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ABSTRACT

ANALYTICAL MODEL FOR STAGING EMERGENCY EVACUATIONS

by

Vivek V. Korikanthimath

Disaster response in areas of high population density is centered on the efficient

evacuation of people and possibly goods. Developing evacuation plans suitable for

different levels of urgency based on the intensity of threat is a challenging task. In case of

densely populated cities (e.g., New York, Los Angeles), the level of threat is enhanced by

the congestion of their transportation systems, and the decision to evacuate a region

simultaneously or by dividing it into multiple stages (or zones) affects the required

evacuation time and associated delays.

The evolution of the traffic conditions on the evacuation route can vary

significantly based on the type of evacuation strategy employed (i.e., simultaneous or

staged). In this dissertation, mathematical models are developed for estimating

evacuation time and delay. Evacuation time is the time for evacuating all vehicles from a

designated region, while delay includes queuing and moving delays incurred by

evacuees. The base model handles a uniform demand distribution over the evacuation

route and deterministic evacuees' behavior. The relationship between delay and

evacuation time is investigated, and the impact of a staged versus a simultaneous

evacuation is analyzed. A numerical method is adopted to determine the optimal number

of staging zones. A sensitivity analysis is conducted of parameters (e.g., demand density,

access flow rate, and evacuation route length) affecting evacuation time and delay.



To account for the heterogeneous demand distribution over the evacuation region

and evacuees' behavioral responses to an evacuation order (e.g., fast, medium, and slow),

a more realistic model is developed by enhancing the base model. Based on a numerical

searching process, the enhanced model determines the optimal time windows and lengths

of individual staged zones dependent on the demand distribution, behavioral response,

and evolution of traffic conditions on the evacuation route. The applicability of the model

is demonstrated with a numerical example. Results indicate that evacuation time and

delay can be significantly reduced if a staged evacuation can be appropriately

implemented.

Finally, the impact of compliance is investigated. Compliance is defined as the

conformity of a staged zone to its demand loading pattern. It is found that the level of

compliance and deviation from scheduled access time influence the effectiveness of

staging. Further, a method to revise the optimal staging scheme to accommodate the non-

compliant demand is illustrated.

The models developed in this research can serve as useful tools to provide

suitable guidelines for emergency management authorities in making critical decisions

during the evacuation process.
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CHAPTER 1

INTRODUCTION

1.1 Background

Emergency evacuation can be defined as the exodus of people and goods from a place or

an area under threat. Emergency evacuation is carried out in response to disasters

including but not limited to earthquakes, hurricanes, nuclear plant catastrophes, chemical

plant leaks, and terrorist attacks. Due to the unexpected occurrence of the above-

mentioned events, it is challenging to counteract them and execute a suitable plan to

mitigate their effects. Disaster response in populous areas is centered on evacuating

people and/or goods in a fast and safe manner. To accomplish this task, the development

of a sound approach for planning emergency evacuations is necessary.

Evacuation planning is a critical constituent of emergency planning and is highly

location and event dependent. For instance, in case of densely populated cities (e.g., New

York, Los Angeles), the level of threat is enhanced by the congestion of their

transportation systems. In general, evacuation can be classified into simultaneous

evacuation and staged evacuation. A simultaneous evacuation is one in which all the

residents are evacuated concurrently, whereas in staged evacuation, people are evacuated

by locations or zones in a particular time frame and sequence. Strategies employed in

evacuation vary over circumstantial and environmental conditions. A strategy suitable for

hurricane evacuation would differ from that of an evacuation corresponding to a nuclear

plant disaster. Further, the decision to evacuate a region simultaneously or in multiple

stages affects the required evacuation time and associated delays.

1
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Employing either simultaneous or staged evacuation calls for good professional

judgment due to the urgency of the situation. In this regard, existing evacuation plans

have exposed strategic and procedural limitations as they are based on conventional

standards and limited prior evacuation experience (Smith, 2000). The evolution of the

traffic conditions on the evacuation routes can vary significantly based on the type of

evacuation strategy employed (i.e., simultaneous or staged). The fundamental speed-

density relations can differ depending on the chosen method and affect evacuation time

and delay for a region. Previous simulation models used in modeling evacuation were

location specific and some of them failed to consider behavioral aspects of evacuees (i.e.,

compliance to evacuation orders, network loading rates). The absence of behavioral

analysis in evacuation modeling results in inaccurate estimation of the total evacuation

time and delays. Therefore, an efficient model that can assist in decision making to

implement staged evacuation would prove invaluable.

This research aims at developing analytical models that optimize evacuation

staging by minimizing evacuation time and the associated delay. While the base model

discussed in Chapter 3 handles deterministic evacuees' behavior and a uniform demand

distribution along the evacuation route, the enhanced model discussed in Chapter 4 will

incorporate behavioral aspects related to loading rates, and non-uniform demand

distribution and provide a rational approach to evacuation modeling. In addition, the

practicability of staged evacuation due to the impact of compliance will be investigated.

The results of the research can provide appropriate guidelines for emergency

management authorities in making critical decisions during the evacuation process.
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1.2 Problem Statement

Previous studies on emergency evacuation have been inclined to maximize the vehicle

throughput and/or minimize evacuation time; however the discussion of the associated

delay was limited. Delay consideration in evacuation modeling is particularly important

because high delays infuse uncertainty and anxiety amongst evacuees resulting in

incidents, and jeopardize safety. This reduces the overall efficiency of the evacuation.

Staging of evacuation reduces congestion and helps in minimizing evacuation time (Chen

and Zhan, 2004). While reviewing literature on emergency evacuation, it was found that

information on impact analysis of simultaneous and staged evacuation is still limited.

Further, some evacuation models were developed without considering the behavioral

aspects of evacuees, which resulted in misrepresentation of the models' performance.

Therefore, it is desirable to develop a sound model to optimize evacuation staging by

minimizing evacuation time and delay. The new model should also be capable of dealing

with critical parameters (e.g., demand distribution along the evacuation route, and

loading patterns) and realistically model evacuation behavior. While staged evacuation is

known to reduce evacuation time as compared to simultaneous evacuation, the

practicability of staged evacuation has not yet been investigated. For instance, non-

compliance behavior of evacuees to evacuation order can further increase the complexity

for estimating the demand accessing the evacuation route over time and the evacuation

time and delays may be underestimated. Thus, an investigation of the effectiveness of

staged evacuation under varying levels of compliance is imperative.
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1.3 Objectives

The primary objective of this research is to develop analytical models to minimize

evacuation time and the associated delays. This research presents the development of a

base model that handles uniform demand distribution over the evacuation route and

deterministic evacuees' behavior, and an enhanced model that incorporates stochastic

evacuees' behavior and demand heterogeneity. The objectives are outlined as follows:

1. Develop a base model to optimize evacuation staging by minimizing both evacuation
time and the associated delays.

2. Enhance the base model to incorporate stochastic behavior of evacuees and
heterogeneous demand distribution.

3. Investigate the practicability of staged evacuation by considering the impact of
compliance.

1.4 Scope of Work

The base model handles deterministic behavior of evacuees and homogeneous demand

distribution over the evacuation route. Sensitivity analysis of critical parameters (e.g.,

evacuation route length, demand density, access flow rate) affecting evacuation time and

delay is conducted. This analysis is helpful in determining the most suitable conditions

under which, staged evacuation can be employed.

Behavioral response of evacuees to evacuation orders and demand distribution

over the evacuation route affect the evacuation time and delay. Therefore, the base model

is enhanced to incorporate behavioral aspects including network loading profiles (fast,

medium, and slow), and variation in demand distribution. A model that generates the
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optimal staging scheme is developed. Sensitivity analysis of demand and capacity on

evacuation time and delay is also conducted.

Since the level of compliance of staged zones affects the effectiveness of staging,

the practicability of staged evacuation under various levels of compliance is analyzed.

Further, a method to revise the optimal staging scheme to accommodate the non-

compliance demand is illustrated.

1.5 Dissertation Organization

This dissertation is organized into six chapters. Chapter 1 introduces the research

problem to be tackled and the research objectives to be achieved. Chapter 2 discusses the

results of literature review on various models and techniques employed in past evacuation

studies to maximize vehicular throughput and/or reduce evacuation time. It also discusses

staging of evacuation, use of contraflow (reverse lane operations), speed-flow-density

models, and application of behavioral modeling in evacuation. Chapter 3 describes the

methodology and the development of the base model to optimize evacuation staging for

deterministic evacuee behavior and homogeneous demand distribution. Chapter 4

illustrates the enhancement of the analytical model to incorporate stochastic behavior of

evacuees and heterogeneous demand distribution. Chapter 5 investigates the practicability

of staged evacuation by considering the impact of compliance, and finally, Chapter 6

presents the conclusions of this research with recommendations for future work.



CHAPTER 2

LITERATURE REVIEW

The purpose of this literature review is to summarize previous and state-of-the-art

evacuation related practices, and to seek ways to utilize pertinent fundamental concepts

to develop a sound/modeling approach for evacuation. This chapter is organized into six

sections: Section 2.1 reviews methodologies related to minimization of evacuation time

and delays; Section 2.2 discusses the techniques used to maximize roadway capacity

during evacuation; Section 2.3 explains the concept of Evacuation Staging and discusses

its importance and necessity; Section 2.4 reviews the application of various existing

traffic models (e.g., microscopic, macroscopic) in modeling evacuation; Section 2.5

compares the various speed-density models to select suitable models for determining the

discharge rate of the evacuation route under various demand to capacity ratios; Section

2.5 elucidates the significance of evacuees' behavioral analysis and investigates existing

approaches in modeling behavior; and finally, Section 2.6 summarizes the review of

literature and establishes the rationale for the model proposed in this research.

2.1 Estimation of Evacuation Time and Delay

Evacuation decision-making is a persistent problem for emergency management agencies

due to the involvement of critical parameters such as intensity of threat, evacuees'

behavior, demand, etc (Whitehead, 2000). The ability of emergency managers to

accurately and efficiently issue evacuation orders has become a major source of concern

among analysts, households, and the emergency management community. To this end,

6
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implementing inappropriate evacuation plans results in increase in evacuation time and

delays causing uncertainty and anxiety amongst evacuees.

Research in modeling emergency evacuation began to grow in the 1970's in the

area of hurricane evacuation (Urbanik, 1978; U.S. Army Corps of Engineers, 1979). The

Three Mile Island nuclear accident in 1979 shifted the attention to modeling of

evacuation of nuclear sites. Some of the earlier studies provided evacuation time

estimates for nuclear plant evacuations (HMM Associates, 1980; Urbanik and Desrosler,

1981). The occurrence of Hurricane Andrew in 1992 proved very expensive in terms of

damage, and Hurricane Floyd in 1999 led to one of the greatest evacuations in the U.S.

history. These events moved the attention back to hurricane evacuation. Recent studies

have focused on evacuations relating to suburban fire and terrorist attacks, where models

were developed to minimize the evacuation time (Cova and Church, 1997; Cova and

Johnson 2002; Hamza-Lup et al., 2005).

Sinuany-Stern and Stern (1993) developed a behavioral-based microscopic

simulation model with SLAM II (Simulation Language for Alternative Modeling) to

conduct sensitivity analysis of the evacuation time for a radiological emergency situation.

Results of the study revealed that the major traffic parameters that influenced the

evacuation time were interaction with pedestrians, intersection traversing time, and car

ownership. The route choice mechanisms affecting evacuation time were probability of

evacuees to choose the shortest distant path and myopic behavior of evacuees that

overlooked roadway congestion. They also found that the estimated evacuation time is

closer to real world situations when interaction with pedestrians and a uniform

distribution of intersection traversing time are assumed.
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Hobeika and Kim (1998) conducted a study that compared the traffic assignment

results (evacuation time estimates and number of congested links) of Dial's algorithm and

a User Equilibrium (UE) algorithm. Overall, it was found that the UE algorithm was

more efficient and closer to real world behavior than Dial's algorithm. While Dial's

assignment considered the effects of trip volume on travel time and the trip-maker's

stochastic choice function for route selection, the probability of choosing one route was

treated independent of the probability of selecting another alternative route, regardless of

the overlap of the link volumes between the other routes, thus ignoring traffic-congestion.

On the other hand, the UE algorithm was based on the concept that for each O-D pair, the

travel times on all used paths were equal and was less than the travel times that would be

experienced by vehicles on any unused paths.

Urbanik (2000) investigated the effectiveness of conducting Evacuation Time

Estimate (ETE) analyses for nuclear power plants. The study affirmed that five factors

govern the traffic flow during evacuation, namely the number and distribution of

evacuating vehicles, the loading rate at which the evacuating vehicles enter the roadway

system, the capacity of the roadway system, any unforeseen degradation to roadway

capacity caused by uncontrollable events such as flooding or traffic accidents, and any

planned enhancements to evacuation performance caused by special traffic management

actions that decrease demand (e.g., evacuation routing) or increasing capacity (e.g., lane

reversals) .

Malone et al. (2001) developed a steady state car following evacuation model for

traffic flow based on empirically estimated driving parameters (car length, reaction time

and the deceleration parameter). The total evacuation time was formulated as a function
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of number of vehicles to be evacuated, the discharge rate, and length and velocity of the

evacuation route. Further, in order to account for randomness or variance in vehicle

velocities, a cellular automata model was developed and the results were validated using

simulation. Results of the study showed that placing limitations on the number and types

of vehicles that can slow down traffic during evacuation could minimize evacuation time.

The use of buses was recommended during evacuation as buses reduce the total number

of passenger cars to be evacuated. It was also suggested that vehicles with lower speeds

always travel in the right lane.

Cova and Johnson (2003) developed a network flow model to optimize lane-based

evacuation routing plans for a complex road network. A mixed-integer programming

model was used to generate routing plans that traded total vehicle travel distance against

merging, which reduced the traffic crossing-conflicts at intersections. PARAMICS was

used to compare the routing plans to the no routing plan (i.e., random destination choice).

The results of the study showed that channeling flows at intersections to remove crossing

conflicts can significantly decrease evacuation time over no routing plans.

With agent based modeling approach, Church and Sexton (2002) investigated

how evacuation time can be affected under different settings such as opening alternative

exits, varying number of vehicles leaving a household, and applying different traffic

control methods. Batty et al. (2003) also used agent based simulation approach to analyze

route-changing patterns for a carnival event. Results of the studies showed that

evacuation time can be significantly decreased by increasing vehicle occupancy, using

traffic control at critical intersections, and providing additional access or exits along the

evacuation route.
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Cova and Johnson (2002) developed a method to test neighborhood evacuation

plans for an urban- wildland interface, which allows an analyst to map travel time

variation based on vehicles used per household and departure times. This was achieved

by augmenting PARAMICS with an off-the-shelf microsimulation software used to

manage household trip generation, departure timing, and destination choice. A case study

for a fire-prone community was presented where GIS was used to determine the spatial

effects of a second access road on evacuation times. Results of the study indicated that

the second access road would reduce the travel times for some households based on their

proximity and access to exit, but evacuation travel times at all locations could become

more consistent (i.e., have a lower standard of deviation as compared to the one road

alternative).

Murray-Tuite and Mahmassani (2004) studied the effects of household

interactions (e.g., trip chains) on evacuation time. Integer linear programming approach

was applied to determine where household members are to meet in an evacuation event.

A micro-assignment simulation approach was used to capture the resulting traffic

interactions in the network. Based on the comparison of evacuation times for different

network loading strategies (that were based on wait time at locations, e.g., school and

other meeting points), it was found that a minimum of 150% of the original demand

should be used for planning evacuation if trip chains are not considered. This demand

consideration helps to avoid underestimation of evacuation times and achieve realistic

results.

Pal et al. (2004) used Oak Ridge Evacuation Modeling System 2.5 (OREMS), a

traffic modeling software package and ArcView 3.2, a GIS software package to develop
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evacuation models for Baldwin and Mobile counties along the Alabama Gulf Coast.

ArcView 3.2 was used to define the road network, population, and area being evacuated,

and OREMS was used to model the effect of evacuation on the traffic network. The

results from the developed GIS/traffic simulation models showed that the estimated

evacuation times of the two counties were consistent with the actual evacuation times

during a hurricane evacuation event. It was also found that the least traffic congestion

occurred when speeds were limited to 60 mph on interstates and 40 mph on other roads.

Han and Yuan (2005) used VISSIM, a microscopic, behavior-based simulation

software, to mimic traffic operations under a hypothetical event of a nuclear plant

accident by applying Dynamic Traffic Assignment (DTA) and most desirable

destinations (MDD) methods. DTA was used to route the evacuees according to network

conditions at the time of departure, and the MDD choice for the evacuees was modeled

by considering the shortest travel time to destination according to the departure time. The

implementation of the two strategies led to significant improvement in overall evacuation

time compared to static destination selection and traffic assignment. Results also showed

that applying either of the strategies: (1) Police officers controlling traffic at key

intersections, and (2) Reversing lanes on congested road sections, can lead to reduction in

delay and evacuation time.

Liu et al. (2005) developed a two-level integrated model for optimizing

evacuation plans (to yield the range of most viable parameters for target control strategies

such as the percentage of demands diverted to each evacuation route, turning percentage

at critical locations, merging ratios at ramps and signal timings) that serve as the input for

a simulation-based analysis. The model employed the cell transmission concept
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(Daganzo, 1994), but with a revised formulation for large-scale network applications. The

high level optimization maximized the throughput during specified evacuation duration,

and the low level one minimized the total travel time and wait time. A set of optimal

evacuation plans was generated for the available resources and specified evacuation time

window. The applicability and reliability of model were evaluated with microscopic

software, named Ocean City Evacuation Network.

2.2 Evacuation Staging

Staging of evacuation can alleviate congestion and hence reduce evacuation time (Chen

and Zhan, 2004). The necessity for staging can also arise due to various critical factors

that ought to be considered during the evacuation decision-making process, such as the

type of incident, the urgency level, etc. Staging can be most suitably employed for

evacuating substantially large or populous areas. The level of urgency depends on the

type of the evacuation event (e.g., hurricanes, earthquakes, nuclear power plant disaster,

terrorist attacks, etc). For instance, in case of a nuclear plant disaster, the primary goal

would be to evacuate residents instantaneously, while on the other hand, a hurricane

evacuation can be planned to minimize delays. In this regard, employing appropriate

staging can achieve significant benefits.

Church and Cova (2000) developed a network partitioning optimization model to

determine the vulnerability of a neighborhood during evacuation based on the levels of

bulk lane demand. Bulk lane demand was defined as the ratio of evacuation demand to

exit capacity. The higher the value of bulk lane demand, the longer time it would take to

clear the demand. The model delineated a neighborhood into small contiguous areas
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about a point (e.g., an intersection) that maximized bulk lane demand and defined the

neighborhood as having the greatest risk in evacuating in a timely manner. By applying

this model for selected intersections across a road network, street segments can be

classified in terms of worst-case or high bulk lane demand values. With this, a map

depicting the difficulty in evacuation across the network could be developed.

Malone et al. (2001) evaluated a proposal for staging of evacuation of different

coastal counties in Charleston, SC, to reduce evacuation time. It was found that

staggering the evacuation over some time period for the counties, consistent with how

hurricanes affect the coast, instead of evacuating all at once, reduces the size of the

bottleneck. This increases the average traffic speed without significantly increasing

traffic density that can cause traffic jams. Thus, it was recommended that staggering of

evacuation decreases the evacuation time.

Chen and Zhan (2004) used agent based simulation modeling approach (utilizing

PARAMICS software) to analyze the effectiveness of simultaneous and staged

evacuations (e.g., 24 scenarios for four evacuation zones). Results revealed that the

performance of staged evacuation was highly related to network structure and distribution

of population density. Also, when the roads were at capacity, staged evacuation can

reduce the total evacuation time, for a grid roadway structure. However, there was no

significant benefit to use staged evacuation strategy in terms of evacuation time, for a

ring road network, even if the population density was high due to the limited number of

radial outlets from the evacuation zone.

Wilmot and Meduri (2005) developed a criteria-based methodology to delineate

hurricane evacuation zones depending on their elevations. The procedure was initiated by
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creating a layer in GIS based on the Maximum of the Maximum Envelope of Water,

(MOM) for the endangered region. Portions of ZIP code areas were divided into subareas

based on highway locations and elevation point file data were overlaid on the subareas to

calculate the mean and standard deviation of the elevation of each subarea. The authors

opined that hurricane evacuation zones can be delineated by overlaying zones of

homogeneous elevation on a surge map to identify those that will be flooded in each

scenario.

Sbyati and Mahmmasani (2006) developed an evacuation scheduling model based

on system-optimal assignment method where trips are scheduled between a selected set

of origin nodes and destinations with the objective of minimizing the network clearance

time. An iterative bi-level formulation method was used and the dynamic network

assignment problem was solved in the upper level to determine the time-dependent route

assignments, and a dynamic loading problem was solved in the lower level to determine

the corresponding route travel times. Results show that scheduling evacuation reduces

network clearance time, total trip time, and average trip time.

Liu et al. (2006) developed a cell-based network optimization model for planning

staged evacuation. This model computes the optimal starting time and routes for each

evacuation zone based on incident impacts, and demand generation patterns of evacuees

using the S-shaped logit-based function. The applicability of the model was demonstrated

with an example network with evacuation zones that are based on the level of threat.

Preliminary numerical results show that evacuation time, average travel time and wait

time can be reduced with staging.
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2.3 Flow Maximization

One of the most significant issues associated with evacuation is managing demand. Most

emergency management officials agree that the roadway capacity is insufficient to

completely evacuate people from large cities (e.g., New Orleans and Miami) in a short

time period in the event of a hurricane (Wolshon, 2004). Evacuation demand has a major

effect on the speed and efficiency of evacuations. Demand can be minimized by

providing better public information by working with the news media to give more

accurate descriptions of congestion levels on evacuation routes and the intensity of threat

at specific areas. However, practitioners employ contraflow, or reverse lane operations, to

maximize roadway capacity to accommodate higher demands during evacuation.

2.3.1 Contraflow Operations

Contraflow is the reversal in the direction of traffic in one or more inbound lanes to

increase outbound capacity in order to accommodate the traffic in the outbound direction.

Contraflow plans were developed after Hurricane Hugo, which devastated Charleston in

1989 (Munday, 1999). They were also used to accommodate unbalanced traffic during

peak hours or special events. For example, in New Hampshire, contraflow operation is

used twice a year to lessen congestion on the New Hampshire International Speedway

(NHIS) during Winston Cup NASCAR races. During hurricane George in 1998, only the

Florida and Georgia DOTs had contraflow plans in place to evacuate traffic on their

interstate freeways. According to a recent study, 11 of the 18 coastal states threatened by

hurricanes have developed contraflow plans (Wolshon et al., 2001). As shown in Figure

2.1, various alternatives ranging from normal operation to a complete reversal of both
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inbound lanes exist. Four types of contraflow operations have been in practice for two-

lane two-way highways.

1. Two lanes reversed;
2. One lane reversed, one lane normal for emergency/service vehicle access;
3. One lane reversed, one lane normal for inbound traffic entry; and
4. One lane reversed and use of outbound right shoulder

Normal Operation 	 Normal plus one Contraflow Lane

Normal w/shoulder and one Contraflow Lane 	 Normal plus Two Contraflow Lanes

Figure 2.1 Freeway contraflow lane use configurations.
Source: (Wolshon et al. 2001)

Each of the alternative strategies provides 30% to 67% capacity increase over normal

two-way operation. According to a study by FEMA (2000), a full reversal would provide

a near 70% capacity increase over conventional two outbound lane configurations. Single

inbound lane reversals are helpful in maintaining a lane for inbound law enforcement

personnel and emergency service vehicles for managing incidents. It can also permit

access for people who want to travel against the evacuation traffic. However, this strategy

also raises the potential for head-on accidents. Another strategy to improve capacity is to

use the outbound left shoulder as an additional outbound lane. This has been estimated to
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increase capacity by about only eight percent (FEMA, 2000). The increase in capacity

depends on the width and condition of the shoulder, since flow rates are decreased

because drivers tend to reduce speeds when they are laterally constrained. Table 2.1

illustrates the estimated average total outbound capacity (vph) in one direction (PBS&J,

2000).

Table 2.1 Interstate Contraflow Flow Rates for Four-Lane Freeways

Contraflow Strategies	 Estimated Capacity (vph)

Normal Two-Way Operation 	 3,000
Three Lane (one contraflow lane) 	 3,900
Three Lane (using outside shoulder) 	 4,200
All- lane Reversed (no shoulder lanes) 	 5,000
Source: (PBS&J, 2000)

2.3.2 Current Practices

Lim (2003) used the microscopic traffic simulation tool, CORSIM 5.0, to evaluate the

effectiveness of contraflow termination points. A contraflow section is terminated by

using a median crossover that redirects or splits a portion of the traffic on the contraflow

lane. Ten scenarios, which were designed based on the number of lanes at the median

crossover and the percentage of exiting traffic at the previous interchange were simulated

and the resulting performance of each scenario was ranked by the total number of

vehicles that traveled, traffic flow, speed, density, and delay. It was found that

maintaining a substantial number of exit opportunities along the intermediate segments of

the evacuation section can increase the overall efficiency of evacuation.

Kwon and Pitt (2005) studied the feasibility of applying the mesoscopic dynamic

traffic assignment (DTA) model, Dynasmart-P, for evacuating traffic in downtown

Minneapolis, Minnesota. The contraflow operations were found to be very effective when



18

the capacities of the key entrance ramps were increased. Simulation results revealed

potential gains in flow and hence a reduction in travel time due to increase in capacities

of outbound ramps from the evacuation region

Tuydes and Ziliaskopoulos (2004) modified the cell transmission model (CTM)

for better utilization of the available network capacity by allowing reversibility on some

or all road segments when a drastic demand pattern shift is experienced during a disaster.

The model calculated the system optimal solution of a dynamic traffic assignment

problem and optimal capacity reallocation (also known as contraflow optimization).

Comparisons of the base case with no reversibility and the re-designed one considering

contraflow were tested on an example network. Results showed significant reduction in

evacuation time when contraflow or reverse lane operations were used.

2.4 Traffic Flow Theory Applied to Modeling Evacuation

Since the purpose of this research is to develop an analytical model that determines the

optimal staging to minimize evacuation time and delay, a review of the existing traffic

flow models used in evacuation will provide vital inputs for achieving this objective. The

following section presents a general classification and a brief discussion on the type of

traffic flow models employed in evacuation modeling.

2.4.1 Model Classification

Various methods have been adopted in categorizing traffic flow models in the past.

Classifying models as macroscopic vs. microsimulation, deterministic vs.

microsimulation, empirical vs. theoretical, empirical vs. analytical are not valid ways of
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qualifying models. This is because, models never fall into clear-cut categories, but there

is a spectrum of models (Akcelik, 2004).

The U.S Highway Capacity Manual (HCM, 2000) defines an analytical model as

"A model that relates system components using theoretical considerations that are

tempered, validated, and calibrated by field data.", whereas it defines a simulation model

as "A computer program that uses mathematical models to conduct experiments with

traffic events on a transportation facility or system over extended periods of time".

Analytical models use direct mathematical computations to determine system states, and

simulation models use various rules (mostly in the form of mathematical equations) for

movement of vehicles (individually or in platoons). Therefore, fundamentally both

analytical and simulation models are mathematical derivatives of their forms. In general,

models used for evacuation planning are classified into two groups namely, microscopic

and macroscopic (Fujishige et al., 2002). Another class of models called mesoscopic

models that trade the accuracy of microscopic models and the computational efficiency of

macroscopic models has also been employed.

Prior to 1990, evacuation simulation studies were scarce due the lack of adequate

computing resources. Due to the advancement in computer technology, simulation has

become popular in recent years. The following sections discuss evacuation models that

employ several techniques to minimize evacuation time or delay and/or maximize vehicle

throughput or roadway capacity.
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2.4.2 Microscopic Models

Microscopic models have been used for experimental analyses by simulation of behavior

of individual evacuees. These models are typically based on car-following and lane-

changing theories that can represent traffic operations and driver behavior. Microscopic

modeling also incorporates analytical techniques such as queuing analysis, shock-wave

analysis. Most microscopic models employ the Monte Carlo process to generate random

numbers for representing driver/vehicle behavior in real traffic conditions. Examples of

microscopic models applied in evacuation include Car Following Models, Agent Based

Models (Distributed Artificial Intelligence-Based Models), and Cellular Automata

Models.

(1) Car Following Models

Car following models represent individual vehicle following behavior in a single stream

of traffic. They state rules for maintaining a safety distance between vehicles and use

realistic driver behavior and detailed vehicle characteristics to model various traffic

flows, which are observed in real traffic such as soliton wave, shock wave, and kink

wave, etc. Car Following Models assume feasible values of car length, driver reaction

time and deceleration parameters to obtain optimal values of flow rate, density, and

velocity. Application of car following models in evacuation modeling includes studies

conducted by Lim (2003) and Malone et al. (2001).

Malone et al. (2001) developed an evacuation model based on car following

distance to derive traffic flow rate in terms of empirically estimated driving parameters

(car length, reaction time and the deceleration parameter). The evacuation time M, is

defined as a function of discharge and travel time as formulated in Equation 2.1:



N (1–W)D
M =W —+

lq	 u

where W is weight factor for maximizing either discharge rate or velocity, N is total

demand, 1 is number of lanes, q is discharge rate, D is distance to be traveled, and u is

speed of the evacuation route. The density k was obtained from the reciprocal of the

vehicle spacing denoted as S, which was obtained from data compiled in a series of 23

observational studies of highway capacity using empirical parameters:

S=a+/3u+yu 2 	(2.2)

where a is the effective vehicle length (L), fi is reaction time, and y is reciprocal of

twice the maximum average deceleration of a following vehicle. Using Equation 2.2 and

the fundamental flow-density relationship q = uk , the optimal speed, u* and optimal

•I, 	2 density, k* were derived as u* = —
L 

and, k* =	 respectively. The optimal
2-4yL

discharge rate during evacuation was determined as a product u* and k* .

(2) Cellular Automata Models

Cellular automata was introduced by von Neumann and Ulam in the 1960s for modeling

biological self-reproduction (Nagel and Schreckenberg, 1992). Creamer and Ludwig

(1986) used a cellular automata model in the form of a Boolean simulation of traffic flow

where vehicles were represented by 1-bit variables that are placed in computer memory

locations corresponding to the locations of vehicles on the roadway. Based on the

occupancies of cells at a discrete time instant, the pattern of cars within a lane of a

roadway is represented by corresponding set of 0's or 1's. Malone et al. (2001)

21

(2.1)
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developed a Cellular Automata evacuation model to account for the variance in the

traveling speeds of vehicles on the evacuation route. By doing so, the model takes in to

account the random behavior of drivers and avoids over prediction of speed.

(3) Agent Based Models

Agent-based modeling approach, also known as individual-oriented or distributed

artificial intelligence-based modeling approach, is an important tool for simulating

individual and collective behaviors in a dynamic system (e.g., transportation system)

where the future conditions are unpredictable. The basic components of an agent-based

system include a model of the agents and a model of their environment. Individual

vehicles are treated as autonomous decision-making agents. Each agent makes decisions

and acts based on the interactions with other agents and information provided by the

environment. A set of rules (e.g., vehicle acceleration, deceleration, lane changing, etc) is

employed to govern the behavior of the agents. The collective behavior resulting from the

interactions among individual vehicles during evacuation can be captured for measuring

the evacuation time. Agent based models have been applied in previous studies

conducted by Church and Sexton (2002), Batty et al. (2003), and Chen and Zhan (2004)

as discussed in Sections 2.1 and 2.2.

(4) Simulation Models

Microscopic traffic simulation models, designed for modeling normal traffic operations

could be applied to model traffic situations during evacuations. Prior to 1990 the number

of studies that employed microsimulation for evacuation modeling was limited due to
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inadequate computational capabilities. However, due to advancement in computer

technology, the number of studies employing microsimulation has increased.

The earliest application of microsimulation in evacuation modeling required

customizing the general-purpose microsimulator NETSIM2 to manage an evacuation

(Rathi and Santiago, 1990). Stern and Sinuany-Stern (1989) presented a behavioral-based

microsimulation model, based on the SLAM II simulation language for small-city

evacuations that included pedestrian flows. Cova and Johnson (2002) developed a

network flow model to optimize lane-based evacuation routing plans in a complex road

network using the microsimulation model PARAMICS. In another study, Cova and

Johnson (2002) developed a method to test neighborhood evacuation plans for an urban-

wildland interface using PARAMICS. Lim (2003) used the microscopic traffic simulation

tool, CORSIM to evaluate the effectiveness of contraflow termination points in

evacuation. A comparison of prominent microsimulation software packages employed in

evacuation modeling is presented in Table 2.2.
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Table 2.2 Comparison of Microscopic Simulation Models Used in Evacuation
Modeling

Criteria INTEGRATION MITSIM
	

VISSIM
	

CORSIM 	 PARAMICS
Developer FHWA 	 Massachusetts

Institute of
Technology

PTV System
Software and
Consulting
GMBH

FHWA The Edinburgh
Parallel
Computing Centre
and Quadstone
Ltd

User
Interface

Text-based
and
graphical
user
interface

Text-based
and graphical
user interface

Graphical user
interface

ASCII text
files

Text-based and
graphical user
interface

Control
Strategies
and
Algorithms

Car
following
model.
Internal
strategies

Car following
model
External.

Driver-vehicle-
element (DVE)
model and signal
control model.

Car following
model
Pre-timed and
actuated signal
control

Car following
model
Internal.

Automated
Highway
System

Dynamic
Traffic
Assignment

Modeling
Transit 

x

x x 

x	 x	 x

Dynamic
Route 	 x	 x	 x
Guidance

Variable
Message 	 x	 x	 x
Signs

Incident
Management 	 x	 x
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2.4.3 Macroscopic Models

Macroscopic models used in evacuation do not track behavior of individual vehicles but

regard them as a section or homogeneous group. Continuum models, either simple or

high order are usually employed in these models. These models treat traffic as an

aggregate fluid flow that uses the law of conservation of mass. According to the

continuum theory, flow is a function of density at any point on the road. The simple

continuum model comprises of a continuity equation (Equation 2.3) representing the

relationship among speed u, density k, and flow rate q at location x and time t. The

continuity equation indicates that vehicles are neither created nor lost along the road.

ak aq
---F- = Vat ax (2.3)

The use of the variables u, k and q reduces the computation requirements for

macroscopic modeling, making real-time calculation quite feasible. This is because

aggregate behavioral data is easier to obtain and validate. The simple continuum model

does not consider vehicle acceleration and inertia effects and thus cannot describe non-

equilibrium traffic flow dynamics (e.g., breakdown of traffic, stopping and going) with

precision. A high-order continuum model takes into account acceleration and inertia

effects by using a momentum equation in addition to the continuity equation. This

momentum equation accounts for the dynamic speed-density relationship observed in real

traffic flow. Macroscopic models applied in evacuation planning include static network

models and dynamic network models, which are discussed below.
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(1) Static Network Evacuation Models

In case of static network evacuation models, the varying behavior of evacuees is not

considered and hence flows during evacuation are independent of time. Static network

models include shortest path, minimum cost network flow (Yamsda, 1996), and quickest

path (Chen and Chin, 1990; Chen and Hung, 1993) models. A quickest path problem is

one in which, for a given fixed flow and entrance and exit nodes in a network, the

quickest path is found in order to send the flow as quickly as possible.

(2) Dynamic Network Evacuation Models

Unlike the static network models, dynamic network models treat traffic flow as time-

varying function to represent movements of evacuees. Dynamic network models can be

classified into (a) discrete-time dynamic network models and (b) continuous -time

dynamic network models, which are discussed next.

2(a) Discrete-Time Dynamic Network Models

Discrete-time dynamic network could be modeled as a maximum flow or quickest flow.

In the maximum flow model, the objective is to find a dynamic flow rate that maximizes

the total flow between a pair of entrance and exit nodes within a given time. A

polynomial approximation algorithm for this was developed by Hoppe and Tardos

(1994). However, in the quickest flow model, the objective is to find a dynamic flow rate

to send a given flow amount between a pair of entrance and exit nodes in the shortest

possible time. Burkard et al. (1993) obtained a polynomial-time algorithm for the

quickest flow problem by reducing it to a maximum dynamic flow problem.
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2(b) Continuous Time Dynamic Flow Models

Continuous time dynamic flow models consider the quickest flow with constant capacity

and travel time, and a maximum flow with zero travel time. The Quickest flow model

determines the shortest time of sending a flow in a network in which demand exceeds

capacity. Burkard et al. (1993) gave polynomial algorithms to reduce the quickest flow

problem to the maximum dynamic flow problem by binary search. On the other hand, the

objective of the maximum flow model is to send as much flow as possible from the

source to the sink within a specified time bound, when capacities are less than the

entering flows.

(3) Simulation Models

Several macroscopic evacuation models have been developed from the trip-based four-

step model with slightly different functional requirements to match evacuation modeling.

They have similar databases integrating data on population, socioeconomic

characteristics, route network, and other analysis elements. Also, the models use similar

algorithms of trip generation, distribution and assignment. Table 2.3 presents a review of

various macroscopic simulation models. Most of the computer simulation models are

proprietary and the developers are reluctant to release their models for investigation. The

optimization algorithms used in the models vary at different levels of their application.
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2.4.4 Mesoscopic Models

Mesoscopic models unite the properties of both microscopic and macroscopic simulation

models. Similar to microscopic models, mesoscopic models track the behavior of

individual vehicles, but vehicle movement follows the approach of macroscopic models,

which is controlled by the average speed. Thus, mesoscopic models trade the accuracy of

microscopic models and the computational efficiency of macroscopic models. These

models are employed when a high level of detail is desired with real-time simulation.

The cell transmission model (CTM) initially developed by Daganzo (1994) is a

mesoscopic model, where a highway is segmented into small cells and the contents of the

cells (i.e., number of vehicles) are tracked over time In a cell-transmission scheme the

cell data is updated at closely spaced time intervals by calculating the number of vehicles

that cross the boundary separating each pair of adjoining cells during the corresponding

clock interval. This flow is based on a comparison between the maximum number of

vehicles that can be sent by the cell directly upstream of the boundary and those that can

be received by the downstream cell. Application of CTM in evacuation includes the

models developed by Tuydes and Ziliaskopoulos (2004), and Liu et al. (2005).

Mesoscopic simulation models used in evacuation include NETCELL and

Dynasmart-P. NETCELL is a freeway network simulation program by Daganzo (1994),

which captures the dynamic evolution of traffic over a freeway network with three-legged

junctions (Cayford et al., 1997). Dynasmart-P was developed by FHWA and the

University of Maryland (Dynasmart-P, 2001). The most significant feature of Dynasmart-

P is its dynamic traffic assignment capability.
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2.5 Speed-Flow-Density Relationships

Understanding the relationship among different traffic parameters (e.g., Speed, Density,

Flow, etc) is important for developing the evacuation model proposed in this research to

determine discharge rate of an evacuation route under varying traffic conditions. The

total demand to be evacuated and maximum discharge rate influence the estimation of

evacuation time and delay considerably.

2.5.1 Speed- Density Models

The calibration of speed vs. density has been focused upon in modeling traffic stream

characteristics mainly due to two reasons (Roess et al., 1998):

1. Speed-density curves are monotonically decreasing and can be expressed in

simple mathematical equations as compared to flow vs. speed and flow vs. density

curves.

2. Speed-density curves represent the most basic interaction of drivers on roadways

as drivers perceive density, or the proximity of other vehicles, and adjust their

speeds accordingly. Drivers cannot sense flow, which is a point measure and does

not have an impact on their behavior.

Seven models were proposed to represent the speed-density relationship (Hall, 1994) as

discussed below.

Greenshield (1935) developed the following linear speed-density model (Equation

2.4) by conducting several field studies:

(2.4)
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where uf is free flow speed (speed achieved under very low density), and ki is jam

density (maximum density at which all vehicles are stopped). While results of this linear

speed-density model have continued to be widely accepted, Drake et al. (1967) indicated

that the speed-density forms should not be perfectly linear.

In order to develop a model that could reasonably represent real world data, Ellis

(1964) fitted data (free flow, impeded flow, congested flow, etc) in various flow ranges

for different linear models. The advantage of this piecewise modeling approach is that

non-linear relationships can be approximated by linear equations.

Greenberg (1959) developed a logarithmic speed-density model (Equation 2.5),

u = u
c	 k

ln (—Lk • j	 (2.5)

where u, is critical speed (speed at maximum discharge rate). Since this model fails at

low values of density, a maximum free flow speed must be assumed for estimating actual

speed based on jammed and observed densities.

Underwood (1961) developed an exponential model for representing the

relationship between speed and density, which is given by

i_kk I
u.0I e. c ) (2.6)

where k is critical density (density at maximum discharge rate). Although the

Underwood model is practicably suitable for low density conditions, it is unreliable at

higher values.

Edie (1961) developed a discontinuous, exponential model, which employed the

Greenberg model (Equation 2.5) and the Underwood model (Equation 2.6) for high and

low density conditions, respectively. This model reasonably describes the entire range of
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speeds and densities. Figure 2.2 shows a discontinuity in the flow-density curve at the

point of critical density.
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Figure 2.2 Edie's model fitted to Eisenhower Expressway, Chicago data.
Source: (Drake et al. 1967)

May (1967) developed a bell shaped curve (Equation 2.7) with field data to model

speed-density relationship.

U = U
f

e 

[-0.5(- 2 	

(2.7)

Similar to Underwood's model, this model is unsuitable under high density conditions.

Drake et al. (1967) conducted empirical tests to statistically compare the speed-

density models discussed above. The data collected from the middle lane of the

Eisenhower Expressway in Chicago that comprised of a series of 1224 1-minute

observations were used. The measured information consisted of volume, time mean

speed, and occupancy. Density was calculated by dividing the volume by time mean

•
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speed. Edie's model seemed to provide the best estimates of the fundamental parameters

(speed, density, flow) at the least standard error (Hall, 1994). However, the other models

tended to underestimate the maximum flows. Thus, Edie's model is applied here to

determine the speed-density relationship of an evacuation route.

2.5.2 Speed-Flow Models

Under uncongested conditions, for a given demand of the evacuation route, density is

first determined using Undewood's model and then the corresponding speed is obtained.

This procedure will be discussed in section 3.3. On the other hand, under congested flow

conditions, the practicable flow is determined first using a suitable model that provides

feasible values of speed and density. The selection of the model for congested condition

is discussed as below.

Several models have been proposed to approximate speeds for flows near and

above the roadway capacity. The BPR function (Equation 2.8) used in planning models is

developed based on the HCM (1965) and has speeds sensitive to increasing flows.

u = 	 (2.8)
4

1+0.1.5( -v
))

where v— is the volume to capacity ratio. However, the BPR curve seems to

overestimate speed as the volume-to-capacity ratios exceeds 1.0 and underestimates

speeds if volume-to-capacity ratio is less than 1.0.
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The Metropolitan Transportation Commission (MTC) function (Equation 2.9)

was developed as a modification of the BPR function by changing the coefficient in the

BPR function from 0.15 to 0.20 and the exponent from 4.0 to 10 (Singh, 1995).

of
U = (2.9)i	 ico

1+0.2( 1'
c

I

This function followed the 1995 HCM speed-flow relationship very closely by

having reduction in speed of 10 mph instead of 5 mph from the free-flow speed at —v ratio
c

equal to 1.0.

Davidson (1966) developed a model for travel time estimation (Equation 2.10)

using the concepts of queuing theory. The speed is obtained from the reciprocal of travel

time, T , from Equation 2.10.   

T =To (2.10) 

■ 

where:
T : Estimated travel time (hours/mile)

TO : Free-flow travel time (hours/mile)

JD : Delay parameter (calibrated based on type of roadway)

Akcelik (1991) proposed a modified time dependent form of the Davidson's

function to model travel times while volumes are near or above the capacity (Equation

2.11). Akcelik's equation was derived as a modification to Davidson's equation for

predicting the travel time on any road facility (Dowling and Alexiadis, 1997).
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(2.11)

(

0.25p
2 8 JD

v- 1
c	 cp

T =T0 +

where p is the time period during which an average demand is assumed to persist (e.g., 1

hour). The Akcelik's function can deal with varying traffic flow for better link travel

times estimation for congested conditions (i.e. —v  > 1.0 ).Similar to Equation 2.10, the

speed for Akcelik's model is obtained from the reciprocal of T .

The performance of the models discussed above for varying demand to capacity

ratio is shown in Figure 2.3.
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Figure 2.3 Comparison of models for congested conditions.
Source: (Singh, 1999)

A comparison of the models for estimating speeds for flows near and above

capacity based on the root-mean square error (RMS) of observed speeds (using floating

car runs) for 119 selected freeway segments over the San Francisco Bay area yielded the

following results (Singh, 1999): The RMS error for the MTC curve was 10.1, compared

to BPR, which was 10.8, Updated BPR was 10.4, and Akcelik was 9.83.

1
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Also, research by Dowling et al. (1998) that used the Akcelik speed-flow model

to refine the speed estimates of network assignment model, demonstrated that Akcelik's

model produces significantly improved traffic assignment run times and provides more

accurate speed estimates.

Thus, this research will also employ the Akcelik's model to estimate speeds under

congested conditions ( i.e. —v >1.0 ). The speed obtained from Akcelik's model is then
c

used to compute the density through Edie's model, and the corresponding practicable

discharge rate. The application of Akcelik's model will be discussed in section 4.3.

2.6 Modeling Evacuees' Behavior

The performance of behavioral models is different from that of non-behavioral based

models (Stern and Stern, 1989) because behavioral models account for information

diffusion and decision making time. Integrating behavioral aspects in evacuation

modeling yields more realistic estimation of evacuation times. The state-of-practice in

evacuation travel demand modeling has two main steps namely, travel demand

forecasting and the estimation of departure times of evacuees (Fu, 2004). Travel demand

forecasting helps in estimating evacuation time and delay. Departure times, which depend

on the behavioral response of evacuees (network loading rates, e.g., fast, medium, slow)

to evacuation orders has a significant effect on the traffic conditions of the evacuation

route and affect the evacuation time and delay.
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2.6.1 Travel Demand Forecasting

Lewis (1985) first developed a general travel demand forecasting process for hurricane

evacuation, which is analogous to the four-step urban travel demand-forecasting model.

The problems that were discussed included transportation planning, evacuation travel

pattern, estimation of travel demand, calculation of clearance time, and the development

of traffic control measures. Barrett et al. (2000) proposed a modeling framework for

developing dynamic hurricane evacuation models for long term and short term planning

purposes as well as for real-time operational purposes. They proposed functional

requirements for dynamic hurricane evacuation modeling. The system provides

evacuation time, evacuation routes and departure times that drivers can be predicted to

choose and maximize the system performance.

The data availability on evacuation behavior increased the development of trip

generation models for hurricane evacuation. Most of the post hurricane surveys and

behavioral studies were conducted after the late 1980s (Baker, 1991; PBS&J, 1993; Irwin

et al., 1995; U.S. Army Corps of Engineers, 1997, 1999, and 2001) The collected survey

data included information pertaining to percentage of people who evacuated, factors

affecting people's decision to evacuate, destination choice, departure time, number of

vehicles used for evacuation, socioeconomic and demographic profiles of evacuees.

Analysis of the surveyed data to understand the behavior of people in hurricane risk

conditions revealed information on evacuation participation rates, reasons for evacuating

or not evacuating, distribution of departure times etc. The results of the analysis have

been used in developing models for evacuation.
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2.6.2 Behavioral Models

Behavioral models used in modeling evacuation can be categorized into: Empirical

models, Behavioral response curves, Regression models, and Sequential logit model.

(1) Empirical Models

Empirical models use the planner's knowledge and judgment, based on the collected data

to produce general functions for departure time estimation. Tweedie et al. (1986)

developed a loading function that approximates the Rayleigh probability distribution

function as follows:

F(t) .1_ e-t2 /1800 	 (2.12)

where F(t) is the percentage of the population mobilized by time t; and t is the

mobilization time in minutes. Mobilization time is defined as the time from issuing of an

evacuation order to the time of departure of evacuees. The specific amounts of time at

which given percentages of the evacuees could be expected to be mobilized as shown in

Figure 2.4 was obtained by interviewing key experts with the Civil Defense Office of

Oklahoma. According to this model, 1800 minutes is the maximum time at which all

evacuees are assumed to have mobilized, for a hurricane evacuation.
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Figure 2.4 Cumulative percentage of demand mobilized vs. time.
Source: (Tweedie. 1986)

(2) Behavioral Response Curves

A response curve or loading curve portrays the assumed departure time distribution of

evacuees and represents the cumulative percentage of demand evacuating with time. It is

a sigmoid or "S" shaped curve. Network loading during evacuation starts at a lower rate

in the beginning when evacuation orders are given and increases in course of time until it

reaches a maximum, approximately halfway through the total loading period. Based on

the classification of the U.S. Army Corps of Engineers (USACE), loading curves could

be classified into "quick", "medium", and "slow" depending on how readily the evacuees

respond to an evacuation order (U.S Army Corps of Engineers, 2000). The curves are

based on historic data obtained from previous hurricane evacuations. In general, a quicker

response, leads to a steeper curve. As illustrated in Figure 2.5, the time point of 0 is when

the evacuation order is given.
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Figure 2.5 Evacuation demand loading curves.
Source: (U.S Army Corps of Engineers. 2000)

A certain proportion of demand (e.g., 10%) also known as Shadow demand leaves before

time 0. The curves represent an average response to evacuation orders and do not reflect

the impact of varying traffic conditions during the evacuation. The loading curve could

be described by the following equation (Jamei, 1984).

1
P(t) = 1+ e_a(t_fi) 	(2.13)

where P (t) is the cumulative percentage of demand being loaded onto the network at

time t; a is the curve slope factor, which represents the response of evacuees to the

disaster.; and /1 represents the half loading time (the time point at which half of the total

volume is loaded onto the network). Evacuation time is more sensitive to changes in a

than fi (Radwan et al., 1985). Radwan et al. (1985) and Hobeika et al. (1998) adopted

Equation 2.13 in evacuation software packages (e.g.,MASSVAC).
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(3) Regression Models

Irwin et al. (1995) developed a logistic regression model to estimate the probability of an

individual evacuating by utilizing data obtained from surveys following hurricane

Andrew. Based on the estimated model, the independent variables that significantly

affected the probability of evacuating included perception of risk, type of dwelling,

gender, and age.

Mei (2002) used logistic regression approach to develop trip generation models

with household survey data obtained after Hurricane Andrew in Southwest Louisiana.

The probability of a household evacuating was modeled as the dependent variable. The

independent variables which were found to be significant were housing type, whether the

household received a mandatory evacuation order or not, age of the respondent, distance

of the household from the nearest water body, and marital status. Variables that were

found to be insignificant included residence ownership, prior hurricane experience, race,

education level, and household size. The performance of the models was compared with

other existing evacuation model, (e.g., the PBS&J model, developed for the same area).

The results showed that the models developed in this study performed better than the

existing PBS&J model in predicting household evacuation trip generation for

southwestern Louisiana.

(4) Sequential Logit Model

Fu and Wilmot (2004) developed a sequential logit model for estimating dynamic travel

demand during hurricane evacuation. The model considered the decision to evacuate as a

series of binary choices over time. The probability that the utility of a household to

evacuate is greater than the utility of the household to not evacuate at time i, given that it
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did not evacuate earlier denoted as P(i)sic is modeled as a function of the household's

socio-economic characteristics, the characteristics of the hurricane, and policy decisions

made by authorities as the storm approaches.

e
vs

	P(i)sic= 
e

s 
+e

v
'

c 	 i=1,2,..../	 (2.14)

where I is the total number of time intervals. Uis and Uic are the random utilities of a

household choosing to evacuate or not to evacuate in time interval i , respectively. Each

of the random utilities comprises of a systematic component Vi and an error term ei .

Generally,	 Ui=Vi+ei	 (2.15)

By assuming that the error term e1 is independent among the alternatives (i.e., whether

to evacuate or not) at any one time period, the probability of the household evacuating in

time interval i, P(i) is given by

P(i)=Pr(Uic 	n u2 >u,s	 >Uf) 	 (2.16)

=P(1)c1sP(2)c1s
	 P(i- DcisP(Osic= P(i)sic	 [1— P(J)s1c]

j=1

The sequential logit model captures the five main parameters that affect

evacuation behavior as stated by Baker (Baker, 1991), namely the flood risk level

(hazardousness) of the area, action by public authorities, type of housing, prior perception

of personal risk, storm-specific threat factors. Using data collected after Hurricane

Andrew in Southwestern Louisiana, the model was estimated on 85% of the data and then

tested on the remaining 15% of the data. When the model was used to predict evacuation

behavior on the 15% testing data set, it reproduced observed evacuation behavior with an
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RMSE of 3.09 evacuations. Based on the results, it was concluded that a sequential logit

model is capable of modeling dynamic evacuation demand satisfactorily.

While the above discussed behavioral models have their advantages, they also

have limitations in terms in their applicability. Rayleigh distribution approach (Tweedie

et al., 1986) only depends on the maximum mobilization time. With Tweedie's approach,

the majority of the evacuation demand is mobilized during the first two hours of the total

evacuation period which, is not a very realistic assumption given the empirical evidence

obtained from various past-hurricane studies.

The sequential logit model (Fu and Wilmot, 2004) is constructed to impersonate a

3-day long evacuation, and detailed analysis show that the sequential model does not

yield promising results for short time evacuations (e.g., 24 hours) (Ozbay et al., 2006).

The model also needs detailed household specific data, like flood risk, being mobile or

not etc., because the evacuation decision for each individual household is treated

separately according to the housing characteristics which makes its implementation

difficult for a large population since a separate Monte Carlo simulation is needed to

generate evacuation probabilities for each household.

On the other hand Behavioral response curves (Sigmoid or S-Curves) have a

longer history than the sequential logit model and require considerably less site-specific

data compared to sequential logit model (e.g., need only two parameters namely, half

loading time and response rate which, could be obtained from past evacuation data).As a

result, this research will employ the behavioral response curves to model evacuee

behavior.
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2.7 Summary

Although some previous studies provided the groundwork for the investigation of staged

evacuation (Chen and Zhan, 2004; Sbyati and Mahmmasani, 2006; Liu et al., 2006), it

was found that information on impact analysis of simultaneous and staged evacuation is

still limited. This research will incorporate some of the important issues that have not

been thoroughly focused in past studies including the role of critical parameters (speed,

density, access flow) on evacuation time, reduction in capacity of evacuation routes due

to congestion, demand loading patterns, variation in demand distributions, capacity

utilization of evacuation route, etc. The impact of availability of excess capacity (e.g.,

contraflow) on staged evacuation will also be examined.

After a comprehensive review of existing speed-flow-density models, the Edie's

model was chosen to determine the speed-density relationship of an evacuation route in

the proposed model. Also, this research will employ the Akcelik's model to estimate

speeds under congested conditions.

A review of various existing behavioral models was conducted and the Behavioral

response curves (Sigmoid or S-Curves) model was selected to model evacuees' behavior.

The Behavioral response curves model has a longer history than the sequential logit

model and requires considerably less site-specific data compared to other models. The

model developed in this dissertation will determine the optimal staging scheme based on

demand distribution, behavioral response, and predicted evolution of traffic conditions on

the evacuation routes.



CHAPTER 3

DEVELOPMENT OF BASE MODELS FOR EVACUATION TIME AND DELAY

The model developed in this chapter will help to determine the time and delay for both

simultaneous and multi-staged evacuation. The models formulated here, called base

models, are evacuation time and delay, which will be minimized numerically by

optimizing the decision variables including the number and sizes of staged zones. The

analysis of evacuation time and delay discussed here, under a general and simplified

setting, provides an approach for developing guidelines for decision making during the

evacuation process.

3.1 Model Formulation

This section focuses on formulating evacuation time and delay for a region with one

evacuation route under a general and simplified setting. The following assumptions are

made to formulate the problem:

1. The number of vehicles to be evacuated denoted as Q, in the studied region shown
in Figure 3.1 is uniformly distributed over the evacuation route. Demand density,

denoted as Q , is Q divided by evacuation route length, denoted as L, from S to E.

2. The number of staged zones is denoted as N , whose lengths (x) are assumed to be

identical and equal to —
L 

. The accumulated flow increases as distance increases,
N

before reaching the maximum discharge rate, i.e., the accumulated flow at the
end of a staged zone of length x is qx, where q is the access flow rate per mile.
See Figure 3.2.

3. Full compliance of residents to evacuation orders is assumed (deterministic
behavior).
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Evacuation Direction

E

x = Length of a staged zone (miles)
zt, = Speed of vehicles from staged zone on evacuation route (mph)
kx= Density of vehicles from staged zone on evacuation route (vpm)
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Figure 3.1 Configuration of the studied area.
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Figure 3.2 Flow rate vs. location of the evacuation route.
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All the above assumptions can be relaxed to enhance the developed model to be

applicable in a more realistic setting. For instance, the demand distribution discussed in

assumption 1 may be replaced by actual one if data are available. Assumption 2 might be

adapted to have staged zones with different lengths based on the relaxation of assumption

1. Assumption 3 will not hold in most of the cases as evacuee behavior is difficult to

predict, which would certainly impact the results of analysis. However, assumption 3 can

be relaxed by approximating an actual demand-loading function derived from field data.

The objective is to optimize the number of staged zones that minimizes

evacuation time and the associated delay. The evacuation time is defined as the sum of

three components: (1) discharge time at an achievable rate, (2) the average transit time

for vehicles traveling on the evacuation route, and (3) staging time, also called

preparatory time, between subsequent zones. Evacuation delay comprises of two

components: (1) queuing delay incurred by evacuees accessing the evacuation route and

(2) moving delay while traversing the evacuation route.

3.2 Evacuation Time Estimation

Figure 3.3 shows staged evacuation zones of the studied area with uniform demand

distribution. The total evacuation time denoted as TE is

TE = TD ± TR ± Ts 	(3.1)

where TD , TR , and Ts represent discharge time, the transit time, and staging time

respectively.
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Figure 3.3 Configuration of staged evacuation.

ux

3.2.1 Discharge Time ( TD )

Discharge rate of an evacuation route is determined by the speed-density relationship of

the Edie's discontinuous exponential model, which applies the Greenberg's model for

congested regime, for example kx > 50 vehicles per mile, (vpm), such that

k.)
ux =u

c 	 kx
ink	 (3.2)

and the Underwood's model for uncongested regime, for example kx 50vpm , expressed

as

k,x1
— uufe ) (3.3)

for vehicles originating from a staged zone where
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ux = average travel speed

kx = average density

= critical speed (speed at maximum discharge rate)

kc = critical density (density at maximum discharge rate)

u1 = free-flow speed (speed achieved under very low density)

k.= jam density (maximum density at which all vehicles are stopped)

The Edie's model describes the entire range of speeds and densities. A congested

flow condition occurs when the accumulated flow from a staged zone (qx) exceeds

capacity, c and the corresponding density reaches 80-100 vpm (HCM, 2000). While, it is

best to work with sets of roadway data in which all three variables have been measured

and no estimation is needed, the Edie's model is used as an alternative here to determine

the speed-density relationship and the corresponding discharge rate of the evacuation

route due to the absence of evacuation traffic data (speed, density and flow). Thus, a

density of 100 vpm is assumed for congested conditions in the numerical example

discussed later. Note that, data obtained during evacuations could be used to calibrate the

flow-density relationships under congested flow conditions in order to achieve more

accurate estimation of discharge rates.

Capacity is defined as the maximum discharge rate that can be achieved under

prevailing roadway conditions (Roess et al., 1998). The discharge rate for each staged

zone with a length of x is the product of flow density kx and its corresponding speed ux .

Thus,

qx uxkx , if qxc	 (3.4)



According to the Underwood's model

qx = u fe(Ix) ,c k

kx can be obtained from Equation 3.5 and ux can then be obtained by substituting

kx into Equation 3.3. The maximum discharge rate, c is formulated as

kcu f
c=

e

The required discharge time for vehicles in a staged zone is

t OX
D 

- 
uxkx

where Ox represents the number of vehicles to be evacuated per zone. Thus, the

discharge time for an N-stage evacuation is

TD
D uxkx

Since xN = L and 0 = -Q- ,TD can be derived as
L

T = Q
D uxkx

3.2.2 Transit time (TR )

The transit time for a staged zone denoted as tR is the average vehicle travel time from

the zone to the end of the evacuation route shown in Figure 3.3. tR can be formulated as
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(3.5)

(3.6)

(3.7)

(3.8)

(3.9)



N	 Aux

N-i-i---
1
)x (

	T R — 
2	 1

" (3.11)
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tR = (N—i+ -1 )x
2 (3.10) 

ux

(1
	

i
)

where N—i+— x is the average distance traversed by vehicles from zone i on the
2

evacuation route. ux can be obtained from Equation 3.3. Note that the average distance

traveled considered in Equation 3.10 is based on assumption 1, and can vary depending

of the demand distribution of the evacuation region. Thus, the average transit time for an

N-stage evacuation is

3.2.3 Staging time (Ts )

Staging time is the preparatory time required between subsequent evacuation stages to

clear barricades or initiate appropriate traffic flow. It is assumed to increase linearly with

the number of zones

Ts =(N —1)ts 	(3.12)

where is is the staging time per staged zone.

According to the discharge time, transit time, and staging time derived in Equations. 3.9,

3.11 and 3.12, evacuation time denoted as TE is

	Q 	 2.) 	1
TE = 	( N —1)t

	u xkx	N	 (ux)
(3.13)



Since xN = L
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TE =

Q i(
N —i+-

1
)L

2 
uxkx	uxN2

+(N	 (3.14)

By substituting for ux from Equations 3.3 and 3.2, respectively into Equation 3.14, the

required evacuation times under free-flow and congested regimes can be approximated

using Equations. 3.15 and 3.16, respectively.

Q 2 + (N —1)t,1—k)

kx	
ikkx) 2ufe	 N	

if qx	 (3.15
kcx

)

ufe

TE — 	Q 	+ 1=1 	
2
	 (N— Di-, if qx > c	 (3.16)

u
c 	uc 

14 
k
-1- N 2

kx x	 kx

3.3 Delay Estimation

Delay discussed here consists of queuing delay incurred by vehicles accessing the

evacuation route and moving delay as vehicles transit the route. The queuing delay is

computed based on queue length in each staged zone and the accumulated flow rate,

while the moving delay is based on the difference of vehicle travel times under free-flow

and congested conditions.



3.3.1 Queuing Delay ( DQ )
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tD ' = Queue formation time (hours)

tr, — tD '= Queue discharging time (hours)

Flow rate (vph)

uxkx

Time (hours)

0 t„,•=—Q t
= Qx

uxkx

Figure 3.4 Flow rate vs. time.

Queue Length

Time (hours)
0 tp ' tD

Figure 3.5 Queue length vs. time.

According to assumption 2, the accumulated flow rate at the end of a staged zone is qx .

Queuing delay occurs when qx is greater than the discharge rate uxkx . Figure 3.4 shows

that the discharge time is determined by the accumulated flow rate and discharge rate,
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where the queue formation time tD ' is Ox divided by qx . Thus,

tE, ' =
qx

(3.17)

However, if tD ' is not realized (i.e., if all vehicles in the staged zone are not discharged

in tD ') owing to uxkx < qx , a queue is formed. Consequently, the queue length nq at time

tD ' is

nq = (qx — uxkx )t D '	 (3.18)

As shown in Figure 3.5, the queue is fully discharged at time tD , and the queuing delay

denoted as d for a staged zone is

d =it n
q 2 D

(3.19)

By substituting for tD , tD ' and nq , from Equations. 3.7, 3.17 and 3.18, respectively in

Equation 3.19, the queuing delay for an N- stage evacuation

D =  NO2 X
 (qx —uxkx)

Q 2quxkx
(3.20)

Since xN = L , and Q = y , Dc, is derived as

2Do =  Q 	[ qL uxkx	(3.21)DQ 
2Lquxkx N
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3.3.2 Moving Delay (Dm )

The moving delay is defined as the difference between average travel times at the

operating speed ux and the free-flow speed u f .For instance, the moving delay for

vehicles originating from a staged zone i is given by dm; (See Figure 3.3), such that

d„„ — ( C 1N—i+—i)x (N—i+-+
2	 2 Qx 	 Vi E N 	 (3.22)   

ux 	uI

(	
1)

where N —i+— ix is the average distance traversed by vehicles from zone i on the
2

evacuation route. Thus, the moving delay for an N-stage evacuation is

(

	Dm =i (N —i+-
1) 	 1 1

i=i 	 2	 ux of

Since xN = L and Q = —Q , Dm is

DMN _ i+ 1)QL(1 1
2) N2 ux u f

The total delay, DT defined here is the sum of DQ and Dm . Thus,

	D T - Q2 [qL Uxkx1+i
	 QL 1 _1

2Lquxkx N 	 2 N \ 	 uf

(3.23)

(3.24)

(3.25) 

By substituting for ux from Equation 3.3 and 3.2, respectively into Equation 3.25, the

total delays under free-flow and congested regimes are derived as Equations. 3.26 and

3.27, respectively.
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if qx c	 (3.26)

■

DT =

Q2 [—uckx ln kj
kx ±i (N j+ 1)QL

) 2
2Lquckx In ( 11	 "	

N2

kx

3.4 Numerical Example

The objective of this example is to demonstrate the applicability of the model developed

in this chapter in determining the optimal number of staged zones that minimizes

evacuation time and delay. The tradeoffs between the evacuation time and delay for both

simultaneous and staged evacuations are investigated. The length of each staged zone is

determined by dividing the length of the evacuation region by the number of stages.

Equations 3.15, 3.16, and 3.26, 3.27 are applied to compute the evacuation time and

associated delays of the studied evacuation region for both free-flow and congested

regimes.

In this numerical example, the optimal staging for of a given evacuation region

with a length of 15 miles, similar to Figure 3.3 is analyzed. The evacuation demand is

assumed to be 20,000 vehicles and is uniformly distributed over the studied route. The

access flow rate, q is assumed to be 350 vph per mile. The maximum discharge rate on

(

1

u ln
	 of

if qx > c (3.27)  
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the evacuation route, c is 2,000 vph. These values are intended to demonstrate the

application of this model rather than to represent any specific case.

3.4.1 Results and Discussion

Figure 3.6 shows the estimated evacuation time at various number of staged zones for the

base case (L = 15 miles, q = 350 vph, Q = 20,000 vehicles) without considering staging

time between zones. The evacuation time is a convex curve, and yields a minimum

solution at N =3.
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e
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Figure 3.6 Evacuation time vs. number of staged zones (without staging time).

The evacuation time is primarily influenced by the discharge time depending on

the flow rate on the evacuation route. Either simultaneous evacuation (N = 1) or a 2-stage

evacuation (N = 2) causes congestion on the evacuation route due to the accumulated

flow rate rising beyond the available capacity. This results in jam densities and

considerably reduces the speed on the route. Thus, the discharge rate obtained under

these conditions (N = 1 or 2) is less than the discharge rate for N = 3 (1,750 vph).
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However if N >3, evacuation time increases because of reduced discharge rates (at lower

densities with higher speeds). Although, transit time decreases as the number of staged

zones increases due to higher speeds (45 to 50 mph), it is less than the increase in

discharge time and does not significantly help to reduce the evacuation time.

Number of Staged Zones

Figure 3.7 Evacuation time vs. number of staged zones (with staging time).

Figure 3.7 shows the estimated evacuation time at various number of staged zones for the

base case (L = 15 miles, q = 350 vph, Q = 20,000 vehicles) by considering staging time

between stages ( ts = 0.5 hour). Although the evacuation time increases for zones 2 to 5,

when compared with the previous case (Figure 3.6), the evacuation time is still minimum

at N =3.

Figure 3.8 shows delays at various values of N. The moving delay on the

evacuation route primarily depends on the speed of the evacuating vehicles. This speed is

13 mph when N ... 2 is employed. Consequently, the time taken for vehicles traversing
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the evacuation route increases as N decreases. Queuing delay is mainly influenced by the

queue length over time (from 0 to tp ' as shown in Figure 3.5).

The queue length for simultaneous evacuation is significantly higher than that of a

multi-staged evacuation, due to a greater difference between the access and discharge

rates. As a result, the queuing delay is the highest under simultaneous evacuation, and it

decreases as N increases. The queuing delay is zero if qx is less than uxkx .
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Figure 3.8 Delay vs. number of staged zones.

In this regard, based on the urgency of the evacuation, the decision of a

simultaneous or multi-staged evacuation could be undertaken. For instance, evacuations

for predictable events (e.g., hurricanes) allow a relatively longer preparatory time to

evacuate people and goods from the areas under threat. Therefore, using multi-staged

evacuation reduces delay but at increased evacuation time. In contrast to this, for

evacuations that do not allow much flexibility in time (e.g., terrorist attacks, and nuclear
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plant disasters) the evacuation strategy that yields the minimum evacuation time is

recommended.

3.4.2 Sensitivity Analysis

Results of sensitivity analysis are discussed here to illustrate the relations among

variables and identify the relative importance of factors that contribute to them. The

parameters that are considered to be most sensitive to the evacuation time and delay are

access flow rate q , demand Q , and the evacuation route length L .

Figure 3.9 illustrates the variation in TE at varying q (L =15 miles, Q = 20,000

vehicles). The number of staged zones at which, the total evacuation time is minimum,

increases while q increases.
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Figure 3.9 Evacuation time vs. number of staged zones for various flow rates
(L =15 miles, Q = 20,000 vehicles).
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As access rate reduces (e.g., q = 150 vph), simultaneous evacuation is preferred as it

yields the minimum evacuation time although congested conditions prevail (qx > c). This

is because, the achievable discharge rate for simultaneous evacuation at q = 150

(uxkx =1,300 vph) is greater than the discharge rates attained for non-congested

conditions at higher values of N. But, as q increases, (e.g., q = 450 vph), higher discharge

rates are attained at higher values of N, thereby increasing the number of staged zones at

which evacuation time is minimum (e.g., N = 4 gives least TE for q = 450 vph).

Figure 3.10 demonstrates the variation in total delay DT , with variation in q (L

=15 miles, Q= 20,000 vehicles).
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Figure 3.10 Total delay vs. number of staged zones for various flow rates
(L =15 miles, Q= 20,000 vehicles).

DT decreases as N increases at all values of q. For a particular N, DT increases

while q increases, primarily due to an increase in the queuing delay caused by a large

difference between the access flow rate and discharge rates on the evacuation route. The
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moving delay of the evacuation route also increases with increase in q for any N due to

reduction in average speed.

Figure 3.11 shows the variation in TE for varying Q (L =15 miles, q = 350 vph).

The variation in demand is an indicative of variation in demand density for a given

region. Although, the evacuation time increases with increase in demand for any N, the

minimum evacuation time is yielded by N =3 for all values of Q under the current setup.

Since the discharge flow rate on the evacuation route does not change at varying demand

for any N, the only factor causing increase in evacuation time is demand (Q) itself. This

suggests that staging of evacuation could be applied to areas of both low and high

densities, but the time savings are more pronounced at higher densities.
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Figure 3.11 Evacuation time vs. number of staged zones for various demands
(L =15 miles, q = 350 vph).

Figure 3.12 shows the total delay DT with variation in Q (L =15 miles, q = 350 vph). DT

decreases as N increases at all values of Q. Also, DT increases as Q increases for any

value of N, due to an increase in volume entering the route from the staged zones.
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However, increase in delay at higher values of N (e.g., N = 5) is only due to the

occurrence of moving delay as discharge rates attained are less than capacity (qx < c) ,

which results in no queues.
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Figure 3.12 Total delay vs. number of staged zones for various demands
(L =15 miles, q = 350 vph).

Figure 3.13 shows variation of TE with L (q = 350 vph, Q = 20,000 vehicles).

Here, demand of the evacuation region is assumed to vary proportionally with the length

of the evacuation route at a constant demand density of 0 . This analysis helps in

determining evacuation scenarios for affected areas of various sizes. The optimal number

of stages at which, the evacuation time is minimum, increases as L increases. For a short

L (e.g., L =5 miles), the minimum evacuation time is when N =1 (simultaneous

evacuation), and staging does not further reduce evacuation time. However, as L

increases, congested conditions prevail at lower values of N, thereby reducing the

discharge rates, which increases evacuation time. Thus, the minimum evacuation time is

achieved by increasing N for higher L. Figure 3.14 illustrates the variation of total
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delay DT with variation in L (q = 350 vph, Q = 20,000 vehicles). DT decreases as N

increases at all values of L. Both queuing and moving delays increase while L increases.

0

—0— L = 5 miles
—0— L = 10 miles
—fr—L = 15 miles
—I--- L = 20 miles
--)0E— L = 25 miles

1
	

2 	 3	 4
	

5

Number of Staged Zones

Figure 3.13 Evacuation time vs. number of staged zones for various lengths of
evacuation route (q = 350 vph, Q= 20,000 vehicles).
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Figure 3.14 Total delay vs. number of staged zones for various lengths of evacuation
route (q = 350 vph, Q= 20,000 vehicles).
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3.5 Summary

In this chapter base models were developed for estimation of evacuation time and delays.

Two strategies namely, simultaneous and staged evacuations were tested. Evacuation

time is the duration required for evacuating all vehicles from a designated region, while

delay includes queuing and moving delays. The relationship between delay and

evacuation time is investigated, and the impact of staged evacuation against simultaneous

evacuation is analyzed. An example is provided to demonstrate the applicability of the

developed model. A numerical method is adopted to determine the optimal number of

staged zones. Sensitivity analysis of parameters (e.g., demand density, access flow rate,

and evacuation route length) affecting evacuation time and delay is conducted. Results

indicate that evacuation time and delay can be significantly reduced if staged evacuation

is appropriately implemented. The base model is limited in functionality and follows the

assumptions discussed in section 3.1. However, in Chapter 4 the model is enhanced to

incorporate behavioral response of evacuees' to evacuation order, and variation in

demand distribution pattern.



CHAPTER 4

STAGING MODEL FOR STOCHASTIC AND HETEROGENEOUS DEMAND

By considering heterogeneous demand distribution over an evacuation region and

behavioral responses of evacuees to evacuation orders (e.g., fast, medium, and slow), a

more realistic model called Enhanced Model I is developed here by enhancing the base

model discussed in Chapter 3, where uniform demand distribution and deterministic

evacuee behavior were assumed. The optimal staging scheme that minimizes evacuation

time and the associated delay is determined through a numerical search. This chapter is

organized into the following sections: Section 4.1 discusses the formulation of temporal

demand distribution due to various behavioral response curves, and spatial demand

distribution along the evacuation route; Section 4.2 elaborates the development of the

staging model that can handle the demand distributions formulated in Section 4.1;

Section 4.3 presents a numerical example which demonstrates the applicability of the

model developed in Section 4.2; Section 4.4 investigates the sensitivity of demand and

capacity on evacuation time and delay; and finally, Section 4.4 presents a summary of

Chapter 4.

4.1 Demand Distribution

The temporal and spatial demand distributions over the evacuation route play a critical

role in the determination of the lengths of staged zones. In this section, the impacts of

both demand distributions on evacuation time and delay are discussed.

67
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4.1.1 Temporal Demand Distribution

The behavioral response of evacuees in complying with evacuation orders and network

loading rates significantly affects evacuation time (Stern and Stern, 1989). Thus, a

realistic model for evacuation time estimation should consider behavioral aspects such as

responses to evacuation orders (e.g., slow, medium, or fast). Unlike the deterministic

cases discussed in Chapter 3 where the demand was uniform and the access flow rate was

constant during evacuation, the behavioral model developed here employs the S-shaped

logit-based function formulated in Equation 4.1, which has been applied in previous

studies (Hobeika and Jamei, 1985, U.S. Army Corps of Engineers, 1997, 1999, 2000,

2001) to determine the time varying demand accessing the evacuation route.

P(t) =
1+e-

where P(t) is cumulative demand in percentage to be loaded at t, while a and 16 represent

the slope factor and half loading time (at which half of the demand is loaded),

respectively. Parameter a signifies the speed of evacuees' behavioral response. As a

increases, for a given 13 (e.g., 12 hours), the response of evacuees is more concentrated

near the half loading time as shown in Figures 4.1 and 4.2. A small value of a leads to a

low response rate and more homogeneous loading of demand onto the evacuation route,

and vice versa. For a given fi , the time required for evacuating the majority of demand

(e.g., 90%) decreases as a increases.

1
(4.1)
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Figure 4.1 Percentage of demand loading vs. time for various a( )3 =12 hours).
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Figure 4.2 Cumulative demand vs. time for various a (fi =12 hours).

In addition, as /3 increases for a given a, longer evacuation time should be

expected due to increased demand loading time as shown in Figures 4.3 and 4.4.



50

-oc 40co
E
e
0 30
co
c

46
10

100 -
c

1 80 -0
o)c
'5ea 60 -0
_1
46
e 40 -
w

..r...:
= 20 -
E
m
0

0

0 	 20 	 40 	 60 	 80 	 100 	 120 	 140 	 160
Time (minutes)

Figure 4.3 Percentage of demand loading vs. time for various 13 (a = 0.3).

70

---30
—0— 60
—et— 90
--X— 120

10 	 30 	 50 	 70 	 90 	 110 	 130 	 150 	 170
Time (minutes)

Figure 4.4 Cumulative demand vs. time for various fl (a = 0.3).

A certain proportion of demand (e.g., 10%) leaving before time 0 when evacuation orders

are given, known as shadow demand denoted as Qs , may be estimated for certain types

of disasters (e.g., hurricanes) if historical data are available.
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4.1.2 Spatial Demand Distribution

Similar to the temporal demand distribution, the spatial demand distribution plays a

critical role in the determination of the staged zone lengths. The zone length decreases as

the concentration of demand increases, and vice versa. Figure 4.5 illustrates a non-linear

demand density function, denoted as f (x) . The total demand Q over the evacuation route

from 0 to L can be derived as

Q = ff(x)cbc (4.2)

where L represents the length of the evacuation route.

a)
0

co
E

• • • • • • • 	 • • • •
Distance (miles)

Figure 4.5 Demand density vs. distance.

4.2 Model Development

Unlike the base model discussed in Chapter 3 where the lengths of the staged zones are

assumed identical, the model developed here optimizes staged zone lengths subject to the

demand distribution, behavioral response of evacuees, and evolution of traffic conditions

on the evacuation route. While the base model can handle uniform demand distribution
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and assumes deterministic behavior of evacuees, the model developed here considers

heterogeneous demand and stochastic behavioral responses (e.g., fast, medium, and slow)

to evacuation orders. In addition, the access flow rate considered here is determined by

the logit-based function formulated in Equation 4.1.

4.2.1 Model Formulation

The model developed here is applied to optimize the staging scheme for an evacuation,

including the lengths and time-windows of staged zones based on prevailing

circumstances (e.g., behavioral response, demand distribution, and evacuation route

length, etc). This section discusses the formulation of evacuation time and the associated

delay for a region as shown in Figure 4.6 with heterogeneous demand distribution that

can be referred to Figure 4.5.

Boundary of Evacuation Region
Evacuation Route

Evacuation Direction

S E

1• 	 L	 
	,........ 

I    

Figure 4.6 Configuration of the studied area.
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4.2.2 Evacuation Time

In this section, a methodology that can minimize evacuation time through the

optimization of the staging scheme is presented. A general configuration of staged zones

for the evacuation region is shown in Figure 4.7, where N is the optimal number of staged

zones to be determined, and L is the length of the evacuation route.

Boundary of Evacuation Region
Evacuation Route
Zone Boundry

1 2

Zone r

(e.g., r = 2)

. 	 . 	 . 	 • 	 • N- 1 N

Evacuation Direction

E

"41— X N _F-1101"■1— X N-1•1

	L Ex, 	
	L

Figure 4.7 Configuration of a staged evacuation.

The methodology developed here can determine the optimal staging scheme by

regulating the demand accessing the evacuation route. The time windows of staged zones

may be overlapped with one another to effectively utilize available roadway capacity.

The time window for a particular zone is the duration when the demand of the zone is

loaded onto the evacuation route based on the loading curve defined by Equation 4.1.
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Thus, the demand being evacuated while staging zone i at t may contain demand

originating from previous zones.

4.2.2.1 Critical Measures for Optimal Staging Scheme. In order to determine the

optimal staging scheme, several important parameters must be estimated, and are

discussed below.

(1) Demand accessing the evacuation route while staging zone i at t (Q (f) )

The demand accessing the evacuation route while staging zone i at t denoted as Q (i t)

based on the Equation 4.1, is

Q
(i) 

=Eq( t)Q . Vi,t
	

(4.3)

where, q (t) = 	1
	 1

(   is the percentage of demand accessing from zone
1+ era (t-fl ) 1+ e-a ("-fl )

±x,
i at t, Q, =	 f(x)dx is the demand of staged zone i, and xi is the length of zone i. For

i=1

example, the demand accessing the evacuation route while staging zone 1 at t is derived

as Q: 	 q.(t)Q, •

(t)

(2) Demand to be evacuated while staging zone i at t (Q .

The demand to be evacuated (i.e., vehicles on the evacuation route and access streets)

(0
while staging zone i at t denoted as Q is formulated as

(t)

Qi 	
.(1)	 (t-1)Qi 

Vi, t	 (4.4)
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(,) .
where d is queuing vehicles, accumulated form previous time interval (t —1) while

evacuating demand of zone i at t. As shown in Figure 4.8, the number of queuing vehicles

(0
at t denoted as d (,) is the difference between Q and the discharged volume at t, denoted

(,) 	
d `"as QE , while	 can obtained by interpolating the difference of T

O) 
and 8, . Thus,

d = 	 Vi, t	 (4.5)

where

T
(t) 

: evacuation time for 
Q (0

Sr : unit time interval (e.g., 1 hour)

Demand
(vph)

_ ( t )
Q,16;

Time (hours)

0
	

8, 	 T ( ' )

Figure 4.8 Queuing vehicles in a unit interval or .
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(0
The estimation of evacuation time denoted as T 

0) 
for Q under congested and

uncongested conditions is discussed as follows. Note that the uncongested condition here

(t) 	 (t) 	 (t)

refers to Q` c, and congested condition refers to -
Q, 

>c, where -
Q, 

and c are the
St

demand at t and capacity of the evacuation route, respectively. Note that the evacuation

time discussed here is used to compute the discharged volume at an interval and should

not be confused with the total evacuation time discussed later.

(t)

(a) Uncongested condition (-
Q, 

<c)

(t)
Under uncongested condition, the evacuation time required for demand Q is denoted as

T 0) , which is the sum of the discharge time denoted as t ( t
) , and the average travel time

D i

of vehicles traveling from zone r at t, denoted as t (t) . Note that r is the zone closest to
R i

the beginning of the evacuation route from which demand accesses at t as shown in

Figure 4.7, where r = 2 is shown as an example. In other words, when the demand of

zone 1 is fully loaded onto the evacuation route, the next zone that is closest to the point

S from which demand accesses the evacuation route is 2. Thus, the average travel

distance is measured from zone 2. Similarly, r can vary over time from 1 to N based on

the loading of the staged zones.

Note that t (t) is the ratio of the demand to be evacuated while staging zone i at t,
D i

(t) (0 (0
denoted as Q , and the achievable discharge rate at t, denoted as u k . Thus,



(t)

tD (
:
) = 

u
(,)
Qi 

k
o)

In addition, t
R
 (t) can be formulated as the average travel time for a distance of (x,. —/ r ) at

speed u
(,) , and for a distance of L 	 at speed u

(s) 
,where

1=1

1,. is the average access distance of zone r,

(xr —/r ) is the average travel distance to pass zone r at speed ur n ' ,

and L -E xi is the distance traveled by vehicles after passing zone r at speed u
(1) 

while
i=1

staging zone i at t.

Thus,

t ") = 
x

r
—
(i)

1
r 	 1=1

R (t)

Note that vehicles from zone r travel at a higher speed of u r(f) for the distance of (xr —/r ),

but at a lower speed of u (t) for the distance of L -E xi due to impediment from vehicles

accessing the evacuation route form other zones.

The evacuation time T (,) is the sum of t (t) and t (t) and can be derived as
D 	 R
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(4.6)

L —E x,
(4.7) 

I r

L — Exi 

T(I) =   1=1
(s) 	 (i) Vi, t 	 (4.8)         
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Considering non-uniform demand distribution as shown in Figure 4.5 for the evacuation

region shown in Figure 4.7, /r is the total access distance divided by the demand, which

can be formulated as

rxr f (x)(x, x)dx
x,

4 = i=1 (4.9) 

where f (x) is the demand density function, and xr is the length of zone r. Note that 1,.

varies depending on f (x) and x,. . Thus, the average distance traveled from zone r to the

end of the evacuation route is (xr — 4) + L — E .

(t)
(

In Equation 4.8, u
(t) 

and ur
)

 can be obtained from Equation 4.11 based on Q and

( t ) 	(t)

Q
(I) 

, respectively. As —
Q, 

<c , the discharge rate at t is 
Q,
	 ,such that
St

( t )
Q	

(1)

s 
=u

t

(t)

Vi, t	 (4.10)

Note that u
(t) 

is estimated by the Edie's model for free-flow regime (also called

Underwood model) defined as

—k
( 0\

U 
0) 

= U
f
e` 

Ice	
(4.11)

where uf is the free-flow speed (speed achieved under very low density), and k is the
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critical density (density at maximum discharge rate). By substituting for u (s) into
(t)

Equation 4.10,	 can be derived as
at

	(t) 	 k(I)\

	Q,
	 = 	

k
k (i)u

f 
e 	 Vi,t	 (4.12)

at

where k
(t) 

, the density of the evacuation route while staging zone i at t, can be obtained

from Equation 4.12. Then, u m can be obtained by substituting k: g)  into Equation 4.11.

Note that for simultaneous evacuation the following conditions sustain: N = 1; r = 1; and

xr = L . Thus, Equation 4.8 may be simplified as

(t)

( t ) 	Q	 L —1,
T =  (t) (i) 

+ 	 t	 (4.13)0)
u k

I

where 1„ can be obtained from Equation 4.9.

(t)

(b) Congested Condition (	 > c)
St

The congested flow condition may be reached when demand accessing the evacuation

(t)

route exceeds the capacity. As 	 > c , the evacuation route is congested, the evacuation

(t) 	 (t)

time for Q is the ratio of Q to the achievable discharge rate, u 
(t) 

0, . Thus,

(t)

T =  Q,
u (t) k (t) Vi, t	 (4.14)

where u (,) and k
(I) 

are the speed and density of the evacuation route.
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In order to determine the speed-density relationship of the evacuation route for

congested conditions, Akcelik's model and Edie's model for congested regime, also

know as Greenberg's model, are applied. The speed of the evacuation route under this

condition is first estimated by using the Akcelik's model:  

(        V".   
(	 (t) 	 '\ -	 (t)

Q l st 	Q l it

	  1   1

2 
( 	 (t)

Q, 181             
( t )

n = no + 0.2581  
8JD

cgt     
Vi, t	 (4.15)                                                                                             

where

n
o)

: Estimated travel time per mile while staging zone i at t (hours/mile)

no

JD

5t

(t)

Q I g
	: Ratio of the demand to be evacuated while staging zone i at t to the capacity

u
(i) 

can be obtained from the reciprocal of travel time obtained from Equation

4.15. Thus,

u = 
1

Vi, t	 (4.16)
n

The speed, u (1) obtained from the Akcelik's model is then used to compute the density,

k by using the Edie's model for congested regime (i.e., the Greenberg's model)

: Free-flow travel time per mile (hours/mile),

: Delay parameter (calibrated based on type of roadway)

: Time interval during which an average demand persists (e.g.,1 hour)

formulated as
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o) 
= tic lnu

Thus, k:' ) can be derived from Equation 4.17

k( : t (4.17),

as

k
u) 

= k je

U .

uc
Vi, t (4.18)

where u, is the critical speed (speed at maximum discharge rate, e.g., capacity), and ki

is the jam density (maximum density at which all vehicles are stopped), respectively.

Finally, the achievable discharging rate while staging zone i at t is u (s) k (1) .

The delay parameter, JD in Equation 4.15 can be calibrated if the difference

between travel times of the evacuation route at capacity and free-flow conditions is

(t)

Q
known. Thus, by substituting ' = c , and n' t) = n, , where nc is the travel time per mile

St

(hours/mile) at capacity, in Equation 4.15, J D can be derived as

2c
JD = -ge (nc – no) 

2
(4.19)

(jFor the Edie's model, if the speed at capacity	
1

— is 40 mph, free-flow speed
tic

(

1 is 55 mph, the capacity of the evacuation route, c is 2,000 vph, and 5, =1 hour, JD

no

is obtained from Equation 4.19 as 0.1859.
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(3) Discharged volume at t (QE(f) )

(
The discharged volume at t, denoted as QE

i) , is defined as the number of vehicles

evacuated (or successfully leaving the evacuation route).

(t)

As Q
St

(t)(,) =Q —d (t) 	 Vi,t 	 (4.20)

(t)

On the other hand, as 
Q 
St

(0
> c , the evacuation route is congested and QE is the product

of the speed, denoted as u s  ` r' and the corresponding density, denoted as	 .

Thus,

CIE =u k 	 Vi,t 	 (4.21)

(4) Upper and lower bounds of flows (qL ,q, )

(t)

The discharge rate of the evacuation route is maximized when --Q i
  = c . However, this

St

condition cannot be achieved for staged evacuation because of the time varying demand

accessing the evacuation route. Therefore, in order to maintain a reasonable discharge

(t)

rate of	 , a criteria is set by assuming two parameters namely,	 (lower flow limit)

and qu (upper flow limit) such that q , <c<qu . Note that q L and qu are user specified



qU

q,

Q i Ist

qu

q,

(t)

Q /5t

qu

q,

_()

Q lot
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parameters and there is no fixed procedure to approximate (e.g., q L = 1,600 vph, qv =

(t)

2,075vph, if capacity, c = 2,000 vph). There are three conditions possible for 	 as
at

shown in Figure 4.9 and discussed below:

(t)

(a) qz,<--q—
,

 < q,
6;

( t )

(b) Q ' <
6;	 L

(t)

(c)
t

(t)

Figure 4.9 Relationships among	 qu , and 
 Q 

.

( t )

Case (a): q i, <  6:  < q,

(t)

Since the discharge rate while staging zone i at t, 
Q, 

, is between qL and qu , the flow is
S.

( t ) 	(t)

considered to be acceptable. Also,	 is the highest when 9—, = c . This represents the
at

most desirable flow condition in terms of the maximum discharge rate; however,

conditions (b) and (c) can also occur, based on the length of the staged zone that can

decrease the discharge rate of the evacuation route and increase the evacuation time.
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(t)

Case (b): 
Q 

 <q

This condition is caused by a short zone length, which results in a low, unacceptable

(t)

discharge rate while staging zone i at t. However, if	 < .7 ,, because of lighter demand
S

<

loading the evacuation route based on the logit-based function defined in Equation

(t)
Q

4.1(e.g., at the start of zone 1 and end of zone N),	 is considered to be acceptable.

(t)
Q

Case (c):	 > q
t

U

This condition is caused by a long zone length, which results in a congested flow that

significantly reduces the effective discharge rate (e.g., effective discharge rate < q L ).

Thus, this condition is undesirable. Note that although qu is theoretically greater than c

due to congested condition, the effective discharge rate as qu >c is less than c. Therefore

(0

qu is set such that the effective discharge rate when — = qu is q z, under congested

conditions. (i.e., q i, = Effective (qu )). For example, a demand of 2,075 vph (=qu ) results

in an effective discharge rate of 1,600 vph (=

The application of q L and qu is elucidated in the following sections.



---'-■	 .....--

7 •• L■

85

4.2.2.2 Length of a Staged Zone. An iterative searching process to determine the length

of zone 1 is discussed first. Subsequently, the method to determine the length of zone i,

and the subtle difference between the estimation of the length of zone 1 and zone i, is

discussed.

Note that staging is commenced at time 0 at which an evacuation order is issued.

Initially, the length of zone 1 denoted as, x1 is set to 1 mile and the corresponding

demand loading profile is determined based on the demand of zone 1 as shown in Figure

4.10 and the logit-based function formulated in Equation 4.1.

f(x)
•

.y
ca)
0
"C3
C
CO
Ea)0

43'
•È
.ca)>

0 I
4 	 x1 	 1 D

Evacuation Route Length (miles)

Figure 4.10 Demand density of zone 1 vs. distance.

The method to obtain the demand loading profile was discussed in Section

4.2.2.1(1). The bell shaped nature of the demand loading profile influences the demand to

(t) 	 (t)
be evacuated by zone 1 at t, Go , . In other words, Q . is expected to follow the pattern of

(t)
the demand loading curve. Note that Q . varies with the evolution of traffic conditions

♦ 1

on the evacuation route (i.e., the number of vehicles queued at the end of the previous
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(t)
interval and demand loaded in the current interval). Q i is estimated using Equation 4.4.

Note that at t = 0 , di" = ds (queued shadow demand) and can be obtained from

Equation 4.5.

(t)

If the resulting — based on the current x 1 is less than q at all intervals while
at

(t) 	 (e)

. Q
staging zone 1 (i.e., 	 < , Vt), x1 is incremented such that 	 > q , for any tS

t

( e.g., x1 = x, + 0.1). This condition ensures that the demand to be evacuated at t is not too

(t)

low. On the other hand, if the resulting Q is greater than qu at interval 0, x1 is reducedS
t

(0)

until Q` __q u (e.g., = — 0.1). This condition ensures that the demand to be evacuated
at

at t is not too high that it decreases the effective discharge rate in the very beginning.

(t)

Note that —
Q, 

can be greater than qu at later intervals while staging zone 1 (i.e., at t >0),
at

but under this situation, the discharged volume due to zone 1 decreases due to the

reduced speed of the evacuation route making x i inefficient. Figure 4.11 shows the

(t)
conditions of feasibility of x, based on Q .
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Feasible: III,IV

Infeasible: I,V

Feasible but inefficient: II
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•

S.

■
qu

C

q,

o 	  1  	 tci —1 	 tc, 	  tc, +1
Time (hours)

Figure 4.11 Demand distribution for various lengths of x1 .
(t)

Feasible: Based on the relationship (a) shown in the Figure 4.9(a), — under cases III
Ot

(t)

and W is considered to be feasible as q<
Q, 

<L   q,.
8t

(t)

Infeasible: On the other hand, cases V and I are considered to be infeasible as — is
St

low as discussed in relationships (b) and (c), respectively.

Feasible but Inefficient: Case II is feasible for certain duration while staging zone 1,

( 1 )

also shown in Figure 4.9(a). However, for some duration, Q, 
> q , as shown in Figure

S 	
u

t

4.9 (c), which causes a reduction in discharge rate and an increase in evacuation time.
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(tc , )

It is worth noting that Zone 2 is commenced at t when 
 Q,

 <q i, if case IV is
at

applied. The optimal xi is determined by enumerating all feasible values that can meet the

condition of feasibility described above, and maximize the total discharged volume from

tc , - 1
0 to tc, (e.g., Max E 

t) 

). An example that demonstrates the determination of the
t.0

optimal .7c, is discussed in Section 4.4.

The determination of the length of zone i is similar to that of zone 1. Figure 4.12

shows an overlapping arrangement of time windows of staged zones that regulates the

demand accessing the evacuation route so that available roadway capacity may be

effectively utilized. The time window for a particular zone is the time period during

which demand of the zone is loaded. Thus, as shown in the figure, demands from

multiple zones can be loaded in a particular time.

The duration between —ts and 0 represents the time period for shadow

evacuation. As the demand to be evacuated while staging zone i-1 at t denoted as

Q,
	<q,, the next staged zone i is commenced at t, while zone i-1 is still in operation
at

(t)
(or loading demand). Thus, Q  may contain demands of zones 1 to i-1.



                    

1  2 ... i -1 ..  N  • • • • • i • • •               

zone N

zotle i

zone (i-I)

zone 2

zone 1

—t _  IC N, (tc , — 1) • • • • tc ,   

—ts 	  0 	 1 	 2 (Cl
	

tri-2 
• te tc   (tc —1) ••• • te ,  
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Figure 4.12 Configuration of time windows for staged zones.

(tc , 1 )

Thus, when 
Q,— . 	 < q, the length of zone i is determined such that

e5;

(tc ,_,)

6 	 < qu
	 Vi, t 	 (4.22)
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(tc
I

where q' 
Q

;  is the demand accessing the evacuation route from zone i at t,. .
St

Once the length of zone i that satisfies the condition of Equation 4.22 is found, the

( 1 )

discharged volume at t, QE is determined by Equations 4.20 and 4.21 until tc, at which,

tc ,
tc,_i	 (,)

Q,
<q,. The total discharged volume between tc, and tc, (i.e., E QE ) is compared

65;

for all feasible values of xi that satisfy the condition of Equation 4.22, and the xi that

tc ,--i
maximizes E QE`' is deemed optimal.

t=tc,-1

4.2.2.3Total evacuation time (T ) . As shown in Figure 4.12, tc, is the time point at

which the last vehicle exits the evacuation route. Usually, the time at which 90% of the

total demand (i.e., 0.9Q) evacuates is used as a measure of effectiveness (MOE) to

determine the efficiency of evacuation. Thus, if tz is the time point at which 90% of the

demand evacuates, then the evacuation time for 90% of the demand denoted as T, is

formulated as

and

tz
T = E st 	(4.23)

t=--ts

tz
E QE(t) = 0.9Q	 (4.24)

where	 is the time point at which shadow evacuation begins. Note that although the

90% of demand includes shadow demand, the evacuation time consumed by the shadow

demand, is is excluded from T.



Thus,

tz

T =ES
t=0

(4.25)
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4.2.2.5 Step Procedure to Determine the Optimal Staging Scheme.

Step 1: Determine the demand of the evacuation region based on the demand density

function, f(x) from Equation 4.2.

Step 2: Set zone counter i =1, time index t= 0, capacity c, upper and lower flow bounds

q and q, , respectively.

Step 3: Determine the shadow demand queued at t= 0 denoted as cl , from Equation 4.5.

Step 4: Set the length of zone i, xi = 1 mile.

Step 5: Determine the demand loading profile of zone i from Equation 4.3.

Step 6: If i =1, determine xi based on the procedure discussed in Section 4.2.2.2, else if

i> 1, determine xi by Equation 4.22.

Step 7: Determine the discharged volume QE(t) while staging zone i at t, from Equations

4.20 and 4.21.

Step 8: Increment the time count t= t +1.

(1)

Step 9: Determine the total discharged volume while staging zone i at t until	 < q .
gt

Step 10: Determine the total discharged volume for other feasible xi by setting

xi = xi ± 0.1 depending on the current xi , and following steps 5 to 9. Note that

xi is increased or decreased based on Step 6.
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Step 11: Determine the optimal length of zone i based on the maximum total discharged

volume by zone i among all feasible alternatives.

Step 12: Check if 90% of the demand has been evacuated by Equation 4.24. If

tz
E QE i)) < 0.9Q , determine the length of the next zone by incrementing the zone

t=—ts

counter (i = i +1) and following steps 4 to 11, else goto step 13.

Step 13: The optimal number of staged zones is the current value of i. The evacuation

time for 90% of the demand is determined through Equation 4.25.

Figure 4.13 shows the flow chart to search the optimal staging scheme.



Determine Shadow Demand d

•
Set xi =1.0

Determine Zone Length for
the Remaining Evacuation

Region
•= + 1

All
Search Finished

9

Determine ith Optimal Zone
Length Based on Max Discharged

Volume

'15 2  ..xN	 = 	 (5;x 

N 	 1=0

Determine the Evacuation Time (T) Based on
90% of Evacuated Demand, and Number of

Zones (N)

•        

93         

Program
Start    Input Evacuation Demand (Q)                                 

Set Zone Counter i =1 and Time t =
flow bounds qL ,q,            

C Program
End

Figure 4.13 Flowchart to search the optimal staging scheme.
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4.2.3 Delay

Unlike the delay discussed in Chapter 3, the model developed here considers demand

heterogeneity and evacuees' behavioral response to evacuation order while formulating

both queuing and moving delays. Thus, the delay incurred by evacuees while staging

zone i at t varies over time.

Queuing Delay (DQ )

The number of queuing vehicles in the network while staging zone i at t denoted as

ci m can be estimated using Equation 4.5, which was discussed in Section 4.2.2.1 and

shown in Figure 4.8. The queuing delay experienced during the evacuation denoted as

DQ while staging zones 1 through N, between time points 0 and tit , at which the last

vehicle exits the evacuation route, is formulated as

N tci

DQ E E (i)
i=1 t.0

Thus, for staged evacuation,

_ 8

T 0)

(4.26)

(4.27)

Note that for simultaneous evacuation, N =1.
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Moving Delay (Dm )

The moving delay at t, denoted as dm(t) is defined as the difference between average travel

times of vehicles traveling from zone r while staging zone i at t, at speed u (s) denoted as

t
R 

(t)
, and at free-flow speed u

f 
denoted as t f

(t) 
• Note that t

R
 is obtained from Equation 0) i

4.7, while tf(t) is formulated as Equation 4.28. Refer Figure 4.7.

(4.28)
of

Where r is the zone closest to the beginning of the evacuation route from which demand

accesses the evacuation route at t, lr is the average access distance of zone r, which can

be obtained from Equation 4.9, and (xr — ir ) is the average travel distance to pass zone r.

Note that L — xi is the distance traveled by vehicles after passing zone r. Thus, the
i=1

moving delay incurred by the discharged volume at t,QE(1) , is

cr —It (0 —
A,	 RE

(t) ) Q,E0) Vi, t	 (4.29)

By substituting for t (t) and t
f

(t) obtained from Equations 4.7 and 4.28, respectively,
R,

into Equation 4.29, for staged evacuation, d (t) is derived as

(-          r

xr lr ±(L E         
r

L— E
xr -1r 	1=1 

(I)	 (I)
Ur           

QE(f) 	Vi,t	 (4.30)           
of                    

r

('fir -1r)±(L-EXi

t f(t)	
i=1 

Note that for simultaneous evacuation, (N=1,xr =L)
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Thus, the moving delay for staging zones 1 through N between time point 0 and tc, ,

DM is formulated as    

r

xr — 1r L — Exi
\	 i=1 

of    

r

L — Exi
xr 	i=1 

(,)	 (,)
Ur   

N tel

Dm =E
i=1 t=0   

(4.31)                            

Note that for simultaneous evacuation, (N =1, xr = L)

Total Delay ( DT )

The total delay while staging zone i at t denoted as dT(' , is the sum of the queuing delay

at t denoted as d
(t) 

and the moving delay at t denoted as d, which are obtained fromM

Equations 4.5 and 4.30, respectively. Thus

T 
 = d +d (r)

	

(4.32)

The total evacuation delay denoted as DT is the sum of the queuing delay, DQ and the

moving delay, DM . Thus, DT can be derived as Equation 4.33.      

r

— + — xi )

of 

}

Q: ) (4.33)           

r

L— Exi
xr -ir

(0 	 (i)
Ur  

DT =
N tci

(t)
- Sr

T (t)       1=1 t=0                                   

Note that for simultaneous evacuation, (N =1, xr = L)
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4.3 Numerical Example

The model developed in Section 4.2 is applied to optimize the staging scheme that

minimizes evacuation time and the associated delays. The evacuation region, which can

be referred to Figure 4.7 consists of a single evacuation route with one lane per direction.

Unlike the example discussed in Chapter 3 where a uniform demand distribution over the

evacuation route was assumed, the demand discussed here is linearly decreasing as

shown in Figure 4.14.

Demand Density
(vehicles / mile)

f(x) •

C

V • • • 	 T T 
	

►• 	 L 
	 Distance (miles)

0

Figure 4.14 Demand density distribution of the evacuation route.

The length of the evacuation route is L miles. Assume that the demand density function

over the evacuation route is f (x) and formulated below.

f (x) =(--C)x + C
L

(4.34)

where C represents the highest demand density at location 0, while the lowest demand

density is 0 at L. The total demand to be evacuated is denoted as Q, which can be

obtained from Equation 4.35:

(4.35)
„ _,__

)x + dux
L
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In this example, L= 15 miles and C= 2,500 vehicles/mile. Thus, Q from Equation 4.35

is 20,000 vehicles. The above situation might indicate that the most vulnerable demand

to be evacuated is concentrated near one end of the evacuation route. The parameters of

the logit-based function formulated in Equation 4.1, namely, response rate, called a , and

the half loading time, called fi , are 0.6 and 2.5 hours, respectively, for a fast response

scenario. Also, the duration of shadow evacuation time, (ts ) , capacity of the evacuation

route, (c), the lower flow limit, (q , ), and the upper flow limit , (0, are 2 hours, 2,000

vph, 1,600 vph, and 2,075 vph, respectively. The resulting shadow demand from

Equation 4.1 is 10.9 % of the total demand (i.e, Qs = 2,180 vehicles).

4.3.1 Model Results

In this section, the application of the models to estimate evacuation time and the

associated delays for the numerical example discussed above is presented for both

simultaneous and staged evacuations.

Simultaneous Evacuation

Figure 4.15 shows the demand loading profile over time for simultaneous evacuation.

Since demand loading rates are above the capacity of the evacuation route (c =2,000

vph), congestion can be expected. Table 4.1 presents the evacuation demand distribution

over time. Since simultaneous evacuation is also a single stage evacuation, N =1.
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Figure 4.15 Demand loading profile over time for simultaneous evacuation.

The definitions of the variables used in Table 4.1 are listed below.

Q:
t) 

: demand accessing the evacuation route at t based on the loading profile shown in

Figure 4.15,

(t)
Q  : demand to evacuated at t (i.e., demand present on the evacuation route and

access streets),

( t )

u : speed of the evacuation route at t,
i

k u) : density of the evacuation route at t,

(t)

T, `t' : evacuation time for Q , at t,

d u) : vehicles queued at t, and

(i)
QE : discharged volume or number of vehicles successfully leaving the evacuation route

at t.



100

Table 4.1 Evacuation Demand Distribution of Simultaneous Evacuation (N =1).

(t)

(hour)

(i)
Q,

(vehicles)

(t)

Q

(vehicles)

u
0)

.

(mph)

k
0)

i

(vpm)
T

O)

(hour)

d
0)

i

(vehicles)
Q E(1)

(vehicles)

-2 1259 1259 47.0 27 1.23 232 1028
-1 922 1154 47.0 25 1.23 213 942
0 1467 1679 43.0 39 1.25 332 1347
1 2132 2465 7.5 123 4.09 1862 603
2 2730 4592 6.0 130 5.89 3804 788
3 2978 6782 6.0 130 8.69 5994 788
4 2730 8724 6.0 130 11.18 7936 788
5 2132 10068 6.0 130 12.91 9280 788
6 1467 10747 6.0 130 13.78 9959 788
7 922 10881 6.0 130 13.95 10093 788
8 548 10641 6.0 130 13.64 9853 788
9 315 10168 6.0 130 13.04 9380 788
10 177 9557 6.0 130 12.25 8769 788
11 99 8867 6.0 130 11.37 8079 788
12 54 8134 6.0 130 10.43 7346 788
13 30 7376 6.0 130 9.46 6588 788
14 17 6605 6.0 130 8.47 5817 788
15 9 5826 6.0 130 7.47 5038 788
16 5 5043 6.0 130 6.46 4255 788
17 0 4255 6.0 130 5.45 3467 788
18 - 3467 6.0 130 4.44 2679 788
19 - 2679 6.0 130 3.43 1891 788
20 - 1891 42.0 45 1.00 0 1891
21 - 0 - - - - 0

( t ) .
Q, is determined by using Equation 4.3. For example, demand accessing at t = 0,

Q: 0) is the product of the percentage of demand loaded at t = 0, 7.34%, and the total

demand Q = 20,000 vehicles, which is 1,467 vehicles.

T, ` t'under uncongested and congested conditions is determined using Equations

4.13 and 4.14, respectively. Also, u: i) under uncongested and congested conditions is

determined using Equations 4.11 and 4.16, respectively. T i m is determined using

(0)

Equation 4.13 as the sum of the discharge time and transit time. As 
Q

< c , the
at
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discharge time is 1 hour. The average vehicle access distance denoted as /, is obtained as

4.39 miles form Equation 4.9, and the average travel distance to exit the evacuation route,

(L-1,) is 10.61 miles. The speed u:°) determined by Equation 4.11 is 43 mph. The transit

time is 0.25 hours. Thus, Ti m is 1.25 hours.

(di

1) 

can be estimated by Equation 4.5, and QE

t)

 under uncongested and congested

(0)
conditions is determined from Equations 4.20 and 4.21, respectively. Thus, as Q =

1,679 vehicles, and the unit interval, 8. = 1 hour, the number of queuing vehicles at t= 0,

cr ) is determined as 332 vehicles. Therefore, the discharged volume QE(°) is obtained from

(0)
Equation 4.20 as the difference of Q , (= 1,679 vehicles) and d: °) (= 332 vehicles) and is

1,347 vehicles.

(t)
The demand to be evacuated at time t, Q , is determined by Equation 4.4. For

(1)
example, the demand to be evacuated at t = 1, Q , is the sum of the queuing vehicles

cumulated from the previous interval, which is 332 vehicles, and the access demand at t=

(1)
1, which is 2,132 vehicles. Thus, Q , = 2,465 vehicles.

(1)

The congested condition is reached as —Q,
> c . In this example, for the

St

evacuation route length of 15 miles, and an average vehicle spacing of 30 ft/ vehicle, the

number of vehicles that are required to flood the evacuation route is determined as 2,640.
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(t)
Q t

	Thus, the maximum demand to capacity ratio, 	  is 1.32. The discharged volume

under congested condition is determined by Equation 4.21. As speed, u: 2) = 6 mph, and

(

density, ki
( 2) 

= 130 vpmpl, the discharge volume, QE

2)

 is obtained as 778 vehicles. Note

that, u (2) and k (2) are obtained from Equations 4.16 and 4.18, respectively.

As shown in Table 4.2, the speeds in the initial period of evacuation (e.g., t = -2 to

(0) 	 (0) 	 (2)

t = 0) are higher as 
Q 

 < c . However, as Q ' > c (e.g., Q ' = 4,592 vph ), the speed of
of 	 St 	 Ot

the evacuation route and the discharged volume at t = 2, decrease significantly (e.g., 6

( f )

mph, and 788 vehicles). This situation persists until 	 < c at t = 20, after which the

speed and the discharged volume increase.

Table 4.2 presents the delays under simultaneous evacuation at various intervals.

As shown in table, the queuing delay at t denoted as d: i) increases quickly after the start

of evacuation at t = 2, while the moving delay denoted as d (t) in general is considerably
mi

less than d'
i) 

. Note that d (,) is estimated by Equation 4.5. For example, the queuing delay

(2)
(2)

at t = 2, d is determined as 3,804 veh-hour, where the evacuation time for Q , (= 4,592

vehicles) denoted as T (2) is 5.89 hours (See Table 4.1).
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Table 4.2 Delays Under Simultaneous Evacuation

(t)
(hour)

a 
I 
'

Queuing delay
(veh -hour)

d
(i)

M1

Moving delay
(veh - hour)

a'
T1

Total delay
(veh-hour)

-2 232 34 266
-1 213 31 244
0 332 73 405
1 1862 737 2599
2 3804 1241 5045
3 5994 1241 7235
4 7936 1241 9177
5 9280 1241 10522
6 9959 1241 11200
7 10093 1241 11335
8 9853 1241 11095
9 9380 1241 10621
10 8769 1241 10010
11 8079 1241 9321
12 7346 1241 8587
13 6588 1241 7829
14 5817 1241 7058
15 5038 1241 6279
16 4255 1241 5496
17 3467 1241 4708
18 2679 1241 3920
19 1891 1241 3132
20 0 113 113
21 0 0 0

(i) 	
id 	 s estimated by Equation 4.30, where the average vehicle access distancem

i

denoted as 1,. is obtained as 4.39 miles from Equation 4.9, and the average travel distance

to exit the evacuation route, (L —1,) is 10.61 miles, the demand accessing the evacuation

route at t = 2, Q 
(2)

 is 2,730 vehicles, the speed, u
(2) 

obtained from Equation 4.16 is 6

mph, and the free-flow speed, uf is 55 mph. Thus, the moving delay at t = 2, d is

determined as 1,241 veh-hour.
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The total delay at t = 2 denoted as d: 2) is obtained form Equation 4.32 as the sum

of d: 2) (=3,804 veh-hour) and d1 m(2) (= 1,241 veh-hour) and is 5,045 veh-hour.

The total evacuation delay denoted as DT is obtained from Equation 4.33 as 145,687

veh-hour.

Staged Evacuation

In this section, the procedure to determine the lengths of the staged zones for the example

is discussed. Table 4.3 presents the demand distribution of the staged evacuation over

time. Since the optimal number of stages required for the evacuation is determined as 3, i

can vary from 1 to 3. The definitions of the variables used in Table 4.3 are listed below.

_
Q : demand accessing the evacuation route at t while staging zone i based on Equation

4.3

(t)

Q : demand to evacuated while staging zone i at t,

u
0) 

: speed of the evacuation route while staging zone i at t,

( t )

Ti
(i) : evacuation time for Q while staging zone i at t,

d ( ' ) : vehicles queued while staging zone i at t, and

(i)
Q : discharged volume at t.

(t)

As shown in Table 4.3, 
Q

< c , because of which, congestion is significantly lower as

compared to simultaneous evacuation.
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The density of the evacuation route while staging zone i at t, I) can be obtained

by Equation 4.12. For example, as the demand to be evacuated while staging zone 2 at t =

(6)

6 ( Q 2 ) is 1,865 vehicles, the free-flow speed, uf , is 55 mph, the density of the

evacuation route (k (6) ) is 44.5 vpmpl. Note that the density values are excluded from

Table 4.3. The speed u: 6) is obtained from Equation 4.11 as 42 mph.

) is determined by Equation 4.8. The computation of evacuation time of zone 2

at t = 6 ( T2 (6) ) shown in Table 4.3 is discussed below:

(6)

Since 
Q Z

< c where c = 2,000 vph, the discharge time is 1 hour. Meanwhile, at t = 6,
St

zone 1 is closest to the beginning of the evacuation route from which demand accesses

the evacuation route (i.e., r =1). The length of zone 1, x 1 whose determination is

explained in the next section, is 4.9 miles. The average access distance of zone 1, 1 , is

determined by Equation 4.9 as 2.21 miles. Thus, the average vehicle travel distance to

pass zone 1, 1, is 2.69 miles.

Based on the number of vehicles accessing the evacuation route from zone 1 only

at t = 6, which is 781 vehicles, the speed of vehicles passing from zone 1 at t = 6 denoted

as u
(6)

determined by Equation 4.11 is 50 mph. The average travel distance from zone 1

to the end of the evacuation route is 12.79 miles. The speed of the evacuation route while

staging zone 2 at t = 6 (u26) ) determined by Equation 4.11 is 42 mph. Thus, the

(6)(6)
evacuation time T2 for demand Q 2 is 1.32 hours.
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(t)

Note that the other parameters, such as Q,
(1)

 , Q , d 
(I)

 , and QE
(,)
 , can refer to the

discussion of simultaneous evacuation.

Optimal Zone Lengths

Note that the staged evacuation is commenced at t = 0 and continues until all the demand

is evacuated. The evacuation from t= -2 to -1 pertains to shadow evacuation. The optimal

length of the first zone was determined as 4.9 miles by enumerating all feasible values of

the evacuation route from 0 to 15 miles with increments of 0.1 miles such that the total

number of vehicles evacuated from time 0 to (tci -1) is maximum, where tc, is the time

(t)

at which the demand to be evacuated while staging zone 1 at t, —
Q„ 

is less than q L .
S

t

(t)

As shown in Table 4.4, as xi = 4.9 miles , Q i starts increasing from 994 vehicles

at t = 0, peaks at t = 3 (1987 vehicles), and then starts to decline at t = 4. At t = 5,

(5 )

Q 	(0)

< q (i.e., tc. = 5). Note that Q = 994 vehicles is the sum of the shadow demand
L	

i

queued at t= 0 (213 vehicles), and demand accessing from zone 1 at t= 0, Q: °) = 781 vph .
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Table 4.4 Determination offx i (test with x, = 4.9 miles )

Time
(t)

01r)

(i)
Q,

(vehicles)

u
(0

,

(mph)

lc:"

(vpm)

0,

(vehicles)
Q,

Ti(0
(hr)

di")

(vehicles)

Q(f)
E

(vehicles)

-2 1259 47 27 1259 1.23 232 1028
-1 922 47 25 1154 1.23 213 942
0 781 48 21 994 1.27 209 785
1 1136 46 30 1345 1.28 293 1052
2 1454 43 41 1747 1.30 400 1346
3 1586 41 49 1987 1.31 472 1515
4 1454 41 47 1927 1.31 458 1469
5 1136 - - 1594 - -

If x, is less than 4.9 miles (say, 4.0 miles), it reduces the discharged volume

between t = 0 and 4 (Table 4.5).

Table 4.5 Determination of x i (test with x1 = 4.0 miles )

Time
(t)

or)
Q;

0

(vehicles)

u(t)
(mph)

k
(t)

'
(vPm)

(t)

Q,

(vehicles)

T(t)

(hr)

c()

(vehicles)

(I)
Q E

(vehicles)

-2 1259 47 27 1259 1.23 232 1028
-1 922 47 25 1154 1.23 213 942
0 660 49 18 873 1.27 185 688
1 960 47 24 1145 1.28 250 894
2 1229 45 33 1479 1.29 335 1145
3 1340 43 39 1675 1.31 392 1283
4 1229 44 37 1621 1.30 373 1248
5 960 - - 1333 - -

On the other hand, if x,is greater than 4.9 miles (say, 5.3 miles) it leads to a

congested condition on the evacuation route which reduces the discharged volume

between t = 0 and 4 (Table 4.6).
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Table 4.6 Determination ofx, (test with xi = 5.3 miles )

Time
(t)
off)

(t)

Qi

(
vehicles)

u
(t)

(mph)
k

(i)

i
(vpm)

(0
Qi

(vehicles)

T 
(t)

(hr)

d
(t)

.

(vehicles)
Q(1)E

(vehicles)

-2 1259 47 27 1259 1.23 232 1028
- 1 922 47 25 1154 1.23 213 942
0 831 48 22 1044 1.26 217 826
1 1209 45 32 1426 1.28 313 1114
2 1548 42 44 1860 1.30 430 1430
3 1688 20 77 2118 1.99 1054 1064
4 1548 6 130 2601 3.30 1813 788
5 1209 - - 3022 - -

As shown in Figure 4.16, the total discharged volume between t = 0 and

4
(tc, — 1) = 4 denoted as E QE`' for x1 = 4.0, 5.3, and 4.9 miles are 5258 vehicles, 5222

t.0

vehicles, and 6167 vehicles, respectively. Thus, as x1 = 4.9 miles , the discharged volume

4
between 0 and (t, — = 4 , E Q(Et) is maximized.

t=o

6300

6000

5700

5400

5100

4800

4500
4
	

4.9
	

5.3

Length of zone 1 (miles)

Figure 4.16 Length of zone 1 vs. discharged volume between t = 0 and 4.
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( 5 )

Since the demand to be evacuated while staging zone 1 at t = 5,	 , reduces to
St

1594 vehicles, which is less than q L (1600 vph), the second zone length x2 is determined

based on the condition in Equation 4.22 for the remaining evacuation route length of 10.1

miles (i.e., 15- 4.9 ) using the same procedure described for zone 1. The optimal length of

zone 2 denoted as x2 is 3.8 miles. A similar procedure is followed to determine the

optimal length of staged zone 3, denoted as x3 as 6.3 miles. x3 is longer than x1 and x2

due to a lower demand concentration (linearly decreasing demand) at the end of the

evacuation route.

The optimal staging scheme for evacuating 90% of the demand (18,000 vehicles)

used as a measure of effectiveness (MOE) is illustrated in Table 4.7 and Figure 4.17. The

time taken for evacuating 90% of the total demand through simultaneous and staged

evacuations obtained from Equation 4.25 are 18.87 hours and 11.7 hours, respectively.

Thus, the total evacuation time can be reduced by 7.17 hours by implementing the

optimal staged plan. Note that although the 90% of demand includes shadow demand, the

evacuation time (2 hours) consumed by the shadow demand is excluded from the

evacuation time results.
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Table 4.7 Optimal Staging Scheme

Zone ( i ) Length (miles) Time of staging
zone i (hours)

Dischrarged volume while
staging zone i (vehicles)

Shadow Evacuation -2 to -1 1969

1 x, = 4.9 0 to 4 6166

2 x2 = 3.8 5 to 7 4243

3 x3 = 6.3 8 to 11.7 5622

7 -

6 -

5

4 -

3

2

1

-2 	 0 	 2 	 4 	 6 	 8 	 10 	 12

Time (hours)

Figure 4.17 Optimal staging scheme.

Table 4.8 presents the delays under staged evacuation at various intervals. The queuing

delay at t denoted as c1:1) , moving delay at t denoted as dam' are obtained from Equations
m,

4.5 and 4.30, respectively. Also, the total delay at t denoted as d ` t) can be obtained from

Equation 4.32. The total delay for the evacuation denoted as DT is obtained from

equation 4.33 as 6,321 veh-hour. Note that cl`' ) ,c1 (f) , and DT can refer to the discussion

of simultaneous evacuation.
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Table 4.8 Delays Under Staged Evacuation

(t)
(hour)

d" )
i

Queuing
delay

(veh -hour)

d")
M

Moving delay
(veh - hour)

d
(1)

7,

Total delay
(veh-hour)

-2 232 34 266
-1 213 31 244
0 209 27 236
1 293 48 340
2 400 87 488
3 472 120 593
4 458 117 575
5 498 107 604
6 450 87 538
7 365 18 382
8 428 86 513
9 415 70 485
10 377 57 434
11 322 44 367
12 252 27 280
13 180 15 195
14 118 6 124
15 72 2 74
16 42 1 43
17 24 0 24
18 13 0 13
19 7 0 7
20 4 0 4
21 2 0 2
22 1 0 1

4.3.2 Comparison of Evacuation Time and Delays

Figure 4.18 shows the demand accessing the evacuation route, Q: 1) , and the demand to be

(t)
evacuated, Q over time, for simultaneous and staged evacuations. The aggregate

demand accessing the evacuation route for staged evacuation at t refers to the sum of the

access demands of the staged zones due to the temporal zone overlapping arrangement.
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-2 	 0 	 2 	 4 	 6 	 8 	 10 12 14 16 18 20 22 24
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Figure 4.18 Demand distribution vs. time.

The demand to be evacuated during each hour under simultaneous evacuation is

substantially higher than that of the staged evacuation. Also, the demand to be evacuated

under simultaneous evacuation is greater than the capacity of the evacuation route (2,000

vph) during most of the evacuation, resulting in congestion and reduction in the

discharged volume. On the other hand, under staged evacuation, the demand accessing

the evacuation route is regulated, which leads to less congestion that shortens the

evacuation time.

Figure 4.19 shows the discharged volume for simultaneous and staged evacuation

at over time. The discharged volume during the shadow evacuation period (t = -2 to hour

-1) are the same for both simultaneous and staged evacuation. But after t = 0, the

discharged volume of staged evacuation is generally higher than that of simultaneous

evacuation until t = 12 at which 90% of the total demand is discharged under staged

evacuation. The discharged volume for staged evacuation decreases at later periods due
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to light demand. The discharged volume at t = 1 is low due to light demand reacting to

evacuation orders. Relatively low reduction in discharged volume is also observed at time

periods before the commencement of evacuation of the next stage (e.g., t = 4 and 7), due

to lighter demand loaded on the evacuation route.

-2 	 0 	 2 	 4 	 6 	 8 	 10 12 	 14 16 	 18 20 22 24

Time (hours)

Figure 4.19 Discharged volume vs. time for simultaneous and staged evacuations.

On the other hand, the discharged volume of simultaneous evacuation is

significantly low between t = 2 to19 due to the congestion on the evacuation route. Since

the demand to be evacuated under simultaneous evacuation increases, peaks and then

decreases as shown in Figure 4.18, the discharged volume is higher at t = 0 (1347

vehicles) before the demand exceeds capacity. Also, at the end of evacuation, a higher

discharged volume is observed at t = 20 as congestion is cleared. Figure 4.20 shows the

cumulative discharged volume by simultaneous and staged evacuations.

2000

1750

1500

1250

1000

750

500

250
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Figure 4.20 Cumulative discharged volume (%) vs. time.

Figures 4.21 and 4.22 show the delays for simultaneous and staged evacuations

respectively, over time. The total delays of simultaneous and staged evacuations are

145,687 veh-hour and 6,321 veh-hour respectively. The total delay of staged evacuation

when compared with simultaneous evacuation is considerably lower, mainly due to

higher speed being achieved on the evacuation route due to lower congestion. Also, for

staged evacuation, reduction in delay at certain intervals is observed before a new zone is

commenced due to increase in the speed of the evacuation route caused by a reduction in

the demand to be evacuated (e.g., t = 4 and 7).
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Figure 4.21 Delays under simultaneous evacuation vs. time.
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Figure 4.22 Delays under staged evacuation vs. time.
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4.4 Sensitivity Analysis

In this section the impacts of variation in demand of the evacuation region and capacity

of the evacuation route on evacuation time and a delay is analyzed.

In order to study the effects of variation in demand of the evacuation region, four

cases of demand (Q) of 10,000 vehicles, 20,000 vehicles, 30,000 vehicles, and 40,000

vehicles are considered for the evacuation region discussed in the numerical example,

Section 4.3. All other parameters are assumed to be identical as that of the numerical

example and are summarized in Table 4.9.

Table 4.9 Baseline Values

Parameter Value

L 15 miles
a 0.6

fi 2.5 hours

is 2 hours
c 2,000 vph

qi. 1,600 vph

qu 2,075 vph

Table 4.10 shows the evacuation time for 90% of the demand, reduction in evacuation

time by staged evacuation, and the optimal staging scheme for the four cases of demand

discussed above. As seen from the table, evacuation time for both simultaneous and

staged evacuations increase with increase in demand. Also, reduction in evacuation time

is higher at greater demand. No saving in evacuation time is observed for the demand of

10,000 vehicles due to negligible congestion during simultaneous evacuation, which

obviates staging. While the number of staged zones required increases with demand, the

lengths of the zones become shorter. In addition, the length of the first zone, x i is the
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shortest for the highest demand (e.g., 40,000 vehicles), due to a high demand density at

the beginning of the evacuation route and early congestion.

Table 4.10 Evacuation Time and Optimal Staging Scheme Under Varying Demand (Q)

Demand
(Vehicles)

Simultaneous
Evacuation

Time
(hours)

Staged
Evacuation

Time
(hours)

Reduced
Evacuation

Time (hours)

Optimal Staging Scheme
(miles)

10,000 6.51 6.51 0 xi =15.0

20,000 18.87 11.70 7.17 xi = 4.9, x2 = 3.8, x3 = 6.3

30,000 28.87 15.72 13.15 x1 = 3.0, x2 =1.9, x3 = 2.4,

x4 = 4.9, x5 = 2.8

40,000 41.96 23.68 18.28 x1 =1.3, x2 = 0.9, x3 = 2.0,

x4 = 2.3, x5 = 3.6, x6 = 4.9

Figures 4.23 and 4.24 show the total delays of simultaneous and staged evacuations over

time for varying demands. As seen from Figure 4.23, the total delay for simultaneous

evacuation is higher for greater demand, mainly due to a high queuing delay. While the

total delay of staged evacuation is higher for greater demand, the total delay at Q =

40,000 vehicles is significantly higher than that of the others in the initial durations of

evacuation, due to early congestion that causes an increase in queuing and moving

delays. As a result, staged evacuation at Q = 40,000 vehicles is commenced only after

congestion clears at t = 2. Table 4.11 shows the comparison of the total delays of

simultaneous and staged evacuations for various demands.
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Figure 4.23 Total delay vs. time for simultaneous evacuation.
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Figure 4.24 Total delay vs. time for staged evacuation.
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Table 4.11 Total Delay for Evacuation Under Varying Demand

Demand 	 Staged 	 Simultaneous
(Vehicles) 	 Evacuation 	 Evacuation

Total Delay 	 Total Delay
(veh-hour) 	 (veh-hour)

10,000 2,447 2,447
20,000 6,321 142,450
30,000 10,164 400,703
40,000 18,131 854,582

In order to study the impact of variation in capacity of the evacuation route on evacuation

time and delay, lane reversal or contraflow is utilized. The use of a contraflow lane here

is assumed to double the capacity of the evacuation route (i.e. net capacity = 4,000 vph)

with capacity per lane being 2,000 vph. Four cases of demand, Q of 20,000 vehicles,

30,000 vehicles, 40,000 vehicles, and 50,000 vehicles are considered for the evacuation

region discussed in the numerical example in section 4.3. All other parameters are

assumed to be identical as that of the numerical example and are summarized in Table

4.9.

Table 4.12 shows the evacuation time for 90% of the demand, reduction in

evacuation time by staged evacuation, and the optimal staging scheme for the four cases

of demand discussed above under enhanced capacity. No reduction in evacuation time is

observed from staged evacuation at Q= 20,000 as congestion under simultaneous

evacuation in the presence of excess capacity is negligible, which makes staged

evacuation redundant. However, reduction in evacuation time by staged evacuation is

greater for higher demand (e.g., Q= 30,000 vehicles to Q= 50,000 vehicles) due to

higher congestion during simultaneous evacuation. Also, the number of staged zones is
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greater with higher demand but, the lengths of zones shorten. For instance, 4 zones of

sizes x1 = 3.9, x2 = 2.7, x3 = 3.6,x4 = 4.8, miles are required for Q= 50,000 vehicles.

Table 4.12 Evacuation Time and Optimal Staging Scheme Under Varying Demand
(c = 4,000 vph)

Demand
(Vehicles)

Simultaneous
Evacuation

Time
(hours)

Staged
Evacuation

Time
(hours)

Reduced
Evacuation

Time (hours)

Optimal Staging Scheme
(miles)

20,000 6.51 6.51 0 x1 =15.0

30,000 13.18 9.10 4.09 x1 = 7 5 x2 = 7.51	 .	 ,	 2 	 '

40,000 19.05 11.35 7.70 x1 = 5.1, x2 = 4.3, x3 = 5.6

50,000 24.94 14.11 10.83 x1 = 3.9, x2 = 2.7, x3 = 3.6,

x4 = 4.8

Figures 4.25 and 4.26 show the total delays of simultaneous and staged evacuations over

time for varying demands at enhanced evacuation route capacity. The total delay for both

evacuations is higher at greater demand, mainly due to a high queuing delay. Table 4.13

shows the comparison of the total delays of simultaneous and staged evacuations for

various demands at enhanced route capacity.
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Figure 4.25 Total delay vs. time for simultaneous evacuation (c = 4,000 vph).
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Figure 4.26 Total delay vs. time for staged evacuation (c = 4,000 vph).
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Table 4.13 Total Delay for Evacuation Under Varying Demand (c = 4,000 vph)

Demand 	 Simultaneous 	 Staged
(Vehicles) 	 Evacuation 	 Evacuation

Total Delay 	 Total Delay
(veh-hour) 	 (veh-hour)

20,000 4,890 4,890
30,000 125,184 7,921
40,000 295,796 11,059
50,000 537,705 14,220

4.5 Summary

In this chapter, a more realistic model was developed by enhancing the base model in

Chapter 3 by considering the heterogeneous demand distribution over an evacuation

region and evacuees' behavior responses to evacuation order (e.g., fast, medium, and

slow. While the model developed in Chapter 3 assumed the access flow rate constant

during evacuation, the behavioral model employs the S-shaped logit-based function to

determine the access flow. The enhanced model determines the optimal lengths and time

windows of staged zones based on the demand distribution, behavioral response of

evacuees, and predicted evolution of traffic conditions on the evacuation route by an

iterative searching procedure. The significance of temporal overlapping of time windows

of staged zones to maximize the discharged volume was illustrated.

The applicability of the model was demonstrated with a numerical example.

Results showed that the evacuation time of staged evacuation for evacuating 90% of the

demand, which is used a measure of effectiveness, is considerably less than that of

simultaneous evacuation. Sensitivity analysis of demand and capacity on evacuation time

and delay was conducted. Results indicate that reduction in evacuation time and delay by
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staged evacuation as compared to simultaneous evacuation is higher for greater demands.

While similar results are observed when the capacity of the evacuation route is doubled

by contraflow, no reduction in evacuation time and delay by staged evacuation is seen for

low demand when contraflow is utilized.

While this chapter presented the applicability of staged evacuation under varying

behavioral response and demand distribution scenarios, the feasibility of implementing

staged evacuation is a critical issue, and is discussed in the next chapter.



CHAPTER 5

ENHANCEMENT OF STAGED EVACUATION MODELS

The model developed in Chapter 4 determined the optimal staging scheme that minimizes

evacuation time and delay. However, non-compliance behavior of evacuees to evacuation

order was not considered. For example, variation in level of compliance can further

increase the complexity for estimating the demand accessing the evacuation route over

time and the evacuation time and delays may be underestimated. In this chapter, the

practicability of a staged evacuation scheme considering various compliance levels is

investigated. In addition, a method that revises the optimal staging scheme obtained in

Chapter 4 is developed. The model discussed here is called Enhanced Model II, which is

an extension of the Enhanced Model I by considering the compliance effect.

This chapter is organized into the following sections: Section 5.1 discusses the

effectiveness of staged evacuation based on the level of compliance of zones and the

deviation from scheduled demand access time; Section 5.2 illustrates a method to revise

the optimal staging scheme; Section 5.3 presents a numerical example, which shows the

impacts of levels of compliance on evacuation time and delay, and the improvement in

the effectiveness of staging with the revised scheme; and finally Section 5.4 presents a

summary of Chapter 5.

125
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5.1 Level of Compliance

The level of evacuees' compliance to an evacuation order may significantly influence

evacuation time and the associated delay. In this section, the impact of the compliance on

the evacuation time and delays are analyzed. Compliance here is defined as the

conformity of a staged zone to its demand loading pattern and the corresponding

scheduled demand access time. The effectiveness of a staged evacuation considering

level of compliance is the efficacy of the staging scheme in comparison to the optimal

staging scheme obtained in Chapter 4 considering full (e.g., 100%) compliance.

Assume that the level of compliance for demand of zone i denoted as Pi may be

different from that of other zones. The average compliance level of an evacuation region

denoted as P may be formulated as

N

 Pa
P =  ,...1 

Q
(5.1)

where Q is the total demand to be evacuated from the region, Q1 is the demand of zone i,

and N is the number of staged zones. Note that P represents the overall level of

compliance for an evacuation region.

Assume that the reduction in evacuation time achieved through staged evacuation

by evacuating the majority of the demand (e.g., 90% of the total demand) is OT, which is

equal to the evacuation time of simultaneous evacuation minus that of staged evacuation

as formulated in Equation 5.2.

AT = T im —T,, 	 (5.2)

where Tsjm and 7,, are evacuation times of simultaneous and staged evacuations,

respectively. The effectiveness of a staged evacuation scheme considering compliance
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level denoted as 77 is the ratio of the reduction in evacuation time achieved by the staging

scheme to that of the optimal staging scheme denoted as AT,p, . Thus,

AT	 Ts,. — Tp,
=

OTopt	 T imsim	 opt

VT,. > Tn 	(5.3)

where Too is the estimated evacuation time for the optimal staging scheme that

minimizes evacuation time and delay. For the condition that Tsin,=Topt , the optimal

evacuation scheme is a simultaneous evacuation, where N =1.

Parameter /7 is primarily dependent on the evacuation time of a staged scheme,

Tn , which is affected by Pi and the deviation of the scheduled access time for the demand

of zone i, denoted as si . In this study, si is a user specified parameter, which is the

difference between the scheduled demand access time point of zone i, t and t.

si = tc  —t 	 (5.4)

Thus, si affects the demand to be evacuated while staging zone i at t and may have

significant impact on congestion that influences Tn .

Since the level of compliance for demand of zone i is denoted as Pi , the level of

non-compliance for demand of zone i may be denoted as (1— P,) . Thus, the compliance

demand of zone i (1 Q, ) is defined as one that begins to access the evacuation route at a

planned time t, whereas, non-compliance demand of zone i ( (1— Pi )Q ) is one that should

access at t + si , but begins to accesses at t. Note that the demand distributions of both

compliance and non-compliance demands are based on the loading curve formulated in

Equation 4.1.
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The model developed in Chapter 4 was demonstrated as an effective way to

search the optimal staging scheme that maximizes the discharged volume of an

evacuation route. Therefore, the time windows of staged zones may be overlapped with

one another, so that the available capacity can be efficiently utilized. When level of

compliance is considered while staging zone i at t, the demand accessing the evacuation

route may contain the compliance (scheduled) and non-compliance demands of zones 1

through i, and the non-compliance demand of zones i+1 through N. This is because, at

time t, zones 1 to i are already staged, but zones i+1 through N await staging. Figure 5.1

shows a general configuration of time-windows for all staged zones considering non-

compliance effect.

As shown in Figure 5.1, t represents the scheduled demand access time point

of zone i, while si represents the deviation of the scheduled demand access time of zone

i. Thus, the non-compliance demand of zone i (= (1— Pi )Q, ) begins to access the

evacuation route at (tc — s1 5
) while the scheduled demand (=Pp) accesses the

evacuation route at t .1 . The last vehicle exits the evacuation route at t .c i
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Figure 5.1 Time-windows of staged zones considering non-compliance effect.
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Figure 5.2(a) shows the demand distribution considering 100% compliance, and it

has been studied in the example discussed in Chapter 4. Figure 5.2(b) demonstrates that

as the compliance demand of zones 2 through N reduces, the demand accessing the

evacuation route while staging zone 1 at t increases. Similar situation may be found while

staging later zones.

zone 1	 zone 2 zone i 	 zone N 

—ts 	0 tcl tci-1
Time (hours) 

tc,„ tc l    

Figure 5.2(a) Demand distribution considering 100% compliance.

A

scheduled demand of zone 1+
non-compliance demand

zone 2 	 zone i	 zone N

0)a)
0

73

ca
Ea)
0

° 	 tci 
	 tc,„  	 tc,

Time (hours)

Figure 5.2(b) Demand distribution considering non-compliance effect.
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Based on the discussion in Section 4.2.2.1(1), the percentage of compliance

demand accessing from zone i at t (q c(1) ) is

(I) 1 	 1a = 	
C' 	 ( 1+ Ca(t-fl) 1+ e' (f-1-1°) )

while the percentage of non-compliance demand accessing form zone i at t41:) is

(t) 	 1 	 1
q

"i = 1+e-ao+s-fl)

Thus, by considering the non-compliance effect, the total demand accessing the

)	
ievacuation route while staging zone i at t, denoted as QT , is the sum of the compliance

demands of zones 1 through i accessing at t

Q,(," = 	 ")Et qc  PQ„ 1 Vi,t
z.1

	 (5.7)

and the non-compliance demand of zones 1 through N accessing at t

N

	=E(q„,(1)(1-PV,) Vi,t	 (5.8)

where q
(

' PQ; and q
(t) 

(1— Pi )Qi are the compliance and non-compliance demands of zone

( t )

i accessing the evacuation route at t, respectively. Thus, QT can be derived as

(5.9)

(5.5)

(5.6)
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5.2 Revision of the Optimal Staging Scheme to Consider Non-compliance Effect

If the levels of compliance and the deviations of scheduled demand access times for all

zones are known, the optimal staging scheme developed in Chapter 4 can be revised to

accommodate the non-compliance demand. The revised staging scheme is determined by

applying the staging model developed in Chapter 4 by considering the non-compliance

demand in addition. Thus, in order to accommodate the non-compliance demand and

effectively utilize capacity at t, the scheduled access demand is reduced by decreasing the

length of a staged zone as discussed in Section 4.1.2.

Since the loading profile of non-compliance demand accessing the evacuation

( t
route at t (Qn,

)
 i) is known, the length of staged zone i may be determined such that the

loading profile of the total demand accessing the evacuation route while staging zone i at

(t)
t (QT`' ), results in a profile of the demand to be evacuated while staging zone i at t (Q )

that maximizes the total discharged volume between te and t which are the time

points of staging zone i. Note that the determination of the optimal length of zone i is

(	 (	 (0
discussed in Section 4.2.2.2. Qc, 

0
 , Qn,  , and QT are determined by Equations 5.7, 5.8, and

5.9, respectively.

(t)
Figure 5.3 shows the resulting profile of Co due to non-compliance effect. As

(t)

shown in the figure, the discharge rate Q ' 	not exceed (c) and (qu ) and thus

maximizes the total discharged volume between ter and t Note that c, q , , and qu are

capacity, lower flow limit and upper flow limit, respectively. Thus, the revised length of
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zone i restricts the compliance demand accessing the evacuation route over time and

allows the inevitable non-compliance demand to discharge, thereby reducing congestion,

and decreasing the evacuation time.

Q (t' Igt : compliance demand accessing while staging zone i at t

n

( t ) : non-compliance demand accessing while staging zone i at tr

0 ... 1 .... 2 
tc;-t etc, + 1)  

Time (hours)

Figure 5.3 Selection of revised length of zone i.

The revision of the optimal staging scheme to accommodate the non-compliance demand

is demonstrated using a numerical example discussed next.
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5.3 Numerical Example

In this section, the level of compliance affecting the optimal staging scheme shown in

Figure 4.17 is examined, while the background of this example is identical to the example

presented in Chapter 4.

The length of the evacuation route L is assumed to be 15 miles. The evacuation

region can be referred to Figure 4.7, which consists of a single evacuation route with one

lane and the demand is linearly decreasing as shown in Figure 4.14. The demand density

function f (x) over the evacuation route can be referred to Equation 4.38. The highest

demand density at the beginning of the evacuation route C is 2,500 vehicles/mile. By

using Equation 4.38, the demand of the evacuation region Q is 20,000 vehicles. The

parameters of the logit-based function formulated in Equation 4.1, namely response rate

a and the half loading time fi are 0.6 and 2.5 hours, respectively, for a fast response

scenario. Also, the duration of shadow evacuation time is , capacity of the evacuation

route c, the lower flow limit qL , and the upper flow limit qu , are 2 hours, 2,000 vph,

1,600 vph, and 2,075 vph, respectively.

By applying the model developed in Chapter 4, the optimal zone lengths for the

example were 4.9, 3.8, and 6.3 miles as shown in Figure 4.17 and Table 4.8. The time

needed for evacuating 90% of the total demand through simultaneous and the optimal

staged evacuations were 18.87 hours and 11.7 hours, respectively. The reduction in

evacuation time was 7.17 hours.

By considering different levels of compliance and deviations of scheduled

demand access time for staged zones discussed in the optimal scheme shown in Figure

4.17 and Table 4.8, two scenarios are evaluated and results are used for demonstrating the
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impacts of compliance levels on evacuation time and delay. If the optimal staging scheme

is applied under varying levels of compliance, it is termed as the non-compliance scheme;

on the other hand, if the optimal staging scheme is revised according to the level of

compliance, it is termed as the revised scheme.

5.3.1 Scenario 1: Variable Pi with Fixed si

In Scenario 1, the effects of various levels of compliance with a constant deviation of

scheduled demand access time of staged zones are considered. Thus, Pi may vary but si

is fixed for all staged zones, over different cases. The levels of compliance of zones 2 and

3 denoted as P2 and P3 , respectively, are identical for each case. s1 for the zones 2 and 3

is assumed to be 1 hour. Note that the non-compliance demand from zone 1 is considered

in the estimation of shadow demand, and hence P, is 100% (i.e., s, = 0). The average

compliance denoted as P for various combinations of P2 and P3 can be obtained by

Equation 5.1 and summarized in Table 5.1.

Table 5.1 Level of Compliance

Case 	 P2(%) 	 P (%) 	 P (%)
1 10 10 58
2 20 20 63
3 30 30 67
4 40 40 72
5 50 50 77

The resulting staged evacuation time (Tn ) determined by Equation 4.25, reduced

evacuation time (compared to simultaneous evacuation) ( AT) determined by Equation

5.2, and effectiveness of staged evacuation (ii) determined by Equation 5.3, for the 5
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cases, are shown in Table 5.2. As shown in the table, generally, as P increases both AT

and i increase.

Table 5.2 Effects of Levels of Compliance (P) (s1 = 1 hour)

Case	 Average	 Evacuation Time	 Reduced	 Effectiveness of Staged
Compliance	 for 90% of	 Evacuation	 Evacuation, rJ (%)

	

P (%) 	 Demand (hours) Time (hours)

T. AT

1 58 17.23 1.64 22.93
2 63 17.23 1.64 22.85
3 67 17.16 1.71 23.85
4 72 17.09 1.78 24.81
5 77 17.03 1.84 25.71

Figure 5.4 shows the total delay over time for various P while si = 1 hour.

-2	 0	 2	 4	 6	 8	 10	 12	 14	 16	 18	 20

Time (hours)

Figure 5.4 Total delay vs. time for various P (si =1 hour).

As P increases, the total delay of evacuation (Di ) decreases due to lesser

congestion due to regulated demand accessing the evacuation route that reduces

congestion.
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Revision of the Optimal Staging Scheme for Scenario 1

In this section, the revision of the optimal staging scheme for various P at constant si is

analyzed. The method to revise the optimal staging scheme is discussed in Section 5.2.

Table 5.3 presents Tn , AT , and ri of the revised scheme for Scenario 1. Note that

although the evacuation times for Cases 3, 4, and 5 are less than that of the optimal

staging scheme (11.7 hours), the demand evacuated from the most densely populated

regions in the 90% of total demand used as a measure of effectiveness, MOE, for these

cases, is not as high as that of the optimal staging scheme. In other words, it is possible to

reduce the evacuation time further than that of the optimal staging scheme ( T opt ) by

evacuating sparsely populated zones in conjunction with the densely populated zones, but

is not desirable. Thus, /7 >100% for Cases 3, 4, and 5 as Tn is less than the evacuation

time of the optimal staging scheme.

Table 5.3 Revised Staging Scheme for Various P (s = 1 hour)

Case	 Average	 Evacuation Time	 Reduced	 Effectiveness of Staged
Compliance	 for 90% of	 Evacuation	 Evacuation

	P (%)	 Demand (hours) Time (hours)	 rl (%)
T.	 AT

1 58 12.26 6.61 92.14
2 63 11.99 6.88 95.98
3 67 11.64 7.23 100.83
4 72 11.66 7.21 100.60
5 77 11.41 7.46 103.98

Figure 5.5 shows the improvement of ri with the revised staging scheme over the non-

compliance scheme for various P.
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Figure 5.6 Staged zone lengths for various P for revised scheme.

Figure 5.6 shows the lengths of the staged zones for the revised scheme for various P. As

shown in the figure, the length of zone 1 of the revised scheme is less than that of the

optimal scheme that considers 100% compliance due to increase in the demand to be
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(t)

evacuated while staging zone 1 at t (Q i ), caused by the non-compliance demand. But,

the duration of staging zone 1 increases for the revised scheme in order to discharge a

large non-compliance demand. Also, the revised zone 1 is longer at greater P due to a

(t)
lower non-compliance demand, which reduces Q i. To this end, a longer zone length is

required to discharge a greater volume.

Table 5.4 shows the demand distribution for the revised scheme for Case 1 (P =58

%). The definitions of the variables used in the table are as below.

Q

Q
`t' : compliance demand of zones 1 through i accessing at t,

`
t

' : non-compliance demand of zones 1 through N accessing at t,

(i)

QT : Total demand accessing while staging zone i at t,

(f)

Q : demand to evacuated while staging zone i at t,

( t )
u : speed of the evacuation route at while staging zone i at t,

(1)
( t )

: evacuation time for Q while staging zone i at t,

d (t) : vehicles queued while staging zone i at t„ and

(i)
QE : discharged volume at t.

As shown in the table, the compliance demand accessing the evacuation route

(t)(i
while staging zone 1 ( x 1 = 4 miles) at t (Qci

)

 ), results in Q i , which causes negligible

congestion, and maximizes the discharge rate between t = 0 to 8, by considering non-

compliance effect.
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As compared to the optimal staging scheme shown in Figure 4.17 where x 1 = 4.9 miles

for t = 0 to 4, x1 for the revised scheme decreases, but the duration of staging of zone 1

increases (i.e., t = 0 to 8) in order to discharge the non-compliance demand, which begins

(,)
to access the evacuation route at t = 4. Note that ( i) , Q„

(i)

 , and QT are determined by

Equations	 5.7,	 5.8,	 and	 5.9,	 respectively. 	 The	 determination	 of

(t) (t)
parameters Q ,u

(t) (i)

,Ti , d
(1) 

and Q E can be referred to Section 4.3.1.

Figure 5.7 and Table 5.5 show the total delay for the revised scheme over time for

various P while si = 1 hour. As show in the table, the total delay of the revised scheme as

compared to that of the non-compliance scheme is significantly lower for all cases.

—o— P= 58%
—0— P= 63%

P= 67%
o

• 

6000 	 —0—P= 72%.c
—X— P= 77%a)

>, 4000
Ca
To

.170S 2000

-2 	 0 	 2 	 4 	 6 	 8 	 10 	 12 	 14 	 16 	 18 	 20
Time (hours)

Figure 5.7 Total delay vs. time for various P (si = 1 hour) for the revised scheme.

8000
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Table 5.5 Total Delay for Various P (si = 1 hour)

Case	 Average	 Non-compliance	 Revised Scheme
Compliance	 Scheme	 DT (veh-hour)

	P (%)	 DT (veh-hour)

1 58 74,115 6,268
2 63 73,345 6,301
3 67 71,185 6,298
4 72 68,668 6,238
5 77 65,689 6,333

5.3.2 Scenario 2: Variable si with Fixed P

In Scenario 2, the effects of variation of deviation of scheduled demand access times of

zones at a constant average level of compliance are studied. Thus, si may vary but P are

fixed (77%) for the demand of zones 2 and 3, for different cases. Note that PI is assumed

100% (s i = 0 ), and si for the various cases are shown in Table 5.6.

Table 5.6 Deviation of Scheduled Demand Access Time

Case s2(hour) s3 (hour)
1 1.0 1.0
2 2.0 2.0
3 3.0 3.0
4 4.0 4.0
5 5.0 5.0

The resulting staged evacuation time (T, ) determined by Equation 4.25, reduced

evacuation time (compared to simultaneous evacuation) ( AT) determined by Equation

5.2, and effectiveness of staged evacuation (17) determined by Equation 5.3, for the

above cases, are shown in Table 5.7. As shown in the table, ri is lower at higher si and is

the lowest at as si = 4, 5, because congestion occurs early causing the demand buildup to
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last longer, i.e., a high demand accessing the evacuation route in early periods of staging

takes a longer time to discharge due to a low discharge rate.

Table 5.7 Effects of Various si for (P = 77%)

Case	 Deviation of	 Evacuation Time	 Reduced	 Effectiveness of Staged
Scheduled	 for 90% of	 Evacuation	 Evacuation

Access Time	 Demand (hours) Time (hours) 	 71 (%)
(hours) s1	T.	 AT

1 1.0 17.03 1.84 25.71
2 2.0 18.08 0.79 10.99
3 3.0 18.14 0.73 10.24
4 4.0 18.29 0.58 8.11
5 5.0 18.29 0.58 8.10

The demand loading profile of the optimal staging scheme discussed in Chapter 4,

(Table 4.8), and Scenario 2 (Case-5) can be observed from Figures 5.8 and 5.9,

respectively. Figure 5.8 shows the demand distribution of individual zones, and aggregate

demand of zones over time.

Figure 5.8 Demand distribution for all staged zones (optimal staging scheme).
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As shown in Figure 5.9, for the case s 2 = 53 = 5 hours, the demand accessing the

evacuation route while staging zone 1 increases, which results in significant congestion

at t = 2, 3 and 4, as shown in Table 5.8. The definitions of the variables can be referred to

Table 5.5.

-2 	 0 	 2 	 4 	 6 	 8 	 10 12 14 16 18 20 22 24
Time (hours)

Figure 5.9 Demand loading profile with 5 2 = 53 = 5 hours (P = 77 %).

Table 5.8 Demand Distribution (s2 = 53 = 5 hours and P = 77%)
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(t)

i
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Q
(veh)

i
0 ,

T
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(i)
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(veh)

(i)
Q E

(veh)

-2 - - - 47 27 1259 1.23 232 1028
-1 - - - 47 25 1154 1.23 213 942
0 202 781 983 47 21 1195 1.27 1195 940
1 293 1136 1429 43 30 1685 1.30 1685 1299
2 375 1454 1830 14 41 2216 2.59 2216 854
3 551 1586 2137 6 130 3499 6.63 3499 788
4 581 1454 2035 6 130 4746 8.23 4746 788
5 556 1136 1692 5649 5649
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Fig= 5.10 shows the total delay over time for various si for P = 77% . As si

increases, the total delay of evacuation (DT ) increases due to greater congestion as

shown in Table 5.9 (e.g., s2 = s3 = 5 ).

-2 	 0 	 2 	 4 	 6 	 8 	 10 	 12 	 14 	 16 	 18 	 20
Time (hours)

Figure 5.10 Total delay vs. time for various si at P = 77%.

Revision of the Optimal Staging Scheme for Scenario 2

In this section, the revision of the optimal staged scheme developed in Chapter 4 for

varying si at constant P is analyzed. Table 5.10 presents Tn , AT , and 77 of the revised

scheme for Scenario 2. As shown in the table ri is significantly higher than that of the

non-compliance scheme for various cases shown in Table 5.8.
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Table 5.9 Revised Staging Scheme for Various s (P = 77%)

Case	 Deviation of
Scheduled

Access Time

Evacuation Time
for 90% of

Demand (hours)

Reduced
Evacuation

Time (hours)

Effectiveness of Staged
Evacuation

ri(%)

(hours) s, Tn AT

1 1.0 11.41 7.46 100.00
2 2.0 11.71 7.16 99.90
3 3.0 11.70 7.17 100.00
4 4.0 12.07 6.80 94.83
5 5.0 11.73 7.14 99.59

Figure 5.11 shows the improvement of ri with the revised staging scheme over the non-

compliance scheme for various s i .

Deviation of Scheduled Demand Access Time (hours)

Figure 5.11 Effectiveness of staging vs. deviation of scheduled demand access time.
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Figure 5.12 Staged zone lengths for various si for revised scheme.

Figure 5.12 shows the lengths of the staged zones for the revised scheme for

various si . As shown in the figure, the length of zone 1 of the revised scheme is less than

that of the optimal scheme that considers 100% compliance (si = 0) due to increase in the

(t)
demand to be evacuated at t while staging zone 1,	 , caused by the non-compliance

demand. Also, the revised zone 1 is shorter at greater si due to a higher non-compliance

(t)

demand, which enhances Q Evidently, a shorter zone length is required to discharge a

greater non-compliance demand.

Figure 5.13 and Table 5.10 show the total delay for the revised scheme over time

for various si for P =77%. As shown in the table, the total delay of the revised scheme

as compared to that of the non-compliance scheme is significantly lower for all cases of

Si .



8000

7000

o

• 

6000.c
t 5000

▪ 4000co
TD• 3000

30 2000

- 1000

0 

148
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Figure 5.13 Total delay vs. time for various si as P = 77% for the revised scheme.

Table 5.10 Total Delay for Various s1 (P = 77%)

Case Average
Compliance

P (%)

Non-compliance	 Revised Scheme
Scheme	 DT (veh-hour)

DT (veh-hour)

1 1 65,426 6,333
2 2 88,120 6,383
3 3 93,817 6,512
4 4 100,272 6,543
5 5 106,011 6,761

5.4	 Summary

In this chapter the practicability of staged evacuation due to the effects of various

compliance levels of staged zones to evacuation order was investigated. Compliance here

is defined as the conformity of a staged zone to its demand loading pattern and the

corresponding scheduled demand access time, according to the optimal staged scheme

developed in Chapter 4. The effectiveness of a staged evacuation scheme due to variation

in compliance levels was also investigated. The factors that primarily influence the
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effectiveness of staged evacuation are the level of compliance of zones denoted as Pi , and

deviation of scheduled demand access time of zones denoted as si .

For a given s1 for all zones, the reduced evacuation time by staged evacuation as

compared to simultaneous evacuation, and effectiveness of staging were found to

increase with increase in levels of average compliance denoted as P . Also, for a given Pi

for all zones, the reduced evacuation time, and effectiveness of staging, were found to

decrease with increase in si .

In order to account for the non-compliance of the zones, the optimal staged

scheme was revised. It was found that the length of zone 1 of the revised scheme for

various Pi at constant si is less than that of the optimal scheme. Also, the revised zone 1

is longer at greater P due to a lower non-compliance demand. While the length of zone 1

of the revised scheme for various si at constant P is less than that of the optimal

scheme, the revised zone 1 is shorter at higher si due to a greater non-compliance demand

that causes congestion in early periods of staging.



CHAPTER 6

CONCLUSIONS

In this study analytical models were developed to optimize the evacuation scheme by

minimizing evacuation time and the associated delays. In this chapter the results and

findings are summarized and recommendations for future work are presented. This

chapter is organized into the following sections: Section 6.1 presents the important results

and findings of this study; Section 6.2 discusses the research contributions; and finally

Section 6.3 identifies critical areas of interest for future research and makes valuable

recommendations.

6.1 Results and Findings

Analytical models were developed for estimating evacuation time and the associated

delays, and the impacts of a simultaneous and a staged evacuation were analyzed.

Evacuation time was defined as the time required for evacuating all vehicles from a

designated region, while the delay included queuing and moving delays. A

comprehensive literature review was conducted of various evacuation models to

determine their advantages and limitations. Some previous studies dealt with staged

evacuation, but the quantitative analysis between the impacts of simultaneous and staged

evacuations was limited. This study discussed some important issues that were not

thoroughly investigated in the past, including the effects of critical parameters (e.g.,

speed, vehicle density, access flow, etc) on evacuation time, evacuees' behavioral

150
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response including loading patterns, demand distribution over the evacuation route,

effects of congestion on capacity of evacuation routes, etc.

The base model developed in Chapter 3 optimized the number of staged zones for

a given set of conditions (e.g., uniformity of access flow, demand, and capacity, etc)

under deterministic behavior. A numerical approach was developed to search the optimal

number of stages that minimizes the total evacuation time while analyzing the associated

delay. In the example discussed in Chapter 3, the evacuation time was a convex curve,

where the minimum number of stages denoted as N was reached at 3. In addition, the

delay decreased significantly with the increase of the number of stages and was the

lowest at N = 5. It was also found that the evacuation time is primarily influenced by the

discharge time, depending on the traffic volume. In addition, the delay under congested

conditions is contributed by the queuing delay incurred by evacuees waiting to exit the

evacuation route. A sensitivity analysis was conducted and the parameters that were

considered as the most sensitive (including access flow rate, demand, and the evacuation

route length) to the evacuation time and delay were identified. The findings of the

analysis in Chapter 3 are summarized as follows:

- The optimal number of stages at which the evacuation time is minimum
increases as the access flow rate increases. Also, lower access flow rates lead to
lower delays for a given number of stages.

The minimum evacuation time was attained at N = 3 for all values of demand
(5,000 vehicles to 25,000 vehicles), although, the evacuation time increased with
the increase of demand for any value of N. Also, the delay increased with the
increase of demand for any N due to increased volume entering the route.

The optimal number of stages at which the evacuation time is minimum,
increased with increase in the length of the evacuation route, L. Also, for a given
N, the delay increased with L.
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An Enhanced Model I was developed in Chapter 4, considering heterogeneous demand

distribution over the evacuation route and evacuees' behavioral responses (e.g., fast,

medium, and slow) to evacuation orders. A review of various behavioral models was

conducted and the Behavioral response curves model (Sigmoid or S-Curves) was selected

for modeling evacuees' behavior in the Enhanced Model I. Based on a numerical

searching process, the staging scheme including the time windows and lengths of staged

zones was optimized, considering demand distribution, behavioral response of evacuees,

and evolution of traffic conditions on the evacuation route. Unlike the base model, the

Enhanced Model I determines the zone lengths by regulating the demand accessing the

evacuation route to effectively utilize available capacity. Hence, the lengths of the staged

zones are unequal. The model was tested in a numerical example. It was found that the

evacuation time and delay of staged evacuation as compared to simultaneous evacuation

was substantially lower than that of simultaneous evacuation. A sensitivity analysis of the

effect of demand and capacity on evacuation time and delay was conducted, the findings

of which are summarized below.

The reduction in evacuation time by staged evacuation was higher at greater
demand. In addition, the total delays for both simultaneous and staged
evacuations were higher at greater demand.

While similar results were observed when the capacity of the evacuation route is
enhanced through contraflow, no reduction in evacuation time by staged
evacuation was observed at low demand when contraflow or lane reversal is
utilized.

Finally, the practicability of staged evacuation at various levels of compliance

was explored in Chapter 5. An Enhanced Model II, an extension of the Enhanced Model

I, was developed by considering the impact of compliance level. Compliance was defined
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as the conformity of a staged zone to its demand loading pattern. The Enhanced model II

was tested in a numerical example.

Results indicate that the level of compliance and deviation from the scheduled

demand access time of staged zones influence the effectiveness of staging. For given

deviations of the scheduled demand access times for all zones, the reduction in

evacuation time by staging, and effectiveness of staging were found to increase with

increase in compliance levels. Also, for given levels of compliance for all zones, the

reduction in evacuation time and effectiveness of staging were found to decrease with

increase in deviation of the scheduled demand access time.

To accommodate the non-compliance demand of the zones, a method to revise the

optimal staged scheme was illustrated. The length of zone 1 of the revised scheme for

various levels of average compliance at a constant deviation of scheduled demand access

time was less than that of the optimal scheme. Also, the revised length of zone 1 was

longer for greater average compliance due to a lower non-compliance demand. While the

length of zone 1 of the revised scheme for various deviations of scheduled demand access

time at constant average level of compliance was less than that of the optimal scheme, the

revised zone 1 was shorter at higher deviation of the scheduled demand access time due

to a greater non-compliance demand that causes congestion in early periods of staging.
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6.2 Contributions

The objective of this research was to optimize a staged evacuation by minimizing

evacuation time and the associated delays. The applicability of the model and the

reduction in evacuation time achieved by staged evacuation over simultaneous evacuation

were demonstrated using numerical examples.

The methodology presented in this research comprised of models that could be

applied under varying demand distribution and evacuation response scenarios. Sensitivity

analysis of key parameters, namely access flow rate, demand, and evacuation route length

for the base model revealed the relationships among variables and identified the relative

importance of factors that contribute to them. Since evacuees' behavioral response to

evacuation orders (fast, medium, and slow) and demand distribution over the evacuation

route affects the evacuation time, a more realistic estimation of evacuation time and delay

was achieved by incorporating behavioral aspects using the S-shaped logit-based

function. The Enhanced model I developed for stochastic behavioral response and

heterogeneous demand distribution, defined a sequential step procedure to achieve the

optimal staging scheme. The results of the model can be used to recommend the time

windows and lengths of staged zones based on the prevailing evacuation circumstances

(e.g., behavioral response, demand distribution, length of the evacuation route, etc).

The time taken for evacuating 90% of the demand, used as a measure of

effectiveness (MOE) by staged evacuation is significantly lower than that of

simultaneous evacuation. The effectiveness of staged evacuation under excess capacity

was investigated and it was found that the reduction in evacuation time through staged

evacuation over simultaneous evacuation is greater at higher demand and no reduction in
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evacuation time is achieved for low demand when excess capacity is available. The

methodology presented in this research showed that temporal regulation of demand

accessing the evacuation route through the overlapping arrangement of time windows of

staged zones can enhance the discharged volume and reduces evacuation time and delays

significantly.

An analysis of the practicability of staged evacuation showed that the levels of

compliance and deviation of scheduled demand access time of staged zones influence the

effectiveness of staging. In addition, a method to revise the optimal staging scheme to

accommodate the non-compliance demand was developed.

The models developed in this research can serve as useful tools to provide

suitable guidelines for emergency management authorities in making critical decisions

during the evacuation process.

6.3 Recommendations for Future Research

In this research, heterogeneous demand distribution over the evacuation region and

evacuees' behavioral responses (e.g., fast, medium, and slow) to evacuation orders were

considered. Although this research employed the Behavioral response curves (Sigmoid or

S-Curves) model for loading evacuation demand onto the evacuation network, other

models (e.g., sequential-logit model) can be used. Also, it is possible to model dynamic

behavioral response patterns that can vary based on the traffic conditions on the

evacuation routes.

The effects of various levels of compliance on evacuation time and delay of

staged evacuation were demonstrated in this research. The factors that potentially affect
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the effectiveness of staged evacuation include communications amongst emergency

personnel and evacuees, responses to evacuation orders (fast, medium, or slow), traffic

control at intersections, availability of alternative evacuation routes, demand, etc. Thus, it

is possible to develop a thorough model to assess the impacts of these factors on the

effectiveness of staged evacuation.

The methodology developed in this research employed Edie's and Akcelik's

models to estimate the speed-density relationship and the corresponding discharge rate of

the evacuation route. However, if possible, data obtained during evacuations can be used

to calibrate the flow-density relationships under congested flow conditions to achieve

more accurate estimates of evacuation time and delay.

The model developed in this research minimized evacuation time and delay for

the most densely populated region. The 90% of demand evacuated, which is used as a

measure of effectiveness, primarily includes demand from populous areas. It is also

possible to develop a more complex model to globally minimize evacuation time and

delay by evacuating sparsely populated regions in conjunction with dense areas.
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