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ABSTRACT

DOPPLER SPREAD ESTIMATION IN MOBILE FADING CHANNELS

by
Hong Zhang

The Doppler spread, or equivalently, the mobile speed, is a measure of the spectral disper-

sion of a mobile fading channel. Accurate estimation of the mobile speed is important in

wireless mobile applications which require such as knowledge of the rate of channel varia-

tions. In this dissertation, first the performance of classical crossing- and covariance-based

speed estimators is studied. Next, the problem of mobile speed estimation using diversity

combining is investigated. Then, a nonparametric estimation technique is proposed that

is robust to different channel variations. Finally, cyclostationarity-based speed estimators

which can be applied either blindly or with the aid of pilot data, are developed.

A unified framework for the performance analysis of well-known crossing and co-

variance based speed estimation techniques is presented. This allows a fair analytical

comparison among all the methods. Interestingly, it is proved that all these methods are

asymptotically equivalent, i.e., for large observation intervals. The extensive performance

analysis, supported by Monte Carlo simulations, has revealed that depending on the channel

condition and the observation interval, one needs to use a crossing or a covariance based

technique to achieve the desired estimation accuracy over a large range of mobile speeds.

Two common diversity schemes, selection combining (SC) and maximal ratio com-

bining (MRC), are considered for Doppler spread estimation. Four new estimators are

derived which rely on the inphase zero crossing rate, inphase rate of maxima, phase zero

crossing rate, and the instantaneous frequency zero crossing rate of the output of SC. Two

estimators, which work based on the level crossing rates of the envelopes at the output of

SC and MRC, are also proposed. The performances of all these estimators are investigated

in realistic noisy environments with different kinds of scatterings and different numbers of

diversity branches.



Then a novel speed estimation technique is proposed that is applicable to both mobile

and base stations, based on the characteristics in the power spectrum of mobile fading

channels. The analytic performance analysis, verified by Monte Carlo simulations, shows

that this low-complexity estimator is not only robust to both Gaussian and non-Gaussian

noises, but also insensitive to nonisotropic scattering observed at the mobile. The estimator

performs very well in both two- and three-dimensional propagation environments. By

taking advantage of resolvable paths in wideband fading channels, the robustness against

both nonisotropic scattering and line of sight can be further increased, due to the differences

among the Doppler spectra observed at different paths. This technique is also extended

to base stations with antenna arrays. By exploiting the spatial information, the proposed

space-time estimator exhibits excellent performance over a wide range of noise power,

nonisotropic scattering, and the line-of-sight component. This is all verified by simulation.

The utility of the new method is further demonstrated by applying it to the measured data.

Finally, to design robust blind and data-aided mobile speed estimators, a proposal

is made to exploit the inherent cyclostationarity of linearly modulated signals transmitted

through fading channels. Two categories of cyclic-correlation- and cyclic-spectrum-based

methods are developed. Extension to space-time speed estimation at the base station in

macrocells is also provided. In comparison with the existing methods, the new estimators

can be used without any need for pilot tones and are robust to additive stationary noise

or interference of any color or distribution. Unlike the conventional multi-antenna based

method, the proposed space-time speed estimator does not assume the receiver noise to be

spatially white. Α suboptimal training sequence is also devised for pilot-symbol assisted

methods, to reduce the estimation error. The performance of the proposed estimators are

illustrated via extensive Monte Carlo simulations.
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CHAPTER 1

INTRODUCTION

As a result of multipath propagation, in mobile communication systems, the received signal

strength varies significantly in time due to constructive and destructive superpositions of the

replicas of transmitted signals. In addition, the motion of mobile station (MS) results in the

channel is spectrally broadened by Doppler shifts with different frequencies. The Doppler

spread, corresponding to the maximum Doppler shift and proportional to the mobile speed,

dictates how fast, in time, fading is experienced by the receiver. This knowledge is useful

for many mobile communication subsystems.

One important application of speed estimation is adaptive transceiver design. In

order to improve performance or reduce complexity, the system parameters need to be

adapted to changing channel conditions [1].  This, in turn, necessitates the estimation of

Doppler spread. For example, the MS can use Doppler information to regularly adjust

the power of the received signal to optimize the dynamic range of AD converters. This

is an important power control issue in CDMA based mobile communication systems for

the detection process in the base station (BS). Channel estimation algorithms can also

benefit from knowledge of the mobile speed, i.e., optimization of the channel tracker

step size and adaption of the complexity of the algorithm. In addition, other anti-fading

applications including variable coding and interleaving can also take advantage of the

Doppler information.

Knowledge of the mobile speed is also greatly beneficial to cellular network control

algorithms such as handoff and channel/cell assignment [2]. Handoff algorithms normally

use the average strength of the received signal as the parameter by which to determine

when the MS should be serviced by another BS. The appropriate choice of a temporal

averaging window length for signal strength measure is dependent on the mobile speed. In

1
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order to significantly reduce the number of handoffs in an area with both slow- and fast-

moving mobiles, the channel/cell assignment technique is used to allocate slow mobiles to

microcells and fast ones to macrocells. This also relies upon the mobile speed information

as well.

1.1 Problem Statement

Obviously, accurate estimation of the mobile speed, or the Doppler spread f D , is an im-

portant task in wireless mobile systems. There are three major classes of speed estimation

techniques: crossing-based methods, covariance-based methods, and maximum likelihood

(ML) based methods. 1 Crossing-based approaches [2] [5] rely on counting the number of

the received signal's level crossing which is proportional to the mobile speed. Covariance-

based algorithms exploit the maximum Doppler spread information which exists in the

sample autocovariance of the received signal [6] [7] [8] [9] [10]. However, both crossing-

based and covariance-based speed estimators are sensitive to noise, especially for small

Doppler spreads [2] [5] [11].  Although the ML-based estimators [ 12] [ 13] are optimal

or near optimal, they are complex to implement, need knowledge of signal-to-noise-ratio

(SNR), and require noise to be Gaussian. Furthermore, the effects of nonisotropic scattering

and line-of-sight (LOS) on ML-based estimators are not investigated in [12] and [13].

Wavelet and pattern recognition methods are also used for speed estimation [ 14] [ 15], but

they are computationally intensive.

Clearly, the goal of this dissertation is to develop an efficient speed estimation algo-

rithm, that is not only robust to noise and interference, but also to nonisotropic scattering

and line-of-sight (LOS), with low computational complexity. Unlike conventional methods

which assume pilot tones are available, another important issue is blind speed estimation

in order to increase system data throughput.

1 Recently, two new methods were proposed based on integrating or differentiating power spectrum
density estimate of the received signal [3] [4].
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1.2 Organization of Dissertation

The dissertation is organized as follows. The mobile fading channel models including both

two- and three-dimensional propagations are discussed in Chapter 2. A unified framework

for the performance analysis of covariance- and crossing-based speed estimation techniques

is presented in Chapter 3. In Chapter 4, new speed estimators in selection combining

(SC) and maximum ratio combining (MRC) systems are derived in closed forms, and their

performance is compared via Monte Carlo simulations. A robust nonparametric speed

estimation technique, based on the unique observation of the Doppler spectrum, is proposed

in Chapter 5. This method can be extended to a BS in macrocells where multiple antennas

are available. Theoretical performance analysis for the single antenna based estimator is

conducted and confirmed by simulation. Application of this method to measured data

collected at the MS demonstrates its usage when compared with the conventional ap-

proaches. Chapter 6 deals with both blind and data-aided speed estimation approaches by

exploring the cyclostationarity of linearly modulated signals. Finally, Chapter 7 concludes

the dissertation and suggests future work.



CHAPTER 2

MOBILE FADING CHANNEL MODELS

This Chapter addresses channel models that will be used to later investigate the problem

of Doppler spread estimation. In general, a two-dimensional (2-D) angle-of-arrival (AOA)

of the incoming waves from only the azimuthal plane is assumed and widely used when

modeling multipath fading channels. Section 2.1 briefly reviews the 2-D AOA channel

model first. Section 2.2 discusses a straightforward extension to the three-dimensional (3-

D) AOA model where incoming waves come from both azimuthal and elevational planes.

2.1 2-D AOA Channel Model

The lowpass complex envelope h(t) of the narrowband (NB) randomly time-varying chan-

nel impulse response process is the superposition of a diffuse component hc (t) and a

specular component (LOS) 0(t)

h (t) = h` (t) + hd(t)

Μ

hc (t) = 	
σh 	

lim 	 1  Σ α e-j (2nfDtcοs e,,,,+0,Ζ)νΚ
+1 Μ—'φ^ 

m

hd (t) = 
σ h 	

Κ
Κ+ 	

e— j (2π1Dt εοs αο+Ψο )1 (2.1)

where

σh = Ε[^h(t) 2 ]: 	 the power of the received signal h(t);

the maximum Doppler frequency in Hz, equal to ν/λ = ν f /c

where v is the MS speed, λ is the wavelength, ff is the carrier

frequency, and c is the speed of light;

m=1

fD:

4
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am , m = 1, ... , M: deterministic complex constants normalized to satisfy lim Μ_0

Σm 1 am j 2 = 1 so that σ y  _ Ε[Ιh(t)12] holds;

8m , m = 1, ... , M: independent and identically distributed (i.i.d.) angles that the

incoming waves make with the mobile direction, with density

functions given by p(θ) ;

ψm, m = 1, ... , M: i.i.d. phases, uniformly distributed on [0, 2π);

Κ:

αο :

Ψο

the Rician factor, which is the ratio of the specular component

hd (t)'s power to the diffuse component he (t)'s power;

the AOA of LOS component which is a deterministic constant;

the phase of LOS component which is a deterministic constant.

Assuming M is large enough, i.e., M > 6, the central limit theorem ensures hc(t) to be

a complex Gaussian process resulting in 1h(t)1 being Rician distributed. In the absence of

the specular component, K = 0, 1 h(t) 1 is a Rayleigh random process.

The autocorrelation function of h(t) is defined by rh (τ) = Ε [h (t) h* (t + r)] with * as

the complex conjugate. Using the assumptions on am , 8m , and ψm , with unit-gain isotropic

receive antenna , rh (τ) can be expressed as

rh (T) = o

e,2πfDτ cοs θρ(Θ)dθ + Kph  ej2πfDτ cοsap
. 	 (2.2)K +1 	 K+1

To incorporate the effects of directional scattering into r h (τ), using von Mises PDF p(ψ) =
e 0s (^-« ) /(2πΙo (κ)) which has been empirically justified to be an accurate model for the

AOA distribution, (2.2) can then be written as [ 16]

— σh  Ιο (νκ2  — 4πf Dτ2 + j4πκfDτ cos α I	 Kσh .2 s arh(^)K 
+ 1 	

Ιο(κ) 	
/ + Κ

 + 
1 e^π fDτ εο o 	 (2.3)

where α Ε [0, 2π) is the mean direction of the azimuth AOA, κ > 0 controls the width

of the azimuth ΑσΑ, and Ι (.) is the zero-order modified Bessel function of the first
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kind. Note that for Κ = κ = 0, rh (τ) = 0h Jo (2π f D τ), the classic Clarke's model.

Consequently, the power spectral density (PSD) of h(t) is given by [16]

exp (K f / fD cos CY) cosh ^^ sin αV 1 — (f / fD ) 2

Ωh (.f) = 	
h 	

)

	K+1	 π10(1)1 	 — f2

Kσh 
+ 

K + 1 δ(f + .fD cos (o), 	(2.4)

where I f I < fD , δ(.) is the Dirac delta function, and cosh(.) is the hyperbolic cosine.

For Clarke's model, (2.4) reduces to the well-known U-shape Doppler spectrum Ω h (f) =

σh7-1 (fD — f2 ) 1/2 .

2.2 3-D ΑΟΑ Channel Model

By including the incoming waveforms from the elevational plane, it is easy to extend the

2-D ΑΟΑ model in (2.1) to a 3-D ΑΟΑ one. The corresponding autocorrelation function

of h(t) in a general 3-D propagation can be shown to be [ 17]

	rh(T) =
 σh 	 πΡ 	

e,2πfητcos 0 sin φp(Θ)q(ψ) sin ψdθdφ
+ 1 ψ=ο

12Π

=ο
2

	Kp h  ej2ιτ fD τ cοs ιο sin βο 	
(2.5)

	

Κ+1 	'

where q(ψ) sin ψ is the PDF of the ΑΟΑ in the elevation plane and Ι3 Ε [0, π) is the

elevation ΑΟΑ of the LOS component. This dissertation considers the model in which the

azimuth and elevation AOA's are uniformly distributed over [—π, π) and [ — /3 + X/2, j3 +

7/2] with /3 Ε [0, π/2), respectively. In such a channel, (2.5) is expressed as [18]

	

σ2 	 1	 2 +βΡ
	rh(τ) = 	

2 sin β jβ Jο(2π fDτ sin Φ) sin φΡdψ
K + 1 = 2 

2Kσh  ej2πfDτ cosίοsinβ0 	 (2.6)
Κ+1

The corresponding PSD of h(t) is [18]

Ωh (f) =
^
h Ωh° (.f) 	 1+ 

Κσh 
 δ(f + fD cos aο sin βο),

Κ+1 	 K+ (2.7)



where
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(2.8)

_ 1 sin β
sin

( 	cos βf
^fD Sin ,Q	' Ιfl < fD COS β

1 
fD COSβ < Ifl < fD2fD sinβ'

Ωhc(f) =

in which β f = sin -1 (f / f D) .



CHAPTER 3

PERFORMANCE ANALYSIS FOR CROSSING- AND COVARIANCE-BASED

ESTIMATORS

3.1 Introduction

As mentioned in Chapter 1, there are three major classes of speed estimation techniques

in the literature: crossing-based techniques [2, 11], covariance-based methods [6, 8, 10],

and maximum likelihood (ML) based approaches [12, 13]. Among these speed estimation

solutions, crossing-based and covariance-based methods are of low complexity and there-

fore some of them have been extensively used today. However, what has been missing

is an analytic performance analysis of these two approaches. Such an analysis would

help the system designer to choose among different methods without extensive Monte

Carlo simulations. 1 In this chapter, four crossing-based and two covariance-based schemes

are considered, and a unified theoretical performance analysis framework is presented.

In addition, a new crossing-based estimator is proposed which relies upon the number

of maxima of the inphase component. Performances of the estimators are studied for

finite-length and large observation intervals.

The rest of this chapter is organized as follows. The channel model is discussed

in Section 3.2. In Section 3.3 all six estimators are derived and their bias properties are

discussed. Section 3.4 presents the unified performance analysis framework, along with

exact variance expressions for the inphase-based methods and some asymptotic results.

Simulations of the envelope-based techniques, for which theoretical performance analysis

is not tractable, are given in Section 3.5 along with a comprehensive performance compar-

ison of all the methods. Section 3.6 concludes the chapter.

1 For the analytical performance analysis for the ML methods, please refer to [13].

8
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3.2 The Channel Model

In a noisy Rician frequency-flat fading channel with two-dimensional propagation of planar

waves, the lowpass complex envelope at the mobile station (MS), downlink, can be written

as

z(t) = h(t) + n(t),	 (3.1)

where the complex Gaussian process n(t) represents the receiver noise, whereas the com-

plex process h(t) includes the random diffuse component and the deterministic line-of-sight

(LOS) component. The autocorrelation function of h(t) is given in (2.3). When there is no

LOS, it reduces to

rh (τ) = σh 	
Ιο (κ)

where wD = 2π fD is the maximum Doppler frequency in rad/sec. For the received signal

at the base station (BS), uplink, the same equation as (3.2) holds [19].

As will become clear, the form of autocorrelation function given in (2.2) will be

very useful in the asymptotic performance analysis. Especially for a Rayleigh fading

channel which in general, is much easier to mathematically tract than a Rician channel,

(2.2) simplifies to
π

7'h (τ) = σ 	 ρ(Θ) exp[—jω^ cos(Θ)τ]dθ. 	 (3.3)
-π

3.3 Speed Estimation: A Continuous-Time Approach

Section 3.3 adopts the basic propagation mechanism of isotropic scattering with no LOS in

a noise-free environment. This entails straightforward derivation and performance analysis

of a variety of existing and new speed estimation techniques under the same umbrella. The

effect of nonisotropic scattering, LOS, and Gaussian noise will be studied later, either via

analytic methods or simulation.

ιο ( ‚ /2 — ωDτ2 + j2κωητ cos α)
(3.2)
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In the absence of noise and LOS, K = 0, and assuming σh = 1, unit received power,

z(t) = h(t) is obtained for the received signal according to (3.1). Therefore, this section

concentrates solely on h(t). In what follows, and with rh (τ) = Jo (ωDτ), two classes

of estimation methods are considered: crossing-based and covariance-based techniques.

Since the vehicle speed v is proportional to the maximum Doppler frequency WD , the rest

of this chapter focuses on the estimation of WD , to simplify the notation. The suggestion

is to use either '(t) = R{h(t)}, the inphase component, where R{.} gives the real part, or

η(t) = Ιh(t)1 2 , the envelope-squared. Each one is observed over a time interval of length

Τ. Note that '(t) is a zero-mean real Gaussian process with variance 1/2, whereas η(t)

has an exponential distribution. In other words, p(η) = exp(—n). 1h(t)1 2 is used rather

than h(t) I, the envelope, as the correlation function of envelope-squared in some cases

of interest can be expressed in simple closed forms [2], required for analytic studies. For

τ(τ) = Ε[ξ(t)ξ(t + τ)] one has τ(τ) = (1/2)R{rh (τ)}. On the other hand, for rη (τ) =

Ε[η(t)η(t + τ)], it is shown that rη (τ) = 1 + rh (τ)Ι 2 [2]. Hence, with Th(T) = Jο (ωDτ),

obtain rτ) = (1/2)Jo (ωDτ) and rη ('r) = 1 + Jo (ωDτ).

Last but not the least, note that rather than working with the sampled version of h(t),

i.e., h[I] = h(1Τ8), = 0, 1, 2, ..., with Τ3 as the sampling period, this work deals with

the continuous-time process itself. This allows derivation of closed-form results for the

variance of the estimators. The effect of sampling, briefly discussed in [20], is negligible

as long as Τ  is small enough.

3.3.1 Crossing-Based Methods

For a given real random process y(t), define ΝΝ (yth, T ) as the number of times that the

process crosses the threshold level yth , with positive slope, over the time interval (0, Ti.

Also, let Μ(Τ) denote the number of maxima of the process y(t) over the time interval

(0, Ti. The number of zero crossing of ξ(t) is given in [2, p. 66] as

Ε[Νξ (0, Τ)] = ΤωD/(2πν). 	 (3.4)
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According to Appendix A, the number of maxima of '(t) can be easily derived from (A.4)

as

Ε[Μξ (Τ)] = ΤωD V/(4π). 	 (3.5)

On the other hand, for the level crossing and the maxima of n(t), obtain the following

results from [2, p. 64] and [21, eq. (22)], respectively

Ε[Νη (1, Τ)] = ΤωD/(e 2π), 	 (3.6)

Ε[Μη (Τ)] = ΤωD3/(4π), 	 (3.7)

where e = 2.7813 is the base of the natural logarithm. Based on (3.4)-(3.7), the following

estimators can be considered

wD 1 = (2πV)Νξ(Ο, Τ)Τ-ι,

WD ,2 = (4π/V )Μξ (Τ)Τ-1,

WD ,3 = (e π )Νη (1, Τ)Τ -1 ,

WD ,4 = (4π/3)Μη (Τ)Τ-1 .

(3.8)

(3.9)

(3.10)

(3.11)

All four of these estimators are unbiased, i.e., Ε[ώD, i] = LD , i = 1, ..., 4. According to

the literature survey of [22] and among these four crossing-based estimators, ÁD , 2 which

employs the number of maxima of the inphase component appears to be new.
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3.3.2 Covariance-Based Methods

Covariance matching method Based on the covariance function definitions c(τ) =

r (τ) — {Ε[ξ(t)]} 2 and cη (τ) = rη (τ) — {Ε[η(t)]} 2 , along with τ(τ) = (1/2)Jο (ωDτ),

τ(τ) = 1 + Jo (ωDτ), Ε[ (t)] = 0, and Ε[η(t)j = 1, obtain

c(τ) = (1/2)Jo (ωD τ), (3.12)

cη (τ) = Jo (ωDτ). (3.13)

According to Taylor expansion, Jο (ωDτ) = 1 — (ωD/4)τ2 + 0(τ4), as τ —> 0, where

f 1 (t) = 0(12(0) as t -- 0 means that f 1 (t) / f 2 (t) is bounded in a neighborhood around

zero. Therefore

c(τ) = (1/2) — (ωL/8)τ2 + 0(τ4), as τ —} 0, 	 (3.14)

cη (τ) = 1 — (ω^/2)τ2 + 0(τ4 ), as τ —> 0. 	 (3.15)

The quadratic form of the covariance functions in (3.14) and (3.15) for small τ, i.e.,

c(τ) a — bωDτ 2 , where a = 1/2,1 and b = 1/8,1/2 for y(t) = ξ(t), (t), respectively,

leads to estimating ωD by fitting a quadratic equation a — bωDτ 2 to the sample covariance

function, cy (τ), via a minimum mean squared error (MMSE) procedure, i.e.

Το
min Ε 

{‚j
 [ευ (τ) — α + bωυτ2 ] 2dτ ,

ω^ 
(3.16)

where Τ0 is sufficiently small. By setting the derivative (with respect to ωD) of the expec-

tation in (3.16) to zero, the MMSE estimate of wD can be shown to be

	2 — 5α 	 5	 Τ0 2

	

3bT 	 bTó ο τ c, (τ)dτ . (3.17)



The natural choice for estimating wD from (3.17) is 

13

2wD,5 (3.18)

Obviously this is a biased estimator for WD . To calculate the bias approximately,

assume the variance of the estimator is small enough. This allows a first-order Taylor

	

expansion for νωD around Ε[ωD ], which implies that Ε[ωD , 5 ]	 ‚/E[' D 5]. This

argument is the same as the one used in [20]. With this unbiased estimator
T

` 	 J\

	

cy(τ) = 1 	y(t) —	 )y(t) (y(t + τ) — y(t)l dt,	T 	 /0

where y(t) = Τ-1 fó y(t)dt, thus obtain

To
Ε[WD,5] 3bT bT

	Sa 2 	5 	 τ2cy(τ)dτ.
	o 	o 0

(3.20)

Based on c(τ) = a - bωDτ2 + 0(τ4), as r — 0, with a and b defined after (3.14) and

(3.15), eq. (3.20) can be written as

Ε[ 4 , 5 ] = ω + 0(Τ'3 ), as Το -^ 0. (3.21)

Since ‚/1 + t = 1 + 0(t), as t -+ 0, the following result for the bias of ώ D , 5 , appears valid

for both (t) and η(t)

Ε[)D,5] ω' + Ο(ΤJ  ), as Το —+ 0. 	 (3.22)

Clearly this approximate-asymptotic result, derived analytically, provides an insight into

the bias behavior of D,5 with respect to Τo. The approximation Ε[ώD , 5 ] .^

with Ε[ωD ,5j given by (3.20), is useful for any Τo. More conclusions can be made only via

Monte Carlo simulation. Also, note that for a good-quality estimate of c y (τ), Τ in (3.19)

should be much larger than Τo .

The idea of least-squares fitting of a parabola to the sample covariance function at

small lags was first proposed in [8], in a discrete-time setting. However, explicit form of

(3.19)
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the estimator, such as the one given in (3.17), the bias analysis discussed in the previous

paragraphs and summarized in (3.20) and (3.22), and the variance analysis, discussed in the

next section, are not addressed in 18]. In the context of spectral moment estimation, closely

related to the maximum Doppler estimation problem, utilization of the quadratic form of a

correlation function at a single small lag, different from the MMSE formulation in (3.16),

is discussed in [23] (see also [24] and [25]). Moreover, the bias/variance analysis of [23] is

different from the one in this chapter and does not apply to the basic correlation function

of interest in wireless communications, i.e., Jo (ωDτ), which is not absolutely integrable.

This important issue will be discussed later.

Integration method For an arbitrary real process y(t), it is known that τ(τ) = —r'y (τ)

[7], where dot and prime denote differentiation with respect to the time t and the delay r,

respectively. According to (3.12) and (3.13)

Ε[ξ2 (t)] = τ (0) = (3.23)

Ε[ή2 (t)j = τή(0) = w.

Now, based on these two identities, consider the following estimator for ωD

1 τ
ω^ ,6 = d7, 	 y2 (t) dt ,

ο

(3.24)

(3.25)

where d = 4, 1 for y(t) = (t), 71(t), respectively. Note that unlike ωD 5 in (3.17), ωD 6 is

an unbiased estimator for 4D. However,

WD,6 = ω2 6 	 (3.26)
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is clearly a biased estimator for WD . To make a fair comparison between ÁD ,5 in (3.18) and

wD , 6 , the same first-order Taylor expansion approximation is used, yielding

Ε[ώD ,6] ~ ωυ. (3.27)

Eq. (3.25) was first proposed and substantially analyzed in [20], in order to estimate

the spectral moment of a real Gaussian process. However, the envelope-squared non-

Gaussian process is not considered in [20]. Furthermore, some of the conclusions made

in [20] do not apply to the non-absolutely integrable correlation Jo(wDr). In addition,

application of (3.25) to the envelope was first proposed in [26], without any statistical

analysis. On the other hand, the estimators proposed in [6] and [27] can be considered as

the discrete-time equivalent of (3.25), where integration is replaced by summation and (t)

is approximated by the first-order difference [y ((I + 1)Τ8 ) - y(1Τ8 )]/Ts , with I = 0, 1, ...,

and Τs as the sampling period.

3.4 Analytic Performance Analysis

In this section, closed-form expressions are provided for the variance of the inphase-based

estimators discussed in the previous section. This has been possible due to the Gaus-

sianity of (t). For the non-Gaussian envelope-squared process η(t), it is difficult, if not

impossible, to derive closed-form results, and Monte Carlo simulation is the only resort.

Throughout this section, an arbitrary PDF for the AOA in (3.3) is considered, making the

results of this section applicable to any possible rh('r), and consequently, τ(τ).

In what follows, closed-form expressions are derived for the variance of (t)-based

estimators ÁD,1, WD , 2 , WD,5, and GJD ,6. It is then shown that as the observation time Τ

increases, the variances of all these estimators converge to zero at the same rate of ln(T)/T,

where ln(.) is the natural logarithm. This novel result shows the asymptotic equivalence of

these four estimators.
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3.4.1 Crossing-Based Methods

For a zero-mean, unit-variance, and real Gaussian ζ(t), the following result is given in [20]

for the variance of (2π/Τ) ΝΝ (0, T), the normalized number of zero uperossings of ζ(t)

over (0, T]

ι
Vατ[2πΝς(Ο, 	 Τ)] = 2πη + ;17'

 1Τ 	 Τ 
2

Χ 
	 ή(τ) 

	{,/1 - ρ(τ)
	2 	 ι ν 	 ςν1 - τς (τ)

+ρς(τ) cos -1 (-ρς(τ)) } _2] dr,

T\

Τ

where τς (τ) = Ε[ς(t)ς(t + τ)] and

η2 = 
-τ (0 ),

σ(τ) = η2 - ι2()/[
 - τς (τ)],

ρς(τ) = -7'ς2 (τ) - τς(τ)τς 2 (τ)/[ 1 - τ(τ)]•

(3.28)

(3.29)

With ζ(t) = νξ(t), the variance of D , Ι in (3.8) can be easily expressed in terms

of (3.28). To calculate the variance of D,2 in (3.9) using (3.28), note that each maximum

of ξ(t) corresponds to a zero downcrossing of the derivative (t). Since the number of

zero uperossings and downcrossings are the same, conclude that Μ(Τ) = Ν (0, T) . This,

along with ζ(t) = (21ωD ) ξΡ (t) and τ(τ) = - τξΡ (τ), gives the variance of ÁD , 2 in closed

form.

By extending the asymptotic analysis of [20] to these estimators, and by using the

asymptotic form of Th('r) [28]

 1/2rh(r) = 
27 

ρ(Ο)e1(ωυτ-π/4)
ίωυτ ) 

+ ρ(π)e-^(ωΏτ-π/4)1 + Ο(τ -1 ), as τ -+ οο, 	 (3.30)
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it has been proved in Appendix B that

Var[ώD , 1 ], Var[ώD , 2] = Ο(Τ- 1 1η Τ), as Τ —+ 00. 	 (3.31)

This interesting new result shows that for large observation intervals, the variance of both

estimators converges to zero at the same rate.

3.4.2 Covariance-Based Methods

Covariance matching method Based on the fourth-order moment of zero-mean and

jointly Gaussian variables [29], and using the definition of the covariance estimator given

in (3.19), it can be shown that

Τ

Ε[αε(τ1)αε(τ2)] = c (τ1 ) c (τ2 ) + 1 	 1 — Ι τ Ι
Τ _T 

Χ [q(Τ)cξ (τ + Τ2 — Τ1 ) + c (Τ + τ2 )Cξ (τ — ri )}dr. (3.32)

For τ1 = τ2 , (3.32) simplifies to eq. (5.69) given in [30, p. 194]. Using (3.20), it is

straightforward to calculate the variance of 4, defined in (3.17)

Vατ[ω2 5] =
(

2 Το Τρ

;; ·)ó 0 0 τ
1 τ2 {Ε[cε (τ1)αε(τ2)]

— c (τ1 )c (Τ2 )}dΤ1 dτ2 . (3.33)

As before, consider the first-order Taylor expansion [20] for VωD around Ε[ωD5] = ωD,
which implies that

Var[ώD,5] νατ[4,5]/(4Ε[ω5]), (3.34)

with the numerator and denominator given in (3.33) and (3.20), respectively.

If Τo is small enough, it can be assumed that D,5 is approximately unbiased, as

shown in (3.22), and therefore V ar [ώD , 5] in (3.34) is enough to assess the performance.

However, if the bias is not negligible, one needs to look at the estimation error Ε[(ώ D , 5 —
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ωD ) 2] = Var[ώD , 5] + (Ε[)D , 5] - ωώ ) 2 . With Τ = 1 sec. and uniform PDF for the AOA,

i.e., c (τ) given by (3.12), the estimation error of ώD, 5 / (2π) is plotted in Fig. 1 versus

To . COV in the legend box is the abbreviation for covariance and the subscript T stands

for theoretical. Note that for each fD , there is a single ΤΟ,ΟΙ,t which yields the smallest

estimation error. For Τ0 < Τ0 ,0ρt, the estimation error could be very large, especially for

small fD s. On the other hand, for each fD , there is a neighborhood around Τ0 ,ορt, over

which the estimation error remains almost constant. As fD increases, this neighborhood

becomes smaller.

At this point, it seems difficult to study the asymptotic performance of D,5, due

to the complicated form of the estimator's bias, variance, and the parameter Ρ0 involved.

However, the indirect argument of [28, p. 2204, the paragraph right before the Conclu-

sions], which takes advantage of the asymptotic properties of moment-based estimators,

without deriving the variance expressions explicitly, might be applicable, which yields

Var[ώD, 5Ι ti Ο(Τ 1 in T), as Τ — oc.

Integration method Based on [20, eq. (2.1)], the variance of ωD 6 in (3.25) can be written

as
Τ

Var[ω^ 6] = 64 J (1  - Τ)τ 2 (τ)dτ Τ Ιο
(3.35)     

Again, consider the first-order Taylor expansion [20] for ωD 6 around Ε[ωD,6] = ωD, i.e.,

Var[ώD , s] Var [ω ,6]/(4Ε [ω  6]). Therefore

T
V ar [ώD, 	

i
s] 	 26 	1 - T r' 2 (τ)dτ. 	 (3.36)

 )D 
There are two integrals on the right-hand side of (3.36). Based on the asymp-

totic form of τ 2 in (B.10), Appendix B, and by integrating τ-1 , the first integral yields

O(ln Τ), Τ -+ οΡο. Using a similar argument, the second integral can be easily shown to be

0(Τ), Τ -i οΡο. Therefore ΤVar[(D ,6] ti 0(ln Τ) + Τ 1 Ο(Τ) = 0(lnT), as Τ --^ οΡο.
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Thus the asymptotic variance of ÁD , 6 can be written as

Var[ώD , 6] Ο(Τ- 1 1η Τ), as Τ —+ οο. 	 (3.37)

Interestingly, the Holtzman-Sampath estimator given in eq. (10) of [28] is the discrete-

time equivalent of D,6 in (3.26). The asymptotic result in (3.37) agrees with the asymptotic

variance given in the last two lines of Sec. 4 of [28], p. 2204, obtained by a different

approach and in a discrete-time setting.

3.5 Simulation Results and Performance Comparison

This section considers four inphase-based and four envelope-based estimators and com-

pares their performance in terms of the estimation error which is defined as the root mean

square error (RMSE), given by

(Ε[(ώD,i - ω]) 2 = (Vατ[ώD,Ζ] + (Ε[ώD,ί] - ωD) 2 ) 2 ,	 (3.38)

where i = 1, 2, ..., 8, and the second term in the right side stands for the bias. Rayleigh

fading channel is first used to investigate the estimation error of all these estimators. For

the inphase-based methods the closed-form expressions (3.28), (3.33) and (3.36) have been

employed to calculate the variance, whereas the bias is computed using (A.3), (A.4), (A.5)

and (A.6) in Appendix A. The estimation errors of the envelope-based techniques for

Rayleigh channel are obtained via Monte Carlo simulation. On the other hand, for Rician

fading, the estimation errors of both the inphase-based and envelope-based estimators are

evaluated through Monte Carlo simulations. Using the spectral method [31], 100 indepen-

dent realizations of complex Gaussian processes are generated, with N = 10000 complex

samples per realization, which is equivalent to Τ = 1 sec. The simulated autocorrelations

are given in (3.2) and (2.3) for Rayleigh and Rician fading, respectively. The spectral

method is also used for generating the lowpass complex Gaussian bandlimited noise, with

a flat power spectrum over the fixed receiver bandwidth of Β,. x = 101 Hz. In simulations,
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the estimation error of eight estimators fD = ώD/(2π) is given. The abbreviations LCR,

ROM, ANT, COV, and ZCR in legend boxes refer to the level crossing rate, rate of maxima,

integration, covariance, and zero crossing rate, respectively. In addition, the subscripts S

and Τ stand for simulated and theoretical, respectively.

Note that in the covariance matching method, using either the inphase component or

the envelope, ΤO needs to be specified. Since Τ0 ,0 varies over a large range, as fD changes,

in the sequel, unless specified otherwise, Τρ = 0.005 and 0.06 sec. are chosen, from Fig.

3.1, for 31 < fD < 81 and 1 < fD < 31 Hz, respectively. This means that a rough prior

knowledge of the speed is available, when using the covariance matching method. Also

note that choosing the appropriate Τ0 for the envelope-based covariance matching, from

the inphase-based curves of Fig. 3.1, is convenient but not optimum. Clearly, there is no

need to predetermine any parameter for the other six methods.

First the performance analysis for the four inphase-based estimators is validated via

Monte-Carlo simulation. As shown in Fig. 3.2, where noise-free isotropic scattering is

considered, the derived theoretical estimation error expressions are in good agreement with

simulation. Note that for the covariance matching method appropriate Το ,opt is chosen from

Fig. 3.1 for each fD , to only compare the simulation and theory.

Based on Fig. 3.3, where isotropic scattering occurs without noise, InphaseROM and

EnvelopeROM demonstrate the best performance, whereas InphaseCOV and EnvelopeCOV

are the worst. When including the effect of nonisotropic scattering without noise, depicted

in Fig. 3.4, InphaseROM is the best and Envelope{LCR, ΙΝΤ, COV} are the worst for

fD?> 10 Hz, whereas InphaseCOV shows large errors when fD < 10 Hz. The effect of the

nonisotropic scattering parameter κ is shown in Fig. 3.5, where α = 0° and fD = 21. Note

that inphase{ROM, COV} are robust against κ. Fig. 3.6 illustrates the estimation error

versus the mean AOA α, for κ = 3.3 [16] and fD = 21 Hz. Once again, InphaseROM

demonstrates a robust performance. Note that the optimal Τ0 = 0.02 sec. is chosen from

Fig. 3.1, for fD = 21 Hz, and used in both Fig. 3.5 and Fig. 3.6.
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Fig. 3.7 and Fig. 3.8 demonstrate the effect of the LOS parameters K and αo in

a noise-free isotropic fading channel with fD = 21 Hz, respectively. As seen in Fig.

3.7, ROM-based and COV based methods are fairly insensitive to the Rice factor K, with

ROM-based methods showing much smaller errors. In terms of the robustness to the LOS

ΑΟΑ ψ0 in Fig. 3.8, COV based estimators are less sensitive, whereas the InphaseZCR

estimation error changes significantly.

With isotropic scattering and a finite SNR of 10 dB, Fig. 3.9 shows the impact of

noise. For large Dopplers, all the techniques do reasonably well in the presence of noise.

For medium and large Dopplers, fD > 20 Hz, InphaseZCR seems the best choice. On

the other hand, when fD is small, InphaseCOV and EnvelopeCOV perform better than the

other techniques. This is due to the proper choice of the parameter Τo for small speeds.

Finally, the effect of the estimation time window Τ is investigated. Fig. 3.10 shows

the estimation error with respect to Τ for a noiseless isotropic Rayleigh fading channel with

fD = 21 Hz. Clearly, all the crossing-based techniques degrade for very short observation

intervals, say, Τ < 25 msec. This is also observed in [8] as the channel does not experience

many crossings in a short time interval. Overall, for Τ > 50 msec, all eight estimators are

approximately insensitive to the choice of Τ.

3.6 Conclusion

In this chapter a variety of crossing-based and covariance-based speed estimation tech-

niques have been studied in a unified framework. Such a framework has helped to assess

the performance of all the estimators, analytically, under the same umbrella when the

inphase component is used. As a by-product of this approach, it has been demonstrated,

mathematically that for large observation intervals, the performance of all these estimators

is the same. Closed-form expressions for the bias and variance of the inphase-based

estimators were also presented and verified via simulation. It has been observed that the rate

of maxima of the inphase component and also the envelope provide the best performance
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Figure 3.2 Comparison of simulated and theoretical estimation errors for four inphase-
based estimators, versus the maximum Doppler frequency (no noise, isotropic scattering).
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Figure 3.4 Estimation errors of eight estimators versus the maximum Doppler frequency
(no noise, nonisotropic scattering).
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Figure 3.8 Estimation errors of eight estimators versus αο , f D = 21 Hz, K = 2 (no noise,
isotropic scattering).
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when noise is negligible. The proposed rate of maxima of the inphase component also

remains to be the best with respect to the nonisotropic scattering parameter and Ricean

factor. When noise is not negligible and speed is high, most of the methods show a good

performance. In particular, for medium and high speeds, the zero crossing rate of the

inphase component is the best choice. However, for small speeds, the covariance matching

technique seems to be capable of providing an accurate estimate when noise is present,

provided that the parameter Τo is chosen properly. For very small observation intervals,

covariance-based estimators demonstrate a better performance.



CHAPTER 4

DOPPLER SPREAD ESTIMATION USING DIVERSITY COMBINING

4.1 Introduction

As shown in Chapter 3, the main disadvantage of the traditional crossing- and covariance-

based speed estimators is that they are sensitive to noise, especially for small Dopplers.

Diversity combining techniques are often used to combat the effect of fading. This results

in increase of the signal to noise ratio (SNR) of the combined signal when compared with

the non-diversity signal. On the other hand, it is well known that the average crossing rate

represents the fading rate and effectively quantifies the impact of the diversity combiner

on channel fluctuations. This leads to use of diversity combining to estimate the Doppler

spread.

Among the diversity combining techniques, selection combining (SC) is one of the

simplest diversity methods, and maximal ratio combining (MRC) is the optimal one [2].

In this Chapter, the problem of mobile speed estimation using these two common diversity

schemes is considered. Four new estimators are derived which rely on the inphase zero

crossing rate, inphase rate of maxima, phase zero crossing rate, and the instantaneous fre-

quency zero crossing rate of the output of SC. Monte Carlo simulation results are provided

to verify the four new theoretical expressions as well. Two estimators are also proposed,

which work based on the level crossing rates of the envelopes at the output of SC and MRC.

The performances of all these estimators are investigated in realistic noisy environments

with different kinds of scatterings and different numbers of diversity branches.

Chapter 4 is organized as follows. The signal model is discussed in Section 4.2; six

diversity-based estimators are derived in Section 4.3. Section 4.4 presents the performance

comparison through extensive Monte Carlo and Section 4.5 concludes this Chapter.

28



(4.5)
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4.2 Signal and Channel Models

Consider a noisy Rayleigh frequency-flat fading channel and a combiner with L branches.

The received lowpass complex envelope at the i-th branch is

zi (t) = hi (t) + νί (t) , i = 1, 2, ..., L, 	 (4.1)

where the independent zero-mean complex Gaussian processes h i (t) and ν(t) represent the

channel gain (assuming a pilot has been transmitted) and the additive noise, respectively.

In the Cartesian coordinates one has

zi (t) = x(t)±jy(t), (4.2)

where j 2 = —1 , and x i (t) and yi (t) are the inphase and quadrature components, respec-

tively. Using the polar representation obtain

z(t) = ρ(t) exp {-jφi(t)}

where ρ (t) and φ(t) are the envelope and phase of z i (t), defined by

ρ(t) = V Χ (t) + y2 (t), tan 4ρί (t) = yi (t) /χί (t) .

The autocorrelation function of z i (t) is defined by Τz^ ( t) = Ε [zi (t) z2 (t + τ)] with

* as the complex conjugate. One also needs the n-th spectral moment of zi (t), bi ,n , n =

0, 1, 2, ..., given by [32]

bin = (27)n fnS (f)df = dnzi (ń)
—oo jn Cτ

in which Sz, (f) is the power spectral density of zi (t).

The results derived in the following section hold for a large class of correlation

functions whose power spectra are even symmetric with respect to the center frequency.

When doing the simulations in Section 4.4, this flexible, empirically-verified correlation in

(4.3)

(4.4)
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(2.3) is used. This is a natural extension of Clarke's model (also known as Jake's model)

Io (Vκ? — 4π fDτ 2 + j4πκ fDτ cos ^xi)
rhi (T) = σhi

(^Z) 	
,

10
 

where obviously σhi = bi,8

Let z(t), x(t), y(t), p(t), and φ(t) denote the complex envelope, inphase part, quadra-

ture part, envelope, and the phase at the output of the SC, respectively. Then, based on the

definition of an L-branch SC [2]

η(t) = ηι (t) if ρ(t) = max({pk(t)}k ι), 	 (4.7)

where η(t) E {z(t), x(t), y(t), φ(t)} represents random process at the SC output and

γ(t) Ε { zi (t), x i (t), yi (t), cp i (t) } corresponds to the i-th branch. On the other hand, under

the assumption of a perfectly known channel, the envelope of the output of an MRC can be

written as [2]
1/2

ρ(t) = ( Ρt)).

4.3 Diversity Based Estimators

The advantage of SC is that it does not require channel estimate, whereas implementation

of MRC needs perfect estimate and/or tracking of the channel. In the following section,

four SC-based estimators and one MRC-based estimator are derived.

Conventionally, there are two classes of speed estimation methods: crossing-based

and covariance-based techniques [5]. This dissertation concentrates on the former category.

Given a stationary real random process, χ(t), Ν (χth, T) represents the number of times

that the process crosses the threshold level Xth with positive (or negative) slope over the

time interval T . Also let Μ (Τ) denote the number of maxima of the process χ (t), over

the time interval T. Based on [29], the expected values of Ν (χth, T) and Μ(Τ) can be

(4.6)

(4.8)
k=1



and
φ

Ε [Μχ (Τ)] = Τ
ο
 ΧρΧΧ (0 , χ) dχ, (4.10)

calculated according to
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Ε[Νχ(χth, Τ)] = Τ 	 ΧΡχΧ (Χth,
ο

(4.9)

where ρ (χ, ) is the joint probability density function (PDF) of χ(t) and (t), ^*X ( , 5)
is the joint PDF of X(t) and £ (t), and dot denotes differentiation with respect to t. In order

to calculate the average crossing rates of interest in diversity combiners using the above

equations, independent and identically distributed (i.i.d.) branches are assumed. When

branches are not i.i.d., one needs to use another approach [33].

In what follows, first closed form expressions for four crossing rates in SC diversity

systems are provided: inphase zero crossing rate (IZCR) Ε[Ν (0, T)]/T, inphase rate of

maxima (IROM) E[MX (T)]/T, the phase zero crossing rate (PZCR) Ε [Ν9 (0, T)]/T,  and

the instantaneous frequency zero crossing rate (FZCR) Ε [Νή (0, T )] /T . These results are

believed to be new. The average envelope level crossing rate (ELCR) in SC and MRC are

also considered, and given in [34] and [35], respectively. Based on these six crossing rates,

six new diversity-based speed estimators are proposed. They are derived under the no noise

assumption with isotropic scattering, i.e., rh, (τ) = bi , οJo (2π fDτ). The effect of noise and

nonisotropic scattering will be discussed in Section 4.4.

4.3.1 IZCR Speed Estimator with SC

The covariance matrix of the three dimensional Gaussian random vector VIZOR = [xi yi

2i ] T, with (.) T as the transpose, at the i-th branch, is given by [32]

AIZCR = (4.11)  
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where the subscript i of bi ,n is dropped, due to the identically distributed branches. Clearly,

the PDF of V IZCR can be written as

pVIZCR (χι, yi, ±) =
eΧ
	1 χ2 

+ y? + χ
2

Ρ 	 2 b 	 62
(2ιτ)3/2b0b112 (4.12)

Another random vector of interest is W IZCR = [ρi x i xi ] T , whose PDF can be determined

from the PDF of V IZCR in (4.12) as

pVIZCR(χι, y, χί) 
pwIZCR (Ρ2 ι χ2 , xi ) = 	 ι

J1ZCR(χiι yi, x) Ιi
(4.13)    

where JIZCR(χi, yi, xi) = -yi/ νχ7 + y2 is the Jacobian [29] of the transformation V IZOR

--i WIZCR• Based on (4.4), one then obtains the PDF of W IZCR

1(j2 x2
ρZ eΧP — ^ bo + b2

According to (C.8) in the Appendix C, the joint PDF of x(t) and ±(t) at the output of the

L-branch SC can be shown to be

L 	 f ±2
	pxx (

χ'
 ±) =

 ν2πb πb
	exp	

2b

	

2 0 	 2

L-1 - 1 	 φΡι eχρ

Σ	k )

(_1)k!
k_ο 	 Ι

(1 + 1)τ 

2b0 

‚/ρ?  χ2 	
dΡ1 ι (4.15)

where (
m)

 = m!/[(m — n)!n!]. Equation (4.15) can be simplified to
n

k	 k +1 2
1 	 χ2 	

L-1 L — 	(-1) exp 	
2b0 χχ χ = 	Ρχχ ( 	 )V 	2πb2 exp — 26 2 ,2πbο 	k 	 Vk + 1
	. (4.16)

k=0

It is interesting to note that the inphase component of the SC complex envelope and its

derivative at any time instant t, are independent. Also, the distribution of x(t) does not

depend on L , and is still Gaussian. By substituting (4.16) into (4.9) with xih = 0, one

ΡWIZCR(Ρ2, χi, xi) =
V2πb2πbο ,ρ2 - χ?

(4.14)
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obtains the average zero crossing rate of the SC inphase component as

Ε[Νχ (0, Τ)] 	L
Τ 	 2π

b2 Σ-1 (Ι/ —Ι ' ( k—1)

bο k0 	
k	 Vk + 1=

(4.17)

On the other hand, based on (4.5), the following spectral moments are obtained for the

Clarke's model with correlation function rh (T) = bοJο (2π fDτ)

2b2 = 2π2 bοfD,

b4 = 6π4 bοf^•

This reduces (4.17) to

Ε[Νχ(0ι Τ)] — fD 
Ν^ -1 ^ — 1 ' (-1)k

) Vk± lΤ 	 2 	 k
k=O

Consequently, the IZCR estimator of the L-branch SC system is introduced as

fD =	
\Νχ(0ι 

Τ)

TL Σ (Lk 1)  (-
1)k

k=O 	 ✓k + 1

(4.18)

(4.19)

(4.20)

With L = 1, (4.20) reduces to the well-known inphase zero crossing speed estimator [2].

4.3.2 IROM Speed Estimator with SC

As with the IZCR estimator, define two random vectors V IROM = [xi xi y2 ± i ] T and

WIROM = [Pi xi* xi* Sφi]T. The covariance matrix of the Gaussian vector V IROM is [32]

b0

—b2

	—b2 	0	 0

	b 4 	0	 0
AIROM = (4.21)

0 0 	b0 	0

Then the PDF of VIROM can be written

0

as

0	 0	 b2

1 _
exp νΊΗΟΜΑfΟΜνΙRΟΜ )

pVIROM(Xi, χ ί+yίι xi) = (4.22)ιΡ4π2 ^det (AIROM )
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where det(.) is the determinant. The Jacobian of the transformation VIROM —4 WIROM is

JIROM(xi, xi , yi, xi) _ ‚/x + y? = ρi. Therefore, obtain the PDF of WIROM as

ri 	(bob2b4ρ — bob2z2 + bob4z?)

 }

pWIROM (^i, xi, i , ^Pi) = 	 exp
4π2 Vdet (AIROM) 	 2 det (AIROM )

b2ρ2 sine φi — bob2 ά — 2bob2ρixi cos φi 1
1.

Based on (C.8) in the Appendix C, the joint PDF of ±(t) and ± (t) at the output of the

L-branch SC can be expressed as

L-1  οο 2π— 1	 2
ρ(±, z) =L Σ 	 (-1)k 	

0 
ÝWIROM (Ρι, χ, χ, 401) exp (-- 

2b1 dφι dΡ1
k=0 	 0 	0

1 	ex	
τ2 	 L

 	 ex (-121)- 
2L—ι L - 1 _ 1 k

V2nb2 ρ 2b2 πV2πbοΒ ρ 2Β 	 1	 )
k=0

[2π ί·α) 	1)2 χ cOs ςο1 ( k±1  	12 cOs2 ςο1 	 2χ 
Jo Jo 

eΧΡ — 	 Β 	 Ρι —	 2bο + 2b0B 	 Ρι ΡιdριdςΡι,

(4.24)

where Β = b0 b4 — b2. Note that at any given time t, random variables x and x are

independent, and ± is Gaussian, as observed in (4.16), with zero mean and variance b2 .

After substituting (4.24) into (4.10) and following the derivation given in Appendix D,

finally obtain the average rate of maxima of the SC inphase component

Ε[ΜΧ(Τ)] 	^ L
Τ 	 2π k=0

— Ι) 	f
k ^ 	 l

Β 	 ι/2b
2 

✓( + 1) 2 b0b2B + (k + 1)b0b2 + b012(k + 1 ) 3/2 

3 5  (k ±1)B1)Β 
2' 2 ' 2 	 b2 cos 2 α

cos2 α 

4Β3/2 	2 2F1

3πb01/2 b2/2 ο
(4.25)   

χ exp
2 det (AIRoM )

(4.23)



(,-,-,- L-1 ,τ 	/

3)1/2

-1

Vπ 
(k + 1) 3/2+

(4.27)

3 5 k+1 	) \\
2 2 2F1 2, 2; 2; 	2  cos2 α

ο3 
	d α

cos2

L
ρφφ (φ, φ) = 4π

L-1
L-1

kk=0

(_1)k
3/2 '

(k +1± b Ψ2)
b2

(4.29)
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where 2F1 (., .; .; .) is the hypergeometric function [36]. Using (4.18), inphase rate of max-

ima for Clarke's model can be shown as

E[MX(T)] = L L-1 L- 1 	
k 	 π 	 π

Τ 	 fD 2π 	 k	 (

1
) 	(k2 + 4k + 3)ι/2 + (k + 1) 3/2

k-0
3 5

2 2 2F1 2( ,2'  2; 
	2

k + 1
 cos2

3 ο	cos2
dα (4.26)

Now the IROM estimator can be introduced as

For L = 1, (4.27) reduces to the estimator proposed in [5].

4.3.3 PZCR Speed Estimator with SC

The joint PDF of the vector WPZCR = [ρi φi ψ i ]T is given in [37]

1 	 b
r2 exp — 

2b 
ρ2 + b Pi Sρ

2
) J

ΡwΡΖCR (ri , 1r^i, ^-i) = 	
0 	 2 

(27) 3/2 (bob2 ) 1 /2
(4.28)

Substitution of (4.28) into (C.8) from the Appendix C leads to

Interestingly, φ and ψ are independent; φ is uniformly distributed over ( —π, πΡ], and the

PDF of ψ is consistent with the result given in [38]. By substituting (4.29) into (4.9), 1 one

1 Since (4.29) does not depend on φ, (4.30) is valid for any cpth. To simplify the notation, cp th = 0
is chosen in (4.30).
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obtains the average zero crossing rate of the SC phase

Ε[Νφ (0, Τ)] _
Τ 	 4π

b -12 	 L —
 1' (-1)k 2

bο 	 k Vk + 1k=0
(4.30)

Note that for L = 1 and the no-noise isotropic scattering scenario, (4.30) simplifies to

V GfD/4, which is consistent with the result that can be derived from [37]. Similarly, for

Clarke's model, (4.3) is a linear function of fD

Ε[ΝΝ(0 ,T)] — fD 'L L

-1 L
 — 1' (_1)k

4 	k	 Vk + l'k=0
	 (4.31)

which results in the PZCR speed estimator

2'/ Ιt (0 , T)
fD = 	 L-1 	 (-1)k1 	TL ΣΡ (L k )

Vk+1k=0

4.3.4 FZCR Speed Estimator with SC

Define the random vector W FZCR = [ρi φi ψi ζi]Τ, whose PDF is given by [37]

ΡWFZCR(Pi , ' Spi, ^) =
(2π) 02 (b b Β + 4b2b2̂ 2 )22 	 0 2i

χ eχ 	
ρ
 1 + b0 .2 + 	b

°g 
Ρ	 2bο 	 b2 

 	 Β + 4b0b2ψ ) Ϊ

3
li

(4.32)

(4.33)

As before, by substituting (4.33) into (C.8) and some simplifications, obtain the joint PDF

of 0(t) and ς(t) at the output of the L-branch SC
	L -1 	— 1

 —ρψφ(ψ , ςρ) = 	 ι Σ 	 k	 (
1 ) k

4π (bοb2 B + 4bob2cρ 2 ) 2 k=0
2 ••2 	 —2

χ 1 k+1+ 12202+ 	 ό4Φ .2 

2bο 	 b2 	 Β + 4bοb2cp
(4.34)   

2For φ = 0 and π, one has y = p sin φφ = 0. Therefore, Ε[Ν (0, Τ)] = Ε[Ν (0, Τ)] +

Ε[Ν (ι, T)], as p > 0. On the other hand, since (4.29) does not depend on φ, Ε[Ν (0, Τ)] =

Ε[Ν (π, T)]. Therefore Ε[Ν (0, Τ)] = Ε[Ν (0, Τ)]/2, which agrees with the fact that (4.30) is

half of (4.17).
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1ςρ (1, Τ)

fD = (4.39)
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After substituting (4.34) into (4.9) with ψth = 0, obtain the average zero crossing rate of

the SC instantaneous frequency

Ε [Νφ (0 , Τ)] _ 1 	 b4 b2

Τ 	 2π b2 b0 '
(4.35)

which interestingly, does not depend on L. For the noise-free and isotropic scattering case,

(4.35) reduces to fD/2, which for a single branch, can be derived from [37]. Using (4.18),

(4.35) simplifies to 
Ε[Νφ (0, Τ)] = 1 fDΤ 	 2

(4.36)

This leads to the FZCR estimator

fD - 
2Νφ (Ο, Τ) 

(4.37)

The above equation agrees with the non-diversity estimator discussed in [39].

4.3.5 ELCR Estimators with SC and MRC

Without loss of generality, let Ε [ h i (t) 2] = 1. For isotropic scattering, the envelope

average level crossing rate of SC diversity is known to be [34]

L-1Ε[Νρ(1, Τ)] _ k	 k+ι
Τ 	

2π fDL Σ — 1 (_1) e-( )
k=O

and of course the corresponding estimator is

(4.38)

2^TL ΣΡ (Lk 1 ) (-1)k e—(k+1)
k=0

3Βy integrating (4.34) with respect to gyp, the PDF of cP can be obtained, which agrees with the

expression given in [38].
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On the other hand, in [35], the envelope average level crossing rate of MRC diversity

is derived as
Ε [Νρ( 1, Τ)j = fD 	

2π
Τ 	 eΓ(L)

where Γ(.) is the gamma function [36]. Therefore, the associated estimator is

fD _ eΓ(L)1Vp (1, Τ) 

T

(4.40)

(4.41)

To the best of our knowledge, although (4.38) and (4.40) have been derived previ-

ously, their performance as speed estimators has not been studied.

4.4 Simulation Results

In this section, first the four new crossing rate expressions are validated; then the perfor-

mance of six speed estimators are investigated. To verify the new closed-form crossing

rates, Monte Carlo simulations using the spectral method [31] have been conducted. 100

independent realizations of L i.i.d. zero-mean complex Gaussian processes have been

generated, with 10000 complex samples per realization, over Τ = 1 second. The simulated

autocorrelation function at each branch is bο Jο (2π fDτ)/2 with b0 = 1. As illustrated in

Fig. 4.1, there is perfect agreement between the theoretical and simulation results. Note

that the crossing rates are normalized by f D in Fig. 4.1. As shown by IROM and FZCR

in Fig. 4.1, some crossing rates of the combined signal do not necessarily decrease, 4 as

the diversity order increases. Furthermore, for a given Doppler, IROM, IZCR, and PZCR

can be utilized to measure the fluctuation rate of the combined signal versus the number of

branches, whereas FZCR cannot.

Since the combined output signals of diversity systems are no longer Gaussian, it is

very difficult to do analytic performance analysis such as those carried out in [5]. There-

fore, this section relies on Monte Carlo simulation to compare the estimation error of six

4Τhe ELCR goes to zero as L —k oo [34].
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Figure 4.1 Normalized average zero crossing rates versus the number of branches L.

techniques: two inphase-based estimators in (4.20) and (4.27), two phase-based estimators

in (4.32) and (4.37) and two envelope-based in (4.39) and (4.41). The estimation error is

defined by

{E[(JD — fD ) 2 ]} 2 = {Var [fD] + (Ε[JD] — fD) 2 1
2 (4.42)

where the first term is the variance and the second stands for the bias. All six estimators

are derived for isotropic scattering in noise-free environments, and, obviously, under such

conditions, are unbiased, i.e., E [ f D] = fD . In the sequel, the effect of nonisotropic

scattering and Gaussian noise will also be examined in order to study the effect of diversity

combining in more realistic environments. In each simulation, 100 independent realizations

of L zero-mean complex Gaussian processes are generated, with 10000 complex samples

per realization, over T = 1 second. The spectral method is also used for generating the

complex Gaussian bandlimited noise with a flat power spectrum over the fixed receiver

bandwidth of ΒT , = 101 Hz, assuming that the largest possible Doppler frequency fD is
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101 Hz. When applicable, the signal-noise-ratio (SNR) at each branch is 10dB; and each

branch experiences the same nonisotropic scattering with κ = 2.1, c = 10.8° observed in

field trials [ 16] .

The estimation error for the IZCR estimator in (4.20) for three different cases: noise-

free isotropic scattering, isotropic scattering with noise, and noise-free nonisotropic scat-

tering are shown in Fig. 4.2, versus f D . It is demonstrated that the IZCR estimator without

SC diversity has the best performance in all situations. Fig. 4.3 shows that there is no

performance improvement via SC diversity in the three different propagation environments

when using the IROM estimator. The PZCR estimator with SC does not provide better

performance than one with non-diversity signal, as demonstrated in Fig. 4.4. From Fig.

4.5, note that the FZCR estimator does not gain any enhancement from the SC diversity in

all three cases mentioned above.

Fig. 4.6 illustrates that both the MRC-based and SC-based ELCR estimators provide

the best performance with L = 2 . However, the SC-based estimator is preferred as it does

not need any channel estimate. The improvement offered by a two-branch estimator does

not seem to be significant. To take full advantage of multiple observations in a diversity

receiver, apparently it is helpful to look at more complex techniques such as the maximum

likelihood estimators.

4.5 Conclusion

In this Chapter, the possibility of mobile speed estimation in cellular systems using diver-

sity combining techniques has been investigated. Several new estimators were derived for

selection combining and maximal ratio combining diversity methods. The impact of noise

and nonisotropic scattering were extensively investigated, as well as the number of diversity

branches. It has been observed that two-branch diversity combiners provide performance

enhancement. To achieve higher estimation accuracy, it is helpful to use the more complex

methods introduced in the following Chapters.
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Figure 4.3 Performance of IROM speed estimator with SC diversity: (a) isotropic
scattering, no noise; (b) effect of noise (SNR = 10 dB); (c) nonisotropic scattering (κ = 2.1,
α = 10.8°).
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CHAPTER 5

NONPARAMETRIC DOPPLER SPREAD ESTIMATION

5.1 Introduction

In this chapter, a novel, low complex technique is proposed. It is robust against noise,

both Gaussian and impulsive non-Gaussian, and insensitive to nonisotropic scattering and

LOS. The impact of three dimensional (3-D) propagation, more likely happening in urban

environments [ 18], is investigated as well. Two single-antenna-based speed estimators are

proposed for the mobile station (MS). They rely on the new technique and are applicable

to both narrowband and wideband channels. Using the antenna array at the base station

(BS), a space-time estimator is also developed. Mathematical performance analysis of the

single-antenna estimators is presented and confirmed via Monte Carlo simulation.

The organization of this chapter is as follows. Signal, channel, and noise models are

discussed in Section 5.2. The novel speed estimation technique and the associated single-

antenna solutions are presented in Section 5.3. Extension to multiple antennas is given

in Section 5.4. Section 5.5 includes mathematical performance analysis of single-antenna

estimators. Section 5.6 provides numerical results obtained via extensive Monte Carlo

simulations. Comparison with measured data is carried out in Section 5.7, and Section 5.8

concludes this Chapter.

5.2 Signal, Channel and Noise Models

The received lowpass complex envelope in a noisy Rician frequency-flat fading channel, in

response to an unmodulated carrier, is

z(t) = h(t) + v(t), 	 (5.1)

46
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where v(t) represents the noise and h(t) includes the random diffuse component hc(t) and

the deterministic LOS component hd (t) .

In wireless mobile systems, the complex noise process v(t) in (5.1) is the super-

position of two components: the receiver thermal noise rig (t) and the man-made noise

nimp (t) [40]. The receiver noise is commonly modeled as a white Gaussian process. The

man-made noise generated by electrical equipments such as vehicle ignition system, neon

signs, has an impulsive non-Gaussian characteristic. This is quite different from Gaussian

noise and appears in the frequency spectrum up to 7 GHz [40]. Middleton's Class-A model

is used where the probability density functions (PDF) of the non-Gaussian noise v(t), with

zero-mean and variance σ^, can be written as [41] [42]

Pv(v) = e a	
lk

Ak
	exp - - 	(5.2)!πσ

k=0

where σ _ σ^ ((1k/A) + Γ) / (1 -}- Γ), with Γ denoting the power ratio of ng (t) over

fimp (t), and parameter A is called the impulsive index. Small values of A indicate a highly

impulsive noise whereas large A corresponds to a near-Gaussian one.

5.3 The New Speed Estimation Algorithm

By looking at the basic fading spectrum for 2-D isotropic scattering, which is proportional

to (fD - f2)-1/2 [2], it is easy to observe the two singularities at f = + fD . These peaks

at the maximum Doppler frequency remain to exist, even with nonisotropic scattering,

LOS, and 3-D propagation, irrespective of the PDF of noise. Therefore, to estimate fD , to

estimate the spectrum of the received signal in (5.1), and then find the largest frequency

at which the spectrum has a maximum. There are many methods of estimating the PSD

of a random signal [43]. The periodogram-based nonparametric spectrum estimation tech-

nique has been chosen due to its simplicity. It has also been observed that more complex

nonparametric PSD estimators provide the same performance as the periodogram when
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applied to the speed estimation problem. In this section, two fD estimators are proposed

for frequency-flat and frequency-selective channels, respectively.

5.3.1 The Speed Estimator in Narrowband Channels

Consider the N-sample discrete-time version of received continuous -time signal z(t) with

duration T, { z [n] = x[n] + j y [n] }ń ó , with x and y as the real and imaginary parts, re-

spectively, and define the PSD of { z [n] }ń ó as Sz (μ) . In the absence of aliasing, S(μ) is

the scaled version of the PSD of the continuous signal z(t), Ωz (f ), given by [43]

SS(μ) = LΩz(μf8) , ΙΙ < 1/2, (5.3)

where f s = Ν/Τ is the sampling frequency of z (t).  Sz (μ) can be estimated directly from

the data using the periodogram defined as  

2  

Sχ(μk) = 1Ν
Ν-1

Ζ [η] e - j2πμkη

η=0
, μ =	 ,1=1- Ν ,..., Ν ,Ν 	 2	 2

(5.4)     

where Ν is even. Note that (5.4) can be efficiently computed via fast Fourier transform

(FFT). The novel estimator is then given by

fD =fsx arg maxSΖ (μk )
/k

(5.5)   

5.3.2 The Speed Estimator in Wideband Channels

Consider an I-tap Wideband channel H(-r, t), with h(t) being the i-th channel gain corre-

sponding to the propagation path with the excess delay  τi

Ι
H(r,t) = Σ hi (t)δ(τ — τ).

i=1
(5.6)

Wideband channel measurements conducted at the MS exhibit a variety of different Doppler

spectrum shapes at different propagation paths [44] . As will later become clear, this

special feature is particularly useful in decreasing the estimation error due to some strong
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nonisotropic scattering and/or LOS which may occur. Based on (5.5), the speed estimator

in frequency selective channels can be written as

Ι
fD =maxj f 1 ι

ll	 ) i=1
(5.7)

where f;  = f8 χ arg maxSzi (μις)
μk  

5.4 The Space-Time Speed Estimation Algorithm

This section extends the new algorithm to a system with multiple receive antennas in

narrowband channels. Consider a uniform linear antenna array at the elevated BS of a

marcocell composed of L omnidirectional unit-gain elements, and with element spacing d.

The BS experiences no local scattering, whereas the single antenna MS is surrounded by

local scatters. When MS transmits an unmodulated carrier, with the received signals at the

1-th element zi (t) = h, (t) + vi (t),1 = 1, 2, ..., L, the space-time crosscorrelation function

between za (t) and zb (t), defined by rz ((b — α)Δ, τ) = Ε[Ζα (t)zb (t + τ)] with Δ = d/λ,

can be written as

rz ((b — α)Δ, τ) = rh ((b — α)Δ, τ) + Τν (τ)δα-δι 	(5.8)

where τ(τ) = E[vi(t)vT(t + τ)],1 = 1, 2, ..., L, is the autocorrelation function of the noise

component at each branch, δ, is the Kronecker delta function, 1 for c = Ο and Ο otherwise,

and rh ((b — α)Δ, τ) = Ε[hα (t)hb(t + τ)], when considering 2-D scattering, given by [19]

σ2  Io (Vκ2 — (2 — p2 — 2ζρ + j 2κ(ζ + p) cos α1 Th((b — α)Δ, 	
Κ +1	 Ιo(κ)

+
Kph exp (j (ζ + ρ) cos αο ) , 	 ( 5.9K+ 1 	 )

where ζ = 2π fDτ, and ρ = 2π(α — b)Δ with 1 < a < b < L. Note that in (5.9), reasonable

assumption of equal receive power σh and Rician factor Κ at each antenna are made. The

noise components are independent at different elements, with the same power  σ.
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According to the experiments conducted at different locations and frequencies [45]

[46] [47] [48], the angle spread at the BS is generally small for macrocells in urban,

suburban, and rural areas. It is most often less than 30°, which corresponds to  κ > 14.6,

and in some cases very small, say, less than 10°, which translates into  κ > 131.3 [19] [49].

In such heavily nonisotropic scattering environments, the PDF of the diffuse AOA at the

BS can be accurately approximated by a Gaussian PDF with mean α and variance 1/ κ [19].

Due to the small angle spread at the BS, it is reasonable to assume ι o = α [50].

When the channel experiences such heavily nonisotropic scattering, the performance

of the proposed estimator degrades. In fact, as proved in Appendix E, the Doppler spectrum

Ωh ( f) of the heavily nonisotropic Rayleigh fading channel has only one strong peak,

approximately at f = f D cos α, while the peaks at f = + f D virtually disappear. However,

for each branch zi (t), one can still use the same technique as (5.5). This provides an

accurate estimate of f  D cos α

fD,a — fsX arg maxS 1 (μk )
μk

(5.10)   

On the other hand, by setting τ = 0 in (5.8), together with the Gaussian approximation for

AOA, the spatial cross correlation function r z ((b — α)Δ, 0) = Ε[za (t)zb (t)], 1 < a < b <

L, can be accurately approximated by [ 19]

ΤΖ ((b — α)Δ, 0) = rh ((b — α)Δ, 0)
	2 	 2 	 2 	 2Ν 	 σh

	exp
 ρ sίη 	 α

) ±Κ±Ι } eΧΡ {Ρ cο}

	

Κσ
+1	 2κ 

(5.11)

where rz (., 0) = rh (•, 0), 1 < a < b < L, due to the spatial independence of noise

components at different branches. Now, estimate cos α via

Ζ (Δ, 0 ) cos α 	 ,
—2πΔ

(5.12)
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where i denotes the phase of a complex number and rz (Δ, 0) is the estimate of r z (Δ, 0) =

Ε[Ζα (t)zá+1 (t)], V a E [1, L — 1], given by

1 L-1

rz (Δ, 0) = 	
L —

 1 Σ rz(Δ , 0).
1=1

(5.13)

In eq. (5.13), rz (Δ, 0) = Ν-1 Σń ó zi(n)zT±i(n), 1 Ε [1, L — 1], is the 1-th adjacent-

antenna-pair estimate of r z (Δ, 0). Now it is necessary to justify the one-lag phase es-

timation in (5.12). Note that the estimator given in (5.12) is equivalent to the one-lag

Pulse-Pair (PP) frequency estimation [51, eq. (6)] in the presence of Doppler spread.

The spatial cross-correlation function (5.11) used here takes the same form as the channel

autocorrelation function utilized in [51]. Therefore, the performance analysis conducted

for PP frequency estimation in [51] can be applied to (5.12) as well. Although there is an

optimum lag to minimize the variance of the PP estimation of cos α, it has been shown [51,

Fig.!] that at high SNR, the one-lag and optimum-lag PP estimations are comparable and

their performances are close to the CRLB. Clearly, according to (5.11), There is infinite

SNR when estimating cos α using (5.12).

Finally, f D can be estimated via

fD = f^ ,	 (5.14)
cos α

where fD,, = L-1 Σ i 1 fD,«, and fD  and cos& are given in (5.10) and (5.12), respec-

tively.

5.5 Analytic Performance Assessment

The performance of the estimator can be measured by using the root mean squared error

(RMSE) criterion

ι 	 ι

{E[(fD - fD)2] 
} 

2 

= {νατ11Ό1  + (Ε[JD] - fD) 2 } 2 ι (5.15)
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where the first term in the right-hand side of (5.15) is the variance, and the second stands

for the bias of the estimator. In this section, first the key result is derived for the speed

estimator in (5.5) for narrowband channels, and then extended to estimator in (5.7) for

wideband channels.

Proposition 1 For a zero-mean proper complex Gaussian random process z(t), the ele-

ments of the sequence {SΖ(μk)} k _Ν/2 are asymptotically independent as N —i οο, with

an exponential PDF

_ 	 1 	s	
s 0,ρsζ(μις)(8) 	 Sz(μk)

 exp
	SΖ(μk) ' >

(5.16)

where $ (μk) is the mean of Sz (μk), given by (Ε3) in Appendix F.

Proof.• See Appendix F. 	 ■

In the absence of both LOS and impulsive noise, z(t) in (5.1) is a zero-mean proper

complex Gaussian random process [52]. Now define fmax = fg x arg maxSz (μk) so that
μk

fD = fmax

{ f sμk } k / 1 _Ν/2 • Let 4 denote the event where μi is the discrete frequency at which Sz (• )

achieves its maximum. Then the probability mass function (PMF) of /max can be obtained

as

ρ,mαΧ(fi) = Prob(fmax = fi ) = Prob(4) = Prob {Sz (μί ) = max ({Α§Ζ ίμk)LΝΖ2Ι _Ν/2)}

= 	 Prob {Sz(μ1-Ν/2) < s, ..., ^Ζ(ιυΝ/2) < s}ρ,,Ζ(μΡί)(s)ds, 	 (5.17)
ο

N-1 terms

where fi = fs x μi = i/T, 1 — N/2 < i < Ν/2. Since {Sz(μk)}k /1 	 includes

independent random variables when N is large, (5.17) simplifies to

οο	 Ν/2

rfmax (° 2) 11 	 Ρ (μ1) (s)ρsΖ (μ=) (s) ds, (5.18)

. Obviously /max is a discrete random variable, taking Ν values from the set

1=1—Ν/2,1#i



where Ρ (μΡk) (s) is the cumulative distribution function (CDF) of SΖ (μk), given by

Ρ (μk)(s)= 1 —exp 	 S s
	s >0.

z (μις)

After substituting (5.16) and (5.19) into (5.18), obtain

φ Ν/2

pfmax (fi) = ο 	 π (1-  exp 	 Sχ(μ2) s 	exp{—s}
	ds.

Sz (μ1) 	 1
 })ί=1-- Ν/2 	

— exp{—s}
(5.20)

Finally find that

ρfD (fi) = ρfmax (fi) + ρ!mαχ (.fι-i), i = 0,1, ..., 
2 .
	 (5.21)

Note that if N —4 oo, for a fixed T, then S,z (μi ) — S(μ) = f8Ωz (μifs) [43]. In

this case, (5.20) can be written in terms of the PSD of the continuous-time signal z(t) as

_ °° Ν/2 

( 1 —exp { 
Ω(f) s

exp{ —s}
ds.ρfmax (fi ) 	 ο	 Π 	 Ωχ (fi ) 	 1 — exp{—s}

1=1-Ν/2
(5.22)

Based on (5.22) and (5.21), it can be shown that with large N, as T increases, !D (f i )

becomes more spiky around the true Doppler f D , and the estimation error decreases accord-

ingly. Needless to say, the performance of the new estimator can be numerically calculated

by substituting (5.20) and (5.21) into (5.15). Monte Carlo simulation results presented in

the next section further confirm the accuracy of the analysis here.

Now the PDF of the speed estimator in (5.7) for wideband channels needs to be

derived. Since z i (t)'s of different propagation paths can be reasonably modeled as inde-

pendent processes, the corresponding speed estimates fD in (5.7) are independent as well.

Therefore, similarly to the derivation of eq. (5.18), it can be shown that

Ι 	 Ι

ρ fD (fi) = Σ Π Ρj (fi)ρjD (fi),1 = 0,1, ..., Ν/2, 	 (5.23)
i=1 q=1,qi

where Pp (f 1 ) is the CDF of f D and can be readily evaluated using (5.20) and (5.21).
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5.6 Numerical and Monte Carlo Simulation Results

In this section, the performance of the single-antenna speed estimators in (5.5) and (5.7)

is investigated; and the theoretical performance analysis is validated by Monte Carlo sim-

ulations. Then the performance of the array-based estimator in (5.14) is simulated. In

each simulation, except when mentioned otherwise, 500 independent realizations of Q

zero-mean complex Gaussian processes are generated using the spectral method [31], with

Ν = 256 complex samples per realization, over Τ = 1 second, where Q = 1, I, L, to

simulate narrowband and wideband channels for the single-antenna estimators, and the

space-time channel for the array-based estimator, respectively. Also the antenna spacing

of Δ = 1/2 is chosen for the array-based estimator. If not explicitly stated, the noise is

Gaussian with a 10 dB signal-noise-ratio (SNR) defined by σh/σv, where σv is the power

of the band limited noise with a flat spectrum. The receiver bandwidth Brx is fixed at 101

Hz, assuming that the largest possible maximum Doppler frequency fD is 101 Hz.

5.6.1 Speed Estimator in a Narrowband Channel

Now, Monte Carlo simulation is used to validate the theoretical performance evaluation

results in a general scattering environment with 2-D nonisotropic AOA and Gaussian noise

in a Rayleigh channel with a single antenna

2 Ιο ίνκ2 — 4π f 2 τ2 + j4πι^ fDτ cοs α) 	 2 sin(2πΒτχτ)τ 
(τ) = σh 	 Ιο (ι) 	 + σ 	 2πΒrx τ . 	 (5.24)

Then the effect of LOS, non-Gaussian impulsive noise, and 3-D propagation on the perfor-

mance are examined via Monte Carlo simulation.

In Fig. 5.1, simulations are shown for isotropic scattering, κ = 0, which closely

match the theoretical results. Note that, as expected, the estimation error drops as the ob-

servation time T increases. The accuracy of the estimator for the 10 dB SNR is remarkable

when compared with other methods [5] [11].  The estimation error versus the nonisotropic

scattering parameter κ with different a's is shown in Fig. 5.2, where the true Doppler
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Figure 5.1 Performance over a Rayleigh fading channel, isotropic scattering (SNR = 10
dB).

is 41 Hz. Again, the simulation and theory match perfectly. Note that 0 < κ < 3.3

and 0° < α < 36° represent typical scatterings observed at the mobile, obtained from

experimental data collected at a variety of propagation environments [16].  The estimation

error with respect to different SNRs, for fD = 41 Hz, is shown in Fig. 5.3. As seen, the

new speed estimation technique provides a good performance, even for SNRs as low as 5

dB.

Fig. 5.4 illustrates the estimation error versus f D when the mobile experiences LOS

in Rician fading. Observe that the performance degrades to some extent as increases.

On the other hand, the LOS component is able to improve the estimator's performance

where ιo is small. This is due to the impulse generated by LOS at f = fD cos αο . It

will be seen in the next subsection that this dependency on LOS can be easily removed

in wideband channels. To look at the effect of the impulsive noise, (Γ = 0.01, A = 0.1)

and (Γ = 0.01, A = 10) are considered, which indicate that the channel noise is highly

impulsive and near-Gaussian, respectively [53]. As shown in Fig. 5.5, the new estimator
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Figure 5.3 Effect of SNR in a noisy Rayleigh fading channel (fD = 41 Hz).
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Figure 5.4 Performance over a noisy Rician fading channel (SNR=10 dB, κ = 2.1, α =
10.8°).

is insensitive to the PDF of noise, as expected. The impact of 3-D scattering on speed

estimation is shown in Fig. 5.6. Again note that the new method is still able to provide

accurate Doppler estimation over a wide range of mobile speeds.

5.6.2 Speed Estimator in a Wideband Channel

As shown in Figs 5.2 and 5.4, the performance of the proposed narrowband estimator

degrades in nonisotropic scattering environments as α — 90° or in the presence of LOS as

αo --i 90°. This is due to the spike generated at f = fD cos α and fD cos α, respectively.

However, according to the experiments conducted at the MS [44], the Doppler spectra

observed at different propagation paths of the Wideband channel have different shapes. In

fact, only the first or second paths may include LOS or a specular component. Furthermore,

the spectra of longer paths are closer to U-shape Clarke's spectrum, with clear peaks at

+ fD . These observations serve as strong motivations for using (5.7). With I denoting the

total number of paths, the total signal power is σh = Σ 1 σ τΡ , where σh. is the received
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signal power via the ith path. Take the number of available paths as I = 5 and consider the

exponential power delay profile such that σh . = σ 1 exp{ —η(η2 — τι )} [54], where τ = i/5

μs,1<i<5.

In simulating (5.7), only the first three paths were picked up as SNR in the last two

paths is small. The statistics of the first three paths for scenario 1 are given by (K =

5, ι ο = 60°,κ = 3,a = 36°), (K = 0,κ = 3,c = 36°),and(K = 0,κ = 2.1,α =

10.8°), respectively. In scenario 2, (K = 0, κ = 10, α = 60°), (K = 0, κ = 3, α =

36°), and (K = 0, κ = 2.1, α = 10.8°). Clearly, in scenario 1, there is an LOS in the

first path, with mildly nonisotropic scattering in all the paths. In scenario 2 there is no

LOS, but strong nonisotropic scattering in the first path and mild scattering in the second

and third. Although the path SNR decreases by the path delay, a sufficiently accurate

Doppler estimate, as shown in Fig. 5.7, can still be obtained due to the robustness of the

nonparametric technique to noise already demonstrated in Fig. 5.3. Note that the total SNR

here is still 10 dB. Obviously, by taking advantage of multiple paths, the negative impacts

of LOS and strong nonisotropic scattering are avoided. Fig. 5.8 illustrates the effect of η

on the performance for scenario 2, at fD = 41 Hz. When η is large, the first path, which is

heavily nonisotropic, becomes the dominant path. This is why the performance degrades.

Again, in Fig. 5.7 and Fig. 5.8, the analytic results match the simulations.

5.6.3 The Space-Time Speed Estimator with Multiple Antennas

The space-time crosscorrelation of a fading channel with multiple antennas used in the

subsequent simulations is

ΤΖ ((b — α)Δ, τ) = rh ((b — α)Δ, τ) + σ2
 s1n(2ΠΧΧτ) δα_δ,

2πΒΤΧτ
(5.25)

where rh((b — α)Δ, τ) is given in (5.9). As shown in Fig. 5.2, heavily nonisotropic

scattering, normally experienced by BS in marcocells, could degrade the performance if

the single-antenna estimator in (5.5) is applied directly. Fig. 5.9 illustrates the performance
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of the space-time speed estimator in (5.14) versus the number of antenna elements L, in

different propagation scenarios for fD = 41 Hz. Clearly, the estimation error decreases

significantly as L increases from one to two due to the spatial information used. However,

further increase in L does not result in much performance gain, since the L estimates

f ΙL^ 	 in (5.14) are highly correlated due to the small element spacing. This obser-D,a 1=1
vation indicates that the space-time estimator is actually applicable to BS arrays with any

shape or configuration, when using only two adjacent antennas. In the sequel, L = 2 is

chosen as well.

Fig. 5.10 illustrates the RMSE versus fD, for both Rayleigh and Rician channels

with the scattering scenario (κ = 100, α = 60°, α o = 60°). Clearly, the performance of

the array-based estimator is much better for different Rice K factors. The effect of κ and

α on the performance for fD = 41 Hz, is shown in Fig. 5.11. Obviously, the array-based

estimator provides a much smaller estimation error for different values of α. Finally, the

effect of element spacing Δ is simulated in different scattering environments for fD = 41

Hz. As shown in Fig. 5.12, the array-based estimator is fairly insensitive to the choice of

Δ.

5.7 Application to Measured Data

This section compares the proposed PSD-based estimator in (5.5) (PSD) with seven other

methods [5] [11]: five crossing-based methods consisting of the inphase zero crossing

rate estimator (IZCR), the envelope level crossing rate estimator (ELCR), the inphase

rate of maxima estimator (IROM), the envelope rate of maxima estimator (EROM), the

instantaneous frequency zero crossing rate estimator (FZCR), and two covariance-based

methods including the inphase integration estimator (ΙΙΝΤ) and envelope integration esti-

mator (ΕΙΝΤ). These are all applied to the narrowband measured data collected at 910.25

MHz, in urban and suburban areas [16].  A vehicle moving with the constant speed of 15

mph, fD = 20 Hz, collected sets of narrowband inphase and quadrature components at
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different locations, recorded as #0011, and so on. The signals were filtered by a 42-tap

digital Kaiser filter. The bandwidth was set to 1 kHz in order to reject out-of-band noise,

but large enough to pass through the signal Doppler spectrum unchanged. Each inphase

(quadrature) component had approximately 250,000 samples, one sample per 28 ms. More

information about the data can be found in [16].

Without any further preprocessing and for each record, IZCR, ELCR, IROM, EROM,

FZCR, IINT, EINT, and the proposed nonparametric PSD estimator are used to estimate the

maximum Doppler frequency from data segments of length 0.56 ms, 200 samples per seg-

ment. Each record includes nearly 1250 segments, and for a given method, 1250 estimates

are obtained and combined by a simple averaging. Based on Fig. 5.13, PSD demonstrates

the best performance and exhibits more reliable estimates for different records. To see the

effect of the number of samples, larger data segments was chosen, 1.4 ms each with 500

samples, and the results are shown in Fig. 5.14. Note that the performance of FZCR de-

grades significantly while the RMSE of IZCR decreases. Overall, the proposed PSD-based

speed estimator is able to provide significant performance improvement, when compared

with traditional techniques.

5.8 Conclusion

In this Chapter, a robust speed technique has been proposed based on the unique spectral

features of the mobile wireless fading channel. As a result, two temporal-only speed

estimators applicable to narrowband and wideband channels, and one space-time speed

estimator, based on an antenna array, were developed. The effects of noise, nonisotropic

scattering with two and three dimensional propagation, and line-of-sight were extensively

investigated through mathematical performance analysis and Monte Carlo simulations.

Comparison with conventional speed estimation methods, using data collected in urban

and suburban areas, demonstrated the utility of the new approach in real-world scenarios.
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CHAPTER 6

CYCLOSTATIONARITYBASED DOPPLER SPREAD ESTIMATION

6.1 Introduction

All the existing speed estimation work including the studies in previous chapters of this

dissertation are based on transmitted pilot tones. To the best of the author's knowledge,

only one [55] has addressed blind speed estimation in a nonlinear modulation system

with no analytical or simulation-based performance evaluation. In this Chapter, new speed

estimators are developed by exploiting the cyclostationarity of linearly modulated signals.

The new estimators can be applied blindly without using training symbols. This increases

the data throughput. On the other hand, where pilot symbols are available, novel estimators

are proposed which provide more accurate estimates compared to blind methods. Essen-

tially, cyclostationarity-based estimators are not sensitive to additive stationary noise or

interference of any color or distribution known to affect pilot-tone-based approaches. The

robustness of the new estimators to nonisotropic scattering and variations of line-of-sight

(LOS) is also investigated. Extensive Monte Carlo simulations are conducted to illustrate

the performance of the new estimators.

The organization of this Chapter is as follows. The signal, channel, and noise models

are discussed in Section 6.2. The cyclostationarity of linearly modulated waveforms is

briefly reviewed in Section 6.3. The new single-antenna speed estimators are presented

in Section 6.4. Extension to systems with multiple antennas is addressed in Section 6.5.

Section 6.6 provides the numerical results, and Section 6.7 concludes the Chapter.

66
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6.2 Signal, Channel, and Noise Models

The received lowpass complex envelope of a linearly modulated signal transmitted through

a frequency-flat fading channel, can be expressed as [54]

z(t) = h(t)s(t) + v(t),	 (6.1)

where s(t) = Σm w(m)g(t — mks ), and the following definitions are as follows:

h(t): fading channel,

w(m): stationary random sequence of transmitted symbols chosen from a finite-

alphabet complex constellation,

9 (t):
 convolution of the transmitter's signaling pulse and the receiver filter which,

without loss of generality, is a raised cosine with rolloff factor β Ε [0, 1] [54],

ν (t) : a complex stationary process which represents the summation of noise and

interference, independent of h(t) and w(m), and

Τs : 	 symbol period.

According to (2.3), the autocorrelation function of the unit-power (σh = 1) fading

process h(t)

Th(T) = 	
Κ
+
 eχρ(j2π fDτ cos αο ) + 

 1 
Κ 1 	 Κ+1

Ιο (‚/κ2 — 4πf2 τ2 + j4nκfDτ cosα)

6.3 Cyclostationarity of the Received Signal

The time-varying autocorrelation of the received signal z(t), defined by rz (t; τ) = rz (t, u) =
E[z (t) z*(u)j with u = t + τ, can be shown to be

χ
Ιο (κ)

(6.2)

rz (t; τ) = rh (τ)rs (t; τ) + τν (τ), 	 (6.3)
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where

00 	 0ο

τ5 (t; τ) = Σ Σ τω (η — 7)9(0 — mTs )9*(t + τ — ηΤs )
m=—oo η=-0ο

0ο 	 0ο

= Σ Τω (1) Σ g(t — mΤ5)9 * (t + τ — 1Τs — mos ), 	 (6.4)
1=-00 	 Μ=-00

in which τ (1) = r,,,(n — m) = Ε {w(m)w*(n)}. It is well known that s(t) is a cyclosta-

tionary random process since rs (t; τ) is periodic in t, with period Τ, [56]. Consequently

τ (t + kTs ; τ) = τ' (t; τ), V t, τ, indicating that z(t) is cyclostationary as well, with the

same period Τs .

The cyclic correlations which are the Fourier coefficients of τ (t; τ) for cyclic fre-

quencies k/TS = 0, +1/Ts , +2/Ts , ..., are given by [56]

Τ9

Rz (k; τ) = 1 	 τχ (t; τ) exp{ —j2nkt/Τ8 }dt
s 0Τ

= rh (τ)R5 (k; τ) + Τν (τ)δk , (6.5)

where δk is the Kronecker delta function, which is 1 when k = 0 and 0 otherwise. Further-

more, RS (k; τ) is the cyclic correlation of s(t), which is the inverse Fourier transform of

s(t)'s cyclic spectrum Ω S (k; f), given by [56]

ΩS (k; f) = 1 G (f) G* f — k ΩΡw (j),	 (6.6)
TS 	TS

where G(f) is the Fourier transform of g(t) and 	 f) is the power spectrum of the

sequence of transmitted symbols {w (m) }, which is also the Fourier transform of F(Ι)

and given by
00

Ωω(f) = Σ w (_J2Ts1C

1=-00

(6.7)
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6.4 The Cyclostationarity-based Estimators

6.4.1 The Cyclic Correlation Approach

For an arbitrary proper complex process z(t) [52], it is known that τ (t; τ) = rz (t, u) =

02rz (t; u) /átáu, where dot denotes differentiation with respect to time t. According to

(6.3),

rz (t; τ) =rh (τ)r,8 (t; τ) + rhh (τ)rss (t; τ) + riih (τ) rss (t; τ)

+ rh (τ)τ (t; τ) + τν (τ), 	 (6.8)

where rhh(τ) = Ε{h(t)h*(t + τ)}, rhh (τ) = Ε{Ί(t)h*(t + τ)}, rss (t; τ) = Ε{s(t),§*(t +

τ)}, τέ8 (t; τ) = Ε{s(t)s*(t + τ)}, and

φ φ

τ (t, τ) = Σ Σ r.,,, (η — m).4(t — mΤθ )g* (t + τ — ηΤ8 ).	 (6.9)
m=-00 η=- οο

It is easy to show that rss (t; τ), rss (t; τ) and rs (t, τ) are periodic w.r.t. t with period Τ8 .

Therefore, i(t) is cyclostationary as well, with the same period Τ. With the assumption

of isotropic scattering and no LOS, i.e., rh(τ) = Jο (2πfDτ) where J8(.) is the zero-order

Bessel function of the first kind, obtain rhh (0) = rhh (0) = 0 and rh (0) = —rh (τ) Ι T_ο =
2π2 fD, where prime denotes differentiation with respect to τ. Therefore, the cyclic corre-

lation of i(t) at τ = 0 can be obtained by calculating the k-th Fourier coefficients of (6.8)

w.r.t. t

R±(k; 0) = 2π 2 .fDR8(k; 0) + Rs(k; 0) + τ (0)δk, (6.10)

where RS (k; 0) and Rs (k; 0) are the k-th Fourier coefficients of (6.4) and (6.9), respectively.

To obtain a noise free estimator for f D , choose k	 0 and divide Rz (k; 0) in (6.10)

by Rz (k; 0) in (6.5). After rearranging the terms, obtain

	1 2 RZ (k;0) 	R3(k,0) ,k
	 0.	 (6.11)2π 	 Rz (k; 0)	 R8 (k; 0)

$2
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The cyclic correlations of z(t) can be estimated from the discrete-time-version signal of

z(t), oversampled at a rate of PITS and represented by {z[n]} ń ο [57]

Rz (k; Ρτd/Τs ) =  1 
N-Td -1

Σ z [nj z*[n + Τd]ε—j2π'η/Ρ ,

η=0

(6.12)

where Td = 0, 1, 2, ..., N — 1. To estimate the cyclic correlations of i(t), first note that z(t)

can be estimated from the oversampled version of z(t) via a finite difference approximation,

which yields {z[n]}ń ó . Then, similarly to (6.12),

Rz (k; Ρτd/Τ5 ) =  1
N —rd —i

Σ z [η] z* [η + Τd] e-,2πkη/ Ρ (6.13)
η=0

Note that R5 (k; 0) and Rs (k; 0) in (6.11) depend on the statistics of the symbols {w(m)},

as well as the pulse shape.

Blind Speed Estimator Assuming that the transmitted data symbol sequence {w(m)} is

white and zero-mean, eq. (6.6) simplifies to [56]

Ω5 (k, f) = σω G (f) G
*

(.1 — kΤS
(6.14)

where σώ = Ε[jw(m)^ 2 ] is the average power of the sequence. It is easily seen that

Ω5 (k; f) = 0, V k > 2 when g(t) is a raised cosine. By taking the inverse Fourier

transform of (6.14), it can be shown that

2

R5 (k; τ) = 
σω ejnkτ/Τ8l 	 Ρ5

χ G* f — k2Τ3
e-32πf τdf (6.15)

which results in

σ2 Τ 	 β/(2Τ3) 	 (7175
RS(1;τ) = ω Sejnτ/Τ3 	 COS2 	e-j2nfτdf

4	 -β/(2Τ9) 	 β 
)

σώΤ8 sin (πβτ/Τθ) ejπτ/Τθ
8π(Τ τ — β2τ3)

(6.16)
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Ωs(k; f) = σz1Τ3 1 G (f) ό* (f — k/Τ8)

where

ό (f) = j2nfG(f).

(6.17)

(6.18)

Similarly to (6.15), obtain

Rs (k; τ)
σ2 	k= ejnkτ/Τ3

ίfΤθ 	 Ι:ό 	2Τ,

χό* f — k 
2ΤS

e-j2nfΤdf (6.19)

which gives
,'β/(2Τ)

 1 	2 πfΤ3
Rs (1; τ) = ( f2 _

	2 
COS 	 e -^2nf Τ df

-β/ (2Τ8 ) 4Τs 	 β

Χ σώΤsπ2 ejπτ/Τ
3. (6.20)

By substituting (6.16) and (6.20) into (6.11), the blind speed estimator can be written

as

fD =
1 1 Ζ (1 ; 0) 	R9 (1 ; Ο) 

& ( 1 ; 0) 	 Rs(1; 0) ' (6.21)
^π

where
Rs (1; 0) 
R8 (1; 0)

(π2 — 6)β2 — 372
3η (6.22)

is obtained from (6.16) and (6.20).

Remark 1: Note that although, in theory, the fading channel rh (τ) can be recovered

by multiplying (6.5) with RS 1 (1; r), it is not easy to obtain a well-behaved one. This is

due to the fact that there are many zero crossings in R,8 (1; τ) which occur at τ = nΤs/β,

n = 2, 3, .... This work deals with cyclic correlation (6.5) directly to develop the blind

speed estimator (6.22).
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Data-Aided Speed Estimator As previously noted, R8 (k; τ) and therefore Rz (k; r), are

dependent on the transmitted symbol sequence and on the rolloff factor of the pulse shaping

filter. This indicates that there might be an optimal or a suboptimal training sequence

for improving the performance of the cyclostationarity-based estimators. In general, the

optimal solution is difficult to obtain due to the highly nonlinear form of the estimator

(6.22). However, in order to completely recover r h (τ) easily, it is possible to find a

suboptimal sequence where IR 8 (1; τ) is constant for all τ. Note that this requirement for

R8 (1; τ) means that Ω s (1, f) must entail an impulse shape. If choosing the fixed training

sequence w (m) = (-1) mσw , in the Appendix G it has been shown that

2
Rs (1; τ) = σΤ3 exp{jπτ/Τs },

4
(6.23)

Rs (1; τ) =
22

4Τs
	exp{jπτ/Τs}. (6.24)

Interestingly these do not depend on the rolloff factor β. Using the same approach that

resulted in (6.21) and (6.22), the data-aided speed estimator can be derived as

fD =
1 1 έ(1; 0) 	 π2

+—.
1χ(lι 0 ) 	 Τs

(6.25)
^π

Remark 2: Clearly, the fading channel can be recovered by multiplying (6.6) with

R; 1 (1; τ) given in (6.23). Thus, to estimate the Doppler spread or mobile speed, use any

methods which are developed directly based on rh (τ), i.e., the correlation matching [5],

polynomial solving [9] or other methods.

6.4.2 The Cyclic Spectrum Approach

By taking the Fourier transform of (6.5) w.r.t. τ, for k 0, obtain

ΩΖ(k; f) = Ωh(f) Ο Ωs(k; f), k 0, (6.26)
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where ® denotes convolution. Note that by choosing k 0, the effect of noise disappears.

Now, obtain f D from the estimate of Ω z (k; f) . The consistent cyclic spectrum estimate can

be obtained by windowing f1 (k; Pτd/Τ3 ) in (6.12) with the window W  (2L9±1) (Td), defined

over [—L9 , L9] [57]

Ly

Ωz(k; Ρfd/Τθ) =Τ3 Σ νν(2L9+1)(Td)χ(ις; Ρτd/Τθ)
Ρ

Td = Lg

χ exp {—j2π fdτd} . 	 (6.27)

Data-Aided Speed Estimator Based on (6.23), Ω8 (1; f) is an impulse at f = 1/(273 ).

Therefore, Ωz (1; f) is simply the Doppler spectrum Ωh(f) shifted from f = 0 to f =

1/(2Τ3 ). Hence, one can use the same technique as in [58] to estimate fD, i.e.,

Ρ
fD = Τ

1
— ;

 + argrnax 	( Ι; f)   (6.28)       

Remark 3: This peak detection approach for the data-aided estimator can not, gener-

ally, be extended to the blind speed estimator. This is because the convolution in (6.26), in

general, will not result in a power spectrum with a particular characteristic that helps speed

estimation. However, in some extreme cases, i.e., β = 0, (6.28) is applicable to the blind

method.

6.5 A Multi-Antenna Cyclostationarity-based Estimator

In this section, the proposed algorithm is extended to a system with multiple antennas in

order to improve performance. Consider a uniform linear antenna array at an elevated

base station (BS) of a marcocell, composed of L omnidirectional unit-gain elements, with

element spacing d. The BS experiences no local scattering, whereas the single-antenna

mobile station (MS) is surrounded by local scatters. Let the received signals at the 1-th

element be zj (t) = h 1 (t)s(t) + ν ι (t),1 = 1, 2, ..., L, which is similar to (6.1). Then the

time-varying space-time crosscorrelation function between za (t) and zb (t), 1 < a < b < L,
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defined by rz ((b — α)Δ, (t; τ)) = Ε[Ζα (t)zb (t + τ)] such that Δ = d/λ, is given by

rz ((b — α)Δ, (t; τ)) = rh ((b — α)Δ, τ)τ5 (t; τ) + rv (τ)δb_α , 	 (6.29)

where the space-time channel crosscorrelation, defined by rh ((b—a)Δ, τ) = Ε[h α (t)hb(t+

r)], is given by (5.9) with 4h = 1

rh((b — α)Δ,τ) = Κ +1 eχρ(4(ζ+ ρ) cοsαο)

1 Ιο (Vκ2 — ζ2 — ρ2 - 2ζρ + j2κ(ζ + ρ) cos αΡ)

+ Κ + 1 	 Ιο(κ) 	 ,	 (6.30)

where ζ = 2π fDτ, and p = 2π(α — b)Δ. The same Rician factor K and unit channel power

Ε[Ιh ι (t)1 2] = σh = 1 at each element are assumed. Noise components are independent at

different elements, with the same power σv . In Section 5.4 it has been shown that the angle

spread at the BS is generally small for macrocells in urban, suburban, and rural areas, most

often less than 30°; and the spatial channel cross-correlation function rh ((b — α)Δ, 0) =

Ε[hα (t)hb(t)], 1 < a < b < L, can be accurately approximated by

rh ((b — a)Δ, 0) 	
σ 

1
h eXp 	 ρ2 sin2 	 + 

K
Kph

1 
exp {jρ cos αΡ} . 	 (6.31)

K+ 	 2κ 	 +

Note that in (6.31), οο = αΡ is assumed due to the small angle spread at the BS.

With τ = 0 and a 	 b in (6.29), the time-varying spatial cross-correlation function

in (6.29) can be written as

rz ((b — α)Δ, (t; 0)) = 7. 1,((b — α)Δ, 0)τ8 (t; 0), 	 (6.32)

where rh ((b — α)Δ, 0) for macrocells is given in (6.31) and rs (t; 0) can be obtained from

(6.4). Since noise components of different elements are independent, the effect of noise

has not shown up in (6.32) as a b. As will be shown in (6.33), cos αΡ can be estimated

by looking at the phase of rz ((b — a) Δ, (t; 0)) in (6.32), due to the special form of rh((b —

a)Δ, 0) in (6.31) and because τ8 (t; 0) in (6.32) is real and positive.

Κ



L1 (Δ, (0; 0)) 
cos a

	'(-2πΔ)
(6.33)
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When the BS experiences such heavy nonisotropic scattering (small angle spread),

shown in Appendix E, there is a strong peak in the power spectrum of each branch Ωh1 (f),

at fD cos α. On the other hand, based on (6.14), it can be shown that Ω 8 (1; f), for a zero-

mean i.i.d. sequence {w(m)}, is a uni-modal spectrum centered at f = 1/(2Τ8 ), with a

bandwidth of β/TS . In addition, for the training sequence w(m) = (-1)mσw , note that

from (6.23) Ωh1 (f) is also an impulse at f = 1/(2Τ8 ). Therefore, according to (6.26) and

due to the impulsive shape of Ωh1 (f) when κ is large, it can be concluded that the peak

of Ω z1 (1; f) for each branch happens at f = fD cos α + 1 / (2Τ5 ) . Relying now upon both

cyclic spectrum and the spatial information provided by multiple antennas, the following

space-time estimator is proposed.

Based on (6.32), estimate cos α via

where L denotes the phase of a complex number and 1 (Δ, (0; 0)) is the estimate of

RΖ (Δ, (k; 0)) = TS 1 fó 3 rz (Δ, (t; 0)) exp{—j2πlkt/Τ,}dt with k = 0 and rz (Δ, (t; 0)) =

Ε[Ζα (t)zá+i (t)], V a E [1, L — 1]. Note that 1 (Δ, (0; 0)) = (L — 1)-1 Σi 11 Rz(Δ, (0; 0))

where Rz(Δ, (0; 0)) = Ν-1/2 Σń ó Ζι (η)Ζ +1 (η), 1 E [1, L — 1], is the 1-th adjacent-

antenna-pair estimate of R Ζ (Δ, (0; 0)). It is worth emphasizing that if noise components

vi (t),1 = 1, 2, ..., L are spatially correlated, Rz (Δ, (0; 0)) in (6.33) should be replaced with

1 (Δ, (1; 0)) in order to have a noise-free estimate of cosα. Finally, fD can be estimated

via 
Ρ L

cosαLΤ ι=ι    

1
2Τ + αrg mαχ Ι Ω zι (1; f )

3  
fD = (6.34)       

where Ώ ΖΙ (1; f) can be obtained by (6.27). Note that the cyclic-spectrum-based estimator

in (6.34) can be applied either blindly or with the aid of the training sequence w(m) =

(-1)mσw.
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6.6 Simulation Results

In this section, first the performance of the proposed single antenna estimators is evaluated

using Monte Carlo simulation; and next, the effect of noise, nonisotropic scattering, and

LOS are investigated. The performance of the space-time estimator is then presented. The

fading channel is generated using the spectral method [31]. The bandlimited Gaussian

noise v(t), with the autocorrelation σvg(τ), is simulated by the same method. It is worth

noting that the proposed algorithm does not put any constraint on the distribution of both

the fading process and the noise, although for simulation purposes only, they are generated

as complex Gaussian processes. The signal-to-noise ratio is defined as SNR = σú,/σv. The

performance of the estimator is measured by using the root mean squared error (RMSE)

criterion {E[(fD — fD)2}}1/2.

In all the simulations, the roll-off factor ,Q = 0.5, oversampling rate P = 8, and

the symbol duration Τs = 0.001 second. Each data-aided estimation uses Μ = 256

symbols and 200 Monte Carlo simulations, whereas blind algorithms use M = 512 4-QAM

i.i.d. symbols 400 Monte Carlo simulations. The abbreviations DA, NDA, CC, and CS

in the figures refer to data aided, non-data aided (blind), cyclic correlation, and cyclic

spectrum, respectively. For example, DA-CC in a legend box represents a data-aided cyclic

correlation based speed estimator.

First, the performance of single antenna estimators is investigated, illustrated by Fig.

6.1 - Fig. 6.6. Fig. 6.1 shows the performance of three estimators DA-CC, NDA-CC,

and DA-CS when the channel is isotropic, κ = 0, Rayleigh fading with SNR = 10 dB.

Obviously, the DA-CS is the best, and DA-CC and NDA-CC have comparable estimation

errors at small Dopplers, while DA-CC performs better than NDA-CC at large Dopplers.

The robustness of these estimators against noise is shown in Fig. 6.2 in isotropic Rayleigh

fading for a fixed fDTS = 0.1. Again, the DA-CS exhibits the best performance. Fig. 6.3

and Fig. 6.4 demonstrate the effect of nonisotropic scattering parameters κ and α. As seen,

the CS-based method is less sensitive to κ than the CC-based techniques but more sensitive
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Figure 6.1 RMSE versus fDTs in isotropic Rayleigh fading, SNR = 10 dB.

to α. Based on Fig. 6.5 and Fig. 6.6, a similar observation can be made regarding the

effect of the LOS parameters K and αo . Note that for all the curves in Fig. 6.3 - Fig. 6.6,

fDTs = 0.1 and SNR= 10dB.

Now the performance of the space-time CS-based estimator in (6.34) is evaluated. In

the simulation, L = 4 space-time correlated complex Gaussian processes for the macrocell

scattering scenario of κ = 100 and α = 60° are generated, with Δ = 1/2. For each branch,

the noise power is the same as the single antenna case, with SNR = 10 dB per branch. Fig.

6.7 illustrates the estimation error for both DA and NDA approaches. Note that the DA-CS

method provides excellent performance over a wide range of Dopplers. The curve for the

DA-CS method for L = 1 is also illustrated in Fig. 6.7, which clearly shows the advantage

of using more than one antenna. Apparently, the presence of LOS will further improve the

performance.
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Figure 6.3 RMSE versus the nonisotropic scattering parameter κ in Rayleigh fading, SNR
= 10dB,ι =30°,and fDT3 = 0.1.
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Figure 6.5 RMSE versus the Rician factor K in Rician isotropic fading, SNR = 10 dB,
α^ = 30°, and fDTS = 0.1.
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Figure 6.7 RMSE versus f DΤs in Rayleigh fading, SNR = 10 dB, κ = 100, α = 60°,
L= 4,andΔ=1/2.
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6.7 Conclusion

In this Chapter, methods have been proposed for estimating the mobile speed using a

linearly modulated waveform transmitted in a fading channel. The new methods exploit the

cyclostationarity of the received signal. Two classes of algorithms were developed based on

the second order cyclic statistics, i.e., the cyclic correlation and cyclic spectrum. Compared

with the conventional pilot-tone-based speed estimation techniques, the resulting estima-

tors provide several benefits, including robustness to stationary noise and interference, as

well as cyclostationary signals with different cyclic frequencies. These algorithms can also

be implemented blindly thus increasing the data throughput.



CHAPTER 7

SUMMARY

The goal of this research has been to design robust speed estimators against noise and other

channel uncertainties. Towards this end, the performance of conventional crossing and

covariance based methods has been thoroughly studied both analytically and via simulation.

Then the classic crossing based methods were extended to the output of diversity reception

and the performance of the proposed six new diversity based estimators were investigated.

Unlike traditional speed estimation algorithms, a more efficient but low complex solution

was developed by exploring the feature of Doppler spectrum of mobile fading channels.

The comparison of this new method (PSD) with existing ones is illustrated in Table 7.1. Its

extension to multi-antenna systems was also proposed by taking advantage of the spatial in-

formation. Finally a new, but important category of speed estimation technique, which can

be applied blindly, was proposed based on the inherent cyclostationarity of the modulated

signal.

7.1 Contributions

The contributions of the work in this dissertation are summarized as follows:

Table 7.1 Comparison of speed estimation techniques

Estimation

Technique

Sensitivity to Computational

ComplexityNoise Nonisotropic LOS

Crossing High Medium High Low

Covariance High Medium High Low

ML Need to be estimated Not studied Not Studied High

PSD Low Low Low Low
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• In a unified framework, a variety of crossing-based and covariance-based speed esti-

mation techniques were studied. Closed-form expressions for the bias and variance

of the inphase-based estimators were presented and verified via simulation. It was

demonstrated mathematically, that for large observation intervals, the performance

of all these estimators is the same.

• Four new closed form expressions were derived for inphase zero crossing rate, in-

phase rate of maxima, phase zero crossing rate, and the instantaneous frequency

zero crossing rate of the output of selection combining. Their application as speed

estimators was investigated.

• Α new speed estimation technique based on the PSD of fading channels was pro-

posed. In comparison with the existing methods, it provides a significant perfor-

mance gain in terms of robustness to noise, nonisotropic scattering, LOS, and differ-

ent geometrical propagations. The analytic performance analysis was also presented

and validated by Monte Carlo simulations.

• Relying upon the new PSD speed estimation algorithm, a space-time speed estimator

which exploits the spatial information provided by multi-antenna system was devel-

oped. It shows excellent performance over a wide rage of mobile speeds and different

propagation environments.

• By exploiting the cyclostationarity of the modulated waveform transmitted through

fading channels, a new category of speed estimation technique was proposed. Two

classes of algorithms based on the second order cyclic statistics were developed.

Compared with the conventional pilot-tone-based speed estimation techniques, the

resulting estimators provide several benefits, including robustness to stationary noise

and interference, as well as cyclostationary signals with different cyclic frequen-

cies. These algorithms can also be implemented blindly, thus can increase the data

throughput.
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7.2 Future Work

7.2.1 Performance Analysis of Cyclostationarity-based Estimators

It is interesting to establish and analyze the asymptotic (large sample) performance of the

cyclostationarity-based based estimators as a function of the pulse shape bandwidth and the

oversampling factor. For the cyclic correlation based estimators, the starting point could

be the calculation of the asymptotic covariance matrices of the cyclic correlation estimates,

which has been treated in several papers [59] [60]. On the other hand, for the cyclic-

spectrum based estimators, [57] [61] could be good references to start with by looking at

the properties of the cyclic spectrum estimates.

7.2.2 System Performance Evaluation

Previous work on system performance evaluation with application of mobile speed estima-

tion were mainly focused on crossing- and covariance-based methods [ 12] [62] [63] [64]

[65]. It would be another interesting future work to apply the proposed new speed esti-

mators to current systems which typically include TDMA (GSM/EDGE), CDMA (3GPP

WCDMA and CDMΑ2000) and OFDM(A) (WiΜΑΧ/802.16e). The impact of the accu-

racy of speed estimation on system performance in general comes from two aspects: adap-

tive receiver algorithm and handoff decision algorithm. However, in multicarrier system

such as OFDM(A) and MC-CDMA, the effect of Doppler spread estimate on mitigation

algorithm for intercarrier interference (ICI) is another problem worth investigating [66]

[67] [68] [69] [70].



APPENDIX A

EXPECTED VALUES OF THE INPHASE-BASED ESTIMATORS IN NOISY

RAYLEIGH CHANNELS WITH NONISOTROPIC SCATTERING

All the speed estimators discussed in Chapter 3 are unbiased or approximately unbiased.

This holds only under the assumption of a noise-free isotropic Rayleigh fading channel,

where rh (τ) = Jo (ωDτ) . To evaluate the theoretical estimation errors of the inphase-based

speed estimators in (3.8), (3.9), (3.18) and (3.26), in a noisy nonisotropic Rayleigh fading

channel, use the following correlation function for the received signal z (t), according to

(3.1)

τ(τ) = Th(T) + rn (τ). 	 (Α.1)

For rh (τ) in (A.1), (3.2) is used. The noise correlation function τ(τ) = E[n (t)n*(t + τ)]

is given by σńsin(2πΒτχτ)/(2πΒ,.xτ). This corresponds to a bandlimited flat-spectrum

lowpass complex noise with the power σń and the bandwidth Brx in Hz. The SNR is defined

as 0h/σ ; and ch = 1 is assumed without loss of generality. As mentioned previously,

Βrx = 101 Hz is used throughout the simulations. Note that the variance expressions in

(3.28), (3.34) and (3.36) generally hold for (A.1). Closed-form formulas for the expected

value of the four inphase-based estimators are given in the sequel. They also hold for (A.1).

Define β(t) = SJR{z(t)}, with z(t) given in (3.1). For rβ (τ) = Ε[β(t)β*(t + τ)],

rβ (τ) = (1/2) R{rz (τ)}. It is well known that the zero crossing rate of a real Gaussian

process can be calculated using its correlation function [2], which for β(t) and using (Α.1),

can be written as

Ε[Νβ (0, Τ)] 
	

1 	 —τ (0 )
Τ
	

2πV rρ (0)

1 4π2 Β?χσή ωυ(Ιο (κ) + Ι2 (κ) cos(2α) 
2π 3(1 + σή) + 	 2(1 + σή)Ιο (κ) (Α.2)
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By replacing Ν (0, T) in (3.8) with Νβ (0, T), the mean of the InphaseZCR estimator can

be written as

Ε[ώD , ι ] =
8π2 Β χσ2η ω,(Ιο (κ) + Ι2 (κ) cos(2α)) 
3(1 + σή) + 	 (1 + σή)Ιο(ι^)

(A.3)

For σń = κ = 0, i.e., noise-free isotropic scattering, (A.3) reduces to Ε[ώD, ι ] _ wD , as

mentioned right after (3.11).

As mentioned earlier, the number of maxima of a process is the same as the number

of upward or downward zero crossings of the derivative of the process. Therefore the rate

of maxima of /3(t) can be calculated based on /.^(t) as

Ε[Μβ(Τ)] _ 1
Τ 	 2π

—τ(0) _ 1
rβ(0) 	 2π \

(A.4)

where rá) (τ) is the fourth derivative with respect to τ. The lengthy closed form of (A.4)

is not given to save space. By replacing Μ(Τ) in (3.9) with Μβ (T ), the mean of the

InphaseROM estimator can be easily derived using (A.4). For isotropic Rayleigh fading

without noise and σh = 1, obtain τ(τ) = Jo(WDr) from (A.1). This makes it easy to

verify that Ε[ώD, 2 ] = WD , as mentioned right after (3.11).

To calculate the expected value of the InphaseCOV estimator in (3.18), one needs to

use the approximation Ε[ώD,5] VΕ[ωόι introduced previously. The term under the

square root can be calculated from (3.20), where c(τ) is replaced by cβ (τ) = τβ (τ) —

{Ε[β(t)j} 2 = τβ (τ) = (1/2)R{rz (τ)}, a = 1/2 and b = 1/8. Note that τ(τ) is given in

(A.1). This gives the expected value of the inphaseCOV estimator as

Ε[ώD,5]
20	 40 Το

3Τ2 Τ5 	 τ2rβ(τ)dτ.
ο 	 ο ο

(A.5)

In order to obtain the expected value of the InphaselNT estimator in (3.26), it is

necessary to use the approximation Ε[ώD , s ] ti V Ε[ωD ,s]. The term under the square root

can be calculated from (3.25), with d = 4 and y(t) replaced by /3(t). Since Ε[J2 (t)] =
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τ(Ο) = —τ (0) and τβ (τ) = (1/2)^i{τ (τ)}, with τ(τ) given in (A.1), it can be easily

shown that

Ε[ώD,6] ti V —4τ (0 )

8π2 ΒΤχσ2 + ω^(Ιο (κ) + Ι2 (κ) cos(2α)) 
3 	 Ιο(κ)

(Α.6)

For σń = κ = 0, i.e., noise-free isotropic scattering, (Α.6) simplifies to Ε[ώD ,s ] 	 as

given in (3.27).



APPENDIX B

THE ASYMPTOTIC VARIANCE OF THE INPHASE-BASED CROSSING

ESTIMATORS

In this Appendix the asymptotic results given in (3.31) are proved. According to (3.10)

in [20], that part of the integrand in (3.28) which is within the square brackets can be

written as

σ (τ)
	 2    	 - 	

2
/	  {

ι _ ρ (τ)± ρ' (τ) cοs 1(_ρς (τ))
} ^	 ς.^/1 — τ (τ)

= 1 π { —r 'ς (τ) + Ο [τζ2 (τ) + rς 2 (τ) + τ'ς2 (τ) 	 ->
2	

] } , αs τ 	 οο. (B.1)

To derive the asymptotic performance of D,1 in (3.8), note that with ζ(t) _ ^ (t)

rς (τ) = 2rc (τ) _ R{rh (τ) } follows. Based on (3.30), it can be easily shown that

1/2r (Τ) = ωD 	 2π9 τ-1 /2 cοsίωυ τ — π/4) + Ο(τ -1 ), as τ —4 οο,
2

where g = ρ(0) +ρ(π). Also since τ cos2 (WDT — π/4) = (τ -1 /2) + (τ -1 /2) cos(2ωD τ —

7/2) = τ -1 /2 + Ο(τ -1 ), as τ —* οο, obtain

ω -1π 2
ι. (Τ) =  Β4 g τ-1 + Ο(τ 1 ) as τ 	 οο.

By taking the derivative of (3.3) obtain

τ; (τ) = 	 — jωD cos(φ)ρ(φ) exp[— jωD cos(φ)τ]dφ.
-π

Since the only difference between (B.4) and Th(T) in (3.3) is the extra term —jwD cos(ψ),

the following asymptotic form can be derived for r(τ) by replacing p(ψ) in (3.30) with

(B.2)

(B.3)

(B.4)
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—ΙωDρ(ψ) cos ψ

r;jr) = —jwD 
wDT' -1/2

C l 	
Γρ(Ο)e.1(ωντ—π/4) — ρ (π ) e —,j(ω^τ—π

J
/4)^ + Ο(τ- 	--1 ), as τ ^ 00.

2πΡ 
(Β.5)

Following the same procedure further results in

rh(τ) 	 υ 	
ιτ1 —ι/2

= —ω  	
Γρ(0)e.i(ωυτ-π/4) + ρ(π)e-^(ωρτ-π

J
/4)1 + Ο(τ -1 ), as τ —i ΟΟ.

ωC 2π) 
(Β .6)

Since τ(τ) = (1/2)R{rh (τ)}, by taking the real parts of (Β.5) and (Β.6), easily obtain

rξ (τ) =
2πωϋg 7_1 /2 Sifl(WDT — π/4) + Ο(τ-1 ) , as τ 	 οο,

2

τ(τ) = 
ωϋ2 2πg

τ-1/2 cOS(ωDτ — π/4) + Ο(τ-1 ), as τ οο.
ξ 	2

Also, since the asymptotic form for both τ -1 sine (ινDΤ — 7/4) and τ -1 cost (ωD τ — π/4)

is 7 -1 /2 + Ο(τ-1 ), further obtain

2
rξ 2 (τ) = π9 ω D τ-1 + Ο(τ 1 ) as τ — οο,

π 2ws
rξ 2 (Τ) = g4 D_1 + Ο(Τ-1), as τ —> οο.

(Β.9)

(Β.10)

Based on rς (τ) = 2r^ (τ), and after replacing r^ (τ), r'ς2 (τ), and r '^ 2 (τ) in (B.1) with

(Β.3), (B.9) and (B.10), respectively, the right-hand side of (B.1) simplifies to

—πτ (τ) + Ο(τ -1 ), as τ -4 οο. (Β.11)

(Β.7)

(Β.8)
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As soon becomes clear, the following two results are needed to calculate the asymp-

totic variance of wD , 1

ΓΤ τ (τ)dτ = τ (Τ) - 7-ξ(0) = V2πωυ9Τ-1/2 Sifl(w DT - π/4) + 0(Τ 1 )
ο 	 2

= 0(Τ 112 ), as Τ --i οο, 	 (Β.12)

Τ ττ (τ)dτ = Ττ (Τ) - τ (Τ) + τ(Ο) _ V2πωD9Τι/2 Sifl(wDT - π/4) + Ο(1)
ο 	 2

^/2πω-ι/2+ 	
2^ 

9 Τ-ι/2 cos(ωΒΤ - π/4) + 0(Τ 1 )

= 0(Τ112 ), as Τ — οο.	 (Β.13)

Note that τ(Τ) and τ(Τ) for large Τ are obtained from (Β.7) and (Β.2), respectively.

There are two integrals on the right-hand side of (3.28). By replacing the square

brackets in (3.28) with (B.11), the first integral can be shown to be Ο(T -1 /2 ) + 0(lπ Τ),

as Τ --> οο. The former term comes from (Β.12), whereas the latter is the integral of τ -1 .

Furthermore, by replacing the square brackets in (3.28) with (B.11), the second integral

can be reduced to 0(Τ 1 /2 ) + 0(Τ), as Τ -+ οο. The former is taken from (Β.13), and the

latter is the integral of 1. Therefore, the whole integral on the right-hand side of (3.28) can

be written as 0(Τ-1 /2 ) + 0(ln T) + Τ-1 [0(Τ 1 /2 ) + 0(Τ)] = 0(ln T), as Τ — οο. This

completes the proof of (3.31) for the asymptotic variance of CJD , 1.

To prove the asymptotic performance of the estimator in (3.9), first note that now

ζ(t) = (2/ωD )ξ(t). Therefore rς (τ) in (B.1) is given by

rς (τ) = (4/ω^) τ (τ) = -(4/ω^)ή (τ) = -(2/ω^) {ή (τ)}, (Β.14)
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where r'h(T) is given by (Β.6). Obviously, τ'ς (τ) = —(2/ ]D) i{τh3) ('r)} and r'^(τ) =

— (2/ωD)^i{rh4) (τ) }, where rh3) (τ) and rh4) (τ) asymptotically behave as follows

	1-1 2

4,3)(τ) = JWD ι 2π ) 	[
ρ(0)ei(ω1)τ-π/4) — ρ (π ) e-j(ωρ τ-π/4)] + Ο(τ-1 ), as τ -* οο,

(Β.15)

and

ίωυτ‘ -1/2	 -j( 	 1rh4) 
(τ) =

 WD 2π Ι 
	[ρ(Ο)ej(ωρτ-π/4) -}- ρ(π)ε ωρτ-π/4)

 ] + Ο(τ- ), as τ —> οο.

(Β.16)

These two are obtained following the same technique used to derive (Β.5). When com-

paring the asymptotics of τ(τ) in (Β.6) with rh (T) in (3.30), τ(τ) in (Β.15) with τ(τ)

in (Β.5), and rh4) (τ) in (Β.16) with r'h(τ) in (Β.6), observe that each pair takes the same

form, if these constants outside the square brackets are ignored (which will not affect the

conclusion). This means that the right-hand side of (Β.2) and then the right-hand side of

(3.28), are asymptotically the same as those previously derived for ÁD , 1 . Therefore, the

asymptotic variance of ÁD , 2 is the same as CDD , Ι, given in (3.31).



ΑΡΡΕΝDΙΧ C

DERIVATION OF THE JOINT PDF OF THE COMBINER OUTPUT AND ITS

DERIVATIVE

According to (4.7), the SC diversity system produces the signal γ(t) and its derivative '(t)

such that

'·y (t) = 'i (t) and 'γ (t) = ' γ (t) if ρi (t) = max({ρk(t)}k 1)ι 	 (C.1)

which means the output at time instant t is coming from the branch with the largest instan-

taneous envelope. Of course, i may change as t changes.

Define the event ι = {Ψ : ρ(t) = max({ρk (t)}k- 1 )}, i = 1, 2, ..., L, with the

probability Ρ( î), where Ψ represents a point of the sample space. Based on the total

probability theorem [29], the joint distribution function of 7(t) and 'γ(t) can be written as

F( ) = Σ ρ(Ί^ι ί'Ιei)Ρ(4)ι
i=1

where F( -γ,'γΙ4) = P("xi < -γ , γi < "k). This results in

F ( ) = 	 Ρ (ηί [ Ί' ι ήί [
i= 1

With i.i.d. branches, (C.3) simplifies to

F(η, ή) = LP(ηι <_ η, ή1 <_

= LP(η1 < η, η1 < ί', Ρ2 < Ρ1 ι Ρ3 < Ρ1 ι ι pL < Ρ1)
φ

= L 	 Ρ(1 [ ηι η1 5_ Ί', Ρ2 < Ρ1ι Ρ3 < ρ1, ••ι ΡL < ΡιΙΡ1). 1(Ρι)dρι
0
φ

=Ρ(η1 < ηι ήι < ήΙΡι)ΡL-ι
(Ρ2 < ΡιΙΡι).1(Ρι)dρι.

ο

(C.2)

(C.3)

(C.4)
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Since the envelope of each branch is Rayleigh distributed, obtain

Ρ(Ρ2<Ρ16Ρ1 )
=!ρ1 ρ2

eΧ10 —
Ρ2 

dΡ2 = 1 — ωζρ — Ρ1
 b0 	2b0	 2b0

which after substitution in (C.4) and using the binomial expansion, simplifies (C.4) to

	L-1	
— 1 	 φ 	 k 

2

	

Ε(η, ή) = Σ 	 (-1)k eXP — 2b Ρ1
 Ρ( 1 <_ η, ήι <_ Ρι)401(Ρι)dΡ1

	k _0 	 ο
(C.6)

By taking the derivative of (C.6) with respect to η and y one obtains the joint PDF of 'y(t)

and ''(t)
L-1 L _ 1 	 φ 	 k 2

.fη; (ί, ή) = L Σ 	 (- 1)k 	 eXP (_ ) 2b Ρι fηιή1(η, ήΙΡι)fpl (p i )dp i , (C.7)
k=0 	 0

where f1,1(., . ρι ) is the joint PDF of γ(t) and '(t), conditioned on pi (t). Equation (C.7)

can be written in the following more compact form

L-ι L— 1 
f( ) = L Σ 	 (-1)k

 0 
fρ1Ylή1 (Ρ1, Y, ^) eXPί--2ΙΙΟ Π2ι) d01, 	 (C.8)

k=0
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where f,l^l^l (., . , .) is the joint PDF of pi (t), 71 (t), and ''l (t).



ΑΡΡΕΝDΙΧ D

DERIVATION OF SC INPHASE RATE OF MAXIMA

To derive the inphase rate of maxima, substituting (4.24) into (4.10) with ± = O leads to

E[MΧ(T)]7, 	 = 	 xpxx (0, x )dx
0

L-1L
2π2 '/bo b2 Β 	 kk-0

1) (-1)ko(4), (D.1)

where
φ

Ο(1) _
z=0

2π φ

χ exp ί--Ι;ΊΟ χ2
φ1=0 Ρ1=0 	 2Β

)

b2 x cos ιρ ι 	+ 1	 b2 cos2 cρ 1 	 2x exp — 	 Ριdxd
Β 	 Ri —	 2b + 2b Β 	 Ρι 	 cpιdpl. 	 (D.2)

ο 	 ο

Using (3.462.5) in [36] to (D.2), one has

Ο(1) = Ο1(k) + 82 (k) (D.3)

with
2π 	 φ Β 	 ( k +1 b2 cοs2 (p1 	 28 ι () 	 b Ρι exp	 2b + 2b Β 	 Ρι dιριdΡι

	

φ1=ο ρ1=ο 0 	 ο 	 ο
_ 	2πΒ
, (k + 1)2Β + (k

 +
 1)b2' 	(D.4)

and

82(k )
  

 =

	2π 	 οο (2πΒ) 1 /2 b2ρ1 cos ιρι 	k + 1 Ρ2

	

φ1=0 Ρ1=0 	 2bó/2	 exp	
2b0

χ 1 — φ b2Ρ1 cOs ιρ1
	dιριdΡι

 ))
ν2bοΒ

π/2 	 φ

2 	
(2πΒ)1 /2b2pi cos ι 	 Ι + 1 2

α=—π/2 ρi=0 	 2b^12
	exp 	2b0	 Ρ ι

χ Φ 
b2Ρι cos ιχ 

dcxd

	

ν2b0Β
	pi, (D.5)
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where Φ(x) = 2π -1 /2 fó e -t2 dt is the error function and Φ(—x) = —Φ(x) is used. By

using (6.286.1) in [36] for (D.5), it can be shown that

3 	 5 (lc + 1)Β
	_ 27Β 1 /2 62 	8Β2 2 2Fι 2' 2 ' 2' b2 cos2 α

82(k ) 	 (k + 1) 3/2 	3b2 ο 	cos2 α
	do, 	(D.6)

where 2 F1 (.,.;.;.) is the hypergeometric function [36]. By substituting (D.6), (D.4), and

(D.3) into (D.1), finally obtain

E[MX (T)} _ L L-1 L — 1 	
1 k 	

Β
Τ 	 27Σ 	 ( ) ,/lc+1 2bbΒ+ k+1 bb3k-0 	( 	 ) 0 2 	 ( 	 ) 0 2

3 5 (1 + 1)Β
b112 	4Β3/2 	 i 2 F1 

	 2 ' 2' b2 cOs2 α

+ b01 /2 (1 + 1) 3/2 	3nb8^2 b2^2 0 	 COS2 α
	d α

(D.7)



APPENDIX E

THE PEAK IN THE POWER SPECTRUM

The power spectral density (PSD) of unit-power h(t) for an arbitrary AOA distribution p(Θ),

in the two-dimensional plane, with a unit-gain isotropic receive antenna can be expressed

as [2]

Ωh(.) 	 - /f 21_ f 2
 (Ρίο) + ρ(-θ)),

ν D 
(E.1)

where Θ = cos -1 (f / fD). In a heavily nonisotropic scattering, i.e., κ > 10, ρ(Θ) is

approximately Gaussian with mean α and variance 1/κ, and observe that p(Θ)/ ρ(—Θ) =

eχρ(2κΘα). Clearly, as κ -^ oo and for a given f, Ωh (f) ρ(Θ)/fD — f 2 when α and

Θ have the same sign, and Ω h (f) ρ(—Θ) / ν f D — f 2 , when α and Θ have opposite signs.

Without loss of generality, choose positive α and Θ, which yield

Ωh (f) ti 	 ρ(Θ)  	

=
	

κ
	exp	

κ (€08-1 (f /fD) - 
)2

	(Ε.2)
ν fO — f2 	 2π(fD — f 2 ) 	 2

By taking the derivative of (E.2) with respect to f and setting it to zero, assuming

f +fD and some simplifications, obtain

1 +
(( f ) 2
	 2

f	
- 1) 	 cos-1

ίffυ) Ï

When κ » 1, f = fD cos α is the root of eq. (E.3). To verify that f = fD cos α corresponds

to the maximum of Ωh (f) in (E.2), it is necessary to look at the second derivative of (E.2)

with respect to f at f = fD cos α

^(ι^ — 4 — ('ς + 2) cos(2α))
	( Ε.4)

which is negative for α > 0, when ‚ς » 1.

2'/2π fD sin5 α
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Figure E.1 The power spectral density Ωh (f) .

To show that the peak at f = fD cos α includes most of the signal power as κ —^ οο,

use the method of Laplace [71] to obtain the power centered around f = fD cos α, over a

sufficiently small bandwidth ε

fD cos

ΡfD εοsα = 	 Ωh(f)df ^ Φ (UVκ/2 ),
ιD εοs α—ε/2

(E.5)

where Φ (x) = 27-2 fo e -t2dt is the error function, and U = I cos-1 (cos α + ff 1 ε/2) — αI

Since U is a finite positive number, fD cos α 1 as κ —* οο. Therefore, for large κ, the

power is mostly concentrated at f = fD cos α. To further validate this observation, PSD's

Ωh (f) in (E.1) have been plotted for different κ and α, as shown in Fig. E.1, with f D = 20

Hz. As κ increases, the sharp peak at fD cos α becomes more visible.



APPENDIX F

PROOF OF PROPOSITION 1

At Ν discrete frequencies { μk}  / 1-Ν/2, with Ν even, the discrete Fourier transform (DFT)

of an N-element vector z is the vector Z defined by

Ζ = Ytz,

Υ = [e(!υ1-Ν/2) e(μ2_Ν/2) ... e(μ)Ι,

θ(μk) =

Τ
z = [z[0] z[1] ... z[N-l}j,

Ζ = [Ζ[μ1-Ν/2] Ζ[μ2-Ν/2] ... Ζ[μΝ2]] Τ/

where (•)T and
 (•)t stand for transpose and transpose conjugate, respectively. According

to (5.4), clearly, 'Sz (μk) = ι Ζ [μk ] 2 . If z is a zero-mean proper complex Gaussian random

vector, the complex random vector Z, resulting from a linear transformation of z, is proper

and Gaussian with zero mean [52]. It is also well known that the real and imaginary part of

each component of a proper random vector are uncorrelated [52]. Consequently, Re(Ζ[μ k ])

and Im(Ζ[μk]) for any k, are independent real Gaussian random variables with the same

variance, given by Ε[^Ζ[μk ]^ 2 ]/2, where Ε[^Ζ[μk ]^ 2] =  iin which R =

Ε [zz t ] with each element being riί = rz ((i — 1)/f8 ). Now it is easy to verify that Sz (μk )

has an exponential PDF

1 	 s
psz(μ 	

_
k)(s) 	 Sz(μk) exp
	

Sχ(μk) '
 > 0,

where, by definition,

Sz(μk) = Ε[Sz(μk)] = Ε[jΖ[μk] 1 2] = et (μk)Re(μk).
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That a Toeplitz matrix can be diagonalized by the DFT matrix Y asymptotically [72]

is well known. Therefore, for large N, diagonalization of R yields the following result of

the correlation matrix of Ζ

Ε[ΖΖ'] = YtR1 Α, (F.4)

where A is a diagonal matrix consisting of the eigenvalues of R. Eq. (F.4) indicates that the

elements of the Gaussian random vector Ζ are asymptotically independent. Therefore, it

can be concluded that as N -+ oo, the random variables ΟΖίμk)}N^Ι_Ν/2 are independent

for different k.



APPENDIX G

DERIVATION OF (6.23) AND (6.24)

For a given training sequence w(m) = (-1)mσw which is deterministic, one needs to

rewrite (6.4) as

rs (t; τ) = Σ Σ w
(m )w*(n )g (t — mΤ8 )g* (t + τ — ηΤ8 )

m η

= σ  Σ Σ( -1 ) (m+η) 9(t — mΤ8)9* (t + τ — ηΤ8)
m η

= σ Σ(-ι)1 g(t — mΤ)g* (t + τ — mΤ3 —1Τ1 )
ι 	 m

= Σ f.ts (1) Σ 9(t - mTs)9 * (t + τ — mos — 1Τ8)•
1 	 m

(G.l)

In the derivation m = n + 1 is used and fts (1) = (-1) 1 σú, . By comparing (G.1) with

(6.4) and then using (6.6), when such a training sequence is transmitted, obtain the cyclic

spectrum of s(t) as

Ω8(1k; f) = 1 G (f) G* (.1. — kΩ ts (f) ,Τ,Τs

where

_ 	 οο 	 οο

Ω18 (f) 	 Σ
 Τs(1)e-j2πΙΤ8 f = σ , Σ

 (-1)1e—j2π1Τ5

1= -00 	 1=-00
00 	 00

= σ , 
Σ e

,71πe —j2π1Τ5 f = σ2
 Σ e

jn (1-2Τs f ) 1

1= -00 	 1=- 00
0ο

= σ2 Σ δ f — 27, , m is odd.
m=-ο0
	 s

The Poisson's sum formula [73, p. 786] is used in the last step of derivation of (G.3). Note

that for raised cosine pulse g(t), it is already known that Ω G (f) _° G (f) G* (f — Ts) =

(G.2)

(G.3)
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0, VΙkΙ > 2 and is bandlimited within [(1 — β)/(2Τ8 ), (1 + β)/(2ΤS )] for k = 1. Also,

ΩG((1 — β)/(2Τ8 )) = ΩG((1 + β)/(2Τ8 )) = 0. Therefore,

	

σώ 	 1	 1Ω9 (1; f) = ΤS ΩG (;;) δ (f 2ΤS
= σωΤs δ 	 1 .

	4 	 f 2ΤS

Clearly, taking the Fourier transform of (G.4) w.r.t. f leads to (6.23).

Following the same procedure, it is easily shown that the cyclic spectrum of .(t)

Ωs (k; f) = 1 G (f) G* f — k Ωts ( f )ΤS 	 ΤS
= — 4π2 f 

2 G (f ) G* f — 	 Ωts (f)

	

ΤS 	 ΤS

_ — π2σω δ 	1
	4 Τ8 	f 2ΤS

(G.5)

where G(f) is given in (6.18). Apparently, (6.24) is reached after taking the Fourier

transform of (G.5).

(G.4)
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