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ABSTRACT

DIRECT SIMULATIONS OF CELLS MOTIONS
AND DEFORMATIONS IN FLOW

by
Quan Jin

Direct numerical simulations (DNS) are used to study the motions and deformations of

blood cells, especially leukocytes, in pressure driven flows in parallel plate channels

with both smooth and uneven walls under adhesion force between the leukocytes and

the channel wall.

Leukocytes are represented by two composite fluid models. The first model is the

compound-drop model in which the cytoplasm and the nucleus are modeled as fluids,

and the second one is the drop-rigid-particle model in which the cytoplasm is modeled

as a fluid and the nucleus as a rigid particle. The adhesion force is computed using two

adhesion force models. In the first model, the adhesion force is given by a potential,

and in the second model it is given by Dembo's kinetic adhesion model. The numerical

code is based on the finite element method and the level-set technique is used to track

the cell membrane position.

In the absence of the adhesion force, in a pressure driven flow the leukocyte

moves away from the wall to an equilibrium location. In presence of the adhesion force,

provided it is located within the range of the force, the leukocyte is attracted to the layer

of endothelial cells and it flattens under the action of hydrodynamic forces. It is found

that for the normal parameter values and flow rates the adhesive force given by the

kinetic model is too small to capture the leukocyte. The time at which all bonds are

broken and the leukocyte moves away from the wall increases when the capillary



number is increased, and decreases with increasing Reynolds number. The former

suggests that the adhesion tendency of a leukocyte increases as its cortical tension is

reduced. The distance traveled by a leukocyte before all bonds are broken increases

with the Reynolds and capillary numbers. The rolling velocity of the leukocyte near an

uneven wall varies in the sense that it appears to slip when its lower surface is in the

gap between the spheres and stick when it comes close to the spheres' surfaces, which

is in qualitative agreement with the experimental data.
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NOMENCLATURE

c — Polymer concentration in term of the zero shear viscosity

D — Symmetric part of velocity gradient, m/s 2

fb — Single bond force, Ν

Fb — Total adhesion force per unit area, N/m2

kro — Initial reverse reaction rate, 1/s

kr — Reverse reaction rate, 1/s

kyo — Initial forward reaction rate, m2/s

kf — Forward reaction rate, m2/s

kb — Boltzman constant, N.ni/K
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n — Outer normal vector

Nb — Bond density, 1/m2

Ν,0 — Initial ligands density per unit area, 1/m2

Νrο — Initial receptors density on the cell membrane per unit area, 1/m 2

p — Pressure, N/m2

R — Radius of the leukocyte, m

✓ — Radius of nucleus, m

— Characteristic time, s

u — Velocity vector, m/s

W(x)— Adhesion potential, N.m

w — Adhesion strength, N.m



χm — Bond length, m

x' — Dimensionless bond stretching length

x — Dimensionless distance from the channel wall

γιο - Cortical tension, Ν/m

y12 - Interfacial tension, Ν/m

p — Density, kg/m3

no — Plasma viscosity, Pa.s

ηι — Viscosity of cytoplasm, Pa.s

η2 — viscosity of nucleus (composite drop model), Pa.s

λr — relaxation time, s

λ — Equilibrium bond length, m

σ — Spring constant, Ν/m

σts — Transition spring constant, Ν/m

ψ — Distance from the interface



CHAPTER 1

INTRODUCTION

1.1 Objective

A white blood cell (WBC), also called leukocyte, is a multicomponent system composed

of a membrane, cytoplasm, and nucleus. Although the white blood cells constitute only a

small fraction of blood cells, they play a very important role in the body's immune

response. They do so either by fighting pathogens, viruses, or other cells (cancer cells for

example), or by reaching the site of infection through the transendothelial migration. The

endothelial monolayer itself is a part of the vessel wall. Endothelial cells are maintained

in close contact with each other by a complex network of transmembrane adhesion

proteins, especially cadherins. Diapedesis is the way leukocytes migrate through the

endothelial junctions under the combined effects of signalisation, changes in the

rheological properties and the cell-cell adhesion properties. As part of the migration

process, circulating leukocytes must first adhere to the luminal surface of the

endothelium. The interaction of leukocytes with the endothelial monolayer involves the

sequential engagement of leukocytes and endothelial adhesion molecules. Early

interactions are mediated by selectins and their carbohydrate ligands, which mediates

leukocyte rolling. Then, leukocyte integrins and their ligands, including

immunoglobulinlike intercellular adhesion molecules, mediate firm leukocyte adhesion.

Inflammatory mediators like chemokines play a role in this firm adhesion by activating

integrins on the leukocyte cell surface. Spreading follows, due to the ability of the cells to

deform. Finally, after having reached the endothelial junctions, leukocytes undergo large

1
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deformations to cross the interendothelial junctions, i.e. they deform rapidly, migrate

through the endothelial monolayer (this process also called diapedesis) and reach the

interstitial tissue. This series of events is illustrated in Figure 1.1.

Figure 1.1 The different steps corresponding to the leukocyte extravasation.

The goal of this study is focused on the first phase of the above process, i.e., the

study of the motion and deformation of leukocytes in small vessels and the investigation

of conditions under which leukocytes can attach to the vessel wall and do not drift away.

The leukocyte is assumed to be close to the endothelium layer. For this, the leukocyte is

assumed to be already close to the endothelium. The factors, that cause leukocytes to get

close to the endothelium in the first place, such as collisions with other cells, will not be

studied. This study should also be helpful in improving the understanding of how

cancerous cells are transported in the blood stream; in particular the effect of the flow

rate, vessel size, as well as the influence of the transmural pressure might play a crucial

role in cell-cell interactions which, in turn, is critical for the fate of these cancer cells

(Burdick 2003). Indeed, it has been observed that the mechanisms by which cancer cells

(Burdick 2003, Tbzeren 1995, Haier 2001) migrate to and through the endothelium to
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reach different tissues are similar to the ones used by leukocytes, although the adhesion

molecules involved for the former are not all known yet.

It is necessary to understand the nature of blood where leukocytes are suspended

and of the blood cells.

1.2 Background

Blood is an essential bio-fluid for life. The main function of the blood in circulation is to

carry oxygen and nutrients through the body and to remove carbon dioxide and other

waste products. Since other substances, such as hormones, white blood cells, and

platelets, to sites where they are needed are also transported in blood. Blood is important

also for hemostasis to prevent blood loss when the vascular system is damaged, as well as

immune defense.

Essentially, blood is a suspension of blood cells, such as erythrocytes, leukocytes,

platelets, in platelets in blood plasma as shown in Figure 1.2. Plasma is a mixture of

water, sugar, fat, protein, and potassium and calcium salts. It also contains many

chemicals that help form blood the clots necessary to stop bleeding. More than 92% of

plasma is water. The viscosity of plasma alone is about 1.5 times that of water and it can

be considered as a Newtonian fluid. Most of the cells in the field are mature Red Blood

Cells (RBC's or erythrocytes). These cells are in a shape of biconcave disk about 7-8 μ m

in diameter. Normal concentration of RBC's is about 4.5 to 5 million RBC's / mm 3 . The

large cells in nearly double the size of the RBC's (12 —15 μm), are one type of leukocyte,

which are called neutrophils. Note that neutrophil contains segmented nucleus (3-5

segments is common) and the pale "pink" cytoplasm with very small "neutral" granules.
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The normal concentration of WBC's in the peripherally circulating blood is about 5,000 -

10,000 WBC's / mm3 and of that total, neutrophils will be about 55-65%.

The small isolated "dots" are platelets, also called thrombocytes. One microliter

of normal human blood contains 300 Thousand platelets.

The understanding of the structure and dynamics of single cell is a prerequisite for

the understanding of the rheology of blood.

Figure 1.2 Blood as a suspension of blood cells.

A red blood cell (RBC), or erythrocyte, is a system of an elastic membrane

containing a cytoplasm. It has no internal structure and lacks a nucleus. It consists of a

Newtonian hemoglobin solution encapsulated by a bilayer membrane and a thin protein

skeleton (Evans & Skalak 1980). The laminated membranes are responsible for highly

non-Newtonian viscoelastic behavior of cells.

The role of Red blood cells (RBC) is to pick up oxygen when blood passes

through the lungs and release it to the cells in the body. Each RBC consists of an elastic

membrane and cytoplasm. Normal human RBC's in quiescent plasma assume a
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biconcave discoid shape with average diameter of 8 μm, thickness of 2 μm, surface area

of 140 μm2 , and volume of 90 μm3 (Fung and Tong 1968, Evans and Fung 1972).

Figure 1.3 (a) Unstressed shape of red blood cell. (b) Average normal shape of red blood

cell measured.

Source: Fung and Tong (1968); Evans and Fung (1972).

The surface area to volume ratio of the normal cell is 40% greater than that of a

sphere with the same volume. Excess surface area not only improves the RBC's

efficiency in loading and unloading solutions, but also allows it to deform easily. Shear

forces can easily deform the membrane of the red blood cell while maintaining its local

area nearly unchanged. This is due to the structure of the membrane, which is composed

of a liquid bilayer, supported by a scaffolding of cytoskeletal proteins. Deformability

affects RBC physiological function of oxygen transport and determines the

hydrodynamic properties of whole blood.

Platelets are granular non-nucleated oval disks of fragments of cytoplasm with

diameter around 2.5 μm. A platelet consists of two parts, an outer ground susbstance or

shell occupying the greater part of the platelet and an inner part (core fluid) that contains
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granules. Platelets play a major role in stop bleeding by accumulating at the injury sites

and sticking together to form a clot that seals the cut in the blood vessels.

There are five different types of leukocytes: neutrophils (40% - 75% of all

leukocytes in blood), lymphocytes (20% - 45%), monocytes (2% - 10%), eosinophils (1%

- 6%), and basophils (less than 1%). Neutrophils, eosinophils, and basophils are known as

granulocytes due to the presence of granules in their cytoplasm. Monocytes and

lymphocytes are known as mononuclear cells as shown in Figure 1.4.

Figure 1.4 Different types of leukocytes.

A leukocyte is a complex system consisting of a membrane, which is folded or

wrinkled under normal condition, cytoplasm, and nucleus. Leukocytes play a key role in

the protecting the body from diseases causing by bacteria, virus, or parasites. To model

the deformation and motion of leukocyte in blood flows, the rheological models of

leukocyte are developed in Chapter 3.



CHAPTER 2

REVIEW OF PREVIOUS STUDIES ON DROPS DYNAMICS IN FLOWS

2.1 Free-Boundary Problems

The problems that concern with the motion of two or more contiguous immiscible fluids

that are separated by an interface are known as free-boundary problems. Since the

structure of a leukocyte is similar to that of a drop, the study of motions and deformations

of leukocyte in flows is one application of free-boundary theories on blood cells

dynamics. It is helpful to review the previous studies on deformation and migration of

drops and capsules in flows.

2.2 Studies of Drops and Cells Deformation

In the study of drops and cells deformation in flows, one of the greatest difficulties is to

track an unknown free boundary, namely the interface in the domain of interest. The

interface shape determines the surface tension force and must be determined as a part of

the solution. This phenomenon was revealed in many experimental observations. To

physically model and solve this type of problems, analytical approaches were used firstly,

but they are limited by the complexity of the governing equations. Recently, most of the

free boundary problems are solved by using numerical methods, including finite element

method, boundary element method, immersed boundary method These methods will be

reviewed in the following sections. In this dissertation, level-set method combined with

finite element method was used. More details of the computational approach adopted in

this dissertation will be described in Chapterr 4.

7
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2.2.1 Small Deformation Theories

The studies of neutrally buoyant drops in viscous shear flows were initiated by the early

theoretical and experimental work of Taylor in 1932. In the limit of zero capillary

number and infinite viscosity ratio, they obtained the internal and external velocity fields,

and used these results to obtain the deformation and orientation of the drop to the first

order in capillary number. Later studies of Cox (1969), Acrivos (1970, 1973), and Choi

(2000) extended the theory to higher order in capillary number, and also when the base

flow is transient.

Asymptotic theories describing small deformations of elastic capsules were

developed by Barthes-Biesel and coworkers (Barthes-Biesel 1980, Barthes-Biesel &

Rallison 1981, Barthes-Biesel & Sgaier 1985). The small deformations of capsules with

spherical unstressed shapes enclosed by elastic or viscoelastic membranes were studied.

The particle consists of a thin elastic spherical membrane enclosing an incompressible

Newtonian viscous fluid. In particular, the nonlinear theory of large deformation of

membrane shells was expanded up to second-order terms of ε . The motions of the

internal liquid and of the suspending fluid are both described by Stokes equations.

The nondimensional equations governing incompressible Navier-Stokes flow

inside and outside a capsule were given by

(2.1)

(2.2)

(2.3)

(2.4)
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The following scalings are used to nondimensionalize time, length, velocity,

pressure, and force:

(2.5)

where Lr and t, are the chosen reference length and time, respectively, and η is the fluid

viscosity.

On the deformed surface of the membrane, continuity of velocities was imposed

together with dynamic equilibrium of viscous and elastic forces.

Since this problem is highly nonlinear, a regular perturbation solution was sought

in the limiting case where the deviation from sphericity is small. Α small parameter

Σ (the Capillary number) was defined as:

ε = μGd/Εh, ε «1. 	 (2.6)

The deformation and orientation of the capsule were obtained explicitly in terms

of the magnitude of the shear rate, the elastic coefficients of the membrane, the ratio of

internal to external viscosities. The results in Figure 2.1 showed that the very viscous

capsules were tilted towards the streamlines, whereas the less viscous particles were

oriented at nearly 45 to the streamlines.

(a)	 (b)

Figure 2.1 (a). Linear; and (b) nonlinear small deformation, the dotted curves are initial
shapes.
Source: Barthes-Biesel (1980)
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The model also predicted the tank-treading motion of the membrane around the

liquid contents as the consequence of a solid-body rotation superimposed upon a constant

elastic deformation. Brunn (1983) extended these results to droplets enclosed by an

elastic membrane with finite thickness. As to investigate the effect of the viscoelastic

properties of the membrane on the deformation, the results of analytical work showed

that with a purely viscous membrane, i.e., with infinite relaxation time, the capsule

deforms into an ellipsoid and has continuous flipping motion, as shown in Figure 2.2.

Figure 2.2 Continuous flipping motion of a viscoelastic membrane.
Source: Schmid-Schonbein and Wells (1969) and Goldsmith (1971).

The theoretical results by Schmid-Schonbein and Wells (1969) and Goldsmith

(1971) in Figure 2.2 showed that when the membrane relaxation time was of the same

order as the shear time, the particle reached a steady ellipsoidal shape which was oriented

with respect to streamlines at an angle that varied between 45 and 0, and decreased with

increasing shear rates. The deformation reaches a maximum value, which is consistent

with the experimental observations of RBCs by Goldsmith and Marlow (1972), Keller &

Skalak (1982), and Fischer (1978) as shown in Figure 2.3.
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Figure2.3 Tank treading of a RBC.
Source: Τ. M. Fischer (1978).

This theory leads to the derivation of an asymptotic development of the large

deformation theory of membrane shells. But the choice of an initial spherical geometry

limits the applicability of this model to RBCs. For a diskoidal cell, the membrane

incompressibility does not prevent large deformations, but determines the type of tank-

treading motion. This theory is also limited by the small deformation assumption.

2.2.2 Experimental Studies of Drops and Cells Deformation.

Various researchers have published experimental results on the deformation and breakup

drops undergoing extensional deformation. In extensional flows: the experiments were

run using the four-roll mill. A detailed description of the four-roll mill and its operation

was given by Gently & Leal (1986a, b). The strain rate ranges between 0.05 s -1 to 2s -1 .

The maximum deformation rate that can be obtained while keeping the capsules

stationary is about 1 s -1 . At shear rates above 2 s -1 , the capsule oscillates about the

stagnation point until it moves away from the central part of the flow. In shear flows, the

studies of capsule motion were carried out in Coutte cell consisting of two counter-
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rotating concentric cylinders. With the motors operating in the half-step mode, the range

of shear rates can be obtained is 0.05 s-1 to 45 s-1 . The values of the viscosity ratio λ

range from 0.004 to 0.08.

The shape and orientation of the capsule were measured. Compared the results

with the predictions of small-deformation theory of Barthes-Biesel (1980), the data

suggested that the membrane is viscoelastic, and the comparisons yielded values of the

membrane elastic modulus and the membrane viscosity. These values also agreed well

with the values deduced from other independent experiments.

Milliken and Leal (1991) studied viscoelastic drops in linear two-dimensional

flows over a broad range of viscosity ratio. Elmendrop and Maalcke (1985) observed a

linear relationship between drop deformation and shear rate for shear rates up to 6s 1 ,

which correspond for the fluid system used to capillary number up to 1.10. Levitt and

Macosko (1996) observed that the steady deformed drop looked like a spheroid with

slightly sharper edges at small shear rate values, and like a cylinder with highly pointed

ends when the shear rate was increased up to a value below the critical shear rate.

K. S. Chang & Olbricht (1993a, b) did the experimental studies on the deformation

and breakup of a synthetic capsule in steady and unsteady simple shear flow or

extensional flow. The capsule is liquid drop surrounded by a thin polymeric membrane.

The diameter of the capsules ranges between 2 and 4 mm, and can be measured

to ±0.05mm . Most capsules in this study have the membrane thickness of 7 μm . The

capsule membrane was formed by an interfacial polymerization reaction on the surface of

a liquid drop suspended in an immiscible liquid. Polydimethylsiloxane (silicon oil) was

chosen as the drop liquid, which is Newtonian over a large range of shear rate and its
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viscosity can be adjusted by mixing readily available grades of oil. The out-phase liquid

is deionized water.

In shear flows when the flow-induced deformation becomes sufficiently large, the

capsules break. Breakup begins at points near the principal strain axis of the undisturbed

flow. It is correlated with local thinning of the membrane. In Extensional flow, for

sufficiently large strain rates, the membrane exhibits strain hardening and a permanent

change in its structure, both of which are reflected in the shape of the capsule.

The current understanding of the behavior of red blood cells in flows is greatly

due to experimental observations of cells' deformation in unidirectional simple shear

flow. Schmid-Schonbein and Wells (1969) and Goldsmith (1971) were the first to

demonstrate that red blood cells in simple shear flow exhibit two types of motion:

rotation like rigid particles at low shear rates, and a fluid drop-like motion and

deformation at higher shear rates. In the latter type of motion the dimples of biconcave

disk disappear and the cell assumes the shape of a prolate ellipsoid, while the membrane

rotates like a tank tread around the cytoplasmic fluid. Subsequent research has shown that

the ratio of viscosities between the suspending and cytoplasmic fluid may play an

important role in demarcating the prevailing type of behavior, rotation versus

deformation along a stationary axis. Membrane viscosity plays an important role in

studies of tank-treading cells.

An essay of erythrocyte deformability has been devised employing an instrument

called rheoscope. This is basically a counter-rotating cone-and-plate viscometer which

subjects isolated erythrocytes to graded levels of fluid shear and measure the resulting

deformation and motions, proposed by Sutera (1985). P.Mazeron (1997) made a Small-
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Angle Light Scattering (SALS) study about the deformation of RBC under shear. The

deformed cells were assumed to be three axis ellipsoids of constant volume for all shear

stresses. SALS image of RBC under increasing shear stress in a Couette flow were

obtained and accurate measurements of the angular positions of the principal axis have

been carried out.

2.2.3 Numerical Approaches.

Choose an interface tracking method is the primary step to investigate this free-boundary

problem numerically. There are several numerical approaches for tracking the interface

between two immiscible liquids, e.g., the surface tracking method, volume of fluid

method, the mapping method and the level set method. These methods have been used

extensively to simulate viscous and inviscid two-phase flows.

2.2.3.1 Series-Expansion Technique. Large deformations of two-dimensional

cylindrical capsules were studied by Rao (1994) by extending the perturbation equations

to include terms up to sixth order of the perturbation (dimensionless shear-rate) parameter

that is proportional to the shear rate. In order to handle the massive algebraic

manipulations in this approach a symbolic manipulation program (REDUCE 3.1, Rand

Corporation, Santa Monica, CA, 1983) is used, which both formulated the problems for

the higher-order terms and solve them. Moderately large deformations (aspect ratios

approaching 3) fall within the range of the analysis.

The solution for the flow field around an isolated capsule was used to calculate

the apparent viscosity of a dilute suspension of flexible cylindrical particles, which
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yielded the paradoxical result that the apparent viscosity decreases as the internal

viscosity increases. This analysis is not valid for sufficiently large viscosity ratios.

2.2.3.2 Boundary Element Method. 	 More general models of capsule deformation

have been based on the boundary element method. By means of a boundary- integral

technique (X.Z.Li & D. Barthes-Biesel 1988), it is possible to numerically determine the

motion and large deformation of an axisymmetric capsule in an elongational flow.

The undisturbed velocity field was assumed to be a purely elongational flow

given in the fixed reference frame by v ι = 2Χ 1 , ν2 _ -χ 2 V = -Χ 3 . One advantage of using

this method was that the geometric dimension of the problem was reduced by one, and

the Stokes equations of the problem are reformulated as an integral equation which is

solved on the interface. The dimension of the problem was thus reduced. Assuming that

the particles Reynolds number is very small, the fluid motion may be described by the

Stoke's equations. The two main parameters on which the deformation depends on are

the capillary number which represents the ratio of viscous to elastic forces, and the ratio

of the interior to exterior viscosity.

The capsule is surrounded by an infinitely thin elastic membrane having a

Mooney-Rivlin constitutive behavior. The membrane which is very thin sheet of an

isotropic elastic solid obeys a Mooney constitutive law. The influence of the initial

geometry of the particle (axisymmetric: spherical, oblate, and prolate shapes) as well as

that of the constitutive behavior of the membrane was studied.

A critical value of the non-dimensional shear rate (the capillary number) was

found, beyond which the capsule continuously deforms and no steady state can be
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reached. This is interpreted as the outset of burst. They predicted the burst of a capsule

suspended in shear flow.

Pozrikidis (1995) used the boundary element method to obtain the time-dependent

deformation of a capsule (for spherical and ellipsoidal) with an elastic membrane

(quadratic approximation of a neo-Hookean membrane strain energy function) in simple

shear flow in the regime of finite deformations. In the mathematical model they regarded

the interface as a two-dimensional elastic medium. The velocity is required to be

continuous across the interface, but the hydrodynamic surface force or traction undergoes

a discontinuity Δf = σ"' n - σ` 2 • n that is balanced by the interfacial or membrane tensions.

The boundary integral formulation for Stokes flow provided an integral equation for the

velocity at the interface in terms of Δf .

(2.7)

where υ = (ky,0,0) is the incident shear flow, the point x 0  is located on the interface which

is denoted by S, /3 = (λ -1) /(λ + 1) , and

(2.8)

They obtained a critical deformation and shear rate, beyond which the rupture of

the membrane would happen and no steady-state flow can be obtained. He also

considered the rheology of dilute suspensions. Α comparison made with the observations

of K.S.Chang (1993) show good agreement.
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The calculations of Pozrikidis (1995) for large shear rates were limited to

relatively short time due to numerical problem, which was not enough to obtain steady

state or go into the long time behavior.

Zhou and Pozrikidis (1995) used the boundary element method with interfacial

tension based on surface tension with an incompressible constraint and neglecting the

viscoelastic behavior as a model of the RBC membrane. Local area conservation was

enforced through a kinematic condition which does not account for the extensional

properties of the membrane.

Figure 2.4 Orientation and deformation of RBC in shear flows

Source: Porikidis (1995)

The boundary element method has significantly improved to simulate capsules

with hyperelastic membranes, and was able to solve moderate to large deformations of

spherical and oblate shapes. Even with the improvements in the numerical method,

numerical instability resulting from degradation of the grid and the neglect of bending

resistance are problematic under conditions of high and low deformations, respectively.
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The development of adaptive grid regeneration using the advancing-front method is the

topic of a current investigation.

Y. Navot (1998) found out that the possibility of the steady-state flows were

restricted by symmetry by means of analytical considerations. For a single spherically

symmetric membrane, the steady-state shape exists and it depends on the shear stress by

his numerical simulations. While for nonspherically symmetric membranes, there is no

steady-state shape in general, but the changes of the shape can be periodic. This is an

alternative explanation for the experimental results by Chang & Olbricht (1993). A dilute

system of elastic membranes immersed in a liquid was studied, and he obtained a shear

thinning behavior when the shear rate increases.

Pozrikidis (2001) studied the effect of membrane bending stiffness on the

deformation of capsules in simple shear flow. He offered an alternative formulation for

modeling the wall mechanics in Cartesian coordinates, relaxing the assumption of small

deformation. An important restriction is the requirement that the resting shape has

uniform curvature. For arbitrary resting shapes, the formulation in terms of surface

curvilinear coordinates implemented either directly by force and torque balances or

indirectly in terms of the principle of virtual displacements developed by Pedley and Heil

appears to be the only alternative.

2.2.3.3 Immersed Boundary Method. The immersed boundary method was

introduced by Peskin (1977) to simlulate blood flow in the heart. In C.D. Eggleton &

Popel (1998)'s work, they used the immersed boundary method to simulate capsule

deformation in which internal and external properties are equal, thus representing the

flow of red blood cell ghosts. Unlike the BEM, fluid velocities are calculated in the
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interior and exterior fluids at every time step. The methodology has been developed by

Unverdi & Tryggvason (1992) for tracking the interface and accounting for the changes

in fluid properties. Front tracking requires the solution of Poisson's equation on the entire

fluid grid at every time step, thus it is more costly to implement. Haj -Hariri (1997)

developed an adaptive grid refinement scheme in combination with a front tracking

method to study thermocapillary motion of drops where the ratio of internal to external

fluid viscosity ranged from 10 -3 to 10 1 .

The method has been validated for small deformations of an initially spherical

capsule in simple shear flow for both neo-Hookean and the Evans-Skalak membrane

models.

Evans and Skalak (1980) have developed a strain energy function for the RBC

membrane which is fit to the deformation measurements for human RBCs. The Evans-

Skalak membrane model that has been commonly used as the model for the RBC

membrane is characterized by a dilation modulus that determines the resistance to local

changes in area and an extensional modulus that determines the resistance to shearing

stresses. Viscoelastic properties of the RBC membrane are not included in their model.

(2.9)

where B and C are material property

constants whose values are deduced from experimental observations, or,

(2.10)
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where λ,, λ2 are the principal strains using local in-plane curvilinear coordinates. The

deformation is conveniently defined in terms of the principal extension ratio λ,,λ2 given

by,

(2.11)

The membrane which is very thin sheet of an isotropic elastic solid obeys a

Mooney constitutive law.

As to initially oblate spheroidal capsules, it was showed that the RBC membrane

exhibits asymptotic behavior as the ratio of the dilation modulus to the extensional

modulus is increased, and the local area conservation was obtained.

To simulate more complex shapes, the bending stiffness must be included.

Although the bending stiffness of the RBC is small, k c=10" 12 erg (Mohandas 1994), it is

necessary to smooth out the deformations and prevent buckling.

2.3 Lateral Migration of Drops and Particles

Blood flow is essentially a pressure driven flow. Besides the studies on the deformation

of liquid drops and cells in flow above, previous researches also found that in pressure

driven flows, drops or cells move in the direction which normal to the flow direction.

This phenomenon is called lateral migration. To study the lateral migration of leukocyte

in blood flows, it is helpful to review the previous studies on lateral migration of drops in

the pressure driven flows. In the following sections, experimental, analytical and

numerical studies on many types of liquid/solid particles and biological cells motion in

pressure driven flows will be reviewed.
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2.3.1 Experimental Studies

Goldsmith and Mason (1965) conducted experiments on migration of single rigid particle

and deformable drops in a pressure driven flow in a tube at near-zero Reynolds number.

They found that the axial migration of the drops was much appreciable than that of rigid

particles. They found that in a tube flow, at low particle Reynolds number, the viscosity

ratio λ = μ, / μo , plays an important role. Especially for λ = 10, the drop migrated towards

the wall, but for λ =50, the deformation was negligible, and there was no lateral

migration. At high Reynolds number, the steady position was found to be between the

wall and the centerline (r=1/2 R). The migration due to deformation can dominate that

due to inertia. It was observed that liquid drops with small viscosity ratio (0.0002-0.02)

migrated toward the tube axis in the flow of very low Reynolds number. Hiller and

Lowalewski (1987) carried out the experiments of dilute suspension of droplets in a plane

Poiseuille flow in the limit of creeping flow. They observed that for λ =0.1 the highest

drop number density was at the centerline of the channel, while for λ =1 this position is

somewhere between the wall and the center. Uijttewaal (1994) performed experiments

with blood cells in two-dimensional Poiseuille flows, erythrocytes exhibit inertia-induced

lateral migration at high Reynolds number and in a low viscosity medium. The migration

is towards the center of the channel.

2.3.2 Analytical Studies

A comprehensive analysis of the migration of drops was performed by Chan and Leal

(1979). They analytically studied the cross-stream migration of a single deformable drop

in both Poiseuille and simple shear flows. The direction and magnitude of the migration
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were calculated for various viscosity ratios of the two fluids. Their analysis assumes that

the viscosity ratio λ <0(1/Ca),  where Ca = μa  is the capillary number. They found that
σ

in Poiseulle flows, for 0.5< λ <10, the motion of a drop is towards the centerline of the

channel, while for all other values, the migration is toward the channel walls. The

accuracy of the theory was confirmed by the experimental data.

2.3.3 Numerical Work

Recently, some numerical simulations of this problem were carried out by Zhou and

Pozrikidis (1994), Couillette and Pozrikidis (1998) and Saeed and Tryggvason (2000).

Zhou and Pozrikidis (1994) studied the dilute suspension of drops in Poiseuille flows.

They found that drops with the same viscosity as the surrounding fluid migrate away

from the wall of the channel. While for a single drop with a viscosity ratio of 10, if it is

initially close to the centerline, it moves to the wall. But if it is initially close to the wall,

it migrates toward the centerline. The viscosity ratio of λ = 0.5 is the lower critical value

for which the direction of the migration changes. Their results generally agree with the

theoretical work of Chan and Leal (1979). Couillette and Pozrikidis (1998) studied an

may of large drops through a cylindrical tube. They assumed that the viscosity ratio as 1

and found that the drops migrate toward a position between the wall and the centerline.

This case is similar as blood cells in flow through capillaries. Saeed and Tryggvason

(2000) examined the dependence of drop migration on deformation, viscosity ratio, and

Reynolds number. Their results showed that in the limit of a small Reynolds number (<1),

for viscosity ratio 0.125, the drop moves toward the center of the channel, while for

viscosity ratio 1 it moves away from the center until it is halted by the wall repulsion.
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They also found that the deformation increases the migration rate. At high Reynolds

number (5.50), the drop either moves to an equilibrium position between the centerline

and the wall or it undergoes an oscillatory motion. They also found that the equilibrium

position of three-dimensional drop is closed to that is predicted in their two-dimensional

simulations.

In general, in the limit of small deformation, the migration depends on the

viscosity ratio. For large deformations, the equilibrium position is the interplay of

deformation and viscosity. At higher Reynolds numbers, Inertia force drives the drop

toward the wall. This position moves to the centerline of the channel as the viscosity ratio

decreases. At lower Reynolds numbers, deformation drives the drop migrate toward the

centerline of the channel. The higher Re is, the closer the equilibrium position is to the

wall of the channel.



CHAPTER 3

RHEOLOGICAL MODELS OF LEUKOCYTE

There are five different types of leukocytes: neutrophils, lymphocytes, monocytes,

eosinophils, and basophils. These different types of leykocytes are of different sizes, with

a nucleus or nuclei of different size and shape. Experimental observations however show

that .leukocytes behave similarly under comparable, relative deformation, but have

different surface tension and viscous properties. Most of geometric and mechanical

studies of leukocytes have focused on neutrophil because it is the most common

leukocyte in blood, but the results with minor modification are generally applicable to all

cells of leukocyte family. For the studies in this dissertation, neutrophil is selected to

represent leukocyte.

A leukocyte can be observed in a passive state, where it is spherical, or in an

active state, where it forms regions of polymerized protoplasm. The active state is

initiated during diapedesis. Circulating leukocytes are usually in the passive state as

shown in Figure 3.1, and this is the state concerned in this study.

Figure 3.1 Leukocytes in a passive state.

24
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The diameter of a circulating neutrophil is about 8 μm. A nucleus takes up about

21% of its volume. Neutrophil is enclosed by a ruffled membrane. The membrane surface

contains folds, projections, and microvillis, which serve to increase its area. Osmotic

swelling studies show that the apparent surface area of a neutrophil at lysis is 2.6 times of

that under isotonic conditions. With the excess membrane area, the neutrophil can

undergo large deformations. A tension in the cortical actin layer in the membrane keeps

the shape of the cell spherical. This tension of 0.035dyn/cm is constant during small and

moderate deformations of neutrophil, and thus the cell can be treated as a drop with a

constant surface tension, brought up by Evan and Veung (1989) and David Needham and

Hochmuth (1992).

The rheological behavior of leukocytes has been extensively studied recently

using the micropipette aspiration technique by Needham (1990) and Hochmuth (2000),

Evans and Kukan (1984), and also using AFM (Zhang 2004). These techniques are

combined with mathematical models where a leukocyte is modeled as a viscoelastic solid,

or a drop of a Newtonian or viscoelastic fluid (Schmid-Schonbein 1981, Dong 1988, Drury

1999). These models, however, do not adequately explain experimental observations. In

particular, experiments of Evans and Kukan (1984) showed that the neutrophil behaves

more like a fluid than a solid, i.e., its rheology cannot be described by a viscoelastic solid

model. Needham (1990) and Tran-Son-Tay (1991) reported that the response of

neutrophils is non-Newtonian, i.e., and thus the neutrophil cannot be modeled as a

Newtonian drop. Experimental data have shown that neutrophils or other cells can be

modeled using the Maxwell model (Thoumine 1997, Canetta 1993). Tsai, Waugh (1993)

found that the apparent viscosity of neutrophil's cytoplasm in cell micropipette aspiration



26

experiments was dependent on the aspiration pressure and proposed a power-law fluid

model to describe passive neutrophil's non-Newtonian behavior at large deformations.

Lomakina (2004) studied the dependence of neutrophil's mechanical behavior on contact

area between the cell and substrate. Spillmann (2004) found the adhesion probability

increased when increased the impingement force on the cell, since the force increased the

contact area and the bond formation between b2-integrins on neutrophils and

immobilized ICAM-1. Herrant (2005) found that the cortical tension increases with

cellular area increases, but this change is much delayed in phagocytosis compared with

aspiration. The recent numerical studies of Kan (1998), N'Dri (2005) and Khismatullin

and Truskey (2005), based on a compound drop model, have been capable of

qualitatively explaining the behavior of leukocytes observed in experiments. The

compound drop model of a leukocyte consists of a spherical nucleus containing a core

fluid which is surrounded by a thick layer of cytoplasm. The interfacial tensions act

between both the nucleus and the cytoplasm, and between the cytoplasm and the blood

plasma.

In this study leukocytes, which are the only blood cells with a nucleus, will be

represented using two different two-layered models in which the outer layer represents

the cytoplasm and the inner layer represents the nucleus. The two-layered models of

leukocytes used here approximately represent neutrophils, although for simplicity the

shape of the nucleus is assumed to be spherical.
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3.1 Drop — Rigid Particle Model

The first model is a drop-rigid particle structure shown in Figure 3.2. In this two-layer

structure, the outer layer is cytoplasm liquid that is Newtonian fluid, whereas the inner

layer is a rigid particle that represents the nucleus of leukocyte. The nucleus takes 21% of

the whole volume of the cell. Accordingly the thickness of the outer shell in this model is

2.7 μm. On the interface between cytoplasm and the surrounding fluid (plasma), a

cortical tension is applied. This tension is similar as surface tension and it is of

3.0 x 10 -5 kg / m 2 from the experimental data.

Figure 3.2 Drop-rigid particle model for leukocyte.

3.2 Composite Drop Model

The second model used for leukocyte is a composite drop model in Figure 3.3. In this

model there are inner and outer interfaces: the inner interface is between core fluid and

shell and the outer interface (leukocyte membrane) is between shell and extracellular

fluid. The cortical tensions of 3.0 x 10 -5 kg / m 2 are applied on both of the interfaces. The

outer layer liquid of this model is considered to be Newtonian fluid, whereas the nucleus

of the cell is regarded as a layer of viscoelastic liquid with different viscosity. These two

layers both have higher viscosities than the extracellular fluid that is plasma.



Figure 3.3 Composite-drop model for leukocyte.

Table 3.1 Parameters for the Two-Layered Leukocyte Models

Parameters Values used

Radius, R 6.5 μm

Shell Thickness, R-r 2.7 μm

Cortical tension, y 1 ο 3x 10 5 Ν/m

Interfacial tension, γ 12 3x10-5 Ν/m

Density, p 1000 kg/m3

Viscosity of cytoplasm, η ι 35.28 Pa.s

Plasma viscosity, n0 0.001 Pa.s

Viscosity ratio ηο / η 1 0.01

*Viscosity ratio ηι / η2 0.35

*Relaxation time of nucleus, λ r 0.1 S

*Viscosity of nucleus, η2 100.0 Pa.s

Parameters marked with a star apply to the composite-drop model only.
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The values of the parameters for the two previous models are given in Table 3.1.

For the compound-drop model, three additional parameters are needed to describe the

viscoelastic fluid in the nucleus. The other parameters are the same as for the drop-rigid

particle model. The densities of the plasma and leukocyte are assumed to be equal, and

thus the gravity plays no role in the dynamics.



CHAPTER 4

ADHESION MODELS

Under normal conditions, leukocytes are freely suspended in the blood stream. However,

upon inflammation, the leukocytes that come close to the endothelial layer, as a result of

the collisions with other blood cells and the expression or activation of adhesion

molecules, can be captured. This latter process can be modeled by an adhesion force Fb,

which acts between the leukocytes and the endothelium. This force has a very short range

and can result in the capture of leukocytes that come sufficiently close to the wall. Two

models that are used to represent the adhesion force are described next.

4.1 Adhesion Potential

In the first model, introduced by Sukumaran and Seifert (2001), the adhesion potential of

the leukocyte with a plane wall at x = 0 is assumed to be

(4.1)

where w is the adhesion strength and d o = 0.02R is a constant related to the cell radius

R. The adhesion force resulting from this potential then takes the expression

(4.1')

which becomes repulsive when x < d0, is zero for x = d0, and attractive for x> d0. The

force is maximal for  (5/3)^.5 d0. For the parameters used, the force is maximum when x =

—0.17 μm. Also, notice that such a force depends only on x, and is time independent.
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The reason for Sukumaran and Seifert to bring up this model and used it in cell

adhesion calculations is because, any model with a strongly repulsive short range

interaction and a weakly attractive long range interaction would be suitable. Numerically,

the model chosen is most suitable because it minimizes numerical problems associated

with sharply diverging forces at short length scales. In any specific physical situation, the

exact form of the potential depends nonuniversally on the concrete experimental

conditions. As long as this potential is repulsive on short length scales and attractive on

long length scales, with a single minimum in between, the results derived in the present

model will hold, at least qualitatively.

4.2 Kinetic Adhesion Model

For more accurate description of the adhesion force, the second adhesion model

considered is the kinetic model proposed by Demboa (1988). In this model, the adhesion

force between the cell membrane and the wall is assumed to arise due to the formation of

bonds between the specific adhesion molecules on the cell membrane and the receptors

on the substrate. A bond between the cell and the substrate is modeled as a Hookean

spring, and the corresponding force fb due to one bond is

(4.2)

where σ is the spring constant, xm is the bond length, 1mV is the unstressed microvillus

length, and λ is the equilibrium or unstretched bond length, and the total force per unit

surface area between the cell and the substrate is

(4.3)
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where Nb is the bond density per unit area. The bonds formation procedure is as

illustrated in Figure 4.1.

Figure 4.1 Bonds formation between the ligands on the leukocyte surface and receptors
on the substrate.

To understand how to obtain the value of this bond density Nb , it is necessary to

know the procedures of bonds formation between cells.

4.2.1 Rate Constants of Bonds Formation

The formation and breakage of cell-to-surface bonds at any position of the membrane is

taken to be a reversible stochastic chemical rate process in Bell's model (1978). This

process includes two steps for bond formation. In the first step, the receptors on the cell

membrane and receptors on the endothelial cell diffuse into sufficiently close distance,

and bonds form in the second step. This two-stepped procedure is described by following

equation,
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(4.4)

where d, d_ are the rates of formation and dissolution of the mediate complex ΑΒ from

reactants Α and B, which are the receptors and ligands for the concerned case, and r, r

are the rates of the formation and rupture of the bonds C from the complex ΑΒ.

In the current case, both reactants are attached on surfaces, separated by a distance RAΒ  ,

the encounter distance. It was shown in Dembo's (1978) model that,

A4.5)

(4.6)

where D(A) , DAB) are the diffusion constants for receptor motion on the membrane.

When the reaction reaches to an equilibrium status after some time, one can

assume that d[AB]
 = 0, then the overall reaction A4.4) becomes simplified as,

dt

(4.7)

The relationship between the densities of reactants A,B and product C would be,

and from balance of reaction one can obtain that,

(4.8)

(4.9)

so the density of mediate complex ΑΒ can be expressed as

[ΑΒ] = d+ [A] [B] + r [C] 
d_ + r+

For the first step of the diffusion, the density balance relationship is,

(4.10)

(4.11)
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By substitute equation (4.11) into (4.9), obtain the relationship between the

densities of reactants A,B and the final product C as,

(4.12)

the rate constants of overall reaction are,

(4.13)

For bonds formation between the leukocyte's receptors and ligands on the

endothelial cell, the reaction was described as a simple form in Dembo's model (1988) as,

A4.14)

where Nf and Νb are the surface density of free or unattached adhesion molecules and the

density of consummated membrane-to-surface bridges respectively. kr and k1 are the

reverse and forward reaction rate coefficients, which have the same physical meaning as

k+ , k_ in equation A4.13).

4.2.2 Analysis of the Kinetic Model for Bonds Formation

The time evolution of the bond density Nb is given by a kinetic equation which balances

the formation and dissociation of bonds:

(4.15)

where N,0 and Νro are the initial ligands and receptors densities on the surface of the cell

membrane.

The reverse and forward reaction rate coefficients kr and kf in A4.15) are given by:

(4.16)
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(4.17)

where kro and k are the equilibrium values of the reverse and forward reaction rates, σ

and σts are the spring and transition spring constants, kb is the Boltzmann constant, and T

is the temperature. The values of these parameters are listed in Table 4.1.

The equilibrium bond density Nbo reaches the maximum value Nb0m when the

bond stretching x =  - λ - 1mν is zero. For a given value of x m, the equilibrium bond

density Nb0 satisfies the following quadratic equation, which is deduced by setting the

time dependent term in A4.15) equal to zero

(4.18)

and which admits two solutions:

(4.19)

where D is the discriminant of the quadratic equation, i.e.

(4.20)

It is easy to see that the larger solution Ν1 leads to a value which is larger than the

number of available bonds, and thus is not physically meaningful. Therefore, the only

physical solution of (4.18) is Ν2, and so the equilibrium bond density is

(4.21)

For the parameter values listed in Table 4.1, the maximum value of the

equilibrium bond density, which is deduced by setting k} = kf0 and kr=kr0, is

ΝbΟm=1.5 X 10 14 m2 .
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Both the equilibrium bond density Nbo and the adhesion force vary with the

distance between the cell membrane and the wall. In Figure 4.2 the adhesion force and

bond density are shown as a function of the dimensionless bond

stretching x' = λ +
1
 .10 3 . Notice that when x' is approximately 48 the force reaches the
my

maximum possible value. In terms of the dimensional variables, the force is maximum

when Ixm — λ — 1mν = 14.9 nm, and the adhesion force is approximately zero when Ιx m — λ

1mνj is greater than 27.9 nm. Therefore, the force is present only over the narrow distance

range of 30 nm. Consequently, as discussed later, a cell can be captured only if it is

located within the above range.
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Table 4.1 Parameter Values for the Kinetic Adhesion Model

Parameters Range
Values used in 
calculations

Initial	 ligand	 density	 on	 the
surface, Ν 0 , m"2

2.0 - 5.0 x 10 14 141.5 x

Initial receptors density on the cell
membrane, Ν 0 , 

m-2 2.0 - 5.0X 10 ^4 ^43.0 X 10

Initial reverse reaction rate, k, 0 ,1/s 10-5 -10 10

Initial forward reaction rate, kf  ,
m2/s

1 s 	 1 010 - 	-10 - 10- Ι 0

Spring constant, σ , Ν/m 0.00001 - 0.01 2 X  10-4

Transition	 spring	 constant, 	 σ,

N/m -0.005 - 0.0095 104

Unstressed microvillus length, mν,
m

3 X 10-i 3x 10^

Equilibrium bond length, λ , m 10-8 ~ 	10 -' 10-8

Thermal energy, kbT, 1V m 3.8 — 4.3X 10 -21 4.28x 10-21
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Figure 4.2 The adhesion force and the equilibrium bond density are shown as functions,
of the dimensionless bond stretching x.

Figure 4.3 The bond density as a function of time when at t=0, xm is suddenly increased
from Aλ + lmv) to 1.01Aλ + lmv). The new equilibrium value is approximately reached at
t=7x 10 -6 s.
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Next consider the time evolution of Νb when χm is suddenly increased from Aλ +

lmv) at t=0, to 1.01(λ + 1m,,), which causes the bonds to break and the bond density to

evolve to a new equilibrium value (see Figure 4.3). The bond density Νb in this case

decays with time from Nb0m to a smaller value. The objective here is to determine the

characteristic time over which the bond density evolves. This is relevant to the fluid

dynamics problem because in a flow situation the distance between the cell wall and the

endothelial monolayer changes with time. Clearly, if this characteristic time over which

the new equilibrium value is reached is much smaller than the flow time scale, it is

appropriate to assume in the fluid dynamics problem that the bond density is given by the

steady solution of A4.15).

By integrating equation (4.15) analytically, it is easy to show that

(4.22)

where N1 and N2 are the two roots defined in (4.19) and D is given by (4.20)

=

 α — N2 <0, and a is the initial bond density which, for the case considered, is Νb0m
α - Ν1

From (4.22) it is clear that as t -^ inf , obtain N(t) = Ν2 as the solution for the new

equilibrium state. Furthermore, it is interesting to notice that for all t> 0, one can have

(4.23)

Α plot of the bond density Νb as a function of time t is shown in Figure 4. Then

define the characteristic time t, to be,

A4.24)
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From the above expression, it is deduced that while tc depends on k f , k,, N N,l0 , it

is independent of σts,σ .

Figure 4.4 Bond density is shown as a function of time.

For the parameter values listed in Table 4.1, the characteristic time t given by

equation (4.24) is O(10 -4) s. If the shear rate is between 10 and 100  1 , the characteristic

flow time will be between 0.01 —0.1 s. It is worth noticing that only when these two time

scales are comparable it is necessary to consider the time evolution of the bond density

for computing the adhesion force. If this is not the case, which happens for the parameter

values selected in this study, it is appropriate to assume in the fluid dynamics problem

that the bond density is equal to the equilibrium value for that particular bond length. The

adhesion force, in this case, depends only on the distance between the cell surface and the

wall, which is also the case for the potential model. The two models are similar in this

sense, except that for the kinetic model the force range is much shorter. The dependence

of the adhesion force on the distance from the wall for the two models, however, is

different. Also, notice that the characteristic time scales for the kinetic and fluid
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dynamics problems can be made comparable by selecting a different set of parameters in

the kinetic model.



CHAPTER 5

GOVERNING EQUATIONS

5.1 Problem Description

The motion of a deformable leukocyte or cancer cell through a capillary or blood vessel

is studied. The problem is as illustrated in Figure 5.1. The domain was defined similar as

in the experiments setup of Chotard-Ghodsnia (2002). They used a parallel-plate flow

chamber to simulate leukocyte and tumor cell extravasation under flow conditions. A cell

monolayer is cultured on the lower plate of the flow chamber to model the endothelial

barrier. Leukocytes and circulating tumor cells can be introduced into the flow channel

under a well-defined flow field and tumor cell adhesion to endothelial monolayer can be

followed in situ.

Figure 5.1 Schematic of a leukocyte in a pressure driven flow.

The simulation domain is a three-dimensional parallel plate channel. The distance

between upper and lower walls of the channel h is 50 μm , and the width of channel is

42
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37 μm. Since blood flow through blood vessel is a type of pressure driven flow. The

pressure gradient between the inlet and outlet of the channel is 
dp 

. The velocity profile
dz

of pressure driven flow is ωAx) = 1 dp χ(χ — h) . Leukocyte was initially released at a
2μ dz

close distance x from the channel left wall. Under normal conditions, leukocyte is freely

suspended in blood plasma; while under certain physiological conditions (flow rate, etc.),

the cell begins to adhere to the endothelium, and eventually rolls, deforms and

extravasates through the endothelium. Firstly it is studied without the existence of the

adhesion force on the channel. Then the adhesive force is also included in the model.

5.2 Governing Equations

The domain containing the viscoelastic fluid and a drop Aor a bubble) is denoted by Ω,

and the domain boundary by Γ. The upstream part of Γ will be denoted by Γ - . The

governing equations for the two fluid systems are:

(5.1)

(5.2)

υ = υL on Γ, 	 (5.3)

with the evolution of the configuration tensor Α given by

(5.4)

A=AL 	 οηΓ-.
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Here u is the velocity, p is the pressure, ns is the solvent viscosity, p is the

density, Fb is the adhesion force that acts along the interface. D is the symmetric part of

the velocity gradient tensor, c is a measure of polymer concentration in terms of the zero

shear viscosity, n is the outer normal, γ is the surface tension, κ is the surface curvature, φ

is the distance from the interface, and λ r is the relaxation time of the viscoelastic fluid,

λr/(1+c) is the retardation time, n is the outer normal, γ is the surface tension, κ is the

surface curvature, φ is the level set function which is defined to be the distance from the

interface and δ is the delta function. The polymer concentration parameter c is measure

of the fluid's viscoelasticity; if it is zero the fluid is Newtonian and the viscoelasticity

increases with increasing c. It is defined in terms of the fractional contribution to

viscosity that arises due to viscoelasticity. That is, the polymer contribution to the

viscosity is ηp = cηs, and the zero shear viscosity of the fluid is n o = 11s + np, where ηp = c

ns is the polymer contribution to viscosity. The fluid retardation time is equal to  λ.
1+c

The surface tension force acts only along the interface, i.e., for φ =  Ο.

The cell interface is tracked using the level set φ which is convected according to

the local velocity, i.e.,

a4 +υ.νφ=0. 	 (5.5)
pit

The remaining details of the numerical scheme used to advect the level set are

described in Chapter 6.

The nucleus in the compound-drop model of leukocytes is assumed to be a

viscoelastic liquid and modeled using the Oldroyd-B model. The evolution of the

viscoelastic stresses, in terms of the configuration tensor A, is given by
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22+υ • DΑ=Α• Vυ±VυΤ •Α--(Α—Ι) 	 (5.6)
át 	 λr

Here u is the velocity, p is the pressure, η, is the solvent viscosity, p is the density,

D is the symmetric part of the velocity gradient tensor, c is the polymer concentration

parameter, λr is the relaxation time of the viscoelastic fluid, λr/(l+c) is the retardation

time, n is the outer normal, y is the surface tension, κ is the surface curvature, φ is the

level set function which is defined to be the distance from the interface and δ is the delta

function. The polymer concentration parameter c is a measure of the fluid's

viscoelasticity; if it is zero the fluid is Newtonian and the viscoelasticity increases with

increasing c. It is defined in terms of the fractional contribution to viscosity that arises

due to viscoelasticity. That is, the polymer contribution to the viscosity is  η = cηs, and

the zero shear viscosity of the fluid is no = 1s + η,.

The particle velocity U and angular velocity w are governed by

Μ = F
dt

d(Ι Ρ ω) — τ.
dt

υ = U 0

(0 It=O= ωο

where M and 'p are the mass and moment of inertia of the particle, and the particle

density is denoted by Ρρ . The force F acting on a particle in the above equations is

F = ξA—ΡΙ + σ).n dA 	 (5.8)

where σ = 2ηs D is the extra stress tensor and the integral is over the particle surface.

Similarly, the torque T acting on the particle takes the expression

(5.7)
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T = ιjf(χ — Χ) Χ [A—ρΙ ± σ) n] dA 	 (5.9)

where Χ is the center of the particle.

5.3 Nondimensionlization of the Governing Equations

The equations governing the fluid and leukocyte motions are nondimensionalized by

assuming that the characteristic length, velocity, time and stress scales are R, U, R/U and

ηοU/R, respectively. Here R is the leukocyte radius, n0 is the plasma viscosity, and U is

the centerline velocity of the undisturbed pressure driven flow. The nondimensional

equations, after using the same symbols for the dimensionless variables, take the

expressions:

A5.10)

The above dimensionless equations contain the following parameters:

Reynolds number

Capillary number

Weber number

Viscosity ratios

Adhesion number

Dimensionless viscosity

(5.11)

A5.12)

A5.13)

A5.14)

(5.15)

(5.16)



47

For most cases reported, the dimensionless parameters are Re=0.5, Ca=0.167,

De= 0.1 and Adh=50.0. For some cases Re, Ca and Adh are varied.

The role of these dimensionless parameters (Re, Ca, Adh and viscosity ratio) on

the leukocyte's motion and deformation in blood flows will be investigated in Chapter 6.

Studies of these parameters can help to find out and determine the critical conditions

under which the leukocyte can remain attached on the blood vessel wall.

In the adopted method the governing equations are solved everywhere

simultaneously, i.e., both inside and outside the drops/bubbles in the domain. In this

sense, this approach is different from the methods which decoupled and solved the flow

fields inside and outside the drop separately. In a decoupled approach one must apply

suitable boundary conditions at the interface, i.e., impose the continuity of velocity and

shear stress across the interface, and the jump in the normal stress across the interface is

set to be equal to the surface tension force. Also note that since in presnet approach the

governing equations are solved in a coupled manner, the method is stable and allows

relatively larger time steps to be taken. The details of the numerical approaches used for

solving the above governing equations will be described in Chapter 6.



CHAPTER 6

NUMERICAL APPROACH

A code based on the finite element method ASingh 1993), with features described in

AGlowinski 1998, Singh 2000, Singh 2005), is used for solving the time dependent

problem for the deformation of a leukocyte in a pressure driven flow. Here, the governing

equations are solved simultaneously everywhere, i.e., both inside and outside the

leukocyte in the computational domain, and the Marchuk-Yanenko operator-splitting

technique is used to decouple the difficulties associated with the incompressibility

constraint, the nonlinear convection term, the interface motion, the enforcement of the

rigid body motion in case of a rigid nucleus, and the viscoelastic term (Glowinski 1998).

The first problem is solved by means of a conjugate gradient (CG) method (Glowinski

1998, Singh 2000) and the second problem is dealt with using a least square conjugate

gradient method (Glowinski 1998, Singh 2000). The third problem consists of the

advection of the level set function φ, which is solved using a third order upwinding

scheme (Pillapakkam 2001). The advected function φ is then reinitialized to be a distance

function, which, as noted in (Sussman 1994), is essential for ensuring that the scheme

accurately conserves mass. The rigid body constraint inside the rigid nucleus is enforced

using the distributed Lagrange multiplier method AGlowinski 1998, Singh 2000). For all

results reported in this study, the mass change was less than one percent. The adhesion

force between the wall and the leukocyte is treated as a body force. The details of the

numerical scheme used are described in the following sections.

48
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6.1 Level-Set Method

The key idea in the level set method is to define a scalar variable ψ equal to the distance

from the interface and set the zero level set of ψ as the interface. The level set φ is

convected according to the local velocity, i.e.,

(6.1)

Clearly, if φ satisfies the above equation and ψ = 0 at t = 0 along the interface, the

zero level set of ψ marks the interface for all t >0. In this implementation, the distance

function φ is considered positive for the region outside the drop and negative for the

region inside. When φ is convected according to (6.1) it will not remain the distance

function for the points away from the interface, and therefore, as discussed below, it must

be reinitialized to be a distance function.

6.2 Reinitialization of ψ

The level set function φ is reinitialized to be a distance function after each time step by

solving the following equation obtained by Sussman (1994), to the steady state

A6.2)

where 4)0 is the distribution to be reinitialized and

Here SAψο) is the sign function, i.e., SAφο) = 1 if ( 0 > 0 and SAφο) = -1 if Φο < 0. In

order to avoid discontinuities, in this code the following smoothed sign function is used
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Equation (6.2) is a first order partial hyperbolic differential equation which is

solved using a positive only upwinding scheme described by Sussman (1994). Clearly,

the characteristics of (6.2) point in the direction of w. Also note that for the points

outside the drop w points away from the drop and for the points inside the drop it points

inwards. Thus, (6.2) can be solved by specifying the boundary condition φ = Φο at the

two-fluid interface φ = 0.

6.3 Variation of Density, Viscosity and Relaxation Time across the Interface

In the finite element scheme used in computation the fluid viscosity is assumed to take a

jump across the interface, i.e,

η =
nd
0.5(ηd + ηL )
nL

if ψ <0
ifψ=0ψ<0
ifψ>0

(6.3)

Here nd and 11L are the viscosities of the fluids inside and outside the drop,

respectively. In other words, the nodes that are inside the drop have the drop viscosity

and the nodes that are outside have the fluid viscosity. The fluid density, on the other

hand, is assumed to vary smoothly across the interface,

(6.4)

otherwise
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where h is equal to one and half times the element size, and ρd and ΡL are the densities of

the fluids inside and outside the drop, respectively. This smoothing of the density is

similar to that in Sussman A1994), and is needed for avoiding numerical instabilities for

relatively large density ratios ρd/ΡL. The fluid relaxation time is assumed to jump across

the interface

(6.5)

Here λd and λL are the relaxation times of the fluids inside and outside the drop,

respectively. If the fluid inside (or outside) the drop is Newtonian its relaxation time is set

to zero. A relaxation time of zero ensures that the fluid relaxes instantaneously and thus

behaves like a Newtonian fluid.

The surface tension force is smoothed and acts on the elements for which φ is

smaller than h using the approach described in Sussman (1994). This approach requires

that φ be maintained as a distance function, which is done in the depicted implementation

by reinitializing φ after each time step.

6.4 Weak Form

The weak form of the governing equations is obtained by multiplying equations (5.3), A5.4),

(5.6) and A6.1) by the test functions, and integrating the second order term by parts. This is a

straightforward procedure with an additional complication that the fluid properties are not

constant in the domain. Furthermore, since the fluid is viscoelastic, it's also needed to solve

the constitutive equation A5.6) along with the momentum and continuity equations. In
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obtaining this weak form, the hydrodynamic stresses acting at the interface are completely

eliminated.

To state the combined weak form for the equation of motion the following spaces

are needed:

(6.6)

where Γ - is the upstream part of Γ . It is easy to show that the following weak

formulation of the problem holds for the two-phase system:

For a.e. t>0, find u Ε Wu , Α E WA , p Ε L ó AΩ) and φ E W'  , satisfying

A6.7)

A6.8)

(6.9)

A6.10)



6.5 Finite-Element Approximation

In order to solve the above problem numerically, one will discretize the domain using a

regular finite element triangulation Th for the velocity and configuration tensor, where h

is the mesh size, and a regular triangulation T2h for the pressure. The following finite

dimensional spaces are defined for approximating W u , Wυ0 , WA, WAO , L2 (Ω) , L ó (Ω) ,

W, and W.r :

(6.13)

(6.14)
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Using these finite dimensional spaces, the following finite-element approximation

to the problem (6.7) -A6.13), the following is obtained:

for α11 Vh Ε W0 h ,

A6.18)
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6.6 Time Discretization

The initial value problem is solved by using the Marchuk-Yanenko operator splitting

scheme (Singh 1993) which allows to decouple its four primary difficulties:

1. The incompressibility condition, and the related unknown pressure ph,

2. The nonlinear advection term,

3. The interface problem, and the related unknown level set distribution φh

4. The equation for the configuration tensor, and the viscoelastic stress tensor

which appears in the momentum equation.

The Marchuk-Yanenko operator splitting scheme can be applied to an initial value

problem of the form

where the operators Α1, Α2, Α3, and A4 can be multiple-valued. Let Δt be the time step,

and α, β and y be three constants: 0<_a, β, γ < 1 and α + β + γ = 1. Use the following

version of the Marchuk-Yanenko operator splitting to simulate the motion of particles in

a viscoelastic fluid:

Set u0 = U0,h, A0= A0,h, and φ 0 = φ 0 h •

For n=0,1,2,... assuming υn, Αn, and φn are known, find the values for n+1 using

the following:

STEP 1: 
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A6.19)

STEP 2: 

(6.20)

STEP 3: 

Find Αn±314 Ε WA,h , by solving

(6.21)

STEP 4: 
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A6.22)

STEP 5: 

(6.23)

go back to the above for loop.

and go back to the first step.
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Remarks:

1. The first step gives rise to a Stokes-like problem for the velocity and pressure
distributions which is solved by using a conjugate gradient method Sussman A1994).

2. The second step is a nonlinear problem for the velocity, which is solved by using a
least square conjugate gradient algorithm APillapakkam 2001).

3. The third step is a linearized hyperbolic problem for the configuration tensor or stress.
This problem is solved by using a third order upwinded positive only scheme (Glowinski
1998). The two key features of this scheme are: a positive only scheme that guarantees
the positive definiteness of the configuration tensor, and a third order upwinding scheme
for discretizing the convection term in the constitutive equation. These two features are
important for obtaining a scheme that is stable at relatively large Deborah numbers.

4. The fourth step is a hyperbolic problem for the scalar level set function φ. This
problem is solved by using a upwinding scheme where the convection term is discretized
using a third order scheme AGlowinski 1998). After advecting φ, reinitialize φ to be a
distance function near the interface by performing two iterations of (6.23).



CHAPTER 7

RESULTS

The direct simulation results for the motion of leukocytes in pressure driven flows in

three dimensional channels with rectangular cross sections are described in this chapter.

Letting the pressure gradient in the channel be 
dp

 , the velocity profile of a Newtonian

fluid in a two dimensional channel is w(x) = 1 
dp 

x(x - h) , with a corresponding shear
2μdz

stress equal to
2μ

 (2x - h) . Notice that the shear stress varies linearly with x, that its
 dz

maximum value is at the channel wall and that it is zero at the channel center. In simple

shear flows, the stretching occurs along the direction which makes an angle of 45 ° with

the flow direction, and the stretched material elements rotate due to the flow vorticity

which is aligned with the negative y-axis.

Figure 7.1 Leukocyte in a pressure driven flow — model set up.
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Firstly, consider the case where the adhesive force between the wall and the

leukocytes is not present, and thus the behavior of a leukocyte is similar to that of a drop

in a . pressure driven flow. In a pressure driven flow, since the shear stress is maximum at

the channel wall and decreases linearly with increasing distance from the channel wall,

the deformation is expected to be maximum when the leukocyte is close to the wall and

to decrease with increasing distance from the wall.

Besides the study on the cell's deformation, the lateral motion of the cell in the

pressure driven flow are presented below as well using the two composite drop models —

composite-drop model and drop-rigid particle model. An equilibrium location for white

blood cell in blood flow is found.

Secondly, consider the motion of a leukocyte released near the channel wall at a

distance such that the adhesion force is present. The objective here is to study its motion

and deformation under the combined action of the adhesive and hydrodynamic forces.

Both models of the adhesive force, i.e., the potential model and the kinetic model as

described in Chapter 3 are investigated.

Thirdly, to investigate the influence of the capillary walls unevenness on the

motion and deformation of the leukocyte the unevenness, a layer periodically arranged

rigid spheres is used to cover the lower surface of the channel.

For most cases reported, the dimensionless parameters are Re=0.5, Ca=0.167,

De= 0.1 and Adh=50.0. For some cases Re, Ca and Adh are varied.

Finally, these simulation results are compared with the laboratory observations of

the rolling and deformation of leukocyte through parallel plate chamber.
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7.1 Leukocyte Deformation in the Absence of Adhesion Force

7.1.1 Composite-Drop Model

Figure 7.2 shows the steady state leukocyte shapes for the compound drop model at

various distances from the channel wall. In all cases, both the outer layer and the nucleus

of the leukocyte are deformed. In addition, as noted above, the deformation of the

leukocyte is greater when it is closer to the channel wall. As far as its orientation is

concerned, the angle between the principal axis of the deformed shape and the channel

wall is smaller when it is closer to the wall. Also interesting is the fact that the angle

between the principal axis of the deformed nucleus and the wall is greater than that

between the deformed cell and the wall. Notice that both the leukocyte and the nucleus

are deformed. The deformation increases with decreasing gap between the leukocyte and

the wall. Moreover, the viscoelastic stresses inside the nucleus are maximal in the region

which is closest to the wall as shown in Figure 7.3. The Reynolds number is 0.5.

Figure 7.2. Leukocyte deformation in the case of the compound-drop model at different
listances from the wall. The shape on the xz-mid plane through the leukocyte center are
Shown. (a) x=1.9, (b) x=2.425, (c) x=2.9, and (d) x=3.375 at time t=4.6. The deformation
increases with decreasing gap between the leukocyte and the wall. Notice that both the
leukocyte and the nucleus are deformed. The Reynolds number is 0.5.
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Figure 7.3 Viscoelastic stresses contour on the xz-mid plane through the leukocyte center
in the case of the compound-drop model at different distances from the wall is shown at
Aa) x=1.9, Ab) x=2.425, (c) x=2.9, and Ad) x=3.375 at time t=4.6. The Reynolds number is
0.5.

7.1.2 Drop-Rigid Particle Model

In the drop-rigid-particle model, since the nucleus is modeled as a rigid sphere, it remains

spherical while the outer layer of the leukocyte deforms. The steady deformed shapes for

the drop-rigid-particle model at various distances from the wall are shown in Figure 7.4.

The remaining parameters are the same as in Figure 7.2. From Figures 7.3 and 7.4, it is

clear that the overall deformation is smaller for the drop-rigid-particle model which is a

consequence of the fact that the nucleus does not deform. This implies that the drop-

rigid-particle model is not appropriate for situations in which the cell, as well as the

nucleus, deform significantly, such as during spreading or transmigration. Figure 7.5

shows the steady shape of a leukocyte released at a distance of x=2 from the wall. It is

stretched and its principal direction makes an angle of —40 degrees with the channel wall.

The simulations show that the leukocyte is moving laterally, away from the channel wall,

while moving in the flow direction. This is also the case for the compound-drop model
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described in the previous subsection. The lateral migration of single freely suspended

leukocyte cell in blood flows will be discussed in the next subsection.

Figure 7.4 Leukocyte deformations in the case of the drop-rigid-particle model as a
function of the distance from the wall. Aa) x=1.9, Ab) x=2.425, Ac) x=2.9, and Ad) x=3.375
at time t=4.6. The deformation increases with decreasing gap between the leukocyte and
the wall. Since the nucleus is rigid, it does not deform. The Reynolds number is 0.5.

Figure 7.5 Deformation of a leukocyte represented by the drop-rigid-particle model at Aa)
t=0.82 and (b) t=5.25. The Reynolds number is 0.5.
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7.2 Lateral Migrations of Leukocyte in the Absence of Adhesion Force

Past studies of the motion of drops in the pressure driven flows, as discussed in Section

2.3, have shown that a drop not only moves in the flow direction, but also drifts laterally.

The velocity of the lateral drift, however, is very small compared to the velocity in the

flow direction. Therefore, regardless of the initial position of the drop, it eventually, after

a relatively large displacement in the flow direction, reaches a lateral equilibrium position,

which depends on the ratio of the viscosity of the fluid inside the drop and that of the

surrounding fluid.

For the parameter values considered in this study, the Reynolds number is 0.5,

and the ratio of the cytoplasm and plasma viscosities is 100. The lateral migration of

leukocytes, released at different distances from the wall of the channel, is studied in a

periodic domain. The initial positions ranged between x= 1.475 and χ=3.375. The

channel wall is at x=0 and the centerline of the channel is at x=3.85.

Some of the numerically obtained trajectories of leukocytes' centers of mass are

displayed in Figure 7.6. The depicted simulations show that the lateral equilibrium

position of a leukocyte is around χ=2.5, which is approximately at a distance of 0.32 h

from the channel wall, where h is the channel height. This implies that a leukocyte cannot

be captured at a wall unless it is brought closer to the wall by some other mechanism, e.g.,

by collisions with other blood cells. This result is also relevant to the experimental

studies directed at investigating the adhesion mechanisms between the endothelial

monolayer and an isolated leukocyte, i.e., when no other blood cells are present. The

illustrated results indicate that once the flow is started, a leukocyte is likely to stay away

from the wall, unless it is placed near the wall at the beginning.
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Figure 7.6 Trajectories of leukocytes released from different positions within the channel.
The Reynolds number is 0.5.

This lateral equilibrium location for leukocytes in the blood flows is quite far

from the channel wall, and it shows that leukocytes cannot to be captured and strongly

adhered to the wall automatically without additional adhesive force.

7.3 Under Adhesive Force on the Channel Wall

In this section, the motion of a leukocyte released near the channel wall at a distance such

that the adhesion force is present is studied. The objective is to study its motion and

deformation under the combined action of the adhesive and hydrodynamic forces. Both

models of the adhesive force, i.e., the potential model and the kinetic model as described

in Chapter 4 are considered.

In the presence of a pressure driven flow, the leukocyte experiences a

hydrodynamic lift force whose magnitude depends on many factors including the flow

velocity. If the lift force is larger than the adhesion force, the leukocyte moves away from
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the wall. Obviously, when the flow velocity is smaller than a critical value such that the

lift force is smaller than the adhesive force, the leukocyte is expected to remain attached

to the wall. The case where the bulk pressure driven flow is not present is the limiting

case for which the hydrodynamic lift force is zero. This case is considered first. Then the

flow is applied on driven by a pressure gradient. By varying and studying the role of the

dimensionless parameters such as Reynolds number (Re), Capillary number ACa),

Adhesion number (Adh), the critical condition under which the leukocyte cell can remain

attached can be understood.

7.3.1 Absence of pressure driven flow

In the absence of a bulk pressure driven flow, the only forces acting on the leukocyte is

the adhesive force which moves and deforms it and hydrodynamic force due to this

motion/deformation so that the total force acting on the leukocyte becomes zero. Figure

7.7 shows that the leukocyte's surface deforms and becomes flat near the wall. The

surface tension, however, resists this flattening of the interface and a deformed steady

shape is reached for which the deforming adhesive force is balanced by the surface

tension force. Notice that the flattening is relatively smaller for the kinetic adhesion

model which is a consequence of the fact that the distance range over which the force acts

is much smaller.



Ab)

Figure 7.7 Deformation of a leukocyte near the wall due to the adhesion force in the
absence of a pressure driven flow. The adhesion parameter is 50.0. Notice that the surface
near the wall, as shown in the magnified view, is flat. Aa) Kinetic model, t=0.6 s, (b)
potential model, t=0.6.

7.3.2 Adhesion Potential Model: Motion near a Smooth Wall

In a pressure driven flow, in addition to the adhesion force the leukocyte also experiences

a hydrodynamic force. The component of the hydrodynamic force in the flow direction,

or drag, moves it in the flow direction; and the component normal to the wall, or lift,
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moves it away from the wall, thus countering the adhesion force acting towards the wall.

In this subsection, the case where the adhesive force is given by the potential model and

the wall is smooth is considered. The adhesion potential strength and the initial leukocyte

position of x=2.0 were selected so that the leukocyte is attracted to the wall. First

consider the case of the drop-rigid-particle model.

Figure 7.8 Deformation of a leukocyte in the case of the drop-rigid-particle model due to
shear forces while it moves towards the wall under the action of the adhesive force at Aa)
t=0.82 and (b) t=2.46. The Reynolds number is 0.5, Ca=0.167, De= 0.1 and Adh=50.0.

The flow causes the leukocyte to stretch along the shear direction, while the

adhesive force pulls it towards the wall Asee Figure 7.8). The adhesive force in the

potential model is long-ranged, which can be seen by the fact that a leukocyte located at a

short distance from the wall is pulled towards the wall. This feature of the potential

model is perhaps unrealistic since the adhesive forces are not long-ranged. Remind that

the force for the kinetic model is very short-ranged Aas discussed in Section 4.2.2). The

adhesion force is present only over the narrow distance range of 30 rim. As the trailing
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end of the deformed leukocyte is closer to the wall, it experiences a larger attractive

potential force, and thus is pulled further towards the wall. Consequently, the trailing end

of the leukocyte begins to flatten, and the contact area between the leukocyte and the wall

begins to increase. The contact area continues to increase until the surface tension force

becomes equal to the deforming forces. When similar simulations are performed using

the compound-drop model, the nucleus of the leukocyte also deforms as shown in Figure

7.10. The other features of the overall deformation are similar. Here, the initial position

of the center of the leukocyte is x=0.5. The flow causes the leukocyte to move upwards,

and the adhesive and shear forces cause the surface of the leukocyte near the wall to

flatten. Furthermore, it is interesting to note that the gap between the leukocyte surface

and the wall near the leading edge is larger than that near the trailing edge. Notice that

this flattening of the leukocyte cannot be seen in the top view where it appears to be only

elongated AChaotard-Ghodsnia 2002). This is an important point because in experiments

only the top view can be accessed generally.



70

Figure 7.9 Leukocyte deformation in the case of the compound-drop model released
close to the wall at Aa) t=0.82, and Ab) t=2.46, and Ac) t=3.94. The top view is also shown
Ad). The Reynolds number is 0.5, Ca=0.167, De= 0.1 and Adh=50.0.
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Figure 7.10 Deformation of a leukocyte represented by the drop-rigid-particle model due
to the shear forces while it moves towards the wall under the action of the adhesive force
at (a) t=0.82 and (b) t=2.46.

7.3.3 Adhesion Potential model: Motion near a Wall Covered with Rigid Spheres

To investigate the influence of the capillary walls unevenness on the motion and

deformation of the leukocyte, consider the case where the lower surface of the channel

consists of a flat wall covered by a layer of rigid spheres as shown in Figure 7.11(a). The

fluid velocity in the region occupied by the particles is enforced to be zero by using the

distributed Lagrange multiplier method. These spheres mimic the endothelial cells that

cover the inner layer of blood vessels. The distance x in the adhesion model is measured

from the x=1.1 plane which is tangential to the spheres and thus the leukocyte is attracted

to this plane.

The spheres are assumed to be fixed at their locations and thus the fluid velocity

on their surfaces is zero. The fluid velocity in the x=1.1 plane which is tangential to the

spheres is, however, uneven; it is zero at the points where the spheres touch the plane and
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largest in the middle of the gaps between the spheres. The shear rate and vorticity also

vary on the x=1.1 plane. Figure 7.11 Ab) shows that the volume averaged velocity of the

leukocyte varies as it moves in the flow direction Asee Figure 7.11b). It appears to slip

when its lower surface is in between the gap between the spheres and stick, or slow down,

when the lower surface comes close to the spheres' surfaces. The initial velocities of the

points inside and on the leukocyte boundary were assumed to be the same as for the

pressúre driven flow, and thus the velocity initially decreases because the leukocyte

deforms and its lower surface becomes flattened. The velocity of a leukocyte moving

near a smooth wall, on the other hand, is approximately constant.

Figure 7.11 Motion of a leukocyte near an uneven wall consisting of a layer of spheres.
Aa) The spheres are arranged on a rectangular lattice and initially the lower surface of the
leukocyte is tangential to the x=1.1 plane. Ab) Leukocyte dimensionless velocity as a
function of time for Re=0.5, Ca=0.084, De= 0.1 and Adh=50.0.
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Figure 7.12 shows that the leukocyte stretches along the shear direction and is

pulled towards the x=1.1 plane by the adhesive force. The trailing end of the deformed

leukocyte, which is closer to the x=1.1 plane, which experiences a larger attractive

adhesive force, is pulled towards the layer of spheres and flattens. The contact area

continues to increase while the leukocyte moves downstream. Also notice that, as in

Figure 7.10, the gap between the leukocyte surface and the wall is larger near the leading

edge than near the trailing edge. The deformed shape of the leukocyte in Figure 7.12 is,

however, qualitatively different from that in Figure 7.10. Specifically, in Figure 7.12, the

flattened area over which the adhesive force acts is relatively smaller and the angle the

major axis of the deformed leukocyte makes with the plane tangent to the spheres is

greater. The latter is also true for the deformed nucleus. In the top view it appears

elongated in the flow direction with the trailing end being more pointed than the leading

edge. In Figure 7.13 the motion of a leukocyte is shown for Ca=0.084 with all other

parameters being the same as in Figure 7.12 Awhere Ca=0.167). Since the capillary

number is smaller, the deformation is smaller. Also notice that in this case the shape of

the leukocyte becomes steady, and is approximately the same in Figures 7.13b and c. The

lateral velocity of the leukocyte varies as it rolls over the layer of spheres. Again, notice

that the deformed shape of the leukocyte qualitatively differs from that in Figure 7.10.

These differences in the shapes are a result of the fact that the fluid velocity on the plane

tangent to the spheres is not identically zero, whereas the fluid velocity on a flat wall is

zero. Also notice that the shape of the leukocyte is qualitatively similar to that in Figure

7.22 for experiments where the leukocyte is elongated and the radius near the leading

edge is larger than near the trailing edge.
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Figure 7.12 Leukocyte deformation in the case of the compound-drop model released
close to an uneven wall consisting of a layer of rigid spheres. The parameters are Re=0.5,
Ca=0.167, De= 0.1 and Adh=50.0. Aa) t=0.82, Ab) t=2.46, and Ac) t=4.92. Both side and
top views are shown.
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Figure 7.13 Leukocyte deformationin the case of the compound-drop model released
close to an uneven wall formed with a layer of rigid spheres. The parameters are the same
as in Figure 7.12, except for the capillary number which is now Ca=0.084.
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7.3.4 Kinetic Adhesion Model: Pressure Driven Flow

As noted above, the adhesion force for the kinetic model is non-zero for a very small

range of distances between the leukocyte surface and the wall. Therefore, for the results

presented in this section the initial position of the leukocyte is selected in a manner that

the force is present. Figure 7.14 shows that at the beginning the leukocyte rolls near the

wall surface. The Reynolds number for this case is 0.5. As the leukocyte deforms, the lift

force it experiences increases and in this case the leukocyte moves away from the wall as

the adhesion force is not sufficiently large to keep it attached. This is in agreement with

Cantat and Misbah A1999) and Khismatullin and Truskey A2004). After the leukocyte

moves out of the range of the kinetic adhesion force, which as noted above corresponds

to the relatively short distance of about 30 nm, the adhesion force becomes zero. The

leukocyte then migrates to a lateral distance at which the lateral hydrodynamic force is

zero, as discussed in Section 4.2.2.

Figure 7.14 Leukocyte deformation in the case of the compound-drop model and the
adhesion force given by the kinetic model at Aa) t=0.6, Ab) t=3, and Ac) t=6, for a Reynolds
number of Re=0.5, Ca=0.167, De= 0.1 and Adh=50.0.
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Next consider the case where the adhesion force is 100 times larger and the

adhesion parameter is 5000. The adhesion force was increased by this rather large factor

to ensure that the leukocyte is captured at the wall. In this case, the cell remained attached

to the wall, as shown in Figure 7.15. After the steady state is reached and the deformation

no longer increases, the lower area of the cell is flattened, and the leukocyte rolls and

slides on the adhesive wall. In addition, notice that the front edge of the leukocyte is

farther away from the wall and the trailing end which is near the wall is flattened. The

flattening increases the surface area over which the adhesion force acts, which is

especially critical in the kinetic model, as the distance range over which the force acts is

rather small ACantat 1999 and Khismatullin 2004).

Figure 7.15 Leukocyte deformation in the case of the compound-drop model and the
adhesion force given by the kinetic model. The parameters are selected so that the
adhesion force is 100 times larger than for the case shown in Figure 7.14 at Aa) t=0.6, (b)
t=3 and Ac) t=6. The parameters are the same as in Figure 7.14, except Adh=5000.0.
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Next consider the influence of the Reynolds number on the time at which the

adhesion force becomes zero, i.e., all bonds are broken, and the leukocyte begins to move

away. The Reynolds number is varied by increasing the incoming velocity in the channel.

From Section 5.3 one can know that as the incoming velocity is increased, the capillary

number also increases and the adhesion parameter decreases. Figure 7.16 shows that the

leukocyte deformation at higher Reynolds numbers is greater and that it takes a smaller

time interval to reach the equilibrium shape. During that time, as the leukocyte deforms,

its surface near the wall flattens and it moves slightly towards, and not away from, the

wall. This happens to a greater extent at the higher Reynolds numbers. After the surface

tension force becomes significant compared to the viscous deforming stress, which

occurs when the leukocyte shape is closer to the steady shape, in both cases, it moves

away from the wall.

It is worth noting that the hydrodynamic torque on a stretched leukocyte (or any

long body) in a shear flow causes it to rotate in the counterclockwise direction. In fact, a

rigid long body in a simple shear flow rotates so that it becomes aligned with the flow

direction. It is easy to see that in this case the torque pulls the trailing end of the

leukocyte away from the wall. Thus, the hydrodynamic torque and the lift force acting on

the leukocyte both cause the breakup of the adhesion bonds near the leukocyte's trailing

end.
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Figure 7.16 Leukocyte sections on the domain mid-plane at different times for two
values of the Reynolds number: (a) Re=0.25 and (b) Re=1.

Figure 7.17 shows that the adhesion time decreases with increasing Reynolds

number which is expected since the hydrodynamic forces increase with increasing bulk

flow velocity. However, the distance traveled by the leukocyte before all bonds are

broken, also shown in Figure 7.17, is larger at larger Reynolds numbers, which is due to

the fact that the deformation and thus the adhesion force is larger when the Reynolds

number is larger. It would be interesting to verify if this is also true for experiments.



80

Figure 7.17 The time at which all bonds are broken, and the distance traveled in the flow
direction at that time, are shown as functions of Re.

Notice that when the normal parameter values are used in the kinetic model, the

adhesive force is much smaller than needed for the capturing of the leukocyte. This is a

result of the fact that the distance range over which the force acts is only approximately

30 nm, and thus flattening, which increases the surface area over which the adhesion

force acts and the adhesion force, is crucial ACantat 1999, and Khismatullin 2004). It is

therefore important to consider the factors that determine the flattened area. It is known

from Section 5.3 that the deformation of a leukocyte increases with increasing capillary

number, and that the capillary number depends on the characteristic velocity Aassumed

here to be the centerline velocity of the pressure driven flow), the plasma viscosity and

the cortical tension. In addition, clearly the flattened area over which the adhesion force
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acts would be larger if the leukocyte was easier to deform. This suggests that the

leukocyte is more likely to remain attached to the wall for higher capillary numbers.

In Figure 7.18, the deformed sections of the leukocyte on the domain mid-plane

are shown at different times for two values of the capillary number. The leukocyte

deformation at a given time increases with increasing capillary number. For Ca=0.64, the

leukocyte is more deformed and the flattened area over which the adhesion force acts is

larger and, as a result, the time interval for which it remains attached to the wall is longer

than in the case of the smaller Ca shown. However, in all cases considered, the leukocyte

drifted away from the wall, indicating that the adhesive force remained smaller than the

hydrodynamic force.

Figure 7.18 Leukocyte sections on the domain mid-plane at different times for two
values of the capillary number. The other parameters are held constant: Re=0.5, De=0.1
and Adh=50.0: (a) Cα=0.64, and Ab) Ca=0.32.
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In Figure 7.19, the time at which the adhesive force acting on the leukocyte

becomes zero, which indicates that the leukocyte is no longer attached to the wall, is

plotted as a function of the capillary number. This figure shows that, as concluded above,

at larger capillary numbers the leukocyte remains attached to the wall for a longer time.

The deformation thus helps in keeping the leukocyte attached to the wall. However, keep

in mind that the hydrodynamic lift force also changes when the leukocyte deforms and

plays a role in determining the detachment time.

Figure 7.19 The time and distance at which all bonds are broken, and the adhesion force
becomes zero, are shown as a function of the capillary number, Ca. The Reynolds
number is 0.5, De=0.1 and Adh=50.0.

7.4 Comparison with Experimental Observations

Finally compare these findings with experimental results on the interactions between

circulating leukocytes and an endothelial monolayer, it was carried out in a specially

designed flow chamber as shown in Figure 7.20 by Chotard-Ghodsnia A2002). They used
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a parallel-plate flow chamber to simulate leukocyte and tumor cell extravasation under

flow conditions.

Figure 7.20 Parallel plate chamber system. The motion and deformation of the cells are
observed and captured through the top plate by CCD camera. Chotard-Ghodsnia (2002)

Α cell monolayer is cultured on the lower plate of the flow chamber to model the

endothelial barrier. Leukocytes and circulating tumor cells can be introduced into the

flow channel under a well-defined flow field and tumor cell adhesion to endothelial
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monolayer can be followed in situ. They observed that the cells are attracted to the

channel wall as shown in Figure 7.21. Under the flow conditions, some of the cells are

strongly adhered to the wall and then they spreading on the wall, but some of them are

rolling and may be detached and carried away from the wall by the flow, and may be re-

attached on the wall.

Figure 7.21 Rolling of a leukocyte Ainside circles) on the endothelium Aview from the
top). Other leukocytes are adhering on the substrate wall. Chotard-Ghodsnia A2002)

As shown in Figure 7.22Aa), the leukocyte, which is already weakly adhering to

the endothelium, keeps on rolling and the velocity of rolling exhibits fluctuations. The

mean flow velocity is obtained from the applied flow rate and is about 5mm/s,

corresponding to physiological conditions. As can be seen from these photographs, the

leukocyte is deformed, as it interacts with the endothelial monolayer, and assumes an

ellipsoidal shape with its longer axis aligned parallel to the flow direction and the radius

of curvature at the leading edge larger than at the trailing edge. This shape resembles the

ones described in Figures 7.11 and 7.13. A plot of the instantaneous velocity as a function
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of time during rolling of a leukocyte over a significant distance A650 μm) is displayed in

Figure 7.22 Ab). This shows two kinds of fluctuations:

- small ones attributed to surface roughness, i.e. irregular shapes of endothelial cells with

a prominent part in the region where nuclei are located Arolling velocities around an

average of 3 μm/s). These fluctuations are similar to those in Figure 7.11 (b) due to the

wall unevenness.

- larger ones corresponding to the breaking of a stable filament Areaching velocities up to

15 μm/s)

This latter feature is not considered yet in the model, for it would necessitate the

use of local rheological properties enabling the formation and growth of tiny filaments.

Similar data have been obtained previously by Jadhav (2005).

Further computations are under way to give access to typical values of the

constants used in the model, i.e., kr and kf, after combining experimental and theoretical

work. More accurate microscopic observations are also needed to determine precisely the

distance between the cell and the endothelial wall, as well as the identification of

adhesion proteins possibly involved in these mechanisms using fluorescence microscopy.
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Figure 7.22 Aa) Photographs extracted from a movie of a leukocyte Ahuman neutrophil)
rolling along the endothelial monolayer Ain grey, phase contrast images). The mean
velocity during this sequence is 3.0 μm/s. At the same time, the leukocyte shape changes
and elongates. Ab) Instantaneous leukocyte velocity with fluctuations.



CHAPTER 8

CONCLUSIONS

Three-dimensional Direct Numerical Simulations of the motion and deformation of a

leukocyte in channels with smooth and uneven walls for pressure driven flows are

performed. The surface of the leukocyte is tracked using the level set method and in the

case of the solid nucleus model the rigid motion enforcement inside the nucleus is

performed by using the distributed Lagrange multiplier method. The leukocyte is

represented using two different models: the compound-drop model and the drop-rigid-

particle model.

The performed simulations show that the leukocyte deformation is larger when it

is closer to the wall, where the shear rate is larger. The deformation is smaller for the

drop-rigid particle model of the leukocyte. For the parameter values selected, which are

typical for such flows, the leukocyte moved away from the wall to a stable location

positioned between the center of the channel and the wall. This implies that the adhesion

force is necessary for the leukocyte to remain attached to the wall.

The case where the bulk pressure driven flow is not present is also considered. In

this case the leukocyte deformed so that its surface near the wall flattened, but it

remained attached to the wall since the hydrodynamic force acting on it was zero. In the

presence of a pressure driven flow, the leukocyte experienced not only a lift force whose

magnitude depends on many parameters including the flow velocity, but also a

hydrodynamic torque. Both cause the trailing end of the leukocyte to move away from

the wall. Clearly, when the bulk flow velocity is sufficiently small the combined effect of

87
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these hydrodynamic forces is smaller than the adhesive force, and the leukocyte remained

attached to the wall. However, when the flow velocity was larger and closer to typical

values, the hydrodynamic forces overcame the adhesive force and the leukocyte moved

away from the wall. These simulation results showed that for the kinetic model parameter

values selected in Section 4.2 and typical flow rates, the leukocyte was found to move

away from the wall. In experiments some leukocytes were first rolling on the substrate

wall and then carried away by the flow while some of them do get attached to the

endothelium monolayer.

It was showed that if the parameters for the kinetic adhesion model were selected

as suggested in past studies, the time scale over which the bond density evolved to the

equilibrium value was at least an order of magnitude smaller than the flow time scale, and

therefore the adhesion force for the fluid dynamics problem could simply be obtained

from the steady state version of the kinetic equation.

For the two adhesion models used in this study the trailing end of the leukocyte

flattened. The flattening increases the contact surface area over which the adhesion force

acts, and thus the adhesion force acting on the leukocyte. The flattening, therefore, plays

an important role in increasing the adhesion force so that the latter does not get canceled

by the hydrodynamic lift force and torque. The flattening of the leukocyte is particularly

crucial for the kinetic model since the distance range over which the corresponding

adhesive force acts is approximately 30 rim. The distance range over which the adhesive

force given by the potential model acts, on the other hand, is much larger, as it decays as

the third power of the distance.
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The time at which a leukocyte initially attached to a wall moves away was shown

to depend on the capillary and Reynolds numbers. At larger capillary numbers the

deformation of the leukocyte was larger. In this case, the leukocyte remained attached

for a longer time interval as well as traveled a larger distance in the flow direction since

the flattening near the wall was greater which increased the magnitude of adhesive force.

On the other hand, when the Reynolds number was increased, the leukocyte moved away

from the wall at an earlier time, but traveled a larger distance in the flow direction before

detaching from the wall.

The lateral velocity of a leukocyte moving near an uneven wall modeled here as a

flat wall covered with a layer of spheres varied with time and it appeared to slip when its

trailing end was in the gap between two spheres. In contrast, the lateral velocity near a

smooth wall remained approximately constant. The results of the carried out direct

simulations agreed qualitatively with the experimental observations and can thus be

helpful in predicting the cells deformation during spreading.



CHAPTER 9

FUTURE WORK

9.1 Cell Membrane Elasticity

The current models for leukocyte are limited for very large deformation cases. The

elasticity model for cell membrane is requires when the cell undergoes large

deformations.

Since the cortical tension is similar as a surface tension only when the cell is

under small and moderate deformations. When the large deformation happens, the

membrane of the leukocyte will be stretched, and the elasticity of the membrane will

limit the deformation.

It is suggested that the cell is surrounded by an infinitely thin elastic membrane,

which have a Mooney-Rivlin constitutive behavior. The membrane, which is very thin

sheet of isotropic elastic solid, obeys a Mooney constitutive law, where the strain energy

function W per unit area of undeformed membrane material is given by,

A9.1)

where λ,, λ2 are the principal strains using local in-plane curvilinear coordinates. The

deformation is conveniently defined in terms of the principal extension ratio λ,, λ, given

by,

(9.2)

The parameter φ' measures the nonlinearity of the material, and may vary

between 0 and 1. A neo -Hookean Alinear) material corresponds to φ'= 0 .
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9.2 Cytoplasm Modeled as Bingham Fluid (Yield-Stress Fluid)

Experiments results show that cytoplasm in the leukocyte behaves like Bingham fluid.

According to Bingham model, the fluid behaves as a rigid solid when the norm of the

stress tensor is less than yield stress value. Otherwise, the apparent viscosity of the fluid

depends on the shear rate. It can be described mathematically as follows:

A9.3)

μ0 = viscosity parameter

τ0 = yield stress

Fluids obeying this model exhibit a linear shear-stress, shear-rate behavior after

an initial shear-stress threshold has been reached. That is, there is no flow until the shear

stress exceeds a critical value called yield stress.

9.3 Interactions between Blood Cells

The modeling carried out in this dissertation is concerned about one singular cell in the

flow. The interactions of red blood cells to leukocyte also influences leukocyte's position

to the wall and need to be considered in the model.
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