ontology. Algorithm 1 for

extracting concepts depends on APIs and the structures of each ontology and can be

described as follows.

Algorithm 5.1: Approximating the naturalness of concepts for an ontology

Input: a certain ontology O, represented as a set of concepts (lables)
L={1„12 ••,10

Output: L'= {1; ,12 • • • ,I,} where /: E L and /: E L' and m <<n where L' is a

randomly selected sample set of labels and

Note that m is a user defined sample size, used m = 3000 for each ontology with a
very large number of concepts.
flag OntologyType;
int iSampleSize;
float[iSampleSize] Freql ; //Freq 1 stores the occurrence count.
String[iSampleSize] Candidate; //Candidate will contain concepts.
String sTableName=" SASconcepts

";

switch (OntologyType)

{

 case WordNet:
iSampleSize = 3000; //Initialize iSampleSize for WordNet

for (j=1; j<=iSampleSize; j++)
{ Candidate[j] = getRandomlndexWord(POS.NOUN);

// randomly get a word from Index file, noun. index
}

break;

case OpenCyc:
iSampleSize = 3000; //Initialize iSampleSize for OpenCyc
for (j=1 ; j< iSampleSize; j++)
{ Candidate/j] = getRandomConstant();

//randomly get a atomic term from database
}

break;

case UMLS_Metathesaurus:
int iCUI1, iCUI2;
iSampleSize = Count the number of concept pairs whose relation is 'is-a' in

the UMLS table, mrrel
j=1; k =0;
while (j<= iSampleSize) {

(iCUI1, iCUI2) = Read From_UMLS_Table("mrrel");
//Get two concept IDs.

Candidate[k] = Read_From_UMLS_Table("mrconso", iCUI1); k++;
Candidate[k] = Read_ From_UMLS_Table("mrconso", iCUI2); k++;

//Get concept name
j++;

}

break;

case UMLS_SemanticNetwork:
int iCUII, iCUI2;

110

111

iSampleSize = Count the number of concept pairs whose relation is 'is-a'
in the UMLS table, srstr

j=1; k=0;
while (j<= iSampleSize) {

(iCUII, iCUI2) = Read From_UMLSTable("srstr');
//Get two concept IDs.

Candidate[k] = Read From_UMLSTable("mrconso", iCUI1); k++;
Candidate[k] = Read From_UMLSTable("mrconso", iCUI2); k++;

//Get concept name
j++;

}

break;

} //end of switch
for (j=1; j< iSampleSize; j++) 	 Freql = Google#(Candidate[j]);

//Freq1 g] will contain Google#(X)
}

Save_To_Database(Freql,sTableName); //Save Frequency Array to file
// sTableName is SAS concepts which is dataset for statistical analysis.

Explanation of Algorithm 5.1

(1) First, concepts are obtained.

(1a) WordNet: The algorithm randomly selects some words from the Index file,

noun.index to generate each X, by using the WordNet API method,

Dictionary. getInstance().getRandomIndexWord (POS.NOUN) and stores them in

an array. Note that, if a noun has many senses, the first sense is selected.

(lb) OpenCyc: The algorithm randomly selects atomic terms from the OpenCyc

database installed in a local server to generate each Xi by using the

getRandomConstant() method of the CycAccess class in the OpenCyc Java API,

and stores them in an array.

(lc) UMLS Metathesaurus: The method, Read From_UMLS Table("mrrel')

returns the two Concept Unique Identifiers (CUls) from the "mrrel" table by

112

accessing the UMLS database. Each obtained CUI will be used to extract its

corresponding word label to form an X, from the "mrconso" table. Note that the

function, Read From_UMLS_Table(TableName) uses XML to directly get records

from the UMLS database.

(1d) UMLS Semantic Network: The method, Read From_UMLSTable("srstr')

returns two CUIs from the "srstr" table. In the same way as for the Metathesaurus,

word labels of CUIs are found.

(2) Function Google#(X,) reads the array or the text file and each time queries the

Google Server to obtain the frequency of occurrence. Note that, if X, is 'camelCase',

the function will separate it into several independent words and insert a space

between any two words.

(3) The algorithm writes all of the search results to a database table, SASconcepts for

statistical analysis.

Next, the function Google# (X,) reads the array or the text file of concepts, and each

time queries the Google Server to obtain the frequency of occurrence. Note that, if X, is

'camelCase', the function will separate it into several independent words and insert a

space between any two words. Finally, the algorithm writes all of the search results to a

database table for statistical analysis and returns the estimate of concept_naturalness for

the ontology in eqn (5.1).

5.3.2.2 Approximating the Naturalness of IS-A Relationships. Extracting IS-A

relationships depends on APIs and the structure of the ontology. Since not all ontologies

provide an explicit list of IS-A relationships, we utilize m number of sample concepts

113

which are produced by Algorithm 1 and find their IS-A relationships.

Algorithm 5.2: Approximating the naturalness of concept pairs in IS-A
relationships(String[iSampleSize] Candidate)

Input: A certain ontology O, represented as a set of sample concepts
L' = {1,,1 2 • • . ,l,}	 with an either explicit set A of IS-A relationships, or a

getParent function.
Output:

1. A' = {(P,C)IC E L' A ((P	 C) EA v P= getParent(C))}

2. CPGN(A '), corresponding CPGNs for each IS-A relationship in A'.

Note that 1A1	 m .

//input: String[iSampleSize] Candidate where data was filled by Algorithm]
flag OntologyType;
int	 iSampleSize;
float[iSampleSize] FreqPair;

//FreqPair stores the occurrence count for many concept pairs
class Pairwise_Word(String Candidate], Candidate2; }

// Pairwise_Word.Candidatel will contain a child concept
// Pairwise_Word.Candidate2 will contain a parent concept

Pairwise_Word[iSampleSize] CandidatePair;
//CandidatePair will contain many concept pairs each connected

//by an IS-A relationship
String sTableName= ' s s

' 	 A IS — AConceptpair " ;

switch (OntologyType)
{ case WordNet:

for (j=1; j< iSampleSize; j++)
{ CandidatePair[j].Candidate1 = Candidate[j]_7;

//Candidate[j] contained a child concept in Algoritm1
CandidatePair[j].Candidate2 =

getParent(CandidatePair[j][Candidatel);
// getParent(argument) calls
//PointerUtils.getInstance().getDirectHypernyms(argument) API method

}
break;

case OpenCyc:
for (j=1; j< iSampleSize; j++)
{	 CandidatePair D' [j]. Candidate1 = Candidate[j] ; ;

CandidatePair[j].Candidate2 =

114

getParent(CandidatePair{j]Candidatel);
// getParent(argument) calls getGenls(argument) OpenCyc API method

}

break;

case UMLS_Metathesaurus:
int iCUI1, iCUI2;

for (j=I; j< iSampleSize; j++) (
(iCUI1,iCUI2) = getConceptPairIDs_from_UMLS Table ("mrrel","is-a');

CandidatePair[j] =

getConceptPair_from_UMLS_Table
("mrconso",iCUT1,iCUT2);

//Get concept names
}

break;

case UMLS SemanticNetwork:
int iCUI1, iCUI2;

for (j=1; j< iSampleSize; j++) {
(iCUI1,iCUI2) = getConceptPairIDs_From_UMLS_Table("srstr","is-a');
CandidatePair[j] =

getConceptPair_from_UMLS Table
("mrconso",iCUT1,iCUT2);

//Get concept names
}

break;
} //end of switch
for (j=1; j< iSampleSize; j++) 	 FreqPair [j] = CPGN(CandidatePair[j]);

// FreqPair[j] contains Google#(Xi n Y.])

}

Save_To_Database(FreqPair, sTableName);
// sTableName is SAS IS— AConceptPair which is dataset for statistical analysis

Explanation of Algorithm 5.2

Concept pairs are obtained, taking an input array which contains the randomly sampled

concepts in the Algorithm 1:

(1) Concept pairs are obtained by taking an input array which contains the randomly

sampled concepts in the Algorithm 1.

(I a) WordNet: The algorithm reads the array to define each X and obtains its

115

parent, Y1 for each X, by using the function getParent (X i). It calls the

PointerUtils.getInstance().getDirectHypernyms() WordNet API method. The

algorithm stores all concept pairs (X ,Y3) in an array.

A'= {(P,C)IC E L' n P= getParent(C)}

(lb) OpenCyc: In a similar way as for WordNet, the algorithm reads the array to

define each Xi and obtains its Yj for each Xi by using getParent(X,). It calls

the getGenls() OpenCyc API method. The algorithm stores all concept pairs

(X ,Y3) in an array. A' = {(P,C)IC E L' n P = getParent(C)}

(1c) UMLS Metathesaurus: The function, getConceptPairIDs_from_UMLS_Table

("mrrel","is-a") returns two CUIs which are in IS-A relationships from the

UMLS table, "mrrel". A pair of word labels of the two CUIs (X ,Y3) is obtained

in the same way as in the Algorithm 5.1.

A'= {(P,C) IC E L' A (P C) E mrrel}

(1d) UMLS Semantic Network: The method,

getConceptPairIDs_from_UMLS_Table ("srstr", "is-a') returns two CUIs which

are in IS-A relationships from the UMLS table, "srstr". A pair of word labels of

the two CUIs (X ,Y3) is obtained in the same way as in the Algorithm 5.1.

A' = {(P,C)IC E L' n (P C) c srstr}

(2) Function CPGN returns the frequencies after sending each concept pair (X ,Y3) to

the Google server.

116

(3) The algorithm writes the search results to a database table, SAS Is_ AConceptpair for

statistical analysis and returns the estimate of ISA_naturalness for the ontology in

Equation (5.2) or (5.9).

5.3.2.3 Approximating the Naturalness of Semantic Relationships. 	 Semantic

relationships are provided by ontologies in different ways; while some ontologies provide

explicit table, T listing all binary relationships, others provide a list of API functions, F.

When an explicit tables, T of all binary relationships is given, CP ', a sample set of

concept pairs with semantic relationships, can be easily generated by a random selection

excluding the IS-A or inverse IS-A relationships. Note that Ts schema includes a concept

L, a concept R and a relationship name, etc. where L and R are connected by the

relationship. The list of semantic relationships includes IS-A, inverse IS-A, etc. Examples

of this kind of ontology are the UMLS Metathesaurus and the UMLS Semantic Network.

Alternatively, the API function set, F = (f , f2 ,-- • , fn) may be given such that each

f represents are direction of a relationship. We use a function,

CP, = get_concept_pairs(f,) which takes f, as an input and outputs CP„ a set of all

concept pairs consisting of Ls and Rs of this relationship. This kind of ontology is

exemplified by OpenCyc. Lastly, when F is given without a get_concept_pairs feature,

one must try different Rs to extract its corresponding L exhaustively such that L = f(R).

An example of this kind of ontologies is WordNet

117

Algorithm 3: Approximating the naturalness of concept pairs in semantic

relationships

Input: A relationship table T = (L, R, relationship) of a certain ontology O or an

API function set, F of a certain ontology O.

Output:

1. CP'= sampling(CP) where

CP = {(L, R)I (L, R, relationship) E T A relationship #' IS_A' or 'reverse IS_A'

or CP = {(L, R)I f EF A L = f (R) A f # 1 ISA' or 'reverse IS_A'}

or CP = {(L, R)I f E F A f (relationship) is true A (L, R) = f (reletionship)}

2. CPGN(CP '), that is, the corresponding CPGNs for each semantic relationship

in CP'.

flag OntologyType;
int	 iSampleSize;
float[iSampleSize] FreqPair;

// FreqPair stores the occurrence count for many concept pairs
class Pairwise_Word{ String Candidate], Candidate2; }
Pairwise_Word[iSampleSize] CandidatePair;

//CandidatePair will contain many concept pairs each connected by
//a Semantic relationship

Pairwise_Word[] BinaryPreList;
// BinaryPreList contains concept pairs connected by OpenCyc binary
//predicates

Enumeration WordNetSemanticRelationType {Causes, EntailedBy, Entailments,
PartHolonyms, PartMeronyms, SubstanceHolonyms, SubstanceMeronyms};

WordNetSemanticRelationType WNSR;
String sTableName= " SAS SemanicConceptpair " ;

switch (OntologyType)
{ case WordNet:

String sTempCandidate; // sTempCandidate contains a random word.
//The word will be saved when it has any semantic relationship.

j=1; k=0;
iSampleSize= 200;
while (j <= iSampleSize)

118

{ sTempCandidate = randomly get a word from Index file(noun. index);
for each semantic relationship listed in WNSR{

relConcept =
getConceptInSemanticRelation(sTempCandidate);

if (relConcept!=NULL) {
CandidatePair[k]Candidate1 = sTempCandidate;

CandidatePair[k].Candidate2 = relConcept;
//sTempCandidate is related with relConcept by a

semantic //relationship
k++; }

}j++;

break;
case OpenCyc:

String sTempCandidatePre;
// sTempCandidatePre contains a random atomic term

j=1; k =0;
iSampleSize= 200;
while <= iSampleSize)

{ sTempCandidatePre = randomly get an atomic term from database;
if sTempCandidatePre is 'binary predicate '{

1=0;
BinaryPreList =

getConceptPairSemanticRelation(sTempCandidatePre);
// binary predicate relates one concept to another concept

for each pair in BinaryPreList{
CandidatePair[j] BinaryPreList[l]; 1++;

k++; }
}J. ++;

} //end of while
break;

case UMLS Metathesaurus:
int iCUI1, iCUI2;
iSampleSiz =Count the number of concept pairs whose relation is 'non-is-a'

in the UMLS table mrrel
for (j=1; j< iSampleSize; j++) {

(iCUI1,iCUI2) =
getConceptPairIDs_from_UMLS Table ("mrrel", "non-is-a");

CandidatePair[j] =
getConceptPair_from_UMLS_Table ("mrconso",iCUT],iCUT2);

//Get concept names

break;

case UMLS SemanticNetwork:

119

int iCUI1, iCUI2;
iSampleSize=Count the number of concept pairs whose relation is 'non-is-a'

in the UMLS table srstr
for (j= 1; j< iSampleSize; j++) {

(iCU11,iCUI2) =
getConceptPairIDs_From_UMLS_Table("srstr","non-is-a");

CandidatePair[j] =
getConceptPair_from_UMLS Table ("mrconso",iCUT1,iCUT2);

}

break;
}//end of switch
for (j=1; j< iSampleSize; j++) {FreqPair D.] = CPGN(CandidatePair[/]); }

Save_To_Database(FreqPair, sTableName);
// sTableName is SAS SemanicConceptpair which is dataset for statistical analysis.

Explanation of Algorithm 5.3

(1) Concept pairs connected by semantic relationships are obtained.

(1a)WordNet:	 For	 each	 semantic	 relationship	 defined	 in

WordNetSemanticRelationType, the algorithm checks whether a randomly

selected concept X, has one of the defined semantic relationships using

getConceptlnSemanticRelation(concept). 	 It	 calls	 getPartHolonyms(),

getAttributes(), getPartMeronyms(), and getSubstanceHolonyms(), getCauses(),

getEntailedBy(), getEntailments() in the API to obtain a concept pair (X

The algorithm stores all concept pairs in an array.

(1 b) OpenCyc: The algorithm randomly gets an atomic term from the OpenCyc

database. If the term is a binary predicate, it calls the

getConceptPairSemanticRelation(term) function. The function calls the

getInterArgIsal _2s(term) method of the OpenCyc API and returns the list of

concept pairs connected by the binary predicate. For each concept pair (Xi ,Y.,),

120

the algorithm stores all concept pairs in an array.

(1 c) UMLS Metathesaurus: Similar functions as for IS-A relationships are used to

extract concept pairs () for semantic relationships. However, a parameter

"non-is-a" is used. The complete list of the semantic relationships for the

Metathesaurus is in the Appendix.

(1d) UMLS Semantic Network: Similar functions as for IS-A relationships are

used to extract concept pairs (Y1) for semantic relationships. However, a

parameter, "non-is-a" is used. The complete list of the semantic relationships for

the Semantic Network is also in the Appendix.

(2) Function CPGN returns the Google frequency.

(3) The algorithm writes the search results, Google# (X , AY) to a database table,

SAS SemanicConceptpair for statistical analysis.

5.3.3 Phase II: Analyze Data

For the statistical comparison analysis, a t-test and an ANOVA test were used. Statistical

parameters of two populations are highly unlikely to be identical, and statistical methods

allow us to decide whether two apparently different values are indeed significantly

different. In this dissertation work, the t-statistic (pooled and Sattherwaite) is used to

determine whether significant differences exist between pairs or groups of ontologies.

121

the numbers of elements of the sampling units in each of the two groups.

From the above means, the variances of the sampling units in each of the two

If the population variances a and σ22; of the two groups are not known but the

two populations are assumed to be the same, that is, σ22 i2 = σ22 (= σ2) ,) the distribution of

the difference of the means in the sampling units of two groups conforms to the normal

distribution with its mean and variance, denoted by E(xl —x2)=μ, -μ 2 and

Var(x, — x 2) = σ222 (1 / n, +1 / n 2) respectively. Note that the difference between the means

in the two populations, A --,u2 , to which the two sampling units belong, is estimated by

the difference in the means in the two sampling units. Therefore, the pooled estimator of

the common population variance a 2 is denoted by S; and computed as follows

(University of California 2006):

From the formulas presented earlier especially S; , the t-statistic is computed as

follows:

122

where go is the difference between the means in the two populations. If 6 0 = 0 ,

the null hypothesis H : p, — p 2 = 0 that is, there is no difference between the means, is

examined.

On the other hand, when the two populations are not assumed to be the same, that

is, o # o-;, the distribution of the means of the sampling units of two groups does not

conform to the normal distribution. In this case, if the degree of freedom (df) is changed

the difference in the means in the sampling units of two groups asymptotically conforms

to the t-distribution. The Satterthwaite method adopts this modification.

ANOVA (Analysis of Variances) test: In order to compare two or more means, the

ANOVA test is employed. The variance of the data (i.e. Goog/e#) is divided into two

sources from which the variance originates (University of California 2006): in this

research model (a) the variance between groups (i.e. ontologies) or conditions (i.e.

different label lengths) (b) the variance within groups and conditions.

Let y be the value which the j-th observation among n, observations shows in

response to the i-th group or condition. The condition or group mean of the i-th condition

123

The function of ANOVA is to test the null hypothesis namely that the population

mean is the same in all conditions or groups. To test the hypothesis, the f-statistic is

computed by the following equation.

where k is the number of groups or conditions and 1)) is the mean of the condition means.

The above equation (5.13) can be rewritten by using the standard abbreviation

(University of California 2006) :

Total sums of squares (TSS) = between-conditions sum of squares
(5.14)

(=BSS) + within-conditions sum of squares (=WSS)

TSS indicates the total variation such that when BSS is very high compared with WSS, it

can be inferred that TSS comes from the variance between the mean values among

different conditions or groups. That is, there is the influence of conditions or groups on

the values of observations.

The f-statistic is a ratio of the BSS /(k —1) divided by the WSS 1(n-1). A large f-

statistic is evidence that the null hypothesis may be rejected, since it tells that the

variance of the data mostly originates from the difference between conditions/groups

rather than within conditions/groups. The ANOVA determines significance probability

from the f-statistic.

In computing the t-statistic and f-statistic described, the SAS (statistical analysis

124

software) is used and the results are interpreted based on the related theories. The detailed

results are presented in the following Section 5.4.

5.4 Experimental Results on Existing Large Ontologies

5.4.1 The Naturalness of Concepts

Descriptive Statistics

Following are the symbols used in this dissertation and their corresponding statistical

measurements: "M", the mean value of the number of search results for a concept, "SD",

the standard deviation, "R", the Range (the difference between the minimum and the

maximum), "K", Kolmogorov-Smirnov (a statistical method for testing normality). "N"

is the sample size.

Following are the symbols used in this paper for ontologies: "W" =

WordNet,"US" = UMLS Semantic Network, -UM - UMLS Metathesaurus, "OCC" =

OpenCyc Class, "OCI" = OpenCyc Individual, and "OC" = OpenCyc (complete). In

Section 5.4.2, the abbreviation "UMS"=a set of concept pairs (X, Y) shall be also used

where X is in UMS and Y is in US.

Table 5.1 The Descriptive Statistics I: Concept Occurrence
US UM OC OCC OCI

3,000 135 4,858 3,000 1,434 1,566
M 837,584 5,059,901 21,499 540,426 771,400 328,921
SD 6,841,168 16,622,855 313,416 5,186,753 6,983,312 2,608,801
R 195,999,948 116,999,967 16,800,000 182E6 182E6 6.805584E12

Table 5.1 shows the descriptive statistics for concepts. The ontology with the

highest mean value, 5,059,901 is the Semantic Network and the ontology with the lowest

mean value, 21,499 is the Metathesaurus of the UMLS. This agrees with the intuition, as

the Metathesaurus contains many highly specialized medical terms. The result of the

125

Kolmogorov-Smirnov test, which is a common normality distribution shows that the

search results from Google are not normally distributed and consequently, the results of

the unequal variances t-statistic are emphasized since the test for equal variances is

highly sensitive to non-normality.

Comparision of Means in Two Independent Ontologies

Following are the symbols used in this paper and their corresponding statistical

measurements: "DF", the degrees of freedom, "t Value", the t-statistic, "Pr>ItI", the

probability of a t-value in which the mean value of equal or greater absolute value

conforms to the null hypothesis (University of California 2006).

Table 5.2 The T-test for the Difference of Means between OpenCyc vs.
WordNet for Concents

Method/Variances DF t Value Pr > Iti
Pooled/ Equal 5998 -1.90 0.0580

Satterthwaite /Unequal 5590 -1.90 0.0580

Table 5.2 shows the difference of means between WordNet vs. OpenCyc. The

value of unequal t is —1.90, and the p-value is 0.0580. The null hypothesis of equal mean

values can be rejected at the 10% level. It can be concluded that there is significant

difference between the means of OpenCyc and WordNet. Looking at descriptive statistics

in Table 5.1, it can be further concluded that the average number of search results for

WordNet is significantly higher than for OpenCyc, meaning that WordNet concepts are

more natural than OpenCyc concepts.

Table 5.3 shows the difference of means between OpenCyc Class vs. WordNet.

The value of unequal t is —0.30, and the p-value is 0.7644. At the 5% level, the two means

are not significantly different. The null hypothesis of equal means cannot be rejected at

126

the 5% level. It can be concluded that there is no significant difference between the

means of WordNet and OpenCyc Class.

Table 5.3 The T-test for the Difference of Means between OpenCyc Class
vs. WordNet for Concepts

Method/Variances DF t Value Pr > Iti
Pooled/ Equal 4432 -0.30 0.7647

Satterthwaite /Unequal 2771 -0.30 0.7664

Table 5.4 shows the difference of means between OpenCyc Individual vs.

WordNet. The value of unequal t is —3.60, and the p-value is 0.0003. At the 5% level, the

two means are significantly different. The null hypothesis of equal means can be rejected

at the 5% level. It can be concluded that the average number of search results for

WordNet is significantly higher than for OpenCyc Individual.

Table 5.4 The T-test for the Difference of Means between OpenCyc
Individual vs. WordNet for Concepts

Method/Variances DF t Value Pr > Iti
Pooled/ Equal 4564 -2.84 0.0046

Satterthwaite /Unequal 4268 -3.60 0.0003

Table 5.5 shows the difference of means between the UMLS Semantic Network

vs. WordNet. The value of unequal t is 2.94, and the p-value is 0.0039. At the 5% level,

the two means are significantly different. The null hypothesis of equal means can be

rejected at the 5% level. It can be concluded that the average number of search results for

the UMLS Semantic Network is significantly higher than for WordNet.

Table 5.5 The T-test for the Difference of Means between UMLS
Semantic Network vs. WordNet for Concepts

Method/Variances DF t Value Pr > Ott
Pooled/ Equal 3133 6.38 0.0001

Satterthwaite /Unequal 136 2.94 0.0039

127

Table 5.6 shows the difference of means between UMLS Metathesaurus vs.

WordNet. The value of unequal t is -6.53, and the p-value is 0.0001. At the 5% level, the

two means are significantly different. The null hypothesis of equal means can be rejected

at the 5% level. It can be concluded that the average number of search results for

WordNet is significantly higher than for UMLS Metathesaurus.

Table 5.6 The T-test for the Difference of Means between UMLS
Metathesaurus vs. WordNet for Concepts

Method/Variances DF t Value Pr > iti
Pooled/ Equal 7856 -8.30 0.0001

Satterthwaite /Unequal 3007 -6.53 0.0001

Analysis of the Means for three Groups of Ontologies

Table 5.7 shows that the search results from Google are significantly different in the

investigated ontologies. There are 10,858 labels as samples from the ontologies. The F-

statistic is 32.55. Because the p-value is small, the null hypothesis of equal means for the

different ontologies is rejected. The conclusion is that the numbers of search results

returned by Google for concepts from different ontologies are different.

The result of Tukey comparisons (TK) which were used to further investigate the

differences in the search results is shown in Table 5.7. Three groups, A, B and C are

shown below the means. The mean of search results for the different ontologies are

significantly different. WordNet is in group A. OpenCyc is in group B. The

Metathesaurus of the UMLS is in C. That is, the search results between these three

groups, A, B and C are significantly different. Note that the labels from the Semantic

Network of the UMLS were removed in this test since its size is very small compared to

other ontologies.

128

Table 5.7 Results of the ANOVA Test to Examine the Variance
among the Different Ontologies for Concepts

W OC UM F Pr > F
N 3,000 3,000 4,858 32.55 0.0001
M 837,584 540,426 21,499
TK A B C

Analysis of the Influence of Label Length on Naturalness

Table 5.8 shows that the number of the search results is significantly different according

to the number of words in a label. That implies there is one factor, label length, with five

levels, having values 1, 2, 3, 4 and 5, which needs to be taken into consideration. As a

reminder, the number of words in a concept label is measured as label length. There are

10,406 observations. The F-statistic for testing whether label length is significant is

56.78. Because the p-value is small, the null hypothesis of equal means for the different

label lengths is rejected. The conclusion is that the results from Google are different with

respect to the different lengths of the labels.

Table 5.8 also shows the results from the Tukey comparisons. Two groups, A and

B are shown below the means. The conclusion is that the means for the different label

lengths are significantly different. The labels of length 1 are significantly different from

labels with the lengths, 2, 3, 4 and 5 respectively. On the other hand, from the length 2

and up, labels are not significantly different.

Table 5.8 Results of the ANOVA Test to Examine the Variance between Multi-
Word labels and Single-Word labels for Concepts

single- word 2-word 3-word 4-word 5-word F Pr > F
M 1,731,209 85,815 9,283 3,330 448 56.7

8
<0.000

1N 2,640 3,817 2,071 1,171 707
TK A B B B B

129

5.4.2 The Naturalness of Concept Pairs in IS-A Relationships

Descriptive Statistics

An additional set of pairs (X, Y) can be defined where X is derived from the concepts of

the Metathesaurus and Y from the Semantic Types of the Semantic Network. The notation

UMS for these pairs is used. All other abbreviations are the same as before.

Table 5.9 shows the descriptive statistics. The variable is the number of search

results when a user queries a concept pair to Google. The ontology with the highest mean

value, 323,777 is the Semantic Network. On the other hand, the relationship between the

Semantic Network and the Metathesaurus of the UMLS has the lowest mean value,

62,138.

Table 5.9 Descriptive Statistics II: Pair Occurrence in IS-A Relationships
W US UM UMS OCC

N 3091 135 5,000 6,249 7,787
M 86,643 323,777 3,752 1,410 7,867
SD 1,094,492 1,774,338 57,133 62,138 184,993
R 55,099,969 17,699,975 2,500,000 4,500,000 342224E10

Comparison of Means in Two Independent Ontologies

In this section, the natural association of concept pairs is analyzed. This section typically

concentrates on the results which are interestingly different from the results of the

naturalness of a concept.

Table 5.10 shows the difference of means between OpenCyc Class vs. WordNet.

The value of unequal t is —4.63, and the p-value is 0.0001. At the 5% level, the two means

are significantly different. The null hypothesis of equal means can be rejected at the 5%

level. It can be concluded that the average number of the degree of natural associations

for WordNet is significantly higher than for OpenCyc.

130

Table 5.10. The T-test for the Difference of Means between OpenCyc
Class vs. WordNet for IS-A pairs

Method/Variances DF t Value Pr > ItI
Pooled/ Equal 11E3 -7.23 0.0001

Satterthwaite /Unequal 3132 -4.63 0.0001

Table 5.11 shows the difference of means between UMLS Semantic Network vs.

WordNet. The value of unequal t is 1.03, and the p-value is 0.3037. At the 5% level, the

two means are not significantly different. The null hypothesis of equal means cannot be

rejected at the 5% level. It can be concluded that there is no significant difference

between the means of the UMLS Semantic Network and WordNet.

Table 5.11 The T-test for the Difference of Means UMLS Semantic
Network vs. WordNet for IS-A pairs

Method/Variances DF t Value Pr > ItI
Pooled/ Equal 3224 1.27 0.2024

Satterthwaite /Unequal 141 1.03 0.3037

Table 5.12 shows the difference of means between OpenCyc vs. the UMLS

Metathesaurus. The value of unequal t is —0.10 and the p-value is 0.9211. At the 5% level,

the two means are not significantly different. The null hypothesis of equal means can not

be rejected at the 5% level. It can be concluded that there is no significant difference

between the means of OpenCyc Class and UMLS Metathesaurus.

Table 5.12 The T-test for the Difference of Means between OpenCyc
Class vs. UMLS Metathesaurus for IS-A pairs

Method/Variances DF t Value Pr > It'
Pooled/ Equal 13,000 -0.10 0.9217

Satterthwaite /Unequal 11,000 -0.10 0.9211

Table 5.13 shows the difference of means between UMS vs. WordNet. The value

of unequal t is —4.92 and the p-value is 0.0001. At the 5% level, the two means are

significantly different. The null hypothesis of equal means can be rejected at the 5%

131

level. It can be concluded that the average number of the degree of natural associations

for WordNet is significantly higher than for the relationships that hold between the

Metathesaurus and Semantic Network (which was called UMS before).

Table 5.13 The T-test for the Difference of Means between UMS vs.
WordNet for IS-A pairs

Method/Variances DF t Value Pr > ItI
Pooled/ Equal 9,338 -6.97 0.0001

Satterthwaite /Unequal 3,106 -4.92 0.0001

Table 5.14 shows the difference of means between OpenCyc Class vs. UMS. The

value of unequal t is 2.89 and the p-value is 0.0038. At the 5% level, the two means are

significantly different. The null hypothesis of equal means can be rejected at the 5%

level. It can be concluded that the average number of the degree of natural associations

for OpenCyc Class is significantly higher than for UMS.

Table 5.14 The T-test for the Difference of Means between
OvenCvc Class vs. UMS for IS-A pairs

Method/Variances DF t Value Pr > Itl
Pooled/ Equal 14,000 2.73 0.0064

Satterthwaite /Unequal 13,000 2.89 0.0038

5.4.3 The Naturalness of Concept Pairs by Semantic Relationships

Table 5.15 shows the descriptive statistics for concepts. The ontology with the highest

mean value, 1,079,738 is the Semantic Network and the ontology with the lowest mean

value, 2,759 is the Metathesaurus of the UMLS.

Table 5.15 The Descriptive Statistics III: Pair Occurrence in Some
Semantic Relationships

W US UM OC
N 1,095 316 2,171 414
M 949,976 1,079,738 2,759 157,900
SD 5,965,384 8,323,491 29,666 1,443,433
R 158,999,952 113,999,974 667,000 27,400,000

132

The results of Tukey comparisons (TK) which were used to investigate the

differences in the naturalness of semantic relationships among the ontologies is shown in

Table 16. Two groups, A and B are shown below the means. The mean values of Google

numbers for concept pairs in semantic relationships among the different ontologies are

significantly different. The Semantic Network of the UMLS and the WordNet are in

group A while the OpenCyc and the Metathesaurus of the UMLS are in group B.

Table 5.16 Results of the ANOVA Test to Examine the Variance among the Different
Ontologies for Semantic Relationships

US W OC UM F Pr > F

N 316 1,095 414 2,171 18.11 0.0001

M 1,079,738 949,976 157,900 2,759

TK A A B B

5.4.4 Overall Ranking

Naturalness by concepts: In summary, (1) the UMLS Semantic Network is the most

natural followed by (2) WordNet and OpenCyc class (3) OpenCyc(Complete) (4)

OpenCyc Individual, and (5) the UMLS Metathesaurus. These results are supported by t-

test and ANOVA test.

Naturalness by IS-A pairs (approach 1): The ontologies with the largest

naturalness are (1) the UMLS Semantic Network and (2) WordNet, followed by (3)

OpenCyc Class, and (4) the UMLS Metathesaurus. (5) The associations between

Semantic Network Semantic Types and Metathesaurus concepts (UMS) were found to be

the least natural concept pairs. Numbering is based on mean of frequency. Thus, the rank

is less well established than the rank in naturalness by concepts.

Naturalness by IS-A pairs (approach 2): Concept pairs in IS-A relationships,

were evaluated based on rule mining techniques. The likely co-occurrence of a parent

133

with a child was interpreted as evidence that this child parent pair appears natural to

humans.

Several t-tests were conducted to test whether the difference of means of two

groups of ontologies is statistically significant with respect to the degree of natural

association of concept pairs. In the results, (a) WordNet has a significantly higher

naturalness than OpenCyc Class. (b) However, there is no significant difference between

the naturalness of WordNet and the Semantic Network of the UMLS. (c) There is no

significant difference between the naturalness of OpenCyc Class and the Metathesaurus

of the UMLS. (d) WordNet has a significantly higher naturalness than the associations

between Metathesaurus and Semantic Network. (e) OpenCyc Class has a significantly

higher naturalness than the associations between Metathesaurus and Semantic Network.

The results of approach 2 show that some distinctions shown by approach 1 are

presumably not significant.

Naturalness by pairs with semantic relationships: The (1) Semantic Network

shows the highest naturalness followed by (2) WordNet, (3) OpenCyc and (4) the

Metathesaurus. Numbering is based on mean of frequency. Thus, the rank is less well

established than the rank in naturalness by concepts.

Figure 5.4 shows how natural each ontology is in three segments; concepts,

concept pairs connected by IS-A relationships and concept pairs connected by semantic

relationships. Each value in the y-axis, which measures naturalness, is based on the

descriptive statistics presented in Tables 5.1, 5.9 and 5.15.

134

Figure 5.4 Descriptive graph to show the naturalness of ontologies.

Comparing the results of all three naturalness measures (concepts, IS-A pairs, and

semantic pairs) they agree substantially. Thus, no complicated scheme was needed to

aggregate results.

Overall Naturalness: The most natural ontology component is the (1) Semantic

Network, followed by (2) WordNet, (3) OpenCyc Class, (4) OpenCyc (Complete) and (5)

OpenCyc Individual. The least natural ontology (component) is (6) the Metathesaurus.

The Semantic Network is the best, but the number of concepts in it is comparatively very

small, too small to be useful in practice. It can be concluded that WordNet, which is the

second most natural ontology, can be used to define a likely upper limit or at least a

reference point in evaluating naturalness of other large ontologies. This result was

expected, since it consists of words in "human lexical memory" by design.

135

5.5 Experimental Results for Naturalness of Domain Ontologies

The domain ontologies in eight domains (i.e., Airfares, Automobiles, Books, Car Rentals,

Hotels, Jobs, Movies and MusicRecords) were automatically generated in this

dissertation. In this section, an evaluation of these eight domain ontologies from the

naturalness perspective is presented.

It should be noted that there were some restrictions because of the query limit

policy of the Google company. The evaluation for naturalness of existing ontologies such

as WordNet, OpenCyc and the UMLS, i.e., measuring the Google number, Google#(ci)

was conducted successfully, as special permission for an increased query limit was

granted by the Google company. Evaluation of the naturalness of the eight domain

ontologies was conducted in June 2007 when the special permission had expired. Hence,

the remote server of the Google company produced frequent disconnection errors and

required long processing times. Consequently, not all the concepts could be sent to the

Google server. Thus, only sampled concepts were processed and will be presented here.

Table 5.17 shows the descriptive statistics for concepts appearing in the domain

ontologies. The naturalness of concepts in all domain ontologies is higher than the

naturalness of Semantic Network, which has the highest mean value, 5,059,901. Thus, it

can be concluded that concepts in the domain ontologies are more natural than these in

the existing ontologies that were analyzed in this research.

136

Table 5.17 Naturalness of Concepts in Domain Ontologies

Airfares Automobiles Books Car Rentals

N (sample size) 89 128 102 108

M (mean) 238,656,258 353,817,696 472,836,581 397,810,759

SD	 (standard
deviation)

289,318,711 398,375,998 472,206,657 454,913,333

R	 (range	 =
max — min)

1349,982,600 2,139,945,200 1929,982,700 2,009,318,000

Hotels Jobs Movies Music Records

N 100 104 132 124

M 253,819,140 409,333,236 520,390,752 272,175,483

SD 275,729,375 448,886,776 461,098,734 365,564,519

R 1,159,872,000 2,139,948,500 2,069,983,700 1,589,954,200

Table 5.18 shows the descriptive statistics for naturalness of the IS-A relationships

which was defined as eqn 5.2 in Section, 5.2.2. The naturalness of IS-A relationships is

higher than in the UMLS Semantic Network which has the highest mean value, 323,777.

Thus, it can be also concluded that IS-A relationships in the domain ontologies are more

natural than these in the existing ontologies that were analyzed in this research.

137

Table 5.18 Naturalness of IS-A Relationships in Domain Ontologies

Airfares Automobiles Books Car Rentals

N 41 59 62 54

M 12,397,485 97,826,597 188,280,289 79,483,481

SD 31,880,518 4,100,000 34,200,000 124,934,017

R 190,999,288 577,999,394 1,659,982,700 621,883,000

Hotels Jobs Movies Music Records

N 52 66 105 53

M 51,711,423 242,690,879 120,002,149 32,146,652

SD 119,330,636 349,894,552 172,064,131 89,371,424

R 767,891,000 1,909,999,288 1,449,981,400 500,999,217

The naturalness of semantic relationships was not analyzed due to the small

amount of data available.

5.6 Limitations

One may argue against the reliability of the Internet as corpus by pointing out that there

are many noise effects. This is why the research (Brewster et al., 2003) does not consider

the Internet as ideal but accepts it as the best available source. Search results can not

distinguish terms which have the same spelling but their meaning is different. Sampling

10 pairs of concepts and searching for those on the Internet, it is hard to trust relevant

Web sites. Considering the reliability of the Internet sources, the total number of 13,993

concepts, 22,262 concept pairs in IS-A relationships and 3,996 concepts pairs in semantic

138

relationships were sampled. Statistical mean comparisons for evaluating ontologies were

used to reduce the effect of this problem.

Seven components of three important ontologies have been evaluated in this

dissertation. One may argue against the selection of the ontologies by pointing out that

the comparative approach would be more proper if two ontologies are in the same domain.

Several ontologies in the same domain, "university student" were ranked in (Alani and

Brewster 2005). However, it is questionable whether ranking of ontologies with small

numbers of concepts is useful and reliable. There are few domains that have well

developed ontologies of comparable size. Unfortunately, most ontologies available on the

Web are not well developed (Ding et al. 2004). Thus the best known ontologies from

different domains were used. The main criteria in selecting ontologies were whether they

are actively used by other applications, whether an API to access their data exists and

whether they are of substantial size.

One limitation of the analysis in this study is in the normality assumption for the

t-test robustness. As variables did not follow a normal distribution, the results from the

Satterthwaite method were alternatively presented which gives t-statistics in an

asymptotic way. In addition, the sample size was enlarged up to 3,000 from each

ontology and performed random, independent sampling to ensure that the result is

asymptotically correct.

CHAPTER 6

SUMMARY AND CONTRIBUTIONS

This dissertation is concerned with the general problem of how to assist users with

searching for Web pages. One of the suggested solutions for this problem was utilizing

ontologies that are constructed with natural concepts, IS-A relationships, and semantic

relationships to improve the quality of Web search results. It was also suggested that

information in the Deep Web should be exploited to build domain ontologies. Hence,

major contributions of this dissertation are twofold. The first one is designing and

implementing algorithms that extract useful information from the Deep Web to build

ontologies and the other is quantifying the quality of ontologies (QoO) from the

naturalness point of view.

In order to achieve the goals of the Semantic Deep Web, this dissertation claimed

that it is necessary to add more semantics to Deep Web processing. The semantics and the

Deep Web processing are reciprocal to each other through the use of ontologies in the

view of this dissertation.

The aforementioned approaches to generating domain ontologies automatically

were shown to provide not only improved processing of users' queries, but also better

ontology usage for specifying Deep Web data sources. Web sites themselves provide an

environment for users to learn domain specific terms, which implicitly reflect users'

understanding of the domain. The necessity of automatically extracting frequently used

concepts across many Deep Web sites was discussed and a sample was implemented

because the domain ontologies exhibit an important feature, domain consensus which

139

140

makes the ontologies usable.

Contributions of the implemented approach to the semi-automatic enrichment of

domain ontologies included the automatic extraction of instances for the domain ontology

from rich Deep Web data sources and improved Deep Web Search. Semantics at the data

level of ontologies became available by crawling data from the Deep Web. Automatic

programs were developed for representing the semantics in the Web Ontology Language

(OWL) to facilitate development of the Semantic Deep Web. The presented prototype of

a Deep Web search system showed one aspect of how to utilize domain ontologies to

meet Web users' needs, that is an automated process to interpret his information needs

against the backdrop of the Deep Web.

This dissertation also attacked the problem of "naturalness" as an aspect of the

QoO and developed the appropriate "measuring instruments" employing the Web as the

corpus for the evaluation. An ontology maintenance model implied by this evaluation

methodology, was designed such that an interactive process with the Web users' inputs

will replace unnatural concepts and relationships by more natural ones, increasing the

usability of ontologies for the Semantic Deep Web.

Extracting concepts, IS-A relationships, and semantic relationships was dealt with

in Chapters 2, 3, and 4, respectively. Instances were also extracted from the Deep Web so

as to demonstrate the effectiveness of the presented methodology in Chapter 4. Finally, an

evaluation of the naturalness of ontologies as a QoO measure was presented in Chapter 5.

141

6.1 Automatic Attribute Extraction from the Deep Web

Chapter 2 presented a novel approach to automatic extraction of attributes from query

interfaces of the Deep Web in order to address the current limitations in accessing Deep

Web data sources. The Automatic Attribute Extraction (AAE) algorithm (1) identified

attributes that are used by query Web page designers, called Programmer Viewpoint

Attributes, and (2) attributes that are presented as labels to users, called User Viewpoint

Attributes. By matching attributes used by designers and users with support of a synonym

analysis based on an ontology, WordNet, the set of attributes, called the set of Final

Attributes was extracted in eight e-commerce related domains. The size of the final

attributes set from 477 Web data sources in eight domains (i.e., airfares, automobiles,

books, car rentals, hotels, jobs, movies, and music records) is 1,825 which is about three

times larger than the manually extracted attribute set. Utilizing WordNet in the Deep Web

context, the Semantic Deep Web was newly introduced as a combination of aspects of the

Deep Web and aspects of the Semantic Web.

The AAE algorithm was assessed by its outputs to evaluate whether the set of

final attributes was comparable to the set of manually extracted attributes in locating Web

data sources relevant to users' queries. The "manual attribute set" showed an average

precision of 0.96 while the "automatic attribute set" showed an average precision of 0.74.

Based on the results of comparison tests conducted, it was concluded that the AAE

algorithm can work like an expert Web programmer in extracting attributes from the

query interfaces of the Deep Web.

142

6.2 Automatic Generation of Ontology from the Deep Web

Chapter 3 presented the algorithm to automatically generated domain ontologies. The

attributes extracted by the AAE in Chapter 2 served as concepts to be amalgamated to

form domain ontologies. As a result, the eight domain ontologies were automatically

generated where in all, 1825 concepts were interwoven into the IS-A relationships of

WordNet and 5473 concepts directly from WordNet were included in the generating

process. These domain ontologies were represented in the Web Ontology Language

(OWL) to be used by both computers and humans throughout the Web.

One of the most significant aspects of the presented approach lies in enriching

WordNet by domain specific information of the Deep Web sources. Another aspect was

its automatic process for on-line generation of domain ontologies along with data

extraction from Deep Web sources.

6.3 Instance Extraction for Ontology-based Deep Web Search

Chapter 4 extended the presented domain ontologies in Chapter 3 by including new

concepts and instances, which may not exist in WordNet. A novel approach to enhancing

a domain ontology was presented by adding 3385 instances of concepts and 8494

instances of semantic relationships extracted from a Deep Web site

(http://www.united.com/) to it. Secondly, a prototype Web search system, which utilizes

this domain ontology, was implemented.

The success of searching for Web pages was evaluated for flight-related Web sites,

while using the domain ontology augmented with instances. Criteria for the successful

search include I WsE 1<1 Ws I and I (MW	 I> I(mws)100 I. Without the presented method,

143

users would have to review IWs I= 134,954,000 Web sites, which would take too long for

users to find all relevant Web sites of interests. Thanks to the suggested method, users

would need to review only IWsE I = 18,317 Web sites. This is still very large. However,

the number of relevant Web sites in the first one hundred Web sites increased from

(Mws)1001= 4 to (mwsE)100	 =14 on average. Hence, the first criterion I Ws I<I Ws I

implies huge savings of users' time and efforts and the second criterion,

I (MwsE 1001>I (MW)100 I implies the better quality of the search results.

In summary, the experiments suggested that Web search results returned by the

search engine were improved by this new approach. More sites relevant to a user's needs

could be located faster since users would need to examine fewer results and would find

more relevant Webs sites early on in the result pages.

6.4 Ontology Evaluation: Naturalness Perspective

Chapter 5 presented the problem of ontology 'naturalness' by defining its meaning for the

concepts of an ontology and the relationships between the concepts of an ontology in

order to make the ontology (more) understandable to Semantic Web users. Chapter 5

analyzed several existing ontologies (WordNet, UMLS, etc.) with respect to the quality of

'naturalness' formalized as a quantitative measurement of the ontologies.

Evaluating naturalness of concepts of the ontologies produced the following

results: (1) the UMLS Semantic Network is the most natural, followed by (2) WordNet

and OpenCyc Class, (3) OpenCyc (Complete), (4) OpenCyc Individual, and (5) the

UMLS Metathesaurus.

144

The comparative analysis of naturalness was extended to the structure of the

ontologies: the naturalness of IS-A relationships and non IS-A relationships of concept

pairs was measured. The least natural ontology (component) was the Metathesaurus while

the Semantic Network was the best, but the number of concepts in it is comparatively

very small, too small to be useful in practice. Thus, it was concluded that WordNet was

the most natural large ontology to be used to define a likely upper limit or at least a

reference point in evaluating naturalness of other large ontologies.

The property of naturalness was also applied in evaluating the eight domain

ontologies generated in Chapter 3. As a result, naturalness values both for concepts and

IS-A relationships was higher than for the UMLS, WordNet and OpenCyc. An average of

naturalness of concepts in the eight domain ontoloies was 364,854,988, whereas the

highest one (the UMLS Semantic Network) among existing large ontologies, was

5,059,901. Among the eight domain ontologies, the Airfares domain ontology had the

lowest and it was 238,656,258 which is much higher than the highest one in the existing

large ontologies. Thus, it was concluded that concepts in the domain ontologies are more

natural than existing ontologies. Moreover, an average naturalness of IS-A relationships

in domain ontologies was 103,067,369 while the UMLS Semantic Network had the

highest value, 323,777 among existing large ontologies. Thus, it was also concluded

statistically that IS-A relationships in the domain ontologies are more natural than

existing ontologies.

CHAPTER 7

FUTURE WORK

Chapter 7 summarizes restrictions and limitations for methods presented in this

dissertation with possible solutions. Several open problems in this dissertation are

identified for future work as well.

7.1 Limitations and Restrictions

If readers or other researchers attempt to replicate the experiments conducted in this

dissertation, they will face two major restrictions: disconnection by the Google server

and blocking by Deep Web sites.

First, in order to assess the naturalness of ontologies in Chapter 5, the frequency

information, called Google#, provided by Google was utilized. However, Google limits

users to 1000 queries per day by their policy. By sending over a hundred thousand

concepts and their relationships to the Google search engine, the remote server in the

Google company may produce frequent disconnection errors and long processing times

because of this limit. There are two possible solutions so as to mitigate this problem.

Just like the evaluation of the existing large ontologies was conducted with special

permission from the Google company (Section 5.4), one may ask Google for the

increased maximum of 20,000 queries per day for research. Another solution is

sampling, which was done when evaluating the eight domain ontologies in Section 5.5.

The statistical analysis in Chapter 5 requires the normality assumption for the t-

test robustness. As variables did not follow a normal distribution, the results from the

145

146

Satterthwaite method were alternatively presented which gives t-statistics in an

asymptotic way. According to the Satterthwaite method, if the sample size is large and

sampling is performed randomly and independently, the result is asymptotically correct.

In this dissertation, the sample size from each ontology was only 3,000 or less because

the aforementioned restriction by the Google company. In the future, a full test or larger

sampling is necessary to find more exact measurements for the quality of the eight

automatically generated ontologies.

There are many other databases of Deep Web sites which the automatic crawling

program cannot access, due to access restrictions. Session tracking by a Web site is a

known barrier for a Web crawling program, as a site may use cookies to trace interactive

progress of a client. In addition, JavaScript may arbitrarily change a data representation

which is independent of the visual interface shown to a client. This is another barrier

against automatic analysis programs. In fact, while the crawling program was tested,

several problems were detected in reading HTML results from a number of Web sites. A

message, "Please activate scripting" means that the site detects a Web browser of a

client and its script option before it answers a user query. Thus, a crawling program

needs a facility of a kind of Web browser. On the other hand, a message of "Permission

denied" was encountered when the JavaScript program, which runs on a university

server, directly reads result pages which were displayed on the screen (i.e., client side)

but streamed from a company Website. This method of access is called cross-site

scripting. It causes security breaches, and thus, is prohibited. Considering this

dissertation's research result, namely that ontology instances extracted from the Deep

Web contribute greatly to locating relevant Websites, community wide efforts are

147

necessary to extract large numbers of instances from the Deep Web. Only a collective

approach can make the Semantic Deep Web a reality.

7.2 Open Problems

Amongst numerous possible extensions of this dissertation, six of them are identified

here: domain ontology usage for semantic annotation of Web services, direct utilization

of the Deep Web for ontology building, further semantic relationship utilization,

ontology integration, further enrichment of the domain ontology with synonyms, and

human subject tests.

Two intended advantages of the presented approach to generating a good domain

ontology are:

1. It improves the processing of a users' queries.

2. It can be used for semantic annotation of Web services since mapping service

descriptions to concepts of the ontologies is essential for discovery of the

services.

The former one was demonstrated but the latter was not addressed in this dissertation.

Demonstrating the domain ontology usage for semantic annotation of Web services

remains open for future work.

IS-A relationtionships between attributes automatically generated from the Deep

Web in Chapter 3 are only verified using WordNet. However, the Deep Web contains

useful relationship information as well. Utilizing this information to build better

ontologies remains an open problem.

In the future, more semantics needs to be added to Deep Web processing, to

148

achieve the goal of a Semantic Deep Web. For example, WordNet might be replaced or

augmented by domain-specific ontologies. While WordNet has excellent wide coverage

and usability it lacks domain specific knowledge. We have reviewed existing ontologies

for E-commerce and have not found any ontology with both the breadth and depth

needed for this project. Thus building such an ontology containing more semantic

relationships is future work.

Ontology integration is another open problem. In this dissertation, eight domain

ontologies were developed. These can be realized as sub domain ontologies for a larger

domain ontology preferably called E-commerce. Integrating multiple sub-domain

ontologies into one remains an open problem. Moreover, as a new Website is visited,

possibly, new instances and concepts can be recognized and merged into existing

ontologies. Such learning of ontology concepts is very important and is another open

problem.

The domain ontologies constructed in this dissertation should be further

enriched with synonyms. WordNet was used for taxonomic weaving of concepts. The

generated ontologies may not support automatic semantic matching for a user query

term that is too far away from a Web site term, based on a string comparison. For

example, "Leaving From" and "City Name" would not be considered synonyms

normally, even with flexible matching, although in our domain they describe analog

fields, and are therefore synonymous. Hence, constructing an ontology which will be

sufficiently flexible to recognize "City Name" as synonym of a query term "Departure

City" is another open problem.

149

Finally, many claims in this dissertation could be better justified with human

subject tests. Especially in Chapter 4, I WSE I< I WS I, I w
mSE I> ImwS I,1 and

I
 (MwsE

L. 1,1 (mws)
100 Iwere claimed. Albeit very limited human subject tests were

conducted to validate I WsE 11 Ws I and I (miswE)11)0 1, 1 (mws), 00
Ifor a small number of

ISEI vs. ISI cases, further full human subject tests are necessary for more cases.

Justifying I MwsE 1>1 A4-:, II claim would require enormous efforts and time of a large

group of human subjects. Moreover, empirical tests with human subjects are also

necessary to justify whether the naturalness of ontologies is in fact corroborated by

human perception.

APPENDIX

PARTIAL LISTS OF CONCEPT PAIRS AND SEMANTIC TYPE RELATIONS

The partial lists of concept pairs of a simple experimental control group are as follows
where MCPGN indicates the mean of numbers of Google search results of concept
pairs:

Data Source: OpenCyc
Concept-pair in IS-A relationship:
MCPGN = 31128.1

Two non -relevant concepts (i.e. control group):
MCPGN = 1981.7

"Purposeful Action","Voting" "Purposeful Action","Scoping Relation"
"Natural Gas", "Fossil Fuel" "Fossil Fuel","Bread"
"Food Service Organization","Bakery Store" "Food Service Organization","Street Bike"
"Beach Layia", "Flowering Plant" "Flowering Plant","Short Bone"
"Iodic Acid", "Electrolyte" "Electrolyte","Whale"
"Performance Degradation Computer", "Indefinite
Wait Computer Performance"

"Performance Degradation Computer", "Horror TV Show"

"Happiness", "Feeling Attribute" "Feeling Attribute", "Serve Warrant"
"Facial Tissue", "Consumable Product" "Consumable Product", "Ice Hockey Player"
"Health Care", "Taking Care Of Something" "Taking Care Of Something", "Audible Sound"
"Fruitcake", "Cake" "Cake", "Stop Sign"

Data Source: WordNet
Concept-pair in IS-A relationship:
MCPGN = 23,067

Two non-relevant concepts:
MCPGN = 180.2

"cameraman", "photographer" "photographer", "dressing station"
"prickly lettuce","compass plant" "compass plant", "social insurance"
"electrophorus", "wimshurst machine" "wimshurst machine","common axe"
"mantlepiece", "shelf' "mantlepiece","citrous fruit"
"ridiculer","humorist" "ridiculer","neutralist"
"braiding","trimming" "braiding","successfulness"
"tequila", "liquor" "liquor","successfulness"
"piezometer", "measuring instrument" "measuring instrument","ground cover"
"chronic	 obstructive	 pulmonary
"pulmonary emphysema"

disease", "pulmonary emphysema","electro acoustic transducer"

"lectureship", "position" "position","goose pimple"

"SemanticTypesRelations" extracted from srstr in UMLS Semantic Network for our analysis

adjacent_to	 derivative_of	 method of_
affects	 developmental_form_of 	 occurs _in
analyzes	 diagnoses	 part_of
assesses_effect_of	 disrupts	 performs
associated_with	 evaluation_of	 practices
branch_of	 exhibits	 precedes
carries_out	 indicates	 prevents
causes	 ingredient_of	 process_of
co-occurs_with	 interacts_with	 produces
complicates	 interconnects	 property_of
conceptual_part_of	 issue in	 result of_	 _
conceptually_related_to 	 location _of	 surrounds
connected_to	 manages	 traverses
consists_of	 manifestation_of	 treats
contains	 measurement_of	 tributary_of
degree of	 measures	 uses

150

"SemanticTypesRelations" extracted from mrrel in UMLS Meta Thesaurus for our analysis

151

access-instrument_of
access_of
active_ingredient_of
actual-outcome_of
adjectival_form_of
adjustment_of
affected_by
affects
analyzed_by
analyzes
approach_of
associated_disease
associated_finding_of
associated_genetic-conditassociated_morphology_of

associated_procedure_of

associated_with
branch_of

british_form_of
causative_agent_of
cause_of
challenge_of
classified_as
classifies
clinically_associated_wit
clinically_similar
co-occurs_with
component_of
conceptual_part_of
consists_of
constitutes
contained_in
contains
contraindicated_with
course_of
ddx
default_mapped_from
default_mapped_to
definitional_manifestatio
degree_of
diagnosed_by
diagnoses
direct_device_of
direct-morphology_of
direct_procedure_site_of
direct-substance_of
divisor_of
dose_form_of
drug_contraindicated_for
due_to
encoded_by_gene
encodes_gene_product
episodicity_of
evaluation_of
exhibited-by
exhibits
expanded_form_of
expected_outcome_of
finding context of

has_episodicity
has_evaluation
has_expanded_form
has_expected_outcome
has_finding_context
has_finding_site
has_focus
has_form
has_indirect_device
has_indirect_morphology
has_indirect_procedure_site
has_ingredient
has_intent
has_interpretation

has_laterality
has_location
has_manifestation
has_measurement_method
has_mechanism_of action
has_member
has_method
has_occurrence
has_onset
has_part
has_pathological_process
has_pharmacokinetics
has_physiologic_effect
has_plain_text_form
has_precise_ingredient
has_priority
has_procedure_context
has_procedure_device
has_procedure_morphology
has_occurrence
has_onset
has_part
has_pathological_process
has_pharmacokinetics
has_physiologic_effect
has_plain_text_form
has_precise_ingredient
has_priority
has_procedure_context
has_procedure_device
has_procedure_morphology
has_procedure_site
has_process
has_property
has_indirect_procedure_site
has_ingredient
has_intent
has_interpretation

has_lateralityity
has_location
has_manifestation
has_measurement_method
has_mechanism_of action
has_member
has method

indirect_procedure_site_of
induced-by
induces
ingredient_of
intent_of
interpretation_of
interprets
is_interpreted_by
laterality_of
location-of
manifestation_of
mapped_from
may_be_diagnosed_by
may_be_prevented_by
may_be_treated_by
may_diagnose
may_prevent
may_treat
measured_by
measurement_method_of
measures
mechanism_of action_of

member_of_cluster
metabolic_site_of
metabolized_by
metabolizes
method_of
modified_by
modifies

multiply_mapped_from
multiply_mapped_to
noun_form_of
occurs-after
occurs before
occurs_in
onset_of
other-mapped-from
other_mapped_to
part_of
pathological_process_of
pharmacokinetics_of
physiologic-effect_of
plain_text_form_of
precise_ingredient_ofprimary_mapped_from

primary-mapped-to
priority_of
procedure_context_of
procedure_device_of
procedure_morphology_of
procedure_site_of
process_of
property_of
recipient_category_of
result_of
revision_status_of
scale_of
scale_type-of
severity of

152

finding_site_of
focus_of
form_of
has_access
has_access_instrument
has_active_ingredient
has_actual_outcome
has_adjustment
has_approach
has_assoc iated_finding
has_assoc iated_morpho logy
has_associated_procedure
has_branch
has_british_form
has_causative_agent
has_challenge
has_component
has_conceptual_part
has_contraindicated_drug
has_contraindication
has_course
has_definitional_manifestation
has_degree
has_direct_dev ice
has_direct_morphology
has_direct_procedure_s ite
has_direct_substance
has_div isor
has_dose_form

has_recipient_category
has_result
has_rev is i on_status
has_scale
has_scale_type
has_severity
has_specimen
has_specimen_procedure
has_specimen_source_identity
has_specimen_source_morphology
has_specimen_source_topography
has_specimen_substance
has_subject_relationship_context
has_suffix
has_supersy stem
has_system
has_temporal_context
has_time-aspect
has_tradename
has_ translation
has_tributary
has_vers ionhas_xml_form

icd_asterisk
icd_dagger
indicated_by
indicates
indirect_device_of
indirect morphology of

sib_in_branch_of
sib_in_tributary_of
site_of metabolism
specimen_of
spec i men_procedure_of
specimen_source-identity_of
specimen_source_morphology_of
spec imen_source_topography-of
specimen_substance_of
ssc
subject_relationship_context_of
suffix_of
supersystem_of
system-of
temporal_context_of
time_aspect_of
tradename_of
translation_of
treated_by
treats
tributary_of
uniquely_mapped_from
uniquely_mapped_to
use
used_by
used_for
uses
version_of
xml form of

REFERENCES

1. Agirre, E., Ansa, Of>., Hovy, E., and Martinez, D. (Aug. 2000). Enriching very
large ontologies using the WWW. In Proceedings of ECAI Workshop on Ontology
Learning, 37-42.

2. Alani, H., and Brewster, C. (2005). Ontology Ranking based on the Analysis of
Concept Structure. In Proceedings of the Third International Conference on
Knowledge Capture (K-Cap), 51-58.

3. An, Y. J., Huang, K.-C., and Geller, J. (2006) Naturalness of Ontology Concepts
for Rating Aspects of the Semantic Web. In Communications of the International
Information Management Association, 6 (3), 63-76.

4. An, Y. J., Geller, J., Wu, Y.-T., and Chun, S. A. (2007a). Semantic Deep Web:
Automatic Attribute Extraction from the Deep Web Data Sources. Proceedings of the
22nd Annual ACM Symposium on Applied Computing (SAC 2007), 1667-1672.

5. An, Y. J., Huang, K.-C., and Geller, J. (2007b). Rating the Naturalness of
Ontology Taxonomies. In Proceedings of the 20th International FLAIRS Conference,
176-177.

6. An, Y. J., Geller, J., Wu, Y.-T. and Chun, S. A. (2007c). Automatic Generation
of Ontology from the Deep Web. In Proceedings of 6th International Workshop on
Web Semantics (WebS07), 470-474.

7. An, Y. J., Huang, K.-C., and Geller, J. (2007d). Comparative Anatomy of
Ontologies: the Semantic Naturalness Perspective. Submitted for Publication.

8. Arasu, A., and Garcia-Molina, H. (June 2003). Extracting structured data from
web pages. In Proceedings of the ACM SIGMOD Conference, 337-348.

9. Bechhofer, S., Harmelen, F. V., Hendler, J., Horrocks, I., McGuinness, D. L.,
Patel-Schneider, P. F.,and Stein, L. A. (Feb 2004). OWL Web Ontology Language
Reference Retrieved April 2005 from The World Wide Web Consortium Web site :
http://www.w3.org/TR/owl-ref/

10. Bergman, M. K. (2006). The Deep Web: Surfacing Hidden Value. Retrieved
May 2006 from http://www.brightplanet.comAechnology/DeepWeb.asp

11. Berners-Lee, T., Hendler, J., and Lassila, Of>. (2001). The Semantic Web.
Scientific American, 284(5),34-43.

12. Bjelogrlic, Z., Van Gulik, D. W., Reggiori, A., and Norheim, D. (2006).
Semantic Web: A New Dimension in Distributed Computing. Retrieved May 2006
from http://www.asemantics.com/presos/eusc2004/

153

154

13. Brewster, C., Ciravegna, F., and Wilks, Y. (2003). Background and Foreground
Knowledge in Dynamic Ontology Construction: Viewing Text as Knowledge
Maintenance. In Proceedings of the Semantic Web Workshop (SIGIR), Toronto,
Canada.

14. Brin, S., & Page, L. (1998). The Anatomy of a Large-Scale Hypertextual Web
Search Engine. Retrieved June 13, 2006, from Stanford University, InfoLab Web site:

http://www-db.stanford.edu/~backrub/google.html.

15. Castano, S., and Antonellis, V. D. (1999). A Discovery-Based Approach to
Database Ontology Design. Distributed and Parallel Databases - Special Issue on
Ontologies and Databases, 7(1), 67-98.

16. Chang, K. C., He, B., Li, C., and Zhang, Z. (2003). The UIUC Web Integration
Repository. Retrieved from MetaQuerier: Exploring and Integrating the Deep Web
Web site: http://metaquerier.cs.uiuc.edu/repository/

17. Chang, K. C., He, B., Li, C., Patel, M., and Zhang, Z. (2004). Structured
Databases on the Web: Observations and Implications. SIGMOD Record, 33(3), 61-
70.

18. Chun, S. A. and Geller, J. (2008). Evaluating Ontologies based on the
Naturalness of their Preferred Terms. In Proceedings of the 41st Hawaii International
Conference on System Sciences.

19. Colomb, R. M. (2002). Quality of Ontologies in Interoperating Information
Systems. Retrieved June 13, 2006, from the Institute of Cognitive Science and
Technology, Laboratory for Applied Ontology Web site: http://www.loa-
cnr.it/Papers/ISIB-CNR-TR-18-02.pdf

20. Cycorp (2002). Rule Macro Predicates Retrieved Aug 08, 2006, from
http://www.cyc.com/cycdoc/vocab/rule-macro-vocab.html

21. Cycorp (2005). OpenCyc (Version 0.9) [Computer program]. Retrieved June 16,
2006, from http://www.opencyc.org/releases/

22. Cycorp (2006). Cyc 101 Tutorial. Retrieved June 16, 2006, from
http://www.opencyc.org/doc/tut/?expand_all=1

23. Davulcu, H., Vadrevu, S., Nagarajan, S., and Ramakrishnan, I. V. (2003).
OntoMiner: bootstrapping and populating ontologies from domain-specific Web sites.
IEEE Intelligent Systems, 18(5), 24-33.

24. Ding, L., Finin, T., Joshi, A., Pan, R., Cost, R., Peng, Y., Reddivari, P., Doshi,
V., and Sachs, J. (2004). Swoogle: a search and metadata engine for the semantic
web. In Proceedings of the 13th ACM Conference on Information and Knowledge
Management, 652-659.

155

25. Doan, A., Madhavan, J. , Dhamankar, R., Domingos, P., and Halevy, A. (Nov.
2003). Learning to Match Ontologies on the Semantic Web. The VLDB Journal,
12(4), 303-319.

26. Dou, D., McDermott, D. V., and Qi P. (2005). Ontology Translation on the
Semantic Web. Journal on Data Semantics, 2, 35-57.

27. Fensel, D., Hendler, J., Liebeman, H., Wahister, W. (2003): Spinning the
Semantic Web. Bringing the World Wide Web to Its Full Potential, Cambridge, MIT
Press, 1-25.

28. Florescu, D., Levy, A., and Mendelzon, A. (1998). Database techniques for the
world-wide web: A survey. ACM SIGMOD Record, 27(3), 59-74.

29. Gal, A., Modica, G., Jamil, H. and Eyal, A. (2005). Automatic Ontology
Matching using Application Semantics. Al Magazine, 26 (1), 21-31.

30. Garofalakis, M. N., Gionis, A., Rastogi, R., Seshadri, S., Shim, K. (2000).
XTRACT: A System for Extracting Document Type Descriptors from XML
Documents. In Proceedings of Association for Computing Machinery/ Special Interest
Group on Management of Data (ACM SIGMOD), 165-176.

31. Ghanem, T. M. and Aref, W. G. (2004). Databases deepen the Web. Computer,
37(1), 116-117.

32. Gligorov, R., Aleksovski, Z., Kate, W. and Harmelen, F. (2007). Using Google
Distance to Weight Approximate Ontology Matches. In Proceedings of the 16th
International World Wide Web Conference, 767-775.

33. Gruber, T. R. (1993). Toward principles for the design of ontologies used for
knowledge sharing. In Proceedings of International Workshop on Formal Ontology,
Retrieved from Stanford Univ. Knowledge Sharing Effort public library Web site:
http://www-ksl.stanford.edu/knowledge-sharing/papers/README.html#onto-design

34. Gruber, T. R. (1995). Toward principles for the design of ontologies used for
knowledge sharing. International Journal of Human-Computer Studies, 43(5), 907-
928.

35. Handschuh, S., Volz, R. and Staab, S. (2003). Annotation for the Deep Web.
IEEE Intelligent Systems, 18(5), 42-48.

36. Hawking, D., Craswell, N., Thistlewaite, P. B. and Harman, D. (1999). Results
and Challenges in Web Search Evaluation. Computer Networks 31(11-16),1321-1330.

37.	 Hawking, S. W. (2002). On the Shoulders of Giants: The Great Works of
Physics and Astronomy, Running Press, 391-399.

156

38. Hearst, M. A. (1992). Automatic Acquisition of Hyponyms form Large Text
Corpora. In Proceedings of COLING-92, 539-545.

39. He, B., Patel, M., Zhang, Z. and Chang, K. C.-C. (2007). Accessing the Deep
Web: A Survey. Communications of the ACM (CACM), 50(5), 94-101.

40. He13, A., and Kushmerick., N. (2004). Machine learning for annotating semantic
web services. In Proceedings of AAAI 2004 Spring Symposium on Semantic Web
Services, 577-583.

41. Hieu, Q. L. (2005). Integration of Web Data Sources: A Survey of Existing
Problems, In Proceedings of the 17th GI-Workshop on the Foundations of Databases,
78-82.

42. Ipeirotis, P. (2004). Classifying and Searching Hidden-Web Text Databases.
Ph.D. Dissertation, Columbia University (advisor: L. Gravano).

43. Jansen, Bernard J.; Spink, A.; Saracevic, T. (2000). Real Life, Real Users, and
Real Needs: A Study and Analysis of User Queries on the Web. Information
Processing & Management, 36(2), 207-227.

44. Jansen, B. J. and Molina, P. (2006) The Effectiveness of Web Search Engines
for Retrieving Relevant Ecommerce Links. Information Processing & Management,
42(4), 1075-1098

45. Kabra, G., Li, C., and Chang, K. C. (2005). Query Routing: Finding Ways in the
Maze of the DeepWeb. In Proceedings of the International Workshop on challenges
in Web Information Retrieval and Integration, 64-73.

46. Kalfoglou, Y. and Hu, B. (2006). Issues with evaluating and using publicly
available ontologies. In Proceedings of the Fourth International Evaluation of
Ontologies for the Web Workshop (EON2006), Retrieved from ECON2006 Web site:
http://km.aifb.uni-karlsruhe.de/ws/eon2006/eon2006kalfoglouetal.pdf

47. Leacock, C., Chodorow, M., and Miller, G. A. (1998). Using Corpus Statistics
and WordNet Relations for Sense Identification. Computational Linguistics, 24(2).

48. Lee, Y., Geller, J. (2005). Semantic Enrichment for Medical Ontologies. Journal
of Biomedical Informatics, 39(2), 209-226.

49. Lewis, D. (1983). New Work for a Theory of Universals. Australasian Journal
of Philosophy, 61, 343-377.

50.	 Liddle, S., Embley, D., Scott, D. and Yau, S. (2002). Extracting Data Behind
Web. In Proceedings of the Joint Workshop on Conceptual Modeling Approaches for
E-business: A Web Service Perspective (eCOMO 2002), 38-49.

157

51. Lister Hill National Center for Biomedical Communications, U.S. National
Library of Medicine (Aug. 2005). UMLS Knowledge Source Server. Retrieved
August 08, 2006 from
http://umlsks.nlm.nih.gov/kss/servlet/Turbine/template/admin,user,KSS_login.vm.

52. Lister Hill National Center for Biomedical Communications, U.S. National
Library of Medicine (2006). The UMLS Semantic Network. Retrieved June 13, 2006,
from U.S. National Institutes of Health Web site: http://semanticnetwork.nlm.nih.gov/

53. Maedche, A., and Staab, S. (2000). Mining Ontologies from Text. In
Proceedings of EKAW-2000, Springer Lecture Notes in Artificial Intelligence (LNAI-
1937), Juan-Les-Pins, France.

54. McCray, A. T., Burgun, A. and Bodenreider, Of>. (2001). Aggregating UMLS
Semantic Types for Reducing Conceptual Complexity. In Proceedings of Medinfo,
171-175.

55. McDowell, L. K., and Cafarella, M. (2006). Ontology-driven Information
Extraction with OntoSyphon. In Proceedings of Internal Semantic Web Conference
(ISWC'06), 428-444.

56. Mihalcea, R., and Moldovan, D. I. (1999). An Automatic Method for Generating
Sense Tagged Corpora. In Proceedings of American Association for Artificial
Intelligence, Orlando, FL, 461-466.

57. Miller, G. A. (1995). WordNet: A Lexical Database for English.
Communications of the ACM, 38(11), 39-41.

58. Missikoff, M. Navigli, R. Velardi, P. (2002). The Usable Ontology: An
Environment for Building and Assessing a Domain Ontology. In Proceedings of the
First Int. Semantic Web Conference, 39-53.

59. Mizoguchi, R., and Ikeda, M. (1996). Towards Ontology Engineering. Technical
Report AI-TR-96-1, The Institute of Scientific and Industrial Research, Osaka
University.

60. Mizoguchi, R. (2004). Tutorial on Ontological Engineering: Part 3: Advanced
Course of Ontological Engineering. New Generation Computing, 22(2).

61. Modica, G., Gal, A., and Jamil, H. M. (2001). The Use of Machine-Generated
Ontologies in Dynamic Information Seeking. In Proceedings of the Sixth
International Conference on Cooperative Information Systems (CoopIS 2001), 433-
447.

62. Navigli, R. (2002). Automatically extending, pruning, and trimming general
purpose ontologies. In Proceedings of the 2nd IEEE Conf on Sys Man Cybernetics,
631-635.

158

63. Necib, C. B., and Freytag, J. (2003). Ontology Based Query Processing in
Database Management Systems. In Proceedings of the 6th International Conference
on Ontologies, Databases and Applications of Semantics for Large Scale Information
Systems (ODBASE'2003), 37-99.

64. Nestorov, S., Abiteboul, S., and Motwani, R. (1998). Extracting schema from
semistructured data. ACM SIGMOD Record, 27(2), 295-306.

65. Noy, N. F. and Musen, M. A. (2000). PROMPT: Algorithm and Tool for
Automated Ontology Merging and Alignment. In Proceedings of AAAI-2000, Austin,
Texas, 450-455.

66. Ntoulas, A., Zerfos, P. and Cho, J. (2005). Downloading Textual Hidden Web
Content Through Keyword Queries. In Proceedings of the ACM/IEEE Joint
Conference on Digital Libraries (JCDL), 100-109.

67. Obrst, L., Hughes, T. and Steve Ray, S. (2006). Prospects and Possibilities for
Ontology Evaluation: The View from NCOR. In Proceedings of the Fourth
International Evaluation of Ontologies for the Web Workshop (EON2006), Retrieved
from ECON2006 Web site:
http://km.aifb.unikarlsruhe.de/ws/eon2006/eon2006obrstetal.pdf.

68. Omelayenko, B. (2001) Learning of ontologies for the Web: the analysis of
existent approaches. In Proceedings of the International Workshop on Web Dynamics,
Retrieved from http://www.dcs.bbk.ac.uk/webDyn/webDynPapers/omelayenko.pdf.

69. Open Source Technology Group (2006a). OpenCyc (Version 0.9.5.Windows
NT/2K/XP) [Computer program]. Retrieved June 16, 2006, from
http://sourceforge.net/project/showfiles.php?group_id=27274.

70. Open Source Technology Group (2006b). Java WordNet Library (JWNL 1.3)
[Computer program]. Retrieved June 16, 2006, from
http://sourceforge.net/projects/jwordnet.

71. Patel-Schneider, P. F. (2004). What Is OWL (and Why Should I Care)? In
Proceedings of the Ninth International Conference on the Principles of Knowledge
Representation and Reasoning, 735-737.

72. Patil, A., Oundhakar, S., Sheth, A. and Verma, K. (2004). METEOR-S: Web
service annotation framework. Proceedings of the International World Wide Web
(WWW), 553-562.

73. Pinto, H. S., and Martins, J. P. (2004). Ontologies: How Can They Be Built?
Knowledge and Information Systems, 6(4), 441-464.

74. Pisanelli, D. M., Gangemi, A., and Steve, G. (1998). An Ontological Analysis of
the UMLS Metathesaurus. Journal of American Medical Informatics Association, 5,
810-814.

159

75. Princeton University, Princeton, Cognitive Science Laboratory (2006). WordNet
2.1 Database Statistics. Retrieved June 13, 2006, from
http://wordnet.princeton.edu/man/wnstats.7WN

76. Princeton University, Princeton, Cognitive Science Laboratory (2005). WordNet
(Version 2.0) [Computer program]. Retrieved June 13, 2006, from
http://wordnet.princeton.edu/oldversions

77. Raghavan, S., and Garcia-Molina, H. (2001). Crawling the Hidden Web. In
Proceedings of the 27th International Conference on Very Large Data Bases, 29-138.

78. Roitman, H., and Gal, A. (2006). OntoBuilder: Fully Automatic Extraction and
Consolidation of Ontologies from Web Sources Using Sequence Semantics. In
Proceedings of International Conference on Extending Database Technology (EDBT)
Workshops, 573-576.

79. Sabou, M., Wroe, C., Goble, C. and Mishne, G. (2005). Learning domain
ontologies for web service descriptions: an experiment in bioinformatics. In
Proceedings of the International World Wide Web (WWW), 190-198

80. Seta, K., Ikeda, M., Kakusho, 0., Mizoguchi, R. (1997). Capturing a Conceptual
Model for End-User Programming: Task Ontology As a Static User Model. In
Proceedings of the Sixth International Conference on User Modeling (UM'97), Chia
Laguna, Sardinia, Italy, 203-214.

81. Singh, M. P. (2002). Deep Web structure. IEEE Internet Computing, 6(5), 4-5.

82. Smith, B.C. (1982). Reflection and Semantics in a Procedural Language, PhD
thesis. Massachusetts Institute of Technology. MIT-LCS-272:154, Retrieved from
MIT Web site: http://w	 .1cs.mitedu/publications/specpub.php?id=840

83. Staab, S. and Maedche, A. (2000). Axioms are objects too - Ontology
engineering beyond the modeling of concepts and relations, Research report 399,
University of Karlsruhe, Institute AIFB.

84. Stanford Medical Informatics (2007a). Protégé 3.2.5 [Computer program API],
Retrieved May, 2007, from http://protege.stanford.edu/doc/pdk/api/index.html

85. Stanford Medical Informatics (2007b). Protégé - OWL 3.2.1 [Computer program
API], Retrieved May, 2007, from http://protege.stanford.edu/download/release-
javadoc-owl/.

86. Stanford Center for Biomedical Informatics Research (2007). Protégé 3.3.1
[Computer Program], from http://protege.stanford.edu/download/registered.html.

87.	 Wache, H., Vögele, T., Visser, U., Stuckenschmidt, H., Schuster, G., Neumann,
H., Hübner, S. (2001). Ontology-Based Integration of Information - A Survey of
Existing Approaches. In Proceedings of the International Joint Conference on

160

Artificial Intelligence (IJCAI-01) Workshop: Ontologies and Information Sharing,
108-117.

88. Weber, N. and Buitelaar, P. (2006). Web-based Ontology Learning with
ISOLDE. In Proceedings of ISWC2006 Workshop on Web Content Mining with
Human Language Technologies, Retrieved from
http://www2.dfki.de/~paulb/ISWC06.WebContentMining.pdf.

89. World Wide Web Consortium (1999) HTML 4.01 Specification Retrieved May
2006 from W3C. Technical Reports and Publications Recommendation Web site:
http://www.w3.org/TR/htm14/.

90. World Wide Web Consortium (2004). OWL Web Ontology Language
Overview, Retrieved May, 2007 from http://www.w3.org/TR/owl-features/.

91. UC Berkeley (2006). Invisible or Deep Web: What it is, Why it exists, How to
find it, and Its inherent ambiguity, Retrieved from UC Berkeley Library Web site:
http://www.lib.berkeley.edu/TeachingLib/Guides/Internet/InvisibleWeb.html.

92. University of California, Los Angeles, Academic Technology Services (2006).
SAS Annotated Output. Retrieved June 16, 2006, from
http://www.ats.ucla.edu/stat/sas/output/ttest.htm

93. U. S. National Library of Medicine (2003). Fact Sheets: UMLS Metathesaurus.
Retrieved August 08, 2006 from
http://www.nlm.nih.gov/archive/20031120/pubs/factsheets/umlsmeta.html.

94. U. S. National Library of Medicine (2005). UMLSKS API [Computer
program]. Retrieved April 21, 2006 from
http://umlsks.nlm.nih.gov/kss/servlet/Turbine/template/docs,api,apiDownload.vm;
kss3#download.

95. U. S. National Library of Medicine (2006). About the UMLS® Resources.
Retrieved from Unified Medical Language System Web site:
http://www.nlm.nih.gov/research/umls/about_umls.html.

96. U. S. National Library of Medicine (2007a). UMLS Knowledge Sources.
Retrieved from Unified Medical Language System Web site:
http://www.nlm.nih.gov/research/umls/umlsdoc.html.

97. U.S. National Library of Medicine (2007b) UMLS® Release Notes and
Problems (Bugs) 2007AC - Current UMLS Release. Retrieved from
http://www.nlm.nih.gov/research/umls/release_notes.html.

98.	 Varelas, G., Voutsakis, E., Raftopoulou, P., Petrakis, E. G. M., and Milios, E. E.
(Nov. 2005). Semantic similarity methods in WordNet and their application to
information retrieval on the web. In Proceedings of the 7th annual ACM international
workshop on Web information and data management, 10-16.

161

99. Wu, W., Doan, A., Yu, C., and Meng, W. (2005). Bootstrapping Domain
Ontology for Semantic Web Services from Source Web Sites. In Proceedings of the
VLDB workshop on Technologies for E-Services, 11-12.

100. Wu, W., Doan, A., Yu, C. (2005). Merging Interface Schemas on the Deep Web
via Clustering Aggregation. In Proceedings of the Fifth IEEE International
Conference on Data Mining, 801-804.

101. Zeng, Q. T., Tse, T., Crowell, J., Divita, G., Roth, L. and Browne, A. C. (2005)
Identifying Consumer-Friendly Display (CFD) Names for Health Concepts, In
Proceedings of the AMIA Annual Symposium, 859-863.

	Ontology learning for the semantic deep web
	Recommended Citation

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Approval Page
	Biographical Sketch
	Acknowledgment Page
	Table of Contents (1 of 3)
	Table of Contents (2 of 3)
	Table of Contents (3 of 3)
	Chapter 1: Introduction

	Chapter 2: Automatic Attribute Extraction From The Deep Web

	Chapter 3: Automatic Generation of Ontology From The Deep Web

	Chapter 4: Instance Extraction For Ontology-Based Deep Web Search

	Chapter 5: Ontology Evaluation:Naturalness Perspective

	Chapter 6: Summary And Contributions

	Chapter 7: Future Work

	Appendix: Partial Lists of Concept Pairs And Semantic Type Relations

	References

	List of Tables (1 of 2)
	List of Tables (2 of 2)

	List of Figures (1 of 2)
	List of Figures (2 of 2)

