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ABSTRACT

FLOW CHARACTERISTICS AND PHASE INTERACTIONS OF
EVAPORATING SPRAYS IN GAS-SOLID SUSPENSIONS

by
Muhammad Mushahid Rafique Qureshi

Evaporating spray jets have a wide range of applications in many industrial processes

such as fluidized catalytic cracking of crude oil in petroleum refinery, coal gasification,

fluidized coking to make synthetic crude oil, and condensed mode gas polymerization.

The rapid evaporation of spray jets significantly affects the gas/solids mixing, solids

concentration, gas-solid temperature and gas-solid velocity acceleration. The complex

interactions mechanism of phase change, three phase interaction, heat and mass transfer

of gas, solids and evaporating droplets dominate the process efficiency and product

quality. In such three-phase flows, the phase transport characteristics are influenced by

both droplet-gas interaction and droplet-solids interactions. In dense phase flow, the

droplet-solids interaction becomes to play a dominant role in the transport of both spray

and gas/solids flow. In very hot environments of gas/solids suspensions, the rapid

vaporization of sprays results from the droplet-solids collisions. With the preheated

temperature of solids beyond the Leidenfrost temperature, the heat transfer into spray

droplets and resulted vaporization can be greatly restricted by the film boiling

characteristics that are in turn coupled with collision dynamics. So far few studies on

these complex yet important interaction mechanisms have been reported.

This doctoral dissertation study is aimed to gain an in-depth understanding on

characteristic interactions among spray, gas and solids. The study is focused on cases

where the rapid vaporization concurs with the spray injection into a gas/solids suspension



that is preheated beyond the Leidenfrost temperature. Α combined study of experiments,

mechanistic modeling and numerical simulations is thus conducted to investigate three

fundamental effects or mechanisms: (1) effect of vaporization on gas entrainment in a

submerge spray jet; (2) jet characteristics of sprays from rectangular nozzles with a fan

angle; and (3) dynamic transport in a type-II Leidenfrost collision (between a small hot

solid particle and a large droplet).

In the gas entrainment study, a direct measurement method is developed to study

the air entrainment induced by a liquid nitrogen spray jet into an unbounded and stagnant

room air. The air entrainment is determined by measurements of local oxygen

concentration using an in-situ oxygen concentration analyzer, gas temperature using a

thermocouple system, and droplet velocity using a Laser Doppler Velocimeter. The

results not only support the approximation of flow similarities in evaporating sprays with

round nozzles but also suggest that the evaporation of spray markedly weakens the gas

entrainment. In addition, a parametric model is developed to provide a theoretical basis of

the data analysis for the cross-section averaged spray evaporation rate within the spray jet

region.

Α three-dimensional simulation study is performed to investigate the

hydrodynamic behaviors of a cross-flow liquid nitrogen spray injected into an air-FCC

riser of rectangular cross-section. The gas-solid (air-FCC) flow is simulated using the

multi-fluid method while the evaporating sprays (liquid nitrogen) are calculated using the

Lagrangian trajectory method, with a strong two-way coupling between the two. Two

parametric effects are studied in details here: (1) effect of aspect ratio of rectangular

nozzles on flow characteristics and (2) effect of nozzle fan angle on spray coverage as



well as vapor flux distribution. The study concludes that there exists an optimized value

of aspect ratio for which the spray coverage area is maximized. The simulation also

shows the formation of a dense layer of solids around the spray from the compression

effect of vapor expansion and rigid wall of gas-solid flow chamber. It is also found that

the spray coverage is basically dominated by the spray fan angle. The spray vaporization

flux per unit area of spray coverage is highly non-linearly distributed along the spray

penetration.

Interaction mechanism of large spray droplets and small solid particles is the key

factor to govern the phase interactions of the spray in gas-solid flows as most of the

evaporation of spray occurs in the initial part of spray jet as concluded by the fist two

parts of this thesis. A careful analysis of this system reveals that this interaction

mechanism is basically different than that of Leidenfrost collision between a small

droplet and a large solid particle (defined as Type I Leidenfrost collision here). Portion of

this study is thus focused on the heat and mass transfer during the Leidenfrost collisions

between large evaporating droplets and small solid particles (defined as Type II

Leidenfrost collision). In this study, experiments are conducted first to identify various

modes of Type II Leidenfrost collision, and then basic mechanistic models have been

developed to describe these modes. Parametric effects of different particle temperatures

and velocities on the heat and mass transfer during the collision process have been

illustrated using these models.
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CHAPTER 1

INTRODUCTION

1.1 Background

Evaporating spray jets are used in many industrial applications such as feed oil sprays

in the petroleum refinery, spray drying, liquid fuel sprays in engine combustion, and

spray-assisted coal gasification. Spray with a rapid evaporation can have a strong

influence on flow characteristics such as spray penetration length, spray trajectory

deflection and can strongly influence the phase interactions with the secondary

medium. Nozzle characteristics, such as shape, dimensions, and fan angle have a

significant effect on the spray characteristics and behavior especially in the presence

of a strong interacting secondary medium. Hence, it is interesting to investigate the

interacting effects to fully understand and govern the flow behavior. However, this

problem is very challenging due to its very complicated phase interaction mechanism

and also due to the complexity in measurement methods used in these studies.

Therefore, almost all studies focus on the circular shape nozzle due to its symmetry

around the axis which is useful for modeling purposes. Academically, this problem

has been attempted many times and a reasonable understanding has been achieved.

For a cross flow circular nozzle, studies are underway and some understanding has

already been achieved. Interestingly, it has been experimentally found that

rectangular configuration of nozzle provides much better results for above mentioned

industrial applications and is of primary interest for the research point of view. It is

very important to note that rectangular shape nozzles behave much differently than

1
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circular nozzles in terms of flow characteristics. Axial similarities may and may not

hold. Nozzle fan angle (spray spreading angle) and orientation of the rectangular

nozzle (horizontal to vertical) add to the complexity of the problem. Moreover to

investigate this problem in the presence of a highly evaporating medium makes it

very challenging yet exciting.

1.2 Purpose of Study

Spray characteristics such as entrainment of the secondary medium into the spray,

aspect ratio of the rectangular nozzle, effect of fan angle on the flow structure are all

unanswered questions in this field of study. A detailed study is required to see the

effect of these parameters on the flow structure. An experimental approach is adapted

to quantify the parametric effects on the flow structure. However, as it is very hard to

quantify every possible parameter experimentally, a numerical study is performed to

investigate the effects of these parameters in detail.

Although a qualitative analysis is possible with the experimental

investigations, it is very necessary to develop mechanistic models to interpret the

experimental data to identify and then calculate the useful information to solve a

complex phenomenon such as entrainment of surrounding medium by evaporating

spray jets. This study focuses on the basic development of the methodology to

quantify the entrainment characteristic of a two phase spray jet. The successful results

of this study may form the development of advanced and more sophisticated methods

which can be implemented into the real industrial applications.
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It is also very important to realize the industrial application methods and

provide first-hand approximate solutions for the basic parameters. Previously, some

basic models have been developed and research has been carried out on the

development of improved methods to provide accurate solutions. Α major part of this

study focuses on the effect of nozzle characterization on the flow behavior inside the

gas solid riser. In reality, rectangular nozzles are used to generate liquid spray jets due

to their high momentum conservation and deep penetration characteristics. However,

this study provides a systematic work on the effect of nozzle aspect ratio on flow

characteristics as well as the effect of fan angle. These are the two parameters that are

easily controlled in the industrial applications. So an optimized value of these

parameters will greatly serve the overall process efficiency.

The key factor governing the flow characteristics is the interaction mechanism

between all three phases. The evaporation process is purely dependant on the heat

transfer mechanism. The heat transfer between the solid and gas is negligible as both

are maintained at same temperature in gas-solids suspensions. The heat transfer mode

between the gas and liquid is relatively less significant when compared to the heat

transfer mode between the solids and liquid droplets because the density of the solids

is much higher than the gas density, hence the solids can provide much sustained heat

transfer than gas phase. Therefore, it is very necessary to develop basic understanding

of the physical interaction mechanism between solid and liquid phase. The physical

mechanism is very complex in the presence of strong heterogeneous phase interaction

mechanism. Solving this complex yet very challenging mechanism may lay down

very pioneering steps in the development of efficient energy conversion methods.
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1.3 Statement of the Problem

Single phase gas jets as well as two phase spray jets will be experimentally studied to

compare the entrainment of the surrounding medium. In order to simplify the

problem, both jets will be studied from a circular nozzle in submerged flow condition

with room air as secondary medium. Mass of the surrounding air entrained inside the

jet will be related to the mass of oxygen present inside the jet. Temperature and

velocity profiles will also be monitored during the study. Entrainment in the presence

of the solids can be studied numerically.

Effect of the aspect ratio of the rectangular nozzle will be studied both

experimentally and numerically. A rectangular test section will be simulated with a

circulating gas-solids flow. Rectangular nozzles with different aspect ratios are

simulated to produce liquid nitrogen jets perpendicular to the gas-solids flow. Flow

field structures will be compared. Similar studies will be carried out to investigate the

effect of fan angle of rectangular nozzle.

An experimental system will be set up to study the effect of very hot solid

particle falling over the water surface. The man-sized particles will be generated

using an arc generation system. During these experiments, different modes of type II

Leidenfrost collision will be identified. Temperature profiles as well as the velocity

measurements will be monitored with the help of experimental system. This

information will then be employed to model the simple mechanistic collision

mechanism between solid particle and liquid droplets at very high temperature

difference between the two. Parametric study will be performed to study the effect of

the particle temperature and particle velocity on the heat transfer mechanism.
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1.4 Objectives of the Study

This study will be divided into three parts. Although, these three parts will be studied

separately, it is important to note that there is a strong linkage between the three parts.

In the first part, entrainment capabilities of two phase jets will be explored with

respect to the similarity criterion, entrainment velocities, entrainment momentum

ratio and evaporation rate along the jet trajectory. The study will comprise the

experimental investigation of single phase-isothermal jet, single phase non-isothermal

jet and two phase spray jet. Establishment of the similarity correlations will be the

very fist objective of the first part of this study and if proved, it will lay down the

foundation for the development of mechanistic model for data analysis of the

experiments.

In the second part, the objective is to obtain quantitative answers to the

optimized nozzle parameters for effective and desired flow characteristics. Three-

dimensional numerical study will be performed to systematically study the effect of

aspect ratio of rectangular nozzle on flow characteristic. Complete flow information

such as, spray penetration, spray deflection, solids concentration, gas temperature

profiles as well as evaporation rate along the jet trajectory will be obtained and

analyzed. The focus will be to find the optimum value of the nozzle aspect ratio.

Similarly, the other controlling parameter of industrial nozzles i.e., nozzle fan angel

will be studied with the same objective. In this case, the uniform evaporation rate will

be the deterministic parameter for the choice of optimum value. Rectangular cross-

section of domain will be used where the geometry will be such chosen that its effect

on the flow is negligible.
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The third part of this study will focus on the interaction mechanism between

the small solid particle and large liquid surface. Experiments will be conducted with

the objective of identifying different modes of heat transfer. The information will be

used to develop basic mechanistic models which will incorporate all the basic

important physics of the interaction mechanism. The models will be based on the heat

and mass transfer balances between different phases. The models will be employed to

provide basic parametric study on some governing parameters such as the initial

temperature of the particle or initial velocity of the particle. The basic elements of this

study will be to utilize experimental methods, numerical techniques and mechanistic

modeling to answer complex questions regarding the flow behavior and interaction

mechanisms of three phase flow structures. Upon successful completion of this study,

it will provide basic fundamental information which will formulate the advance

knowledge in this field.



CHAPTER 2

GAS ENTRAINMENT IN AN EVAPORATING SPRAY JET

2.1 Introduction

Rapidly evaporating liquid spray jets in gas solid suspensions are characterized by

strong three phase interactions with momentum, heat and mass transfer across phase

boundaries. This process occurs in many industrial applications such as fluidized

catalytic cracking (FCC) of petroleum refinery, condensed mode operation of

polyethylene synthesis, spray-assisted coal gasification, as well as environmental

cleaning of suspended particulate by wet scrubbing. In all such applications, it is

desirable to have a uniform evaporation of liquid spray jet within the jet boundaries

which in turn depends on the homogenous collision between solids and droplets. In

order to achieve this goal, it is essential to know the entrained solids, spray jet

coverage and penetration into the gas-solids suspensions.

The entrainment characteristics and flow similarity of single-phase jets have

been extensively studied [1].  For non-conventional single-phase jets such as a

plunging jet to a liquid surface and plasma jets, the air entrainment, temperature and

velocity similarities have also been investigated [2-4]. For two-phase non-evaporating

swirling jets, the entrainment is greatly suppressed for a two-phase jet as compared to

single-phase jets [5]. For a cross-flow spray jet without evaporation, the ratio of the

cross-wind speed to the induced air speed governs the movements of the spray

droplets. The flow at a high ratio may even diminish the entrainment [6]. The

entrainment rates of reacting/non-reacting jets were compared using the mass balance

7
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technique as well as by a velocity field measurement using Particle Image

Velocimeter (DIV) [7]. However, neither temperature nor concentration

measurements were reported in their study. Studies on the entrainment of two-phase

(gas-solid) surrounding media by a gas jet have been reported [8-10]. The

entrainment velocity is found to decrease with the distance from nozzle, increase with

the nozzle velocity and decrease with the solid loadings.

This study aims to address the important subject that has never been studied

before: evaporation effect of droplets on gas entrainment of a spray jet. In this study,

an experimental study is performed of a liquid nitrogen spray into the room air. Direct

measurements of the oxygen concentration and droplet velocity in the spray region

are obtained, based on which the air entrainment and spray evaporation rate are

calculated. Due to the difficulties in premixing tracer particles into the liquid nitrogen

system and from the direct contact of droplets with thermocouples, the direct

measurements of gas velocity and gas temperature in the liquid nitrogen spray region

cannot be obtained via LDV and thermocouple measurements. The limited size of

spray nozzle also prevents an accurate measurement of radial profile in the near field

of the liquid nitrogen spray jet. Alternatively it is assumed that the dimensionless

distribution of gas temperature in the spray region is the same as that of

concentration; and the dimensionless gas velocity can be represented by that in the

absence of spray. These assumptions have been partially validated from the

comparison of direct measurements of oxygen concentration with and without spray,

from the numerical simulation of liquid nitrogen spray in a coaxial gas-solid flow
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[1 1 ], and from the comparison of temperature and concentration measurements in the

absence of spray.

Besides the measurements, a parametric model has been developed to provide

the theoretical basis of data analysis, which is to solve for three coupled unknowns:

gas entrainment velocity, spray evaporation rate, and centerline gas velocity. The

measurement and modeling methodology, in principle, do not require the use of any

similarity laws. However, to simplify the data analysis, as suggested in measurements

and previous numerical simulations [11]  within the tolerance range, the similarity is

used as an engineering approximation.

2.2 Experimental System for Entrainment Experiment

There are two experimental setups in this study. One is for the gas entrainment with a

cold nitrogen gas jet, which is to provide a comparison base for the study with spray,

and the other is for the gas entrainment with a liquid nitrogen spray. Figure 2.1 shows

a combined schematic diagram of both experimental setups. When valve Α is open

and valve B is closed, a very cold jet of nitrogen gas (at approximately the

temperature of liquid nitrogen) is generated from a compressed nitrogen gas container

by passing through a heat exchanger submerged in liquid nitrogen. The cold gas jet is

then injected into the stagnant room air. Conversely, if valve Α is closed and valve B

is open, Figure 1(a) then represents the schematics of the experimental apparatus for

evaporating spray jets, where the sprays of liquid nitrogen are generated from a

pressure-controlled spray generation system (25-liter, Brymill Cryogenic). This

system hence is capable of producing a sustained spray jet of liquid nitrogen. The
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sustainability depends on the size of nozzle and the operation pressure inside the

liquid nitrogen tank. In this study, a sustained liquid nitrogen spray with a constant

flow rate is obtained for approximately 40 minutes. Figure 2.2 shows the detailed

structure of the spray nozzle, which consists of a small centerline tube (1 mm in

diameter) for atomization and a coaxial and thermally-insulated tube (5 mm in

diameter) for spray confinement and smoothing. This nozzle structure helps to

generate a liquid nitrogen spray with a reasonably large initial spray diameter, which

is needed for the measurements of spray radial profiles near the spray nozzle.

Figure 2.1 Experimental setup for cold Nitrogen gas jet (near LNG temperature).
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Figure 2.2 Nozzle structure for the two-phase spray jet/

An in-situ oxygen concentration analyzer (CE0123, Oxigraf) with a thermal

compensation and control mechanism is specially designed for measurements of

oxygen concentration at extremely low temperatures/ The oxygen sensor probe (1/25

mm orifice) is mounted on a precision 3-D stage. This oxygen analyzer is capable of

measuring the oxygen concentration with an accuracy of 0/1%, and the measurements

are independent of sample pressure, gas temperature and other gases such as C02 or

Η20/ The temperature profiles are obtained using a tiny Type-J thermocouple (0/5

mm O/D.) connected to a PC-based temperature measurement system. A Laser

Doppler Velocimeter (Floodlit 1-D, Dantec) is used for the measurement of spray

jetting velocity as well as axial distributions of droplet velocity along the spray jet/

The interrogation region in the LDV measurement is an intersection of two laser

beams of waist diameter of 1 mm each/ A PC-based precision balance (SV-30,

Acculab) is employed to measure the mass flow rate of the spray injection. The

atomization characteristics of liquid nitrogen sprays are pre-calibrated using a Phase

Doppler Particle Anemometer (PAPA 58N70, Dantec) [12]/ The averaged initial
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droplet size from the spray nozzle is about 160 Om. For nitrogen gas jet, the jetting

velocity is obtained from the flow rate measurement using a rotary flow meter/

2.3 Theoretical Basis and Methodology

The modeling approach takes the advantages of the fact that, in a free spray jet of

liquid nitrogen injected into the air, liquid nitrogen evaporation does not contribute to

the amount of oxygen in the spray region, and all oxygen found in the spray region is

solely from the jet-induced entrainment/ Hence the air entrainment between any two

jet cross-sections is proportional to the difference of oxygen mass flows at these two

cross-sections/ The proportionality depends on the ambient oxygen concentration. In

the room air with the oxygen concentration of 21%, this proportionality is 4/76/ In the

following section, first the general equations and methodology of this model is

described, and then the discussion is extended to special applications where jet flow

similarities hold/ The introduction of flow similarity can greatly reduce both the

complicity in equation solution processes and the demand of extensive measurements

in the spray region/ As shown from measurements in the section of results and

discussion, it is reasonable to assume flow similarities in this study/

2.3.1 Governing Equations

Consider an arbitrary jet cross-section segment shown in Figure 2.3/ The oxygen

mass flow rate j across any jet cross-section is given by

φ

J02 = J2nrρCUdr
ο

(2/1)
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where p is the overall density of all gaseous species, C is the oxygen

concentration, and U is the gas velocity/ Assuming that the overall gas follows the

ideal gas law and the ambient pressure and the gas constant remain unchanged with

the liquid nitrogen evaporation, the density is given by

where Ρ is the ambient pressure, R is the gas constant and T is the

temperature of ambient air.

Figure 2.3 Gas (oxygen) entrainment from mass flow balance/

Hence, the oxygen mass flow rate, which is a function of axial location itself,

depends solely on the radial distribution of the velocity, concentration and

temperature/ From the mass balance of oxygen, the radial component of the air

entrainment velocity U '  is thus given by
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where z is the distance from the nozzle exit and b is the jet width/ The heat

convection of gas phase 1 at any jet cross-section is calculated by

where cps is the specific heat at constant pressure of nitrogen/ Thus, the energy

balance over a jet spray segment with a thickness of Az can be expressed by

where L is the specific latent heat, and Γ is the rate of mass evaporated of

liquid nitrogen per unit volume/ Equation (2/5) yields the following equation for the

estimation of Γ /

Another important physical law is the momentum conservation/ For a

horizontal spray jet, the total momentum along the jet direction is conserved at any jet

cross-section/ For simplicity, the Archimedean effect on the jet deflection and jet

asymmetry is neglected, as observed and partially validated from experiments/ It is

assumed that the droplet velocity only varies along the jetting direction/ Hence, the

jet-directional momentum conservation of this two-phase flow at any jet cross-section

is given by
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where 1mj is the total jetting mass flow rate at the nozzle exit; U M  is the

jetting velocity at the nozzle exit; Ad  is the cross-section averaged droplet velocity;

and ,7d is the cross-section averaged droplet mass flow rate, which can be linked to

the spray evaporation rate per unit volume by

where dj  is the jetting liquid mass flow rate at the nozzle exit/ Based on

Equation (2.8), the evaporation length Le can be defined and calculated from the mass

balance of liquid nitrogen as

Based on the three independent governing equations, i/e/, Equation (2/3),

Equation (2.6) and Equation (2/7), respectively representing the mass, heat and

momentum conservation, three independent variables can be solved/ In this study, the

distributions of oxygen concentration, droplet velocity, and gas temperature in the

spray region can be determined, either from the direct measurements or based on the

analogy between temperature and concentration profiles/ Thus, in principle, the three

unknowns, namely the gas entrainment velocity Ue , spray evaporation rate Γ, and the

averaged gas velocity U, can be obtained by solving the coupled governing equations/
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2.3.2 Solution Procedures with Flow Similarity

In jet flow applications, when flow similarities exist, the introduction of flow

similarity can significantly simplify the equation solution processes as well as reduce

the demand of extensive measurements in spray region/ With the flow similarity, it is

convenient to express the governing equations with dimensionless variables/ Here, it

is defined as

where b is the jet width, r is the radial distance from the center of the jet, Τ

is the temperature inside the jet and the subscripts of 0 and ooh denote, respectively, the

centerline and ambient locations, and superscript * stands for the dimensionless

quantity/

Conceptually, the jet boundaries of velocity, temperature and concentration

are different [1]/  There exists an analogy between the profiles of temperature and

concentration so that the jet widths of temperature profile and concentration profile

are about the same whereas the jet width of velocity profile is narrower than those of

temperature and concentration profiles [1]. In a spray jet with strong vaporization of

droplets, the effect of droplet vaporization minimizes the difference of these jet

widths [12]/ To simplify the analysis of spray jets with strong vaporization, the jet

boundary is assumed to be the same for the gas velocity, temperature and

concentration/ This assumption is partially validated in the measurements, as shown

in Figure 2/5/
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Substituting Equation (2/2) and Equation (2/10) into Equation (2/1) and noting

that, for a free jet, U., = 0,

where P, R, U0, Co, C, To or Τ is either a constant or a function of axial

location (z) only; and the jet boundary b is defined based on the dimensionless radial

profiles of concentration/ Specifically, the jet widths are measured using the

interpolation on the dimensionless concentration profiles using the 5% cut-off

criterion/ Theoretically, a more stringent criterion of 1% can be applied to better

define the jet boundary/ However, considering the jet-induced fluctuations and

uncertainties in the concentration measurements, the 5% cut-off criterion is preferred

and used throughout this study/

Similarly the heat convection of gas phase it' at any jet cross-section is

expressed, according to Equation (2/4) and Equation (2/3), by

In this study, the jet boundary b and oxygen concentration distributions are

directly obtained from the oxygen concentration measurements, which yield both r *

and C/ Due to the collision of liquid nitrogen droplets with the thermocouple, the gas

temperature is difficult to be directly measured in the spray region [13]/ The

dimensionless profile of gas temperature in the spray region is assumed to be the

same as that of oxygen concentration, i/e/, T * = C/ This analogy is true for a cold

nitrogen jet (at a jetting temperature slightly above the liquid nitrogen temperature)
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into the room air, based on the direct measurements of oxygen concentration and

temperature in the jet region as shown in Figure 2.6. In a spray region, the effect of

strong evaporation of liquid nitrogen droplets leads to a lowered gas temperature as

well as a diluted oxygen concentration simultaneously/ Hence the assumption of

similar gas temperature and gas concentration profiles in the presence of strong

evaporation is reasonable/ This assumption is partially validated by a numerical study

of the liquid nitrogen spray jets in concurrent dilute gas-solids flows [12]/ The

centerline gas temperature in the liquid nitrogen spray is found to be very close to that

of liquid nitrogen temperature [ 12], so that To N Pd/ The droplet velocity Ud is

determined directly from the LDV measurements.

Difficulty also rises to the determination of gas velocity profiles in the spray

region/ Firstly, the only naturally-available "tracers" in a liquid nitrogen spray are the

droplets of liquid nitrogen/ It is difficult to add or premix other tracers into the liquid

nitrogen spray, due to the extremely-low temperature of liquid nitrogen as well as the

limited size of liquid nitrogen nozzle system/ Secondly, the dense population of

droplets in the near field of spray jet and the poly-atomization in liquid nitrogen

droplets make the LDV measurements inapplicable to the determination of gas

velocity in the spray region/ In addition, the limited size of spray nozzle also prevents

an accurate measurement of radial profile in the near field of the liquid nitrogen spray

jet. Hence, in this study, it is assumed that the dimensionless profile of gas velocity in

the spray jet is the same as that in the cold gas jet, as partially validated by the

previous numerical investigation of liquids nitrogen sprays in gas-solids suspensions

[11]/  However, the centerline gas velocity is still unknown, which is to be solved
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along with the gas entrainment velocity and the evaporation rate from the governing

equations/ Table 2/1 lists the parameters of nitrogen gas jets and liquid nitrogen spray

jet with a round nozzle in this study/ All jets are injected into the stagnant room air/

The room air temperature is maintained at 297 K/

Table 2.1 Parameters of gas and spray jets

2.4 Results and Discussion

2.4.1 Validation of the Experimental System and Measurement Methods

It is important to validate the experimental approaches on the jet measurements/ In

order to do that, gaseous jets of nitrogen in the stagnant air are studied first/ The

dimensionless concentrations are plotted against the well-known correlation

mentioned curve very well/ The comparison of measured jet boundary expansion and

Figure 2/5/ The difference can be caused by several different factors, including the

effect of turbulence and the effect of nozzle structure (such as shape of nozzle tip)/
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Another factor is the difference in definition of b/ In the Abramovich's model, b is

defined with 1% cut-off whereas in this study it is defined from the dimensionless

concentration profiles with 5% cut-off/ Given the influence of these factors, the

experimental data for the boundary expansion of both isothermal and cold nitrogen

jets are regarded quite close to the Abramovich's relation. Hence, the comparison

between the measurements and well-known correlations in Figure 2/5 and Figure 2/6

validates the current experimental system and measurement methods.

Figure 2.4 Dimensionless oxygen concentration radial profiles (with theoretical
comparison) in an isothermal nitrogen gas jet/



21

2.4.2 Radial Distributions and Similarity

According to Equations (2/3) and (2/6), in order to obtain the air entrainment and

spray evaporation rate, one must predetermine the oxygen mass flow, which calls for

the information on the radial distributions of oxygen concentration, gas velocity and

gas temperature at any spray jet cross-sections/ While the oxygen concentration

profile can be directly measured using the oxygen probe and analyzer, the direct

measurements of local gas temperature and velocity in the presence of fast-moving

and evaporating droplets turn out to be extremely difficult, if not impossible, by use

of the thermocouple and LDV measurement techniques. The difficulties arise from

the interference with the second phase, i.e/, the droplet phase/ Due to the direct

collision of droplets with the thermocouple in the spray region, the measured
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temperature represents only a mixed temperature of gas and liquids rather than the

temperature of gas [13]/ In the particle-free spray region where there are no tracing

particles representing the gas phase, LDV measures only the velocities of droplets but

not the velocity of the gas/ Hence, an alternative means for determining the radial

distributions of gas temperature and velocity is adapted in this study/

According to turbulent jet theory [1],  the radial distribution of dimensionless

temperature is analogous to that of dimensionless concentration, which means the

overlap of the dimensionless concentration and the temperature profiles/ This analogy

is validated in the experimental study, as shown in Figure 2/6/ It may be reasonable to

assume that, in a spray jet, the radial distribution of the dimensionless temperature is

still the same as that of the dimensionless concentration in a spray jet/ Therefore,

based on the direct measurements of oxygen concentration with a liquid nitrogen

spray, both concentration and temperature radial profiles can be determined/



23

Figure 2.6 Dimensionless profiles of temperature and concentration in gas jets/

A recent numerical study of a liquid nitrogen spray in a dilute gas-solid

suspension pipe flow suggested that the jet similarities, in the presence of evaporating

liquid nitrogen droplets and dilute solid particles, is still quite similar to those of

single-phase jets [11]/ This result strongly supports the assumption that the

dimensionless radial distribution of gas velocity in the liquid spray jet is the same as

the dimensionless profile of gas velocity in the cold gas jet/

2.4.3 Air Entrainment Rate

Figure 2/7 shows the dimensionless profiles of oxygen concentration for a two-phase

spray jet, which can be expressed by a simple semi-empirical correlation

C* = exp(-5r * 2 ) / The similarity curve in Figure 2/7 appears somewhat skewed
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towards the center of the jet as compared to that of single phase jets/ This difference

may be caused by the effect of radial profiles of droplet momentum and droplet

evaporation rate that are not necessarily following the flow similarities/ In this study,

the similarity holds valid for a jet axial distance range up to z/d of 20/
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2.4.4 Effect of Evaporation on Jet Expansion

Figure 2/8 shows the corresponding jet boundary that is determined based on oxygen

concentration profiles. The results suggest that the isothermal gas jet has the least

boundary expansion while the spray jet has the maximum jet boundary expansion,

especially in the initial stage of jetting where the most evaporation occurs.

2.4.5 Entrainment Velocity

The comparison of gas centerline velocity of a spray jet and the theoretical curve of a

gas jet at the same injection velocity is shown in Figure 2/9/ The quick decay of the

centerline velocity in the initial part of the gas jet shows that the jet momentum is not

able to maintain the velocity for a longer distance after exiting from the nozzle/ For

the spray jet, however, the decrease in the centerline gas velocity is slower/ This

slower decay is due to the greater inertia of droplets as well as due to the vapor

generation from droplet evaporation that not only helps to sustain the gas phase

velocity but also expand the jet boundary/ The air entrainment velocities of gas jet

and spray jet at the same jet velocity are found to be comparable, as shown in Figure

2/10. However, due to the different injecting momenta between the two jets at the

same jetting velocity, a more meaningful comparison should be based on the

entrainment per unit injecting momentum. Due to the much higher density of droplets

than the air density, entrainment per unit injecting momentum in the spray jets is at

least one order of magnitude less than that in gas jets, as shown in Figure 2/11, which

indicates that the rapidly evaporating spray jets have less capabilities of air

entrainment than the gas jets at the same jet velocity/
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Figure 2.8 Comparisons of jet boundary expansions between gas jets and spray jets/

Figure 2.9 Comparison of centerline velocity between gas jets and spray jets/



Figure 2.10 Comparison of entrainment velocity between gas jets and spray jets/
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Figure 2.11 Comparison of entrained momentum between gas jets and spray jets/
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2.4.6 Evaporation Rate of Spray Jet

0ne of the objectives of this study is to estimate the evaporation rate/ This is achieved

by checking the energy balance at any segment of the spray jet, as expressed by

Equation (2/6)/ The axial distribution of the evaporating rate is shown in Figure 2/12/

A higher evaporation rate in the initial region of the spray jet is due to the higher air

entrainment that brings in more thermal energy for the droplet evaporation. For the

case in current study, as much as 80% of the injected liquid is evaporated within the

range of z/d of 6/ However, due to the nonuniform droplet size distribution and non-

uniform jetting velocity distribution, some liquid nitrogen droplets are found to travel

much further along the jet/ 0n the average, a spray penetration length (or evaporation

length) can be defined in a way that the integrated evaporation rate over that length

equals the injected liquid mass flow rate, as shown in Equation (2/9)/

Figure 2.12 Axial distribution of evaporation rate in a liquid-nitrogen spray jet/
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2.5 Conclusions

Α direct measurement technique of gas entrainment in an evaporating jet has been

developed/ A parametric model has been developed to provide the theoretical basis of

data analysis for the gas entrainment/ The air entrainment characteristics of the liquid

nitrogen spray jet injected into the stagnant room air is found to be quite different

from those of the nitrogen gas jets at the same jet velocity from the same nozzle. The

measurements of gas concentration distributions in the liquid nitrogen spray jets

suggest the existence of jet similarity within most of the spray jet region/ The

measurements further shows that the concentration-based jet boundary is wider for

the spray jets than that for the gas jets whereas the entrainment per unit injecting

momentum in spray jet is much less than those in the gas jets. IηΡ addition,

distributions of gas velocity on the centerline and evaporation rate are also obtained.

2.6 Future Study

2.6.1 Gas-Solids Entrainment in Circular Spray Jets with Cross-flow Effect

Α more realistic entrainment study can be carried out for s spray jet from a circular

nozzle in the cross flow of air/ This will lay down the foundation for the cross flow

experiment/ This study will reveal whether the similarity holds in case of cross-flow

or the deflection of spray jet destroys the similarity profiles of temperature, velocity

and concentrations.
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2.6.2 Gas-Solids Entrainment in Submerged Rectangular Spray Jets

Due to the difficulties in the measurement techniques in the presence of the solids, it

is almost impossible to study the entrainment of solids in the spray jet experimentally.

However, numerical simulation studies can be carried out to quantify the effect of

solids entrainment on the spray structure/ With the help of correct model, the

entrainment of solids can be quantified with the help of 3-D simulations/



CHAPTER 3

EFFECT OF NOZZLE CHARACTERISTICS ON THE FLOW STRUCTURE
OF EVAPORATING SPRAY JETS

3.1 Introduction

In principle, a horizontal and a vertical configuration of a rectangular flat nozzle

should have different flow characteristics/ To design an optimal nozzle for these

applications may be somewhat complicated due to the fact that it is not possible to

optimize all the governing characteristics of the spray jets for the same nozzle

configuration. In FCC application, the rectangular nozzles are used due to their wide

spread range and as well as their mass and momentum conservations are quite

different than circular nozzles/

Hydrodynamics on single-phase jets is well known [14, 15]/ For the two-

phase jets, especially spray jets, reasonable understanding on jet or spray

characteristics such as penetration length and evaporation rate has been achieved [ 16,

17]/ Recently new attention has been paid to hydrodynamic behaviors of three-phase

jets that have some significant industrial applications/ An experimental study, using a

sampling probe, for the flow mixing of liquid nitrogen spray in a preliminary

industry-scaled FCC riser was reported [18]/ An electrical capacitance tomography

technology was developed to diagnose the flow patterns of evaporating liquid

nitrogen jets into a dense phase fluidized bed [19]/  The increase in solids loading is

found to shorten the spray penetration [20, 26] . Parametrical models to investigate the

coupling interactions of all three phases have been proposed [21, 22]. Numerical

simulations on the three-phase spray jets have also been attempted [23-24]. However,

31
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nearly all these studies are for the circular nozzle sprays. There is, however, very

limited information available on the quantitative comparison between nozzles with

different aspect ratios/ Once using a rectangular nozzle, it is realized that the flow

patterns could be significantly altered by the nozzle aspect ratio (for the same area of

nozzle openness) or by the nozzle orientation/

3.2 Numerical Simulation Method

A detailed discussion on numerical simulation method can be found in a pervious

paper [20]/ However, only 2-D results were presented in that study/ In this study, the

code is modified to simulate 3-D flow structures/ A set of key governing equations

are summarized below/

3.2.1 Governing Equations of Gas-Solid Flow

It is assumed that the solids are mono dispersed without attrition/ The gas phase is a

mixture of air and nitrogen vapor where the air and nitrogen vapor have the same

physical properties so that no gaseous species equations need to be solved/ Hence, the

governing equations of gas phase flow are given by
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where the source terms include contributions not only from the mass

generation but also from the momentum and energy transfer between as and

where the additional source terms account for effects due to droplet-solid

collisions/

3.2.2 Turbulence Model

In a turbulent particulate multiphase flow, the particles are dispersed through

turbulent flow fluctuations/ The addition of particles can enhance or reduce the flow

turbulence, affecting transport behavior of both particle and flow phases/ With

evaporating droplets, the turbulence transport mechanism becomes more complicated/

So far no literature is available to explain the three-phase turbulence modulation or

two-phase turbulence with evaporations. Based on the nozzle diameter and jet

velocity, the spry jet flow has a typical Reynolds number of 30,000, which means

the turbulent effect should be accounted for in this phase-mixing process/ In this

study, a simple Prandial Mixing-Length Model (PALM) is used, in which the effective

fluid viscosity is modified by the characteristic turbulence length scale/
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3.2.3 Equations of Droplet Trajectory and Evaporation

Velocities and trajectories of droplets are calculated based on Lagrangian trajectory

approach, which are given by,

3.2.4 Solid-Droplets Interactions

Collision among evaporating droplets and particles is a very complicated

phenomenon/ No reliable heat and mass transfer model is available, especially for

cases with large temperature difference/ It is assumed in the present model that

particles penetrate or trapped in the colliding droplets upon collision and heat is

transferred from a solid particle to the colliding droplet through a vapor film layer

around the particle/

3.3 Experimental System for Aspect Ratio Experiment

To investigate the effect of evaporating liquid spray jets in gas-solid flows, an

experimental system is set up to produce a continuous gas-solid flow across a long

chamber as shown in the Figure 3/1 [25]/ This experimental setup includes a
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Circulating Fluidized Bed (AFB), a Laser Doppler Velocimetry (LDV), a pressured-

controller evaporating spray jet device, a computerized mass flow rate measurement

device, a 48-thermocouple matrix system with a computerized data acquisition, a

computerized pressure measurement system, and a laser-enhanced flow visualization

and image analysis system/

Figure 3.1 Schematic diagram of the experimental system/

The electrostatic charging in the fluidized bed is prevented by carefully

grounding the whole setup as well as an antistatic agent was pre-mixed with the FCC

powders/ Spray jets of liquid Nitrogen produce extremely low temperature inside the
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test section which may leads to the cracking of the glass walls/ In order to prevent

this, both side walls of the test section are reinforced as shown in Figure 3/2/

Thermocouple side wall is reinforced by a copper metal plate which also serves as

ground medium for any charged particles/ Α double layer of the glass wall with an air

gap in between, to serve as insulation medium, is used on the other side/

Figure 3.2 Reinforced test section/

Α nozzle configuration of boa = 4o1 means that the ratio of side `b' to side `a'

is 4 to 1 with a nozzle opening area of 4/ Similarly boa = 1o1 means that the that the

ratio of side `b' to side `a' is 1 to 1 with a nozzle opening area of 4.
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3.4 Experimental Conditions

Α flat rectangular nozzle with aspect ratio of 3.8 is used to perform experimental

study in both horizontal and vertical orientation/ The nozzle hydraulic diameter is

calculated to be 1/62 (mm) whereas the spray flow rate ranges 0/9 (lb/min)/ Spray

penetrations in suspensions solid volume fraction of 1/0 is investigated/ The spray jet

velocity is 28 (mks)/ The CFB is operated at the room temperature/ The solid particles

used in the fluidized bed are FCC particles with a bulk density of 1480 kg/m3 and the

average particle size of 70 um/ The spray liquid is liquid nitrogen/

Figure 3.3 0rientation of nozzle

3.5 Problem Statement and Computational Domain

In this study, a cross flow liquid nitrogen spray injected into a steady state, fully

developed air-FCC flow have been simulated in a circulating fluidized bed with a

rectangular cross-section/ Rectangular nozzle is used to provide a liquid nitrogen

spray of mean droplet diameter of 160 m with an injection velocity of 35 mks and a

mass flow rate of 2 gksec/ The horizontal orientation of the nozzle is shown in the

Figure 3/3/ The nozzle height is denoted by parameter `a' and nozzle width is denoted

by parameter `b'/ The air-FCC flow in CFB is at 300 K and 2 Wks/ The computational
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domain is selected to be 25cm x 2/8cm x 6.75cm with a variable grid distribution of

30 x 20 x 20. In order to investigate the effect of different aspect ratios of rectangular

nozzle, 5 nozzles of different aspect ratios but with same exit openness area are used

in the numerical study as given in Table 3/1/ Nozzle exit fan angle of 5° is used

throughout in the entire study. To investigate the effect of solids loading, solids

concentration is varied from 0/1 % to 15 %, by volume/

Table 3.1 Nozzle configuration and dimensions for various cases

3.6 Results and Discussion

3.6.1 Comparison of Experimental and Numerical Results

Experimental and numerical results of spray penetration and spray deflections are

compared for rectangular nozzle with aspect ratio of 4:1 in Figure 3.4. The spray jet

trajectory is traced by following the lowest temperature on the thermocouple matrix/

However, thermocouples above the jet trajectory also show a very low temperature

which is due to the evaporation of the droplets and producing the cooling vapors

which are carried downstream by the cross flow of gas-solids. Jet trajectory is not

very clear at the end of the spray jet as the jet momentum is not very much conserved
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rather a mixing zone of the droplet vapors and gas is caused. The comparison shows

that the numerical prediction is well in accordance with the experimental results. The

penetration length seems to be slightly under predicted by simulation results/ A jet

penetration length is determined by the droplet size distribution along the jet

trajectory where 75 % of the initial jet mass is evaporated Le/, the droplet diameter is

reduced from 160 m to 100 Om/

Figure 3.4 Experiment and simulation results comparison of horizontal orientation of
N41.

3.6.2 Effect of Aspect Ratio on Evaporation Length and Spray Deflection

Effect of aspect ratio on spray evaporation length is shown in Figure 3/5 for a solid

volume fraction of 15 %, which shows that the spray evaporation length is not

significantly altered by the change in aspect ratio. The jet is penetrated inside the

simulated section almost completely at 90° to the cross-flow/ At the end of the spray
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jet, as the droplets inside the jets become smaller owing to a strong evaporation

effect, the jet deflection is achieved.
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As the aspect ratio of nozzle is changed from 4:1 to 1:1, the penetration length

is increased. This is due to the spray jet structure in the initial part of the spray jet/ For

4:1 aspect ratio, the longer side of the jet is in direct contact of the gas-solids cross-

flow, causing a more rigorous collision between the droplets and solids and hence

reducing the penetration length. However, as the jet becomes flat in vertical direction,

jet momentum is preserved for a longer time as a reduced area is available for the

droplet and gas-solids interaction. This causes the jet to penetrate longer inside the

jet. For a limiting case of 1:4 aspect ratio, the penetration length is decreased,

however this length is still 25% longer than that of a 4:1 nozzle. For this case, larger

sides of the spray jet (parallel to gas-solids flow) tend to expand under the influence

of nozzle exit fan angle/ Due to this expansion, a large amount of the liquid is

expanded causing the jet momentum to be reduced/ As the momentum is reduced, the

jet penetration is reduced/

3.6.3 Effect of Solids Loading on Evaporation Length

Figure 3.6 shows the effect of increasing solids loading on the spray jet structure from

a 4:1 aspect ratio nozzle/ Solids loading are increased from 0.1 % to 15 %/ For a

lower solids loading, i/e., 0.1 % and 1 %, there is no significant difference in the

spray pattern, however as the solids loading is further increased, penetration length is

reduced. For a 5% solids loading, the length is reduced by 20 % where as penetration

length is almost reduced to half when solids loading is increased to 15 %/ This result

is in accordance with previous findings that the penetration length is a strong function

of solids loading [19].



Figure 3.6 Horizontal configuration of 4o1 aspect ratio nozzle/
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3.6.4 Effect on Solids Loading Along and Around the Jet

Figure 3/7 shows the distribution of solids concentration at the central plane of the

nozzle along the gas-solid flow inside the flow structure for different aspect ratios.

Rapid evaporation of liquid spray in a gas-solid flow results in an excessive vapor

production that dilutes the local solid concentration/ It can be seen that the dilution

effect of solids produces a region that is deviated away by convection from the main

spray under the influence of cross-flow/ It is noted that vapor expansion leads to a

compression effect producing a condense layer of solids that is further compressed

between the vapor region and the main spray jet region. This compressed layer can be

clearly seen just above the spray entrance near the central plane/ The vapor expansion

also slightly increases the solid concentration in the main stream in the riser/

Figure 3/8 shows the solids concentration at a cross-sectional plane at the

nozzle exit/ It is interesting to find a dense layer of solids surrounding the diluted

region (as explained above)/ This surrounding layer is more significant for a

horizontal flat nozzle rather for a vertical flat nozzle/ This is due to the fact that a

horizontal flat nozzle causes a relatively uniform collision between solids and

droplets which in turn causes a larger dilution region/ As the dilution region is large,

it compresses the solids more and hence a thicker surrounding region with higher the

solids concentration is achieved/



Figure 3.7 Solids concentration at the central plane/

Figure 3.8 Solids concentration at the nozzle exit plane/
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3.6.5 Effect on Spray Width and Spray Height

Figure 3/9 shows the change in spray width `b and spray height `a' along the spray

penetration/ This change is under the influence of the nozzle fan angle/ However, as

the fan angle is same for all the cases, the change in the spray width also follows the

same line/ Spray height exhibit almost no change during the initial part of the spray

jet/ However, once the jet is expanded enough to be influenced b y the cross flow,

spray height starts to decrease/

Figure 3.9 Change in spray width and spray height along the jet trajectory.

3.7 Conclusions

The effect of the aspect ratio of rectangular nozzle is studied in regards to the

penetration length and spray deflection/ A 3-D numerical simulation code is

developed to study the parametric effect of nozzle aspect ratio on the phase

interaction and the spray structures in gas-solids suspensions/ Spray structures
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produced from the rectangular nozzle are different from the circular nozzles/ In

addition, decreasing aspect ratios of the rectangular nozzles cause the penetration

length to increase for a constant solid volume fraction/ The effect of increasing solid

volume fraction causes the penetration length to decrease/ Spray deflection is found

to be a function of the droplet size. As the droplet size decrease due to evaporation

along the jet trajectory, the spray deflection becomes more significant/ Due to the

cross-flow of the gas-solid medium through spray region, vapors are deviated away

from the jet trajectory which causes the dilution in the solids concentration above the

nozzle region/ This dilution region is surrounded by a dense layer of solids which is

more significant for horizontal nozzle than vertical nozzle.

3.8 Future Study

3.8.1 Detailed Flow Structure

It will be interesting to see a very detailed flow structure of the spray for various

aspect ratios. A closer look at the flow structure can indicate more influencing

parameters of the flow such as the evaporation rate distribution, vapor deflection

pattern, gas velocity distributions and solids entrainment inside the spray jet/

3.8.2 Concurrent Rectangular Spray Jet

It is more convenient to simulate various aspect ratios of spray under concurrent gas-

solid flow/ This study will reveal whether the velocity, temperature and concentration

similarities holds true for rectangular spray jets or not. This information is necessary

for simplification of the modeling work/



CHAPTER 4

EFFECT OF FAN ANGLE OF RECTANGULAR NOZZLE ON FLOW
STRUCTURE

4.1 Problem Statement and Computational Domain

In this study, a cross flow liquid nitrogen spray injected into a steady state, fully

developed air-FCC flow has been simulated in a circulating fluidized bed with a

rectangular cross-section/ The computational domain is selected to be 15cm x 8cm x

7/15cm with a grid distribution of 30 x 20 x 20, as shown in Figure 4/1 (a)/ A

rectangular nozzle of 1x4 mm is used to provide a liquid nitrogen spray of mean

droplet diameter of 160 um with an injection velocity of 35 mks and a mass flow rate

of 2 gksec. The horizontal orientation of the nozzle is shown in the Figure 4.1 (b). The

nozzle height is denoted by parameter `a' and nozzle width is denoted by parameter

` b'/ The air-FAA flow in AFB is at 300 K and 2 mks In order to investigate the effect

of nozzle exit fan angle on spray evaporation, two sets of numerical simulations are

compared, one with 5° fan angle and the other with 30° fan angle/ A solid

concentration of 15 %, by volume, is used throughout the entire study/
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(a) Domain geometry
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(b) Configuration of horizontal rectangular nozzle and illustration of fan angle

Figure 4.1 Computational domain geometry and nozzle configuration/
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4.2 Results and Discussion

4.2.1 Effect of Fan Angle on Evaporation Length and Spray Deflection

Effect of fan angle on spray evaporation length is shown in Figure 4/2, which shows

that the spray evaporation length is not significantly altered by the fan angle/ In a

previous study, it has been validated that the spray penetration is a strong function of

the solids loading rather any other parameter [19]/  The penetration length is greatly

reduced in the presence of a very dilute solid concentration when compared with no

solid concentration; however this effect becomes insensitive with the increase in

solids loading at higher solid concentrations. In this study a high solid concentration

of 15 %, by volume, is used in both cases/ Hence, a comparable penetration length in

both cases validates that the spray evaporation length is a weak function of the fan

angle. Similar to the penetration length, the spray jet deflection shows little difference

with the change in fan angle/
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(b) Spray with 30° fan angle

Figure 4.2 Side view of spray evaporation and deflection at the center plane.

4.2.2 Effect of Fan Angle on Spray Expansion

A significant change can be noticed in the spray expansion as shown in Figure 4.3/

The jet with 30 ° fan angle is expanded much more as compared to the spray jet with

5° fan angle. A wider spray jet ensures that a large area of gas-solid flow is

influenced and the spray droplets contact with the solids more uniformly than that

with a narrower jet/



(a) Spray with 5° fan angle
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(b) Spray with 30 0 fan angle

Figure 4.3 Top view of spray expansion and coverage/
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4.2.3 Effect of Evaporation on Gas Temperature Distribution

Rapid evaporation of droplets in a gas-solid flow also leads to a reduction in

temperature of the gas and solids due to the absorption of latent heat from the

surrounding gas-solid media/ The contours of gas temperature at the central plane of

the jets are shown in Figure 4/4. As the spray droplets are penetrating into the cross-

flow of gas-solid media, the gas cools downs as it passes across the spray jet/ Due to

the higher evaporation rates of the droplets in the initial part of their trajectory, the

gas temperature distributions deviates from the spray trajectory in the initial part of

the jet as well/ Droplets keep going straight very much along the original injection

direction but the evaporated vapor quickly engulfed into the wake region formed by

gas-solid convection over the spray trajectory. This result is due to the cross flow

convection effect of gas-solid medium.



(a) Fan angle 5°

(b) Fan angle 30°

Figure 4.4 Gas temperature distributions in the central plane.

The effect of fan angle, however, can be seen along the two side walls/ For a

smaller fan angle where the droplets are confined in the narrow area, the gas

immediately downstream to the nozzle has no severe effect of vapor convection/ For

spray with a wider fan angle, droplets come in contact with more solids and evaporate

quickly, the gas medium above the nozzle cools down due to convection/ Conversely,
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at the end of penetration, more liquid droplets from the spry with a smaller fan angle

are impacting on the opposite wall surface, leading to a noticeable gas temperature

reduction at the center plane as shown in Figure 4.4(a)/

4.2.4 Effect of Evaporation on the Dilution of the Solid Concentration

The rapid evaporation of liquid spray in a gas-solid flow results in an excessive vapor

production that dilutes the local solid concentration/ Figure 4/5 shows a three-

dimensional distribution (layer-by-layer effect) of solid concentration inside the riser

for the case of 30° fan angle/ It illustrates the dilution effect of solids in a region that

is deviated away by convection from the main spray under the influence of cross-

flow/ It is noted that vapor expansion leads to a compression effect producing a

condense layer of solids that is further compressed between the vapor region and the

main spray jet region. This compressed layer can be clearly seen just above the spray

entrance near the central plane/ The vapor expansion also slightly increases the solid

concentration in the main stream in the riser/



Figure 4.5 Solid concentration distribution (with spray fan angle of 30°)/
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4.2.5 Comparison of Evaporation Rate

Figure 4/6 shows the distribution of the total evaporated mass in the area covered by

the spray for both cases/ It can be seen from the figure that both evaporation rate

curves have the same structure with an initial peak which indicates that a high

percentage of evaporation occurs during the initial part of the jet. It is also clear that

for bigger fan angle nozzle, the total evaporation is higher than the nozzle with

smaller fan angle. This is due to the reason that a wider expansion of the spray causes

the interaction with more solids, thus causing more droplets to evaporate/

Figure 4.6 Distribution of mass evaporated per unit area along the jet trajectory/

43 Conclusions

Three dimensional numerical simulations have been performed for the cross-flow

liquid nitrogen sprays into an air-Fcc rectangular CFB riser. Similar configuration of

the nozzle, with two different fan angles (5° and 30°) was used to investigate the

effect of nozzle fan angle on spray structure. Due to higher solid loading, a little
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change in both spray evaporation length and spray deflection can be seen for both

cases. Due to the strong cross-flow convection, the temperature contours of gas and

solids phases are significantly deviated from the spray trajectory/ With spray

evaporation, the solid concentration in the vapor region is diluted from 15% to 3%

while a dense layer of solids surrounding the vapor region. The temperature depletion

up to 50 K is obtained in solids phase/ The cross-section of the spray after exiting

from the rectangular nozzle maintains a basic rectangular shape but with varied aspect

ratios and sizes along the spray penetration path/ However the shape of the vapor

cross-section is no longer rectangular due to the flow convection and vapor

evaporation/



CHAPTER 5

PHASE TRANSPORT IN A TYPE II LEIDENFROST COLLISION

5.1 Introduction

Droplet-solid collisions in the Leidenfrost regime have many practical applications,

such as spray quenching of metal alloys or fireball [26, 27], spray quenching of

melting debris from explosion, and chemical spray into hot solids [18]. In Fcc

applications, the Fcc particles are preheated to a very high temperature before the

liquid crude oil is sprayed on a dense gas-solids medium/ The interaction mechanism

between the solid particle and the liquid droplets is Leidenfrost collision mechanism/

The true physical mechanism is very complex due to complex phase interactions

between the gas, solids and liquid/ This interaction mechanism, however, is the

fundamental key for the flow characteristic of spray in gas-solids suspension/ A rapid

evaporative interaction may lead to a less penetration length as well as less deflection/

0n the other hand, a slow evaporation may cause the agglomeration of the solid

particle and eventually collapse the suspended gas-solids bed/ So, it is very important

to quantify the parameters governing the interaction mechanism/

5.1.1 Type I Leidenfrost Collision

In the experimental aspect, many researchers presented a sequence of photographs

showing the deformation process of liquid droplets impacting on a hot flat surface/

An experimental study is carried out to investigate the deformation process of a

saturated water droplet of about 2 mm in diameter impacting on a polished gold

surface heated to 400°A [27]/ They suggested that the impact and breakup of water
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droplets could be grouped into three general categories depending upon the droplet

Weber number. Using different liquids such as water, ethanol and acetic acid, [28]

performed photographic studies to determine the deformation behavior of droplets

impacting a horizontal copper surface heated up to 400°C/ Their results support the

classifications proposed by [27]/ However, it is difficult to identify the critical Weber

number, which is scattering in the range of 50 to 90 [29, 30]/ Recently Latta et al.

investigated the collision dynamics on a hot rough surface and found that the surface

roughness leads to the asymmetric and irregularity droplet deformation [31]. The

experiments of Bernard et al. [32] found that the temperature corresponding to the

critical heat flux and the Leidenfrost point showed little sensitivity to both droplet

velocity and impact frequency/ For droplets oblique impinging on a solid surface, an

investigation of the loss of momentum of the droplets, the droplet deformation, and

the onset of droplet disintegration in an oblique collision process is carried out [33].

Α minimum impinging angle is found for droplet disintegration/ Below this

impinging angle no droplet disintegration is observed/

Figure 5,1 Evaporation regimes.
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The time dependence of droplet-particle contact surface area during the

collision process is crucial to modeling the droplet hydrodynamic and heat transfer

behaviors. First order period of a freely oscillating droplet is used to describe the

contact time [27], however, the second power of contact time is found to be

proportional to the contact radius [34]/ Α correlation for the droplet contact time in

the Leidenfrost regime was proposed [28]/ It is found that, at a low collision velocity,

the droplet spreads out into a thin film before boiling and the deformation area had a

linear relation with the contact time [35]. Α dilute mist flow over a hot body is

modeled by assuming the collisions are the same as a droplet with a planar surface

[36]. Their prediction, however, is yet to be validated by experiments/

5.1.2 Type II Leidenfrost Collision

In Fcc application, the solid particles are preheated to elevated temperature before a

spray is injected into the riser. The reactor temperature is approximately 800 °A to

900 °A while the liquid droplets temperature is around 200 °A. Here the collision

mechanism is truly Leidenfrost, however, the collision mechanism is supposed to be

different than the type I Leidenfrost collision, as the particle has limited heat capacity

unlike the unlimited heat capacity of solid surface in type I. In addition, the droplet

surface behavior may significantly affect the dynamic behavior of vapors generated/

Hence, the collision of super heated solid particles with liquid droplets is called Type

II Leidenfrost collision/ Despite a number of reported studies on droplets impinging

on a large flat solid surface with an infinitely large heat capacity, limited research has

been reported on the effects of solid surface curvature or limited heat capacity of

solids for the Leidenfrost collisions.
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5.1.3 Objectives of Modeling

In the conclusions of the previous two chapters, it is evident that the most dominant

liquid solid interaction occurs in the initial part of the spray/ From application point

of view, the liquid droplets size is as large as 400 Um in FAA applications where as

the size of Fcc particles is 70 m. Hence, the collision mechanism is actually

between a large liquid droplet and a small solid particle/ The droplet evaporates due

to strong heat transfer during this collision/ It is important to note that as the droplet

size reduces to 70 m (comparable to the FAA particle size), 99% of the liquid

volume is evaporated already. This proves that the heat transfer is purely dominant by

the Type II Leidenfrost collision mechanism/ This study focuses on the development

of initial understanding for type II Leidenfrost collision mechanism/ Firstly, this

phenomenon is captured visually with the help of experimental setup/ Several sets of

experiments show different modes of collision mechanism/ Mechanistic models are

developed to study the parametric effects on heat transfer during these modes of type

III Leidenfrost collision/

5.2 Experimental System for Type II Leidenfrost Collision

The experimental setup was developed to generate man-sized solid particles at a

very high temperature/ The micro-arc generation system uses an electrical circuit to

produce a high voltage drop across the metallic wire and neighboring cathode which

produces an electric arc in between/ The metal temperature increases and when it

reaches the melting point of the wire material the wire melts/ Finally a drop of the

liquid metal is formed at the tip of the wire/ This drop of molten metal falls down due
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to its weight and due to the electrical push. A water reservoir is used at the bottom to

collect the particles. A high speed (500 fps) digital camera is used to capture the

sequence of images during the collision of the droplet to the water surface/

Superimposed images of the particle result in a series of solid particle positions in a

single image/ By calibrating the time between the two positions, the velocity of the

particle is calculated along its trajectory/ An optical pyrometer is used to draw the

temperature profile of the solid particle along its trajectory.

Figure 5.2 Schematic diagram experimental setup for type II Leidenfrost collision/
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Several types of experiments are conducted using the above apparatus/ First

the particle is allowed to cool only in the air as shown in figure 5/3/ Then, a water

pool is placed below to collect the hot particles/ Three types of modes were detected

when a molten copper particle hit the water surface/ The three modes are shown in the

Figure 5/4/

Figure 5.3 Particle cooling in air/



(a) Molten copper particle bouncing off the water surface.
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(b) Molten copper particle hitting water surface and traveling on the water surface.

(c) Molten copper particle shooting through the water and cooling.

Figure 5.4 Experimental observations of type IΙ Leidenfrost collision/
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5.3 Normal Collision Mechanistic Model of Type ΙΙ Leidenfrost Collision

Consider a small hot solid particle moving with a velocity U p/ The temperature of the

particle is Ρ/ Assuming Rp/Rd «1, this process can be simulated with a small hot

particle colliding with a large flat liquid surface.

Figure 5.5 Leat transfer due to radiation/

At any location `r' on the liquid surface, heat transfer between the

infinitesimal particle surface and infinitesimal the liquid surface due to radiation is

given by



Figure 5.6 Leat transfer due to conduction.



67

Aonsider a circular region of thickness dr' at radius r from the center of the

water surface/ The heat transfer to this area due to conduction only is given by the

following

where my is the mass of vapors generated per unit area and L is the latent

heat of vaporization.

According to the mass balance of the control volume,



The Equation 5/19 provides the distribution of vapor velocity along the `r'

direction/

Applying the momentum balance to the vapor volume in r direction only,
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The equation (5/24) provides the vapor pressure distribution under the

particle/ This pressure causes the force to balance the weight of the particle as the

particle comes down. The pressure force is given by the following expression

where FD is the drag force on the particle and can be calculated as

Now the force of vapors generated is not only balancing the weight of the

particle but also providing the force to repel the particle/

Aonsidering the lumped body model for the particle heat transfer,

where Br  is the total heat transfer due to radiation from the particle/ This

includes the heat radiated to the liquid surface as calculated by Equation 5/10, as well

as Qr (to room) which is the radiation heat transfer to the room/ Qc  is the total heat lost by

the particle due to convection/ This includes the heat conduction Q ond  to the liquid

surface as calculated by the Equation 5/13 and the other part is the heat transfer due to

convection Q'  to the surrounding air, where Qcs is calculated by the following

expression/



where Nusselt number, Nu for an immersed sphere is given by the following

equation/

Using the above model, the particle temperature and velocity is solved for a

molten copper particle falling on a water surface/ The complete collision time and

heat transfer are simulated/ The initial temperature of the particle is 3000 Κ and the

water surface is assumed to be on saturated temperature of 373K, so that all the heat

provided to water is consumed in the phase change i.e/, vapor generation/ The effect

of gravity is neglected for simplicity/ The effect of buoyancy and basset force are also

neglected. 0ther parameters used in this case study are summarized in the table 5/1.

Table 5.1 Material properties and initial conditions for the case study

7ο
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5.4 Results and Discussion

5.4.1 Experimental Validation

Figure 5/7 shows the comparison of the model prediction with the experimental

results of [37]/ In the experiments, a molten copper particle is allowed to cool in an

Argon only environment/ The argon environment is used to minimize the effect of

chemical reaction i/e/, oxidation on the particle surface/ More details about the

experimental conditions and setup can be found in [37]/ The temperature profiles

were noted using pyrometer system at two different locations while the particles were

falling down/ The model simulated the same experimental conditions and the

temperature of the particle is calculated along its trajectory/ The model prediction

matches very well with the experimental data that partially validate the Leidenfrost

model presented in this study/

Figure 5.7 Temperature variation of the particle cooling in the Argon only
environment.
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5.4.2 Leidenfrost Collision

Figure 5/8 shows the temperature profile of a molten copper particle falling over a

water surface/ The particle initial temperature is 3000K with an initial downward

velocity of 1/5 mks The initial gap between the particle and the water surface is 0/1m.

This initial gap is high enough to ensure that the effect of radiation and conduction to

the liquid surface is negligible/ The particle is push with an initial velocity towards

the water surface/ During the initial pat of the approach the particle is loosing heat

due to radiation and convection to the ambient and the heat loss to the liquid surface

is negligible/ However, very close to the water surface, the heat loss to the water

surface due to radiation and conduction is significant/ However, the Leidenfrost

collision time is very small in this case/ Hence the temperature variation is not very

much effected by the collision/ Figure 5/9 shows the variation of the temperature of

the particle along its trajectory/ This figure clearly shows the bouncing off

phenomenon of the hot particle/ As the particle bounces of the water surface, it is still

loosing heat to the liquid and ambient and the temperature of the particle is still

falling/



Figure 5.8 Temperature variation of the particle during the Leidenfrost collision with
water surface/

Figure 5.9 Temperature variation of the particle along its trajectory/
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Figure 5/10 shows the total heat transfer to the liquid only. It can be seen from

this figure that the collision duration is very small for which the heat transfer to the

liquid surface is significant/ This duration is termed as Leidenfrost duration/ In this

case the Leidenfrost duration is less than 200 us. Another important factor to be noted

in this figure is the different shape of the two curves. The approach curve increases

very rapidly as the particle is close to water surface and the heat transfer goes to

maximum/ Lowever, during the bouncing off the particle heat loss to the water

surface is decreasing as the distance is increasing, however, the vapor present on the

top of the water surface is still hot and it is constantly loosing heat to liquid surface/

Hence, the heat loss to water surface during the rebounding process takes more time

than the approach process/

Figure 5.10 Leat transfer to the liquid surface during the collision where particle is
closest to the liquid surface.



75

Figure 5/11 shows the ratio of accumulated mass of vapor generated to the

total mass of vapors generated along the trajectory of the particle/ When the particle

is far away, the ratio is very small which means that the vapors generation is very

small and when the particle is close to the water surface, the vapors are generated

more easily and rapidly as more energy is available for the vaporization. The

maximum vapors are generated when the particle is closest to the water surface/ The

vapors generated during this process provides a cushioning effect on the particle and

a net pressure force is exerted on the particle which first balances the inertia force of

the particle and the particle velocity becomes zero. Lowever, the particle temperature

is still very high and the vapor generation continues.

Figure 5.11 Ratio of mass of vapor generated to the total vapors generated during the
collision process/

The additional vapors generated provide the excessive pressure force which

causes the particle to bounce off the water surface/ As the particle bounces off the

surface, it still looses the heat to the water surface and the vapors are generated.
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Lowever, as the distance between the particle and the liquid surface is increasing, the

heat transfer is decreasing and the vapor generation rate is decreasing as shown by the

upper red curve of Figure 5.11/ In this case the total mass of vapor generated is

3.08E-11 Kg.

Figure 5.12 Velocity variation of the particle during the collision/

Figure 5/12 shows the variation of the velocity during the complete collision

process/ In the approaching curve the velocity of the particle is decreasing under the

effect of the drag only/ When the particle is very close to the water surface the effect

of pressure force causes a sudden decrease of the particle velocity and the particle

velocity decrease quickly/ Lowever, the particle is repelled by the excessive vapors

generated/ The bouncing off velocity is slightly higher than the approach velocity/

This may be due to the reason that during the rebounding process the pressure force is

much greater than the drag which causes the particle to accelerate quickly in the

initial part of the bouncing off process. In the bounce off process the, the pressure
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force is decreasing until it becomes insignificant/ At that point the calculations stop.

The accumulated mass generated until that moment is called the total mass vapor

generated/

5.4.3 Effect of Ιnitial Temperature of the Particle

Figure 5/13 shows the effect of initial particle temperature on the particle temperature

during the Leidenfrost collision. In all the following figures, the approach and

bouncing off process is shown by single curve/

Figure 5.13 Temperature variation of the particle during the complete Leidenfrost
collision with different initial temperatures/

Figure 5.14 shows the heat transfer to the liquid during the collision process/

It is clear from the figure that as the initial temperature of the particle is higher, the

particle temperature close to the water surface is also higher and due to that fact, the

particle looses more heat to the water surface/ If the particle initial temperature if

5000K the heat lost to water surface during the Leidenfrost collision is more than
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1/4W as compared to less than 1W when the initial particle temperature is 3000K.

This is about 40 % difference/

Figure 5.14 Leat transfer to the liquid surface with different temperature particles/

Figure 5.15 Total vapors generated per collision for different initial temperature of
particle/
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5.4.4 Effect of Ιnitial Velocity of the Particle

In this case, the particle with initial temperature of 3000K is pushed towards the

water surface with three different initial velocities i/e., 1.5 m/s , 1/0 m!s and 0/5 mks

All other parameters are same/ Figure 5/16 shows the effect of initial velocity on the

particle temperature profile. It shows that as the particle velocity is small, it takes

more time to reach the water surface and during which it looses more heat to the

surrounding/ It is also clearly seen in the figure 5.17 that smaller the particle velocity,

the lower its temperature when reached the eater surface/

Figure 5.16 Temperature variation of the particle during Leidenfrost collision with
different initial velocities.
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Figure 5.17 Temperature variation of the particle along the trajectory during
Leidenfrost collision with different initial velocities/

Figure 5/18 shows the velocity profiles of all three different initial velocity

cases/ It is clearly evident from the figure that the bouncing off velocity is

comparable to the approach velocity, however, as the approach velocity is higher, the

bouncing off velocity is higher as well/



Figure 5.18 Velocity variation of the particle during Leidenfrost collision with
different initial velocities/
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Figure 5.19 Total mass evaporated per collision with different initial velocities/
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5.5 Normal Collision Calculations for FCC Particle and Water Surface

The above model is applied to the calculations for parameters during the Leidenfrost

collision of FAA particle with water surface/ In this case, solid particle density is very

low (1480 Kg/m3) as compared to the copper particle (8900 Kg/m3)/ The particle

initial temperature and velocity are 1200 K and 1/5 mks respectively/ This temperature

is the same as that of the gas-solid suspension in the riser/ Lowever, the effect of

porosity of the FAA particle is neglected for simplicity as well as the liquid is

simulated with water properties rather than actual oil properties. Another major

difference in these calculations is the temperature of the surrounding medium which

is at the same temperature as the initial particle temperature i/e/, 1200K/

The typical results are shown in the following figures/ Figure 5/20

shows the temperature profile of the particle with respect to time. It can be seen

clearly from this figure that the particle temperature decreases very slowly during the

initial part of the approach/ This is due to the reason that the particle is far away from

the water surface and its heat loss to the water surface due to conduction and radiation

is very small/ However, as the particle reaches the water surface, the heat transfer

increase rapidly and the temperature of the particle reduces quickly. The temperature

of the particle during the rebounding is also reducing at the same rate as during the

approach/ When the particle moves away from the surface of water the heat transfer

reduces the temperature reduction rate also decreases/ The temperature change of the

particle along its trajectory is shown in the Figure 5/21/



Figure 5.20 Temperature profile of FCC particle during the collision/

Figure 5.21 Temperature profile of FCC particle along the trajectory/

Figure 5.22 shows the total heat transfer to the liquid during the collision. It

can be seen that the maximum heat transfer during the single collision is 0.095 W/

This is one order of magnitude less than that of the collision between the copper



84

particle and water surface/ This is due to the reason that the collision time in this case

is much less than that of the copper particle case. The limited thermal capacity and

size of the FCA particle also restrict the transfer of heat energy during the collision. It

is also very interesting to note that the approaching and rebounding heat transfer are

precisely symmetric in FCC case/

Figure 5.22 Leat transfer to the liquid surface during the collision/

Figure 5/23 shows the velocity profile of the FCC particle during the entire

collision process/ During the approach the velocity change is very small initially,

however, when the particle is very close to water surface and the mass of vapors

generated is increased, the net pressure force on the particle is significant. This causes

the rapid decrease in the particle velocity, until the particle stops and rebounded under

the effect of increasing pressure force. Lowever, as the particle bounces off the
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surface, the gap between the particle and water surface increases and hence the

particle velocity starts to decrease again.

Figure 5.23 Velocity profile of the FCC particle during the collision.

5.6 Tangential Sliding Mechanistic Model of Type ΑΙ Leidenfrost Collision

Α model is developed to calculate the temperature of the water as the solid droplet

travels over it/ A 2-D model is developed to compute the temperature of the water

surface as shown in the figure below,

Figure 5.24 Solid disc at very high temperature traveling over the water surface/
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The following assumptions are made to simplify the analysis,

• The droplet is a flat disc of radius r

• The temperature of the disc remains constant, Ts

• The temperature of the vapors between the solid and liquid surface is constant,Tap

• The radiation and convection heat transfer are considered in y-direction only/

• Inner nodes have conduction only/

• Boundaries are insulated/

The nodal diagram and the heat transfer analysis of the model is as shown below,

Figure 5.25 Energy balance of the nodal solution for the water temperature.



For any node the energy balance gives the following equation
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where

I=distance between two nodes/

K= thermal conductivity of the water

p= density of the water

h= Aonvective heat transfer coefficient

σ=Steρhan Holtzman Aonstant

ε=emissivity of the solid surface

At= time step
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By using the above mentioned Equation (5.35) to (5/40) and substituting them

in the Equation (5/34), the implicit formulation is written as follows,

By using the same analogy, appropriate values of element size and the

corresponding temperatures, the equations of all the nodes can be written.

5.6.1 Stability Criterion

5.6.2 Important Criterion for Modeling

• The temperature of the node starts increasing once the front edge of disc

crosses the node/

• Once the back edge of the disc leaves the node, the node starts loosing the

heat to the environment/

• If the temperature of a node is reached to 100, the temperature remains the

constant and the additional heat supplied to the node is consumed in the phase

change of the water (not included in calculations of this project).



5.6.3 Initial and Boundary Conditions

At t=0, all temperatures are room temperature/

The boundaries are insulated, so no heat transfer occurs across the boundaries.
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using a 5 * 3 nodes

Mesh length = 0/000704 m

At=0.000352 sec and Velocity of the disc is 0/04 m/s

Using all these values in the model developed, the temperature of any node can be

found for the entire time range/

Figure 5.26 A 5 x 3 mesh for the current case study.
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Figure 5.27 Temperature profiles for all nodes/

The temperature plot of all the nodes is shown in the Figure 5/23. The

temperature Τ ι of the very first node (Top left boundary node) is increasing as the

disc is moving over it/ The radiation heat transfer from the disc causes the

temperature to increase and reach 100 C at 0/044 sec. After that the temperature of

the node stays constant at 100 C and the phase change from liquid water to water

vapor starts/ As soon as the disc leaves the node Ti (at 0/I408 sec), the temperature

of the node starts decreasing as the heat is now being released from the water to the

atmosphere due to convection/ For Node 2 which is the top inner node, as soon as the

edge of the disc comes in contact with the node element/ There are two different

slopes of the line, which is due to the assumption that only the half of the node is

under the influence of the radiation from disc and convection through vapor layer for
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the time until the front edge of the disc reaches the node. After that the entire node

element is under the influence of the radiation and convection/ The node starts to

loose the energy as soon as the trailing edge of the disc leaves the node as mentioned

above/

The only heat transfer to the second layer from top is the conduction through

the neighboring nodes, so the increase in the temperature is almost linear. Even

though the disc is not at the top layer node, but still the top node is at a higher

temperature than the lower nodes, so the heat transfer from top layer to bottom layer

continues/

5.7 Conclusions

Experimental study is conducted to identify the different modes of type II Leidenfrost

collision/ A mechanistic model is developed to simulate the normal collision of the

solid particle with large droplet/ This model is based on the heat and mass transfer

between the liquid and solid surface/ Heat due to conduction and radiation are taken

into effect. A 2-D model is developed to study the reverse Leidenfrost collision

between the hot solid particle and the water surface/ The energy balance at every

node provides the temperature history of that node/ Although, the mesh size is very

precise and the adjustable parameter h' »1 need to be verified, the model predicts the

temperature profiles with reasonable qualitative agreement/



92

5.8 Future Work

Despite the fact that this topic of spray structure is very complicated, there still

remain so many unanswered questions. So in future there may be many challenging

research areas regarding this topic/ Although very primitive heat transfer models were

developed in this study, however, these models need to be improved/ A more

sophisticated model should consider the curvature effect of the solids, size ratio, and

limited heat capacity of the solids as well as the oblique collision mechanism/



CHAPTER 6

CONCLUSIONS

This study is conducted into three parts/ Albeit, these three parts are studied

discretely, it is important to note that there is a strong connection among the three

parts/ In the first part, entrainment capabilities of two phase jets are explored with

respect to the similarity criterion, entrainment velocities, entrainment momentum

ratio and evaporation rate along the jet trajectory/ Similarity correlations are

recognized which have laid down the foundation for the development of mechanistic

model/ The distribution of evaporation rate along the jet trajectory is experimentally

calculated which is a deterministic factor for spray flow characteristics. This study

shows that the vaporization of spray weakens the jet entrainment/ In the second part,

quantitative and qualitative results of flow characteristics are obtained for various

sprays with rectangular nozzle configuration and fan angles/ Three-dimensional

numerical study results yield complete flow information such as, spray penetration,

spray deflection, solids concentration, gas temperature profiles as well as evaporation

rate along the jet trajectory. It shows that the higher the fan angle, the higher total

mass evaporated rate is. This study demonstrates that the flow characteristics can be

controlled effectively by the combination of nozzle configuration and fan angle. After

understanding the flow characteristics, it is concluded that the flow characteristics

mainly depend on the phase transport during the solid and liquid collision/ This phase

transport is based on the heat and mass transfer during the collision of a small solid

particle with a large droplet/ This is defined as Type II Leidenfrost collision. So the

93
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focus is on the interaction mechanism between the small solid particle and large

liquid surface/ Experimental investigations established three different modes of

collision dynamics with uniquely associated heat transfer to each mode/ Basic

mechanistic model is developed for the normal collision which incorporates all the

fundamental important physics of the contact mechanism/ Α parametric study on

some governing parameters such as the initial temperature of the particle or initial

velocity of the particle is performed. It is also shown that the model is applicable to

the Fcc particle (with no porosity) as well/ This model lays the pioneering work to

answer the challenging questions regarding the interaction mechanisms of three phase

flow structures which in turn governs the flow characteristic of spray jet inside gabs-

solidi suspensions/
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