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ABSTRACT

LONG EXPOSURE POINT SPREAD FUNCTION ESTIMATION
FROM SOLAR ADAPTIVE OPTICS LOOP DATA

by
Jose Marino

Adaptive optics (AO) systems provide partial correction to wavefront distortions introduced

by the Earth's atmosphere. They have become an essential tool to obtain diffraction-limited

observations from ground-based telescopes. However, the AO correction is only partial and

post-processing with a good estimate of the point spread function (PSF) is required.

PSF estimates are impossible to measure directly during solar observations due to

the lack of point sources in the field-of-view. Moreover, the highly variable day-time see-

ing conditions require the estimated PSF to be simultaneous with the captured image. A

method is presented to estimate the long-exposure PSF of AO-corrected solar observations

using the AO control loop data. The wavefront sensor and the deformable mirror data pro-

duced by the AO system during normal operation provide enough information to estimate

the long-exposure PSF. Using this method, each individual ΑΟ-corrected image can be

deconvolved with its own estimated PSF.

An attempt was made to verify the accuracy of the method by observing the star

Sirius. The AO system successfully produced AO-corrected star images, which provide

direct PSF measurements that can be compared to the estimated PSF. However, the poor

performance of the AO system under low light levels, for which it was not designed, led to

large uncertainties in the estimated PSFs.

The PSF estimation method was tested on real solar observations, where an estima-

tion of the AO-corrected PSF is normally difficult. The observations were deconvolved

with the estimated PSFs, producing significantly improved quantitative measurements and

scientific data. A measurement of the performance of the solar AO during different seeing

conditions was obtained for the first time from these observations.
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CHAPTER 1

INTRODUCTION

1.1 Overview

The Earth's atmosphere plays an essential role in ground-based astronomical observa-

tions [33, 67, 97]. Its effects can severely distort the light coming from astronomical

objects, even though it constitutes just a minuscule layer when compared to the vast dis-

tances traveled by this light. The obvious solution to this problem is to capture the light

before it enters the atmosphere by building orbital observatories or placing them on high

altitude balloons. However, the technological difficulties, inflexible setups and prohibitive

costs involved in these approaches make ground-based astronomy a much more feasible

alternative.

Adaptive optics (AO) is a very successful technique that attempts to eliminate the dis-

tortions introduced by the Earth's atmosphere in real-time. It has become a key technology

for ground-based astronomical observations, greatly improving the quality and resolution

of the observations [61]. However, due to the physical and technological limitations inher-

ent to any AO system, residual distortions remain after correction and impact the quality

of the captured images skewing any quantitative measurements produced by the observa-

tions [33].

The correction provided by the AO system, while not complete, is sufficient to pre-

serve high spatial frequency information that would have been otherwise lost [33, 100].

This allows further restoration of the image by using post-processing techniques, such as

deconvolution with a known point spread function (PSF). The PSF characterizes the perfor-

mance of the optical system and provides a measure of the image quality obtained [33, 101].

With a known AO-corrected PSF, the amplitudes of the spatial frequency components of

1
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the AO-corrected image can be restored to their diffraction-limited levels improving image

quality and quantitative measurements.

The latest developments in solar physics require high-resolution observations that

produce accurate quantitative measurements (see Section 1.3). AO correction plus post-

processing with an estimation of the AO-corrected PSF are vital to produce accurate sci-

entific measurements. In night-time observations, the PSF can be measured directly from

the image of a star. However, a direct measurement of the PSF from solar observations is

impossible due to the lack of point sources in the field-of-view. Moreover, the high vari-

ability of the seeing conditions, in particular during the day, require the PSF to be estimated

simultaneously while the image is being captured. The data generated internally by the AO

system during normal operation contain enough information to produce an estimate of the

long-exposure PSF. Since the AO data are captured while the image is being exposed, the

estimated PSF characterizes the actual conditions that affected the image. A long-exposure

is defined as an exposure that includes a large number of configurations of atmospheric

distortions, which are required to produce good statistical measurements.

A method to obtain an estimation of the long-exposure PSF from the AO telemetry

data has been developed and implemented. The method uses the control data produced by

a solar AO system during normal correction to compute an estimate of the long-exposure

PSF. The results of applying the method to solar and stellar observations are shown. The

accuracy of the PSFs estimated from the AO telemetry data must be quantified by com-

parison to PSFs obtained through an independent approach. AO-corrected observations of

an unresolved star provided such an independent estimation of the PSF and proved to be a

valuable tool to fine tune the performance of the AO system.

Chapter 1 provides an overview of the issues and motivation for this work.

A complete understanding of the AO system and its components is required by the

PSF estimation method. An introduction to AO systems is presented in Chapter 2. This
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chapter describes the technical characteristics of the high-order solar adaptive optics system

at the Dunn Solar Telescope (DST).

The PSF estimation method makes some assumptions about the properties of atmo-

spheric turbulence. Chapter 3 discusses the effects and properties of atmospheric turbu-

lence. The Kolmogorov model is used to derive the statistical properties of wavefront

distortions induced by atmospheric turbulence.

Chapter 4 presents a method to estimate the AO-corrected long-exposure PSF from

internal AO telemetry data. The method was developed and implemented to be used for

AO-corrected solar observations.

The results produced by the observations of the star Sirius are discussed in Chapter 5.

Chapter 6 discusses the results obtained from applying the PSF estimation method to

solar observations.

The scientific results obtained from applying the PSF estimation method to a time

series of velocity measurements of a sunspot are discussed in Chapter 7.

1.2 Historical Overview

There is significant archaeological evidence that suggests that mankind has been intrigued

by the stars, the Sun and other astronomical bodies since ancient times. The origin of As-

tronomy as a science can be traced back to ancient Babylon before the year 600 B.C.E. [33].

Babylonian astronomers observed and kept detailed records of the motions of the Sun, the

Moon and the planets. This legacy was passed on to the Greeks who greatly advanced as-

tronomy through many theoretical and observational breakthroughs. However, the effects

of the Earth's atmosphere on astronomical observations were almost entirely unknown dur-

ing this time.

The first reference to atmospheric refraction is credited to Cleomedes during the first

century A.D. While observing an eclipse, Cleomedes deduced that the Earth's atmosphere

bends the light rays traveling through it [33]. The first recorded account of the distortions
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introduced by the atmosphere on astronomical observations dates back to the end of the

10th century. Arabian physicist Ibn al-Haitham described the shape changes of the Moon

and the Sun as they move closer to the horizon, and how atmospheric refraction alters the

apparent positions of the stars [33].

Many ingenious astronomical instruments were used to measure the movement and

positions of astronomical bodies, but ultimately all observations were performed with the

naked eye. The full severity of atmospheric distortions is only realized when using optical

systems with aperture sizes larger than a certain size defined by the turbulence, which

typically is on the order of a few tens of centimeters. The small pupil size of the eye, of

just a few millimeters, limits the nature of the atmospheric effects that can be observed.

The full effects of atmospheric turbulence, commonly referred to as seeing effects, became

apparent with the introduction of the telescope by Galileo in the early 17th century [33].

The impact of atmospheric turbulence on images captured with a telescope was first

recorded by Isaac Newton [51, 97] in his book Opticks in 1730. The twinkling of the

stars at night and the loss of resolution when looking through telescopes of a certain size

were already well known effects at the time. Newton correctly attributed these effects to

the propagation of light through the Earth's atmosphere: "For the air through which we

look upon the Stars, is in perpetual Tremor" [51, 69]. He realized how these effects would

always be present regardless of the optical quality of the telescope used. And he went as

far as to suggest that the only solution to alleviate them would be to locate telescopes on

top of high mountains. This was the accepted view for the next 200 years. Seeing effects

were considered as unavoidable and observatories were built on top of high mountains in

an attempt to minimize them.

One of the first breakthroughs came during the 1950s when film technology became

advanced enough to capture short-exposures, on the order of milliseconds, of bright objects.

These short-exposures are called speckle images due to the speckled pattern they present

when imaging point sources. The exposure time of a speckle image is comparable to the
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evolution time of atmospheric turbulence. Hence, a speckle image can be assumed to be

affected by a frozen configuration of the atmosphere, which introduces a particular set of

static distortions. These distortions affect some of the spatial frequency components of

the image while leaving others undistorted. Different speckle images captured at slightly

different times contain unique undistorted spatial frequency components. By considering

several speckle images, the undistorted components from each one can be merged to form

a reconstruction of an aberration free image. This powerful post-facto technique is called

speckle reconstruction and is still used today [18].

Around the same time additional methods for reducing seeing effects began to de-

velop. In 1953, Babcock [2] proposed using an adaptive optical element and a wavefront

sensor to compensate for atmospheric distortions in real-time. This technique is nowa-

days called adaptive optics. However, it could not be fully implemented at the time due to

technological limitations.

Over time, technological advances gradually allowed for the implementation of AO.

Much successful work on AO was pioneered by the United States Air Force, mostly as a

tool to improve imaging of artificial satellites from Earth-based telescopes. This work was

classified by the Air Force and was unavailable to the astronomical community until its

declassification in 1992. During the 1980s, several scientific organizations were already

working on the development of adaptive optics for astronomical observations, such as the

National Optical Astronomy Observatory (NOAO), the European Southern Observatory

(ESO) and the Office National d'Etudes et de Reserches Aerospatiales (ONERA) in France.

1.3 Scientific Motivation

Many basic processes on the Sun take place on small scales (< 1"). Observations from the

ground and from space missions such as SoHO, Yohkoh and TRACE have revealed that

the Sun's atmosphere is highly dynamic. Most solar phenomena and nearly all of the vari-

ability of the Sun are a direct result of the dynamic magnetic field continuously emerging
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from the solar interior on scales from granulation to active regions. The Sun's magnetic

field produces coronal mass ejections, flares, and the solar wind. Unfortunately, the under-

standing of these phenomena is still very limited. For example, it is not certain what causes

solar variability and the solar cycle; there is no complete explanation for the existence of

sunspots; why does the Sun have a corona or what triggers a coronal mass ejection and

what mechanisms are responsible for variations in the spectral and total irradiance of the

Sun.

According to Cattaneo [90] any three-dimensional solar turbulent flow is likely to be-

have as a dynamo. As a consequence, each scale of turbulent motion will produce its own

"magnetic scale" and magnetic fields should be observed virtually everywhere on the Sun.

Since the magnetic fields are "frozen in" to the plasma, granular flows will concentrate the

magnetic structures into the intergranular lanes. It is likely that several dynamos are at work

on the Sun and other stars: a global dynamo and a turbulent dynamo. The local dynamo

action may produce the magnetic flux tubes, organized as a magnetic carpet, recently ob-

served to cover the entire Sun. Understanding how large and small scale structures behave

may play an important role in the understanding of the physics of the Sun.

Numerical simulations have helped tremendously to improve the understanding of

the nature of convection. However, in many cases observations of sufficient resolution to

verify model predictions are still missing. Progress in answering such critical questions

requires studying the interaction between the magnetic field and convection with sufficient

resolution to observe scales fundamental to these processes. Thus, it is very important to

eliminate seeing effects to achieve diffraction-limited observations that will lead to a deeper

understanding of solar processes.

1.4 Numerical Simulations

To illustrate the effects of seeing and the impact of AO in a quantitative manner, numer-

ical simulations of solar granulation are used. The simulated object is obtained from a
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Figure 1.1 Simulated Stokes V profile "observed" with two telescopes of different aper-
ture sizes (left: 2 m and right: 76 cm). Data provided by Keller et al. [40]. The dark line on
the left image indicates the location where a cross-section was obtained.

magneto-hydrodynamic (MHD) simulation of solar granulation provided by Keller, Stein

and Nordlund [40]. The simulation provides an intensity image of solar granulation and

its corresponding Q, U, and V Stokes profiles that have not been altered by any imaging

system.

Α fundamental limitation of any optical system is diffraction. Diffraction of light on

the aperture of the telescope limits the maximum resolution achievable by the telescope.

The images that two telescopes of 2 m and 76 cm aperture size would produce when imag-

ing the simulated Stokes V profile are shown in Figure 1.1.

The image captured by the 2 m telescope appears much sharper than the image cap-

tured by the 76 cm telescope. Α 2 m telescope can achieve a spatial resolution more than

two times higher than the 76 cm telescope. The increase in spatial resolution is clearly

illustrated in Figure 1.2, which plots a cross-section of the Stokes V profiles captured with

both telescopes.
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Figure 1.2 Comparison of a cross-section from the simulated Stokes V profile "observed"
by two telescopes with different aperture sizes, shown in Figure 1.1.

1.5 Adaptive Optics Correction

During regular ground-based observations, the effects of atmospheric turbulence have a

much more damaging effect on the spatial resolution of the captured images. While the

aperture size sets an upper limit to the spatial resolution achievable, the actual resolution

achieved is determined by the aberrations introduced by atmospheric turbulence. Atmo-

spheric distortions effectively reduce the spatial resolution of an image to that of an image

captured by a telescope with an aperture size of just a few tens of centimeters.

The development of AO made the partial correction of atmospheric distortions in

real-time possible. AO correction aims to preserve the spatial resolution of the images up

to the diffraction limit. However, even the most sophisticated AO systems are not able

to deliver perfect correction and some residual aberrations always remain. These residual

aberrations introduce distortions on the quantitative measurements obtained from the ΑΟ-

corrected images, which compromise the scientific information that can be extracted from
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an AO-corrected image. Such images could easily produce inaccurate or even meaningless

results.

The benefits and limitations of the AO correction on scientific measurements can

again be illustrated with the help of the MHD simulations of solar granulation described

before. The simulated data were degraded to simulate the images produced by a telescope

with an aperture size of 76 cm under three different conditions: aberration free, distorted

by medium seeing with no AO correction and with AO correction. The images are shown

in Figure 1.3.

The scientific measurements obtained from the seeing distorted images, both ΑΟ-

corrected and uncorrected, can be compared to the results that would be obtained in the

aberration free case, i.e., the diffraction-limited case. The top row of Figure 1.3 shows the

aberration free, i.e., diffraction-limited, granulation intensity image and the corresponding

stokes V profile, while the middle and bottom rows show the uncorrected and AO-corrected

seeing distorted images, respectively. The images from Figure 1.3 illustrate the importance

of AO correction in long-exposure images.

The residual aberrations left after AO correction reduce the accuracy of any quanti-

tative measurements taken from the image. Figure 1.4 compares cross-sections taken from

the Stokes V profiles from Figure 1.3 and illustrates the drastic improvement provided by

the partial AO correction. The aberration free and AO-corrected cross-sections indicate

that both images present more or less the same resolution, but the quantitative information

is quite different. AO correction by itself is not sufficient to provide reliable quantitative

data that accounts for all the physics that should be observed. However, AO is essential to

preserve diffraction-limited information in the image, which is lost beyond recovery with-

out correction. Post-processing reconstruction of the AO-corrected images with a good

estimate of the AO-corrected PSF further restores image quality and increases the accuracy

of any quantitative measurements.
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Figure 1.3 Granulation intensity and its Stokes V profile obtained from a simulation by
Keller et al. [40]. The effects of the telescope aperture, atmospheric seeing and AO cor-
rection are simulated. Images are scaled individually. The dark line on the top-left image
indicates the location where a cross-section was obtained.
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Figure 1.4 Stokes V profile cross-section for the cases: aberration free (dashed line) and
affected by atmospheric distortions with (solid line) and without (dotted line) AO correction
(telescope aperture: 76 cm, τ 0 : 10 cm).

1.6 Point Spread Function Estimation

The PSF completely characterizes the optical quality of an optical system. The frequency

response of the optical system is given by the Fourier transform of the PSF, called the op-

tical transfer function (OTF). The OTF is defined in the Fourier space and it is in general

a complex quantity. The modulus of the OTF is known as the modulation transfer func-

tion (MTF) and its phase is known as the phase transfer function (PTF). In the case of a

long-exposure with incoherent illumination, the OTF is a real function [33] and therefore

equal to the MTF. Figure 1.5 shows the azimuthal average of theoretical [33] PSFs and

OTFs computed for the cases of: aberration free, i.e., diffraction-limited, and atmospheric

distortions with and without AO correction.

The resolution and image quality produced by an optical system are completely char-

acterized by its PSF. An ideal optical system would be a system that images a point from

an object as a point in the image, producing an identical representation of the object. Its
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Figure 1.5 Azimuthal average of simulated PSFs and OTFs for the cases of: diffraction-
limited (solid line), atmospheric distortions (dashed line) with and without AO correction
(dotted line).

PSF would be described as an infinitesimal point. However, in reality, light diffracted by

the entrance pupil of an optical system produces a PSF with a certain width determined

by the size of the aperture. Thus, in a real optical system, the image of a point is never a

point but the diffraction pattern produced by the entrance pupil. The width of the diffrac-

tion pattern sets a fundamental limit to the maximum resolution of the optical system. The

diffraction-limited PSF produced by a perfect circular aperture is known as the Airy func-

tion and consists of a high narrow central peak, the diffraction-limited core, followed by

diffraction rings, as illustrated in the left panel of Figure 1.5.

The width of the uncorrected PSF is determined by the seeing conditions and it is

much wider than the diffraction-limited PSF. The PSF energy is spread over a wide area,

known as the seeing halo, which translates into a much lower image resolution.

The AO-cοrrected PSF presents a high diffraction-limited core superimposed over

a wide seeing halo [14, 20, 33]. This characteristic shape is produced by the partial AO

correction, which restores most of the PSF energy from the seeing halo into the diffraction-

limited core. Since the correction is not perfect, some of the energy is still left in the

seeing halo. With adequate AO correction, the central core of the AO-corrected PSF should
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have the same width as the diffraction-limited PSF core, therefore AO correction preserves

diffraction-limited information in the image.

The degree of correction provided by the AO system is usually quantified by the

Strehl ratio. It is defined as the ratio of the intensity contained in the diffraction-limited

core of the PSF versus the intensity contained in the seeing halo [33, 67]. Or alternatively,

as the ratio of the peak intensity of the PSF versus the peak intensity of the aberration

free (diffraction-limited) PSF. Thus, the Strehl ratio of an aberration free image is one.

The Strehl ratio can be calculated from the variance of the wavefront phase σ* with the

following approximation:

This relation is known as the Marechal approximation [33, 67] and it is an accurate

approximation for small wavefront phase errors, up to a value of σ^ N 2 rad.

The frequency response of these PSFs is illustrated by the OTFs shown in the right

panel of Figure 1.5. The high spatial frequency information is preserved by the AO correc-

tion, but the amplitude of this spatial frequency information is not at the same level as in

the diffraction-limited case. For the uncorrected case, most of this high spatial frequency

information is lost in the background noise, making its recovery impossible. Thus, AO

correction preserves high spatial frequency information in the image, up to the diffraction-

limited cut-off frequency, which can be further restored with post-processing techniques.

An estimation of the PSF that affected an exposure is critical for both night-time

and solar astronomy. During night-time observations, an estimation of the PSF can be

obtained from a star, which can be considered as a point source. An image of such a point-

like object provides a direct measurement of the PSF. However, most astronomical science

images do not have any suitable point source in the field-of-view that could provide direct

PSF information. A common solution to this problem during night-time observations is
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to routinely point the telescope away from the region of scientific interest to capture an

image of a star. This has the inconvenience that valuable observing time is lost during the

capture of the PSF. Moreover, seeing conditions can change during this time, producing an

inaccurate PSF.

In the case of solar astronomy, there are no point sources in the field-of-view. Fur-

thermore, the variable seeing conditions during the day may cause two images taken at

different times to be affected by different seeing conditions, which requires a separate PSF

to be estimated for each individual image. This is especially important when those images

are combined to generate some indirect quantitative measurements. For example, magnetic

field maps (magnetograms) can be constructed by subtracting images produced by left and

right circular polarized light (Zeeman effect). Line of sight velocity maps (or doppler-

grams) can be obtained by subtracting images formed by light from the blue and red wings

of a spectral line (Doppler effect). These images are usually not taken simultaneously and

variations in the PSF between them result in spurious magnetic or velocity signals.

Many science applications require time sequences of consistent high-resolution im-

ages or spectra in order to study the highly dynamic solar atmosphere. The high variability

of day time seeing conditions, which typically change on time scales similar to the expo-

sure times (seconds), cause large variations in the PSF from image to image and make the

interpretation of the time sequence very difficult.

The data produced internally by the AO system while correcting long-exposures con-

tain enough information to produce an estimation of the long-exposure PSF. By using the

AO telemetry data no extra observing time is required and the estimated PSF character-

izes the exact conditions present during the image acquisition. Such a method has been

successfully developed for night-time observations using curvature sensing AO systems by

Veran et al. [101]. This method is adapted to a solar Shack-Hartmann based AO system

and applied to solar observations.
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Figure 1.6 AO-corrected Stokes V profiles for different seeing conditions (Strehl ratios
of 0.09 and 0.5). Data provided by Keller et al. [40].

1.7 Limitations

The estimated AO-corrected PSF can be used to efficiently increase the science output of

AO-corrected images by applying post-facto image reconstruction techniques. However,

some minimum seeing conditions are required to produce good reconstructions. The level

of correction that the AO system can provide depends critically on the severity of the seeing

conditions, characterized by the Fried parameter τ0 .

Figure 1.6 shows two AO-corrected Stokes V magnetograms affected by very differ-

ent seeing conditions. The left and right AO-corrected images present Strehl ratios of 0.09

and 0.5, respectively. The AO-corrected image with a Strehl ratio of 0.09 represents the

case of marginal AO correction, where the seeing conditions were so severe that most of

the energy of the PSF (> 90%) remains in the seeing halo. The AO-corrected image with

a Strehl ratio of 0.5 contains 50% of the PSF energy in the diffraction-limited core, which

constitutes a good AO correction.

Figure 1.7 shows the correlation between the pixel intensity of the AO-corrected

Stokes V profile and the diffraction limited Stokes V profile. Left and right panels corre-

spond to the AO-corrected images with Strehl ratios of 0.09 and 0.5 shown in Figure 1.6,
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Figure 1.7 Correlation between a diffraction-limited Stokes V profile and two AO-
corrected profiles captured during different seeing conditions (Strehl ratios of 0.09 and 0.5).
The correlation coefficients are r=0.90 and r=0.99 for the left and right panels, respectively.

respectively. Α perfect linear correlation would indicate that the diffraction-limited infor-

mation is perfectly preserved in the AO-corrected image.

The data shown in the left panel of Figure 1.7 presents a correlation coefficient of

r=0.90. This indicates that some of the diffraction limited information is lost in the AO-

corrected Stokes V profile with a Strehl ratio of 0.09. In the case of the AO-corrected

Stokes V profile with a Strehl ratio of 0.5, the correlation coefficient is r=0.99 indicating

a strong correlation between the AO-corrected profile and the diffraction limited profile.

Thus, the diffraction limited information contained in an AO-corrected image depends on

the Strehl ratio.

Figure 6.8 illustrates the dependency of the ΑΟ-corrected Strehi ratio on seeing con-

ditions. The performance of the AO system is characterized by the Strehl ratio of the

AO-corrected image. The figure indicates how the quality of the correction increases with

good seeing conditions. However, it never reaches a value of one, which indicates perfect

diffraction-limited performance, even for very good seeing conditions. The figure clearly

illustrates the need for deconvolution with a good PSF estimation even for the case of very

good seeing conditions.
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The effects that seeing conditions have on AO performance are very significant. A

good understanding of the properties and effects of atmospheric turbulence is necessary to

quantify and optimize the performance of the AO system. Chapter 3 describes the char-

acteristics of atmospheric turbulence and its effects on the light propagating through the

atmosphere.

The correction the AO system is able to provide also depends on the characteristics

of the system components. Their technical specifications place a limit on the maximum

correction the system can provide. A description of the AO system, its components, and

the error sources that affect the correction, are described in Chapter 2.

The PSF estimation method requires knowledge about the residuals not corrected by

the AO system and about the original seeing conditions to estimate the AO-cοrrected PSF.

This information is extracted from the AO telemetry data considering the characteristics

of the components of the AO system, and the properties of atmospheric turbulence. A

description of the PSF estimation method from AO telemetry data is given in Chapter 4.



CHAPTER 2

THE ADAPTIVE OPTICS SYSTEM

The term adaptive optics refers to a group of techniques that attempt to correct optical

aberrations in real-time. Any AO system consists of a wavefront sensing element and a

correcting element. The correction is performed by means of an optical adaptive com-

ponent, which can alter its optical properties to apply phase changes to the wavefront in

real-time. The sensing element measures the wavefront after correction to obtain informa-

tion about the residuals. The state of the adaptive optical element is then updated in order

to minimize the measured residuals.

AO systems are used for many applications, such as: retinal imaging, high power

laser applications, point to point optical communications and ground-based astronomical

and solar observations. All of these applications share a common element: a turbulent

medium that introduces distortions in the light propagating through it. The characteristics

and design of an AO system are dictated by the requirements of each particular applica-

tion. For example, the distortions produced by the vitreous humor, the fluid inside the eye,

change very slowly with time and do not require an AO system with a fast loop frequency.

These systems usually work at frequencies of just a few Hz. In contrast, the distortions

produced by atmospheric turbulence evolve very rapidly, on the order of milliseconds. AO

systems designed for ground-based astronomical applications require fast loop frequencies

to successfully correct the atmospheric distortions. Loop frequencies of current astronom-

ical AO systems range from hundreds of Hz to a few kHz.

The design requirements of AO systems for night-time and solar astronomical obser-

vations are different. Night-time observations rely on the light coming from a bright star

to perform wavefront sensing. Such a star is commonly referred to as a natural guide star

(NGS)[67]. Occasionally the star used for wavefront sensing is very faint, which forces the

18
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Figure 2.1 Schematic description of the individual subsystems of an AO system.

AO system to run slower to obtain wavefront measurements with a sufficient signal-to-noise

ratio (SNR). Thus, the apparent magnitude of the chosen NGS introduces a fundamental

limit on the loop frequency of the system. Usually, there are no bright stars close enough

to the object of interest. In these cases, a laser is used to generate an artificial star, called a

laser guide star (LGS).

During solar observations, there are no point sources in the field of view. Solar AO

systems use structures that form on the surface of the Sun to perform wavefront sensing.

The light levels are always high enough [61] and do not constitute a limiting factor. Hence,

the loop frequency of a solar AO system is not limited by light input, it is only limited by

the signal processing power. However, the contrast of the particular structure being used for

wavefront sensing and the seeing conditions limit the sensitivity of the measuring process

and the quality of the correction. During good seeing conditions, solar granulation can be

used to produce reliable wavefront measurements, whereas during worse seeing conditions,

larger structures with more contrast, such as sunspots and pores, must be used.
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Figure 2.2 Top view of the AO system at the Dunn Solar Telescope. The picture shows
the location of the tip-tilt mirror (1), the deformable mirror (2) and the wavefront sensor
(3).

2.1 Solar Adaptive Optics

The DST (DST) at Sacramento Peak (Sunspot, New Mexico) is equipped with a high-order

solar AO system (Figure 2.2), which is routinely used in observations. It is one of two twin

AO systems developed at NSO [56]. The second AO system is located at Big Bear Solar

Observatory in Big Bear City, California.

Figure 2.3 shows images captured during a test of the high-order AO system at the

DST in April 2003. The wavefront sensing system consists of a 76 subaperture cross-

correlating Shack-Hartmann wavefront sensor (WFS). The correction is applied by a 97

actuator continuous face plate deformable mirror (DM) manufactured by Xinetics. The

control system that updates the shape of the DM from the WFS measurements is based on

off-the-shelf digital signal processors (DSPs). The system runs at a frequency of 2.5 kHz

achieving a correcting bandwidth, defined as the 0 dB cross over of the error rejection

curve, of approximately 130 Hz. The layout of the DST AO system is illustrated in

Figure 2.2.
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Figure 2.3 Images taken during the first light of the high order AO system at the Dunn So-
lar Telescope in 2003. The left image is AO corrected while the right image is uncorrected
(the tick marks are given in arc seconds).

2.1.1 Cross-Correlating Shack-Hartmann Wavefront Sensor

A small fraction of the light after reflection on the DM is used for wavefront sensing.

A beam splitter separates 5% of the light and sends it to the WFS while the other 95%

continues to the science path to be used for the observations. The light used for wavefront

sensing is filtered by a wide-band filter located in front of the WFS to reduce the bandwidth

of the light used for wavefront sensing.

The WFS of the AO system is a cross-correlating Shack-Hartmann WFS [61]. It

measures the first derivative of the wavefront at several points in the pupil. An array of

small lenslets, placed in a pupil plane, sample the wavefront at the entrance pupil of the

telescope, dividing it into small subpupils or subapertures. Each lenslet images its portion

of the wavefront, producing a subaperture image, which is shifted proportionally to the

mean wavefront slope inside that subaperture, as shown schematically in Figure 2.4. A

map of the first derivative of the wavefront phase can be constructed by measuring the
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Figure 2.4 Schematic drawing illustrating the principle of a Shack-Hartmann Wavefront
Sensor.

shift of each individual subaperture image. The actual wavefront phase (plus an arbitrary

constant) can be estimated from its first derivative.

The measured wavefront is reconstructed as a linear combination of basis functions,

such as Zernike polynomials [52] or Karhunen-Loeve modes [ 102, 15, 16]. This recon-

struction process is described in Appendix C and illustrated in Figure 2.5.

Each subaperture image is cross-correlated with a preselected reference subaperture.

Each cross-correlation produces a displaced central peak. The position of the central cross-

correlation peak delivers the displacement of the subaperture image with respect to the

reference image, which is proportional to the wavefront tilt at the subaperture. Thus, the

position shifts of the cross-correlation peaks produce a measurement proportional to the tilt

of the wavefront sampled at each subaperture.

Since the measured shifts are relative to the reference subaperture image, the mea-

sured wavefront can only be known to within a constant global tilt. This unknown global

tilt introduces an uncertainty in the measured absolute position in the sky. Fortunately,

this is not an issue for solar applications since solar observations do not require absolute

astrometric measurements.
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Figure 2.5 Schematic drawing illustrating the principle of a cross-correlating Shack-
Hartmann WFS. Image by Rimmele & Radick [64].

2.1.2 Control Loop

The DM is a continuous face plate deformable mirror, which consists of a thin mirror plate

attached over an array of piezoelectric actuators. The length of the piezoelectric actuators

can be changed by applying a voltage, pushing and pulling on the thin mirror and thus

modifying its shape. The AO control system sets the shape of the DM by sending actuator

commands to the DM controller. These commands are specified in counts units, which

are proportional to the distance pushed by the actuator. The specifications provided by the

manufacturer indicate that an actuator value of 1000 counts produces a linear push of 1.2

micrometers.

At each loop iteration during normal AO operation, the shape of the DM is updated

by the AO system controller to minimize the residual wavefront measured by the WFS.

The AO system controller evaluates the pixel shifts measured by the WFS and computes

the optimal shape of the DM as a list of actuator commands. The pixel shifts measured

by the WFS are transformed into coefficients of some modal basis (KL or Zernike) that
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describe the wavefront shape. This shape is then mapped to the DM actuators to produce

a list of actuator commands. The process is described mathematically by two matrix mul-

tiplications, which can be optimized and combined into a single matrix multiplication, as

described in Appendix C.

2.2 Adaptive Optics Error Sources

The correcting performance achieved by an AO system is determined by the amount of

residual wavefront errors still present after correction. Several sources contribute to these

residual errors that depend on the technical characteristics of the individual components

of the system, and also on the seeing conditions. Possible sources of error include WFS

noise error, aliasing, angular anisoplanatism error, wavefront fitting error and correction

bandwidth error. Each of these individual sources of error adds a certain wavefront variance

to the final residual wavefront variance after correction.

The WFS noise error arises from the detector noise and the contrast of the small im-

ages in the subapertures of the WFS. The detector noise σb contains the readout noise and

photon noise from the WFS camera. In solar observations this contribution is dominated by

the photon noise due to the high levels of light available for wavefront sensing. The spatial

variance of the subaperture images σ2, i.e., their contrast, affects the cross-correlation re-

sults between the subapertures. The error variance of the pixel shifts measured by the WFS

can be expressed as [48, 47]:

(2.1)

where m is the width of the reference subimage autocorrelation function (in pixels) and n

the width of the subaperture imge (in pixels). As discussed in Appendix D, the high light

levels available for wavefront sensing during solar observations make the ratio σb /σ2 very

small and the contribution of the WFS noise error can be safely neglected.
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The limited spatial sampling of the WFS introduces aliasing error. The WFS mea-

sures high spatial frequencies components of the wavefront as low spatial frequencies. The

aliasing error can be considered as 30% to 40% of the wavefront fitting error [21, 25],

discussed below.

(2.2)

The angular anisoplanatism error translates into differential correction across the

field-of-view. The wavefront measured by the WFS is measured at a particular field po-

sition. Other positions in the field receive light coming from a different angle in the sky

and hence travel through different volumes of the atmosphere that may present different

seeing conditions. Thus, the correction produced by the AO system is only adequate for

a certain angular distance around the location where the wavefront is measured. This an-

gular distance Θ0  is referred to as the isoplanatic patch (see Chapter 3). The mean-square

wavefront error introduced by anisoplanatism at a certain angle Θ is quantified [33] by:

(2.3)

The wavefront fitting error arises from the limited ability of the correcting element of

the AO system to flatten the wavefront. The limited number of degrees of freedom of the

correcting element, 97 actuators in this case, introduces an additional wavefront variance to

the overall residual variance of the corrected wavefront. Hardy [33] provides an expression

for the wavefront variance introduced by the fitting error (4F) in the case of a continuous

face plate DM with actuator spacing Λ.

(2.4)
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The limited correcting bandwidth of the AO system introduces some residual errors

in the corrected wavefront. These bandwidth errors are proportional to the ratio between

the bandwidth of the turbulence and the bandwidth of the AO correction. The additional

wavefront variance introduced by this error was obtained by Greenwood [30, 33] and is

expressed as:

(2.5)

where fs is the bandwidth of the AO servo loop and fG is a characteristic frequency of

the atmospheric turbulence called the Greenwood frequency. In the special case of a single

turbulent layer moving at a speed v, the Greenwood frequency f can be written as [33, 97]:

(2.6)

Figure 6.8 illustrates the effects of these residual error sources. It plots the Strehl ratio

produced by AO correction for different seeing conditions. The error terms described here

become more severe for bad seeing conditions (low τ0 values), and increase the residual

wavefront variance, thus, reducing the Strehl ratio (see Equation (1.1) for an expression

relating Strehl ratio to wavefront variance).



CHAPTER 3

ATMOSPHERIC TURBULENCE

The properties of atmospheric turbulence must be well understood to allow AO systems

to provide an optimal correction of the distortions that the turbulence introduces. Simi-

larly, the PSF estimation algorithm makes certain assumptions about the properties of the

turbulence that require a good understanding of its mechanisms and properties. This sec-

tion provides a review of the properties of atmospheric turbulence from knowledge found

elsewhere in the literature. It introduces required terminology and tools that provide a

foundation for the derivation of the PSF estimation algorithm.

The study of fluid dynamics reveals the highly turbulent nature of Earth's atmosphere.

The properties of fluid flows are characterized by the Reynolds number Re = Vag L/kv ,

where Z'avg is the average fluid velocity, L a characteristic length scale, and kv the kinematic

viscosity of the fluid. The Reynolds number of a fluid is a measure of how easily a pertur-

bation in a laminar flow will be dissipated [38]. It is defined as the ratio of two quantities:

the rate at which the perturbation kinetic energy is generated and the rate at which the per-

turbation energy is dissipated. Turbulence will only appear in the case where the kinetic

energy associated with a perturbation is created much faster than it is dissipated. Otherwise

the perturbation will be damped down and disappear. A fluid flow will be turbulent if its

Reynolds number is larger than some critical value defined by the geometrical structure of

the flow [66].

For the air, the fluid viscosity is k, = 1.5 x 10 -6 m2/s and assuming flows with

wind speeds of a few rn/s and length scales from several meters to hundreds of meters the

Reynolds number can be estimated [66, 69, 54] to be Rear > 10 6 , which implies that air

flows in the atmosphere will in general present fully developed turbulence.

27
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Turbulence affects the light traveling through the atmosphere by producing small in-

homogeneities in the temperature of the air as different temperature pockets mix. Small

temperature variations (N 1 K) produce air density changes and thus refractive index vari-

ations. These inhomogeneities change with time in an aleatory way, introducing random

time-dependent phase differences in the wavefront of the light propagating through the at-

mosphere. When this light is imaged by an optical system, such as a telescope, the phase

changes in the wavefront translate into optical aberrations at the focal plane of the optical

system, distorting the captured image.

3.1 The Kolmogorov Model

During the 1940's, Kolmogorov [41] developed a model to describe the structure of fully

developed turbulence in fluids with high Reynolds numbers. The model describes how

energy is distributed on turbulent cells of different sizes called eddies.

Atmospheric turbulence arises from the heating and cooling of the surface of the

Earth by the Sun. Air masses with different temperatures are mixed by wind shears, pro-

ducing large scale disturbances that feed energy into the turbulence. As the turbulence

develops, large eddies produce smaller eddies by inertial interaction and kinetic energy is

transfered from larger to smaller eddies [37, 54]. Some of the energy is dissipated by vis-

cosity effects, which become more important as the eddie size decreases, down to a certain

size Ι , for which most of the kinetic energy is dissipated through molecular friction into

heat.

Once the turbulence is in a fully developed state, eddies smaller than a certain size L 0

can statistically be assumed to be in a steady state. This means that the amount of kinetic

energy that is dissipated, plus the energy passed down to smaller eddies, must be equal to

the kinetic energy received from larger eddies. Furthermore, the rate of energy change for

these eddies can be assumed to be negligible. In this situation, these eddies are considered

to be in statistical equilibrium with one another.
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Eddies of sizes between t 0 and L0 get their kinetic energy through inertial interaction

from larger eddies and thus are not affected by the external conditions that inject the energy

into the turbulence. This assumption, which has been verified by experimental observa-

tion [37], implies that fully developed turbulence in this range of eddie sizes is isotropic

and homogeneous, i.e., statistically invariant under rotation and spatial translation, respec-

tively. This range of eddie sizes between Ι ' , the inner scale, and L0 , the outer scale, is

commonly referred to as the inertial range of the turbulence. Typical values of the outer

scale L0 range from just a few meters to tens of meters [69]. The inner scale 1 0 is typically

in the order of a few millimeters.

Kolmogorov postulated [24] that in the inertial range all small scale statistical prop-

erties of the turbulence are determined solely by the scale size 1 and the mean energy

dissipation Ε. Following dimensional considerations [89], a proportionality expression for

the velocity variations V of the turbulence in a scale size 1 can be found. Kinetic energy

fluctuations E, which are proportional to the square of the velocity, are similarly derived.

(3.1)

(3.2)

Α similar relation can be derived from Equation (3.2) for the power spectral density of

the turbulence in terms of the scale size. The power spectral density is normally expressed

in terms of the spatial wave number κ = 27/1, instead of the eddie scale size 1. The

energy of the turbulence in an interval dκ is written in terms of the power spectral density:

Therefore, the power spectral density of the turbulence Φ is proportional

(3.3)
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This corresponds to the one dimensional Kolmogorov power law for the turbulence

power spectral density. It should be noted that the previous relation is only valid for scales

inside the inertial range: L0 > 1 > 1 0 .

Kolmogorov introduced the structure function as a statistical tool to characterize non-

stationary random functions. The structure function of a random function f (i) in a homo-

geneous and isotropic medium is defined as:

(3.4)

where the angled brackets (...) indicate an ensemble average. Α relation for the velocity

structure function can be derived from the proportionality relation in Equation (3.1).

(3.5)

where the quantity CV is called the velocity structure constant and relates to the strength

of the fluctuations.

The Kolmogorov theory provides useful relations describing the mechanical proper-

ties of the turbulence. However, it does not directly address any of its optical properties.

On the other hand, the turbulence mixes eddies with different temperatures, which have dif-

ferent densities and therefore different refractive indexes. It is this distribution of pockets

with different refractive indexes that introduces distortions in the optical path of the light

traveling through them and gives rise to wavefront distortions. Obukhov and Yaglom [33]

showed that the results from Kolmogorov's theory also apply to the concentration of any

passive and conservative additive, i.e., it does not affect the dynamics of the turbulence and

it does not disappear by chemical reaction, such as the mixing of air with different tem-

peratures. Thus, an expression for the temperature structure function DT can be directly

obtained from Equation (3.5).
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(3.6)

where C7, is the temperature structure constant. The refractive index of air n can be de-

rived from the temperature and pressure of the air and a structure function describing the

refractive index variations can be found. However, n, is always very close to one. It is more

convenient to introduce [55] another quantity called refractive modulus or refractivity Ν

defined [33] as: N = (n. — 1) 10 6 . The air refractivity can be expressed as a function of

pressure P and temperature Τ by the following approximation:

(3.7)

The pressure variations caused by atmospheric turbulence are negligible compared to

the temperature variations [33]. Therefore, the pressure P can be considered a constant in

the previous expression for the refractivity and the refractive index structure function can

be derived from Equation (3.6):

(3.8)

where the refractive index structure constant C is related to the temperature structure

constant CT by: CΝ = δΝ/δΤ CT .

(3.9)

Here, it is convenient to introduce the autocorrelation function of a random variable,

such as the air refractivity N:
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(3.10)

According to their definitions in Equation (3.4) and Equation (3.10) the structure

. function and the autocorrelation function are related [28, 33, 54] by the following expres-

sion:

(3.11)

An important property of the autocorrelation function is described by the Wiener-

Khinchin theorem [28], which states that the autocorrelation function Γ N and the power

spectral density Φ Ν form a Fourier transform pair:

(3.12)

where κ = 27/1 is the spatial wave number as defined previously. Thus, the structure func-

tion and the power spectral density can be related through the Wiener-Khinchin theorem

and Equation (3.11):

(3.13)

Tatarski [33, 89] used Equation (3.13) and Equation (3.8) to compute an expression

for the one dimensional refractive index power spectral density.

(3.14)
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This represents the same	 power law shown in Equation (3.3). The one dimen-

sional case describes the case where there is turbulence in a longitudinal velocity flow.

However, turbulence in the Earth's atmosphere is a three dimensional phenomenon. Cal-

culations can be extended to the three dimensional case by changing the integral in Equa-

tion (3.13)10 a three dimensional integral with volume element 47τκ 2 dk, which produces a

power spectrum that follows a Κ-ιΡ1/3 power law [69, 54].

(3.15)

The expression for the power spectrum predicted by the Kolmogorov model is only

valid inside the inertial range, i.e., for κ in the range 2ιr/L0 < κ < 2π/10 . In reality,

for scales with wave numbers κ > 27/l0 the turbulence disappears by dissipating its en-

ergy through molecular friction into heat. Also, turbulent eddies with a size larger than

L0 are not believed to be homogeneous. The Kolmogorov model does not provide valid

results for the power spectrum outside these limits. Moreover, the expressions given by the

Kolmogorov model present a divergent behavior in the case where κ —k Ο.

Several semi-empiric models exist in order to take into account the limitations of the

Kolmogorov model. A widely accepted model that agrees well with empirical measure-

ments is the Von Karman model [38, 69]. It eliminates the singularity at κ = Ο and takes

into account the effects of the inner and outer scale, l and L0 . The expression for the

three dimensional power spectrum of the turbulence provided by the Von Karman model is

shown in Figure 3.1 and given by:

(3.16)
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Figure 3.1 Three dimensional atmospheric phase power spectra derived from the Kol-
mogorov and the Von Karman turbulence models.

The Von Karman model provides a more general description of the turbulence and

produces more physically accurate results. However, both models, Kolmogorov and Von

Karman, are identical inside the inertial range, shown in Figure 3.1. In cases where the tele-

scope aperture size is much smaller than the outer scale of the turbulence (Orel « L^), the

Kolmogorov model is a very good approximation that allows an easier derivation of addi-

tional quantities [100, 101]. Aperture sizes of current solar telescopes are small compared

with usual values of L 0 and the Kolmogorov model constitutes a good approximation.

3.2 Light Propagation Through Turbulence

Light traveling through the Earth's atmosphere suffers random distortions due to the effects

of turbulence. Fluctuations in the refractive index of the air introduce random variations of

amplitude and phase in the wavefront of the incoming light. When this light is collected

and imaged by a telescope, these distortions translate into image aberrations that degrade

image quality.
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The variations of the amplitude of the wavefront are referred to as scintillation [19,

33, 55]. They arise from Fresnel diffraction as the light propagates through the nonuniform

refractive index atmosphere. The variations in refractive index of the air act as a grating

diffracting the incoming light, which causes interference with the un-diffracted (zero order)

wave, creating a pattern of intensity variations. In general, the refractive index variations

are small and the diffracted waves have to travel a long distance before the interference

with the un-diffracted zero order wave is noticeable. The intensity fluctuations produced

by scintillation are averaged by any telescope with an aperture larger than a few tens of

centimeters and can be safely neglected.

When imaging extended objects, as is the case for solar observations, the intensity

variations produced by atmospheric turbulence are extremely faint. Under good seeing

conditions, intensity variations are estimated [78] to be around ΔΙ/ (Ι) ti 5 x 10 -4 . This

fact, combined with the effects of the aperture size, further reduce the significance of scin-

tillation during solar observations. Therefore, it is safe to assume that for solar observations

the effects of scintillation can be neglected and the amplitude of the wavefront that reaches

the telescope is constant.

As shown before, the statistical properties of the refractive index fluctuations in the

atmosphere can be derived from the Kolmogorov model. Wave propagation translates fluc-

tuations of refractive index into distortions in the wavefront phase. The wavefront phase

distortions produced by a turbulent layer of thickness óh. at a height h that presents a distri-

bution of refractive index n(^τ. z) is given by:

(3.17)

where k = 2π/λ is the wavenumber. Using this equation, an expression for the autocorre-

lation function of the wavefront phase Γ Ý can be found:
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(3.18)

For a layer thickness δh much larger than the correlation scales of the refractive index

fluctuations, the integration can be extended to +oo producing:

(3.19)

Considering Equation (3.11) and Equation (3.19), an expression for the phase struc-

ture function can be obtained:

The integral can be computed by inserting DN from Equation (3.8). The phase struc-

ture function produced by a layer of thickness δh is given by [33, 69, 54]:

(3.20)

The global phase structure function D 	 found by integrating Equation (3.20) along

the line of sight over the whole atmosphere. The zenith angle ΘΖ is introduced to account

for changes in the length of the line of sight travel path with observing angle.
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(3.21)

Fried [23] wrote Equation (3.21) as a function of a single parameter called seeing cell

size. Such a parameter is commonly referred to as the Fried parameter r0 and is defined by:

(3.22)

The value of the Fried parameter has a dependency on wavelength inside the wave

number k in Equation (3.22), namely r 0 a λ 6 /5 . As a convention, the value of the Fried

parameter is always given as defined at a wavelength of 550 nm.

The phase structure function can be expressed in terms of the Fried parameter [23],

resulting in a much simpler form:

(3.23)

Similarly, the power spectral density of the wavefront phase distortions Φ can be

obtained [33, 100] and expressed in terms of the Fried parameter.

(3.24)

The Fried parameter is referred to as the coherence length of the turbulence. It char-

acterizes the strength of the phase distortions introduced by the turbulence. For example,

a circular section with diameter r 0 of a wavefront distorted by turbulence presents a phase

variance of around 1 rad2 (more precisely [52] σ2 = 1.03rad 2 ). Hence, the larger the value

of τ0 , the weaker the phase distortions introduced by the turbulence. It can be assumed that
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distortions inside a region of diameter τ0 are negligible. Thus, if the aperture diameter of

the optical system collecting this wavefront is smaller than r0 , the effects of the distortions

in the captured image can be neglected. And consequently, for larger aperture sizes, the

maximum spatial resolution achievable by the optical system is limited by the value of r 0 .

In general, τ0 < D and images captured with a telescope of diameter D have the same res-

olution as images taken with a telescope of aperture r0 . This clearly illustrates the severe

consequences that atmospheric turbulence has on astronomical observations. The wave-

length dependence of τ0 makes its value larger at longer wavelengths, which means that for

a given telescope aperture D it is much easier to achieve diffraction-limited performance at

longer wavelengths.

3.3 Time Evolution of Turbulence

The spatial structure of the turbulence changes on time scales much larger than the time

it takes the wind to blow the turbulence across the telescope aperture. This is the Taylor

hypothesis of frozen turbulence and it states that the effects caused by a turbulent layer can

be modeled by a "frozen" pattern that is moved across the aperture of the telescope [54].

The overall turbulence over the whole height of the atmosphere can be caused by the

joint effect of several turbulent layers causing its time evolution to be quite complicated.

However, it can globally be characterized [54, 69] by a single parameter, i.e., the correlation

time Τ0 . It is defined as the time it takes the turbulence to travel a distance τ0 .

(3.25)

where v is the wind speed of the dominant turbulent layer. Typical values for τ 0 ti 10 cm and

v ti 10 m/s produce a value for τ0 — 10 ms. Observations with exposure times t » τ0 will

integrate over several random configurations of the atmosphere. These kind of observations

are called long-exposures.
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Observations with exposure times t τ0 are called short-exposures or speckle im-

ages and their distortions are produced by frozen realizations of atmospheric turbulence.

Since they are produced by a frozen configuration of the atmosphere, they are not affected

by image motion caused by overall tilt and contain partial information in a wide range of

spatial frequencies up to the diffraction-limited frequency of the optical system. Long-

exposure images are formed as the result of integrating several of these speckle images,

each of which contains information in different spatial frequency ranges. Spatial frequency

information that is common to many individual speckle images is reinforced by the inte-

gration process and appears in the final long-exposure. Any other underrepresented spatial

frequency components are effectively damped down in the final long-exposure image. The

integration process translates into a loss of high spatial frequency information in the long-

exposure image (as illustrated in Figure 4.3).

Each individual speckle image contains a partial representation of the original spatial

frequency information. With a large set of individual speckle images, it is possible to

reconstruct the undistorted original frequency information and produce an estimate of a

perfect diffraction-limited image. This technique is called speckle reconstruction and it is

currently widely used in some astronomical and solar applications.

The parameter τ0 has a very important role in the design of an AO system. The

value of τ0 characterizes how fast atmospheric distortions change with time and sets a

requirement on the correcting bandwidth of the AO system. The AO system must have a

bandwidth larger than 1/τ0 to be able to reject the changing atmospheric distortions.

3.4 Anisoplanatism

Each position in the field-of-view of a telescope receives light coming from different angles

in the sky. The light coming from each of these angles travels through a particular volume

of the atmosphere, which may present its own seeing conditions. Hence, different points in
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the field-of-view may have been affected by different seeing conditions and the image may

contain distortions that change across the field-of-view. This is called anisoplanatism.

The implications of this problem can be studied from a geometrical optics approach.

Light coming from two directions separated by an angle Θ travels through two different

points of a turbulent layer of height h. These two points are separated by a distance p at

the layer height. At zenith angle θzi the distance d from the telescope to where the rays

cross the turbulent layer is d = h sec θz . Thus, p is related to d and h by p = Θd and

p = Θh, sec θz .

These relations can be inserted in Equation (3.21) to compute the phase structure

function in terms of the angular separation Θ. The definition of the structure function in

Equation (3.4) indicates that D(ρ) is the mean-square wavefront phase difference between

two points separated a distance p. Thus, the mean phase variance [33, 54] between two light

rays separated by an angle Θ is:

(3.26)

Following the same approach as with the definition of the Fried parameter r0 , the

isoplanatic angle θ is defined as:

(3.27)

The isoplanatic angle Θ is the separation angle for which the relative phase variance

is -1 rad2 . Equation (3.26) can be written in a much simpler form:

(3.28)
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The definition of 8 is similar to the definition of the Fried parameter r0 in Equa-

tion (3.22). The isoplanatic angle 8 can be expressed in terms of τ0 :

(3.29)

where Η is the mean effective turbulent height:

(3.30)

Equation (3.29) indicates that a situation with large r0 (weak turbulence) and small

Η (low-altitude turbulence) is the most favorable for a large isoplanatic angle. In other

words, anisoplanatism arises mostly from high-altitude turbulent layers. The isoplanatic

angle 80 also contains a dependency on wavelength, as shown in Equation (3.27). It scales

with λ6/ 5 , making its effects less critical for longer wavelengths. Typical values (in seconds

of arc) for θ range from 10" in the visible to around 40" in the infrared (IR).

The effects of anisoplanatism are very important whenever image correction is to be

applied. With aberrations being different for different parts of the field-of-view, anisopla-

natism sets a limit to the correctable field area [5]. AO systems perform wavefront sensing

in a small region of the field around the so called lock point. In night-time AO, the lock

point is either a NGS or a LGS. In solar AO, it is any kind of solar structure with enough

contrast, such as a sunspot or granulation. Aberrations are measured for that region of the

field and the applied correction is only valid in an area defined by 8 around that region,

called the isoplanatic patch.

Anisoplanatism translates into different areas of the field-of-view having different

PSFs. A PSF estimated from the AO loop data will only be valid inside the isoplanatic

patch. Therefore, the results of a deconvolution with that estimated PSF will only be accu-

rate inside the isoplanatic patch.



CHAPTER 4

POINT SPREAD FUNCTION ESTIMATION METHOD

The method to estimate the long-exposure PSF from solar AO loop data is based on work

by Veran et al. [101, 100] to implement a similar method for a night-time curvature sensor

based AO system at the CFHT telescope in Hawaii. The method obtains information about

the AO-corrected residuals and the atmospheric seeing conditions from the AO loop data

produced by the AO system during normal correction.

Figure 4.1 schematically illustrates the structure of the PSF estimation method. The

long-exposure OTF, i.e., the Fourier transform of the PSF, is expressed as the product of

three independents OTF components: a component derived from the measured AO cor-

rected residuals (obtained from the WFS measurements), a component derived from the

atmospheric seeing conditions (obtained from the DM commands) and a component de-

rived from the telescope.

4.1 Image Formation

An optical system, such as a telescope, captures light from an object and forms an image,

which ideally should be a perfectly identical representation of the object. However, in real-

ity, any optical system behaves like a low band pass filter with respect to spatial frequency.

The spatial frequency components of the original object are modulated by the optical sys-

tem and spatial frequencies larger than a cut-off frequency are destroyed. In a perfect, i.e.,

aberration free optical system, the maximum spatial frequency that can pass through the

system is determined by diffraction. If aberrations are present in the optical system, the

cut-off frequency can be considerably reduced, further degrading the quality of the image.

The resulting image i(ρ) can be described as a convolution between the object ο(,^

and the characteristic function of the optical system, i.e., the PSF. An object can be de-

42
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Figure 4.1 Schematic block diagram describing the method to estimate the long-exposure
PSF from solar AO loop data.

scribed as formed by a distribution of individual points, each one of which is imaged as

a PSF by the optical system to produce the final image. The image is the result of the

convolution of the object with the PSF of the optical system [85, 14]. It should be noted

that this convolution scheme assumes isoplanatism, i.e., the PSF is the same over the entire

field-of-view. The convolution is expressed as:

(4.1)

(4.2)

The term n(,, accounts for any additive noise present in the image. The PSF can

be visualized as the blurring function that degrades the quality of the captured image with

respect to the true object. If the PSF is known, it fully describes the distortions introduced

by the optical system and may make it possible to restore a better estimation of the actual

object.
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A convolution can be computed more easily in the Fourier domain, where it trans-

forms into a regular product:

(4.3)

(4.4)

where I and O are the Fourier transforms of the image (i) and the object (o), respectively.

The OTF is the Fourier transform of the PSF, i.e., the spatial frequency response of the

optical system.

4.2 Aberration Free Optical Transfer Function

According to diffraction theory [9, 28], the light distribution at the focal plane of an optical

system arises from Fraunhofer diffraction at the entrance pupil. The optical system acts

as a Fourier operator so the wavefront at the focal plane is proportional to the Fourier

transform of the wavefront at the entrance pupil. A telescope forms an image of a very

distant object on its focal plane. Hence, the wavefront distribution at the image plane is

the Fourier transform of the wavefront on the pupil. Considering monochromatic light of

wavelength λ:

(4.5)

The function Ρ(x) is the pupil function, i.e., a function that is 1 inside the pupil and

0 outside. The product øρυρ t) Ρ(x) indicates the wavefront that falls inside the pupil of

the telescope. In the case where øpup is the wavefront coming from a distant point source,

the resulting intensity in the focal plane is exactly the PSF of the optical system. Note that

the intensity of the image is the modulus square of the phase:
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(4.6)

Equation (4.6) indicates that the PSF is the power spectral density of the wavefront in

the pupil of the optical system. The Wiener-Khinchin theorem (see Equation (3.12)), states

that the power spectral density and the autocorrelation function constitute a Fourier trans-

form pair. The Fourier transform of the PSF, i.e., the OTF, can be written as a normalized

autocorrelation of the wavefront on the pupil [28, 100].

(4.7)

where S is the surface area of the pupil. The normalization factor 1/S ensures that the

energy contained by the PSF is normalized to unity. Any static aberrations that may affect

the optical system may be included in the OTF of the system by projecting the distortions

they produce into øρuρ

An aberration free wavefront produced by a very distant point object can be consid-

ered to be flat. In this case, the wavefront øρυρ in Equation (4.7) is constant and can be

taken out of the integral so that the OTF is solely determined by light diffracted by the

pupil of the optical system: the OTF of the system is said to be diffraction-limited. From

Equation (4.7), it follows that the diffraction-limited OTF of an optical system ΟΤF diff  is

the autocorrelation of the pupil function Ρ(x). A cross-section of a diffraction-limited OTF

of a telescope with a circular pupil is shown in Figure 4.2.

(4.8)
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Figure 4.2 Azimuthal average of the diffraction-limited ΟΤFdiff.

4.3 Atmospheric Optical Transfer Function

The optical distortions introduced by the atmospheric turbulence must be taken into account

when computing the OTF of the optical system. The effective OTF is the OTF of the

combined optical system formed by the Earth's atmosphere and the telescope. The distorted

wavefront at the pupil of the telescope is written as:

(4.9)

The amplitude variations of the wavefront (scintillation) are neglected as discussed

in Section 3.2. Equation (4.7) refers to the instantaneous OTF of the system at a time

t produced by a wavefront phase φ( t) at the pupil. When exposure times are longer

than just a few tens of milliseconds, several of these instantaneous configurations add up

to produce an integrated result. This is normally the case during solar observations, since

exposure times on the order of several hundreds of milliseconds are common.
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The long-exposure OTF is defined as the ensemble average of the instantaneous OTFs

over the exposure time period.

(4.10)

The phase function

zero mean. A useful property of gaussian random variables with zero mean [66] can be

applied here to simplify the expression for the long-exposure OTF:

(4.11)

Considering Equation (4.11) and the definition of the structure function shown in

Equation (3.4), the long-exposure OTF, in Equation (4.10), can be rewritten in a more

simplified form as:

(4.12)

where the phase structure function D is defined according to Equation (3.4) as:

(4.13)

The effects of a fully developed atmospheric turbulence on the propagating wave-

front are described by the Kolmogorov model. As previously discussed, the turbulence is

assumed to be homogeneous and isotropic, which translates into a phase structure function

that does not depend on the position in the pupil. It is only a function of the distance be-

represents a random variable with gaussian statistics and
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Figure 4.3 Azimuthal average of an example uncorrected OTF caused by uncorrected
atmospheric turbulence (OT Fatm)

teen two points p. This allows the term containing the phase structure function to come

out of the integral:

(4.14)

(4.15)

Fried [23] obtained an analytic expression for the phase structure function of Kol-

mogorov turbulence, Equation (3.23), which can be substituted in Equation (4.15) to pro-

duce:

(4.16)

The distortions introduced in the wavefront by the atmosphere effectively limit the

performance of the telescope. Figure 4.3 shows the azimuthal average of an uncorrected
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Figure 4.4 Azimuthal average of an example of AO-corrected OTF. It illustrates the ef-
fects of AO correction, specially for the high spatial frequencies.

long-exposure OTF distorted by atmospheric turbulence. This OTF produces an image

where most of the high spatial frequency information is lost. In this situation, knowing the

OTF of the optical system does not provide any advantage, since the high spatial frequency

information cannot be recovered.

AO correction preserves the high spatial frequency components in the image up to

the diffraction-limited cut-off frequency, as illustrated in Figure 4.4. With knowledge of the

AO-corrected OTF, it is possible to use post-processing techniques to restore the amplitudes

of all spatial frequencies to their diffraction-limited levels.

4.4 Optical Transfer Function after Adaptive Optics Correction

Once the wavefront distortions are corrected by the AO system, their characteristics are no

longer described by the Kolmogorov model of atmospheric turbulence. The results from

Section 4.1 apply to an uncorrected wavefront distorted by atmospheric turbulence atm

and cannot be directly applied to the residual wavefront phase after AO correction φ .
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As seen previously, the turbulence described by the Kolmogorov model is homo-

geneous and isotropic, making the phase structure function a function of just p, i.e., the

distance between two points. In the AO-corrected case, this assumption is no longer valid

because the phase distortions have been partially corrected by the AO system. The ΑΟ-

corrected phase structure function is in general a function of position in the pupil as well

as distance between two points ( and ^ respectively) DBE (x p ).

Computing this structure function involves the averaging of four-dimensional func-

tions, which makes it computationally impractical for these purposes. However, it has

been suggested 13, 100] that an average of the phase structure function over the variable

^r inside the pupil is a good approximation for the AO-corrected structure function. This

approximation represents the case of having a long exposure time where a large number of

phase configurations are included.

(4.17)

Using the mean phase structure function, which is a function of just p, the same

approximations that were applied in the derivation of the uncorrected OTF can be applied

here. Hence, the AO-corrected OTF can be written as a product of individual OTFs:

(4.18)

The previous expression can be further simplified by considering the characteristics

of the residual phase 4%E after AO correction. The AO system corrects the phase distorted

by atmospheric turbulence atm by adapting the shape of the DM to introduce a correcting

phase φm. The phase present after reflection on the DM φE is the residual phase after

correction.
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(4.19)

However, the possible phase configurations of the DM are limited by its physical

design characteristics, such as its limited number of actuators, actuator stroke and inter-

actuator separation. The separation between actuators is a direct consequence of the total

number of actuators, while the actuator stroke limits the severity of correctable distortions.

With a number m of actuators, the mirror can only reproduce phase representations

that belong to an m-dimensional vector space of wavefront phases. The space containing

all possible phase configurations Σ can be divided [101]  into two orthogonal subspaces

Σ = M i Ε M ± , where the operator Θ represents the direct sum of two subspaces. The

subspace Μ 11 is generated by the m, actuators of the DM while the subspace M1 is the

orthogonal complement to Μ  11 in Σ, which contains higher spatial frequency components

that are not corrected by the DM. Thus, the incoming aberrated phase can be projected onto

these two subspaces producing:

(4.20)

Since the DM is only able to produce phase configurations that are contained within

the M II space, the residual phase after correction will still contain all the wavefront com-

ponents that are part of Μ 1 , i.e., the phase component φatm • After AO correction, the

residual wavefront can be written as:

(4.21)
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The residual phase after correction is separated into two components: the parallel

component, which contains the residuals after correction of

perpendicular uncorrected phase component

correct and traveled unaffected through the system.

Combining Equation (4.21), the definition of the phase structure function from Equa-

tion (4.13), and the mean phase structure function from Equation (4.17) results in:

(4.22)

(4.23)

where the term i cross term arising from correlations between

which can be assumed to be negligible [101].  It should be noted that the perpendicular-

two points (ρ , since it is computed from uncorrected atmospheric phase that is homoge-

comes out of the integral in Equation (4.17) producing

Substituting the mean phase structure function as the phase structure function in

Equation (4.14), the total AO-corrected long-exposure OTF can be written as a product

of three independent components:

(4.24)

This equation is similar to Equation 4.15 for the uncorrected case. In the AO-

corrected case, most of the incoming aberrations have been corrected by the AO system,

arises from the measurable phase residuals after AO correction
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the atmospheric phase distortions that traveled undetected and uncorrected through the AO

(4.25)

(4.26)

The computation of the AO-corrected OTF (and consequently the AO-corrected PSF)

requires the estimation of both residual phase components: φ€|| and Φatm(perp) The AO loop

data produced by the AO system during normal operation contain sufficient information to

estimate the statistical properties of both phase components.

The residual corrected phase component E||can be extracted from the WFS measure-

ments, since the WFS directly measures the residual wavefront after reflection on the DM.

The uncorrected orthogonal phase component φatm(perp)  travels undisturbed through the AO

system. Hence, its characteristics are not directly measured by the system. Details about

the orthogonal component must be derived from a model that describes the wavefront dis-

tortions introduced by atmospheric turbulence, i.e., the Kolmogorov model for atmospheric

turbulence [411. The Kolmogorov model characterizes the strength of the turbulence with

just one parameter, i.e., the Fried parameter τ0 . If τ is known, the Kolmogorov model can

be used to quantify the characteristics of φatm(perp)

The residual wavefront measured by the WFS φ E || has already been corrected by

the AO system and does not contain any information about the original seeing conditions.

The orthogonal wavefront component , atmΙ contains high spatial frequencies that are not

measurable by the WFS. Thus, the characteristics of Φatm(perp) cannot be obtained from the

WFS measurements.

Information about the atmospheric seeing conditions can be extracted from the shape

of the DM during correction, which can be reconstructed from the actuator commands sent

by the AO system to the DM controller. The DM shape replicates the wavefront distortions



54

measured by the WFS in a least-squares sense, and can be used to extract information about

the Φatm|| component of the atmospheric phase distortions. The measured properties of the

atmospheric wavefront component φatm|| can be fitted to the Kolmogorov model to obtain

a value for the Fried parameter r0 . Finally, the properties of the φatm(perp) component can

be quantified from the Kolmogorov model using the fitted value of r0 (see Section 4.4.2).

Thus, both the WFS measurements and the commands sent to the DM are needed in order

to completely determine the residual wavefront after AO correction.

4.4.1 Calculation of ΟΤF e||

The corrected component of the residual phase ^;|| is directly measured by the WFS.

The cross-correlating Shack-Hartmann WFS measures the image shift at each subaperture,

which is proportional to the mean wavefront slope inside the subaperture. The measured

shifts are pixel shifts, since they are obtained from the images formed on the camera chip.

They must be translated into physical values that relate to the actual value of the wavefront

slope at that position using a calibration factor, which transforms pixels in the WFS camera

to radians on the wavefront w, fs (see Appendix B).

The measured wavefront is reconstructed from the slopes measured by WFS and

represented as a linear combination of a modal basis. KL functions were chosen over

Zernike polynomials as the modal basis because they are a better match to describe the

phase distortions produced by atmospheric turbulence (see Appendix A). Moreover, the

Shack-Hartmann WFS is more sensitive to KL modes than to Zernike polynomials. The re-

construction process is carried out by a matrix multiplication with the reconstruction matrix

D+. The calculation of the reconstruction matrix is described in detail in Appendix C.

The KL coefficients that describe the measured residual wavefront are obtained by

multiplying the reconstruction matrix D+ with the measured WFS shifts w . The calibration

factor kf transforms the measured pixel shifts to actual wavefront slopes, as shown in

Equation (4.27).
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(4.27)

where the residual WFS measurements úr(t) are the measured pixel shifts placed in column

vector form. The hat on top of έ, indicates that these coefficients are obtained from real

measurements and as such are affected by noise. The calibration factor k'f5 should be

incorporated into D± in order to reduce the number of multiplications: D± D± k».fs.

The phase components from Eqs. (4.20) and (4.21) can be expressed in terms of KL modes

(4.28)

(4.29)

(4.30)

(4.31)

The ο, are the KL coefficients that describe the uncorrected phase produced by Kol-

mogorov turbulence and k, are the KL coefficients that describe the shape of the DM, i.e.,

the applied correction. Therefore, the measurable residual wavefront after correction *E1Ι

introduced in Equation (4.21) can be also expressed as:

(4.32)
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The €, coefficients are noise free residual KL coefficients and must be related to the

noisy measured residual coefficients έ, from Equation (4.27). The noise sources that affect

the measured coefficients έ i are described by:

(4.33)

The n . 2 (t) term arises from detection noise, i.e., any process that affects the compu-

tation of the subaperture image shifts. In the case of a cross-correlating Shack-Hartmann

WFS used for solar observations, this term is dominated by the error in the determination

of the cross-correlation peaks. An analytical expression for this source of noise is derived

in Appendix D.

The term ri (t) arises from aliasing and cross-coupling errors [36, 16]. The limited

number and finite physical size of the subapertures in the WFS limit the spatial sampling

of the WFS and introduce aliasing when measuring a wavefront distorted by atmospheric

turbulence. Aliasing folds high spatial frequency components inside the sampling range of

the WFS, making them appear to the WFS as lower frequency components (as discussed in

Appendix E). The fact that the WFS measures the first derivative of the wavefront and not

the wavefront itself, introduces cross-coupling between different spatial wavefront modes.

Even though these modes are linearly independent, their derivatives are not necessarily so.

From the definition of the phase structure function in Equation (4.13) it follows that

the phase structure function of the residual corrected phase component is written as:

(4.34)

The KL decomposition of the AO-corrected phase component from Equation (4.32)

is substituted into the previous relation:
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(4.35)

The term (Ε Ε? ) is the covariance of the noise free KL coefficients that describe the

residual wavefront. The covariance of two random variables is defined below together with

some useful properties:

(4.36)

(4.37)

(4.38)

The phase distortions introduced by atmospheric turbulence constitute a random

gaussian variable with zero mean, and coy (€ i , e? ) = (ι €?). These covariance values for all

values of i and j form the elements of a matrix called the covariance matrix designated by

c (( .
The measured KL coefficients i are related to the noise free € i according to Equa-

tion (4.33). The covariance of that relation can be obtained by considering the properties

described above. The detection noise n, is not correlated with the aliasing error ri , since

the aliasing error only depends on the orthogonal component of the wavefront phase Φatιnl·

Moreover, πi is also not correlated with the noise free KL coefficients c i . The detection

noise n 1 is propagated through the AO loop. Thus the τ i measured on the current loop

iteration is correlated to the € i from the previous iteration. This delay does not affect the

estimates [ 100], since the noise n. can be characterized as white noise. Thus, taking the

covariance of Equation (4.33) produces:



which produces:

(4.41)

(4.42)
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(4.39)

(4.40)

The term (Ε τ) is problematic because of its dependency on € Z . However, it can be

shown [ 100] that if the bandwidth of the AO system is large enough it can be approximated

by:

The solar AO system has a working frequency of 2.5kΗz that produces a correcting

0 dB bandwidth of — 130Hz, which fulfills the assumption of large bandwidth. An analyt-

ical expression for the covariance of the detection noise is obtained in Appendix D. It can

also be directly measured from open-loop data captured by the AO system (as described

in Section D.5). Because of the high levels of light available for wavefront sensing during

solar observations, the noise covariance term (nib ) can be safely neglected from Equa-

tion (4.42), as discussed in Appendix D. An expression for the covariance of the aliasing

error (ri r^) is obtained in Appendix E.

The mean phase structure function of the residual parallel phase component 	 is

computed as:

(4.43)
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where P is the pupil function introduced in Section 4.2. Equation (4.35) is substituted into

the previous expression producing:

(4.44)

where the Ut, functions are defined by:

The UZJ functions can be more easily calculated by noting the definition of the cross-

correlation of two functions:

(4.46)

Note that Equation (3.10) presents the particular case of a cross-correlation of the

same function, i.e., the autocorrelation Γ [N, N] = ΓΝ. The U23 functions can be rewritten

in terms of cross-correlation functions producing a much simpler expression:

(4.47)

The cross-correlation functions are easily calculated in the Fourier domain where a

correlation transforms into a regular product:

(4.48)

The bulk of the computation of Τλ„, ι occurs in the calculation of the U2, functions.

However, the U are functions of the telescope pupil geometry and the modal basis used in
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Figure 4.5 Azimuthal average of an example mean phase structure function of the parallel
component DBE ΙΙ

the phase decomposition. These are fixed parameters and thus, the U functions only have

to be computed once. Once calculated, they can be stored on disk and read whenever they

are needed, which significantly speeds up the PSF estimation process.

The function D^E^^ is computed from the covariance of the residual KL coefficients

(ee) and the U; functions. Figure 4.5 shows an example of υφΕιι obtained from real AO

data. The residual corrected phase ΟΤFF II is then computed as:

(4.49)

An example of the parallel residual ΟΤFF II calculated from real AO loop data are

shown in Figure 4.6. The AO loop data were obtained during actual solar observations.
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Figure 4.6 Azimuthal average of an example OTF from parallel phase component OTF E H

4.4.2 Calculation of ΟΤFatmi

The orthogonal component of the residual wavefront atml travels through the AO sys-

tem unaffected. Its contribution to the long-exposure OTF is characterized by the factor

OTFatI„j in Equation (4.24). This phase component consists of high spatial frequency

components that cannot be directly measured by the AO system. However, an estimation

of the parallel component of the original phase distortions ΦatπΊΙΙ can be obtained from the

DM commands. The original atmospheric seeing conditions, characterized by the Fried

parameter r0 , can be derived from *atll,ΙE and used to extrapolate the properties of %atmi

Noll [52] applied the Kolmogorov model to derive an analytical expression for the

covariance matrix of the Zernike coefficients C Z that describe a wavefront distorted by

atmospheric turbulence. This Zernike covariance matrix can be transformed into a co-

variance matrix of KL coefficients C h L , since KL modes are just linear combinations of

Zernike modes (see Appendix A). The transformation of a Zernike covariance matrix into

a KL covariance matrix is derived from Equation (A.2), namely CKL = UT CZ U.
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The DM corrects the incoming wavefront phase distortions Φatm by adapting its

shape to reproduce the incoming phase distortions in a least squares sense [33]. The shape

of the DM can be reconstructed from the DM commands and expressed in terms of KL

coefficients. Its covariance matrix CKL can then be computed and fitted to the theoretical

one CKL given by Noll to obtain the value of Το . Note that the DM shape replicates just

half the amplitude of the phase distortions because the correction is applied by reflection

on the DM. This factor of two must be accounted for when computing  CKL

The commands sent to the DM are translated into voltages to be applied to the actu-

ators, which push the DM surface proportionally to the voltage received. The shape of the

mirror is approximated as a linear combination of the individual shapes of each actuator,

called influence functions. Thus, the influence functions constitute a basis of the mirror

space, i.e., the space of all the shapes the mirror can reproduce. From Equation (4.19) the

wavefront correction introduced by the mirror, i.e., the DM shape, can be expressed as:

(4.50)

where the coefficients mz (t) are proportional to the voltage received by each actuator in

the DM and I, (^) are their influence functions. The influence functions were directly mea-

sured from the AO system by poking each actuator individually and measuring the resulting

shape with an interferometer (see Figure 4.7). However, the shapes extracted from the in-

terferometric measurements were affected by some noise so it was necessary to construct

some synthetic influence functions with the same characteristics as the measured ones.

Two different types of synthetic influence functions were tested against the measured

ones. Figure 4.8 shows a comparison between the synthetic and measured influence func-

tions. The first type of synthetic influence function is a Gaussian fit while the second type

is the result of combining four smaller Gaussians. Details about both types of synthetic

influence functions can be found in Appendix B. The second type of synthetic influence
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Figure 4.7 Influence function of a DM actuator measured with an interferometer. The top
image shows the captured interferogram; the bottom image shows the shape of the influence
function extracted from the phase encoded in the interferogram.

functions presents a slight square shape that is closer to the actual shape of the measured

influence function. It also produces lower cross-talk between two contiguous influence

functions, as illustrated in Figure B.5. The four Gaussian synthetic influence functions

constitute a slightly better fit to the measured influence functions in a least-squares sense.



Figure 4.8 Synthetic and measured influence functions. Top: Gaussian fit (left), mea-
sured (middle) and four Gaussians fit (right). Bottom: horizontal cross-sections of all three
influence functions.

The variance of the difference between two images provides a measurement of the degree

of similarity between them:

(4.51)

(4.52)
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The σ 2 values obtained from both sets of synthetic versus measured influence func-

tions are: σgauss = 0.0017 . 04 gauss = 0.0016.



65

Figure 4.9 KL coefficient variance obtained from DM commands and fitted to the theo-
retical variance given by the Kolmogorov model (τ0 = 16.1 cm).

The DM commands stored by the AO system are the values that were passed to the

DM controller. These values are measured in "counts" units and are proportional to the ac-

tual voltage applied to each actuator and to the deformation that the actuator produces. The

values in "counts" must be related to the actual wavefront in radians through a calibration

factor kdm (see Appendix B).

The transformation from influence function coefficients rn 2 into KL mode coefficients

k i is computed as a change of basis operation. The DM commands constitute the coordinate

representation of Φm in the influence function basis. They must be transformed from their

influence function representation into a KL representation. The change of basis is carried

out with a projection matrix (B), which can be readily computed when both basis are known

(see Appendix C). The KL coefficients k, are obtained from the mz in the following way:

k, = B (kdm m). Again the calibration factor should be incorporated inside the matrix to

reduce the number of multiplications: B —> B kdm



66

(4.53)

The covariance matrix CKL of the KL coefficients k, that describe the mirror shape

can now be calculated from the DM commands mi  :

(4.54)

The variance of the KL coefficients obtained from the mirror commands, i.e., the

diagonal elements of the covariance matrix C KL , is fitted to the variance derived from

the Kolmogorov model, i.e., the diagonal elements of CKL as given by No11 [52]. The

value of the Fried parameter r0 is obtained from the fit, as discussed later in this Section.

Figure 4.9 shows an example of such a fit obtained from real AO data. The figure plots the

KL coefficients variance calculated from the DM commands and its Kolmogorov model

fit. It should be noted that the spikes of the Kolmogorov variance shown in the plot arise

from the particular ordering of KL modes chosen, as described in Appendix A. It is also

important to note that the variance obtained from the DM for modes 2 and 3 (tip and tilt),

cannot be used in the fitting, since these modes are corrected by a separate mirror, the tip-tilt

mirror, and therefore do not appear on the DM. Moreover, a finite outer scale L 0 introduces

deviations from the results provided by the Kolmogorov model, which assumes an infinite

outer scale. The variances of the global tip and tilt components are greatly reduced [33] by

the effects of a finite outer scale, as illustrated by the power spectral density derived from

the Von Karman model shown in Figure 3.1. Therefore, tip and tilt variances should not be

considered in the fit to avoid the effects of a finite outer scale L 0 .

The value of τ0 that was fitted from the DM commands stored by the AO system

provides information about the characteristics of the seeing conditions during the exposure,

see Section 3.2. This information can now be applied to obtain OTFatmj by a similar
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approach to the one taken in the calculation of OTF ||. The residual uncorrected phase,

which is identical to the one produced by the turbulence, must be expressed in terms of KL

modes:

(4.55)

The previous sum should extend to infinity. However, for practical reasons the sum is

truncated at an upper limit of Nx . Using the definition of the phase structure function from

Equation (4.13) and Equation (4.55), the residual uncorrected phase structure function can

be expressed as:

(4.56)

The covariance values (α,α^) are obtained from the Kolmogorov KL covariance ma-

trix CKL as described above. The Zernike covariance matrix C Z given by Noll follows a

scaling law with D /r0 , where D is the aperture size of the telescope. According to Equa-

tion (A.2), this same scaling law also applies to the KL covariance matrix:

(4.57)

(4.58)

This scaling law provides the functional dependency of the KL covariance matrix

with respect to the Fried parameter r0 , and can be used to fit r0 from the CKL computed

from the DM actuator commands. The scaling law in Equation (4.58) is applied to the
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covariance elements from Equation (4.56) to produce the same scaling relation for  D 1

and D,, .

(4.59)

This implies that the mean structure function can be computed for the general case

of D/r0 = 1 and then be scaled for the correct value of D/r0 obtained from the DM fit.

Several methods to compute D are available. Some methods attempt to generate

simulated phase screens [ 100] that recreate the phase distortions produced by atmospheric

turbulence. The lower modes in the modal decomposition of the phase screens are ne-

glected, since they are assumed to be corrected by the AO system. What is left in each

phase screen is a theoretical simulation of a possible instance of 4%atml • A large set of dif-

ferent phase screens must be used to accurately simulate the statistics of real atmospheric

turbulence and produce a reliable D 1 . These methods produce good results but require a

very large number of phase screens and may need long computation times. The resulting

structure function presents a sharp increase for small values of p. It oscillates around a

saturation value for larger p values and, finally, it presents a sharp overshoot for very high

p values close to the edge of the pupil [39, 100]. The presence of very high edges in the

orthogonal structure function is a very characteristic result from these methods. The in-

fluence of these large edges is deemed to be negligible because they mostly affect spatial

frequencies close to the diffraction-limited cut-off frequency where they are dampened by

the amplitude of the diffraction-limited OTF. The large computation times of this method

makes it not practical for these purposes.

Another suggested method [31, 33, 39] is based on an expression by Tatarski [89],

which relates the phase structure function to the integral of the phase power spectrum. The

phase power spectrum for uncorrected turbulence is derived directly from the Kolmogorov

model (see Chapter 3). AO correction eliminates power from the low spatial frequency
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Figure 4.10 Azimuthal average of examples of orthogonal phase structure functions com-
puted by two different algorithms given by Hardy [33] and Jolissaint [39].

components of the wavefront distortions. Thus, the effects of AO correction on the phase

power spectrum are equivalent to the effects of a high-pass filter. This method requires very

short computational times and completely avoids the edge effects that arise from the phase

screens methods.

Two different high-pass filter functions used to compute the AO-corrected phase

power spectrum are described by Hardy [33] and Jolissaint [39]. Jolissaint's algorithm

produces oscillations in the structure function that replicate the oscillations produced by

the phase screens method discussed earlier. A comparison of the orthogonal structure func-

tions produced by both algorithms is shown in Figure 4.10.

The orthogonal phase structure function presents two asymptotic behaviors [33, 100]:

for ρ « ΛΡ (where A is the mean actuator spacing) it behaves similarly to the uncorrected

case D  oc ρ5 /3 ; and for ρ >> A the structure function saturates at a value of 2σi, where

σi is the variance of the residual uncorrected phase ,%atml . The phase variance σi can be

calculated by integrating the high-pass filtered atmospheric power spectrum [100]:
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(4.60)

The orthogonal mean phase structure functions produced by both algorithms saturate

at the correct value for high values of p. However, the one provided by Hardy's algorithm

does not present oscillations around the saturation value. These oscillations are present

in the orthogonal structure functions computed with the phase screen method. They seem

to generate the typical sharp boundary between the halo and the core of the AO-corrected

PSFs.

The computed orthogonal phase structure function D 1 can be inserted into Equa-

tion (4.61) to compute the orthogonal OTF component:

(4.61)

Figure 4.11 shows an example of a OT Fat , i calculated from real AO loop data

stored during solar observations.

4.4.3 Final Adaptive Optics Corrected OTF

The final OTF is the product of the three individual OTF components shown in Equa-

tion (4.24): the parallel component OTFEII, the orthogonal component OTFa ,tmi and the

telescope OTFte] . An azimuthal average of the final OTF calculated from real AO data

using this method is shown in Figure 4.12.

The estimated long-exposure OTF shown in Figure 4.12 presents the characteristics

to be expected in an AO-corrected OTF. This OTF can be compared with the uncorrected

OTF shown in Figure 4.3, which presents very low amplitude at high spatial frequencies.

The correction provided by the AO system preserves high spatial frequency components
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Figure 4.12 Azimuthal average of final AO-corrected OTF together with individual com-
ponents. Computed from real data captured on August 2004 (το = 5.9 cm).

in the image, which translates into an OTF with larger amplitude for high spatial frequen-
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cies. The estimated long-exposure AO-corrected OTF from Figure 4.12 presents larger

amplitudes over all frequencies up to the diffraction-limited cut-off frequency.

4.5 AO Loop Data Storage

The computation of the individual OTF components requires the loop data from the AO

system. By default the AO system stores the complete time series of AO loop data produced

during each exposure, WFS measurements, and DM commands. At a working frequency

of 2500 frames per second, this can translate into large data files that can take a long time to

be written to disk and can impact the cadence at which images can be taken. In particular,

a ls exposure produces 2500 x 2 x 76 real numbers to account for the x— and y —shifts

measured by the 76 subapertures of the WFS plus 2500 x 97 real numbers required to

store the actuator commands of the 97 actuator DM. Storing a real number in 4 bytes, the

complete time series of AO data produces a file of size N 2.4 MB.

The long-exposure PSF estimation method described in this chapter only requires

the covariance matrices of the AO loop data, not the complete time series. For this reason,

the AO system controller was updated to compute the covariance matrices of both the

WFS measurements and the DM commands in real-time. The system can be instructed

to store only these covariance matrices, producing much smaller data files. For example,

a 1 s exposure produces a covariance matrix of WFS measurements that can be stored in

(152 x 152+152)/2 real numbers plus (97 x 97+97)/2 real numbers to store the covariance

matrix of the DM commands. These estimations take into account that a covariance matrix

is symmetric and only half the matrix needs to be stored. The data can be stored in a file of

size N 65 kB, i.e., around 38 times smaller than the previous value.

It should be noted that the PSF estimation method requires the covariance matrices

of the KL coefficients that describe the measured residual wavefront and the shape of the

DM. The AO controller computes in real-time the covariance matrices of the pixel shifts
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measured by the WFS C zL,u, and the actuator commands Cmm that are sent to the DM. These

raw matrices must be transformed to the correct KL coefficients covariance matrices.

Equation (4.27) transforms pixel shifts measured by the WFS ώ into KL coefficients

έ that describe the residual wavefront using the reconstruction matrix (D±). The recon-

struction matrix can also be used to compute the covariance matrix of KL coefficients C EE

from the WFS shifts covariance matrix C Ζί,„ι:

(4.62)

The DM commands stored by the AO system are transformed into KL coefficients

that describe the shape of the DM by means of a change of basis matrix B, as shown in

Equation (4.53). The covariance matrix of KL coefficients CΚL is calculated from the

covariance matrix of DM commands C mm as:

(4.63)

The AO loop data can be more efficiently captured by instructing the AO system to

directly store the covariance matrices of the pixel WFS measurements and DM commands.

These can be later transformed into the covariance matrices of KL coefficients that the PSF

estimation method requires.



CHAPTER 5

SIRIUS OBSERVATIONS

Stars are very distant objects that cannot be resolved by the DST. They are effectively

ideal point sources, which can be used to provide direct measurements of the PSF of the

telescope. Night-time astronomers routinely point their telescopes away from the object of

interest towards an isolated star to capture measurements of the PSF. This same approach

can be employed to validate the accuracy of the PSFs obtained with the PSF estimation

method. By capturing AO-corrected images of a star, the PSF estimated from the AO loop

data can be compared against a direct measurement of the AO-corrected PSF.

Observations of the star Sirius were performed after sunrise, during the morning, at

the DST on July 2005. The star images were corrected by the AO system and the AO

loop data corresponding to each individual image were stored and used to estimate the ΑΟ-

corrected PSFs. An interference filter with a bandpass of 7 nm FWHM centered at 616 nm

was placed in front of the science camera.

The DST was designed for solar observations, which present very high light levels.

It has a long f-ratio (f/72) with an aperture size of 76.2 cm, which make it less than ideal

for stellar observations. Moreover, the AO system was designed for solar observations and

some modifications were required to increase the light input on the wavefront sensor. To

improve the chances of successful AO correction and increase the signal to noise ratio of

the observations, a bright star was chosen as the target. The star Sirius [26] was chosen

as the target for these observations because it is the brightest star in the night sky, with

an apparent visual magnitude of —1.46. Furthermore, Sirius was above the horizon at the

time of the observations. Sirius was observed in the morning after sunrise instead of during

the night. This mode of operation was preferred because of the complications of operating

the DST during the night, and because the atmospheric conditions would be similar to the

74
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conditions during regular solar observations. The effects of an increased sky brightness in

the observations were not expected to be significant.

The main difficulty that the AO system encounters when operating with low light

levels is wavefront sensing. The WFS camera is a CMOS camera, with low quantum

efficiency and high read out noise, which is not at all suited for stellar observations. During

normal solar observations, the light levels are high and only a small fraction of the light

is sufficient to provide adequate wavefront sensing. A beam splitter separates 5% of the

light for wavefront sensing while allowing the remaining 95% to continue into the science

path. This setup does not work with low light conditions as is the case with the stellar

observations. For these observations, the output from the beam splitter was reversed, 95%

of the light was sent on the WFS path while the remaining 5% was sent to the science

camera.

To further increase the light available for wavefront sensing, the loop frequency of the

AO system can be reduced to allow longer integration times for the WFS. However, this also

reduces the correcting bandwidth that can be achieved by the AO system. During normal

solar observations, the light levels are high and the AO system can run at its maximum

loop frequency of 2.5 kHz. In general, for solar observations, the running frequency of the

AO system is not limited by the light levels but by the technical characteristics of the AO

system components. Under low light conditions, the AO loop frequency must be reduced

to provide the WFS with longer integration times and increase the signal to noise ratio of

the WFS measurements.

For the Sirius observations, the AO loop frequency was reduced in an attempt to im-

prove the sensitivity of the WFS at the expense of correction bandwidth. Different loop

frequencies were tested depending on the seeing conditions ranging from 800 MHz to

1.2 kHz. Better seeing conditions produced sharper star images and WFS measurements

with a higher signal to noise ratio, which allowed for higher loop frequencies. A loop fre-

quency of 1.2 kHz provided acceptable uninterrupted correction during good seeing con-
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ditions, while more severe seeing conditions required a slower loop frequency and the AO

loop frequency was lowered to 800 MHz to improve performance.

The lack of accurate absolute pointing of the DST made the initial finding of the

star Sirius challenging. The tracking of the star Sirius during the observations was also

problematic because the DST is not equipped with a star tracking system. The continuous

adjustment of telescope pointing required to track the star had to be performed by hand by

the telescope operator. The tip and tilt correction values displayed by the AO system while

correcting in closed-loop were used as visual cues to assist the tracking.

5.1 Initial Results

The AO system was able to successfully lock on the star Sirius and provide continuous

stable correction. AO-corrected images of Sirius with exposure times of 2.5 s were cap-

tured together with their corresponding AO loop data. Figure 5.1 shows two of the early

results obtained from the observing run. The image with full AO correction (right panel in

Figure 5.1) presents an elongated shape. This elongation is present in all of the captured

AO-corrected images, which seems to indicate oscillations of the separate tip-tilt correc-

tion. It was discovered that the gain settings for the tip-tilt mirror were not adequate for

stellar observations and needed to be readjusted.

The elongation present in the corrected images was corrected by adequately adjusting

the gains of the tip-tilt mirror controller. The resulting images appeared round with no sig-

nificant elongation along a particular axis, as shown in Figure 5.2. However, under closer

inspection the width of the images was found to be larger than the diffraction-limited width

that should be expected. While this could be a consequence of the lower correction achiev-

able under these extreme conditions, i.e., low light level and reduced system frequency, it

could also indicate a problem with the tip-tilt correction subsystem while operating on a

star.
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Figure 5.1 Captured AO-corrected images of Sirius. Tip-Tilt correction only (left) and
full AO correction (right). AO-corrected image presents clear elongation.

Figure 5.2 AO-corrected image of Sirius after elongation issues were corrected showing
a typical example of a waffle pattern. Linear scale (left) and logarithmic stretch (right).

Figure 5.2 illustrates another very important correction issue that was detected during

the stellar observations. The images from Figure 5.2 display a static pattern of four small

peaks distributed on the vertices of a square around the central star image. This pattern

is called waffle pattern and it is evidence for the presence of waffle modes introduced by

the DM. The pattern is significant enough to be visible in both the linear and logarithmic

stretch images.
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Figure 5.3 Schematic representation of the fundamental waffle mode. Actuator positions
are marked with crosses.

Waffle modes are DM configurations that cannot be detected by a Shack-Hartmann

WFS with a square array of subapertures. They typically resemble a checkerboard pattern,

which produces a zero mean wavefront slope inside each WFS subaperture. A complete list

of waffle modes can be found in Gavel 2003 [27]. The simplest waffle mode, schematically

illustrated in Figure 5.3, is created by the alternating pushing and pulling of contiguous

DM actuators. In Figure 5.3, white and black represent positive and negative wavefront

distortion, and the crosses indicate the position of the DM actuators, which coincide with

the corners of the WFS subapertures. Figure 5.3 shows that the mean slope produced by

the waffle mode inside each WFS subaperture is zero. Hence, this mode is invisible to the

WFS.

The distribution of light at the focal plane of an optical system is given by the Fourier

transform of the wavefront at the pupil plane [28]. Therefore, the characteristic waffle pat-

tern displayed in Figure 5.2 is the result of the Fourier transform of the periodic checker-

board structure of the waffle modes [45].
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The waffle modes must be actively removed or attenuated from the reconstructed

wavefront by the AO control system. If they are not adequately filtered, noise from the

measured residual wavefront may be reconstructed as waffle modes that are sent to the DM.

Since they are not visible to the WFS, they may continue to build up over time dominating

the shape of the DM introducing wavefront errors and reducing the correcting range of the

DM. The control matrix used by the AO control system must be conditioned to filter and

suppress any invisible modes from the reconstructed DM shapes.

The WFS measurements during the stellar observations present a much higher level

of noise than during solar observations, which translates into a faster build up and a greater

incidence of waffle errors. This is illustrated by the fact that most of the AO-corrected star

images display some amount of waffle pattern. The time evolution of the waffle patterns

observed can be summarized as: a particular waffle pattern that builds up quickly and

remains more or less static for several consecutive images until it suddenly disappears and

allows a new slightly different waffle pattern to emerge. This temporal evolution of the

waffle error seems to arise from the AO system being stopped between exposures. Every

time the AO system is stopped, the DM is flattened and the AO controller is reset causing

any waffle mode to disappear. When the loop is closed again, new invisible waffle modes

build up in the DM producing different patterns. The frequent AO system stops were

dictated by the extreme conditions of the observations.

As a positive side effect, the waffle pattern can be used to verify the measured plate

scale of the science camera. As indicated above, the simplest waffle pattern arises from

the DM adopting a checker-board pattern with a period of 2Λ, where 11 is the DM inter-

actuator spacing and the WFS subaperture size. The waffle mode of the DM produces a

characteristic waffle pattern [45] in the focal plane. Replicas of the central PSF appear

at the intersections of grid lines located a distance nλ/211 from the optical axis (where

n = 1, 3, 5 ...). The star image shown in Figure 5.2 displays four small peaks around the

main central PSF that define four of such grid lines. Thus, the distance between each pair
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Figure 5.4 KL coefficient variance from the residual WFS measurements and from the
atmospheric distortions as given by the Kolmogorov model for a value of ro N 4 cm.

of grid lines is λ/Λ. The comparison between the measured distance from the image, in

pixels, and the theoretical distance λ/Λ was used to corroborate the value of the camera

image scale, of 0."042 /pixel.

During normal solar observations, the waffle pattern is very difficult to observe in

extended field images and has gone undetected in previous operations. A lower incidence

of waffling is expected during solar observations due to the much lower (several orders of

magnitude, see Figure 5.5) noise levels of the WFS. However, stellar observations proved

very useful for detecting performance issues of the AO system and more stellar observa-

tions will be performed in the future to evaluate the performance of control matrices and

the AO system.

Figure 5.4 shows the residual modal variances computed from the WFS measure-

ments together with the atmospheric modal variances. Figure 5.4 illustrates the correction

provided by the AO system. The seeing conditions were not very good (τ0 4 cm). The

total variance contained in the first 60 modes of the atmospheric variance is 123.5 rad2
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while the total residual variance in the first 60 modes is 3.6 rad 2 . The total residual vari-

ance measured by the WFS can be used in Equation (1.1) to obtain an estimate of the Strehl

ratio of the AO-corrected image, which results in less than 0.02. This very small Strehl ra-

tio indicates that the correction provided by the AO. system was not very good. This is to

be expected because of the challenges that the AO system faces when correcting the star

Sirius, such as the low signal to noise ratio of the WFS measurements and the reduced

correcting bandwidth of the system.

The noise affecting the WFS measurements during stellar observations is quite sig-

nificant and must be taken into account in the PSF estimation method. The WFS noise

is several orders of magnitude larger than the WFS noise observed during solar observa-

tions. These larger noise levels are caused by the low light levels available for wavefront

sensing. Figure 5.5 shows two power spectra computed from the time series of pixel shifts

in the x direction measured by a single WFS subaperture. The solid line was obtained

from closed-loop WFS data captured during solar observations while the dotted line cor-

responds to open-loop WFS data captured during stellar observations. The difference in

frequency range between both plots is due to the AO system running at a lower loop fre-

quency (1.2 kHz) during the stellar observations. The high frequency tail of the power

spectra provides information about the variance of the white noise affecting the measure-

ments (see Section D.5). The standard deviation of the wavefront error introduced by the

noise levels obtained from this particular data set, are measured at 3 nm for the solar data

versus 114 nm for the star data (standard deviation). This corresponds to a noise Q40 times

larger in the stellar observations than in the solar observations. As mentioned previously,

for solar observations the noise affecting WFS measurements can be safely neglected in the

PSF estimation algorithm. This is clearly not the case for stellar observations. The noise in

the WFS measurements is much larger and must be taken into account. The PSF estima-

tion code used for stellar observations was modified accordingly to estimate and subtract

the noise covariance that affects the WFS measurements, as described by Equation (4.42).
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Figure 5.5 Power spectrum of WFS x-shifts measurements. The solid line corresponds to
closed-loop data captured during solar observations and the dotted line to open-loop stellar
data. During stellar observations, the system's loop frequency was reduced to 1.2 kHz.

5.2 PSF Estimation Challenges

The AO system was synchronized with the DST camera control system to capture data

at the same time. Exposures of 2.5 seconds were taken at a cadence of 3 seconds. This

setup only allowed 0.5 seconds in between exposures for the data to be written to disk.

While this interval was sufficient for the DST camera control system to store each image,

it proved too short for the AO control computer. The AO control computer could success-

fully store AO data for only one out of every two exposures. Thus, for every two Sirius

images stored by the DST camera control system only one AO loop data file was available.

This problem could have been easily solved but it went unnoticed while the observations

were taking place. Missing half of the AO loop data files effectively halved the amount of

useful data obtained during the observations and introduced uncertainty about the correct

synchronization of the data.
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5.2.1 Impact of Limited Bandwidth

The estimation of r0 from the DM commands was affected by the reduced working fre-

quency of the AO system. With a reduced loop frequency, the AO system is unable to drive

the DM fast enough to completely follow the changing distortions introduced by atmo-

spheric turbulence. The atmospheric distortions changed before the DM had time to reach

the shape required to correct them. This translates to a smaller variance of the DM com-

mands that would produce overestimated values of ro . A simple simulation was constructed

to illustrate this point. A sinusoidal wave with a frequency similar to the frequency of the

turbulence (around 40 Hz) is used to simulate the changing conditions of atmospheric tur-

bulence. This signal is followed by a systems that emulates the behavior of the AO system

working at a particular frequency. At each iteration, the system attempts to keep its state as

close as possible to the value of the signal by updating its state proportionally to the differ-

ence between the value of the atmospheric signal and its current state. A gain coefficient of

g = 0.25 is used as a proportionality factor. Thus, the state of the systems at a time t + 1 is

computed as: S ±1 = St + g (Α t — Si), where ' t represents the value of the atmospheric

signal at a time t and St is the state of the system. Figure 5.6 shows the results obtained

when running the simulated system at frequencies of 2.5 kHz and 800 Hz.

When estimating r0 from the DM actuator commands, the assumption is that the

variances of the modal coefficients that describe the shape of the DM are the same as the

atmospheric ones. The variance of the original atmospheric signal in the simulation is 0.5,

while the variance measured by the system running at 800 Hz is 0.23. The system running

at 2.5 kHz produced a much better result with a variance of 0.45. By running the system at

800 Hz with a gain of 0.25 the variance of the signal was underestimated by 54%. Thus,

in the case of an AO system running at 800 Hz, the value of ro estimated from the DM

actuator commands will be overestimated. The value will be overestimated by a certain

factor that depends on the gain settings, the ratio between the frequency of the atmospheric

distortions and the working frequency of the AO system.
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Figure 5.6 Simulated AO system following a sinusoidal signal at different loop frequen-
cies.

Another consequence of the reduced correcting bandwidth affects the assumption of

large bandwidth from Equation (4.41). Running at less than a third the normal frequency

and with very high noise levels invalidates this assumption and the term (€ Z τ) cannot be

easily computed [29]. The full expression of this term is given by Veraπ [100].

5.2.2 Calibration

The calibration factors for the WFS and the DM measurements are very important for the

correct estimation of the residual wavefront and the seeing conditions. These calibration

factors relate the stored raw AO system data, such as WFS measurements in pixels and DM

commands in counts, to actual wavefront values. A set of theoretical calibration factors

(shown in Table 5.1) can be computed from the characteristics of the AO system compo-

nents (see Appendix B).

More reliable calibration factors could ideally be measured directly from the AO

system. Two attempts to do this were performed in January and August 2005. A known
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amount of tilt was introduced into the AO system and the response of the WFS and the DM

to this known tilt was recorded. This procedure is described in detail in Appendix B. Sev-

eral samples of calibration measurements were obtained during both attempts. However,

the results varied significantly across all samples for both attempts, as shown in Table 5.1.

This indicates some issues with the measuring procedure such as the possibility of tilt sat-

uration in the AO system or some other problems not yet identified. A more careful study

of the procedure or a completely new approach will be necessary in the future.

5.3 Comparison of Sirius Images to Estimated PSFs

A PSF was obtained from the AO loop data for each individual star image. The star images

and the estimated PSFs are both normalized to a peak value of one to eliminate any intensity

dependencies from the comparison. The seeing conditions and the correction performance

of the AO were not very good for the whole data set. Figure 5.7 shows one of the best

images and its estimated PSF. The Strehl ratio of the star image was measured as 0.24

using a software package provided by M. van Dam [65]. The calibration factors were the
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Figure 5.7 Azimuthal average of an AO-corrected image of the star Sirius and its esti-
mated PSFs. The estimated PSF was calculated using theoretical calibration factors.

theoretical factors from Table 5.1. The value of r o was estimated to be between 4 and 7 cm

and the Strehl ratio of the estimated PSF is around 0.20.

The width of the central core of the estimated PSF corresponds very well with the

width of the star image. The FWHM of the star in the image is 0."266 and the FWHM

of the estimated PSF is 0."269. The width of the central core is controlled by the residual

aberrations measured by the WFS. Hence, the theoretical WFS calibration factor constitutes

a good estimate. The halo of the PSF does not provide a good fit to the halo of the star

image.

Figure 5.8 shows the same star image with two PSFs estimated using the calibration

factors measured from the system in January and August 2005, given in Table 5.1. The

Strehl ratios of the PSFs estimated using the measured calibration factors (Figure 5.8) are

0.25 and 0.17, respectively. The estimated ro values are 12.2 cm and 9.1 cm.

The PSFs produced by these two sets of measured calibration factors do not provide

a good fit to the star image. It is to be expected that the measured calibration factors would



87

Figure 5.8 Azimuthal average of an AO-corrected image of the star Sirius and two dif-
ferent estimated PSFs calculated using different calibration factors that were measured di-
rectly from the AO system on January 2005 and August 2005.

not produce good results, judging by the large spread between the successive measurements

for each attempt, as seen in Table 5.1.

As discussed in the Section 5.2, the extreme conditions under which the AO system

was operating, produced an overestimation of the value of το and invalidated the assumption

of large bandwidth. The PSF estimation code was modified to compensate and account for

these effects in the covariances of the WFS measurements and the variance of the DM

commands. The DM calibration factor was artificially increased by a factor of 1.5 and

a fixed amount was subtracted from the computed WFS measurements covariance. The

results of these artificial corrections of estimated PSFs using the theoretical calibration

factors are shown in Figure 5.9. The Strehl ratio of this new PSF is 0.16. Its FWHM was

measured as 0."259 and the value of ro was estimated as 4.5 cm.

The modifications to the PSF estimation code, which attempt to account for the ef-

fects of the lower bandwidth, seem to provide a better fit to the star image. However,
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Figure 5.9 Azimuthal average of an AO-corrected image of the star Sirius and its esti-
mated PSFs. The estimated PSF was calculated using theoretical calibration factors. The
PSF estimation algorithm was adapted to compensate for the lower correcting bandwidth
of the AO system during the stellar observations.

when these same modifications were tested on another star image, the estimated PSF did

not produce an adequate fit to the stellar observations, as illustrated by Figure 5.10. These

modifications provided a closer match between some of the star images and the estimated

PSFs. However, more studies are required to completely understand the effects of low light

levels and low bandwidth on the PSF estimation method.

5.4 Conclusions

The observations took place during the day, in the mid-morning, and the seeing conditions

were not very good during the entire observing run. Despite the adverse seeing conditions,

the low light levels and the lower bandwidth, the AO system was able to lock on the star

Sirius and provide continuous correction. However, the Strehl ratios of the AO-corrected

images were extremely low. The highest Strehl in the complete time series was 0.20.
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Figure 5.10 Azimuthal average of an AO-corrected image of the star Sirius and its esti-
mated PSFs. The estimated PSF was calculated using theoretical calibration factors. The
PSF estimation algorithm was adapted in the same way as in Figure 5.9.

The chip in the WFS camera of the AO system is a CMOS chip with a very low

quantum efficiency (less than 0.20) and a very high read out noise (50-70 electrons). This

camera performs well during solar observations, under which the WFS camera receives a

very large number of photons and provides a signal with a very good signal to noise ratio.

However, it was poorly suited for the stellar observations. The noise in the WFS measure-

ments, which was several orders of magnitude larger than in the case of solar observations,

reduced the performance of the AO system.

The AO system's residual errors (discussed in Section 2.2) were large during the

stellar observations, which reduced the performance of the AO correction. In particular,

the bandwidth error was significantly increased by the reduced working frequency of the

AO system. During normal operation, the AO system runs at 2.5 kHz, while during the

stellar observations, the frequency was reduced to 800 Hz most of the time to allow for
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longer integration periods for the WFS camera. This reduction in frequency lowered the

correcting bandwidth and increased the bandwidth error by a factor of ten.

The PSF estimation algorithm was unable to produce adequate PSF estimates from

the AO loop data that fit the stellar observations. Some critical assumptions made by the

PSF estimation method were violated by the extreme conditions of the observations. Fur-

ther studies are required to completely understand the effect of the low Strehl ratios pro-

duced by the bad seeing, the high background light, the low light conditions and the low

system bandwidth on the PSF estimation method. It may be worth repeating the observa-

tions of a star under more favorable conditions. For example, the observations could take

place during the night, i.e., with much lower background light levels and seeing conditions

that are usually better. Also, using a more sensitive CCD camera with low read-out noise

as the WFS detector would significantly reduce the WFS noise. Alternatively, a different

independent method to estimate the PSF, such as phase diversity or speckle reconstruction,

could be attempted in the future.



CHAPTER 6

SUNSPOT OBSERVATIONS

The long-exposure PSF estimation method was applied to solar observations. The object

of the observations was to obtain high-resolution velocity measurements to study the char-

acteristics of the Evershed effect [22] in the penumbra of a sunspot. The scientific results

of this study were published by Rimmele & Marino [57] and discussed in Chapter 7. The

loop data produced by the AO system while correcting each of the captured images were

stored and used to estimate its long-exposure PSF. Each image was deconvolved with its

own long-exposure AO-corrected PSF.

6.1 Experimental Setup

The observations were performed on May 2004 at the 76 cm DST in Sunspot, New Mexico.

A relatively round sunspot (NOAA 0605) positioned at 12 South, 23 West at a position

angle of cos O = 0.86 was observed. The tunable Universal Birefringent Filter (UBF)

was used to obtain a time sequence of dopplergrams and narrow band filtergrams. The

UBF [3, 86] was tuned into the red and blue wings (offset +0.01 nm) of the spectral line

Fe I 557.6 nm, which in the penumbra forms at an altitude of about 240km above the solar

surface. The "non-magnetic" Fe I 557.6 nm line (effective Lande-factor g = 0) provides

a Doppler signal without any cross-talk from the magnetic field. At this wavelength, the

UBF has a passband of about 0.015 nm. Two additional cameras were set up to record

images simultaneously in two additional wavelengths: G-band (430.5 nm) and Ca K-line

(393.3 nm). An schematic drawing of the experimental setup is shown in Figure 6.1 and a

picture showing the UBF optical path and the AO bench is found in Figure 6.2.

UBF filtergrams were recorded with a I k x 1 k CCD camera manufactured by Spectral

Instruments. The optical layout provided an image scale of 0."025/pixel, i.e., the images are

91
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Figure 6.1 Drawing showing an schematic layout of the experimental setup.

highly oversampled. The diffraction limit at 557.6 nm is λ/D = 0."15. The field-of-view

of the UBF was approximately 25".

The G-band and K-line images were captured with two Kodak MegaPlus 1.6i CCD

cameras. The optical layout for both cameras produce a pixel scale of 0."034/pixel.The

G-band images were obtained using a 1 nm wide filter centered at 430.5 nm. The filter

used for the Kline images was a 0.3 nm wide filter centered at 393.3 nm.

The high-order AO system was deployed during the observations to correct atmo-

spheric distortions in real-time. The AO loop data produced by the AO system during the

capture of each image were stored to be used for PSF estimation.

The images were captured using the DST camera control system, which acts as a

centralized controller for all the subsystems involved in the observations and coordinated

the operation of the UBF and the science cameras. The AO system is set up as an inde-

pendent system and at the time of the observations there were no mechanisms in place to

synchronize the AO system with the DST camera control system. The AO system con-
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Figure 6.2 Picture of the experimental setup at the DST. The picture shows the UBF and
the science camera located at the output from the AO system.

troller was upgraded to accept a TTL signal that would trigger the recording of loop data.

The capability of sending such a signal was added to the camera control system creating a

mechanism of synchronization between the DST camera control system and the AO sys-

tem. The camera control system raises the TTL signal when an exposure is initiated, and

lowers it at the end of the exposure. The AO system receives this signal and starts storing
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Figure 6.3 Solar spectrum around Fe I line (557.609 nm) as given by the Liege atlas of the
solar spectrum (solid line). The band-pass of the UBF on both sides of the wing is shown
(dotted and dashed lines).

data until the signal is lowered. The TTL signal sent by the DST camera control system

ensures that the AO data are captured strictly simultaneously with the image exposure.

The steps to be performed during the observations were specified with a script that

the DST camera control system executed. The camera control system tuned the UBF to

557.619 nm and captured an image together with a G-band and K-line image. Then, the

UBF was tuned to 557.599 nm and another image was captured together with a G-band

and Kline image. This process was repeated for as long as the seeing conditions allowed,

producing an uninterrupted time series of measurements. The AO system stored the AO

loop data produced during each exposure.

Figure 6.3 shows the solar spectrum around the Fe I absorption line as given by

the Liege solar spectral atlas [17]. Superimposed on the image are the theoretical band-

passes of the UBF filter tuned on the sides of the wing. The wavelengths 557.599 nm and
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557.619 nm are located on the blue and red wings of the Fe I line centered at 557.609 nm,

as shown in Figure 6.3.

The Fe I 557.6 nm is an absorption line formed in the solar photosphere by neutral

iron atoms. The wavelength at which the absorption takes place changes according to the

Doppler effect. The subtraction of the intensity recorded from the red and blue wing images

produces a signal proportional to the line of sight velocity of the absorbing material.

Α dopplergram encodes velocity information as intensity information by subtracting

the red wing image from the blue wing image, as shown in Equation (6.1). Α plasma with

a line of sight velocity coming towards the observer shifts the absorption line towards the

blue, making the red wing image brighter than the blue wing image. This situation produces

a negative signal in the dopplergram. Negative values in the dopplergram are displayed

as dark grays and black, indicate gas that is moving towards the observer (blue shift).

While positive values, displayed as light grays and white, indicate gas that is moving away

from the observer (red shift). The values in the raw dopplergram are normalized intensity

differences. They must be calibrated to reflect velocity measurements in meters per second.

This is done with the calibration factor c v . This factor is computed in the following way:

the theoretical shift produced by a known line of sight velocity is calculated. This shift

is applied to the solar spectrum obtained from the Liege atlas. The intensity produced by

each wing image is integrated from the product of the theoretical bandpass of the UBF and

the shifted spectrum; the factor cv is obtained by comparing the difference between both

normalized wing intensities and the value of the known velocity.

(6.1)

Each pair of wing images is not captured simultaneously. There is an interval of a

few seconds between consecutive wing exposures. In general, the seeing conditions during

the capture of each wing image may be different, producing exposures with different image
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quality, which is commonly the case during day time observations. Since the wing images

in a pair are subtracted to obtain velocity measurements it is very important that the quality

of each wing image is of equivalent magnitude. Thus, PSF estimation for each individual

image and subsequent image restoration are critical for the computation of a dopplergram.

The AO system correction and wavefront sensing are conjugated to the entrance pupil

of the telescope because that is where the most important turbulent layer is located during

the day time. Other turbulent layers also introduce distortions in the image, which are not

corrected by the AO system. These higher altitude distortions will be different in both wing

images because they are captured at different times. The differential distortions between

both wing images are corrected using a de-stretch algorithm before they are subtracted.

This de-stretching is made possible by the very similar solar structures present in both

wing images due to the large width of the UBF bandpass.

6.2 Point Spread Function Estimation

Exposure times ranging from 1.0 to 1.5 seconds were used during these observations. Fig-

ure 6.4 shows an example of raw AO loop data captured during a is exposure with Strehl

ratio of 0.38 and seeing conditions with ro = 9.4 cm. The plot shows a time series of pixel

shifts in the x direction measured by a particular WFS subaperture and a time series of the

commands sent to a particular actuator of the DM.

The WFS measurements are affected by detection noise as described in Section 4.4.1.

However, during solar observations, the large number of photons available for wavefront

sensing produce WFS measurements with very high signal to noise ratio, as discussed in

Appendix D and illustrated by Figure 5.5. Thus, for solar observations the noise covariance

term (n z n^) from Equation (4.42) can be safely neglected in the PSF estimation algorithm.

The PSF for each individual exposure is estimated from their corresponding AO loop

data. The raw AO loop data are translated into real wavefront data with the help of the

calibration factors that relate pixel shifts in the WFS and counts in the DM to a wavefront
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Figure 6.4 Time series of r-shifts measured by one WFS subaperture (left) and commands
sent to one DM actuator (right).

Figure 6.5 Residual KL coefficient variance obtained from WFS measurements. Com-
pared to theoretical atmospheric variance given by the Kolmogorov model. The Fried pa-
rameter for these data is r0 = 9.5 cm.

in the telescope's pupil plane. As discussed in Chapter 5, the calibration factors greatly

influence the final estimated PSF and must be accurately measured from the system.

The covariances of the raw AO system loop measurements are transformed into

modal covariances with the help of the reconstruction matrix D± and the projection ma-



98

Figure 6.6 PSF estimated from real AO loop data captured on May 6th 2004. Left and
right images show the same PSF displayed on a linear and logarithmic scale, respectively.

trix B, described in Equations (4.62) and (4.63). Figure 6.5 shows an example of modal

variance of residual WFS measurements compared to the theoretical atmospheric variance

before correction. These data were stored during seeing conditions of r o=9.5cm (fitted

from the DM commands), which resulted in a corrected image with a Strehl ratio of 0.4.

Figure 6.5 illustrates the correction provided by the AO system, which according

to the plot, extends to KL mode 65. The AO correction provides a significant reduction

in wavefront phase variance. The total wavefront phase variance contained in the first 70

KL modes, including tip and tilt, before correction is 33.16 rad 2 , while after correction is

reduced to 0.92 rad2 .

The estimated long-exposure PSF is obtained from the inverse Fourier transform of

the OTF, which is expressed as the product of three independent components, as described

in Equation (4.24). An example of a PSF estimated from AO data is displayed in linear

(left panel) and logarithm (right panel) scale in Figure 6.6. The azimuthal average is shown

in Figure 6.7. This PSF is computed from the AO data displayed in Figure 6.5. It illustrates

the typical structure of an AO-corrected PSF: a narrow central core superposed on a wide

seeing limited halo. With perfect correction, the full width at half maximum (FWHM) of



99

Figure 6.7 Azimuthal average of PSF shown in Figure 6.6.

the central core is the same as the FWΗΜ of the diffraction-limited PSF, which at this wave-

length (557.619 nm) is Ο."151. However, the correction is not perfect and some residual

aberrations remain after correction that increase the FWHM of the PSF core. The FWΗΜ

of the central core of the estimated PSF in Figure 6.7 is Ο."194.

Hardy [33] provides an expression to calculate the FWHM of the central core of the

AO-corrected PSF α, from the variance of the residual tip-tilt σά:

(6.2)

The variance σ refers to the variance of the angle c shown in Figure B.1, while

the variances of the residual WFS measurements, shown in Figure 6.5, are KL coefficient

variances that describe the phase of the wavefront. The variance of the modal coefficient

for tilt σ z is related to the tilt variance σ with the following expression:
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(6.3)

The factor Αt represents the amplitude (peak to valley) of the tilt mode, which for the

KL tilt mode is 3.83. This expression can be substituted in the expression given by Hardy

producing:

(6.4)

The tilt residual variance σ
 2 

can be obtained from the WFS measurements, shown

in Figure 6.5, and can be used in the previous equation to produce an estimation of the

FWHM of the central core of the PSF α, = 0."198. This result is comparable to the

FWHM measured from the PSF estimated from AO data.

The level of correction that the AO system provides depends strongly on the seeing

conditions. Adverse seeing conditions produce more severe wavefront distortions, which

stress the performance of the AO system and reduce the correction provided. The depen-

dency of AO correction on seeing conditions is illustrated by Figure 6.8, which plots the

Strehl ratio of AO-corrected images versus the Fried parameter r0 . The data from the plot

were obtained from a long times series of solar observations.

The residual wavefront variance after correction arises from several error sources

discussed in Section 2.2. The residual wavefront error introduced by these sources depends

on the design characteristics of the AO system and on the seeing conditions. Bad seeing

conditions (low values of τ0 ) will produce higher wavefront variances from these sources

and increase the overall residual wavefront variance after correction. This higher residual

wavefront variance lowers the Strehl ratio of the image, see Equation (1.1), and reduces the

quality of the correction.
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Figure 6.8 AO-corrected Strehl ratio obtained from the estimated PSFs versus the Fried
parameter ro .

The relationship between the Strehl ratio and ro in Figure 6.8 presents two distinct

trends that correspond to different AO performance regimes. The higher trend in the figure

indicates a higher AO performance that is able to provide Strehl ratios of 0.9 with very good

seeing conditions (ro ti 30 cm). The lower trend corresponds to a lower AO performance

that can only provide Strehl ratios of 0.65 with the same very good seeing conditions. Two

different theoretical Strehl profiles were fitted to the data shown in Figure 6.8. Both lines

were obtained from Equation (1.1), substituting the wavefront variances arising from the

different AO system error sources (see Section 2.2). The only difference between both

fitted lines is a different estimated WFS noise variance added to the global residual vari-

ance. The top fit in the figure was obtained by adding a WFS noise variance of 0.06 rad 2 ,

while the bottom fit was obtained by adding a variance of 0.33 rad 2 . The appearance of

two different additive variances affecting the residual wavefront variance after correction

is not yet understood. Α possible explanation involves the wavefront sensing errors in-
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troduced by anisoplanatism [99] arising from high altitude turbulent layers, which change

independently of seeing conditions at the ground level.

6.3 Image Post -Processing

Each individual captured image is deconvolved with its long-exposure PSF estimated from

the AO loop data. The deconvolution attempts to restore the amplitude of the spatial fre-

quency components of the image to their diffraction-limited levels. Equation (4.1) de-

scribes the process of image formation as the convolution of the original object with the

PSF of the optical system. Deconvolution is the inverse problem where the original object

is computed from the image and the PSF. However, in the presence of noise [85], and due

to the cut-off spatial frequency of the imaging system, the deconvolution problem turns

into a difficult problem, which generally does not have a unique and stable solution. From

the expression of a convolution in the Fourier domain, shown in Equation (4.4), a very

simplistic deconvolution approach can be attempted by dividing the equation by the OTF.

(6.5)

However, the presence of noise indicated by the term N(i) makes this simple ap-

proach impossible. Around the spatial frequency cut-off of the PSF, the values of the OTF

are very small, and when inverted, they cause noise amplification at high spatial frequen-

cies, i.e., the term Ν(ν)/ΟΤF(υ) dominates Equation (6.5). A tradeoff must be introduced

to allow for image reconstruction while limiting noise amplification. This is achieved b y

the introduction of constraints derived from a priori information about the characteristics of

the object, i.e., the image and the noise. The use of such constraints is called regularization.

There are many iterative and non-iterative deconvolution algorithms available. A

simple non-iterative Wiener filter approach was chosen to deconvolve because of its speed

and simplicity. A Wiener filter is a linear regularization method where the constraints are
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included in a filtering function W that depends on the characteristics of the image and the

noise.

(6.6)

The particular Wiener filter chosen in this analysis assumes that the image is affected

by additive white noise, i.e., the noise that affects each pixel in the image is independent

from the noise affecting its neighboring pixels, which is a valid assumption for the noise

sources that affect images captured with a CCD. The long flat noise tail of the power spec-

trum of the image before deconvolution in Figure 6.9 demonstrates that the noise affecting

the images is white noise. Thus, the Wiener filter used is expressed as:

(6.7)

The term Nf acts as a frequency dependent noise filter that controls the tradeoff

between image reconstruction and noise amplification. It is computed from the inverse

of the image power spectrum. Thus, for spatial frequencies where the power spectrum

is low, containing mostly noise, the term Nf is large and dominates the denominator of

Equation (6.7), dampening the power of the noise in the deconvolved image.

While linear regularized deconvolution methods present a number of problems [85]

they are extremely fast, because only a few Fourier transforms are required. More advanced

deconvolution algorithms [14, 85] will be considered in the future, such as Richardson-

Lucy algorithm [85], maximum entropy and wavelet-based deconvolution [85].

The quantitative data obtained from the observations benefit from deconvolving each

image with its corresponding PSF. This is possible because the amplitudes of the high spa-

tial frequencies components of the image were preserved by AO correction. Deconvolution
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restores these amplitudes to their diffraction-limited levels, consequently improving any

quantitative measurements obtained from the image.

6.4 Results

6.4.1 Wing Images Affected by Similar Seeing Conditions

Figure 6.10 shows an example of AO-corrected blue and red wing images captured with

the UBF. The images shown in the figure are 1 s exposures recorded at successive times,

about 6 seconds apart. Both wing images were exposed during similar seeing conditions,

with r0 around 13 cm, and received comparable levels of AO correction producing images

of equivalent image quality, as illustrated by their almost identical power spectra shown

in Figure 6.9. The spatial frequency cut-off of the image is around 5.5 cycles/arcsec

according to the power spectra plot. This is smaller than the diffraction-limited cut-off

frequency at this wavelength, which is D/λ = 6.6 cycles/arcsec. As discussed previously,

this is due to the partial correction provided by the AO system, which produces a PSF with

a central core width slightly larger than the diffraction-limited width. Both wing images

are expected to present similar RMS contrast values because of the large width of the UBF

bandpass compared to the width of the spectral line. The similar RMS contrast values of

both wing images (see Table 6.1) also indicate images with comparable image quality.

Each wing image was deconvolved with its corresponding estimated PSF, producing

the results shown in Figure 6.11. The deconvolved wing images have higher contrasts

with sharper features. The RMS contrast enhancement introduced by the deconvolution

for both wing images is shown in Table 6.1. The RMS contrast of quiet sun granulation

obtained after deconvolution of the wing images (around 9%) disagrees with the results

produced by current MHD simulations, which predict a contrast of >20%i. However, this

result is consistent with the results obtained by other image reconstruction techniques, such

as speckle reconstruction and multi-frame blind deconvolution [1061, which are unable to

reproduce such high contrasts.
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Figure 6.9 Azimuthal averages of power spectra of wing images shown in Figure 6.10,
captured during similar median seeing conditions.

Figure 6.12 shows the power spectrum of the blue wing image before and after de-

convolution. The figure illustrates the effects of the deconvolution: an increase of the

amplitude of the spatial frequency components and a reduction of the noise. The red wing

image was similarly affected by the deconvolution suffering a similar amplitude increase

and noise filtering.

The SNR of an image can be computed from its power spectrum, i.e., the power

content of the image at different spatial frequencies. The CCD noise in the image is white

noise that produces the flat high spatial frequency tail seen in Figures 6.9 and 6.12. White

noise presents the same power over all spatial frequencies. Hence its power can be extracted

from the power of the high frequency tail and integrated over all the spatial frequencies

in the image to produce a measurement of the noise variance. Similarly, the integral of

the power spectrum over all spatial frequencies in the image provides the variance of the

signal. The SNR of the image is computed as the square root of the ratio of image variance
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Figure 6.10 AO-corrected blue (top) and red (bottom) wing images. Both wing images
were affected by similar seeing conditions (τ0 9 cm).
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Figure 6.11 Deconvolved AO-corrected blue (top) and red (bottom) wing images. Each
image was deconvolved with its corresponding estimated PSF. Images were captured during
similar median seeing conditions (τ0 9 cm).



108

Table 6.1 Wing Images Captured During Similar Seeing Conditions

Image ro (cm) Strehl Ratio Original RMS Deconvolved RMS

Blue Wing 8.8 51.2% 0.2472 0.2648

Red Wing 9.2 50.5% 0.2474 0.2677

RMS Contrast

Image

Umbra Penumbra Quiet Sun

Original Deconv. Original Deconv. Original Deconv.

Blue Wing 0.1424 0.1990 0.1129 0.1367 0.0598 0.0746

Red Wing 0.1464 0.2080 0.1041 0.1378 0.0682 0.0902

Dopplergram Standard Deviation (m/s)

Full Image Umbra Penumbra Quiet Sun

Original Deconv. Original Deconv. Original Deconv. Original Deconv.

493.8 564.8 100.8 159.8 562.9 627.2 398.4 482.4

to noise variance. The SNR of the images shown in Figure 6.10 was about 190, which is a

reasonably high SNR.

The velocity information is encoded in the small intensity differences between both

wing images. The dopplergrams are computed according to Equation (6.1) by subtracting

the red wing image from the blue wing image and dividing the result by their sum. The

dopplergrams computed from the AO-corrected wing images (Figure 6.10) and from the

AO-corrected deconvolved wing images (Figure 6.11) are shown in Figure 6.13.

Convection inside the umbra of the sunspot is suppressed by the large magnetic

fields [4] and, therefore, points inside the umbra should show zero velocity. The mean

velocity measured inside the umbra of the sunspot is subtracted from the entire doppler-

gram to eliminate undesired global velocity offsets [60].
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Figure 6.12 Azimuthal average of power spectra of blue wing image before and after
deconvolution. Blue wing image was captured during seeing conditions with r o ti 9 cm.

The measurements obtained from the original and deconvolved wing images produce

slightly different quantitative data. Figure 6.14 illustrates the difference in the quantitative

information contained in both wing images before and after deconvolution. The plots in

Figure 6.14 show a cross-section, before and after deconvolution, taken across several fil-

aments of the penumbra, as illustrated by the white line in the top panel of Figure 6.13.

The left and right panels in Figure 6.14 show data from the blue and red wing images,

respectively. The intensity displayed in the plots is normalized to the mean intensity of

the surrounding quiet Sun to eliminate global intensity dependencies from the images. The

plots further illustrate the increase of RMS contrast and noise filtering produced by the

deconvolution. The noise suppression of the Wiener filter is controlled by the noise filter

term /V f in Equation (6.7), which must be estimated for each image individually.

A cross-section taken from the calibrated dopplergrams computed from the original

and deconvolved wing images is shown in Figure 6.15. The velocity amplitudes are en-

hanced by the deconvolution of the wing images, particularly for small spatial frequencies.
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Figure 6.13 Dopplergrams obtained from subtracting the wing images. Before deconvo-
lution (top) and after deconvolution (bottom). The white line on the top panel indicates the
location where the cross-sections were obtained. Wing images were captured during seeing
conditions with τ0 N 9 cm.
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Figure 6.14 Cross-section from AO-corrected blue wing (left) and red wing (right) before
and after deconvolution. Cross-sections are taken from location indicated in Figure 6.13.

Table 6.2 Dopplergram Difference: Similar Seeing Conditions

Full Field Umbra Penumbra

Standard Deviation (m/s) 143.3 120.1 145.0

Average (m/s) 40.2 -2.3 40.2

The very high spatial frequency components beyond the frequency cut-off of the telescope,

which are dominated by noise, are damped by the deconvolution. Figure 6.15 illustrates the

enhancement of the quantitative data and noise reduction produced by the deconvolution,

including a significant global red shift of the dopplergram computed after deconvolution

with respect to the dopplergram obtained before deconvolution. The average velocity over

the whole field of the dopplergram before deconvolution is about —82 m/s while the mean

velocity after deconvolution is about 166 m/s indicating a global red shift of the absolute

velocity zero point by about 248 m/s caused by the deconvolution. This global red shift

arises from the subtraction of the mean velocity inside the umbra, which has been reduced

by deconvolution. The difference between the dopplergram before and the dopplergram af-

ter deconvolution was computed. The standard deviation and mean values of this difference

image, shown in Table 6.2, provide a measure of the correction that deconvolution provides

to the quantitative velocity measurements in the dopplergram. The correlation coefficient



Figure 6.15 Cross-section from the dopplergrams before and after deconvolution shown
in Figure 6.13. Cross-sections are taken from location indicated in Figure 6.13.

between the velocity cross-sections before and after deconvolution is 0.93, which indicates

a high correlation between the velocity signals. This implies that the improvement pro-

vided by the deconvolution mostly affected the quantitative values of the signal and not its

overall structure.

6.4.2 Wing Images Affected by Different Seeing Conditions

In the examples discussed above, both wing images were affected b y similar seeing con-

ditions. Another more common case to consider is the case where the seeing conditions

change drastically between the capture of the blue and red wing exposures. In this case,

the image quality and RMS contrast of each wing image can be significantly different. The

dopplergram obtained as the difference of such a pair of wing images may contain many ar-

tifacts and completely skewed quantitative values. Figure 6.16 shows an example of such a

pair of wing images that were exposed during very different seeing conditions, as indicated

in Table 6.3.
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Figure 6.16 AO-corrected blue (top) and red (bottom) wing images affected by very dif-
ferent seeing conditions. The Fried parameters ro for the blue and red wing images are
r^ ^ 14 cm and r0 ^-' 6 cm, respectively.
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Table 6.3 Wing Images Captured During Different Seeing Conditions

Image r0 (cm) Strehl Ratio Original RMS Deconvolved RMS

Blue Wing 9.4 61.3% 0.2438 0.2555

Red Wing 4.3 20.4% 0.2244 0.2495

RMS Contrast

Image

Umbra Penumbra Quiet Sun

Original Deconv. Original Deconv. Origignal Deconv.

Blue Wing 0.0958 0.1252 0.1003 0.1144 0.0538 0.0636

Red Wing 0.0695 0.1145 0.0703 0.1010 0.0376 0.0640

Dopplergram Standard Deviation (m/s)

Full Image Umbra Penumbra Quiet Sun

Original Deconv. Original Deconv. Original Deconv. Original Deconv.

493.1 507.0 274.0 192.5 508.4 543.9 388.4 453.1

The blue wing image was recorded during seeing conditions with a Fried parameter

of ro 9 cm, while the red wing image was affected by much more severe seeing condi-

tions with r0 4 cm. The RMS contrast of the red wing image is significantly lower than

the RMS contrast of the blue wing image (see Table 6.3). Deconvolution of each wing im-

age with its corresponding estimated PSF attempts to restore both images to an equivalent

image quality level. The deconvolved wing images are shown in Figure 6.17.

Figure 6.18 shows dopplergrams calculated from the wing images before and after

deconvolution. The dopplergram computed before deconvolution (top panel in the figure)

shows significant intensity-velocity cross-talk, especially in the top left area of the dopp-

lergram and in the umbra of the sunspot. The characteristic velocity signals produced by

the Evershed flow in the penumbra of the sunspot are severely distorted and almost non-
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Figure 6.17 Deconvolved ΑΟ-corrected blue (top) and red (bottom) wing images affected
by very different seeing conditions.
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Figure 6.18 Dopplergrams computed from the original (top) and deconvolved (bottom)
wing images. Each wing image was affected by very different seeing conditions. The white
line on the top panel indicates the location where the cross-sections were obtained.
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Table 6.4 Dopplergram Difference: Different Seeing Conditions

Full Field Umbra Penumbra

Standard Deviation (m/s) 235.2 204.7 214.9

Average (m/s) -267.1 -6.1 -299.2

existent in some areas of the dopplergram. The Evershed effect appears as radial filament

shaped structures, which are clearly visible in other dopplergrams captured during better

seeing conditions, such as the ones shown in Figures 6.13 and 6.26.

The velocity filament structures in the penumbra are considerably recovered in the

dopplergram computed after deconvolution of the wing images (bottom panel in Figure 6.18).

Radial filament structures can be seen in the top left area of the penumbra, appearing as

long thin regions of red shifted velocity. However, the dopplergram still presents some

residual intensity-velocity cross-talk after deconvolution, which indicates that the decon-

volved wing images were not restored to exactly the same image quality.

The very different quantitative velocity measurements obtained from the doppler-

grams before and after deconvolution are shown in Figure 6.19. Figure 6.19 shows cross-

sections taken along the white line in Figure 6.18 where the intensity-velocity cross-talk is

most pronounced. The velocity signal obtained from the dopplergram before (dotted line)

and after (solid line) deconvolution are significantly different.

Figure 6.19 also shows the velocity signal obtained from another dopplergram (dashed

line) computed from wing images captured shortly after during good seeing conditions

(bottom panel of Figure 6.21), which is assumed to represent the "ground-truth". The new

good seeing dopplergram was computed from data captured 1 min and 20 s later during see-

ing conditions characterized by ro 18 cm. The structures in the umbra and penumbra of

the sunspot do not noticeably evolve [57] during the time interval between both data sets.

Hence, both data sets refer to the same object and should produce identical results. The

only change to be expected between the two data sets is in the granulation patterns, which
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Figure 6.19 Cross-section of velocities obtained from AO-corrected wing images and
from deconvolved wing images. Wing images were affected by very different seeing con-
ditions. The cross-sections were obtained from the location indicated in Figure 6.18.

evolve much quicker and may have changed in the time between both sets of exposures.

The wing images obtained during the very good seeing conditions yield Strehl ratios around

0.8 and, therefore, are very close to perfect diffraction-limited images. The dopplergrams

they produce provide reliable quantitative velocity measurements, i.e., the "ground-truth",

that can be contrasted to the measurements obtained from the dopplergrams computed from

wing images affected by different seeing conditions (Figure 6.18).

The correlation coefficients between the velocities before and after deconvolution

and the velocities from the good seeing dopplergram indicate the considerable improve-

ment produced by deconvolution. The correlation coefficient between the velocity signal

before deconvolution and the good seeing dopplergram is 0.13, while for the signal af-

ter deconvolution is 0.74. The small correlation coefficient (0.13) obtained from the data

before deconvolution indicates that both signals contain completely different information,

i.e., it is evidence of the large intensity-velocity cross-talk. For the deconvolved data, the
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Figure 6.20 Azimuthally averaged power spectra of blue and red wing images captured
during very different seeing conditions. Conditions were worse during the exposure of the
red wing image.

coefficient is considerably higher (0.74) but still not high enough to indicate a good corre-

lation. This indicates that even though deconvolution significantly reduced the amount of

intensity-velocity crosstalk, it did not completely eliminate it.

The dopplergrams before and after deconvolution are subtracted to obtain a measure

of the correction provided by deconvolution. The standard deviation and average values of

this difference are shown in Table 6.4.

The RMS contrast values of the wing images before deconvolution, shown in Ta-

ble 6.3, provide evidence of the different image quality of both wing images. After decon-

volution the RMS contrast values are higher for both wing iτnages, but they are still not

brought to the same level. This can be further explored by computing the power spectrum

of the wing images. Figure 6.20 shows the azimuthally averaged power spectra of both

wing images before deconvolution. The power spectrum of the red wing image presents a

consistently lower power over the whole spectral range, indicating its lower image quality
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and RMS contrast. The differences between the power spectra indicate that the AO sys-

tem did not provide the same level of correction for both wing images. The cut-off spatial

frequency, i.e., the frequency at which the power of the image is lost in the noise, is also

lower for the red wing image than the blue wing image. Deconvolution will not be able

to restore both wing images equally because they contain different high spatial frequency

information. This is also shown by the different RMS contrast values of both wing images

after deconvolution (see Table 6.3).

The severe seeing conditions during the exposure of the red wing image reduced the

level of correction provided by the AO system, producing an image with a much lower

Strehl ratio than the blue wing image. Some of the high spatial frequency information may

not be adequately preserved by the lower correction provided by the AO system and may

be lost in the noise beyond recovery. This loss of high spatial frequency information is

illustrated by the power spectra shown in Figure 6.20. Hence, due to the different spatial

frequency contents of both wing images, it is to be expected that deconvolution will not be

able to equally restore both wing images and produce an accurate dopplergram, as shown

in Figure 6.19.

Deconvolution of the wing images significantly reduced the amount of intensity-

velocity crosstalk from the dopplergram but some residual crosstalk can still be observed

in the deconvolved dopplergram. As discussed earlier, another dopplergram was computed

from a pair of wing images captured shortly after, during very good seeing conditions, and

can be used for comparison here. Figure 6.21 displays the deconvolved dopplergrams from

the variable seeing data set (top panel) and the very good seeing data captured short after

(bottom panel). The presence of intensity-velocity cross-talk in the dopplergram for vari-

able seeing is made evident when displayed alongside the dopplergram captured under very

good seeing.

Figure 6.22 displays the difference between the dopplergrams from variable seeing

data and the dopplergrams captured during good seeing conditions. The top image in Fig-
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Figure 6.21 Deconvolved dopplergrams from variable seeing data (top) and from data
captured during good seeing conditions (bottom).



122

Figure 6.22 Difference image taken between dopplergrams from bad seeing data and very
good seeing data. Before deconvolution (top) and after deconvolution (bottom).
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Table 6.5 Difference Between Good and Bad Seeing Dopplergrams

Standard Deviation

Full Field Sunspot Umbra Sunspot Penumbra

Before Deconvolution 350.5 303.3 245.0

After Deconvolution 274.9 231.3 191.4

ure 6.22 shows the difference taken before deconvolution while the bottom image shows the

difference taken after deconvolution. Ideally, the difference between both sets of doppler-

grams should be very small, since they refer to the same object and should provide the same

measurements. The standard deviation taken in several areas of the dopplergram difference

images illustrates the great improvement provided by deconvolution (see Table 6.5).

The dopplergram difference image computed before deconvolution from Figure 6.22

is dominated by intensity signal with almost no discernible velocity signal. The doppler-

gram difference image computed after deconvolution shows much less detail with lower

intensity crosstalk. The dopplergram difference image computed before deconvolution

has very little structure and is uniformly gray, as opposed to the dopplergram difference

image computed after deconvolution. This demonstrates that deconvolution of the wing

images with their estimated PSFs produces significantly improved scientific data and that

the PSFs produced by the method seem to provide good estimations of the AO-corrected

PSF.

6.4.3 Very Good Seeing Conditions

Under very good seeing conditions, the AO correction provides excellent image quality that

produces very good quantitative velocity measurements. However, even in excellent seeing

conditions the AO correction remains only partial, allowing some high-order aberrations

to affect the image and reduce its quality. Deconvolution can help to further improve the

quality of these images by further restoring their Fourier amplitudes to their diffraction-
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Table 6.6 Wing Images Captured During Very Good Seeing Conditions

Image r0 (cm) Strehl Ratio Original RMS Deconvolved RMS

Blue Wing 18.7 84.4% 0.2523 0.2633

Red Wing 18.7 82.1% 0.2591 0.2726

RMS Contrast

Image

Umbra Penumbra Quiet Sun

Original Deconv. Original Deconv. Original Deconv.

Blue Wing 0.1717 0.2012 0.1234 0.1394 0.0636 0.0741

Red Wing 0.1721 0.2045 0.1159 0.1375 0.0728 0.0878

Dopplergram Standard Deviation (m/s)

Full Image Umbra Penumbra Quiet Sun

Original Deconv. Original Deconv. Original Deconv. Original Deconv.

533.2 581.8 111.8 154.2 560.7 606.1 479.4 541.4

limited levels. Figure 6.23 shows an example of AO-corrected wing images captured during

very good seeing conditions, with ro values around 18 cm. Each wing image is deconvolved

with its corresponding estimated PSFs, producing the results shown in Figure 6.24.

Figure 6.25 illustrates this improvement by comparing the power spectrum of the

blue wing before and after deconvolution. The power spectra in the Figure 6.25 indicate

that the deconvolution affects the high frequencies the most, as would be expected for such

a very good seeing image. The improvement is also seen in the increase of RMS contrast

shown in Table 6.6, which results in an increase of 4.5%.

The dopplergrams obtained from the wing images before and after deconvolution

are shown in Figure 6.26 and velocity cross-sections before and after deconvolution are

found in Figure 6.27. The cross-sections were taken across several velocity filaments of
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Figure 6.23 AO-corrected blue (top) and red (bottom) wing images captured during very
good seeing conditions: ro ^-' 18 cm.
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Figure 6.24 Deconvolved AO-corrected blue (top) and red (bottom) wing images captured
during very good seeing conditions: το ^-' 18 cm.
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Figure 6.25 Azimuthally averaged power spectrum of blue wing image captured during
very good seeing conditions before and after deconvolution.

the dopplergram, as indicated by the white line in the top panel of Figure 6.26. The RMS

contrast values shown in Table 6.6 and the cross-sections from Figure 6.27 further illustrate

the possibility of improvement even of data captured during very good seeing conditions.

The difference between the dopplergram before and the dopplergram after deconvo-

lution provides a measurement of the improvements provided by deconvolution. Table 6.7

shows the standard deviation and average values taken from the dopplergram difference be-

fore and after deconvolution. The comparison of Table 6.7 with Tables 6.2 and 6.4 indicates

that the quantitative improvement produced by deconvolution is much more pronounced for

data captured during bad or variable seeing conditions. While good seeing data are also en-

hanced by deconvolution, the changes introduced are not as significant as in the case of

mediocre seeing conditions.
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Figure 6.26 Dopplergrams computed from the original (top) and deconvolved (bottom)
wing images. Both wing images were captured during very good seeing conditions. The
white line in the top panel indicates the location where the cross-sections were obtained.



129

Figure 6.27 Cross-section of velocities obtained from AO-corrected wing images and
from deconvolved wing images. Wing images were captured during very good seeing
conditions: r0 ^- 18 cm. Cross-sections were obtained from the location indicated in
Figure 6.26

Table 6.7 Dopplergram Difference: Very Good Seeing Conditions

Full Field Umbra Penumbra

Standard Deviation (m/s) 112.1 109.5 113.3

Average (m/s) —8.4 —0.5 —10.9

6.5 Accuracy of the Estimated PSF

The improved quantitative measurements produced by deconvolution have been demon-

strated for data captured during different seeing conditions. An accurate estimation of the

PSF is very important to produce good deconvolution results. An incorrect PSF estimate

may affect the quantitative measurements obtained and even introduce artifacts in the im-

age. With solar observations as the ones described in this chapter, it is very difficult to

quantify the accuracy of the estimated PSF. An independent parallel method is required to

obtain reliable PSFs that can then be compared to the ones produced b y the PSF estimation
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Figure 6.28 Image of the 30 μm pinhole in a logarithmic display (left) and its cross-
section compared to the diffraction-limited PSF of the telescope (right).

algorithm. An attempt to obtain a direct parallel measurement of the PSF by observing the

bright star Sirius was already discussed in Chapter 5.

Several factors, which are not considered in the current PSF estimation method, can

affect the accuracy of the PSFs estimated from the AO loop data, such as non-common

path aberrations, anisoplanatism effects and scattered light. Non-common path aberrations

are aberrations introduced by the optical elements between the AO system and the science

camera. Hence, these aberrations appear in the final image but are not sensed by the WFS of

the AO system. To evaluate the severity of these aberrations a very small pinhole (30 μm)

was placed at the focus of the telescope. This small pinhole cannot be resolved and behaves

as an ideal point source. An AO-corrected image of this pinhole represents the PSF of the

optics in the non-common path and characterizes its aberrations.

Figure 6.28 shows an image of the pinhole and its cross-section compared to the

diffraction-limited PSF of the telescope. The image of the pinhole is shown in a logarith-

mic display (left panel) and it clearly shows traces of a diffraction ring around the central

peak. The cross-sections from Figure 6.28 show a small difference between the widths

of the pinhole image and the diffraction-limited PSF. The FWΗΜ of the pinhole image is

measured at 0."l66 while the FWΗΜ of the diffraction-limited PSF is 0."151. The slight
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Figure 6.29 Image contrast versus the Fried parameter ro from the wing images captured
on May 2004. From the original images (left) and deconvolved images (right).

larger width of the pinhole indicates the presence of a small amount of non-common path

aberrations that reduce the maximum spatial resolution of the optical set up.

The accuracy of the estimated PSFs also depends critically on the values of the AO

system calibration factors, as discussed in Chapter 5. The correct estimation of the residual

wavefront and the applied correction depends on the accurate determination of these cali-

bration factors. Using an incorrect DM calibration factor would skew the estimation of ro

obtained from the DM commands. Similarly, the residuals measured by the WFS require

an accurate WFS calibration factor to account for the exact residuals that reach the image.

The calibration factors obtained theoretically from the technical data of the system

(shown in Table 5.1) were used to computed the estimated PSFs from the AO loop data.

A PSF was estimated for each image in the time series of data captured on May 6th 2004.

Each solar image was deconvolved with its estimated PSF. The RMS contrast of the image

was computed before and after deconvolution and stored together with the estimated value

of ro and the Strehl ratio of the PSF. Figure 6.8 shows the Strehl ratio obtained from this

calculations plotted against the value of τ0 . The RMS contrasts of the AO-corrected images

before and after deconvolution are displayed in Figure 6.29 as a function of r o .

As illustrated by Figure 6.8, the correction that the AO system provides depends

strongly on the seeing conditions. The same dependency applies to the RMS contrast of
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an AO-corrected image. It is higher for good seeing conditions and lower for bad seeing

conditions. There is a maximum RMS contrast that a particular image can have that is

determined by the RMS contrast of the object and the diffraction-limited PSF of the optical

system. A diffraction-limited image will have this maximum possible RMS contrast.

Ideally, after deconvolution with their corresponding estimated PSF the RMS con-

trast for every wing image should be restored to the maximum diffraction-limited RMS

contrast of the image and be independent of seeing conditions. This should produce a flat

distribution of the RMS contrast after deconvolution when plotted against the value of  Το .

The left panel in Figure 6.29 illustrates the dependence of the RMS contrast of the

AO-corrected wing images on the seeing conditions. The right panel in Figure 6.29 dis-

plays the RMS contrast of those same wing images after deconvolution with their corre-

sponding estimated PSFs. The RMS contrast is clearly increased for all the wing images

and its dependency on the seeing conditions is reduced, as indicated by a flatter distribution.

However, the seeing dependency is not completely eliminated from the deconvolved RMS

contrast. This is to be expected, since for extremely bad seeing conditions, the performance

of the AO system is severely reduced and some of the high spatial frequency information

in the images may be lost beyond recovery in the noise. This is illustrated in the power

spectra shown in Figure 6.20.



CHAPTER 7

THE EVERSHED FLOW: FLOW GEOMETRY AND

ITS TEMPORAL EVOLUTION

7.1 Introduction

Sunspot penumbra still present many mysteries to solar astronomers. In particular, the

complex magnetic field structure and the dynamic evolution of penumbral fine-structure

are not yet well understood. See the recent review articles by Thomas & Weiss [93] and

Weiss [103] for a summary of outstanding problems concerning the physics of the penum-

bra.

The penumbral magnetic field is highly inhomogeneous. Several observations per-

formed over the last decade have shown that the inclination of the field vector is different

between dark and bright filaments [95, 43, 82]. The magnetic field is generally more ver-

tical in bright filaments. In particular, this is true near the outer penumbra where dark fila-

ments are found to be nearly horizontal and the difference in inclination angle between the

more vertical bright filaments and nearly horizontal dark filaments can be 30 — 40 deg [42].

Based on these observations, the picture of an interlocking-comb magnetic field

structure, sometimes also referred to as "uncombed" or "fluted" penumbra, has now been

generally accepted as an accurate description of the penumbral magnetic field geometry.

For a comprehensive discussion of this subject, see Thomas & Weiss [92, 93], Solanki [81],

or Weiss [103]. This intuitively rather unexpected field geometry has been referred to as

"the most remarkable feature of sunspot magnetic fields" [93].

The extensively studied Evershed flow [22] is an important aspect of penumbral

physics that has to be explained by any successful penumbral model (see e.g., Thomas

& Weiss [93]). It is also considered a firmly established fact that the Evershed flow occurs

along magnetic field lines [7, 1 1 ], as fundamental physics would dictate, if the Evershed

133
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effect is indeed caused by a plasma flow. The correlation between Evershed flow and

dark and bright filaments has been somewhat controversial amongst observers. The early

observations of Beckers & Schrbter [6] found the Evershed effect co-located with dark fil-

aments. Other observers did not find a clear correlation between Evershed flow and dark

filaments [105, 44]. Although, a number of more recent high-resolution observations seem

to provide strong evidence that the Evershed flow is predominantly co-located with the

horizontal dark filaments (e.g., Title et a. [95], Langhans et al. [42]). This correlation is

generally stronger when velocity and intensity signals are compared that form at approx-

imately the same height in the atmosphere [59, 60, 84]. Schlichenmaier et al. [74] find

that the correlation between dark filaments and Evershed flow varies from the center-side

to the limb-side penumbra and high correlation coefficients are found only locally. They

conclude that the Evershed flow occurs in bright and dark filaments.

The Evershed flow is time dependent. Flow speeds along flow channels vary on time

scales of 10-20 minutes [58, 79]. It has been argued that since these velocity variations are

observed to be coherent across several individual flow channels, it could mean that they

are produced by larger scale wave motions and are not an inherent feature of the actual

Evershed flow along individual flux tubes [93].

Theoretical models of the Evershed effect include the siphon flow model [91, 49, 50]

and the moving tube model [76, 75].

A siphon flow develops along a magnetic loop, the foot-points of which have different

magnetic field strengths (at the same geometrical height). The resulting pressure difference

between the two foot-points of a penumbral flux tube is what drives the Evershed flow.

Schlichenmaier et al. [76, 75] model the dynamic evolution of a thin flux tube inside

the penumbra. A flux tube initially located at the magneto-pause becomes buoyant due to

radiative heating and rises. Radiative cooling at the photosphere produces pressure differ-

ences along the loop, driving an outward directed flow along the flux tube as it rises through

the penumbra. Thomas & Weiss [93] point out that the outflow produced b y the moving
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tube model is also the result of a gradient in gas pressure and requires, or leads, to higher

magnetic field strength at the outer foot-point as well. The moving tube model assumes

that, at the outer edge of the penumbra, flow continues along the magnetic canopy, where

an open boundary condition is applied.

The moving tube model predicts (see Figure 8 of Schlichenmaier et al. [76]) a fila-

ment structure that is characterized by a nearly vertical upflow of hot plasma at the foot-

point of the filament, which within a few hundreds km turns into a horizontal filament that

is elevated by about 100 km above the surface. Schlichenmaier et al. discuss observational

consequences of their model. At the foot-point, the tube's temperature is higher than the

corresponding background values and the foot-point appears bright. They point out that the

foot-point of the flux tube inside the penumbra could therefore be identified with a bright

penumbral grain. It has also been suggested that these hot upflows may significantly con-

tribute to the heating of the penumbra [77]. As the plasma flows along the tube, it loses

energy by radiation, cools off and the filament becomes as dark as its surroundings. Rim-

mele [62] observed flows along penumbral filaments that seem to confirm at least some

aspects of the Schlichenmaier et al. [76, 75] model.

Inspired by the discovery of dark-cored penumbral filaments [71], Spruit & Scharmer [83]

have taken a new look at penumbral structure. The authors propose that penumbral fila-

ments are due to convection in field-free, radially aligned gaps just below the visible surface

of the penumbra. The model produces a horizontal magnetic field at some height above the

gap, producing an environment for where the Evershed effect could occur. Although, the

authors do not claim that the model provides a satisfactory explanation for the Evershed

effect.

Although direct measurements of magnetic field were not performed, the highly re-

solved observations of penumbral flows, and in particular, their temporal evolution over an

extended period of time presented here do provide important clues that will aid in the inter-
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pretation and development of realistic penumbral models. For example, the observations

provide strong evidence in favor of some aspects of the moving tube model.

7.2 Observations

The observations and experimental setup were described in Chapter 6. Due to the broad

filter passband of the UBF, the measured wing intensities are averages over large portions

of the wing profile. Hence, the dopplergrams give a measure of the mean position of the

spectral line. Obviously, any information about vertical gradients in the velocity field is

lost due to the coarse spectral resolution. However, this velocity is relatively insensitive to

changes of the spectral line profile and line parameters, such as line strength and line width,

that have been observed to occur on filamentary scales in the penumbra [59, 60, 96].

The exposure time was set to 1.2 seconds. The data was collected over a period of

about 118 min, during which the seeing conditions were good but variable. The high-order

adaptive optics system [63] was deployed to correct for the majority of atmospheric seeing.

However, variable seeing conditions result in a variable degree of correction of the adaptive

optics system and hence, in variations of the PSF observed at the detector plane. In order

to alleviate the negative impact of these residual seeing effects, the PSF estimation method

was used to obtain a PSF from the AO loop data for each individual UBF exposure.

7.3 Data Reduction

After flat and dark correction, the UBF filtergrams were corrected for residual differential

image motion visible across the extended field-of-view b y using a destretch algorithm. A

total of 286 dopplergrams (line-of-sight (LOS) velocity maps) were computed in the usual

manner, indicated by Equation (6.1).

The dopplergrams were calibrated using a calibration factor (cz ) determined by mod-

elling the spectral profile of the observed lines as observed through the UBF. The Liege

atlas profile was convolved with the UBF passband, from which the calibration factor can
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Figure 7.1 Narrow band filtergram and dopplergram of a sunspot observed at approxi-
mately 30 deg away from disk center. The effective exposure time was 2.4 sec. The dopp-
lergram shows the signature of the Evershed flow. The solar limb is toward the upper left
corner of these images. The velocities are encoded in a grey-scale: bright: red-shift; dark:
blue-shift.

be derived directly. Blue- and red-wing filtergrams were added to produce an intensity map

corresponding to approximately the same height as the velocity map. The effective expo-

sure time for both velocity and intensity maps is therefore 2.4 sec. The average umbral

velocity was chosen as the velocity reference point (see Rimmele [60]).

The PSF estimated from the stored AO telemetry data is used to de-convolve the

corresponding UBF filtergrams using a simple Wiener filter. Through this process, the

amplitudes (contrast) of the images can be recovered within the stated accuracy. This is

of particular importance for the dopplergram observations performed for this study. Since

the filtergrams that are combined to generate a dopplergram are not taken simultaneously,

variations in the PSF between the subtracted filtergrams can cause spurious velocity signals.

Using the PSF estimation technique, a consistent high-resolution time sequence of

filtergrams and dopplergrams was produced in spite of variable seeing conditions. Fig-

ure 6.29 plots the image contrast of the filtergrams as a function of the Fried parameter as

observed (left) and after deconvolution with the estimated PSFs. The contrast of the "raw"

sunspot filtergrams shows a strong dependence on τ0 , in particular for Fried parameters
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ro < 7 cm. This deterioration of AO performance (Strehl ratio) for small Fried parameters

is expected since the WFS subaperture size is 7.5 cm. In the deconvolved sequence, the

contrast curve is flatter, indicating that the PSF estimation accurately recovers the ampli-

tudes over a wide range of seeing conditions. However, the plot also indicates that for small

Fried parameters the reconstruction becomes more noisy.

A temporal low pass filter was applied to the time sequences of filtergrams and dopp-

lergrams in order to remove fast (e.g. 3 min, 5 min) oscillatory components that are defi-

nitely visible in the time sequences. The goal was to study the long term evolution of the

Evershed flow. The filter therefore passes frequencies < 2 mHz. It has been shown that the

Evershed effect evolves within 10-20 minutes [58, 79], time scales, which are well within

the applied filter.

Due to the large number of photons collected (long-exposure), the statistical errors

in the doppler measurements can be estimated from the photon noise in the filtergrams and

Equation (6.1), and are of order 20 m/s only. Although the adaptive optics greatly reduces

seeing effects, the dominant error source in the uncorrected and unfiltered dopplergrams

remains residual seeing effects. These random errors can be estimated from the difference

of consecutive dopplergrams. Because of the fast cadence, a significant change of the

penumbral structure is not expected, i.e., the difference signal is mostly due to residual

seeing effects. The random errors are of order 65-80 m/s. These relatively small random

errors are reduced further to about 15 m/s by applying the PSF deconvolution and the

temporal filter.

7.4 Results

Figure 7.1 displays a sample narrowband filtergram and the corresponding dopplergram.

In spite of the long exposure time, the resolution of both intensity and velocity maps is

excellent and approaches the diffraction limit. Bright points as well as umbral dots are
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Figure 7.2 Dopplergram and filtergram of limb side penumbra. In the dopplergram, dark
(bright) areas mark blue-shifted (red-shifted) line profiles.

visible in the filtergrams. This demonstrates the effectiveness of the real-time adaptive

optics correction combined with the post-facto PSF correction.

It has been well established that the Evershed flow is mostly horizontal, i.e., parallel

to the solar surface (see Thomas & Weiss [93] and references therein). Since the spot was

observed away from disk center, the observations present the typical Evershed flow pattern

that is characterized by red-shifted spectral profiles in the limb-side penumbra (upper-left)

and blue-shifted profiles in the center-side penumbra (lower right). The measured maxi-

mum velocities range between +2 km/s. Assuming a perfectly horizontal flow and taking

into account projection effects (sin O = 0.5) this amounts to a flow amplitude of about

4 km/s. Previous publications quote Evershed velocities of up to 6 km/s. However, the

broad filter band path and the resulting averaging over large portions of the spectral line

wings have to be considered, which will lower inferred velocity amplitudes compared to

bisector velocities from high spectral resolution data.

The limb-side penumbra allows to distinguish between upflow (blue-shift), which is

expected to appear at the inner foot-points of Evershed loops, and outflow (red-shift) along

the nearly horizontal magnetic flux tube. In the center-side penumbra, both flow compo-

nents would appear blue-shifted and are not easily distinguished in simple LOS doppler-

grams. Therefore, all further analysis will be focused on the limb side penumbra.
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Figure 7.3 Velocity (solid line) and intensity (dashed line) traced across several filaments
in the azimuthal direction (top left) and along several filaments in the radial direction (top
right and bottom). Positive velocity corresponds to red-shifted line profiles. Note the strong
correlation between upflow and bright point as well as the steep decrease of the velocity
near the outer penumbra.

7.4.1 Evershed Flow Geometry Along Individual Filaments

Figure 7.2 shows velocity and intensity maps of a portion of the limb side penumbra. The

most striking features seen in the velocity map are the small-scale (0."2) upflows located at

the inner foot-points of a flow-channel. Close inspection reveals that upflows can be iden-

tified at the inner foot-point for most, if not all, of the observed flow channels. Comparing

intensity and velocity maps, it can be seen that upflows are co-located with bright features,

often referred to as penumbral grains, while the horizontal red-shifted outflow is correlated

with a dark filament. This correlation persists throughout the entire time sequence. Com-

plex, twisted and entangled, flow channels make a clear association more difficult (but not

impossible). Hence, a few flow channels that can be easily identified as individual filaments
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are selected and their velocity and intensity signals in the radial direction are traced, i.e.,

along the axis of a filament, and across several filaments in the azimuthal direction.

Figure 7.3 shows representative examples of such traces from different time steps

in the sequence. The azimuthal trace clearly shows that red-shifted flows are correlated

with dark filaments. The radial traces start at the inner penumbral foot-point and reveal

the close correlation between upflow and "bright grain" as well as the correlation between

horizontal flow and dark penumbral filaments. The intensity of the bright points usually

exceeds the average brightness of the surrounding "quiet" photosphere. Values in the range

of I = 1-1.2Iqu2et are observed. The spatial extent of the foot-points along the filament axis

can be inferred from Figure 7.3, and is of order < 0."4 FWHM. Another striking feature is

the very steep rise of the velocity signal from blue-shift to red-shift. The intensity signal

changes from bright to dark over a similar distance. The distance over which the flow turns

from vertical to horizontal (bright to dark) is measured as the distance between the location

of the maximum upflow and the point from where the red-shift only increases gradually.

This distance is between 0."5 and 0."7 or 380 - 500 km.

After the initial steep rise, the velocity increases only very gradually along the radial

direction until at the outer boundary of the flow channel, which is usually located near the

outer edge of the penumbra, an even steeper decline of the velocity is observed. The length

of the flow channels in the radial direction for different filaments ranges from 2-6"(1500 -

4500 km), as measured from the maximum upflow to the half-point of the velocity drop-

off at the outer edge. In a very few cases, unusually short and short-lived filaments were

observed (see Figure 7.6).

7.4.2 Flows in Dark-Cored Penumbral Filaments

The resolution in the observations is good enough to identify dark-cored penumbral fila-

ments [71] in the filtergrams and study the corresponding flow pattern. The observational

signature of dark-cored filaments is a narrow dark line in the center of bright filaments,
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Figure 7.4 Close-up view of dark-cored penumbral filaments. Left - intensity; right -
velocity. Examples from the limb-side (top) and center-side penumbra (bottom) are shown.
The artifacts seen in the velocity map of the upper right panel are from an imperfect flat
field correction. The line plot shows a trace along a dark core in the center-side penumbra.
Solid - velocity; dashed - intensity. The plot demonstrates that the bright, inner foot-point
of the flow channel is seen also for the center-side penumbra.
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extending along the axis of the filament. Dark-cored filaments are often seen in the inner

penumbra but are more easily identified in the center-side penumbra [88], suggesting that

they are shallow features [103].

Figure 7.4 shows scaled up images of a small section of the inner penumbra that

contains what are believed to be dark-cored penumbral filaments. Examples are shown

from both the limb-side and center-side penumbra. The corresponding velocity map is

shown as well.

These images provide strong evidence that dark-cored penumbral filaments originate

at bright foot-points near the penumbra-umbra boundary. The foot-points are co-located

with upflows, while the dark-cored filaments are co-located with red-shift. The dark cores

appear to be the signature of well defined individual flow channels. It should be noted again

that the dark portion of the filament is associated with the more horizontal outflow, which

is usually referred to as the Evershed flow. Figure 7.4, and in particular, the temporal

evolution of these flows and their corresponding intensities, which are discussed in the

following section, provide strong evidence that bright grains and dark cores belong to the

same flow system along a magnetic loop, i.e., they are both signatures of the Evershed

effect.

It is not entirely clear whether the examples of dark-cored filaments shown from

the limb side penumbra fit the definition given above as well as the examples from the

center-side do. However, the flow pattern measured along the dark cores is very similar

in the center-side and limb-side penumbra, respectively. The line plot in Figure 7.4 shows

a trace along a dark-cored filament from the center-side penumbra. Also here, a bright

blue-shifted feature at the inner foot-point of the flow channel is clearly seen. Instead of

the quick turn to red-shift observed in the limb-side penumbra (Figure 7.3), the velocity

remains blue-shifted as would be expected for a horizontal outflow simply because of LOS

effects.
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Figure 7.5 Maximum of 2-D cross-correlation as a function of time of velocity (solid)
and intensity (dashed) maps seen in Figure 7.2. Note the secondary and tertiary maxima at
about 30 min and 55 min.

One notes that there are a number of red-shifted areas visible in center-side penum-

bra. It might be tempting to interpret these downflows as Evershed return flows that have

been reported to exist within the outer penumbra [104].  However, the downflows seen in

Figure 7.4 are not readily associated with individual flow channels, i.e., as end points (outer

foot-points) of the Evershed flows.

7.4.3 Temporal Evolution of Evershed Flows

Before discussing the temporal evolution of Evershed flow channels in detail, the temporal

cross-correlation of the penumbral velocity field is discussed. The time sequence of 2-D

cross-correlation for the field-of-view is computed and shown in Figure 7.2. All consec-

utive frames were tracked and correlated to this reference. Figure 7.5 plots the maximum

value of the 2-D cross-correlation as a function of time for both intensity and velocity.

The plots indicate how the scene de-correlates over time and thus, gives an indication of

the lifetime of penumbral structures. Low spatial frequencies (general shape of sunspot)

de-correlate slowly, which explains the high degree of correlation that persists even after
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Figure 7.6 Time sequence of velocity maps. The field-of-view is 5.5 x 8arcsec 2 . The
time steps are 4, 25, 29, 50, 61, 79, 88, 97, 106, and 117 minutes. The temporal evolution
of a filament from the time when is first becomes visible to the time when it disappears is
depicted with these images. The crosses mark the position of the inner foot-point (upflow),
which steadily moves inward toward the penumbra-umbra boundary with a proper motion
velocity of about 0.5 km/s. The average proper motion speed can be infered from the
distance the inner foot-point traveled (trace marked by the crosses) divided by the traveling
time. The gray-scale has been reversed for better showing, i.e., dark: red-shift; bright:
blue-shift. The arrows point to examples of "crossing filaments". Evidence for unusually
short flow channels is seen near the outer penumbra at time step 79 min (arrow).

90 min. The rapid de-correlation observed in the first 15-20 min, followed by a more grad-

ual drop in the correlation, can be explained by the evolution of penumbral fine-structure.

An interesting feature of these cross-correlations is the presence of the secondary

and tertiary maxima at about 30 min and 55 min. These maxima are clearly visible in the

velocity correlation and less prominent in the intensity correlation. These secondary and

tertiary maxima might be the signature of recurring Evershed flow packages observed by

Rimmele [58] and Shine et al. [79].
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Figure 7.7 Time sequence of intensity maps corresponding to velocity maps shown in 7.6.

Figures 7.6 and 7.7 show a time sequence of doppler maps and corresponding inten-

sity maps. A small 5.5 x 8" field-of-view was selected in order to highlight, at high spatial

resolution, the evolution of a few representative penumbral filaments. The flow channels

were followed throughout their entire life cycle. A particularly nice example is marked

in this sequence of velocity and intensity images. A flow channel first appears in an area

that shows what appears to be a small scale convective pattern penetrating into the outer

penumbra. The crosses mark the position of the inner foot-point of the flow channel. Im-

mediately after the flow channel appears, the inner foot-point begins to move inward, while

during these early stages, the outer boundary of the flow remains more or less in the same

position, i.e., the filament becomes more and more elongated. At time step 61 min, two

foot-points become visible, indicating that either previously unresolved flow channels have

split sufficiently to become resolved or a second flow channel has emerged at this location.
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Figure 7.8 Evolution of flow channel. Traces are in the radial direction along the filament
axis. Velocity - top; intensity - bottom. Two different time steps are shown. 0 minutes
(crosses) refers to shortly after the flow first becomes visible. At 59 minutes (diamonds),
the inner foot-point has moved close to the penumbra - umbra boundary. The sharp outer
edge of the flow channel is seen to move inward as well.

Continuing with time step 79 min, a single flow channel is observed again, the clearly vis-

ible foot-point of which continues to move toward the penumbra-umbra boundary. During

these later stages of the evolutionary path of the filament, the outer edge of the flow channel

is moving inward as well (see also Figure 7.8). Adjacent flows channels behave in a similar

fashion. Toward the end of the sequence, the flow channel fades away. The crosses in the

last image trace the motion of the inner foot-point from the outer parts of the penumbra to
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It is difficult to determine whether, near the beginning of the time sequence, an al-

ready existing flow emerges into the photosphere from below or whether the flow forms in

a magnetic loop that is already located in the photosphere. Figure 7.9 holds a possible clue.

It shows the evolution of the velocity along the radial axis of the flow as the flow channel

appears. The fact that blue-shift and red-shift appear simultaneously argues in favor of an

emerging pre-existing flow. One would expect a flow that develops along an existing mag-

netic loop to first exhibit an upflow at the inner foot-point that then propagates outward.

Also, this figure shows that the location of the maximum blue-shift begins moving inward

immediately, which is consistent with an emerging loop as well.

7.4.4 Stacked Flow Channels

Numerous examples where penumbral flow channels appear twisted and tangled, appar-

ently crossing each other in the azimuthal direction, were identified in the data. This is

more readily seen in the velocity maps where individual filaments (flow channels) can be

more easily identified and traced. The arrows in Figure 7.6 point to two examples where

such crossing of filaments (flows) occurs giving the impression that, at the crossing points,

filaments are stacked on top of each other in the vertical direction. Areas ("filaments")

with velocities close to zero were observed in between flow channels (or clusters of flow

channels).

An increased velocity signal is observed at the location where flow channels cross.

Figure 7.10 shows an example with traces in the radial and azimuthal direction. Near

the inner foot-points, two individual filaments are clearly resolved. Moving toward the

outer penumbra to the location where the flow channels cross, the flows are no longer

distinguishable as separate features, whereas near the foot-points, the structures are clearly

distinguishable. At the crossing point, the flow amplitude suddenly increases. This is not

surprising since two flow channels, stacked on top of each other, fall within the response

function of the line, i.e., the "velocity fill factor" increases in both the vertical and the
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Figure 7.10 Evidence for crossing flows. Bottom: Trace across two individual flow chan-
nels near their foot-points, where the channels are resolved, and at the point where the two
filaments appear to cross in azimuthal direction and at different heights. Top: Trace in
along one of the flow channels. At the location where the flow channels cross, a sudden
increase in flow velocity is observed.

horizontal direction. It would be interesting to obtain observations of crossing filaments

with significantly higher spectral resolution in order to study the line profiles and bisectors.

One would expect to see more complex bisector shapes at locations where two (or more)

flow channels, located at different heights in the atmosphere, fall within the line response

function. Unfortunately, due to the broad filter bandpass of the UBF, the data is not suited

to provide bisector information.



151

7.5 Summary and Discussion

The main observational results can be summarized as follows:

• Individual Evershed flow channels can be identified. The lateral extent of the flow

channels is very near the diffraction limit of the telescope (<0."2) and it is expected

that the actual size of the flow is even smaller.

• Flow channels often seem to cluster together, forming a conglomerate of what ap-

pears to be twisted, tangled flow channels that in many cases cross each other at

different heights in the atmosphere. One might also call this "uncombed" penumbral

structure. Penumbral fine-structure appears to be even more complex than the already

surprisingly complex, widely accepted interlocked-comb structure would suggest.

• Areas ("filaments") with velocities close to zero are observed in between flow chan-

nels (or clusters of flow-channels).

• For the vast majority of Evershed flow channels, an inner foot-point can be identified.

This inner foot-point is a small (<0."2), point-like, bright upflow that has all the char-

acteristics of what has been dubbed "bright penumbral grain" in the literature, i.e.,

penumbral grains are the inner foot-points of Evershed flow channels. The plasma

flow vector - expected to be field aligned [7] - is more vertical in bright up-flowing

regions that mark the inner foot-points of the Evershed flow.

• The intensity of the bright points generally exceeds the average photospheric bright-

ness.

• The upflows observed in the bright foot-point turn over to nearly horizontal flows

within a very short distance (0."5 - 0."7 or 380 - 500 km). This horizontal part of the

flows is correlated with a dark filament or dark-cored filament.
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• In the limb-side penumbra, the LOS component of the upflow is of order 300 -

500 m/s. In the center-side penumbra, LOS upflow velocities of order 1000 m/s

are observed.

• An extremely steep decline of the velocity at the outer end of the individual flow

channels is observed. It is interesting to note that this sharp drop-off of the Evershed

flow is not only found at the outer edge of the penumbra, but also flow channels that

end well within the penumbra (even the inner penumbra) exhibit this rapid decay

over, in some cases, less than 0."2.

• The observations allowed the study of the temporal evolution of individual flow chan-

nels, tracing them from first appearance to their disappearance. While undergoing

significant changes, individual flow channels could be traced as they moved from

the outer parts of the penumbra to the penumbra-umbra boundary, where the flow

disappears. The proper motion speed was determined by tracking the upflow at the

foot-point (see caption of Figure 7.6) and is of order 0.5 - 1 km/s, consistent with

previous measurements of penumbral grain motion (e.g., Sobtka & Sutterlin [80]).

• The bright inner foot-point and the dark filament carrying the horizontal outflow are

observed to evolve as a unit. This indicates that dark filaments and bright grains are

part of the same magnetic flux tube that carries the Evershed flow.

• In the early stages of the flow channel's evolution, the sharp outer edge of the flow

channel appears stationary, while during the later stages, the outer edge is observed

to also move inward toward the penumbra-umbra boundary. Often, this outer edge is

located well within the penumbra.

• A flow channel was observed to emerge from a convective pattern near the outer

penumbra. The emerging flow is "arch like" (inverse U). As the flow moves inward



153

and in particular, near the penumbra-umbra boundary, the flow geometry is charac-

terized by the quick turn from upflow to horizontal flow over a very short distance.

• The length of the majority of flow channels varies between 1500 km and 4500 km.

A few examples of much shorter loops were observed in the outer penumbra.

• The life-time of flow channels ranges from 30 - 115 min.

• Several red-shifted (downflow) areas are found in parts of the center-side penumbra

(where the Evershed effect produces blue-shift). However, an interpretation of these

downflows as Evershed return flows is not obvious from these data.

Many aspects of the observations provide strong support for the the moving flux tube

model [76, 75]. The observed flow geometry, i.e., upflow in a bright inner foot-point that

quickly turns over into a nearly horizontal flow along a dark filament, is consistent with

predictions of this model. Evidence was also found of Evershed flow channels emerging

(rising) from below. However, the most important observation is considered to be the fact

that the bright inner foot-point and the dark filament carrying the more horizontal outflow

are moving and evolving as a unit, which provides convincing evidence that dark filaments

and bright grains are part of the same moving magnetic flux tube that carries the Evershed

flow. The Evershed flow is associated with both bright and dark penumbral features. The

observed movement of the inner foot-points of those flow channels toward the penumbra-

umbra boundary with a velocity of about 0.5-1.0 km/s is also expected in the moving tube

model. The time scales predicted by the moving tube model for the rise of a penumbral

flux tube (120 min) are consistent with the ones observed here.

In order to estimate the actual upflow velocity at the inner foot-points of the flow

channels, it is assumed that the inclination of the flow vector at the inner foot-point is be-

tween 35 — 40 deg, which is the inclination measured for the strong magnetic field compo-

nent by, e.g., Borrero et al. [11]  and Langhans et al. [42]. Taking into account the sunspot's
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position on the disk (LOS angle), an upflow amplitude of 0.5 - 1.5 km/s in the bright foot-

points seen in the limb-side penumbra is obtained. For the particular observing position of

the sunspot on the solar disk, no LOS correction is necessary in the center-side penumbra,

i.e., the LOS is such that the actual upflow amplitude is observed in the center-side penum-

bral grains. In the example of Figure 7.4, the flow amplitude is 950 m/s. These upflows

are significantly slower than predicted by the moving tube model, which predicts veloci-

ties around 3 km/s at the foot-point [76]. The horizontal outflow amplitudes measured are

lower, as are the ones predicted by these models. The discrepancy might be explained by

still insufficient spatial resolution and the definitely insufficient spectral resolution.

Heating of the penumbra by hot upflows along magnetic flux tubes has been sug-

gested as a mechanism sufficient to explain the penumbral brightness [77]. However, Spruit

& Scharmer [83] argue that these upflows are unlikely able to provide the uniform heating

of the penumbra along its length.

The occurrence of downflows associated with Evershed flow channels is not obvious

at all in the data. This is somewhat inconsistent with the findings of bisector analysis of the

same spectral line (Fe I 5576 A) by Schlichenmaier et al. [73], who concluded that down-

flows in deep layers can explain line asymmetries. Again, the poor spectral resolution of

the observations combined with the formation height of the line (mid-upper photosphere),

may prevent the detection of flows deep in the atmosphere.

The interpretation of the observations in the context of alternative models of the Ev-

ershed effect is less straightforward. Siphon flow models are stationary solutions and there-

fore, are inherently unable to explain the temporal evolution and proper motion of the flow

channel, which is found to be common to the vast majority of Evershed flow channels.

It is difficult to reconcile the observations with the penumbral model recently put

forward by Spruit & Scharmer [83]. As mentioned in the introduction in this model, the

Evershed flow is located along horizontal magnetic field structures above the field-free gap.

However, the flow can only be carried over a finite distance, i.e., the model is allowing for
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flows that are rather local and transient. The authors, therefore, suggest that a local version

of the moving tube model might be at work. They further suggest that even though, on

average, the Evershed flow may appear smooth and steady, it is in fact a locally transient

phenomena. However, the observations suggest a more global version of the moving tube

model to be responsible for the Evershed effect. Flows that are consistent with the predicted

flow geometry, extending over and propagating across large parts of the penumbra, are

found. There is a single well defined inner foot-point and the lifetime of the flows can

be as much as 2 hours. It seems unlikely that these observational signatures could be

produced by a local phenomenon. The observed hyper-structure of dark-cored filaments

can be explained by uncombed penumbra models, i.e., it can be produced by a nearly

horizontal flux tube embedded in a more vertical background field [10].

Although the definition of a dark-cored filament is rather subjective, it is found that

dark-cored filaments are more readily identified near the penumbra-umbra boundary in the

center-side penumbra, which agrees with previous observations [ 11, 88, 42] . The dark-

cored filaments are identified as such in both the limb-side and center-side penumbra and

can be associated with regular Evershed flow channels originating in a hot upflow. This is

consistent with Bellot Rubio et al. [8], who find flows in dark-cored filaments to be mostly

horizontal with a small upflow component. Interestingly, it is found that for this data set, a

clear identification of bright and dark filaments is difficult for the limb-side penumbra and

much more easily performed for the center-side penumbra.

It is still considered a major challenge to explain the sharp (<0."2) outer boundary

of the Evershed flow. The fact that this sharp decline in velocity is seen not only at the

penumbra-quiet sun boundary, but throughout the penumbra, argues that this effect is not

linked to the transition between magnetic and non-magnetic environments. If the sharp

boundary is due to the flow returning back down to the surface, the flux tube would have to

bend over a short distance and at least as quickly as it appears to be the case for the inner

foot-point. Flux pumping [94] may provide the physical mechanism. However, Spruit &
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Scharmer [83] argue that the flux pumping mechanism is inconsistent with observations

since it only operates at the outer penumbral boundary and not within the penumbra.

It is further noted that as the inner foot-point moves toward the inner penumbra, the

outer edge of the flow (sharp boundary) initially stays in place (Figures 7.6 and 7.9), but

then also begins to move inward (see Figure 7.8). If the sharp boundary marks the onset of

the return flow, this would indicate that the outer foot-point, where the downflow occurs,

moves inward as well. If the the sharp edge marks the point where the flow enters into the

canopy instead, as was suggested by Schlichenmaier et al. [76, 75], it does so in many cases

well within the penumbra. More recent simulation results of the moving tube model [72]

produce flux tubes that, during the course of their evolution, develop sea serpent like waves.

This structure produces downflow arches well within the penumbra. However, any direct

evidence for such sea serpent like flow structures is not seen in the data.

Infrared polarimetric observations of penumbral fine-structure using two-component

inversion techniques have provided strong evidence for the picture of an un-combed penum-

bra, where the penumbra is composed of a penumbral flux tube embedded in a magnetic

background field [11]. The authors study a portion of the limb-side penumbra, as in this

paper, and find that the Evershed effect is confined to the nearly horizontal flux tube com-

ponent, while the background is essentially at rest. The lower right panel of Figure 4 of

Borrero eta!. [11]  plots the inferred velocity as a function of penumbral radius for the flux

tube and the background component, respectively. The flux tube component shows positive

velocity throughout the penumbra, consistent with a horizontal outflow that is only slightly

inclined in the inner penumbra. The background field is at rest only in the outer penumbra,

while in the inner penumbra the inversion returns negative velocities (upflow). However,

the observations clearly indicate that upflow occurs in the flux tube component at their in-

ner foot-points. It should be noted that the upflow derived for the background component

from the inversion is very similar to the upflows observed at the filament foot-points (order

1 km/s).
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In order to understand this apparent discrepancy, one must keep in mind that vector

magnetic field measurements often suffer from a lack of spatial resolution [46]. This is

particularly true for infrared observations, such as the ones by Borrero et al. [11].  In fact,

this is the primary reason for deploying multi-component inversion techniques. However,

uniqueness of the solution is often a question and the interpretation is often difficult com-

pared to observations where the structures are resolved. Borrero et al. [11]  estimate the

achieved spatial resolution to be about 1". At this resolution, upflows with spatial extent

Ο."2 - Ο."5 and horizontal outflows are definitely mixed together in one pixel. It appears

that the two-component inversion associates the upflows with the background component

and the horizontal flows with the flux tube component, even though according to the data,

they are part of the same flow along a flux tube.

The observations have provided important new information that will help to distin-

guish between various existing penumbral models and hopefully will lead to more refined

penumbra models. In the future, these observations must be confirmed and extended by ob-

taining simultaneous high-resolution vector magnetic field measurements, which are now

possible with instruments such as the Diffraction-Limited Spectro-Polarimeter (DLSP).

The DLSP is fed by a high-order adaptive optics corrected beam and can deliver Ο."2

resolution vector polarimetric data. The DLSP can be combined with the UBF and high-

resolution g-band speckle imaging, which might provide additional important information.



CHAPTER 8

CONCLUSIONS

AO systems have revolutionized ground-based astronomy by providing real-time correction

for atmospheric aberrations and producing diffraction-limited observations. However, due

to limited temporal and spatial bandwidth, wavefront sensor noise and other limitations,

the correction provided by the AO system is only partial. With knowledge of the PSF, the

image quality can be further improved.

The lack of point sources in the field-of-view of solar observations makes a direct

measurement of the PSF impossible. A method to estimate the long-exposure AO-corrected

PSF from AO loop data was implemented specifically for the solar AO systems at the DST

and at the Big Bear Solar Observatory. This method was originally proposed by Jean-Pierre

Veran [101,  100] and implemented for the PUEO AO system at the Canada-France-Hawaii

Telescope. However, PUEO is a curvature wavefront sensor based AO system designed for

night-time observations. The method was adapted for a correlating Shack-Hartmann based

AO system designed for solar observations.

The method presented estimates the long-exposure PSF from the telemetry data gen-

erated by the AO system during its operation. The data measured by the solar cross-

correlating Shack-Hartmann wavefront sensor provide information about residual wave-

front aberrations, while the commands sent to the deformable mirror provide information

about the original seeing conditions. The AO telemetry data produced during the capture of

a solar image completely characterize the AO-corrected image quality and contain enough

information to produce an estimation of the long-exposure PSF. Using this method, each

AO-corrected image can be further corrected using its own estimated long-exposure PSF

through post-processing techniques.

158
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The PSF estimation method was tested on real solar observations and an attempt was

made to validate it by applying the method to AO-corrected observations of the star Sirius.

Although for some cases, the observed PSF for Sirius could be well matched with the corre-

sponding long term PSF estimate from the AO telemetry, a consistent match was not found

for all star images. In that sense, the observations of the star Sirius cannot be considered a

sufficient validation of the method at this time. Several issues related to the performance of

the AO system under low light levels, for which it was not designed, resulted in low correct-

ing bandwidth, high wavefront sensor noise and consequently produced low Strehl ratios in

the AO-corrected Sirius images. These problems led to the violation of crucial assumptions

required by the PSF estimation method. The stellar observations should be repeated under

more favorable conditions, closer to the solar operating conditions. This may require the

observations to take place during the night when the seeing conditions are better and there

is significantly less background light. Also, the use of different AO hardware, such as a

more sensitive and less noisy wavefront sensor camera. Alternatively, a different approach

that can be used during solar observations, such as phase diversity or speckle reconstruc-

tion, may be attempted. Further validation of the results produced by the PSF estimation

method is highly recommended to ensure the accuracy of the PSFs produced.

The utility of the PSF estimation method was demonstrated with AO-corrected so-

lar observations, where an estimation of the AO-corrected PSF is normally difficult. The

quantitative measurements and scientific data extracted from the solar observations were

significantly improved by deconvolution with the estimated AO-corrected PSFs. This is

particularly true for the case of the velocity maps, or dopplergrams, created by combining

images captured at different times

The PSFs estimated from the solar observations provide a measurement of the per-

formance of a solar AO system during different seeing conditions. This is the first time

such a measurement has been obtained for a solar AO system. The Strehl ratio of the

AO-corrected solar images is computed from the estimated PSFs and plotted against the
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Fried parameter τ 0 , which characterizes the seeing conditions. At this time, measuring the

Strehl ratio from the estimated PSFs is the only method available to directly measure the

performance of the solar AO system. The measured dependency of the AO performance

against seeing conditions, which is consistent with the predictions of performance models,

has already been used by other researchers [ 107] to modify speckle reconstruction code to

produce more accurate AO-corrected speckle transfer functions.

The PSF estimation method was applied to the study of the photospheric Evershed ef-

fect on the penumbra of a sunspot. The observations, published by Rimmele & Marino [57],

consist of a 120 min time sequence of diffraction-limited and post-processed velocity mea-

surements. The study of the temporal evolution and structure of the Evershed flow produced

new ground-breaking results that demonstrate the connection between the bright penumbral

grains as the foot-points of the dark penumbral filaments. Some aspects of the observations

provide strong support for the moving tube model of the Evershed flow [76, 75]. These

observations have already guided the development of new penumbral models [35].

The dopplergrams computed from the solar observations were significantly improved

by deconvolution of the wing images with their corresponding estimated PSFs. In partic-

ular, dopplergrams computed from wing images that were captured during very differ-

ent seeing conditions presented very high intensity-velocity cross-talk that would, in some

cases, destroy the velocity signal. Deconvolution of the wing images significantly reduced

the amount of intensity-velocity cross-talk in the dopplergrams and greatly improved the

quantitative velocity measurements obtained.

A very interesting result obtained from the observations relates to the RMS con-

trast values of the quiet sun granulation obtained after deconvolution. The obtained values

(around 9%) are significantly lower than the contrast values predicted by current MHD

models, which predict a quiet sun granulation contrast of >20%. This result is consistent

with the latest results obtained by other image reconstruction techniques, all of which are

unable to reproduce the high RMS contrasts of MHD models [98].
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The long-exposure PSF estimation method from AO loop data can be applied to a

wider range of solar observations and techniques. It is especially useful for applications that

require accurate high-resolution quantitative measurements produced by combining data

captured at slightly different times, such as magnetograms and dopplergrams. The method

can benefit the observations produced by advanced instruments, such as the interferometric

bi-dimensional spectrometer (IBIS), the diffraction-limited spectro-polarimeter (DLSP),

the spectro-polarimeter for infrared and optical regions (SPINOR) and other post-focus

instrumentation at the DST, Big Bear Solar Telescope and other solar telescopes.

The method can be expanded to produce long exposure PSFs for solar multi-conju-

gate adaptive optics (MCAO) systems, which provide correction for a much wider field-of-

view. The expanded method could provide long exposure PSF estimates at different points

in the field-of-view from the loop data produced by MCAO systems. Different parts of the

field can be deconvolved with their corresponding PSF, producing improved quantitative

measurements over a larger field.



APPENDIX A

THE KARHUΝΕΝ-LOίVE MODES

Zernike polynomials are usually the functions of choice to describe wavefronts or surfaces

in optical applications. They are an orthonormal basis of functions for the space defined

inside the unit circle. This is very adequate for optical systems with circular pupils, such as

telescopes with annular pupils. Also, the first Zernike polynomials represent the most com-

mon aberrations found in optical systems, such as focus, astigmatism and coma. Another

advantage of Zernike polynomials is that they can be calculated using relatively simple an-

alytical expressions. In the case of AO systems, Zernike polynomials have been commonly

used to describe the wavefront aberrations induced by atmospheric turbulence.

The statistical properties of atmospheric turbulence are well known and are described

by the Kolmogorov model [41]. Noll [52] provides an expression for the temporal covari-

ance of the distorted phase when expressed in terms of Zernike polynomials. This tem-

poral covariance is not a diagonal matrix, which implies that different Zernike terms are

not statistically independent. Therefore, Zernike polynomials are not the optimal basis of

functions to decompose atmospheric phase fluctuations.

Zernike polynomials constitute an orthonormal set of functions, i.e., they are not spa-

tially correlated. Hence, the Zernike polynomials are eigenmodes of the spatial covariance

matrix of atmospheric turbulence. However, since the Zernike modes are temporarily cor-

related for Kolmogorov turbulence, they are not eigenmodes of the temporal covariance

matrix. The temporal variations of the Kolmogorov atmospheric turbulence cannot be op-

timally represented by Zernike modes.

The optimal basis to describe a wavefront distorted by Kolmogorov turbulence is

another set of orthonormal functions with a diagonal temporal covariance matrix. Such a

set of functions can be calculated by diagonalizing the Zernike temporal covariance matrix
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calculated by Noll. These new functions are called Karhunen-Lοve functions [ 15, 16, 70,

102], more commonly known as KL modes.

There is no analytical representation for these KL modes. They are calculated by

diagonalizing the covariance matrix expressed in terms of Zernike polynomials. Thus, the

KL modes are linear combinations of Zernike polynomials.

The Zernike covariance matrix C Z is a real symmetric matrix and hence a Hermitian

matrix. Α complex matrix C is said to be Hermitian or self-adjoint [87, 1] if C = Ct,

where Ct indicates the adjoint matrix of C, i.e., the transpose of the complex conjugate:

Ct = (C*) T . Since C Z is a real matrix, the adjoint operation is simply the transpose, and

the transpose of a symmetric matrix is the same matrix: CZ = CZ = C Z . Therefore C Z

is a Hermitian matrix.

Α Hermitian matrix can be decomposed [87] as: C = U11 U -1 where 11 is a diag-

onal matrix, and U is a unitary matrix. A matrix is unitary if: Ut = U -1 . The elements

of the diagonal matrix A are the eigenvalues of C and the columns of the unitary matrix

U are the corresponding eigenvectors of C that form an orthonormal basis. The elements

of matrix 11 are real since the eigenvalues of a Hermitian matrix are always real. In the

particular case of a real C matrix, as is the case of C Z , the unitary matrix U is also a real

matrix. Α real unitary matrix U is also orthogonal since UT = U -1

The Zernike covariance matrix C Z is decomposed in this manner with the help of a

diagonal matrix CKI, and a unitary matrix U. The columns of the unitary matrix U are the

eigenvectors of C z , i.e., the KL modes. The matrix CKL is the temporal covariance matrix

expressed in the new KL modes, hence a diagonal matrix.

(Α.1)

(Α.2)
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There are several methods available to diagonalize the Zernike covariance matrix and

obtain the matrices CKL and U. IDL provides a routine to diagonalize real symmetric ma-

trices called EIGENQL. This routine uses an algorithm based on Householder reductions

and the QL method with implicit shifts [53] to obtain the eigenvalues and eigenvectors of

the matrix. However, the workload of the QL algorithm [53] used to compute the diago-

nalizations is 0(n 3 ). Thus, the diagonalization of a large matrix can become a very time

consuming computation.

The fact that the Zernike covariance matrix is a sparse matrix, i.e., most of its ele-

ments are zero, can be exploited to increase the performance of the diagonalization compu-

tation. Only Zernike terms with the same azimuthal order and the same index parity [68] are

temporarily correlated and produce non-zero values in the covariance matrix. However, by

default Zernike polynomials are ordered following the definition suggested by Noll [52],

which produces a covariance matrix with non-zero values distributed over all rows and

columns. The order of the Zernike modes can be adjusted so Zernike modes with same

azimuthal order are grouped together. Using this new modal order, the Zernike covariance

matrix is block diagonal, i.e., the non-zero elements are grouped in clusters around the

diagonal. Each individual block is not correlated with the rest of the matrix and can be

diagonalized independently.

Due to the 0(n 3 ) workload of the diagonalization algorithm, the computation of sev-

eral small diagonalizations, one for each small block, is preferable to the computation of

just one diagonalization of the whole matrix. Therefore, reordering the Zernike polyno-

mials to produce a block diagonal covariance matrix significantly speeds up the diagonal-

ization process. Figure A.1 schematically demonstrates how the Zernikes polynomials are

reordered to produce a block diagonal covariance matrix.

The sets of eigenvalues and eigenvectors for each block are grouped together to pro-

duce the eigenvalues and eigenvectors of the whole covariance matrix. Thus, the obtained

eigenvalues correspond to the diagonal elements of the matrix CKL from Equation (A.2),
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Figure A.1 Nonzero elements of 20x20 Zernike covariance matrix before (left) and after
(right) reordering.

Orderonleft: (234567891011 1213 1415 1617 18 192021)

Order on right: (28 1637 174115 136129 191018 14152021)

while the eigenvectors constitute the columns of matrix U. The eigenvectors are expressed

as a linear combination of Zernike polynomials, i.e., the columns of matrix U contain the

Zernike coefficients that define each eigenvector. The eigenvectors of the Zernike covari-

ance matrix are the KL modes, thus the matrix U contains the decomposition of the KL

modes in terms of Zernike polynomials.

The particular order in which the KL modes are computed, i.e., the order of the

columns of U, depends on the reordering applied to the Zernikes to produce the block

diagonal matrix. It should also be noted that the rows of matrix U are affected by this

same reordering process and thus contain Zernike coordinates expressed in the new order.

The inverse ordering transformation can be applied to the rows of matrix U to restore the

Zernike coefficients to the original N011 ordering.

The order in which the computed KL modes are indexed is, in principle, arbitrary. A

valid indexing scheme is to order the KLs by decreasing eigenvalue. This produces a set of

KL modes with a variance that monotonically decreases with mode order, such as the Noll

ordering of Zernike polynomials does. However, some of the eigenmodes have identical

eigenvalues, in which case, some other sorting criteria must be applied between them to
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Figure A.2 First 44 Zernike polynomials (top) and KL modes (bottom). The KL modes
are ordered as to maintain maximum similarity with Zernike polynomials of the same in-
dex. All modes are computed for the unit circle. Mode intensity is scaled independently
for each mode to maximize contrast.

break the ambiguity. Another ordering scheme consists of applying the same inverse or-

dering operation to both the columns and rows of matrix U. This KL ordering does not

produce a smoothly decreasing variance with decreasing mode index, as illustrated by the

Kolmogorov variance fit shown in Figure 4.9. However, it maintains maximum similarity

between KL modes and Zernike polynomials of the same index. Figure A.2 shows the first

44 Zernike and KL modes and illustrates how the KL ordering maintains Zernike similar-

ity, specially for the lower order modes. This second ordering scheme can be used locally

to discriminate between KL modes with the same eigenvalue when sorting by decreasing

eigenvalue.

In addition to the diagonal temporal covariance matrix th KL modes produce, KL

modes present another advantage over Zernike polynomials for AO systems with Shack-

Hartmann wavefront sensors. Zernike polynomials of increasing order show a tendency to

distribute most of their structure on the outside rim of the unity radius circle, whereas the
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Figure Α.3 Shack-Hartmann wavefront sensor 10x 10 pupil geometry.

KL modes are distributed closer to the pupil center. This can be clearly observed on the

higher order Zernike polynomials shown in Figure Α.2. Α Shack-Hartmann wavefront sen-

sor divides the pupil space into a regularly spaced grid of square subapertures (Figure Α.3).

The mean x— and y- slopes of the wavefront are then measured at each subaperture.

Therefore, having most of the mode structure lying on just a few of the subapertures close

to the edges of the pupil tends to stress the measuring capabilities of the Shack-Hartmann

wavefront sensor. Furthermore, the edges of the pupil is the location where the distribution

of wavefront sensor subapertures is more sparse.

Figures Α.4 and Α.5 illustrate how the KL and Zernike modes fit on to the Shack-

Hartmann array. Both Zernike and KL modes are of equivalent order (mode number 45)

but the structure distribution on the pupil is quite different. The Zernike mode is mostly flat

everywhere but close to the edge of the pupil, where most of its structure is concentrated.

The KL mode presents a more extended structure that reaches farther into the center of the

pupil. When each of these modes is sensed by the Shack-Hartmann wavefront sensor, the

subapertures capture more information for KL modes.

This can be further explored by calculating the reconstruction matrix given by this

geometry using Zernike polynomials and KL functions. The reconstruction matrix is calcu-
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Figure A.4 Zernike mode 45 in the unit circle and how it is seen by WFS geometry. Mode
intensity is scaled independently for each mode to maximize contrast.

Figure A.5 Karhunen Loeve mode 45 in the unit circle and how it is seen by WFS geom-
etry. Mode intensity is scaled independently for each mode to maximize contrast.

lated by computing the pseudo-inverse of the interaction matrix, as shown in Appendix C.

The eigenvalues of the interaction matrix contain the sensitivity of the WFS to a particu-

lar eigenmode of the interaction matrix. The inversion of a very small eigenvalue, which

corresponds to an eigenmode with low sensitivity, produces a very large eigenvalue of the

reconstruction matrix and may dominate its response. If the response of the reconstruction

matrix is dominated by a mode that cannot be properly detected by the WFS, the recon-

struction matrix will be mostly amplifying noise [67] and result in an unstable servo loop.
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Figure A.6 Reconstruction matrix eigenvalues using Zernike polynomials and Karhunen-
Love functions.

Thus, very small eigenvalues in the interaction can reduce the signal to noise ratio of the

reconstruction matrix.

Figure A.6 shows a plot of the reconstruction matrix eigenvalues obtained using KL

modes and Zernike polynomials. The eigenvalues obtained using Zernike polynomials

diverge much quicker than the ones obtained with KL modes. This implies that more KL

modes than Zernike modes can be reliably reconstructed. Also, the eigenvalues of the

Zernike reconstruction matrix are consistently higher than the KL ones, suggesting that the

KL reconstruction matrix will produce a wavefront reconstruction with a higher signal to

noise ratio. In conclusion, a Shack-Hartmann wavefront sensor is more sensitive to KL

modes than to Zernike polynomials.



APPENDIX B

CALIBRATION OF ADAPTIVE OPTICS SYSTEM

This section discuses the different strategies attempted to obtain an accurate and complete

characterization of the different components of the AO system. The PSF estimation method

uses the AO loop data produced by the AO system. This includes WFS measurements that

give an estimation of the residual errors after correction, and DM commands that provide

information about the seeing conditions. It is critical for the accuracy of the PSF method

that these measurements are correctly quantified.

These measurements are recorded by the AO system as raw data. The recorded WFS

measurements are expressed as pixel shifts measured from the WFS camera. The DM

commands are expressed as counts that can be directly sent to the DM controller. These raw

system measurements must be converted to real wavefront measurements in real physical

units, such as radians of wave. The transformation is performed with calibration factors.

In the case of the WFS, this calibration factor relates wavefront tilt in each subaperture of

the WFS to pixel shift in the WFS camera. The DM factor relates the counts sent to the

DM controller to actual push of each DM actuator. These calibration factors are vital for

the correct interpretation of the AO loop data and must be accurately estimated.

B.1 Theoretical Calibration

The calibration factors can be estimated from knowledge of the physical characteristics of

the AO system components, such as the plate scale of the WFS, which are in principle

known and should provide good estimates of the required factors.
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Figure B.1 Schematic representation of a flat wavefront tilted by an angle α in the pupil
of a telescope of aperture D.

B.1.1 Wavefront Sensor Calibration

The WFS produces an array of subaperture images on its camera. The angular resolution of

the WFS relates pixel distance in the produced images to angular field separation in the real

object being imaged. This angular resolution of the WFS, also referred to as its pixel scale,

provides enough information to relate measured pixel shifts to wavefront tilt. The pixel

scale of the WFS in the AO system has been previously measured: P5 = 1 arcsec/pixel.

Consider a flat tilted wavefront that enters the pupil of the telescope. The wavefront

is tilted by an angle ι with respect to the optical axis in the pupil of diameter D, as shown

in Figure B.1. The distance d in the figure is expressed as:

(B.1)

where the following approximation for small angles was applied: tan ι ^ ι since common

wavefront tilts are on the order of seconds of arc, i.e., c — 10 -6 rad. The light propagates

from the pupil of the telescope down to the AO system. Inside the AO system, a small
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fraction of the light is separated by a beam splitter and used for wavefront sensing, while

the rest continues to the science path. Α wide filter is used on the WFS light to only allow

light of wavelength around λ,ίfs = 550 nm into the WFS. Hence, the wavelength of the light

reaching the WFS can be considered λωfs. This allows the conversion of d from distance

units to wave units (radians of wave).

(B.2)

The tilted wavefront is imaged by the lenslet array and rescaled by the imaging optics

of the WFS, producing the subaperture images on the WFS camera. The optical layout of

the WFS is designed to produce a known pixel scale on the camera Ρ8 . Thus, features

recorded one pixel apart in the WFS camera are Ρ. radians apart on the sky, i.e., a pixel

shift Spz measured by a subaperture of the WFS corresponds to a wavefront tilt of a =

PS Sp,1 radians on that subaperture. Α global tilt produces the same wavefront tilt in all

the subapertures, and all measure a pixel shift of S 5 . Substituting this in Equation B.2

produces a relation between measured pixel shift in the WFS and actual wavefront tilt on

the pupil:

(B.3)

The PSF estimation algorithm uses modal decomposition to express wavefront. This

measured tilt must be scaled into modal coefficients that reproduce the correct measured tilt.

The simplest example is to use Zernike polynomials as the modal basis. The first Zernike

polynomial (of order n=2) corresponds directly to tilt, shown in Figure B.3. However, as

illustrated by the figure, the Zernike polynomial of order n=2 ranges from a minimum value

of -2 to a maximum value of 2. The distance d produced by a wavefront described by a
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Zernike coefficient z2 = 1 would be d = 4. There is a factor 4 between d in radians and

the Zernike coefficient z2

(B.4)

The previous equation constitutes a relationship between the pixel measurements

from the WFS and the Zernike coefficients that describe the wavefront on the pupil. This

represents the actual response of the WFS system. However, the wavefront is reconstructed

from the WFS measurements with a reconstruction matrix D±, i.e., the pseudo-inverse of

the interaction matrix. The interaction matrix is computed by simulating the WFS response

to synthetic wavefront inputs, as described in Appendix C. Thus, a synthetic wavefront

described by a Zernike coefficient z2 = 1, which has a slope of 2 on the x axis, produces a

WFS simulated x shift response of 2 pixels in all the subapertures. When the computed D±

encounters such a WFS measurement, it reconstructs the wavefront as described by z2 = 1

instead of what is indicated by Equation (B.4):

(B.5)

Therefore, the Zernike coefficients reconstructed by D± must be scaled by a calibra-

tion factor kf that would make z2 = z2. This factor is the WFS calibration factor and it

relates Zernike coefficients restored by D± to Zernike coefficients that describe the actual

wavefront:

(B.6)
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B.1.2 Deformable Mirror Calibration

In the case of the DM, the DM controller applies a voltage to each actuator according to the

commands received from the AO system. Each actuator then pushes the thin membrane of

the DM proportionally to the voltage applied. The values that the AO system sends to the

DM controller are expressed in units called counts, which are proportional to the voltage

applied. The DM calibration factor relates the commands in counts sent to the DM to actual

push of the actuators.

The technical specifications of the DM state that the maximum stroke of each actuator

is 4.8 microns. It also indicates that a value of 500 counts sent to an actuator produces a

push 1/8 of the total range. Thus, a value of 1000 counts produces a linear push of 1.2

micrometers. The ratio between counts and distance pushed by the actuator is: 1000/1.2 =

833.333counts/micron. The distance an actuator pushes when instructed to push C counts

is written as:

(B.7)

The PSF estimation algorithm requires an estimation of the shape of the DM to obtain

a fit of the Fried parameter το . Since the Fried parameter is defined at a wavelength of

550 nm, the distance d an actuator pushes can be written as radians of wave.

(B.8)

The DM applies its correction to the wavefront by reflection, therefore an actuator

pushing a certain distance will introduce twice that change into the corrected wavefront. A

certain value of C counts sent to a particular actuator will introduce a change of d' in the

wavefront:
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(B.9)

The previous equation relates counts sent to the DM controller to actual wavefront

change produced. The factor that relates these two quantities is the DM calibration factor:

(B.10)

The wavefront correction introduced by the DM is then reconstructed by using the

DM calibration factor kd , and the influence functions. This wavefront is then decomposed

in terms of a modal basis and fitted to the Kolmogorov model to obtain a value of the Fried

parameter ro .

Β.2 Empirical Calibration

These calibration factors can also be measured from the AO system itself by measuring

the response of the WFS and the DM to a known wavefront input. The simplest wavefront

input to consider is a flat tilted wavefront. The WFS and DM response to this wavefront

relate internal raw AO system measurements (in pixel shift and count units) to external

actual wavefront measurements.

A pinhole was placed at the main focus of the telescope to provide a high contrast

image with no aberrations for the AO system to lock on. The tilted wavefront was intro-

duced by shifting this pinhole in the focal plane. The amount of tilt introduced can be

easily measured by taking images of the pinhole with a camera of known pixel scale in

prime focus.

Initially, the pinhole is centered on the field-of-view. An image is captured of this

"zero" position with the camera as a reference. Also, a reference subaperture is captured on

the AO system, so the WFS sensor is measuring zero shifts with the pinhole in this position.
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So far the AO system is working in "open-loop" mode, i.e., the AO system is working on

a passive mode where the wavefront is being continuously measured by the WFS but the

DM is not providing any correction. The DM in open-loop behaves as a flat mirror.

The pinhole is shifted in the focus plane. An image of the shifted pinhole is taken

with the camera. The difference between the images captured with centered and shifted

pinhole will provide a measurement of the wavefront tilt introduced. The WFS measures

the wavefront coming from the shifted pinhole as a tilted wavefront with respect to the

centered pinhole. The WFS measurements produced are stored. These measurements,

which relate a known wavefront tilt to WFS pixel shifts, will be used to obtain the WFS

calibration factor.

B.2.1 Empirical Calibration: Wavefront Sensor

The DM calibration factor is obtained by letting the DM correct the wavefront tilt intro-

duced by the shifted pinhole. The AO loop is closed and the shape of the DM is adapted

to correct for the tilt that the WFS was measuring. When correction is complete, the shape

of the DM emulates the measured tilt and corrects for it, which produces zero tilt measure-

ments in the WFS. The DM commands that produce the tilt shape are stored and will be

used to estimate the DM calibration factor.

The amount of tilt introduced by shifting the pinhole is extracted from the images

taken with the science camera. Knowing the pixel scale in prime focus that the optical

setup produces on the science camera, i.e., how many arcseconds on the sky correspond to

each pixel on the camera, the tilt introduced can be easily measured.

The pixel shift between the centered and shifted pinhole images can be estimated by

two different methods. The first method consists of computing the cross-correlation of the

centered and shifted pinhole images. The position of the cross-correlation peak provides a

measurement of the pixel shift between pinhole images. An alternative approach consists
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Figure B.2 Cross-section of pinhole images. Data points are plotted as symbols. Lines
represent the Gaussian fits.

of fitting a gaussian function to each pinhole image and obtaining their positions from the

fit.

The width of the cross-correlation peaks was considerably large, introducing some

uncertainty in the shift estimates. This is believed to be caused by small shape differences

between both pinhole images. The gaussian fits seemed to provide better more consistent

position measurements.

Figure B.2 shows a cross-section of both pinhole images, showing the actual data

points and the gaussian fits. The pinhole image pixel shift Sps is calculated by subtracting

the positions of the gaussian fits. Since the camera pixel scale of the setup is known PS =

0.1875 arcsec/pixel, the actual tilt introduced to the AO system is obtained by:

(B.11)



Figure B.3 Zernike polynomial Ζ2, i.e., tilt in the x direction.

Knowing the angle α of the wavefront tilt and the wavelength of the light used for

wavefront sensing, the distance d from Figure B.1 can be computed in radians of wave with

Equation (B.2).

The PSF estimation algorithm follows a modal decomposition of the measured wave-

front. The distanced that describes the wavefront tilt must be expressed as a coefficient to

the tilt Zernike, i.e., Zernike polynomial of order n=2 (shown in Figure B.3). The wave-

front can be expressed as: ψ = z2 Ζ2. As previously, a Zernike coefficient z2 = 1 would

produce a d of 4 radians.

For a known d, the correct value of z2 is z2 = 4. The value of d was measured from

the centered and shifted pinhole images, hence the value of the Zernike coefficient z 2 is

written as:
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(B.12)
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Figure Β.4 WFS pixel shifts produced by tilt in the z direction.

The modal coefficient decomposition of the wavefront tilt has been estimated from

the science camera images. Now it must be compared to the coefficient decomposition

obtained from the WFS measurements. The WFS pixel shift measurements, shown in

Figure Β.4, are expressed as modal coefficients with the help of the reconstruction matrix

D± (see Appendix C).

Thus, the Zernike coefficient decomposition z that describes the wavefront tilt is ob-

tained from the WFS measurements ώ and the reconstruction matrix: z' = D±. This new

z2 coefficient is compared to the one obtained from the shifted pinhole images z 2 to calcu-

late the WFS calibration factor. The coefficient z2 is already correctly scaled to describe

the wavefront tilt, thus the WFS calibration factor must be applied to the z2 coefficient

obtained from the WFS measurements:

(Β.13)
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The WFS calibration can be incorporated into the reconstruction matrix D± that was

used to calculate z2. This reduces the number of multiplications when the calibration factor

must be applied to a large number of WFS measurements sets.

B.2.2 Empirical Calibration: Deformable Mirror

The DM calibration factor is computed following a similar procedure. The AO loop was

closed and the introduced wavefront tilt was corrected by the DM. Normally, any tip or tilt

measured in the wavefront would be corrected by the tip-tilt mirror before it reaches the

DM. During the calibration procedure, the tip-tilt correction was disabled to allow the DM

to correct for any tilt.

The stored actuator commands are in units called counts, which are proportional to

the voltage applied to the actuators. The actuator commands in tilt will be related to the

previously measured wavefront tilt, see Equation (ΒΛ 1).

The influence function of each actuator describes the shape that the actuator produces

when pushed. The shape of the DM is decomposed as a linear combination of influence

functions with the actuators commands as the coefficients of the decomposition. This as-

sumes that the influence functions constitute a set of orthonormal functions that describe

the space of DM shapes. In reality, there is some cross-talk between adjacent actuators,

i.e., the shape resulting from pushing two adjacent actuators is not exactly the same as the

shape obtained by adding the contribution of each actuator independently. However, while

a linear decomposition is not exactly accurate, it provides a good approximation [97] to the

actual shape of the DM.

The influence functions were directly measured from the AO system by poking each

actuator individually and measuring the resulting DM shape with an interferometer. Results

from this measurement are shown in Figure 4.7. To eliminate the noise from the influence

functions, a synthetic set was fitted to the measured influence functions. Two different

types of synthetic influence functions were tested: Gaussian functions and a combination
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DM Cross—Section

Figure B.5 Cross-section of shape produced by two adjacent actuators pushing. Using
Gaussian and combination of 4 Gaussians influence functions.

of 4 smaller Gaussians. The second type of influence function is constructed by adding 4

small Gaussians located on the corners of a square. The resulting shape is less pointy than a

single Gaussian and presents a slight square shape that is a better match to the actual shape

of the measured influence functions.

Another advantage of the second type of influence functions is the lower cross-talk

produced by simulating the poking of two adjacent actuators, as illustrated by Figure B.5.

Hence, the influence functions obtained by combining four small Gaussians were chosen

to generate the synthetic set of influence functions. Their width and position were fitted

from the measured influence functions.

The shape of the DM ψdrn is reconstructed from the actuator commands and the

synthetic influence functions. Figure B.6 shows the reconstructed shape of the DM while

correcting for the wavefront tilt, computed from the actuator commands stored. This shape

is decomposed as a linear combination of Zernike polynomials:



Figure Β.6 Reconstruction of the shape of the DM from stored mirror commands.

(Β.14)

The process of transforming the mirror commands into Zernike coefficients is just

a change of basis from influence functions to Zernike polynomials. The change can be

directly performed if the projection matrix of the change of basis is known. The calculation

of the projection matrix ΒZ is described in Appendix C. The Zernike coefficients zί are

computed from the actuator commands m 2 with the help of the projection matrix: =

Bz m.. Figure Β.7 shows an example of Zernike coefficients obtained in this way. The

Zernike coefficients from the figure were computed from the actuator commands stored

during the calibration process. All of the coefficients are zero or close to zero except for

z2, clearly indicating that the wavefront they describe is mostly composed of tilt.

The Zernike coefficient z2 obtained from the decomposition is compared to the one

obtained from the pinhole measurements z2 to obtain the DM calibration factor. As before,

z2 is already scaled correctly so the DM calibration factor kdm must be applied to the

coefficient 22 obtained from the actuator commands.
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Figure B.7 Zernike coefficients that describe the shape of the DM correcting the wave-
front tilt.

(B.15)

(B.16)

As in the case of the WFS calibration factor, the DM calibration factor can be incor-

porated inside the projection matrix to reduce the number of multiplications required when

processing a large number of data sets.



APPENDIX C

ADAPTIVE OPTICS CONTROL

This section summarizes the basic concepts and requirements of a solar AO control sys-

tem [33, 67, 61, 97] and how they relate to the PSF estimation method.

In an AO system, the residual wavefront after correction by the DM is measured

by the Shack-Hartmann WFS. At each AO iteration, the shape of the DM is updated in

such a way as to minimize the measured wavefront residuals. In this way, the AO system

is a closed-loop control system. The system computing the updated DM shape from the

measured wavefront measurements at each AO iteration is the AO Control System, as shown

in Figure 2.1.

The AO control system processes the measurements from the WFS and computes the

new shape of the DM. A Shack-Hartmann WFS measures the average x and y slope of the

wavefront at different points in the pupil. The slopes are measured by the WFS as a series

of z and y shifts between subaperture images formed by lenslets onto the WFS camera.

The DM consists of a thin mirror plate in front of a series of actuators that can push or

pull on it. With the measured x and y shifts, the AO control system computes the optimum

shape of the DM in the least-square sense as a series of actuator commands, effectively

closing the loop between wavefront sensing and correction.

The control process is formally a matrix multiplication [97, 33] between the Control

Matrix C± of the system and the WFS measurements. The WFS measurements, i.e., the i

and y shifts from each subaperture, are arranged in vector form: ώ. The DM commands

are also arranged in vector form: rh. . The vector rń. is then obtained by multiplying the

control matrix by the WFS measurements vector ώ: m = C± J. Equation (C.1) shows this

in matrix form.
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(C. l )

The WFS has S/2 subapertures that measure wavefront tilt in the ι and y directions,

hence the WFS vector tú contains S elements. The DM has a number A of actuators, hence

the DM commands vector m contains A elements. The control matrix C+ is a A x S matrix,

generally S > A for AO systems. It should be noted that the WFS shifts are arranged in

the vector ώ as follows: ώ = {S1xi Sly , S2 , S2 , . . .}, where Slx refers to the ι shift from

subaperture 1. In addition, the control matrix is constrained to set the piston mode to zero

since it cannot be measured by the Shack-Hartmann WFS.

C.1 Theoretical Calculation

The control matrix of the AO system can be theoretically computed by simulating how

the AO system works. For this, the characteristics of both the WFS and the DM must be

known.

The Shack-Hartmann WFS consists of an array of lenslets placed in a pupil image.

Each lenslet forms an image from one section of the wavefront on a section of the WFS

camera. The relative shifts of each one of these images with respect to a reference one

are proportional to the mean wavefront slope at the lenslet position on the pupil [33, 97].

This process can be numerically simulated since the position and size of each lenslet in the

pupil is known. Given a wavefront, the x— and y—slope of the wavefront at each point in

the pupil can be calculated. These slopes are then averaged inside each lenslet producing

the final x— and y - WFS measurement for each subaperture. Since the pixel scale of the
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WFS camera is known, i.e., how much tilt corresponds to a shift of one pixel, the calculated

mean slopes can be related to pixel shifts in the camera.

The Xinetics DM consists of a thin mirror plate placed in front of an array of actua-

tors. Each actuator can push or pull on the mirror to produce the desired shapes. The shape

that an actuator will produce when pushed is called its influence function, which can be

measured with an interferometer. Therefore, a mirror shape can be decomposed in terms

of these individual influence functions. In other words, the amount of pushing for each

actuator necessary to generate a certain mirror shape can be numerically computed.

The response of a WFS to a given wavefront can be simulated and used to compute

the required actuator commands that reproduce that wavefront on the DM. However, these

simulation calculations rely on some assumptions about the actual AO system: it is assumed

that the WFS and DM configurations with respect to the pupil are exactly known. Any small

misalignment between the actual system and the model will affect the obtained results.

As discussed in Appendix A, the wavefront can be decomposed as a linear combina-

tion of some modal basis. Karhunen-Loeve (KL) functions are chosen as the modal basis

in this case. Thus, a wavefront % is described as a linear combination of KL functions Κ2 :

(C.2)

where K, are the KL modes and k2 are the KL coefficients that describe wavefront ιρ, i.e.,

the coordinates of the wavefront when expressed in terms of KL modes.

Since the wavefront can be expressed as a linear combination of KL modes, it is

enough to know the response of the WFS to each KL mode in order to obtain its response

to any arbitrary wavefront. Each individual KL mode K, is applied to the WFS model and

the produced pixel shifts are recorded. The shifts produced by KL mode K, are placed

in a vector named . Thus, assuming a number K of KL modes, the following list of

measurements vectors is obtained: { Σ  1 , w2 ,
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The properties of matrix multiplication can be used to simplify the computations.

Each vector ώi is placed as the column of a matrix, as shown in Equation (C.3).

(C.3)

This matrix is called the Interaction Matrix D and its dimensions are S x K, where

S is twice the number of subapertures in the WFS and K is the number of KL modes used

in the wavefront decomposition. This matrix D relates KL coefficients to WFS shifts. The

shifts measured by the WFS ώ are computed by the matrix multiplication of D with the

KL coefficients λΡ , described in Equation (C.2) that describe the wavefront:

= D k (C.4)

A simple example can help to clarify the previous statement. Assume a wavefront

consisting only of the 2nd KL mode. In this case, the KL coefficient decomposition of the

wavefront is: der = (0. 1, ... , 0). The interaction matrix D is then multiplied by the KL

coefficient vector kex . The result is just the 2nd column of the interaction matrix: ú½, i.e.,
ti

the shifts vector that the 2nd KL mode produced on the WFS: ώ2 = D keχ . This is more

clearly shown in matrix form in Equation (C.5).

(C.5)
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A matrix D relating KL coefficients to WFS measured shifts has been obtained.

However, what is needed is a matrix that relates measured WFS shifts to KL coefficients

so that the wavefront can be estimated from the WFS measurements. Such a matrix can be

obtained by multiplying Equation (C.4) on the left by the inverse matrix of the interaction

matrix. However, the interaction matrix D normally constitutes an over-determined sys-

tem of linear equations, and thus, not a square matrix [67, 87]. The dimensions of D are

S x K, where the number of shift measurements is larger than the number of KL modes

considered (S > K). Since D in general is not a square matrix, it cannot be inverted. A

pseudo-inverse matrix D+ that follows D± D = Ϊ, where Ϊ is the identity matrix, must be

computed instead:

(C.6)

(C.7)

This pseudo-inverse matrix D± is called Reconstruction Matrix, and its dimensions

are K x S. It relates measured WFS shifts to KL coefficients that describe the wavefront.

The KL coefficients are calculated from the measured WFS shifts through a matrix multi-

plication: = D± ώ.

The reconstruction matrix D+, i.e., the pseudo-inverse of D, can be computed using

the method of singular value decomposition (SVD). The SVD method [53, 87] decomposes

a matrix as a product of orthonormal and diagonal matrices:

(C.8)

Matrix U is a column-orthonormal S x K matrix, VT is the transpose of an orthonor-

mal K x K matrix and W is a diagonal K x K matrix. The diagonal elements of W are

called the singular values of matrix D. An orthonormal matrix [87] is a real matrix that
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satisfies: UUT = Ϊ, where Ϊ is the identity matrix. Thus, the transpose of an orthogonal

matrix is equal to its inverse: U T = U -1 .

Once D is decomposed as indicated by Equation (C.8), its inversion is straight-

forward:

(C.9)

The inverse matrix of a diagonal matrix W is another diagonal matrix W -1 , such

that: w221 = 1/w22 , where w2i and w22 1 are the diagonal elements of W and of W 1 , re-

spectively. In addition, the inverse of the orthonormal matrices are their transpose matrices.

A very small or null diagonal element of W indicates that the system represented

by D is not sensitive to a particular configuration. When this very small singular value is

inverted, it produces a very large singular value in the pseudo-inverse matrix. That is, the

inversion process is giving a very large weight to some configuration to which the system

is not sensitive, hence mostly amplifying noise [67]. This can make the system represented

by the pseudo-inverse matrix unstable. It is preferable to set the very large inverted singular

value to zero.

As shown in Equation (C.7), the KL decomposition of the wavefront 1' is obtained

by a matrix multiplication of the measured WFS shifts with the reconstruction matrix D±.

The measured wavefront is described in terms of KL modes as shown in Equation (C.10).

The DM attempts to correct the measured wavefront φ by adapting its shape to repli-

cate it. The shape of the DM is described by the DM commands and the DM influence

functions, as shown in Equation (C.11). Thus, the measured wavefront; can be expressed

equally in terms of KL modes Κ 1 and in terms of influence functions Ι 2 :
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(C.10)

(C.11)

The DM influence functions I, are the characteristic shape that each actuator pro-

duces on the DM when pushed. The coefficients m, describe the wavefront expressed in

terms of the influence functions. However, these m, coefficients are not the actual DM

commands stored by the AO system. The actuator commands produced by the system are

expressed in some particular units called counts, which are proportional to the voltage ap-

plied to the DM actuators. The transformation between the m, 2 coefficients and the DM

actuator commands in counts is performed with a proportionality constant, as described in

Section 4.4.2.

The dependence on the KL modes K, must be eliminated from Equation (C.10) in

order to translate the measured wavefront into influence function coefficients m 2 . For this,

each KL mode is projected into the new basis of influence functions with the help of a

projection matrix B. Since both basis K, and I, are known, the elements of the projec-

tion matrix b ig can be easily derived, as will be discussed later in this section. Thus, the

projection of the KL modes on the influence functions is written as:

(C.12)

Equation (C.12) is substituted in Equation (C.10) to produce:

(C.13)
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Equations (C.11) and (C.13), which provide two different decompositions of the mea-

sured wavefront in terms of influence functions, can be equated producing the following

relations:

Equation (C.16) relates the influence function coefficients m, that describe the shape

of the mirror to the KL coefficients k i that describe the wavefront measured by the WFS.

This relation can be rewritten in matrix form as:

(C.17)

The elements b ig of the projection matrix are the only unknowns in the previous

equation. They can be computed by taking the scalar product of the influence function In

on both sides of Equation (C.12):

(C.18)

To simplify matters, both basis are kept of the same dimension, which is fixed by the

number A of actuators in the DM. Thus, all the indexes i, j, n are iterated from 1 to A and

Equation (C.18) represents A different linear equations. All the possible scalar products
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defined by h In can be written as the elements of a A x A matrix denoted by Sιι. The

same can be said for the scalar products K, 1,, denoted by Sκι. The projection matrix B

is then another Α x A matrix. Thus, Equation (C.18) can be rewritten in matrix form as:

(C.19)

Equation (C.19) is multiplied on the right by the inverse matrix of S11 , denoted by

5111 , to produce an expression of the projection matrix B:

(C.20)

To summarize, the KL coefficients k that describe the measured wavefront φp are ob-

tained from the reconstruction matrix D± and the WFS measurements iii. They are trans-

formed into influence function coefficients r by the projection matrix B, and converted to

counts units to be sent to the DM controller to update the shape of the DM. In this way, the

loop from WFS measurements to DM commands has been closed.

The reconstruction described above is performed by two individual operations, as

described by Equation (C.4) and Equation (C.16). These two operations can be combined

into one requiring just one matrix multiplication:

(C.21)

(C.22)

This matrix C± is the control matrix of the system, defined as the product of the

projection matrix B and the reconstruction matrix D±. The control matrix directly relates

WFS measurements to DM actuator commands.
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C.2 Empirical Calculation

The previous theoretical derivation is based on assumptions about the characteristics of the

actual AO system. For example, it is assumed that the exact position of the subapertures

of the WFS with respect to the pupil is known, and that the exact position of the influence

functions and their shapes are known. It is also assumed that all actuators in the DM have

a perfectly linear response and that they all have the same response. Any deviation of the

system characteristics from these assumptions will affect the performance of the computed

control matrix. A more reliable and realistic control matrix must be measured from the

system itself [67].

The control matrix can be obtained by measuring the response of the WFS to each one

of the actuators being pushed. The WFS measurements produced by individually pushing

each of the A actuators in the DM, is obtained: ώo  712 , ... , ω�λ . The WFS response to each

actuator is placed as a column in a matrix to create the poke matrix of the AO system.

(C.23)

The poke matrix C is of dimensions S x A and relates DM actuator commands to

WFS measurements: ι = C m. Similarly to the previous theoretical derivation, this matrix

is multiplied by a vector of DM actuator commands to obtain the WFS measurements that

they would produce. Again, a simple example can be used to show this. The DM actuator

vector describing actuator number 2 being pushed is written as: met = (0, 1, 0, •, 0). This

vector is multiplied by the poke matrix C, producing a result that is equal to the 2nd column

of C, i.e., the WFS measurements obtained by poking actuator number 2: ?Σ2 = C mex.
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The control matrix C± is computed as the pseudo-inverse of the poke matrix C, since

C is in general not a square matrix. Thus, the control matrix C± relates WFS measurements

to DM actuator commands.

(C.24)

(C.25)

However, one must be careful when computing the pseudo-inverse matrix of the poke

matrix. In a sense, the poke matrix represents the internal characteristics of the AO system

working in closed-loop. It only contains configurations that the AO system can produce and

detect. Anything that is invisible to the AO system or that the AO system cannot reproduce

is not reliably represented by the poke matrix. When computing the pseudo-inverse of

C, many of these problematic configurations may appear in the result, making the control

matrix C± unstable.

The matrices that the SVD method produces contain information about configura-

tions that are inherent to the AO system, in a sense the eigenmodes and eigenvalues of the

system. The noise propagation on a certain eigenmode of the poke matrix is proportional

to the inverse of the corresponding eigenvalue [67]. Thus, an eigenmode with a very small

eigenvalue must be filtered out from the final control matrix. The eigenmodes can be ex-

tracted from the U and V matrices produced by the SVD algorithm and then filtered to

ensure no unstable configurations are present in the pseudo-inverse.

C.3 Application to PSF Estimation Method

Knowledge about the residual wavefront that was measured by the WFS and about the

shape of the DM is required by the long-exposure PSF estimation method. For the method,

the main concern is not the calculation of the control matrix of the AO system, but the indi-

vidual matrices that relate WFS measurements and DM commands to wavefront, derived in
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Section C.1. The PSF estimation method requires a matrix to transform the WFS measure-

ments of the residual wavefront to KL coefficients; and another matrix to transform DM

commands describing the shape of the mirror to KL coefficients. As shown previously, they

can be theoretically calculated when the characteristics of the WFS and DM are known.

The reconstruction matrix D± is computed following the method described in Sec-

tion C.1. This matrix produces an estimation of the residual wavefront measured by the

WFS in terms of KL coefficients. A projection matrix B' that transforms DM commands

into KL coefficients is also computed as described. It should be noted that this new pro-

jection matrix B' is different from the one computed previously B. This new projection

matrix is calculated by expressing the influence functions in terms of KL modes:

(C.26)

The projection matrix elements b^ 2 are computed following the same method as be-

fore, by taking the scalar product of both sides of Equation (C.26) with Κ,. The same

approach described in Eqs. (C.19) and (C.20) is followed.

(C.27)

(C.28)

(C.29)

where Sικ is the matrix defined by the I, • K,, scalar products and the Sh κ is the inverse

of the matrix containing the K3 • Kn scalar products.

The PSF estimation method requires knowledge about the wavefront residuals after

correction and about the original atmospheric seeing distortions, which are estimated from

the DM commands. Thus, the PSF estimation method requires these two matrices: D±
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and B'. With the reconstruction matrix D±, the WFS measurements are interpreted as KL

coefficients, i.e., the residual wavefront after correction. The projection matrix B' provides

the shape of the DM described in terms of KL modes from the DM actuator commands,

which is used to estimate the atmospheric seeing conditions characterized by the value of

the Fried parameter Το.



APPENDIX D

SHACK-HARTMANN WAVEFRONT SENSOR NOISE

This section provides an in-depth derivation of the WFS measurement noise in a cross-

correlating Shack-Hartmann WFS working on extended sources, as is the case in solar AO.

The work presented here is a compilation of non-published work by V. Michau [48, 47]

from ONERA.

A cross-correlating Shack-Hartmann WFS measures the slope of the wavefront by

performing cross-correlations between the subaperture images and a reference. For any

particular subaperture, the position of the cross-correlation peak is proportional to its shift

with respect to the reference subaperture and, hence, to the relative slope of the wavefront

at that position. The subaperture images are produced by a lenslet array and captured by a

the WFS camera. The image captured by the camera is affected by several noise sources,

such as: photon noise (also called shot noise), readout noise, thermal noise (also called

dark current) and inhomogeneous pixel response. The last two can be calibrated out by the

AO system by capturing dark current and flat field images.

Readout noise is the noise produced by the camera amplifier, which converts the

electron charge captured by a pixel into a voltage that can be measured. Photon noise

arises from the inherent statistical nature of the photon detection process and is known

to follow a Poison distribution. Thus, the standard deviation of the photon noise can be

estimated as the square root of the measured signal. For solar observations, the main noise

contributor is photon noise, due to the high light levels present, and readout noise can be

safely neglected.

The presence of noise in the subaperture images affects the results of the cross-

correlation functions and introduces noise in the wavefront sensor measurements. A study

of the cross-correlation noise properties is required to obtain better estimations of the mea-
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sured wavefront. An expression of the variance of the cross-correlation noise in a Shack-

Hartmann WFS was derived by Michau [48] and later corrected [47]. Its derivation is given

in this Appendix.

Consider the case of the cross-correlation between a subaperture image Ι and a sub-

aperture reference Ι,. Assume the relative shift between them is described by the vector

(ct, β). The cross-correlation function of Ι and Ι. is defined by:

(D. l )

All functions considered here are discrete functions due to the matrix nature of the

WFS detector. The calculations using continuous functions and their integrals can be trans-

lated to discrete functions and discrete sums, neglecting the effects of this discretization.

The above integral is an integral over S,., which is the region where I is defined. This

assumes that S, the region where Ι is defined, contains S,. for all the shifts considered.

The relative shift between Ι and Ι,. is determined by calculating the cross-correlation

function C and computing the position of the center of gravity of the cross-correlation peak

after thresholding. In general, subaperture images are affected by noise and introduce an

uncertainty on the determination of the cross-correlation maximum.

Consider different realizations of a subaperture image, all of them images of the same

object but affected differently by noise. The noise free subaperture images are defined as

the ensemble average of all these realizations: (I) and (Ι,.). The autocorrelations of (1)

and (Ι,.) are defined:

(D.2)

(D.3)
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Consider D as the domain for which C(z, y ) > s where s is a threshold value. The

center of mass of the cross-correlation function inside D determines the position of the

cross-correlation peak. Thus, the abscissa of the center of mass of the thresholded cross-

correlation function is given by:

(D.4)

Some other useful quantities are defined below:

(D.5)

(D.6)

(D.7)

(D.8)

In the following derivations, the subaperture images Ι and I will be considered as

random variables and the relative shift of Ι as a parameter. In the case where Ι and Ι  are

affected by noise, the measurement 1 9 will also be affected by noise. An expression for its

variance σ 9 will be derived below.

D.1 Case Where Ι is Noisy and Ι  is Noise Free

A simplified case where only Ι is affected by an additive noise n will be studied first. As

indicated before, Ι,. is assumed fixed while I is shifted with respect to I, by a vector (ct, β).

(D.9)

(D.10)
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The variance of xg can be written from Equation (D.4) in terms of Νg and Dg . The

fluctuations of the denominator can be neglected with respect to the fluctuations of the

numerator producing:

(D.11)

The numerator of the previous expression can be expanded according to the previous

definition of Ng :

(D.12)

The cross-correlation terms in Equation (D.12) can be also expanded as:
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Assuming the noise on I is white noise, i.e., noise affecting different pixels is de-

correlated:

Thus, from Equation (D.12) it follows:

The previous expression is greatly simplified assuming that the variance of the noise

is constant across the subaperture image I: σn
, _ σn z . From the fact that Ιr is

assumed to be noise free Ι Γ = (I,.) and Equation (D.2):

(D.14)

Thus, the numerator of Equation (D.11) can be written as:

(D.15)

D.2 Case Where IT is Noisy and I is Noise Free

In this case, subaperture image I is assumed to be noise free and subaperture reference Ι,. is

affected by an additive noise n - Zr . As previously, I is shifted by a vector (ct, β) with respect

to Ί.

(D.16)

(D.17)
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The cross-correlation of two functions is a symmetric function with respect to the

exchange of Ι and Ι, , as can be seen from its definition in Equation (D.1). Therefore, the

derivation presented in the previous section can be directly applied to this case with Ι and

Ι,. exchanged.

(D.18)

where σ2 represents the variance of the noise affecting the reference subaperture image

D.3 Case Where Ir and Ι are Both Noisy

Normally, both subaperture images are affected by noise. Again the images are assumed

to be affected by a white additive noise n., and n r , respectively. Subaperture image Ι is

shifted by a vector (ct, 3) with respect to ι,..

(D.19)

(D.20)

(D.21)

The noise terms n, Γ and n, are not correlated. In the calculation of σc , it is possible

to decompose Ι (and Ι ), as a function of (Ι} and n, ((Ι,:) and nh ). Also, all the terms of

the type (n,Π, Τ ) are zero. The results from sections D.1 and D.2 can be combined to obtain

a general result for noisy Ι and Ι,-:



203

(D.22)

D.4 Simplified Expressions

Several approximations can applied to obtain a simplified expression for the noise variance

σ r , . The following approximation relates the autocorrelations C^ι> and Cιιr> around the

maximum of C( ι ) .

(D.23)

where the function (Sr ® S,.) represents the convolution of Sr with itself. The autocorrela-

tion function C^ 1 > has a maximum on (0, 0) and its value is given by:

(D.24)

Furthermore, the shape of the autocorrelation function C^ j> around the central peak

can be approximated by the following parabolic function:

(D.25)

where the parameter δ represents the half width at half maximum of the cross-correlation

peak. The convolution function (S,. ® S,.) can be expressed analytically in the case where

S7. is a rectangle of dimensions αr x b,.. Thus, inside the rectangle defined by [—α,., αr] x

[ — br , b^- ] this function is defined by:
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(D.26)

Using these relations, Equation (D.22) can be re-written in a much more explicit

(D.27)

The same approach can be applied to calculate the denominator of Equation (D.11).

From the definition in Equation (D.7) and the above relations, the following expression for

(D9)2 is found:

(D.28)

The calculation of these integrals requires an explicit definition of the domain D that

constitutes the domain for which C(τ, y) > s, where s is the threshold applied in the

center of mass calculations. Using the approximation from Equation (D.25) as the cross-

correlation function, an estimation of the domain D can be computed as follows:

(D.29)

(D.30)

Once the domain D is defined, the integrals can be calculated and a final result for

the variance of 9 , the measured abscissa of center of mass of the cross-correlation peak, is

obtained:

form:
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(D.31)

Moreover, if the noise variances of the image and the reference are assumed to be the

same σ2„ = σ2
, ,

 the previous expression can be further simplified as:

(D.32)

With:

• σ2: noise variance of subaperture image and reference

• δ: half width at half maximum of Cm the autocorrelation function of the noise free

subaperture image

• I r : maximum value of C^ I ^

D.5 WFS Noise from Real Data

The noise affecting the WFS shift measurements can be estimated from the power spectrum

of real open-loop WFS measurements. Parseval's theorem states the relationship between

the power of the signal computed in the time space and in the frequency space. It specifies

that the power of the signal is the same in both spaces, i.e., it is not changed by a Fourier

Transform. Parseval's theorem [12] for a real continuous signal is written as:

(D.33)

The time series of WFS measurements constitutes a discrete signal, which requires

discrete Fourier transforms. The direct and inverse discrete Fourier transforms [ 12] are

defined as:
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(D.34)

(D.35)

Parseval's theorem for discrete signals [12] transforms into Equation (D.36).

(D.36)

Parseval's theorem can be used to relate the statistical variance of a signal to its

power spectral density (PSD). The variance of a signal is calculated as illustrated by Equa-

tion (D.37) and Equation (D.38) in the special case where the mean of the signal is zero.

The angled parenthesis () indicate temporal mean.

(D.37)

(D.38)

Both sides of Parseval's theorem are divided by the number of points in the signal

minus one Ν — 1. The signal is assumed to have zero mean. If that is not the case, it can

always be achieved by subtracting the mean from the signal.

(D.39)

(D.40)

The left side of Equation (D.39) is directly the definition of the variance of the signal.

The variance of the signal can be obtained from the modulus square of the Fourier transform
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Figure D.1 Power spectrum of solar WFS x-shift open-loop data. The dotted line repre-
sents a fit to the noise tail of the power spectrum, which provides information about the
noise variance of the signal.

amplitudes of the signal, i.e., the PSD of the signal. Hence, the variance of the signal is

computed as the integral of its PSF.

(D.41)

(D.42)

The WFS x- and j-shift measurements are considered to be affected by additive white

noise, i.e., noise that presents constant amplitude for all frequencies. Figure D.1 shows the

PSD of the i-shifts measured by a certain subaperture of the WFS, i.e., the power that the

signal has at each frequency. At very high frequencies, the power of the signal disappears

and only the power of the noise remains. The tail of the plot in Figure D.1 corresponds to

the power of the white noise that affects the signal.

1
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The level of the tail of the PSD can be used to extrapolate the power of the white noise

that affects all frequencies of the signal. The white noise power is represented in the figure

by a dotted line. The integral of this white noise PSD over all frequencies can be used in

Equation (D.42) to obtain the variance of the noise affecting the signal. The noise variance

of the open-loop WFS ι-shifts measurements obtained from the PSD shown in Figure D.1

was computed as: σχ g ^^ 9 x 10 -s pixels (or — 4 nm of wavefront standard deviation).

The variance of the signal is computed by integrating the PSD, which produces: σs gnaι

0.4 pixels. Hence, the signal to noise ratio of the WFS measurements is calculated to be

around 45.



APPENDIX E

ALIASING ERROR

A description of the effects of aliasing [16] in the WFS measurements is given in this

section. Insufficient sampling of a signal can make high frequency components show up as

lower frequency components. This effect is called aliasing. Nyquist sampling theorem [ 12]

states that a signal should be sampled at a rate at least twice its maximum frequency jii, the

Nyquist frequency 1N = 21g1 . A signal sampled at a lower rate than its Nyquist frequency

will be affected by aliasing.

Figure E.1 shows a very simple example demonstrating the effects of aliasing. The

original signal presents just one frequency component at 9 Hz. This signal is then sampled

at a rate of 10 Hz, which is lower than the required Nyquist sampling for this signal, i.e.,

18 Hz. Sampling this signal at the given rate produces a signal of 1 Hz, i.e., the real signal

of 9 Hz is aliased as a signal of 1 Hz.

The wavefront distortions produced by atmospheric turbulence can in general be

considered as formed by an infinite number of spatial frequency components. A Shack-

Hartmann WFS samples the wavefront with a limited number of subapertures of finite size

placed in a particular geometry, both of which define its sampling spatial frequency. Since

this sampling frequency is finite, the measurements produced by a Shack-Hartmann WFS

are affected by aliasing.

A Shack-Hartmann WFS measures the slope of the wavefront and not the wavefront

directly. The slopes are measured as pixel shifts between the subaperture images on the

WFS camera. The wavefront is then reconstructed from the pixel shifts as a linear combi-

nation of basis functions, such as Zernike polynomials or KL functions. KL functions were

chosen in this case because they have been proven to reduce the reconstruction error [16].

Even though both the KL functions and Zernike polynomials form an orthogonal basis of
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Figure E.1 Signal of frequency 9 Hz sampled at rate of 10 Hz produces a signal of 1 Hz.

the circular aperture space, their first derivatives do not. Thus, the reconstructed wavefront

will be affected by cross-coupling errors arising from KL modes that were not included in

the reconstruction, i.e., high-order KL modes.

The coefficients of the KL decomposition of the wavefront are obtained from the

measured pixel shifts by means of the reconstruction matrix D±. The reconstruction ma-

trix is the pseudo-inverse matrix of the interaction matrix D, as described in Appendix C.

The interaction matrix provides the WFS pixel shifts that a wavefront described by a series

of KL coefficients would produce, as shown in Equation (C.4). The list of pixel shifts mea-

sured by the WFS are indicated by ώ, and the KL coefficients that describe the wavefront

are indicated by 1^.

The series of infinite KL coefficients that describe a particular wavefront can be split

into two sub-series: the low order KL coefficients that the AO system can correct , and
--1

the high-order KL coefficients that the AO system cannot correct Ξι . An infinite interac-

tion matrix D would consider all possible KL modes and could be similarly split in two

components: Dμ and Dl . The D 1 component refers to the low order KL modes compo-

nent, which is the same interaction matrix previously defined D 1 D. Using this infinite

interaction matrix, Equation (C.4) can be rewritten as:
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(Ε. l )

Due to the finite sampling frequency of the WFS, the higher order KL components

k.L cannot be directly measured by the WFS. Their presence translates into aliasing and
-1

cross-coupling errors that affect the measurable KL components ΊΙ. During normal AO
ti

operation, the reconstructed KL coefficients ΙΙ that describe the low order components of

the wavefront are obtained from the WFS measurements. This is done with the reconstruc-

tion matrix:

(Ε.2)

The prime in kf 1 indicates that the KL coefficients are reconstructed from the WFS

measurements. Equation (E.1) is substituted into Equation (Ε.2) producing:

(Ε.3)

where the fact that the reconstruction matrix is the pseudo-inverse matrix of the interaction

matrix has been taken into account: D+ D = Ι. The newly defined matrix C is called the

cross-talk matrix [ 16] and is written as:

(Ε.4)
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The D L component is computed in the same manner as the regular interaction matrix

D using the high-order KL modes. It describes the response of the WFS to these high-order

KL modes. Practical purposes forbid the calculation of D 1 using an infinite number of

modes. An arbitrarily large KL mode order ,Υ is chosen as the maximum KL mode.

The cross-talk matrix C quantifies the influence that high-order KL modes have

on the lower order reconstructed KL coefficients, i.e., the effects of aliasing and cross-

coupling. However, the required high order KL components cannot be directly measured,

thus Equation (Ε.3) cannot be used in its present form. This difficulty is solved by the fact

that the PSF estimation method only employs statistical quantities and only the covariance

of k11 is required. Taking the covariance of Equation (Ε.3) produces:

(Ε.5 )

H
Since the AO system cannot correct for the modes described by / ι , they are not af-

fected by correction and will follow the statistical properties described by the Kolmogorov

model. Their covariance matrix is then calculated from the Kolmogorov model as given

by Noll [52]. In Section 4.4.1, an expression for the covariance of the measured KL co-

efficients that describe the residual wavefront was introduced. Ignoring detection noise,

Equation (4.42) can be compared with the previous relation to produce the following ex-

pression for langleτ τ ), the aliasing and cross-coupling covariance term:

(Ε.6)
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