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ABSTRACT

PREDICTION OF MRNA POLYADENYLATION SITES
IN THE HUMAN GENOME AND MATHEMATICAL MODELING

OF ALTERNATIVE POLYADENYLATION

by
Yiming Cheng

Messenger RNA (mRNA) polyadenylation plays many important roles in the cell, such as

transcription termination, mRNA stability and transportation, and mRNA translation in

eukaryotic cells. Α large number of human and mouse genes have multiple

polyadenylation sites (referred to as poly(Α) sites) that lead to variable transcripts, some

of which are translated into various protein products with different functions. However,

the details about when and where the polyadenylation occurs, and how pre-mRNA

switches from one poly(A) site to another are still unknown. This kind of 3 '-end

processing can be regulated by the cell environment, cell cycle stage, and tissue type.

It is generally accepted that the cleavage of pre-mRNA is based on the sequence

of nucleotides around the poly(Α) sites. So it is possible to predict the poly(Α) sites

accurately based on the pre-mRNA sequence. To accomplish the supervised prediction of

a poly(Α) site, a set of statistical models has been used, such as linear discriminant

analysis, quadratic discriminant analysis, and support vector machine (SVM). Among

these, SVM was chosen as the classification algorithm for the prediction of poly(A) sites

in this work. Α program called polya svm has been developed using PERL. The true

positive and accuracy results obtained using this method are better than the results

obtained using other commonly used algorithms.



Compared with the microarray technique, serial analysis of gene expression

(SAGE) is another powerful technology for measuring the mRNA expression levels. Our

study is the first investigation of the regulation of the transcripts from the same gene by

analyzing the SAGE data. By filtering the noise data from the database and calculating

the correlation between transcripts from the same unigene cluster, some significant genes

are found to have multiple transcripts with opposite expression levels. These genes might

be very interesting to biologists and they are worth being verified by biological

experiments.

Alternative polyadenylation has been found to be very common in human and

mouse genes recently. It has been believed that the selection of different poly(A) sites is

related to biological factors such as the developmental stages, cell conditions, and the

availability and abundance of some protein factors. However, it is not clear how these

factors affect alternative polyadenylation. Mathematical modeling is applied to

understand the dynamical selection of poly(Α) sites. Cleavage stimulation Factor (CstF)

is a very important protein complex required for efficient cleavage, containing subunits

of 77, 64, and 50 kD (CstF-77, CstF-64, CstF-50). It has been found that human cstf-77

gene has several different transcripts due to the alternative polyadenylation and the

expression levels of these transcripts display some auto-regulation. A mathematical

model with a time delay is constructed to simulate the dynamical gene expression levels

of gene cstf-77. Experimental data are compared with the model. This kind of

mathematical model can also be extended to some other polyadenylation factors that have

similar alternative polyadenylation patterns.
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CHAPTER 1

INTRODUCTION

1.1 Background Information

The amount of information in the life sciences is expanding dramatically. Computer

technologies and mathematical modeling are changing the way we look at living cells.

Since living things are very complex systems, it is very difficult to understand these

systems using traditional biological disciplines. Interdisciplinary research is

increasingly important to solve such complex systems, and interdisciplinary education

has been proposed (Sung et al. 2003). In this work, several specific biological

problems have been investigated from various viewpoints, including molecular

biology, bioinformatics, and mathematical modeling. There are a huge number of

complex processes occurring in human cells every second, such as transcription and

translation. Human cells contain millions of proteins, but contain less than 30,000

genes (Stein 2004). Several important factors contribute to the complexity of how

different proteins are made from the same gene. Alternative polyadenylation

processing is one of them and the detailed mechanism is still unknown.

The messenger RNA (mRNA) polyadenylation is a post-transcriptional

process, including two tightly coupled steps (Colgan and Manley 1997): an

endonucleolytic cleavage of pre-mRNA followed by the polymerization of an

adenosine tail. In this investigation, three problems associated with mRNA

polyadenylation in human cells have been explored. One problem is the prediction of

1
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the polyadenylation sites (poly(A) sites) using a support vector machine (SVM), one

of the best classification algorithms. A major improvement in the prediction accuracy

is achieved compared with polyadq (Tabaska and Zhang 1999), a very commonly

used poly(Α) site prediction algorithm. Another problem is to use the serial analysis

of gene expression (SAGE) (Velculescu et al. 1995) data to discover genes that have

more than one mRNA transcript due to alternative polyadenylation, and these

transcripts have shown some negative regulation in gene expression. This is a novel

study and some of the results may be very useful for biologists and provide some

insight of alternative polyadenylation. The third problem is the mathematical

modeling of alternative polyadenylation of gene cstf- 77, whose protein products have

been shown to be very important in regulating the polyadenylation of other genes. A

mathematical model with a time delay is proposed for explaining the mechanism of

alternative polyadenylation. Some preliminary experimental data have been used to

validate the model and fit the model well.

1.2 Summary of Results

Predictions of poly(Α) sites have been attempted by several groups during the last

several years (Salamov and Solovyev 1997; Tabaska and Zhang 1999; Legendre and

Gautheret 2003; Haj arnavis et al. 2004). They have used different methods, including

linear discriminant analysis, quadratic discriminant analysis, and hidden Markov

model. Several program packages have been developed, among which, polyadq

(Tabaska and Zhang 1999) is a commonly used tool for poly(Α) site prediction. In the

present work, a stand-alone program called polya_svm (Cheng et al. 2006) has been

developed for poly(Α) site prediction using the 15 cis-elements (Hu et al. 2005) and

SVM. For the overall performance, polya_svm is 33.7% more sensitive than polyadq
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(52.8% vs. 39.5% in sensitivity (SN)). Some improvements in accuracy have been

made since the release of the first version.

Serial analysis of gene expression (SAGE) (Velculescu et al. 1995) is a

powerful technology to determine gene expression by simultaneous measurement of

the frequencies of a large number of sequence tags derived from mRNA/EST

transcripts. Unlike microarray gene expression data, SAGE data are useful to detect

the different RNA transcripts from the same gene. Recently, more and more genes

have been found to generate more than one mRNA transcript and thus they may

produce more than one protein. Little is known about the relative expression levels

among these transcripts. Not all the transcripts are protein-coding RNAs and some

genes may make use of this to control the protein product indirectly. If that is the case,

the expression levels of the coding transcripts and non-coding transcripts for the same

gene should be opposite or they should be negatively regulated. This may reveal an

unknown mechanism of alternative polyadenylation. Here, by using SAGE data, we

discovered a number of genes which have two or more transcripts due to alternative

polyadenylation with opposite expression levels.

Like alternative initiation and alternative splicing, alternative polyadenylation

contributes to the complexity of the overall pool of mRNA transcripts in human cells.

However, it is still not clear how the cell utilizes different poly(Α) sites in response to

different cell conditions and developmental stages. Several protein factors have been

identified as being necessary for in vitro cleavage and polyadenylation. If the gene of

the polyadenylation factor has multiple poly(Α) sites, producing multiple protein

products with different functions for polyadenylation, then it could control the overall

polyadenylation activity by using alternative poly(A) sites. It would also affect its

own productivity and thus form a simple feed-back loop.
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The dynamics of the expression levels between the two transcripts could be

better understood by applying mathematical modeling to study the utilization of

different poly(Α) sites. Cleavage and stimulation Factor, CstF, is a very important

polyadenylation factor composed of three subunits: CstF-50, CstF-64, and CstF-77.

Recently, gene cstf- 77 has been found to contain an intronic poly(Α) site and thus has

more than one different mRNA transcript (Pan et al. 2006). The use of a downstream

poly(Α) site generates a functional protein factor, which is known to be one subunit of

CstF. The protein generated from the intronic poly(Α) site is still unknown, and we

hope to discover the function by the simulation. In this investigation, we have

proposed a novel mathematical model consisting of differential equations with a time

delay to study the dynamical behavior of the gene expression levels. Theoretical

analysis has been provided along with some numerical simulations of the equations.

Some experimental data have verified the numerical results and further discussion has

been given. To our knowledge, this is the first time that mathematical modeling has

been applied to study alternative polyadenylation and this may provide some

explanation for the observed biological data.



CHAPTER 2

BIOLOGICAL BACKGROUND

The phenomenon of heredity is a central feature in the definition of life. All living

cells store their hereditary information in the form of double-stranded

deoxyribonucleic acid (DNA). To carry out its information-storage function, DNA

must express its information to guide the synthesis of other molecules in the cell, such

as RNAs and proteins. Humans are multi-cellular organisms, made up of billions of

individual cells. Within each human body, every cell contains exactly the same DNA

except when mutations occur in some cells. However, each cell expresses its DNA

information differently in different tissues, and this accounts for the differences in

gene expression.

2.1 Human Genome

The human genome project (HGP) has been regarded as the most important step in

science in recent years. Upon the completion of the sequencing of the human genome

in 2003, this wealth of data has been the object of many new intensive scientific

research areas, such as genomics, data analysis, and mathematical modeling. If the

genome can be interpreted correctly, we will then have a much better understanding

of human beings and the biological processes occurring inside us.

A genome is an organism's complete set of DNA, which is made from four

nucleotide bases: Adenine (A), Thymine (T), Guanine (G), and Cytosine (C). These

four nucleotides form two base pairs, namely, A always pairs with T and G always

pairs with C. The HGP was first articulated in 1988 by a special committee of the U.S.

National Academy of Sciences and later adopted by the National Institutes of Health

5
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(NΙΗ) and the Department of Energy (DOE). It took about 15 years to accomplish,

during which there are some milestones in mapping the human genome:

• 1995: The Haemophilus influenzae genome (1.8 Mb) (Fleischmann et al.
1995). This is the first complete genome of a free-living organism.

• 1996: The Saccharomyces cerevisiae genome (12.1 Mb) (Goffeau et al.
1996). This is the first complete eukaryotic genome.

• 1998: The Caenorhabditis elegans genome (97 Mb) (1998). This is the first
genome for a multi-cellular species.

• 2000: The D. melanogaster genome (180Mb) (Myers et al. 2000). This is the
first genome sequenced by the whole-genome shotgun method.

• 2001: The draft of human genome (3Gb) (Venter et al. 2001), (Lander et al.
2001). About 94% of the human genome has been sequenced.

• 2003: Completion of the human genome.

The human genome contains about three billion base pairs, which reside in 23

pairs of chromosomes within the nucleus of all human cells. Each chromosome

contains hundreds to thousands of genes, which carry the information for making

proteins. There are -20,000-25,000 genes in the human genome (Stein 2004) and each

makes three proteins on average.

2.2 Gene Expression

The sequence information of human genome is analogous to a manual of the human

body. Then the question remains as to how this information is translated into making

the human body? How does a gene express its sequence? The central dogma of

molecular biology was first enunciated to answer this question in 1958 and restated in

1970 by Francis Crick (Crick 1970), namely, "The central dogma of molecular

biology deals with the detailed residue-by-residue transfer of sequential information.

It states that such information cannot be transferred directly from protein to either



protein or nucleic acid." The idea can be represented in Figure 2.1. The process from

DNA to RNA is called transcription and from RNA to protein is called translation.

Figure 2.1 Central dogma of biology. Genetic information is transferred from DNA
to RNA, then to protein.

In reality, the processes occurring in a cell are much more complex. A lot of

factors are involved to control and regulate the transcription and translation. These

factors include the environmental conditions, proteins, and some intermediate

products. Also, some processes are tightly coupled with each other. These could form

a complex feedback network (see Figure 2.2).

Figure 2.2 Central dogma of biology: feedback network. The proteins generated
from RNA would affect the transcription, translation, and DNA replication. The
microRNA would also affect transcription by RNA interference (RNAi). The
interactions form a feedback network.
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When the universal expression of a gene is examined in detail (Orphanides

and Reinberg 2002), the gene expression pathway in eukaryotic cells can be written as

the following sequential events:

Initiation of transcription -i transcription start 4 capping at 5' end - splicing

coupled with transcription 4 cleavage of pre-mRNA - polymerization of an adenine

tail 4 mature mRNA formation 4 transportation from nucleus to cytoplasm -

initiation of translation 4 translation start 4 protein synthesis-) protein folding 4

functional protein localization of protein to different compartment to participate in

cell activity.

mRNA synthesis is catalyzed by RNA polymerise II (RNAP). Transcription is

initiated when RNAP binds to a special region, the promoter, at the start of the gene.

From this point, RNAP moves along the DNA template, synthesizing RNA until it

reaches a terminator sequence (Lewin 2003). Sequences are conventionally written so

that transcription processes from left (upstream) to right (downstream) (see Figure

2.3). This corresponds to writing the mRNA in the usual 5' 4 3' direction.

Figure 2.3 RNA synthesis starting at the promoter and ending at the terminator. The
promoter is a short DNA sequence with length —35 nt, which serves as the binding
region for RNA polymerise II. The terminator is the region where RNA polymerise II
is detached from the DNA template. Figure taken from (Lewin 2003).
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In fact, not all genes are coded into proteins. There are two types of genes: one

of them is a non-coding RNA gene that represents about 2-5% of the total number of

genes and encodes functional RNA molecules, such as tRNA and rRNA; the other is a

protein-coding gene that represents the majority of the genes. For the protein-coding

genes, not all the nucleotides of the gene are decoded into proteins. Only —5% of its

sequence (exon) is decoded, and the remainder of its sequence (introns) is spliced out

during the transcription process (see Figure 2.4). Before the formation of a mature

transcript (mRNA) from a protein-coding gene, an oligonucleotide adenine is added

after the cleavage of the last exon, the so-called mRNA polyadenylation.

Figure 2.4 Diagram of gene expression. Intron is the region spliced out during
transcription, and exon is the region not spliced out during transcription. Capping,
splicing, and polyadenylation are coupled with transcription.

2.3 MRNA Polyadenylation and Cis-elements

The mRNA polyadenylation is composed of two tightly coupled steps (Colgan and

Manley 1997): the first step is an endonucleolytic cleavage that takes place at the site

determined by the surrounding RNA sequence and its binding proteins; and the

second step involves the polymerization of an adenosine tail (referred to as poly(Α)

tail) with length ranging over 80-500 nucleotides (nt) at the 3' end of the cleaved

RNA. The poly(Α) tail is found in nearly all mRNAs in eukaryotes (with the

exception of most histone genes), and it is involved in every aspect of mRNA
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metabolism, including mRNA stability, mRNA translation (Jacobson and Peltz 1996;

Sachs et al. 1997), and mRNA relocalization (Wickens et al. 1997). Short poly(Α)

tails (20-50 nt) are always correlated with translation repression (de Moor et al. 2005).

The kinetics of polyadenylation can have a direct impact on mRNA production. Both

enhanced polyadenylation and repressed polyadenylation have been shown to cause

human diseases, including Thrombophilia (Gehring et al. 2001) and

immunodysregulation (Bennett et al. 2001). The detailed mechanism of

polyadenylation will be discussed in a later section.

Α cis-element is a nucleotide sequence that has regulatory functions in some

cellular processes and usually serves as a binding site for some proteins. It is

generally accepted that signals are required for triggering polyadenylation near the

cleavage site (Keller et al. 1991). Α number of auxiliary upstream elements (USEs) or

downstream elements (DSEs) have been identified to influence polyadenylation in

viral and cellular systems, including SV40 (Carswell and Alwine 1989), HIV (Brown

et al. 1991; Valsamakis et al. 1992), and human C2 complement (Moreira et al. 1998).

Fifteen candidate cis-regulatory elements in humans have been identified (Hu et al.

2005), among which some are conserved in lower species, such as yeast and plants,

and some are specific to humans. It is believed that these 15 cis-elements would

cooperate with each other and then give information about the poly(Α) site. This leads

to the first part of the work.



CHAPTER 3

PREDICTION OF POLYADENYLATION SITES USING
SUPPORT VECTOR MACHINES

Messenger RNA polyadenylation is a post-transcriptional process that adds a poly(Α)

tail to the cleaved pre-mRNA. Polyadenylation is directly linked to the termination of

transcription (Buratowski 2005). Malfunction of polyadenylation has been implicated

in several human diseases (Thein et al. 1988; Bennett et al. 2001; Gehring et al.

2001).

Signals around a poly(Α) site are required for promoting polyadenylation. The

genomic sequence surrounding a poly(Α) site is referred to as a poly(Α) region. The

nucleotide composition of human poly(Α) regions is generally U-rich (Legendre and

Gautheret 2003; Tian et al. 2005). Α hexamer AAUAAA or a close variant, which is

located 10-35 nt upstream of most human poly(Α) sites, is usually called the

polyadenylation signal (PAS) (Tian et al. 2005). U/GU-rich sequences are located

within -40 nt downstream of the poly(Α) sites (Zarudnaya et al. 2003; Hu et al. 2005).

In addition, a number of auxiliary elements have been identified in viral and cellular

systems (Carswell and Alwine 1989; Brown et al. 1991; Valsamakis et al. 1992;

Moreira et al. 1998; Hu et al. 2005). Yeast and plant genes utilize a distinct set of

cis-elements for polyadenylation (Graber et al. 1999; Zhao et al. 1999). While

AAUAAA is a prominent hexamer located upstream of poly(Α) sites in these species,

it occurs to a much lesser extent than in mammalian systems. In addition, UAUA and

UGUA elements are the efficiency elements located 30-70 nt upstream of yeast

poly(Α) sites (Graber 2003), which also have been found to be functional elements in

human cells (Venkataraman et al. 2005).

11
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Prediction of poly(Α) sites has been attempted by several groups during the

last several years. An early approach by Salamov and Solovyev (Salamov and

Solovyev 1997) used linear discriminant function. Α number of variables were used,

including position weight matrices for the upstream AAUAAA element and

downstream U/GU-rich element, distance between AAUAAA and U/GU-rich

elements, and hexamer and triplet compositions in both upstream and downstream

regions. Tabaska and Zhang (Tabaska and Zhang 1999) developed polyadq, which

employed two quadratic discriminant functions for sequences containing AAUAAA

and AUUAAA. The program also uses a position weight matrix for the downstream

sequence, a weighted average of hit positions for downstream elements, and

downstream direr preferences. In addition, weight-matrix-only (Legendre and

Gautheret 2003) and hidden Markov model (HMM) approaches (Graber et al. 2002;

Haj arnavis et al. 2004) also have been employed for poly(Α) site prediction.

3.1 Fifteen Cis-elements

Fifteen cis-elements (see Figure 3.1) in poly(Α) region surrounding human poly(Α)

sites were identified by using a hexamer enrichment method called PROBE (Hu et al.

2005). These cis-elements were suggested to play enhancing roles in mRNA

polyadenylation because

• They are occurring more often in human poly(Α) regions compared with
random sequences.

• They are used more frequently for strong poly(Α) sites than for weak ones.
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Figure 3.1 Fifteen cis-elements. AUE, auxiliary upstream elements; CUE, core
upstream elements; CDE, core downstream elements; ADE, auxiliary downstream
elements. Region in the first column indicates the location of the cis-elements in the
poly(Α) region with the poly(A) site set at 0 and the downstream direction set as
positive. Figure taken from (Hu et al. 2005).

If the poly(A) site is set to 0, and the downstream direction is referred to as the

positive direction, then elements are distributed as following based on their locations:

four auxiliary upstream elements (AUEs) in the -100 to -41 nt region; two core

upstream elements (CUEs) in the -40 to -1 nt region; four core downstream elements

(CDEs) in the +1 to +40 nt region; and five auxiliary downstream elements (ADEs) in

the +41 to +100 nt region (Hu et al. 2005).

Naturally, these 15 cis-elements can be considered as 15 variables and used in

machine-learning tools for poly(Α) site prediction. In particular, methods that take

into account interactions between the variables are most suitable for predicting poly(Α)

sites. This is because cis-elements are recognized by RNA-binding proteins during

mRNA polyadenylation, such as CPSF-160 binding to AAUAAA (Keller et al. 1991),

CstF-64 binding to the U-rich and UG-rich elements (Perez Canadillas and Varani
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Varani 2003), and hnRNP H family proteins binding to the G-rich element (Arhin et

al. 2002). These proteins have been reported to have extensive interactions in the

polyadenylation machinery (Proudfoot 2004).

3.2 Datasets and Position Specificity Score Matrix

A comprehensive database of polyadenylation sites, called polyA_DB (Zhang et al.

2005; Lee et al. 2007), has been constructed. The database contains 29,283 human

genomic sequences with length 600 nt surrounding the poly(Α) sites (-300 to +300

nt), which correspond to 13,942 genes. One example sequence is shown in Figure 3.2

and the sequence always starts from 5' end to 3' end. Poly(Α) sites in the polyA_DB

database have been identified by aligning the public complementary DNA (cDNA)

and expressed sequence tags (ESTs) with genome sequences using a method

described in (Tian et al. 2005).

Figure 3.2 One example sequence from polyA_DB. The poly(Α) site is located in
the middle of the sequence, the gene id is indicated after ">p.", and the poly(Α) site is
indicated by the number after the last period.

Since the genomic sequences can not be direct input for the classification

algorithm, position-specific scoring matrices (PSSM ) of 15 cis-elements (Hu et al.

2005) were used to search sequences and convert the sequences to numerical values.

The PSSM of AUE1 cis-element is shown in Figure 3.3. Each score in the matrix

reflects how frequently the nucleotide occurs at the given location of the cis-element.
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Inf means the nucleotide could not be at that location based on the observed

sequences.

Figure 3.3 The PSSM of AUEI. The number at the beginning of the row is the
location of the nucleotide in the cis-element. The scores reflect the relative
frequencies of each nucleotide occurring at the given location. Inf means the
nucleotide could not be observed at this location based on the sequence data.

Since the 15 cis-elements span 200 nt, for a sequence with length 200 nt, the

score for every cis-element was calculated by the following formula:

S= max Σ
j=1

where m;, is the score of nucleotide i at position j in the PSSM, n is the length of the

cis-element, and the max function is for the sequences with length n in the cis-element

region. For example, for AUEl, the score is calculated in -100 to -41 nt region. If

there exists an Inf value, S is set to be -15, as it is the lowest value observed in the

training data, which will be discussed in a later section. That is, for a sequence with

length equal to 200 nt, it is converted to a vector with 15 values corresponding to 15

cis-elements.

3.3 Correlation Between Fifteen Cis-elements

To understand the relationship among cis-elements, we applied a hierarchical

clustering method to group the 15 cis-elements based on their occurrence. For all the

sequences in the polyA_DB, scores of the 15 cis-elements were calculated based on
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the middle 200 ft of the sequences and they formed a matrix with dimensions

29,283x15. Using Pearson correlation as the metric and average linkage for tree

building (Eisen et al. 1998), the 15 cis-elements can be largely divided into two

groups (see Figure 3.4). One group consisted of CUE1, CUE2, CDΕ2, ΑUE2, ΑUE3,

and ΑUE4, which are all upstream elements except CDΕ2, and the other consisted of

downstream elements except AUE 1.

Figure 3.4 Clustering of 15 cis-elements using poly(Α) sites from polyA_DB.
PSSMs of 15 cis-elements were used to search human poly(Α) sites from polyA_DB
in their respective regions. Each row is a poly(Α) site (29,283 in total), and each
column is a cis-element. Hierarchical clustering using Pearson correlation was
employed to cluster cis-elements, and the resulting tree is shown on top of the
heatmap. The gray scale is indicated at the bottom of the plot.

This grouping is robust, as clustering using other parameters, such as

Kendall's Tau correlation and complete linkage also resulted in similar groupings.
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Thus, upstream elements and downstream elements in general have different profiles,

indicating that they may compensate for each other during mRNA polyadenylation. In

biochemical terms, this result suggests that weak upstream signals can be "helped" by

strong downstream signals, and vice versa. However, further experiments are needed

to confirm this model.

3.4 Training, Testing, and Prediction

For classification, there are two steps. First, train the known datasets and generate the

trained model. Second, use the trained model to predict the testing dataset and analyze

the accuracy. The training dataset used in this study consisted of 2,000 sequences,

with 1,000 positive sequences randomly selected from polyA_DB and 1,000 negative

sequence generated by first-order Markov chain model (MCM) (see Appendix A.1)

from the positive sequences. The testing set is generated the same way with the

training set as the number of sequences varying for different purposes. All the scores

of training data and testing data were scaled by (S-s)/σS, where s is the mean value of

S for all positive and negative sequences in the training data and σS is the standard

deviation of S for all positive and negative sequences in the training data.

For training, only the middle 200 nt were used because we already know that

the poly(Α) site is located at the middle of the positive sequence. The true negative

sequence is hard to get and it is assumed that random sequences contain very few

poly(A) sites. Therefore, the MCM was used to generate the negative sequences of

200 nt in length. By using PSSMs, every sequence of 200 nt generates a vector with

15 values. Therefore, two groups of data with 15 dimensions were generated. The data

from positive sequence are labeled with 1, and the data from negative sequence are
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labeled with -1. These were the input of the classification algorithms. After training,

the model was generated and ready to accept testing data for prediction.

For testing a sequence from the polyA_DB database, we pretended not to

know the location of the poly(Α) site and used the trained model to predict if the

sequence contains a poly(Α) site or not. The sequence length is 600 nt, and every 200

nt subsequence was used to generate the values. Multiple-hit issue arises and is

discussed in the later section.

3.4.1 Comparison of Different Methods

There are many classification methods. To address which one would be used for our

prediction, a one-hit model was generated to test for simplicity. That is, for testing, we

only use the middle 200 nt to generate the vector scores. So for each sequence, we

only need to predict once, and the result is only to predict if the middle site of the

sequence is a poly(Α) site or not.

In light of this, we tested three discriminant analysis methods, namely linear

discriminant analysis (LDA), quadratic discriminant analysis (QDA) (see Appendix

Α.2), and support vector machine (SVM) (see Appendix Α.3). LDA finds a

hyper-plane to separate two or more classes with linear combination of variables

(Zhang 2000). It assumes that the data distribution for each class is normal and that all

classes have the same covariance. QDA uses a quadratic surface to separate classes

(Zhang 2000), and also makes the assumption of a normal distribution, but relaxes the

requirement of covariance. SVM employs kernel functions to separate data by a

hyper-plane that is supported by vectors lying at the boundaries of classes (fortes and

Vapnik 1995). All these methods have been used on biological sequences for

identification of signals such as splice sites (Zhang 2000; Zhang et al. 2003; Yeo et al.

2004).
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Tο compare these methods, we randomly selected 2,000 poly(A) sites from the

polyA_DB database, retrieved the —100/+100 nt genomic region surrounding each

poly(A) site, and used them as a positive dataset. We then randomized the positive

dataset by a first-order MCM to obtain 2,000 negative sequences, each with 200 nt in

length. Using LDA, QDA, and SVM functions in program R (see Appendix B.2), we

compared their performance for prediction of poly(Α) sites with respect to sensitivity

(SN), specificity (SP), and correlation coefficient (CC) (see Appendix AA). As

summarized in Table 3.1, of these three methods, QDA achieved the best sensitivity,

and SVM achieved the best specificity based on 100 random tests. P-values are

calculated based on two-tailed t-tests comparing 100 values from LDA or QDA with

those from SVM. Overall, SVM has the best performance judged by CC. Thus, we

have selected SVM as the prediction method for further studies.

Table 3.1 Comparison of LDA, QDA, and SVM

Method
SN SP CC

Mean P-value Mean P-value Mean P-value

LDA 0.830 3.0E-12 0.785 1.2Ε-99 0.603 1.6Ε-87

QDA 0.863 1.3Ε-24 0.784 1.1E-102 0.628 3.8Ε-66

SVM 0.843 - 0.848 - 0.693 -

LDA, linear discriminant analysis; QDA, quadratic discriminant analysis; SVM, support vector
machine; SN, sensitivity; SP, specificity; CC, accuracy. The p-value is calculated based on t-test
comparing 100 values from LDA/QDA with those from SVM.

3.4.2 Leave-One-Out Method

To examine how each element contributes to the prediction and whether or not we can

reduce the number of variables, we conducted a leave-one-out experiment, where we

left out one element at a time and calculated its effect on SN, SP, and CC in poly(A)

site prediction. We reasoned that omission of important elements would significantly
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lower the performance of prediction, whereas omission of nonessential ones would

not make much difference.

As shown in Table 3.2, we found that CUΕ2 is the most important one, as

omission of CUΕ2 led to substantial drop of both sensitivity and specificity, which is

consistent with the notion that the AAUAAA element is critically important for

mRNA polyadenylation.

Table 3.2 Effects of Leaving Out Some Cis-elements

Element(s)
left out

SN SP CC

Mean
(	 )

P-value
Μ α

(	 )
P-value Mean P-value

None 84.3 - 84.8 - 0.693 -
AUEl * 84.2 0.33 84.8 0.21 0.691 0.22
ΑUΕ2 * 84.2 0.35 84.7 0.11 0.692 0.29
ΑUΕ3 84.0 0.03 84.7 0.16 0.689 0.04

AUE4* 84.0 0.07 84.9 0.09 0.693 0.44
CUE1 83.9 0.01 84.6 0.03 0.687 8.5Ε-3
CUE2 65.3 9.9Ε-161 71.5 2.7Ε-153 0.395 2.8Ε-175

CDEI * 84.1 0.14 84.8 0.25 0.691 0.16

CDE2 82.6 9.1Ε-17 83.8 3.2Ε-10 0.668 1.2Ε-19
CDE3* 84.1 0.08 85.0 0.07 0.693 0.44
CDE4* 84.2 0.31 84.8 0.20 0.692 0.35
ADE 1 * 84.2 0.22 84.7 0.18 0.692 0.26
ADE2 * 84.0 0.07 84.8 0.24 0.690 0.10

ADE3 83.7 4.5Ε-4 84.8 0.22 0.688 0.02
ADE4* 84.3 0.45 84.7 0.17 0.692 0.28

ADE5 83 9 6.6Ε-3 84.6 0.06 0.687 0.01

9 elements 82.1 1.1 Ε-24 84.5 0.02 0.671 6.3 Ε-17
Element(s) were left out at both the training and testing stages. None, no elements deleted; 9 elements,
leaving out 9 elements marked with asterisk in the table; AUE, auxiliary upstream element; CUE, core
upstream element; CDE, core downstream element; ADE, auxiliary downstream element. P-values are
calculated based on 30 tests comparing with none. Elements marked with an asterisk indicate that their
individual omission would not lead to significant change (p-value > 0.05) of SN, SP, or CC.

Omissions of CUE 1 or CDΕ2 had similar effects, albeit to a lesser extent,

indicating that U-rich elements surrounding the poly(Α) sites are important

determinants. In addition, omissions of AUE3, ΑDΕ3, or ADE5 caused drops in
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sensitivity, indicating their important roles in poly(Α) site selection. For the rest of the

9 elements (indicated by an asterisk in Table 3.2), leaving out any single element

caused some decrease in prediction performance, while none of them appeared to be

significant based on a t-test (p-value > 0.05, Table 3.2). However, leaving out all 9

elements made both sensitivity and specificity drop significantly. Thus, these 9

elements may contribute to poly(Α) site recognition coordinately and some elements

may be important for only a small subset of poly(Α) sites.

Taken together, these data indicate that the 15 cis-elements are necessary for

poly(Α) site prediction, validating the functional importance of these elements for

polyadenylation. In addition, the fact that multiple variables are required for poly(Α)

site prediction suggests a combinatorial mechanism for poly(Α) site recognition in

human cells.

3.4.3 Polya_svm

For sequence with length greater than 200 nt, the one-hit model is not enough since

we do not imow where the poly(Α) site is. So the prediction has to be carried out at

each possible position of a given sequence, and a multiple testing issue arises when

predicting the likelihood of a sequence containing a poly(Α) site. That is, for each

location, we could predict if that location is a poly(Α) site or not. However, the

problem arises that, even if the prediction is good, for a long negative sequence, we

could predict many poly(Α) sites inside the sequence. For example, if the true

negative rate is 95%, for a 300 nt long sequence with 100 sites, it is possible to have 5

locations to be predicted as poly(Α) sites. Some other methods need to be introduced

to eliminate this kind of noise. It has been found that polyadenylation cleavage is

usually heterogeneous and occurs in a window rather than at a defmed position (Tian

et al. 2005). Α simple test was done based on 100 sequences, 50 positive sequences
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randomly selected from polyA_DB and 50 negative sequences generated from the

first-order MCM. The result is shown in the Figure 3.5.

Figure 3.5 Heatmap plot of predicted probability results of 100 test sequences. The
poly(A) site is set to be 0, and the downstream direction is referred to as the positive
direction. The positive sequences containing poly(Α) sites are randomly chosen from
polyADB , and negative sequences not containing poly(A) sites are generated by a
first order MCM with length 600 nt. The scale is indicated at the bottom of the plot.

Based on this, we designed a window-based scoring scheme to address the

multiple-hit issue: we required a region M of m nt to have probability greater than 0.5

at each position in the region and another region N of n nt within M to have high

probability values. The region M is called a positive region, and the region N is called

a high probability region (HPR) (see Figure 3.6). Using different combinations of m

and n, we found that m=30 and n=10 achieved the best performance when the product

of the 10 probabilities for HPR was set to be greater than 0.5. Thus, on average, the

probability of being positive for each position is greater than 0.933 in HPR.
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Figure 3,6 Schematic of 15 cis-elements in the poly(Α) region and the search
algorithm for polyasvm. A poly(Α) site is indicated by a vertical arrow. The
predicted probability in the positive region is greater than 0.5, and the product of the
predicted probabilities in the high probability region is greater than 0.5.

Motivated by our initial results, we developed a stand-alone program called

polya_svm using the PERL language (see Appendix B.1). This program uses the 15

cis-elements and SVM to predict the poly(A) sites. For SVM predictions, the SVM

library LIBSVM (see Appendix Α.3) was used with C-support vector classification

(C-SVC) method and the radial basis kernel function (RBF). The default settings, i.e.

0=1 and gamma= l / 15, were applied. In fact, we tried different parameter settings,

and we found there was no big difference. For calculating probabilities, we applied a

window-based adjustment method using probability values generated by LIBSVM:

the probability of having a poly(Α) site at position i is determined by its E-value,

calculated by E. =1— ΠΡ Pr(j) , where j is a position relative to i , Pr(j) is the
I

probability for position j, and j e {-4, —3, —2, —1,0,1,2,3,4, 5} . Thus, the E-value is

based on a 10 ft HPR centered at i, and the higher the probability, the lower the

E-value. In addition, we also required that the region (-15/+15) adjacent to a positive

site to have Pr(i) > 0.5 at every position of its sequence.
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E-values of 1,000 positive and 1,000 negative sequences are shown in a

heatmap (see Figure 3.7) according to the gray scale shown at the bottom. Each

sequence is 600 nt in length. All positive sequences have a poly(Α) site in the middle,

and some may have multiple poly(Α) sites. Poly(Α) site prediction was carried out in

the 101 to 500 nt region. Thus, each row contains 400 E-values. The x-axis is the

position in the sequence. As shown in Figure 3.7, using this method, polya_svm can

effectively eliminate false positive sites and accurately locate real poly(Α) sites.

Figure 3.7 Prediction of positive and negative sequences. E-values of 1000 positive
and 1000 negative sequences are shown respectively. The gray scale is shown at the
bottom of the figure. Each sequence is 600 nt in length, and the poly(Α) site is set at
location 300. Poly(Α) site prediction was carried out for the 101 to 500 nt region.
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3.5 Prediction of Poly(A) Sites in the Human Genome

We tested polya svm using all human poly(Α) regions in the polyA_DB (29,283 in

total) and compared its performance with polyadq, a commonly used tool for poly(A)

site prediction (Tabaska and Zhang 1999). For polya svm, if the predicted location

(middle of HPR) is within 24 nt from a real poly(Α) site, the prediction was

considered as true positive (ΤΡ), and otherwise as false negative (FN). For polyadq,

since it uses the PAS location for poly(Α) site prediction, we considered a prediction

to be ΤΡ if a PAS is within 48 nt upstream of a real poly(Α) site. As shown in Table

3.3, polya_svm is 33.8% more sensitive than polyadq (52.8% SN vs. 39.5% SN).

We then divided poly(Α) sites into different groups based on two criteria: their

usage and location. For poly(Α) site usage, we used the number of supporting

cDNA/ESTs for a poly(Α) site to determine its frequency of usage. Poly(Α) sites in

genes with only one poly(Α) site are called constitutive sites. Poly(A) sites in genes

with multiple sites were grouped into strong, weak, and medium. A strong site is used

more than 75% of the time based on supporting cDNA/ESTs. If a gene has a strong

site, other sites are called weak sites. If a gene does not have a strong site, all sites are

called medium sites. For poly(Α) site location, we first separated poly(Α) sites located

in introns and internal exons (called upstream sites) from those in 3'-mοst exons, and

then divided poly(Α) sites in the 3'-most exons into three groups depending upon

their location (see Table 3.3). The 5'-most site is called the first site, the 3'-mοst site

is called the last site, and sites in between the 5'-most and the 3'-most sites are called

middle sites. In addition, if a 3'-most exon contains only one poly(Α) site, the site is

called a single site. Polya_svm was over 50°./o more sensitive than polyadq for

detecting medium and weak poly(Α) sites, and about 19.5% and 7.2% more sensitive

than polyadq for strong and constitutive poly(Α) sites, respectively (see Table 3.3).
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Table 3.3 Comparison of Polya_svm with Polyadq for Different Types of Positive
Poly(Α) Sites

Poly(A) site
type

polya_svm polyadq SN
Di
(ο )^oΤΡTΡ FN

SN ΤΡ FN
SN

(%)

Total 15,469 13,814 52.8 11,563 17,720 39.5 +33.8

v
ζ

Q.

Strong 1,602 655 71.0 1,341 916 59.4 +19.5

Medium 8,301 8,221 50.2 5,488 11,034 33.2 +51.3

Weak 1,521 2,565 37.2 961 3,125 23.5 +58.3

Constitu
tive 4,045 2,373 63.0 3,773 2,645 58.8 +7.2

ο2

o

Q
,'

Single in
3'-most
exons

4,941 2,853 63.4 4,516 3,278 57.9 +9.4

First in
3'-most
exons

2,469 3,583 40.8 1,522 4,530 25.2 +62.2

Middle
in

3'-mοst
exons

2,256 2,479 46.7 1,212 3,523 25.6 +86.1

Last in
3'-most
exons

3,763 2,289 62.2 2,839 3,213 46.9 +32.6

Intron
and

internal
exons

2,040 2,610 43.9 1,474 3,176 31.7 +38.4

For polya-svm, a sequence is predicted to be true positive (ΤΡ) if a predicted poly(Α) site (the middle
position of HPR) is within 24 nt from a real poly(Α) site. For polyadq, a sequence is considered ΤΡ, if
the sequence is predicted to be positive and the real poly(Α) site is within 48 nt downstream of a
poly(Α) signal AAUAAA or AUUAAA. See text for description of different types of poly(A) sites.

As for poly(Α) sites located in different regions of a gene, polya_svm also

made more sensitive predictions than polyadq in all categories, particularly for poly(A)

sites located in the upstream of the 3'-most poly(Α) sites (62.2% and 86.1% more

sensitive for the first and middle poly(Α) sites in 3'-most exons). A more detailed

analysis revealed that the high sensitivity of polya_svm is mainly ascribed to its
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capability to predict poly(Α) sites without AAUAAA or AUUAAA, and sites with

weak downstream signals. Taken together, these data demonstrate that polya_svm is

highly sensitive for poly(Α) site prediction.

Polya_svm's performance for sequences without poly(Α) sites, or negative

sequences was also examined. A true negative sequence is difficult to obtain, as there

is no extensive experimental evidence for negative sequences. Thus, we tested several

types of sequences that were presumed to have very few poly(Α) sites, including

randomized poly(Α) regions (-300/+300 nt), randomized genome sequences, mRNA

coding sequences (CDS), and 5 'untranslated regions (UTRs).

As shown in Table 3.4, comparable false positives (FP) were predicted by

polya_svm and polyadq for randomized sequences. However, polya_svm predicts

significantly more sites than polyadq in CDS and 5'UTR sequences (more than 2

fold). Interestingly, the difference was not significant when randomized CDS and

5'UTR sequences were used, suggesting that some of the false positives in CDS and

5'UTRs predicted by polya_svm may actually be true positives. Accordingly, it is

tempting to speculate that there may, in fact, exist a large number of poly(Α) sites in

CDS and 5'UTRs. This would be consistent with previous findings of poly(Α) sites in

internal exons (Tian et al. 2005; Van and Marr 2005). However, this hypothesis has

yet to be tested by wet lab experiments. On the other hand, a highly sensitive method

would aid in the identification of these sites, which are difficult to detect by

cDNA/EST-based approaches, as many of these poly(Α) sites would result in aberrant

transcripts that may be rapidly degraded by cellular surveillance mechanisms, such as

those without an in-frame stop codon (Frischmeyer et al. 2002).
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Table 3.4 Comparison of Polya_svm with Polyadq for Different Types of Negative
Poly(A) Sites

Negative
Set

polya_svm Polyadq SP
Diff
(%)

CC
Diff
(%)ΤΝ FP SP

(%) CC TN FP ^Ρ CC

Poly(Α)
region

first-order
MC

420 80 76.7 0.387 426 74 72.8 0.279 +5.1 +27.9

Genome
first-order

MC
446 54 83.0 0.451 447 53 78.9 0.334 +4.9 +25.9

CDS 410 90 74.6 0.364 458 42 82.5 0.365 -10.6 -0.3

CDS
first-order

MC
487 13 95.3 0.561 485 15 93.0 0.447 +2.4 +20.3

5' UTR 445 55 82.8 0.448 482 18 91.7 0.437 -10.7 +2.5
5' UTR

first-order
MC

491 9 96.7 0.572 492 8 96.1 0.470 +0.6 +17.8

MC, Markov chain. Poly(A) region first-order MC, randomized -300 to +300 ft sequences surrounding
poly(A) sites; genome first-order MC, randomized human chromosome 1 sequence; CDS, coding
region sequences of human RefSeq sequences; CDS first-order MC, randomized CDS; 5' URT, 5'
untranslated region of human RefSeq sequences; 5' UTR first-order MC, randomized 5' UTRs. For
each negative set, 500 sequences were generated and predicted by polya_svm and polyadq. The process
was repeated 10 times and the mean values are presented in the table. TΡ and FN of Table 3.3 for all
poly(A) sites in the polyA-DB database were scaled and used to calculate CC.

3.6 Further Improvements of Polya_svm

We have made several changes to the polya_svm program and improved the accuracy

of prediction by 12% over its first release polya_svm 1.0 (Cheng et al. 2006). Infinite

values are generated when a cis-element does not exist in a given sequence. However,

for the practical use of SVM, each variable requires a numerical value. In polya_svm

1.0, infinite values were replaced by the lowest score of all cis-elements in the

training data, i.e., -15. To examine if this aspect can be improved, we have tried three

other options (see Table 3.5). Method 1 is the original method, where all infinite

values were set to -15. In Method 2, the infinite values were set to zero. In Method 3,
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the infinite values were set to be the lowest value that a given cis-element can achieve.

In Method 4, the infinite values were set to be a value of -6.28, which is the lowest

value for all cis-elements. Prediction was performed 30 times for each of the four

different settings and the relative CC results are shown in the Table 3.5. All values

were normalized to Method 1, the original method. As shown in Table 3.5, polya_svm

had the best performance when the Method 4 was used, which is 8% gain in accuracy

over the original method. This improvement indicates that the hyper-plane in

classification is not defined well by the support vectors in the areas with low negative

values.

Table 3.5 Comparison of Different Methods for Replacing Infinite Values

Type Relative
SN

Relative
SP

Relative
CC

Method 1 1.00 1 1 .00
Method 2 1.04 0.96 0.95
Method 3 1.02 1.00 1.03
Method 4 1.08 1.01 1.08

Method 1 is the original method, where all infinite values were set to —15. Method 2 sets infinite values
to 0. Method 3 sets infinite values to the lowest value a given cis- element can achieve. Method 4 sets
infinite values to an arbitrary value of -6.28, which is the lowest value for all cis-elements. Prediction
was performed 30 times for each of the four different settings and the relative CC results are shown in
the table. All values are normalized to Method 1, the original method.

We have used two regions for poly(Α) site prediction to ensure high

specificity, i.e., a 30 nt positive region and a 10 nt HPR (Cheng et al. 2006). To

examine whether this step can be simplified without loosing performance, we have

tested methods only using HPR with different sizes (1 to 99 nt). In addition, we used

the formula s = —log 2(Π p1) to derive a score for an HPR, where p, is the probability

value for position i , which is provided by LIBSVM, and n is the size of the HPR. We

also selected the optimal polya_svm cutoff score based on the highest CC value for

each HPR setting. As shown in Figure 3.8, we found that HPR of 32 nt and cutoff
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score of 6 appear to be the optimal for achieving highest CC value. Thus we used

HPR of 32 nt and cutoff score of 6 to determine poly(Α) sites in the new program

(version 2.0). In addition, when several HRP regions overlapped, we selected the HPR

with the best score to represent their combined region.

Figure 3.8 HPR vs relative maximum accuracy. The HPR varies from 1 to 99 nt
and the cutoff values are [0.01, 0.02, 0.03, 0.04, 0.05, 0.1, 0.15, 0.20, 0.25..., 0.90,
0.95, 0.96, 0.97, 0.98, 0.99, 0.991, 0.992 ... 0.999]. For any given HPR value, the best
CC can be calculated for a given cutoff value. The x-axis is HPR and the y-axis is the
normalized CC for different HPR using the optimized HPR size (32).

To examine if there is correlation between polya_svm prediction score and the

strength of a poly(Α) site, we divided 29,283 poly(Α) sites obtained from polyA_DB

database into several groups based on the usage of a poly(Α) site: strong site (S),

constitutive site (0), medium site (M), and weak site (W) as described in section 3.5.

The usage is based on the number of supporting SSTs from non-normalized cDNA

libraries as described in (Hu et al. 2005). As shown in Figure 3.9, a correlation is

discernable for the polya_svm prediction score and poly(A) site usage, indicating that

the score can be used as a guide to determine the strength of a poly(Α) site. We
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applied the t-test on S vs M and W, and the p-values are less than 1e-16. That is, the

stronger the poly(A) site, the smaller the polya_svm score.

Figure 3.9 Boxplot of polya_svm scores for different types of poly(A) sites. S, the
strong poly(A) site; 0, the constitutive poly(A) site; M, the median poly(A) site; W,
the weak poly(A) site. The y-axis is the loge value of the predicted polya_svm scores.



CHAPTER 4

SAGE DATA ANALYSIS

4.1 Introduction to SAGE

Serial Analysis of Gene Expression (SAGE) (Velculescu et al. 1995) is a

high-throughput and high-efficient method to simultaneously detect and measure the

expression levels of genes expressed in a cell at a given time. Compared with

microarray experiment, the SAGE is expensive to perform and it requires higher

techniques. The brief steps for SAGE are shown is Figure 4.1 and the detailed

protocol can be found from the website: http://www.sagenet.org/protocol/index.htm

(visited on 07/02/2006).

Figure 4.1 An outline of SAGE. SAGE sequences and counts a short tag with 10-17
ft located at the 3' most of the mRNA after the tag CATG using two restriction
enzymes. By comparing the number of the tags, SAGE can estimate the relative
expression levels of different transcripts in the cell. Figure taken from PowerPoint
presentation by Kevin R. Coombes, Section of Bioinformatics, Department of
Biostatistics, MD Anderson Cancer Center, University of Texas, 2006.

32
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The original SAGE approach (Velculescu et al. 1995) generated a 10 base

pair (bp) tag (referred to as a short SAGE tag) derived from the 3'-end of the

transcript by using the tagging enzyme N1aIII. Later on, using a new tagging enzyme

Mmel (Saha et al. 2002), a 17 by tag (referred to as a long SAGE tag) was generated

and enhanced the specificity of the mapping from the SAGE tag to the transcriptome,

the collection of all RNA transcripts. Due to the earlier introduction of short SAGE

tag, the public SAGE database has more short SAGE libraries than long SAGE

libraries for the human dataset. Most of the tags are uniquely-mapped to some gene.

But, there still exists a small portion of tags having more than one gene being mapped

to them. For one tag, it is necessary to find the best gene mapped to this tag based on

the evidence of EST/cDNA. Fortunately, this kind of work has been done by SAGE

Genie (Boon et al. 2002) and the database is updated regularly. Nonetheless, errors

occur in the experimental data due to a lot of factors, such as sequencing and PCR.

Positive and negative regulation of different genes and proteins are very

common phenomena in biological systems such as activators or inhibitors and have

been studied widely (Ma et al. 1998; Koretzky and Myung 2001; Ku et al. 2005).

However, the regulation of alternative transcripts from the same gene has seldom

been investigated.

With the progress in genome annotation and emergence of large amount of

information with regard to cDNA/ESTs, studying the regulation of different

transcripts from the same gene becomes possible and may identify some unknown

mechanisms for gene expression. Difficulties still lie in the accurate measurement of

expression levels of the transcripts. Large-scale expression tools such as microarray,

have been used to analyze the co-expression levels of known complementary

transcripts (Nikaido et al. 2003). However, it is not detectable for those mRNA
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transcripts that are not imprinted in the chips. Serial Analysis of Gene Expression

(Velculescu et al. 1995) is an alternative technology to systematically detect the

global gene expression levels. There are a lot of advantages in using SAGE (Tuteja

and Tuteja 2004) and most importantly, SAGE can detect the expression levels of

different transcripts without prior knowledge of the genes, while microarray can only

detect the imprinted transcript expression levels.

4.2 Analysis Pipeline

Motivated by the observation from the SAGE data that gene cstf-77 has two

transcripts with opposite expression levels (Pan et al. 2006), we designed a pipeline to

systematically discover the genes with similar expression patterns. The data flow for

such discoveries can be represented by Figure 4.2, and they are discussed in detail in

the following sections.

4.2.1 Reliable Libraries Selection

The SAGE data were downloaded from the SAGE Genie (Boon et al. 2002) FTP

server (see Appendix C.1). Due to the noise and experimental variation of different

libraries, not all the libraries could be used in this study. Each library contains the

following information: the sequence tags, the frequency for each tag, the total number

of tags, the number of unique tags, the tissue type for the library, etc. An example of

the SAGE data is shown in Table 4.1.
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Figure 4.2 The pipeline of SAGE data analysis. The noise exists in the libraries and
the mapping from tags to the unigenes. By filtering the unreliable libraries and tags,
the significant genes can be selected from the observed correlation between two tags
from the same gene. The significance is based on the randomized correlation between
any two tags, not necessary from the same gene.

Table 4.1 SAGE Data Example

The third column indicates the number of tags from the first column found in the libraries indicated in
the second column. For any given library, the number of unique tags for this library is the number of
rows corresponding to this library and the total number of tags is the summation of the third column
corresponding to this library.

A long or short library is considered to be reliable if the following two

conditions are satisfied:

• The total number of tags is greater than 50,000, of which about 5% of the
tags are missing (Becquet et al. 2002).
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• The ratio (loge of the total number of tags divided by loge of the number of
unique tags) is located in the interval (mean-2x sd, mean+2 sd), which
corresponds to a 95.5% confidence interval, where the mean is the average
ratio of all long SAGE libraries or all short SAGE libraries, and sd is the
standard deviation of the ratio of all long SAGE libraries or all short SAGE
libraries.

We can see that these two conditions are reasonable from the plot of long and

short libraries (see Figure 4.3). In Figure 4.3, the vertical line represent the cutoff line

of first condition and the three skew lines from top to bottom represents (mean+2xsd)

line, the mean value line, and (mean-2  x sd) line. The slope of the lines is the mean

value of the ratios. The second condition was made based on the assumption that the

average expression level for the whole library should not be too different between the

libraries.

The total dataset contains 289 human short SAGE tag libraries and 59 long

SAGE tag libraries. After applying these two conditions to the long and short libraries

respectively, 201 short libraries and 49 long libraries were selected. The selected

libraries are located in the region enclosed by the vertical cutoff line, (mean-2xsd)

line, and (mean+2xsd) line (see Figure 4.3). The long libraries should be more

reliable than the short ones and it was confirmed by the relation (49/59 > 201l289).

4.2.2 Is SAGE Data Tissue-Specific?

To investigate if the SAGE data have some bias for different tissues, we plotted the

ratio (Ιοg2 of the total number of tags divided by log2 of the number of unique tags)

versus the tissue order from reliable short and long SAGE libraries of human dataset.

From the Figure 4.4, the average gene expression level for stem cells is higher than

for other tissues in the figure, while the gene expression level for the cerebellum is

relatively lower. The biological explanation is unclear to us.
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Figure 4.3 Correlation between the number of unique tags and the total number of
tags. The data are from human SAGE libraries. The vertical lines represent the first
condition and the three skew lines correspond to the second condition. They are used
for the selection of the reliable libraries.

Figure 4.4 The gene expression levels for different tissues. (a) Reliable long tag
SAGE libraries for humans. (b) Reliable short tag SAGE libraries for humans. Each
column represents one tissue. Each bar on the top represents the number of libraries
for that tissue, and the figure on the bottom is the boxplot reflecting the average
expression level for that tissue.
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4.2.3 The Reliable Tags

Since the mapping from a SAGE tag to a unigene, a transcript cluster is not unique,

we need to generate the reliable tags for each unigene. One unigene may contain more

than one SAGE tag due to different transcripts belonging to the same unigene. Using

the database files Hs_long.best_gene, mapping the long tag to the best unigene,

Hs_short.best_gene, mapping the short tag to the best unigene, Hs_long.frequencies,

including the long tag frequency data, and Hs_short.frequencies, includeing the short

tag frequency data, we generated the reliable tags based on the following two

conditions:

• If a short tag was mapped to a unigene by file Hs_short.best_gene, and long
tag, whose first 10 nt is the same as the short tag, was also mapped to the
same unigene by file Hs_long.best_gene, then the long tag was considered to
be a candidate for the reliable tag of this unigene. It should be noted that the
reliable tag is a long tag.

• For a given tag, some libraries may not contain the frequency data for this
tag. The tag is considered to be a reliable tag if its ratio (the number of
libraries containing the tag divided by the number of total libraries) is greater
than 25% (arbitrary percentage, adjustable for more stringent conditions).
This can eliminate a lot of tags only expressed in a few libraries.

For example, GTTCTTGAGAAAAAACA was mapped to gene cstf-77 by file

Hs_long.best_gene and expressed in 22 libraries from Hs_long.frequencies;

GTTCTTGAGA was also mapped to gene cstf-77 by file Hs_short.best_gene and

expressed in 104 libraries from Hs_short.frequencies. GTTCTTGAGAAAAAACA

satisfies the above two conditions, so it is considered to be one reliable tag for gene

cstf-77. There are a total of 22923 unigenes expressed in these reliable libraries. After

applying the first condition, there are 17525 unigenes left. Furthermore, applying the

second condition, there remain 9054 unigenes.
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4.2.4 Significant Unigenes

Once we generate the reliable tags, the reliable long SAGE libraries and short SAGE

libraries can be merged since the short tag frequency data can be treated as the

corresponding reliable long tag frequency data. All the following calculations are

based on the 250 (201 short + 49 long reliable libraries) merged libraries. To identify

the negatively regulated tags, we need at least two reliable tags for each unigene.

Among the 9054 unigenes that have at least one reliable tag, only 1957 unigenes have

more than one reliable tag. For each unigene, the Pearson correlation of the tag per

million (TPM) data (see Appendix C.2) between any two tags was calculated. That is,

if the unigene has m reliable tags, we need to calculate m(m-1)/2 correlations between

these m tags. For each correlation, we calculate the T-value based on the test for

independence (see Appendix C.2). If the expression levels of the two tags are opposite

to each other, then the T-value should be negative. If we apply a standard t-test to

these negative T-values using a p-value = 0.01, then 418 unigenes are selected to

contain at least two tags that are negatively regulated.

To get the significant negative regulation, we need to know the T-value

distribution of random tags. To obtain this, we randomly selected two tags from all

reliable tags 10,000 times. Each time, we shuffled the data 10 times based on a

Fisher-Shuffle (see Appendix C.2) and calculated the Pearson correlations and the

T-values. We found that the random T-values are linearly correlated with the degrees

of freedom (see Figure 4.5), which are the expressed library numbers shared by at

least one of the two tags. Sixty-one significant unigenes were selected if we set the

p-value cutoff as 0.01. The p-value is calculated based on the random distribution of

specified degree of freedom. For example, if the T-value is t o for some tag pair with

degree of freedom q, from the random simulation, we have the random distribution
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for degree of freedom q. The p-value for to is calculated by the number of random

data less than to divided by the total number of random data. The detailed information

for these 61 unigenes is shown in Appendix C.3.

Figure 4.5 T-value distribution of random tags. Each point represents one tag pair.
The x-axis is the number of libraries in which at least one tag is expressed. The y-axis
is the t-value of the tag pair calculated from the Pearson correlation.

We picked up nine interesting and well-known unigenes (see Table 4.2),

trying to understand the mechanism of the negative regulation. Most of them are the

DNA!RNA binding proteins. Through generating the alternative transcripts, they may

regulate the binding activity and cell function. To see this clearly, we generated the

transcript structures corresponding to these unigenes using Bioperl (Stajich et al.

2002). The transcripts were aligned to the genome and the reliable SAGE tags were

located. One example, for gene gtρbp3, is shown in Figure 4.6. The plots for the other

eight unigenes are shown in Appendix C.4.
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Table 4.2 Nine Significant Unigenes with Negatively Regulated Transcripts

>Hs.334885 GTPBP3 GTP binding protein 3 (mitochondrial)

>Hs.342307 FLJ10330 PRP38 pre-mRNA processing factor 38
(yeast) domain containing B

>Hs.480073 HNRPD Heterogeneous nuclear ribonucleoprotein D
(AU-rich element RNA binding protein 1, 37kDa)

>Hs.480073 HNRPD Heterogeneous nuclear ribonucleoprotein D
(AU-rich element RNA binding protein 1, 37kDa)

>Hs.506759 ΑΤΡ2Α2 ATPase, Ca++ transporting, cardiac muscle,
slow twitch 2

>Hs.516539 HNRΡΑ3 Heterogeneous nuclear ribonucleoprotein Α3
>Hs.517262 SON SON DNA binding protein
>Hs.529798 ΒΤF3 Basic transcription factor 3
>Hs.531106 RΒΜ25 RNA binding motif protein 25
>Hs.546361 ATΡ2C1 ATPase, Ca++ transporting, type 2C, member 1

A unigene is the transcript cluster. First column is the unigene ID and the second is the description of
the unigene, including gene name and gene function. The information of the tags and correlations is
given in Table C.1 of Appendix C.

Figure 4.6 The transcript structure of Unigene Hs.334885. The first line represents
the chromosome information of the gene, and the following lines represent the
transcript structure generated from this gene. The SAGE tag is indicated by the
up-triangle and the accession number of the transcript is indicated under the first exon
of the transcript.

4.3 Results and Conclusions

Among the 1957 unigenes that have more than one reliable SAGE tag, 54 unigenes

have tags that are located in different strands of the chromosome. Among these 54

unigenes, 3 unigenes (indicated in bold typeface in Appendix C.3) are found in the 61
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significant unigenes. Most of the transcripts on different strands have co-expression,

not negative regulation. Similar results also were found in the literature (Quere et al.

2004). That is, the negative regulation is not mainly due to the orientation of the

transcripts, but instead, it must be regulated by some other unknown mechanisms.

From the data of mapping the SAGE tags to the poly(A) sites (private data

from Dr Bin Tian's lab), among the 61 significant unigenes, 15 unigenes were found

to contain different poly(Α) sites, 4 unigenes were found to use the same poly(Α) sites,

and the poly(Α) site information of the remaining 42 unigenes is unknown due to

some reasons, such as the different unigene version between SAGE Genie and our

database. However, it suggested that the alternative polyadenylation may be one

factor that generated the opposite expression pattern of different transcripts.

To our knowledge, this is the first systematic study of the negative regulation

between two different transcripts from the same gene, and this may provide some

insight into alternative polyadenylation. Here we are mainly focused on the human

data. The mouse SAGE data are also available and have larger size than the human

SAGE dataset. We can apply the same methods to the mouse SAGE data and find the

significant genes. Furthermore, by a homolog analysis between human and mouse

genes, negative regulation for some genes may be very significant.



CHAPTER 5

ALTERNATIVE POLYΆDENYLATION

5.1 Introduction to Alternative Polyadenylation

Α large number of human genes have been found to contain more than one poly(A)

site, leading to multiple transcripts, even though some of them may not have protein

products. It was reported recently that about 54% of human genes and 32% of mouse

genes have multiple poly(A) sites (Tian et al. 2005).

Genes were classified into three groups according to the locations of their

poly(Α) sites (Tian et al. 2005) (see Figure 5.1). A type I gene contains only one

poly(A) site; a type II gene has multiple poly(Α) sites, all located after the stop codon

in the 3'-most exon; a type III gene has poly(Α) sites located in regions upstream of

the 3'-most exon. It is possible that multiple poly(A) sites are located in the 3' UTRs

of the last exon for type III gene. Thus, alternative polyadenylation of a type II gene

can lead to variable 3' UTRs with the same protein products. Since 3' UTRs contain

RNA cis-elements, which are important for mRNA stability, alternative

polyadenylation of type II might play a critical role in gene regulation. Alternative

polyadenylation of type III genes leads to various protein products.

For each gene type, a further classification was made based on the site

locations (Tian et al. 2005). 1 S represents a Type I gene poly(A) site; 2F represents

the 5'-mοst poly(A) site in a Type II gene; 2L represents the 3'-mοst poly(A) site in a

Type II gene; 2M represents a middle poly(Α) site between 2F and 2L in a Type II

gene; 3U represents the poly(Α) site located upstream of the 3'-most exon in a Type

III gene; 3S represents a single site in the 3'-mοst exon of a Type III gene; 3F, 3M, 3L,

43
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similar to 2F, 2Μ, 2L, represent poly(A) sites in a Type III gene. For convenience, 3D

represents 3 S/3F/3Μ/3L.

Figure 5.1 Schematic representation of poly(A) sites. Types I, II, and ΙΙΙ represent
three groups of genes based on the locations of the poly(A) sites. Type I genes contain
only one poly(A) site; Type II genes contain multiple poly(A) sites located in the last
exon after the stop codon; Type III genes contain multiple poly(Α) sites with at least
one poly(Α) site located in the upstream region of the last exon. Figure taken from
(Tian et al. 2005).

The selection of alternative poly(A) sites is believed to be related to

non-molecular biological factors, such as developmental stages and cell conditions

(Edwalds-Gilbert et al. 1997). For example, the IgM heavy-chain gene switches from

using one poly(A) site to another during B lymphocyte maturation (Takagaki et al.

1996). This results in a shift in protein production from a membrane-bound form to a

secreted form due to the deletion of a C-terminal hydrophobic region responsible for

membrane interactions. This switch is an essential step in the immune response.

However, the detailed mechanisms involved in alternative polyadenylation are still

unknown. What are the molecular factors that determine or regulate the selection of

poly(A) sites? Are they polyadenylation protein factors? Is a splicing factor involved?
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5.2 Protein Factors Involved in Polyadenyiation

Six different trans-acting protein factors have been identified as necessary for in vitro

cleavage and polyadenylation (Keller 1995) (see Figure 5.2). They are the Cleavage

and Polyadenylation Specificity Factor (CPSF) (Bienrοth et al. 1991; Gilmartin and

Nevins 1991; Murthy and Manley 1992), Cleavage stimulation Factor (CstF)

(Takagaki et al. 1990; Gilmartin and Nevins 1991), Cleavage Factor Im and IIm

(CFIm, CFIIm) (Takagaki et al. 1989; Ruegsegger et al. 1996), Poly(A) Polymerise

(PAP) (Takagaki et al. 1989), and Poly(A) Binding protein II (PAB II) (Wahle 1991).

CPSF is required for cleavage and polyadenylation, and it contains four

subunits (30, 73, 100, 160 kDa). Among these, CPSF-Ι60 binds to the poly(Α) signal

AAUAAA or it's variants and interacts with the subunit of CstF, and CPSF-73 is

involved in histone-pre-mRNA processing (Dominski et al. 2005). PAP is also

required for both cleavage and polyadenylation, initiating the addition of a poly(A)

tail to the 3' end of pre-mRNA (Murthy and Manley 1992). PABII binds to the

growing poly(Α) tail and acts as an elongation factor, regulating its ultimate length

and stimulating maturation of the nnRNA (Mangus et al. 2003).

CstF is composed of three subunits (50, 64, 77 kDa), namely, CstF-50 that

interacts with RNA polymerise II C-terminus Domain (CTD) (McCracken et al.

1997), CstF-64 that directly binds to U/GU-rich elements of transcripts containing

poly(Α) signals (Perez Canadillas and Varani 2003), and CstF-77 that has been shown

to interact with several factors involved in cleavage and polyadenylation. For example,

CstF-77 interacts with CstF-50 (Takagaki and Manley 1994), CstF-64 (Hatton et al.

2000), CPSF-160 (Murthy and Manley 1995), and RNA polymerise II CTD

(McCracken et al. 1997). It also can interact with itself (Takagaki and Manley 2000).

A schematic description of the poly(Α) region including cis-elements and some
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protein factors such as CPSF, CstF and RNA Poly II (Polymerise II) is shown in

Figure 5.2 Schematic representation of the steps involved in the mammalian
pre-ιrιRΝΑ 3' process. Five protein complexes are involved in the polyadenylation
process: cleavage and polyadenylation specificity factor (CPSF), cleavage stimulation
factor (CstF), cleavage factor I, II (CFI, CFII), and polyadenylation binding protein II
(ΡΑΒ II). Figure taken from (Keller 1995)
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Figure 5.3 Protein factors involved in polyadenylation. CTD, the c-terminus
domain. CPSF, the cleavage and polyadenylation specificity factor, includes the four
subunits: 100kD, 73kD, 30kD, and 160kD, and CstF, cleavage stimulation factor,
includes the three subunits: 50kD, 77kD, and 64kD.

CFIm and CFIIm are required for the cleavage reaction only, but they are less

well characterized than the other cleavage-polyadenylation factors (Ruegsegger et al.

1996; Ruegsegger et al. 1998). CFIm has been found to be the factor that recruits the

CPSF and PAP to bind with the pre-mRNA if the sequence does not contain a

canonical PAS (Venkataraman et al. 2005). CFIIm has been shown to bridge two

other cleavage factors (de Vries et al. 2000).

In addition to the six main factors above, other proteins also have been shown

to be involved in cleavage and polyadenylation, including CTD of RNA polymerise

II (Park et al. 2004; Kaneko and Manley 2005), Symplekin (Takagaki and Manley

2000), PC4 (Calvo and Manley 2001), hnRNP F (Veraldi et al. 2001), hnRNP H/H'

(Arhin et al. 2002), Ssu72 (Steinmetz and Brow 2003), U2ΑF65 (Millevoi et al.

2002), U 1 snRNP-A (Lutz et al. 1996; Phillips et al. 2004), SRp20 (Lou et al. 1998),

and Fipl (Forbes et al. 2006). Some of these factors are involved in both

polyadenylation and transcription, which supports the notion that these processes are

tightly coupled together (Adamson et al. 2005). All of these evidences suggest that

polyadenylation can be regulated by many factors and is tightly coupled with other

processes.
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5.3 Proposed Mechanisms for Alternative Polyadenylation

We know that Type II genes and Type III genes have multiple poly(A) sites. The

switch between alternative poly(Α) sites may be different for these two different types.

For Type II genes, poly(Α) sites are all located in the 3'-most exon, usually in 3' UTR,

therefore, sometimes they are called tandem poly(Α) sites. There is no additional

splicing upon reaching the last exon. Also, the distance between these different

poly(Α) sites is usually not long, at most the length of the last exon. For Type IΙI

genes, the switch between 3U and 3D must skip some exon(s) or part of an exon.

Thus, splicing at some location is very important for this kind of switch. However, the

detailed relationship between splicing and polyadenylation is not well understood. In

the following, some hypothetical mechanisms are proposed and investigated for the

switching of poly(Α) sites for type II and III genes.

5.3.1 Type II Gene Poly(Α) Site Switching

For switching between poly(Α) sites in type II genes, the alternative transcripts have

the same upstream exons except the last exon (see Figure 5.4). The last exons are

different only at the 3' end due to the usage of different poly(Α) sites. Here, two

poly(Α) sites PAl and ΡΑ2 are investigated. Since the distance between these two

sites is not long, the two sites have an equal chance to be selected, i.e., distance will

not affect the selection of different poly(A) sites. Thus, PAl has no advantage to be

selected even thought the region around PA 1 has been transcribed first.

Figure 5.4 Type II gene poly(Α) site switching. PAl and ΡΑ2 represent different
poly(Α) sites in the last exon.
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The following four mechanisms M 1-M4 are proposed hypothetically and

theoretically, based on the existing literature.

M1: An upstream poly(Α) site has a higher priority than a downstream poly(Α)

site, and the stronger the poly(Α) site is, it has a higher probability of being selected.

The strength of a poly(Α) site is generally determined by the usage of different

poly(Α) signals, the GU/U-rich element of the downstream region of a poly(Α) site,

and some other unknown cis-elements. It also can be estimated from the polya_svm

program that was discussed in Chapter 3. The smaller the polya_svm score is, the

greater chance that the poly(Α) site will be used.

In herpes simplex virus type 1 (HSV), the tk gene preferred to use the

upstream poly(Α) site (Denome and Cole 1988) according to the following two facts:

increasing the number of poly(Α) signals 3' to the tk-coding region did not affect the

total amount of polyadenylgted RNA produced; increasing the distance between two

signals caused an increase in the use of the 5' signal and a decrease in the use of the

3' signal. This indicates that increasing the number of poly(Α) signals may not

increase the strength of the poly(Α) site and so PAS, the main poly(A) site

determinant, is not the unique factor to determine the strength of the poly(Α) site. The

viral mRNA BPV in mouse cell uses the upstream poly(Α) sites 4 times as often as

the downstream poly(Α) sites (Andrews and DiMaio 1993). When identical tandem

viral signals are separated by fewer than 400 nt, they competed for polyadenylation

and the upstream site is always chosen preferentially (Batt et al. 1994).

In human acute lymphocytic leukemia cell, the c-myc gene uses the

downstream poly(Α) site 6 times more often than the upstream poly(Α) site

(Laird-Offringa et al. 1989). To test if the downstream poly(Α) site is stronger than

the upstream poly(Α) sites for gene c-myc, the 250 nt poly(Α) regions were obtained
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from polyλ_DΒ2 (Lee et al. 2007) and predicted by the polya_svm program. The

polya_svm score is 5.644 for the upstream poly(Α) site and 4.133 for the downstream

polya(A) site. This confirmed that the downstream poly(Α) site is stronger than the

upstream poly(A) site. Gene cox-2 uses the distal stronger poly(Α) site more often

than the proximal weaker polya(A) site, and the alternative polyadenylation is also

tissue-specific (Hall-Pogar et al. 2005). Using the same method applied to c-myc, we

obtained a polya_svm score of greater than 6 for the upstream poly(A) site, and a

score of 3.943 for the downstream poly(A) site of gene cox-2. These tow examples

confirmed that the strengths of poly(Α) sites would contribute to the selection of those

poly(A) sites. This also agrees with Figure 3.9 in the Chapter 3.

M2: The upstream or downstream regions of the poly(A) site may contain

some protein binding sequences, excluding the sequences necessary for

polyadenylation factors.

If the upstream or downstream regions of the poly(A) site contains some

specific sequences, which are the binding sites for some proteins, not polyadenylation

factors, the selection of this poly(A) site would be more complicated. Once the

sequence around the poly(Α) site is bound by some protein, it may prevent the

binding of the polyadenylation factors and thus lower the usage of the poly(Α) site.

For example, if the sequence is very near PAS, the binding of the protein may prevent

CPSF from binding to the PAS. This means this poly(Α) site may be skipped and the

following site may be used.

Polypyrimidine Tract Binding protein (PTB) was shown to modulate the

efficiency of polyadenylation by binding to a downstream element of the poly(A) site

(Castelo-Branco et al. 2004), thereby inhibiting the polyadenylation at that site and

making the usage of the following poly(A) site possible. The drosophila sex-lethal
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protein mediates the polyadenylation switching in the female germ-line (Gawande et

al. 2006) by binding to the multiple SXL-binding sites, which include the GU-rich

poly(Α) enhancer, thus competing for the binding of CstF-64 in vitro. In this case, the

selection of a poly(Α) site not only depends on the sequence in the poly(Α) region, but

also on the availability of some proteins and the RNA-protein interactions. The

adenovirus MLTU encodes five collinear mRNA families, where the upstream poly(Α)

site is predominantly used in the early stage, and downstream poly(Α) site is used in

the later stage (DeZazzo and Imperiale 1989). This may be caused by the absence of

some proteins binding to the sequence around the upstream poly(Α) site in the early

stage.

On the other hand, if some other proteins bind to the region near to PAS or to

the downstream U/GU-rich region, it may recruit the polyadenylation factors such as

CPSF and CstF more efficiently and enhance the usage of the poly(Α) site near the

binding sites of the other factors. The U3 sequence has been demonstrated to promote

the interaction of CPSF with the core poly(Α) site in lentiviruses (Graveley and

Gilmartin 1996).

M3: Secondary structure conformation of pre-mRNA around the poly(Α) site

may influence the selection of poly(Α) sites.

It has been found that repression of the 5' poly(Α) signal and utilization of the

3' poly(Α) signal occurs in HIV-1. They may be caused by the hairpin loop structure

around the PAS, and therefore, inhibiting the binding of the polyadenylation factors

CPSF (Klasens et al. 1999; Gee et al. 2006). The secondary structure near the

downstream U/GU-rich region also might affect the binding of polyadenylation factor

CstF. To our knowledge, there is no evidence reported for that.
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M4: The concentration of some polyadenylation factors will affect the poly(A)

site selection.

It has been shown that the alternative polyadenylation is strongly influenced

by increasing the concentration of CstF-64, resulting in an increase in the selection of

a weaker promoter-proximal poly(Α) site over a stronger promoter-distal poly(Α) site

(Takagaki and Manley 1998; Shell et al. 2005). We do not know for any other

polyadenylation factors that have been observed to affect the site selection by

changing the concentration.

5.3.2 Type III Gene Poly(A) Sites Switching between 3U and 3D?

For the type III gene poly(Α) site switching, the mechanism may be a little different

compared with that for type II genes since there is no splicing involved in the type II

gene poly(Α) site selection. However, some mechanisms described for type II genes

may also be true for type III genes. For instance, if some other proteins bind to the

splicing protein binding sites and block the binding of splicing factor, slowing down

the formation of the splicing complex, the following poly(Α) site PAl (see Figure 5.5)

may be used. If some other proteins bind to the upstream or downstream of

polyadenylation sites, improve the binding of polyadenylation factors by

protein-protein interaction, accelerating the formation of the polyadenylation complex,

the poly(Α) site PAl (see Figure 5.5) may be used.

If some other proteins bind to the upstream or downstream of the splicing

binding sites and facilitate the binding of the splicing factor, therefore accelerating the

formation of the splicing complex, the splicing site (see in Figure 5.5) may be used.

Also, if some other proteins bind to CPSF or CstF binding site, slow down the binding

of polyadenylation factors, the splicing site may be used.
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If the two poly(Α) sites are very close in type III genes, the mechanisms

described in type II genes may also be true for type III genes. If the two sites are

separated far apart, then the splicing process may compete with the cleavage and

polyadenylation processes and so affect the determination of the poly(Α) site. If the

splicing site (SS) has been processed first, the first transcript (the top one in Figure

5.5) will be generated; if the splice site was skipped, no splicing (NS) happens, then

the second transcript (the bottom one in Figure 5.5) will be generated. The two

mechanisms Μ5-6 are proposed.

Figure 5.5 Type III gene poly(Α) site switching. SS, splicing sites; NS, no splicing;
PAl and ΡΑ2, the two poly(Α) sites for the gene. PAl is an intronic poly(Α) site.

M5: The strength of the splicing site (SS) and the poly(A) site determine which

one will be used first.

The strength of the 5' splicing site is determined by the 5' boundary or donor

site of introns containing the canonical di-nucleotide GU and the sequence

composition around the donor site, such as the exonic splicing enhancers (Cartegni et

al. 2002). The alternative splicing is another difficult topic nowadays, and the detailed

mechanisms are less known. It is hypothesized that if the SS is very strong, the first

transcript will be generated. Otherwise, the second transcript will be generated (See

Figure 5.5).

The time difference for the formation of splicing complex and polyadenylation

complex may lead to a different poly(Α) site. If a splicing complex forms very fast,

the sequence (intron) containing poly(Α) site will be spliced out and so the first
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transcript will be generated. If a splicing complex forms very slowly such that the

polyadenylation complex completes the formation before the completion of splicing

complex, then polyadenylation will occur, the splicing complex will degrade, and the

second transcript will be generated. The formation time is assumed to be correlated

with the strength of the site.

M6: RNAP 's moving speed may be related to polyadenylation, such as

transcription elongation, pausing, arrest, and termination.

Transcription termination has been believed to be coupled with

polyadenylation (Buratowski 2005). But the order of transcription termination and

polyadenylation is still unknown. If termination occurs first, then the poly(Α) site

close to the termination site may be used. If polyadenylation occurs first, it may

facilitate the termination, without contributing to the selection of a poly(Α) site. Also,

the defects in the transcriptional elongation factor have been shown to enhance the

utilization of an upstream poly(Α) site (Cui and Denis 2003). It is believed that the

defects cause the increase of transcription pausing and arrest, facilitate the

transcription termination, and hence elicit the polyadenylation.

5.4 Proposed Model for Alternative Polyadenylation of Type IIΣ Genes

Based on the above proposed mechanisms, it is obvious that the selection of poly(A)

sites is a very complex process, and differences exist among different genes and

different species. For the alternative polyadenylation of type III genes, there are three

protein complexes involved: RNA polymerise II complex, which is the transcriptional

machinery; the spliceosome complex, which is the splicing machinery; and the

polyadenylation complex, which is the cleavage and polyadenylation machinery for

most messenger RNA 3' end formation. A simple linear model can be proposed for
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Type III gene with composite exon (see Figure 5.5) based on the idea that the order of

protein complex formation determines the usage of the poly(Α) site: if the splicesome

complex forms first, the first transcript will be generated; if the polyadenylation

complex forms first, the second transcript will be generated.

After the transcriptional initiation, RNAP moves along the DNA template

sequence and pre-mRNA transcript is produced. When the RNAP passes the 5' SS,

the splicing complex begins to form. The time needed for the completion of the

complex may depend on the strength of the SS, the availability of splicing factors, and

other unknown factors. When the RNAP passes the poly(Α) site, the polyadenylation

complex begins to form. The time needed for the completion of the complex may

depend on the strength of poly(Α) site, the availability of polyadenylation factors, and

other unknown factors. The elongation speed of RNAP will also affect the timing

order. To set up the model, some parameters need to be derived, such as the average

time of splicing and polyadenylation complex formation, and the RNAP moving

speed.

The overall reaction rate of transcription for bacterial RNA polymerise is — 40

nt/second at 37 °C, and this is about the same as the rate of translation (15 amino

acid/second), but slower than the rate of DNA replication rate (800 nt/sec) (Lewin

2003). In vitro, the speed may be lower, i.e., about 2-5 nt/s (Korzheva et al. 2000).

The time for assembly of the cleavage and polyadenylation apparatus is about

10 seconds in vivo and is faster for a strong poly(Α) site than for a weak one (Chao et

al. 1999). The reason why polyadenylation assembly forms so fast may be that the

cleavage and polyadenylation processes need RNAP CTD (Park et al. 2004; Kaneko

and Manley 2005), and the RNAP can only stay around the poly(A) site for about 10

seconds (within 50 ft for the speed 5 nt/s). However, the assembly time may depend
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on the polyadenylation factors such as CPSF, CstF, and CF, etc., since it has been

shown that the concentration of CstF-64 will affect the selection of poly(Α) sites

(Shell et al. 2005). The time is then a function of many factors, that is, Τ p = p(ρι,

ρ2 ... ), where p; are the polyadenylation factors and the strength of the poly(Α) site.

The formation of the spliceosome assembly will take several minutes in yeast

(Ruby 1997). Also, the time may depend on the splicing factors, that is, Τ S = s(si, s2,

...), where s; are the splicing factors and the strength of the splicing sites. Assume the

time for the RNAP traveling n nucleotides is Τ„, which is a function of the distances

from the splicing sites and the poly(Α) sites, and other factors that affect the speed of

RNAP. T„ = r(n, f1 ,f2 , ...), where ή are some unknown factors, including the

concentration of NTPs (Liu and Alberts 1995; Herbert et al. 2006). Also the speed of

RNAP varies with different genes due to the different compositions of the sequence.

Highly active genes (e.g., rRNA or heat shock genes) may have higher elongation

rates (Giardina and Lis 1993; Condon et al. 1995). There is some evidence shown that

the distance between the SS and poly(Α) site (PS) will affect the selection of different

poly(Α) sites (Levitt et al. 1989; Qiu and Pintel 2004).

Based on all these evidence and the hypothesis, we proposed that if T„ + Tp >

TS, then splicing occurs first, otherwise, cleavage and polyadenylation occur first (see

Figure 5.6).

RNAP

Figure 5.6 Competition between a SS and a PS. SS, splicing site; PS, poly(A) site;
v, the speed of the RNA polymerise II (RNAP); n, the distance between SS and PS.
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This hypothesis is very difficult to test due to many unknown factors, such as

the RNAP elongation speed, the splicesome, polyadenylation complex formation

times, and the availability and concentration of protein factors that would affect the

splicing and polyadenylation.

Is there any correlation among the distances (DIS) between splicing sites and

poly(Α) sites, the strengths of the 5' SS, and the strengths of PS? The scores reflecting

the strengths of these sites were generated (private data, obtained from Dr Tian's lab),

and they were assumed to be correlated with the complex formation time. The 5'

splicing site scores (SC5) range in (-12.87, 12.1), and polyadenylation site scores

(PAs) range in (-7.25, 9.04). The PAs here are generated based on PSSM only and

they are a little different from polya_svm. It is assumed that the smaller the score, the

longer the time needed for the formation of the complex. We notice that there is no

obvious correlation between them from the plot of DIS vs the scores (see Figure 5.7).

This is not we had expected that if the distances between SS and PS are large. The PA

score should also be large, and the 5' splicing site score should be small such that

there is some competition between the splicing and polyadenylation. There should

exist some other factors.

Next, we took the RNAP moving speed into account. Generally, splicing takes

longer than polyadenylation. An assumption was made about the time based on the

existing literatures: the SS with the minimal SC5 needs 200 seconds to finish the

assembly of a splicesome complex, and the SS with the maximum SC5 needs 50

seconds to finish the assembly; the PS with the minimal PAs needs 100 seconds to

finish the assembly of the polyadenylation complex, and the maximum PAs needs 10

seconds to finish the assembly. We also assumed that the relationship between the

scores and the times were linear and the RNAP speed was 50 nt/s.
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Figure 5.7 Scatter plots of SC5 and PAs vs DIS. SC5, splicing sites score; PAs,
polyadenylation site score; DIS, distance between a splicing site and a poly(Α) site.

Based on the above assumptions, a plot is made and shown in Figure 5.8 (a).

Each point in the plot represents one gene. Based on the scores for splicing sites and

polyadenylation sites, the x-axis is the estimated time for the formation of a splicing

complex, and the y-axis is the estimated time for the formation of a polyadenylation

complex plus the time for RNAP traveling from SS to PS. If they are distributed along

the diagonal line, that means both poly(Α) sites have chances to be used. The

majorities are located around the one center, which is the same as expected. But some

are still located vertically (see Figure 5.8 (a)), which means that even if the distance is

very large or the poly(Α) site is very weak, the downstream weak poly(Α) site is still

selected. This implies that the selection of a poly(Α) site is not only determined by the

strength of the site, but also many other unknown factors. The RNAP speed might be

very high for some large introns, or the sequence around the 5' splicing site and the

poly(Α) site contains some binding sequences for other factors. If we delete genes

with long distances or we limit the time for polyadenylation and RNAP traveling to be

within 200 s, the plot shown in Figure 5.8 (b) reflects the competition.
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Figure 5.8 Polyadenylation assembly time + RNAP traveling time vs splicesome
assembly time. Each point represents one gene with an intronic poly(A) site. The units
on the x- and y-axes are in seconds. (a). All possible genes. (b). Genes with times for
polyadenylation assembly and RNAP traveling less than 200 seconds.

Due to the large number of factors contributing to the selection of different

poly(A) sites, it is very necessary to focus on some specific gene to understand

alternative polyadenylation. Mathematical modeling is a strong tool to study the

dynamics of the selection of different polyadenylation sites and this leads the last part

of this work.



CHAPTER 6

MATHEMATICAL MODELING OF CSTF-77
ALTERNATIVE POLYADENYLATION

6.1 Introduction to CstF-77

Tο understand alternative polyadenylation, some possible mechanisms being

proposed have been described in the previous section. The mechanisms concerning

the selection of different poly(Α) sites are very complex, in general, and different

genes may use different pathways. Therefore, we want to focus on some special genes

to study the regulation of two different transcripts produced by alternative

polyadenylation. Gene cstf-77 (sometimes called csf3), whose protein product is one

of the subunits of CstF was chosen for this study. This gene was selected for two

reasons: the gene product is a polyadenylation factor and this gene can produce more

than one transcript due to alternative polyadenylation. We believe that this kind of

gene not only can control the efficiency of polyadenylation by alternative

polyadenylation, but also can form a feedback loop by auto-regulation.

The alternative transcript of human cstf-77 due to alternative polyadenylation

has been found recently (Pan et al. 2006). Moreover, it has been found that the

expression levels of the two transcripts are opposite to each other based on the

observation on the SAGE data (see Figure 6.1). An intronic poly(Α) site has been

found for csΐf-77 and this leads to the relatively short CstF-77 transcript (referred as

CstF-77.S) (see Figure 6.2). The short form protein lacks the function of a normal

form (the normal CstF-77 transcript is referred to as CstF-77.L, the long transcript) as

a subunit of CstF (Pan et al. 2006) and its detailed function is still unknown.

60
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Figure 6.1 SAGE library data for CstF-77.L and CstF-77.S. Each of the 289 vertical
lines represents a different library. The top row represents the expression levels of the
long form of CstF-77, and the bottom row represents the expression levels of the short
form of CstF-77. Figure taken from (Pan eta!. 2006).

Figure 6.2 Transcript structure of gene cstf- 77. The use of an upstream poly(Α) site
generates the CstF-77.S and the use of a downstream poly(Α) site generates the
CstF-77.L. Figure taken from (Pan et al. 2006).

A number of genes have been found to contain multiple transcripts with

opposite expression levels from Chapter 4. Some of the transcripts are generated due

to alternative polyadenylation. Others are due to alternative splicing. Is it really true

that the long and short form transcript of CstF-77 have opposite expression levels? If

this is true, then how does this happen? What controls this type of dynamical

expression in a tissue-specific way? If these were understood, it would help us to

understand the mechanism of alternative polyadenylation.

There is no reason to assume that they interact directly with each other by

RNA-RNA interaction. One possible way for the regulation is that the protein

products of the long and short form have different effects on the transcription
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efficiency for generating the long and short form transcripts, and thus form an

auto-regulation network. We know that the long form protein is a general

polyadenylation factor and is required for polyadenylation. However, the function of

the short form protein is unknown.

The concentration of CstF-64 has been shown to regulate gene expression

(Takagaki and Manley 1998; Shell et al. 2005), but to our knowledge, there is no

evidence for CstF-77 and other polyadenylation factors to regulate gene expression.

To set up the model, some assumptions will be made for the function of the short

form protein.

6.2 Proposed Model of Alternative Polyadenylation for CstF-77

The human CstF-77 short form transcript was first described in (Pan et al. 2006) and

no additional literature has been found related to it. This transcript is generated by the

intronic polyadenylation site, which has been studied widely (Lou et al. 1998; Bruce

et al. 2003; Tian et al. 2007). However, the regulation between the two transcripts

from the same gene has seldom been studied. There are a number of reasons for the

lack of this kind of study. First, not all of the protein products from different

transcripts of the same gene are well understood. Second, a large number of

alternative transcripts are expressed at very low levels, and the current technology can

not detect these transcripts. Third, the regulation between two different transcripts

from the same gene seldom draws too much attention. Fourth, potential products from

different transcripts may not regulate the expression of the same gene.

Here, we introduce a new mathematical model to discover and understand the

regulation of two different transcripts generated from the same gene due to alternative

polyadenylation. We then determine the consequences of the hypotheses in the model.
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These two transcripts have the same transcription initiation site at the 5' end, and they

have the same 5' un-translated region (UTR). However, the polyadenylation sites at

the 3' end are different, with one located upstream of the other. The two poly(A) sites

are called the upstream poly(Α) site (UPA) and the downstream poly(Α) site (DPA).

If the UPA is used, then the DPA would not be used for this transcription initiation.

On the other hand, if the JJPA was skipped for some reason, then the DPA would be

used. The detailed mechanism of when and how the upstream poly(Α) site is used is

not clear and some possible mechanisms were discussed in Chapter 5.

The efficient usage of the poly(Α) site is assumed to depend on the protein

concentrations of the polyadenylation factors. Some polyadenylation factors, such as

CstF-64 (Shell et al. 2005) have been found to affect the polyadenylation efficiency.

However, in this study, we assume the concentration of CstF-64 is the same for all the

time. That is, the CstF-77 long form protein is assumed to be the only factor that

would affect the polyadenylation efficiency. The CstF-77 long form protein is

characterized as one subunit of CstF, which is necessary for the cleavage of the

pre-mRNA. The function of CstF-77 short form protein is not known. Here, the short

form protein either has no function or it may have an inhibitory effect on the cleavage

based on the structure analysis in (Pan et al. 2006). Moreover, if it has the same

function as the long form protein, then it can be treated as a long form protein and the

system would become a positive feedback system in one variable, thus there is no

regulation. By setting up the model and using simulations, it is possible to deduce a

putative function of the short form protein.

Some work has been done to study the transcription initiation rate for some

specific genes. For example, the TATA box containing the promoter region will affect

the binding of the TATA binding protein (TBP), therefore, affecting the transcription
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initiation rate (Antoniou et al. 1995; Hoopes et al. 1998). The structure of RNAP and

non-coding RNA also has been implied in transcription initiation (Young et al. 2002;

O'Gorman et al. 2006). For our study, we assume the transcription initiation rate is

constant for gene cstf-77.

The regulation network can be described as a series of events (see Figure 6.3):

when the transcription starts at the transcription initiation site (TIS), the RNAP travels

along the DNA template sequence and the pre-mRNA is formed; when the UPA is

exposed, cleavage and polyadenylation may happen at that time and the CstF-77.S is

formed; if the UPA is not used for some reason, the RNAP continues to move and the

DPA will be exposed; the CstF-77.L will be generated by using the DPA; the mRNA

transcripts will be exported to cytoplasm, where they are translated into proteins; after

the folding and some modification processes, the proteins will then be transported

back into the nucleus to act as polyadenylation factors, and then they would affect the

transcription efficiency by polyadenylation.

Figure 6.3 Alternative polyadenylation of CstF-77. TIS, transcription initiation site;
UPA, upstream poly(Α) site; DPA, downstream poly(Α) site. CstF-77.S and
CstF-77.L represent the short and long form mRNA transcripts. CSTF-77.S and
CSTF-77.L represent the short and long form proteins. CstF-77.S is generated by
using UPA, and CstF-77.L is generated by using DPA.
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6.3 Mathematical Description

RNA-protein interaction can be viewed as a substrate-enzyme interaction and the

Michaelis-Menten equation has been used to describe this kind of kinetics (Fall et al.

2003). Goodwin (Goodwin 1965; Goodwin 1966) postulated an oscillatory model to

simulate the dynamics of mRNA and protein interactions, and the dynamical behavior

of this model was analyzed by J. S. Griffith (Griffith 1968(a); Griffith 1968(b)). Since

the poly(Α) site of the short form is located upstream of the long form, this increases

the opportunity for the short form to be formed first. This also can be seen from the

proposed mechanism M1 from Chapter 5. Thus, it is natural to assume that the

transcription rates of the long and short forms have the following representations

using the Goodwin oscillator:

(6.1)

where Pj and Ρ are the transcription rates of the long and short forms, respectively, α

is the maximum transcription rate of the short form, L and S are the relative protein

concentrations for the long and short forms, respectively, 1 ο is the transcription

initiation rate, which is assumed to be constant, K is the equilibrium constant, n is the

Hill coefficient, and ε is the relative inhibition constant for the short form. Here we

assumed that Iο = P1 + Ρ' , which means that for any transcription initiation, either the

long form or short form is produced. If ε = 0, then the short form protein has no effect

on polyadenylation.

As we know, in eukaryotes, when a gene is turned on, a messenger RNA will

be made, processed, and transported from the nucleus to the cytoplasm before the

protein is generated. On the other hand, when a gene is turned off, the protein
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production will not be affected immediately until the RNA that already has been

transcribed decays. The delay time for the formation of a functional protein from a

mature mRNA molecular has received some attention (Scheper et al. 1999; Covert et

al. 2005). The time delays are different for different genes. The correlation between

mRNA and protein abundance has been widely studied in other species (Greenbaum

et al. 2003; Nie et al. 2006), however, the correlation does not appear to be well

defined because of noise and other factors.

The protein concentration is more difficult to measure than mRNA expression

level, therefore, the variables in the model will be chosen to be the expression levels

of the mRNA transcripts. We assume that the protein level at the current time is

proportional to the mRNA level that has been transcribed at a previous time. Thus we

have the relationships: L(t) — 1(t-70) and S(t) - s(t-ro), where t is the time variable, 1(t)

and s(t) are the relative mRNA expression levels of the long and short form at time t,

τ0 is the time duration between the formation of the mRNA and the functional protein,

which includes the time for niRNA transportation from nucleus to cytoplasm,

translation, protein folding, protein relocation, etc. Also, the time delay is assumed to

be the same for both the long and short form transcript.

Based on the mass balance: change of expression level = production rate —

degradation rate, the dynamics of the long and short form transcripts is modeled by

the following differential-delay equations:

(6.2)

where dl and ds denote the degradation rates for the long and short form transcripts,

respectively. It is also possible that for some transcription initiation, both poly(Α)
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sites are skipped and that there is no transcript generated, and this sometimes is called

transcription abortion (Sousa et al. 1992; Rocha and Danchin 2003). The probability

that the DPA is used will be assumed to depend on the concentration of the

polyadenylation factors, characterized by the Hill equation with a different

equilibrium constant than used by UPA. By slightly modifying the first equation of

Equation (6.2), we obtain a more complete, but more complicated system:

(6.3)

6.4 Theoretical Analysis of Differential-Delay Equation

The differential-delay equations (DDEs) are difficult to analyze mathematically in

general. Α DDE (also called a retarded functional differential equation, RFDE) is a

special type of functional differential equation. It is very similar to an ordinary

differential equation (ODE), but its solution involves past values of the state variable.

Thus, the solution of a DDE requires knowledge of the current state, as well as the

state at a certain earlier time. Therefore, the DDE is an infinite-dimensional system,

so we need to specify an initial function for an initial time interval.

To understand the dynamical behavior of Equation (6.3), a simpler DDE will

be considered. K, = 0 and € = 0 mean that the short form protein has no regulatory

function and that it generates either a long or short form transcript after the

transcription has been initiated. In this case, Equation (6.3) is reduced to the following

simpler one:
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(6.4)

Note that the first equation is independent of the second equation, so the above

system can be studied by the following single DDE:

(6.5)

Equation (6.5) has six parameters (Io, α, n, K, dl, τ0), and it can be reduced to

five parameters by the transformation:

1(t) _ 1(t) .
K

The results is

Dropping the - on 1(t), we obtain:

(6.6)

If Ii = 0, then this becomes the same equation as that has been studied by Mackey and

Glass (Mackey and Glass 1977), for which they obtained some results. In their report,

the following two different equations were considered:

(6.7)

(6.8)
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where PT = P(t — τ) , β0 , 0, y are positive constants. They claimed that the solution of

Equation (6.7) will either approach a fixed point or show a stable limit cycle

oscillation, while the solution of Equation (6.8) can be chaotic.

In the following, Equation (6.5) will be studied in more detail and some

conclusions will be made (see also, (Diekmann 1995)). Two questions can be

addressed about Equation (6.5): does Equation (6.5) have a periodic solution, and

what is the relationship between the period and the delay?

Equation (6.5) has only one steady state positive solution 10, which is

independent of the time delay. If we set the right-hand side of Equation (6.5) to zero

with zero delay, we obtain

The equation can be written in another form:

The above equation can have only one positive solution since the line on the

left side and the curve on the right side of the above equation can intersect only at one

positive point Ιο . The stability of this steady state solution can be found by linearizing

the non-linear term around the steady state. The stability analysis is much more

complex where there is nonzero time delay. After linearization of Equation (6.5), the

following linear DDE is obtained:

(6.9)

where £(t) is the perturbation around the steady state solution to and
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After scaling the time by setting t = τo t , we get the following linear DDE, dropping

the on x(t):

(6.10)

We look for the solution in the form x(t) = eZ` . After substitution, we obtain

the characteristic equation of Equation (6.10):

(6.11)

Since z is an unknown number, write z = μ + iv and substitute this into the above

characteristic equation, we obtain the following parameterized equations:

(6.12)

If μ =0,  then Equation (6.11) has the pure imaginary solution and Equation (6.10)

has an oscillatory solution. By setting μ =0 ,  we get the following equations:

(6.13)

The above equations are even in v, so we can restrict v >_ 0. The above

expression has singularities at v = kπ, k = 0,1,2,..., and we can divide the right half

axis of u into intervals such that sine function has a single sign in each interval.

Define the intervals:
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and defme the curves Ck in the ( a, β )-plane parameteńzed by u, which is varying

within the interval Ik as:

(6.14)

We can plot all the curves of Equation (6.13) in the same (a, β )-plane by

varying the parameter v , and we get the parameter phase plane (see Figure 6.4).

Figure 6.4 Parameter phase plane for the linear DDE. a and β are the coefficients in
Equation (6.11). R;± is the region bounded by solid curves, and c; ± is the solid curve
generated by Equation (6.13). The numbers given after the colon represent the number
of roots of Equation (6.11) located in the right half plane.

Some properties are hold for the above curves.
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Lemma 6.1 For each curve Ck , as we vary the u from the left end to the right end

of the interval Ιk , α is decreasing, β keeps the same sign, and the extreme value

of β is at a=1.

Proof. From a(υ) = 
u cos t)
 , taking a derivative with respect to v, we get

sin V

Since sin 2ν — 2ν S 0 for all u > 0, 50 α is decreasing. β = — 	  does not
sin υ

change the sign when v changes within the interval 4± . β >0 on the curve Ck

and β <0 on the curve C. Also

When sin v—v cos v = 0, we have α =1. Ί

Lemma 6.2 All the curves Ck defined in Equation (6.14) do not intersect with each

other and they are asymptotic to the lines α ± β = 0.

Proof. The curves Ck and Ck do not interest with each other since β >0 on the

curve Ck and β < 0 on the curve Ck . To prove that there are no intersections

among the curves Ck or C,, we can use contradiction. If there exist two distinct

curves intersecting with each other, then from Equation (6.14), Ξ νk Ε 1k, Vj E Ι ,

j ^ k, we have the following:
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that is,

Then we have uk = ν 1 , which contradicted with the assumption that Vk and v^

belong to different intervals and these intervals never intersect. Since when v —» kπ- ,

ucosv + υ
	 , so the curves Ck are asymptotic to the lines α ± β = 0 . ❑

sin v	 sin v

From Lemmas 6.1-2, we know that for each point (α, β) lying on the curve

C , there exists an unique ν0 Ε Ιk , and the solution of Equation (6.11) would be

z = ±vi i

In order to determine the number of roots in the right-half plane in other

regions other than on the curves, we need to fix υ at νo and we have μ -curve:

(6.15)

The tangent vector of the μ -curve is given by ν2 =

ι

srn υο ,,

We have to compute the inner product of ν2 and a designated normal vector

forCk . The arrows along the solid curve Ck (see Figure 6.4) indicated the direction
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of u increasing. If vl = (p, q) is a tangent vector to C,, then ν1± = (—q, p) is the

normal vector. Α vector w = (r, s) points to the left of the curve compared with the

arrow direction if and only if w•ν1
1 > 0.  The tangent vector of the curve Ck is

given by:

The normal vector is given by:

So whether the vector v2 points to the left or the right depends on the sign of

It's true that

for ν0 >0,  since h(0) = 0 and h'(0) = 2ν(1— cos 2u) > 0 for VEIk±. The sign of

ν2 •v1
1 doesn't change along the curve Ck since sin ν 0 doesn't change the sign

along the curve. That is, if we fix v at uo on the curve Ck or CO3 and increase

the μ , from above we knοω that y2 •v1
1 > 0, and so the μ -curve will go to the left

of the curve. Using the same arguments, if we fix v at ν0 on the curve Ck and

increase the μ , from above we knοω that v2 •v1
1 <0 and so the μ -curve will go to

the right of the curve.
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We can conclude that, when moving away from Ck or Co to the left or

moving away from Ck to the right, the critical roots located on the pure imaginary

axis move into the right half-plane.

Lemma 6.3 The μ -curve will intersect each of the Ck or Ck curves in at least

one point when we vary μ from —α to 00 .

Proof. From Equation (6.15), the μ -curve is given by the following exponential

function:

(6.16)

it can be seen that f(u) is a continuous function in the interval Ik . Now look at the

limit of the function f(v) as υ approaches the end points of the intervals:

νcosu	1) 

hm f(v) =	 lim (— 	 e sin V ) = 	11I11 (— 	 esiι ν) = lim (χe-x ) = —α
ν- (2k-1)π- 	 υ- (2k-1)π- Sin V 	 υ-*(2k-1)π- sin v 	 x-±-α

That is, when υ Ε 1k = ((2k — Ι)π, 2kπ) , f(v) takes the range from Ο to 00

continuously; when υ Ε Ιk = (2kπ, (2k + 1)π) , f(v) takes the range from to Ο

continuously. Since the curve Ck± approach the diagonal line, the exponential

function must intersect with C.
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From above, we can see that, for some value Vk E Ιk , we can find the

μ -curve from Equation (6.16). There must exist a different value ν^ Ε 17 such that

the μ -curve corresponding to ^ is exactly the same with the μ -curve

corresponding to Vk because of the properties of the function f(u) described in

Lemma 6.3. The number of roots in the right-half plane changes when the parameter

pair crosses Ck± or R as you follow the μ -curve. For a parameter pair (a, β) in the

open region Rk bounded by the bold lines and curves, the number of the roots

located in the right-half plane is given by the numbers following the colons in the

Figure 6.4. If we trace back along the μ -curve, we get an infinite number of roots

located in the left-half plane except along the a -axis. Since the μ -curve has no

intersection with the a -axis, the number of roots on the a -axis can not be counted

by this procedure. The a -axis corresponds to β = Ο and the characteristic equation

has only one root at z = a.

In conclusion, for Equation (6.11), there are two pure imaginary roots for

parameters on the curves Ck ; the number of roots in the right-half plane for

parameters on the curves Ck is the same as in the open region Rk_ 1 ; and the number

of roots in the right-half plane for parameters on the curves Ck is the same as in the

open region R. The number of roots in the left-half plane is infinite except along the

a -axis.

As to why the number of roots in the right half-plane is constant in the region

bounded by the curves Ck and the line R, a theorem described in the book

(Diekmann 1995) says the following:
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Theorem 6.1 (Continuity of the roots of an equation as a function of parameters) Let

Ω be an open set in C, F a continuous complex-valued function on III x III x Ω such

that, for each (α, β), z ι--i F(α , β, z) is analytic in Ω . Let ω be an open subset of

Ω whose closure ω in C is compact and contained in Ω . Let α0 , β, be such

that no zero of F (a0 , β0 , z) is on the boundary of w . Then there exists a

neighbourhood U of (α0 , β0) in Ili x R such that:

• for any (α, β) e U, F(α, β, z) has no zeros on the boundary of ω ;

• the number of zeros of F(a, β, z) in ω , taking multiplicities into account,
is constant for (α, β) e U . Ί

Thus the parameters that make the linear DDE have periodic solutions must be

located on the curves Ck . From the definition of the parameters from Equation

(6.10):

we know that a <0, β <0 .  That is, for Equation (6.5), the parameter point (a, β) is

located on the III quadrant, in which the u ranges in the interval

(π + 2kπ) > υ > (- + 2kπ) . Thus, we have the following conclusion:

Lemma 6.4 The period T of the periodic solution of Equation (6.5) must satisfy

2τ0 < T < 4τ0 .

Proof. From above, we know that the periodic solution has the form e` t ` and

The period of the solution is T' = 2π , where π > ν > - ,
υ 	 2



78

so we have 2 < T' <4.  Since we scale the time by the transformation: i = τot , the

period T of the original system with delay τ 0 will satisfy 2τ0 < T < 4τ0 . ❑

Lemma 6.4 gives us a way to estimate the parameter τ 0 .

6.5 Numerical Simulations

Differential-delay equations are difficult to solve analytically (Murray 1989), and

many results have been obtained about the linear and nonlinear DDE, such as stability

analysis, the existence of periodic solutions, the bifurcation analysis, etc (Heiden and

Mackey 1982; Losson Jr et al. 1993; Mackey and Nechaeva 1994). If all the nine

parameters Ιo , n, τ0 , α, K, d,, d, ε and K, are given, we can solve the DDE

equation (6.3) by a numerical method.

Α lot of software packages have been developed to solve the DDE, such as

DDE-BIFTOOL written in Matlab (Engelborghs et al. 2002), DDEFIT written in

C/C++ (Wood 2003), DΚLΑG6 written in Fortran 77 (Corwin et al. 1997), and dde23

(Shampine 2001) written in Matlab. The latter two are used most often and dde23 is

one part of Matlab (version 6.0 or later), so they are used in this study. The package

dde23 in Matlab (running in windows, Pentium M 1.7G CPU, 1 G RAM) is slower

than DΚLΑG6 (running in Linux) with the same computer settings. Dde23 took

0.037s to compute the solution with the time duration of 100 hr for Equation (6.3),

while DΚLΑG6 only took 0.0011s, 30 times faster than dde23.

Since the initial function (IF) is very difficult to determine biologically, we

use a constant initial function (CIF) in this work. If not stated otherwise, the CIF of

the DDE is always: l(t) =s(t)=1, —τ0 _< t<_ 0.
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The solutions of Equation (6.3) could be very complex for some set of

parameters. Different types of solutions are possible, such as steady-state solutions,

periodic solutions, and chaotic solutions. One solution is shown in Figure 6.5 for

randomly selected parameter set.

Figure 6.5 The phase plane of the long and short form transcripts. The solutions of
Equation (6.3) are obtained for randomly selected parameter values given at the top of
the plot. The constant initial functions for the long and short from are set equal to 1.

6.6 Parameter Estimation

Some of the nine parameters in Equation (6.3) have been chosen according to the

following considerations. For the transcription initiation rate, without loss of

generality, we set Ιo =1. The parameter a, the maximum transcription rate of the

short form, needs to be less than the transcription initiation rate 1, and it is to be

determined. The Hill coefficient representing the cooperative binding process is

difficult to determine. In the modified Goodwin oscillator, Griffith (Griffith 1968(b))
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found stable limit cycles only with a Hill coefficient of eight or more. In Scheper et al.

(Scheper et al. 1999), the Hill coefficient varies from 1 to 8; in Xiong et al. (Xiong

and Ferrell 2003), they use 5 as the Hill coefficient; in Goldbeter (Goldbeter 1995),

the Hill coefficient is 4; and in Elowitz et al. (Elowitz and Leibler 2000), the Hill

coefficient is 2. Since for different activator and inhibitor substrates, the Hill

coefficients are different, we chose a Hill coefficient of 4 in this study.

A discrete delay has been introduced to study gene regulation. Monk (Monk

2003) used a transcriptional delay around 15-20 minutes to study the oscillatory

expression of the transcription factors Hesl, p53, and NF-kB. Lewis et al. (Lewis et al.

1997) included a delay of 8 hr of the period protein (PER) to study the circadian

rhythms. From the previous theoretical analysis, we know that if the periodic solution

exists, the period T of the periodic solution of the linear DDE equation (6.10) is

between two to four times the delay time. This is also true for Equation (6.3) if the

system has a periodic solution resulting from a random simulation (see Figure 6.6). It

has been found that the protein production rates fluctuate over a time scale of about

one cell cycle, and cells about to divide produced on average twice as much protein

per unit of time as newly divided cells (Rosenfeld et al. 2005). This motivates us to

estimate that the period of the protein production oscillation is directly related to the

cell cycle. For a typical mammalian cell, the cell cycle lasts about 24 hr. Thus, it is

natural to estimate the time delay to be 8 hr, one third of the cell cycle period.
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Figure 6.6 Relationship between the delay time and the period of Equation (6.3).
The parameters for these two plots are Io = 1, n = 4, α = 0.8462, Κ = 0.5252 ,

dl = 0.672 1, ds = 0.8381, 6. = 0.019, Κ1 = 0.2026 . The delay time is 4 for the left plot

and 8 for the right plot. The period is —11 for the left plot and —23 for the right plot.
The constant initial functions for the long and short from are set equal to 1.

To solve Equation (6.3), we have to estimate the remaining six parameters

α, K, d1 , ds , ε, K1 . Generally, these parameters are difficult to estimate by

biological experiments, thus, in-silicon estimation comes into play based on the

experimental data. An optimization method will facilitate the estimation procedure.

Very little information is known about the magnitude of these parameters, so we

assume that all of the six parameters are located between 0 and 1. To find an optimal

parameter set in the six dimensional parameter space, we use a global searching

method.

The parameters in the model equations can be estimated by minimizing the

error between the experimental data and the simulation data. Assume that the

experimental data contains m time points at [t l , ... , tm ] for both long and short form

mRNA expression levels, i.e., Ε = [ll , ...,1„ i ; s 1 ,...s « ]. For any given set of parameters

in the parameter space, the DDE system (6.3) can be solved and evaluated at these m
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time points with a CIF, i.e., Ν(α, Κ, dl , ds , ε, Κ' ) = [1 ...,1; sl , ...s,n ] . The mean

square error is calculated by: err =1

optimum parameter set to minimize the error. If the error is less than some tolerance,

say 0.01, we say that the parameter set is a good approximation. But, in fact, we can

never achieve this tolerance because of the noise in the experimental data. Since the

parameter space is continuous, it is impossible to evaluate a solution at every single

point. So instead, we can evaluate the error at uniformly distributed points in the

space to approximate the error.

If we uniformly divide each parameter space into p points, by estimating all

possible combinations of the parameter values, we can find the global minimal error

by solving the DDE equations p 6 times. By using the DΚLAG6 package, it will take

0.0011 xp6 seconds. For example, if p=50, i.e., we search the space with a step of 0.02,

it will take half a year to finish the search. To accelerate the computation, the message

passing interface (MPI) for parallel computing is adopted. We use the Hydra cluster in

the Department of Mathematical Sciences at NJIT, which was funded by a grant from

NSF to do the computation. Each node contains 2 AMD Opteron 250 CPUs and 4GB

of RAM. If we use 20 nodes from Hydra, then it will take one week to finish the

search with a step of 0.02 in every parameter space. To further accelerate the

computation, we also assume the degradation rates for the long and short form are the

same, i.e., dl = d. In this case, it will take 2 hours to complete the job for p=50, with

20 nodes. We found that this was acceptable, and we can use this framework in the

future if we have some experimental data.
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6.7 Results

6.7.1 Experimental Data

The following paragraph is provided by Zhenhua Pan from Dr. Bin Tian's lab.

HeLa cells were seeded at 70% confluence in 12-well plate in DMEM medium

supplemented with 10% FBS. Total cellular RNAs ware extracted using the RNeasy

kit (Qiagen) according to manufacturer's protocols. mRNAs were reverse-transcribed

using oligo-dT primers (Promega). Real-time quantitative PCR was carried out using

the 7500 Real time PCR system (Applied Biosystems) with Syber-Green I as dye. The

following primers were used for detecting various regions of the CstF-77 gene: FO

(5'-GAGGCCATGTCAGGAGAC), R1 (5'-GCAACTCCAAAATGCAACAA), R3

(5'-CATAAATCAATGTGCAAAACC). Primers for Cyclophilin A (CYPH) were

5'-ATGGTCAACCCCACCGTGT and 5'-TTCCTGCTGTCTTTGGAACTTTGTC.

Five time point data were obtained at 16, 24, 36, 48, 56 hr, and the relative expression

level is shown in Figure 6.7.

Figure 6.7 Experimental data at five time points. The x-axis is the time in hours and
the y-axis is the relative expression level normalized to the first time point at 16 hr.

6.7.2 Optimal Parameter Set

By using the method described in Section 6.5 and the experiment data provided by Dr.

Bin Tian's lab, the optimal parameter set we obtained was:
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a= 0.88, K =0.98, dl = ds = 0.44, ε =0.02, Κ1 =0.10,

which led to the smallest error of err = 0.4319 for CIF equal to 1. The simulated

results and the experimental results are plotted and compared (see Figure 6.8). The

simulated oscillation fits the experimental oscillation well, but not perfectly due to the

noise in the experimental data and some unknown factors.

Figure 6.8 Solutions fitted with optimal parameter set. The optimal parameter set is
obtained by the minimization of the error between the experimental data and the
simulation data. The experimental data is shifted 100 hr to the right for better
representation.

Except the obtained optimal parameter set and the smallest error, different

combinations of parameters with errors less than 0.5 are saved. The distributions of

these parameters are plotted (see Figure 6.9). We can see that parameters

α, Κ, d1 , ds , ε are more sensitive than Kl for the errors. Several observations can

be obtained from the numerical simulations:

• The parameter α is less than 1, but close to 1, which is what we expected
since the maximum transcription rate is less than the transcription initiation
rate. If the long form protein is over expressed, the cell would generate more
short form transcripts, and the transcription rate of the short form approaches
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the transcription initiation rate so that the cell can control the long form
production very efficiently.

• Κ1 is less than Κ . This is because there are two poly(Α) sites located in the
last exon to generate the long form (Pan et al. 2006). Two poly(Α) sites in
the last exon are also found in other species, e.g., Drosophila melanogaster
and Drosophila Virilis (Audibert and Simonelig 1998). That is, if the long
and short form transcripts have the same opportunity for polyadenylation, the
probability for generating the long form is higher than for the short form.

• The parameter ε is very small, which means that the short form has a small
inhibitory function or no function at all. The CstF-77.S protein has not been
detected yet (private communication with Dr. Bin Tian). If expressed, from
the putative protein sequence, it would only contain the first HAT domain,
and lack the C-terminal region responsible for interacting with CstF-64,
CstF-50, and itself (Takagaki and Manley 2000). It is not clear if it would
bind to CPSF-160 or the CTD since the protein regions for these functions
have yet to be mapped.

Figure 6.9 Distribution of parameters with error less than 0.5. The parameter values
are given on the x-axis, and the frequency data for each parameter are given on the
y-axis. d1 and d, range from 0.42 to 0.46; ε ranges from 0.02 to 0.04; Κ ι ranges from 0
to 0.44; Κ ranges from 0.94 to 1; a ranges from 0.78 to 1.

6.7.3 Different Initial Functions

The CIF 1(t) = s(t) = 1, —τ0 < t _< 0 is used for the unperturbed system. In fact, the

initial conditions are arbitrary and are hard to determine based on the biological

experiments. Most biological systems are very robust, for example, proteins can

tolerate thousands of amino acid changes, metabolic networks continue to sustain life

even after removal of importance chemical reactions, gene regulation networks
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continue to function after alteration of key gene interactions, etc. (Wagner 2005). In

terms of robustness, it means the system will continue to function in the face of

perturbations.

Some experiments have been done to knock down or reduce the long and short

form gene expression levels (unpublished data from Dr. Bin Tian's lab) and this

corresponds to the simulated model with different initial conditions. Knockdown is

associated with a technique to reduce the gene expression levels, but not reduce the

gene expression levels to a very low level or zero, which is called knockout. RNA

interference (RNAi) is a very common know-down technique. If we knock down the

long form, then the initial condition for / (t) needs to be set to a smaller value; on the

other hand, if we knock down the short form, then the initial condition for s(t) needs

to be set to a smaller value. If we knock out the long form, the initial condition for 1(t)

needs to be set to a very small value or zero. We tried different CIFs and simulated

the consequential "phenotype". If not specified, the CIF would be the constant 1.

If the long form is knocked out, i.e., the long form CIF less than 0.0653, then

the solutions go to zero (see Figure 6.10). This implies that without the long form

protein, the cell will die since the long form protein is essential for the cell to survive.

It has been verified by experiment that if the Suppressor of forked (Su(f)), a

Drosophila homologue of CstF-77 is knocked out, the drosophila will die at the larvae

stage (Simonelig et al. 1996).
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Figure 6.10 Solution of Equation (6.3) with long form CIF set to be 0.0652. CIF,
constant initial function. The short form CIF is set to 1.

If we just knock down the long form, i.e., the long form CIF greater than

0.0652, the cell can recover very slowly and then survive (see Figure 6.11). That

means, knocking down the long form would not kill the cell, but instead the small

amount of long form protein would rescue the cell by itself.

Figure 6.11 Solution of Equation (6.3) with long form CIF set to be 0.0653. CIF,
constant initial function. The short form CIF is set to 1.
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If the long form is over expressed, i.e., the long form CIF is greater than 5, the

system will return to an oscillatory solution (see Figure 6.12). Overexpressing or

knocking down the short form does not affect the system (see Figure 6.13-14).

Figure 6.12 Solution of Equation (6.3) with long form CIF set to be 5. CIF,
constant initial function. The short form CIF is set to 1.

Figure 6.13 Solution of Equation (6.3) with short form CIF set to be 0.01. CIF,
constant initial function. The long form CIF is set to 1.



89

Figure 6.14 Solution of Equation (6.3) with short form CIF set to be 5. CIF,
constant initial function. The long form CIF is set to 1.

Also from Figure 6.10-14, we can see that, when the long form expression

level decreases, the short form expression level also decreases, and when the long

form expression level increases, the short form expression level also increases in the

first several hours. This agrees with the results that the lack of Su(f) function is

correlated with the disappearance of the short form Su(f) RNA, and accumulation of

the short form requires the wild-type Su(f) protein (Audibert and Simonelig 1998).

6.7.4 Basin of Attraction and Basin Boundary

The set formed by all the initial points in the phase space of a dynamical system

which is attracted to a given solution (e.g., a fixed point, a limit cycle) is called the

basin of attraction for that solution. Many nonlinear dynamical systems possess

multi-stable solutions, and different initial conditions, belonging to different basin of

attraction will be attracted to the corresponding solutions (Losson Jr et al. 1993). The

boundaries of the various basins of attraction are known as basin boundaries. The
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dependence of solution behavior on the initial conditions in certain first-order

nonlinear DDEs has been investigated (Losson Jr et al. 1993).

We notice that Figure 6.11-14 have the same periodic solutions (referred to as the

limit cycle solution) for different initial conditions by numerical simulations (see

Figure 6.15). We hypothesize that this is a limit cycle. The limit cycle solution is

neutral stable as shown by numerical simulations, with the solution attracted to the

limit cycle with different CIFs (see Figure 6.15).

Figure 6.15 Solutions of Equation (6.3) with different CIFs. CIF, constant initial
function. For different CIFs, the solutions go to the same limit cycle solution.

From Figure 6.10-11, we found that there is a bifurcation point of the long

form CIF if the short form CIF is 1. That is, if the long form CIF is greater than

0.0652, the system returns to the limit cycle solution, otherwise, it will go to zero. For

any given short form CIF, different CIFs of long from are tried and the Equation (6.3)

is solved based on the CIFs. The CIF for long form was found such that with a little

decreasing of this value, the solution goes to zero, while with a little increasing of this
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value, the solution goes to the limit cycle solution. For different short form CIF, the

bifurcation points of the long form CIF can be generated numerically and they are

plotted in Figure 6.16. The curve is called the basin boundary, separating the phase

space into two regions: zero region and oscillatory region. If the CIF starts in the zero

region, the solutions of the Equation (6.3) are attracted to the origin. If the CIF starts

in the oscillatory region, the solutions go to the limit cycle solution.

Figure 6.16 Basin boundary of CIF. CIF, constant initial function. The boundary is
found numerically such that with any given short form CIF, a little increase of long
form CIF would lead to an oscillatory solution in the oscillatory region. A little
decrease of long form CIF would lead asymptotically to the zero solution. The basin
boundary around zero is a vertical line indicated in the inserted plot.

We also found two interesting phenomena about the basin boundary: when the

CIFs are different from zero, the basin boundary is almost a straight line with the ratio

(long/short) approaching 0.064 as the CIF increases; when the CIFs are around zero,

the basin boundary becomes a vertical line (see the amplification plot in Figure 6.16),

which means that, if the short form CIF is very small, then to have the limit cycle

solution, the long form constant IF needs to greater than 0.00413. Biologically, this
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means that there could be no short form protein, but a small amount of long form

protein is essential to rescue the cell from certain death.

In fact, it is easy to see that zero is a fixed point of Equation (6.3). By

linearizing the system around zero, we can show that zero is a stable fixed point. In

fact, when Equation (6.3) is linearized around zero, the linearized equation has no

delay term and becomes the following ODEs:

The equation has steady state solution at zero, and so zero is a stable fixed point of

Equation (6.3).

Why is the basin boundary a vertical line near zero?

If the right side of the first equation of Equation (6.3)

(6.17)

is negative with s 4 0, the system will go to zero. Set f(1) = 0 and solve for 1 near the

zero. It is very difficult to solve the f(1)=0 analytically. So we plot Equation (6.17)

first (see Figure 6.17). We found that except the zero, Equation (6.17) has another

small root around 0.005. By using the function fsolve in Matlab with the initial

condition 0.005 to solve Equation (6.17), we get 10 = 0.0041316256293 and f'(10)  > 0.

This result agrees very well with the numerical finding that the long form CIF needs

to be greater than 0.00413 for generating the oscillatory solution.
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Figure 6.17 Plot of Equation (6.17). Equation (6.17) has two positive roots: one is
close to 1 and the other is very close to 0. The small roots can be seen more clearly in
the inserted plot.

It is still not clear why the basin boundary approaches the line with ratio

(long/short) around 0.064 when the CIFs are not near zero. For three different initial

conditions of the short form, so = 0.01, 1 and 100, we calculate the long form

bifurcation points of the CIF with accuracy to 11 digits, Ιο = 0.0041328205677,

0.065228128392 and 6.4525236006, respectively (see Figure 6.18-20). With the long

and short form CIF (so, lo), the solutions go to zero. When the last digits of to increase

by one, the solutions go to the limit cycle solution.



Figure 6.18 The bifurcation solutions with short form CIF equal to 0.01. CIF,
constant initial function. The long form CIF bifurcation point with accuracy to 11
digits is generated so that the solutions go to the limit cycle solution when the last
digit increases by 1.
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Figure 6.19 The bifurcation solutions with short form CIF equal to 1.00. CIF,
constant initial function. The long form CIF bifurcation point with accuracy to 11
digits is generated so that the solutions go to the limit cycle solution when the last
digit increases by 1.
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Figure 6.20 The bifurcation solutions with short form CIF equal to 100. CIF,
constant initial function. The long form CIF bifurcation point with accuracy to 11
digits is generated so that the solutions go to the limit cycle solution when the last
digit increases by 1.

From the observation shown in Figure 6.21 (three solutions in one plot), we

hypothesize that for given short form CIF s * , there exists a long form CIF 1 * , such that

with the CIF (1 * , s *), the solution of Equation (6.3) would be a long form oscillation at

very small magnitude and the short form goes to zero exponentially. Furthermore,

with different CIF (1 * , s *), the oscillatory solution of the long form would be the same

except there is a small shift (see Figure 6.21).



Figure 6.21 Solutions with different long and short form CIFs. Three distinct
solutions for different CIFs near the basin boundary. For these CIFs, the solutions for
the long form transcript go to zero after a small amplitude transient oscillation. The
solutions for the short form transcript go to zero rapidly.

We also notice that the small oscillation has a period of about nine, which is a

slightly higher than the delay time of eight. Why does this happen? From Figure 6.21,

we know that when the small oscillation occurs, s(t) goes to zero, 1(t) is very small

with a maximum around 0.005, and K is very large compared with 1(t). Thus the first

equation of Equation (6.3) will can be approximated by the following equation:

(6.18)

Equation (6.18) has a fixed point at Ιο = 0.00413167192288. When we linearize the

equation around the stationary point, we obtain the following linear DDE:

(6.19)
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From Figure 6.4, we know that if Equation (6.18) has periodic solutions

around the fixed point, and the linearized DDE (6.19) has the parameter coefficients

located on in the second quadrant, which corresponds to the curve parameter in the

interval ((2k+1.5)π, (2k+2)π), then the period must be between τo and 4 το .
3

Because the period of the solution is T  = 2π , where 2π > ν > 1 .5π . This agrees

with the numerical simulation very well.

By setting the right-hand side of Equation (6.3) to zero, with the function

lsqnonlin in Matlab, we find another steady state solution numerical solution P1

(1.0906, 1.1547). With this CIF, we should have gotten the constant steady state

solution. But due to the numerical errors, the solution went to the same limit cycle

after some time (see Figure 6.22-23), which means that the fixed point P1 is not

strictly stable.

Figure 6.22 Solutions with CIF starting near the fixed point. This fixed point at
(1.09059346010033, 1.15472111890551) is an unstable point of Equation (6.3).
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Figure 6.23 Phase plane of the limit cycle solution. The fixed point
(1.09059346010033, 1.15472111890551) indicated by the circle is near the limit
cycle solution.

Summarize the dynamics of the solutions for the CIF cases (see Figure 6.24):

when the CIFs are located to the left of the basin boundary, the solution goes to (0, 0),

which is a stable steady state solution of the Equation (6.3); when the initial

conditions are located on the boundary condition, the long form goes to a very small

oscillation around 0.00413 and the short form goes to zero, the point (0.00413,

5.8279X 10 -10) is another steady state solution and it is unstable; when the initial

conditions are located to the right of the basin boundary, the solution goes to a limit

cycle near the fixed point (1.09059346010033, 1.15472111890551), which is

neutrally stable.
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Figure 6.24 Dynamical behavior of Equation (6.3) with optimal parameters. The
zero region is to the left of the basin boundary, and the oscillatory region is to the
right of the basin boundary. Three fixed points of Equation (6.3) are indicated by the
small circles. If the CIF starts in the zero region, the solution is attracted to the origin;
if the CIF starts in the oscillatory region, the solution is attracted to the limit cycle
solution; if the CIF starts on the basin boundary, the solution for the long form will
oscillate with a small amplitude, and the solution for the short form transcript goes to
zero rapidly.

There still remain two questions to be asked theoretically based on the above

observation of the system with the optimized parameters: why should the system have

the same limit cycle or zero solution no matter where the initial conditions located in

the oscillatory region, basin boundary, or zero region; how should we find the long

form bifurcation CIF theoretically with the given short form CIF.

6.8 Conclusions and Discussion

In summary, a mathematical model has been proposed to simulate the regulation

between two different transcripts from gene cstf-77. The model is able to produce
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solutions that approximate the experimental data. The capability of the model to

describe the observed oscillations has been proven. These oscillations can also explain

why some long form mRNA cannot be detected even if the mRNA is necessary for

the cell from the SAGE data. This model can also be applied to other genes with

similar polyadenylation patterns such as poly(Α) polymerise (PAP). Multiple forms

of poly(Α) polymerise (PAPs I,1I, III) cDNA have been found in human and mouse

and auto-regulation may also exist in the gene expression regulation between different

isoforms (Zhao and Manley 1996; Lee et al. 2000).

The system shows a robust and stable oscillation. Robust means that the

precise initial conditions are not critical for oscillation to occur if the long form is

over some threshold. It implies that the polyadenylation process is very stable,

suggesting its importance in the cell cycle and the CstF-77 long form protein is

essential for the cell to function.

The dynamical system with the optimized parameter has been studied in detail.

The constant initial functions of the model led to the bifurcation of the stable solutions,

which agrees well with the fact that knocking down the polyadenylation factors would

kill the cell, and a certain amount of long form is essential to rescue the cell from

death. The basin boundary has been found numerically, and it showed a very

interesting pattern. Three basins of attraction have been found: limit cycle, zero and

zero-limit cycle with the short form approaching zero and long form approaching a

very small amplitude oscillation.

Three fixed points have been found for Equation (6.3). If the delay is zero, the

system becomes ordinary differential equations (ODEs) and the stability can be

analyzed. By calculating the Jacob matrix at these points, the eigenvalues can be

found. For the ODEs, the point P1(0,  0) is a stable fixed point, the point P2 (0.00413,
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5.8279X 10 -i °) is a saddle point, and the point P3 (1.0906, 1.1547) is a stable fixed

point. It implies that the time delay is required for the system to generate the

oscillatory solutions.

By adding some more factors, such as CstF-64, the model can be extended to

more complex biosynthetic pathways. The identification of the complete alternative

polyadenylation mechanism is a complex task due the complexity of the system and

the limited knowledge that we have about the model.

The experimental data is very limited at this point. However, once the data is

available, this work would provide a comprehensive and consistent mathematical

framework for understanding the alternative polyadenylation process.



CHAPTER 7

SUMMARY AND FUTURE WORK

Various problems related to the polyadenylation process have been investigated in

this work. When RNA polymerise II binds to the gene promoter region and

synthesizes the pre-mRNA, how does the cell know if the transcribed unit is enough

for the cell to function? Theoretically, if cleavage can occur at any location of the

pre-mRNA, at least as many transcripts as the length of the gene can be generated.

But why can only a few transcripts be found in the cell for one gene based on the

cDNA/EST? One reason could be that some transcripts are not stable, and they are

degraded very soon after being transcribed such that the current technology can not

even detect them. There may be some other reasons.

It has been found that the cleavage cannot occur anywhere along a pre-mRNA

transcript and signals are required for the cleavage and polyadenylation. By an

analysis of the sequence composition around the cleavage sites, some short sequences,

the cis-elements, could be found to occur more often than other arbitrary

combinations of nucleotides. If these cis-elements are the determinant factors for the

cleavage and polyadenylation (CP), then the occurrence of CP can be treated as a

function of these cis-elements. The classification can be applied and this leads to the

first part of this work (Chapter 3). Α lot of similar work has been done to predict the

poly(Α) sites, and our methods achieved better accuracy and sensitivity than a

commonly used one. Since the release of the first version of the work, some

improvements in accuracy have been made. However, the false positives and false

negatives still exist, which means that for some sequences, it can be cleaved and

polyadenylated based on cDNA/EST, but they are predicted not to contain any poly(Α)
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sites based on the cis-elements. Therefore, CP must depend on some other factors, and

the one-dimensional sequence information is not enough for the prediction. Thus, for

the future, work can be done on the prediction of poly(Α) sites, but there will need to

be added some more biological factors, such as the two-dimensional pre-mRNA

structure of the sequence.

Another natural question may be asked: if there are multiple cleavage sites

within the pre-mRNA, how does the cell know which poly(Α) site would be used for

the current cell condition? Do they generate equal numbers of transcripts for each

poly(Α) site or do they prefer some sites more than others? Some evidence has been

found that the usage of poly(Α) sites is tissue-specific. That is, in one tissue, a poly(Α)

site may be used more often than other poly(Α) sites, but in another tissue, some

poly(Α) sites may be seldom used. The availability of large amount of gene

expression data, such as microarray and SAGE data, makes it possible to analyze the

relative expression levels of different transcripts from the same gene. This leads to the

second part of this work (Chapter 4). Since most of the different transcripts use the

same promoter region of the gene, it is hypothesized that if the expression level of one

transcript goes up, other transcripts from the same gene may go down, and vice verse.

By analyzing the SAGE data, we found that this kind of negative regulation is not

common in human. Some significant genes are picked out for containing multiple

transcripts, among which some of them have opposite expression levels. Fifteen of the

61 significant unigenes are found to contain alternative poly(Α) sites corresponding to

the SAGE tags. This may suggest that the alternative polyadenylation may be one

factor that generates the negatively regulated transcripts. These genes may be very

useful for biologists, and they need to be verified by biological experiments further.

Also, some genes have positive regulation between different transcripts, and most of
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genes have random correlation among the transcripts. All these suggest that different

genes may have different pathways for generating the alternative transcripts. In the

future, it is necessary to study the pathway of transcript regulation within the same

gene to understand the alternative transcripts generated from alternative splicing or

alternative polyadenylation. To achieve this, one gene was selected for this study,

which leads to the last part of this work (the Chapter 6).

Gene csj3 was selected because the protein product of this gene is a cleavage

and polyadenylation factor, and its gene expression could form an auto-regulation by

generating different transcripts. The gene regulation network has been studied widely

and the transcript regulation network has received little attention. The reasons could

be that some transcripts are not stable and can not be detected, the RNA transcripts

are not important compared to the protein, which is the functional unit of the cell, and

some protein products from these transcripts have not been found to have any

function. Mathematical modelling is a very important tool to understand the complex

dynamics. Differential-delay equations have been applied to study the biological

systems more often recently and they will be widely used in the future.

A novel mechanism has been proposed to explain the alternative

polyadenylation and a two-dimensional DDE has been set up to simulate the process.

Some interesting results have been observed for the optimal parameters estimated by

minimization of the errors of preliminary experimental data and the simulation data.

We found that the long form protein is essential for the cell to survive and the short

form protein is not that important. This agrees with the current understanding of the

cstf-77 protein products. Also, from the simulation, the long and short form mRNA

transcripts oscillate, and sometimes they have very low expression levels. This may

explain why in some SAGE libraries, the long form is not detectable even though it is
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essential for cells. There is a basin boundary of the long and short form constant

initial functions. The theoretical analysis of the basin boundary would be the future

work. The experimental data are not sufficient at this time and errors may exist. If the

data were complete, this model may provide more insight into the mechanism. The

model assumed that only the one protein factor would affect the polyadenylation.

Some other factors, such as CstF-64, could be added into the model in the future if the

data were available.

Mathematics is complex, and biology is even more complex in some sense.

We believe that biology can be better understood by applying mathematics and

mathematics can be pushed forward by solving problems coming from biology.



APPENDIX A

STATISTICAL ALGORITHMS AND SIGNIFICANCE

A.1 Markov Chain Model

A Markov chain is a sequence of random variables with the properties that, the present

state is only dependent on the past several states. Formally,

Pr(Χη+ι = χ Ι Χn =χn ,...,Χ1 _ χ1 ,Χ0 = xo ) = Pr(Χn+1 _ χ Ι Χn = χn ,...Χη-j+ι —xη-j+ι)

Table A.1 First Order Markov Chain Transition Matrix

Ρ ast\Current Α Τ G C

Α ΡΑΑ PAT PAG PAC

Τ PTA Ρ77 PTG PTc

G PGA PGT PGG PGc

C PcA Ρcτ PCG Pcc

A, T, G, and C represent the four nucleotides. Ρ ΜΝ is the probability that the current nucleotide is N, given
that the previous nucleotide was M.

The possible values of Χ ; form a countable set S called the state space of the chain.

j (in the above formula) is the order of the Markov chain. The probability is called the

transition probability. If the state space is finite, the transition probability distribution can

be represented by a matrix, called the transition matrix. For example, consider the

first-order Markov chain of the nucleotide sequence, the transition matrix can be

represented by a 4X4 matrix (see Table A.1), where PMN is the probability that the
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current nucleotide is N, given that the previous nucleotide was M. To be noticed that:

Σ ΡΜΝ =1 for any given M.
N

Α.2 Linear Discriminant Analysis and Quadratic Discriminant Analysis

Discriminant analysis is a statistical procedure in which an individual unlabeled item (test

data set) is put into a group based on previously labeled items (training data set). For

example, if there are two groups of labeled data (observation data): one represented by

the black dot and the other represented by the white dot (Figure Α.1), then the question of

how to separate them and to which group a new unlabelled item marked by asterisk in

Figure Α.1 is assigned have to be addressed. These questions were answered by R.A.

Fisher (Fisher 1936) about 70 years ago, who showed that a quadratic decision function

given by the following:

F(x)=sgn(2 (χ—mί )TΣ i -1 (χ— )—^ (χ—m2 )ΤΣ2-1 (χ—m2 )+1nίΣ21) 	 (Α.1)

was the optimal solution that could discriminate between two populations if the two

populations had normal distributions N(m 1 , Σ 1 ), N(m2 , Σ). The attributes of the two

population are n dimensional vectors x with mean vectors m 1 , m2 and covariance

matrices Σ 1 , Σ 2 . It says that when F(x) is equal to 1, the vector x is belonged to one

population; otherwise, it is belonged to another population.



Figure A.1 Discriminant problem. The black dots and white dots represent two groups
of data. The asterisk represents the unlabelled data.

If Σ 1 = Σ2 =Σ, Equation (A.1) degenerates to the following linear function:

(A.2)

In fact, Equation (A.2) is a hyper-plane that separates the two populations, and

thus this method is called Linear Discriminant Analysis (LDA). The function in Equation

(A.1) is a quadratic function, and thus this method is called Quadratic Discriminant

Analysis (QDA). A two-dimension LDA and QDA are simply represented in Figure A.2.

It can be seen that using different discriminant function, the same data may be assigned to

different groups. For example, the unlabeled data marked by asterisk in Figure A.2 would

be labeled as black dot by LDA and white dot by QDA.
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Figure A.2 LDA and QDA. LDA, linear discriminant analysis; QDA, quadratic
discriminant analysis. LDA uses a linear function to separate the two groups of data and
QDA uses a quadratic function to separate the two groups of data.

A.3 Support Vector Machine

A support vector machine (SVM) is a set of algorithms used for classification and

regression (Cortes and Vapnik 1995). The general algorithm includes two steps: the first

step is to map the input space to a higher dimensional feature space through some

mapping (called a kernel function). Then, in the feature space, find a hyper-plane that

separates the data into different groups (see Figure A.3).

Figure A.3 Support vector machine algorithm. Input space, the original data space;
feature space, a higher dimensional space mapped from the input space through some
kernel functions.
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The optimal separating hyper-plane is selected by maximizing the margin

between the classes' closest points. The points lying on the boundaries are called support

vectors. Using a kernel function, an SVM is an alternative training method for

polynomial functions, radial basis functions (RBF), and sigmoid functions. There are

several formulations and kernels when using an SVM (Surges and Smola 1998). Here, a

C-classification with an RBF kernel is briefly described, which can be mathematically

formulated by:

(Α.3)

Where α is a vector of coefficient to be optimized, e is the vector of all ones,

C>0 is a predefined constant, Q is an n x n positive semi-definite matrix with the

component defined by

where

is the kernel function, y is another predefined constant. The decision function is

given by the following:

The support vector machine algorithm has been implemented into software

libraries by many groups. The most popular package is LIBSVM (Chang and Lin 2001)

written in C++ and Java and it is used in this work.



Accuracy (CC): CC = TPxTN—FPxFN

^(ΤΡ + FP)(ΤΡ + FN)(TN + FP)(ΤΝ + FN)
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A.4 Statistical Significance

True Positive (ΤΡ): the number of data predicted positive and the data itself is positive

(the prediction is true).

False Negative (FN): the number of data predicted negative and the data itself is

positive (the prediction is false), also called Type II error.

False Positive (FP): the number of data predicted positive and the data itself is

negative (the prediction is false), also called Type I error.

True Negative (TN): the number of data predicted negative and the data itself is

negative (the prediction is true)

Sensitivity (SN): SN = ΤΡ
 , Specificity (SP): SP =

ΤΡ
TP+FN 	 TP+FP



APPENDIX B

PROGRAMMING LANGUAGES

Β.1 PERL

Practical Extraction and Report Language (PERL) is a script language and is very famous

for its strong regular expression ability. Originally, it was developed for text

manipulation. But now, it has wide usage including system administration, web

development, network programming. It is very useful in comparing gene sequence,

finding the gene patterns and retrieving sequences. Also, there is a biological module in

PERL called Bioperl (Stajich et al. 2002). You can retrieve sequence from database such

as GenBank and SwissProt just by writing several lines scripts. Also, via Bioperl, we can

execute analysis such as BLAST, ClustalW, etc.

B.2 R Language

R is a language and environment for statistical computing and graphics. It is similar to the

award-winning S system, which was developed at Bell Laboratories by John Chambers et

al (Chambers 1998). It provides a wide variety of statistical and graphical techniques

(linear and nonlinear modeling, statistical tests, time series analysis, classification, and

clustering, etc.). Most importantly, it's free to download (http://www.r-project.org ) and

install and so it is widely used by university and research institute. Also, there are a lot of

packages free to install and easy to use. Support Vector Machines package e1071 is also

included in R (Dimitriadou et al. 2006).
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APPENDIX C

SAGE MATERIALS

C.1 SAGE Genie

The SAGE data were downloaded from SAGE Genie (Boon et al. 2002) FTP server:

ftp://ftpl.nci.nih.gov/pub/SAGE/HUMAN . The database version for this study is

updated to 07/11/2006. The following files are downloaded from the server:

"Hs.libraries", which is the human SAGE libraries information file, including both

long and short libraries; "Hs_long.best_gene", which is the mapping file of long

SAGE tag to the best unigene; "Hs_long.frequencies", which is frequency data file

for long SAGE libraries; "Hs_long.map", which is the mapping file of long tag to

accession number and the rank of the mapping; "Hs_shοrt.best gene", which is the

mapping file of short SAGE tag to the best unigene; "Hs_short.frequencies", which is

the frequency data file for short SAGE libraries; "Hs_shοrt.map", which is the

mapping file of short tag to accession number and the rank of the mapping. The

unigene build number is #194.

C.2 Methods in SAGE Analysis

TPM. The transcript abundance is normalized to transcripts per million (TPM) for

comparison between samples. Pearson correlation is based on TPM.

Test of independence. The test statistic (T.Le 2003) is given by:

Ί η -2
Τ=r  

1— r2

where r is the Pearson correlation coefficient between two tags, and n is the degree of

freedom, the number of libraries that at least one of the two tags has expressed.
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Fisher-Shuffle. For an array with m items, this method can generate a random

array based on this array. The steps are the following: scan the array from the first

element to the last element; for each location i of the array, generate a random integer

j less than or equal to the length of the array, and exchange the item i and j. After the

scanning, a new array is generated with m items. This method is used for the

randomization of SAGE data.

C.3 Sixty-one Significant Unigenes with Negatively Regulated Transcripts

Sixty-one significant unigenes are generated based on the p-value less than 0.01 and

the detailed methods are described in Chapter 4.

Table C.1 Sixty-one Significant Unigenes with Negatively Regulated Transcripts

>Hs.114033 SSR1 Signal sequence receptor, alpha

TCACCATAGAAGGCAAC AAATTTCTGCTGACTTT -0.446 158(110,100,52) -6.2165

>Hs.13885 MGC5309 Hypothetical protein MGC5309

GGACCGAGGGGCTGGAG CCTATAATAAACTAAGT -0.332 223(118,193,88) -5.2346

>Hs.146585 LEPROTLI Leptin receptor overlapping transcript-like 1

AGTTAGAGAGCTGGTGA GCAGGCATCAAAGCTTT -0.326 189(159,103,73) -4.7121

>Hs.153022 TAF1C TATA box binding protein (TBP)-associated factor, RNA
polymerise I, C, 110kDa

CCTAAGGGAGACATTTA GCCAAGCTACCACCCCA -0.428 183(152,77,46) -6.3783

>Hs.155218 HNRPULI Heterogeneous nuclear ribonucleoprotein U-like 1

CGGTCTTAGAAATGAAA GCACCTCCTAGCAGGAA -0.227 223(77,204,58) -3.4705

>Hs.160211 ΤHRAP3 Thyroid hormone receptor associated protein 3

TATCACGTGGAGTTGCT TTTAGGGGGAAAATGAA -0.23 227(92,212,77) -3.5444

TGAATAAACTTTGAAGT GTTCTGGGTCCCTGAGT -0.398 179(138,79,38) -5.7649

>Hs.161008 KPNAI Karyopherin alpha 1 (importin alpha 5)

ATGTTATTTAAGCAGCC ACCTGCTTAACCCAAAT -0.462 153(72,115,34) -6.397

>Hs.16130 Ε2-230Κ Likely ortholog of mouse ubiquitin-conjugating enzyme

GTCACACTGGGACAGGC TGGAGATGTGAATGCCT -0.255 216(127,190,101) -3.859

>Hs.162877 PACSIN2 Protein kinase C and casein kinase substrate in neurons 2

TCTCAGTGTCTATCTGT TGTAGTATTTGAGGAAA -0.362 207(102,162,57) -5.5689

>Hs.199561 RΑΝΒP2 RAN binding protein 2

GTGTGAAATAAAAGTTT GCGCGGGCGAGTGTAGG -0.165 245(217,222,194) -2.6122

GCGCGGGCGAGTGTAGG TTCTTTCGTTAAAGATT -0.226 229(222,87,80) -3.502
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>Hs.233458 NFYC Nuclear transcription factor Y, gamma

CCTGGGGGCCGAGATTC AAATGCAATAAATCTCA -0.287 227(155,184,112) -4.4961

>Hs.241558 ARIH2 Ariadne homolog 2 (Drosophila)

TTGAACTGGCCTCTTTT AATTTACCATATATCTT -0.278 212(188,135,111) -4.1925

>Hs.264482 APG12L APG12 autophagy 12-like (S. cerevisiae)

GTAAAAGTTAATATACT GTGGCTTACACCTGTAA -0.376 183(83,152,52) -5.4552

>Hs.288940 ΤΜΕΜ8 Transmembrane protein 8

ATGACTAGCGACAACTA TATATATGGGGTTTTTT -0.39 165(100,117,52) -5.4069

>Hs.302903 UΒΕ21 Ubiquitin-conjugating enzyme Ε2I (UΒC9 homolog, yeast)

CTTCTCACCGTGCAGAG AGGTGCCTCGGAATTAG -0.177 244(230,193,179) -2.7955

>Hs.334885 GTPΒP3 GTP binding protein 3 (mitochondrial)

GCTTAATGTGTGTCTTT CTGGATGCTTCTGACCT 	 i-0.383 173(139,83,49) -5.4188

>Hs.342307 FLJ10330 PRP38 pre-mRNA processing factor 38 (yeast)

AGTGTGGAATAAATACT GGTCTTCTAGTTTTGAC -0.326 197(171,78,52) -4.8137

>Hs.344812 TREX1 Three prime repair exonuclease 1

GTGGCACCAGCACCACT TATGGGGTCACAGCCTC -0.39 188(138,112,62) -5.7696

>Ηs.368304 RPS2 Ribosomal protein S2

ATGGCTGGTATCGATGA ATAACTGTCAGAGCTTT -0.316 246(246,112,112) -5.208

ATGGCTGGTATCGATGA GAGAGCCTCAGAATGGG -0.28 246(246,181,181) -4.563

ATAACTGTCAGAGCTTT AAGATCAAGTCCCTGGA -0.312 196(112,156,72) -4.5664

AAGATCAAGTCCCTGGA GAGAGCCTCAGAATGGG -0.276 222(156,181,115) -4.2663

>Hs.374127 CDC16 CDC16 cell division cycle 16 homolog (S. cerevisiae)

GCTTAAGAATGTCCCAC ATGTTAGAGACATCTAT -0.386 180(120,117,57) -5.5886

>Hs.385986 UΒΕ2Β Ubiquitin-conjugating enzyme E2B (RAD6 homolog)

CCCCAGTATTAGCAATG ACAGAATATACACATTT -0.442 164(89,126,51) -6.2774

>Hs.387755 C6orf149 Hypothetical protein L0C285778
ι

CTGGGCAGCACCGGTGC ACCATTGTGTATAGCAT -0.346 184(103,147,66) -4.9734

>Hs.407604 CRSP2 Cofactor required for Sp 1 transcriptional activation, subunit
2, 150kDa

TCTTTTGCCTCTTTTGT AAATGTTCTGGGAGTTG -0.408 161(84,126,49) -5.6341

>Hs.413812 RAC 1 Ras-related C3 botulinum toxin substrate 1 (rho family, small
GTP binding protein Racl)

TATGACTTAATAAATCC GCTAAGGAGATTGGTGC -0.169 246(239,242,235) -2.6717

>Hs.431367 C6orf55 Chromosome 6 open reading frame 55

GATTGGCCACCTGTTAC TATTAGAGAATGAAAAG -0.468 147(86,102,41) -6.3706

>Hs.432898 RPL4 Mitogen-activated protein kinase kinase kinase 13

CGCCGGAACACCATTCT AAAGAACATAGAATATT -0.199 246(246,143,143) -3.1768

>Hs.433750 ΕΙF4G1 Eukaryotic translation initiation factor 4 gamma, 1

GACACACAGATGGCCCG AATTCAATTAAAAAAAA -0.157 241(158,219,136) -2.4573

>Hs.435255 UBXD1 UBX domain containing 1

GGTCCTGTTCCCGTGTG GGTCCCGTTCCCGTGTG -0.346 229(143,169,83) -5.5564
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>Hs.437894 BRD7 Bromodomain containing 7

GCTGACTTGCAGAAAAC GAAAACAACTTTGTGGA -0.365 183(95,150,62) -5.2757

>Hs.442592 CSNKIAI Casein kinase 1, alpha 1

TCAGGATAAATTAAAAG ATTATCACATTCTGCCA -0.348 182(84,146,48) -4.983

>Hs.463010 SMARCEI Hypothetical protein MGC45562

TATGAGTATGTATTTGT AGCCACCGCACCCAGCC -0.213 235(152,223,140) -3.3267

AGCCACCGCACCCAGCC AGCATTCAGCCTGCTGA -0.213 234(223,121,110) -3.3257

>Hs.46700 ING 1 Inhibitor of growth family, member 1

GACAAAGCCCTGGAGAA CTTTTGCTATCACCAAT -0.497 143(88,93,38) -6.7979

>Hs.467637 CDC42 Cell division cycle 42 (GTP binding protein, 25kDa)

CACTCGTGTGAGACAAG TCTCAATTCTTTGTATA -0.186 246(213,235,202) -2.953

CACTCGTGTGAGACAAG GAAAGACTCTTAATGCA -0.275 234(213,166,145) -4.3605

>Hs.469022 DGUOK Deoxyguanosine kinase

AAGTTCAGGCTGTGATC ATGTTCAGGCTGTGATC -0.285 209(119,155,65) -4.28

>Hs.470544 PPIG Peptidyl-prolyl isomerase G (cyclophilin G)

TTGTTTTTGGACAAGTA AGAAAAACAAAAAAAAA -0.362 178(109,123,54) -5.1486

>Hs.471785 NCE2 ΝΕDD8-conjugating enzyme

ACTGCTCATTGTAGATG TTTACTTTTTTGAACTT -0.279 203(171,128,96) -4.116

>Hs.480073 HNRPD 	 Heterogeneous nuclear ribonucleoprotein D 	 (AU-rich
element RNA binding protein 1, 37kDa)

GACTCTACTGTTCAGCT ATTAAAATTGCAGTGAA -0.524 122(78,71,27) -6.7375

>Hs.488478 FLJ 10099 Hypothetical protein FLJ 10099

ATGGTCAGTAGCTGATC CACACCAGTTACTTCCT -0.229 238(203,167,132) -3.6078

>Hs.502829 SF1 Splicing factor 1

AAGTGATTCTGTTGACA CCGCCCTTCGGGATGCC -0.156 243(234,159,150) -2.4595

>Hs.506759 ΑΤΡ2Α2 ATPase, Ca++ transporting, cardiac muscle, slow twitch 2

ATGATCCGGATTTAATT GTTTCAGGTAAATAAAT -0.203 243(188,216,1 
ό

-3.2137

>Hs.507087 SΡPL3 Signal peptide peptidase 3 	 -^

GTTTGTTTCCTCTTAGA CCCTCACTCCTTTAAGA -0.305 197(100,168,71) -4.4783

>Hs.515243 L0C93343 Hypothetical protein BC011840

TTTTTACTTCTGTAGAA GATGGGGTTCCCTTCAC -0.403 162(88,120,46) -5.573

>Hs.515515
_

KDELRI KDEL (Lys-Asp-Glu-Leu) endoplasmic reticulum protein
retention receptor 1

TTTTTGTACAGAACTGA GTGAGCAAGACCGGCGA -0.204 246(241,151,146) -3.2496

->Hs.516539 HΝRΡΑ3 Heterogeneous nuclear ribonucleoprotein Α3

GTTTTAGTGAAGCAAAC AAAGGGGGCAGTTTTGG -0.204 240(185,227,172) -3.2185

>Hs.517262 SON SON DNA binding protein

GAAATTGTATTTAACCA AAAACAGCAAGACTGTA 	 i-0.432 167(78,129,40) -6.1485

>Hs.518804 ΑΝΚRDI7 Ankyrin repeat domain 17

TGAAGGTGGTGCGCTAC GAAAAATTAATTATATG -0.369 177(99,127,49) -5.253

GAAAAATTAATTATATG AACAGTGTGCATATGAA -0.35 182(127,110,55) -5.0163
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>Hs.520049 HLA-DRB1 Major histocompatibility complex, class II, DR beta 3

GAAAAAAAAAAAAAAAA GCAGTTCTGACAGTGAC 	 -0.195 	 243(239,86,82) 	 -3.0807

>Hs.525238 C14orf119 Chromosome 14 open reading frame 119

GTGGTGTGCACCTGTAG AAATGTGTAAAGTAGAA 	 -0.203 	 240(211,191,162) -3.2036

>Hs.529782 VCP Valosin-containing protein

TTGTAAAAGGACAATAA CGCTTTGCGCGCCGTTC 	 -0.214 	 246(235,185, 174) -3.4195

>Hs.529798 ΒΤF3 Basic transcription factor 3

CTGAGACGAAGCAGCTG CTGAGACAAAGCAGCTG 	 -0.25 	 245(84,233,72) 	 -4.0312

>Hs.529957 SEC63 SEC63-like (S. cerevisiae)

CAAAGGAAGCTTTTTTT AGGCTAAGCCTGTGCCA 	 -0.306 	 215(208,86,79) 	 -4.6981

>Hs.5308 UBA52 Ubiquitin A-52 residue ribosomal protein fusion product 1

CAGATCTTTGTGAAGAC TGGAAGCTTTCCTTTCG 	 -0.256 	 246(243,185,182) -4.1307

>Hs.531106 RΒΜ25 RNA binding motif protein 25

TCTGAGTACTTATTTAA GTACTTGATGAAGAAGC 	 -0.341 	 196(141,128,73) 	 -5.049

>Hs.531879 RAD 1 RAD 1 homolog (S. pombe)

CCTGTAATGCCAGCTAC TAAATAAATGTTTTCCT 	 -0.255 	 217(163,142,88) 	 -3.8733

>Hs.533626 SECP43 TRNA selenocysteine associated protein

ATGTGAGGGAGATGAGA GTGGCTCACTTTGGGAG 	 -0.248 	 219(167,166,114) -3.7737

>Hs.546303 ST13 Suppression of tumorigenicity 13 (colon carcinoma) (Hsp70
interacting protein)

CAGGATCCAGAAGTTAT CTTTTTAAATCCTTTAA 	 -0.183 	 237(231,175,169) -2.8484

>Hs.546361 ΑΤΡ2C1 ATPase, Ca++ transporting, type 2C, member 1

TTAGTTCGACATCATCA GAAGCCATTGTCTAATC 	 -0.43 	 152(84,108,40) 	 -5.8381

>Hs.546449 ΜGC4268 Hypothetical protein ΜGC4268

AAAGGTTTGTAGTTGAG ATGTGTTGACATCTACA 	 -0.531 	 127(79,75,27) 	 -7.0055

>Hs.549706 ΜGC16037 Hypothetical protein MGC16037

GGGGCACCCGCTGCCCC GGGGCAGCCGCTGCCCC 	 i-0.237 	 226(118,192,84) 	 -3.643

PLDN Similar to LINE-1 reverse transcriptase homolog>Hs.7037

GTACTGGTACCAAAACA TAAATATGCAAATGTTG 	 -0.24 	 226(128,203,105) -3.696

>Hs.96996 HNRΡΑΟ Heterogeneous nuclear ribonucleoprotein AO

AAGAGCGGCGGCGGCGG TCATTCATATAAACTGT 	 -0.441 	 157(106,91,40) 	 -6.1102

The row beginning with ">" in the first column is the unigene id and the gene description. The rows
beginning with tags are the tag information for the unigene id given in the previous line: the first two
columns are the negatively regulated tags, the third column is the Pearson correlation of the TPM data
for the two tags, the fourth column data is formatted like s(m,n,p), where s is the total library number
that at least one tag expressed in, m is the expressed library number for the first column tag, n is the
expressed library number for the second column tag, and p is the expressed library number for both
tags. The fifth column is the T-values. The lines in bold typeface are the genes with transcripts located
in different strands of chromosomes.
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C.4 Transcript Structure of Eight Significant Unigenes

Transcript structures are generated for eight well-known significant unigenes and

shown in Figure C.1.
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Figure C.1 The transcript structure of eight significant unigenes. The first line
represents the chromosome information of the gene, and the following lines represent
the transcript structure generated from this gene. The SAGE tag is indicated by the
up-triangle and the accession number of the transcript is indicated under the first exon
of the transcript. (A). Ηs.531 l06. (B). Ηs.517262. (C). Ηs.516539. (D). Ηs.480073.
(E). Ηs.546361. (F). Ηs.529798. (G). Hs.506759. (H). Ηs.342307.
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