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ABSTRACT

FEASIBILITY OF SUPERCONDUCTIVITY
IN SEMICONDUCTOR SUPERLATIVES

by

Kenneth P. Walsh

The objective of this thesis is to explore superconductivity in semiconductor superlattice

of alternating hole and electron layers. The feasibility of superconductivity in

semiconductor superlattices is based on a model formulated by Horseman and Mills. In

this model, a semiconductor superlattice forms the layered electron and hole reservoirs of

high transition temperature (high-ΤΤ ) superconductors.

A GaAs—A1xGa 1_xAs semiconductor structure is proposed which is predicted to

superconductor at Cc = 2.0 K and may be analogous to the layered electronic structure of

high-Ta superconductors. Formation of an alternating sequence of electron- and hole-

populated quantum wells (an electron-hole superlattices) in a modulation-doped

GaAs—AlxGa 1_xAs superlattice is considered. In this superlattices, the distribution of

carriers forms a three-dimensional Wigner lattice where the mean spacing between

carriers in the x-y plane is the same as the periodic distance between wells in the

superlattices. This geometrical relationship mimics a prominent property of optimally

doped high — Cc  superconductors.

A Schrδdinger-Poisson solver, developed by Snider, is applied to the

problem of determining the appropriate semiconductor layers for creating

equilibrium electron-hole superlattices in the GaAs—A1 xGa 1_xAs system. Formation of



equilibrium electron-hole superlatives in modulation-doped GaAs—A1 xGa 1_xAs is

studied by numerical simulations. Electron and heavy-hole states are induced by built-

in electric fields in the absence of optical pumping, gate electrodes, or electrical contacts.

The GaΑs—A1xGa 1_XAs structure and the feasibility of meeting all the criteria of the

Horseman model for superconductivity is studied by self-consistent numerical simulation.

In order to test the existence of superconductivity, the physics of sensor arrays

and their ability to create synthetic images of semiconductor structures, is explored.

Approximations are considered and practical applications in detecting superconductivity

in superlattices are evaluated.
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CHAPTER 1

INTRODUCTION

1.1 Objective

The purpose of this study is to determine the structure and physical properties of

semiconductor superlattices that exhibit superconductivity at high temperatures. In order

to investigate this, GaAs-ΑΙ Ga 1 _χAs superlattice structures are utilized. A two-

dimensional layered geometry of high critical temperature (high-ΤΤ ) superconducting

materials is optimized both for T and the bulk Meissner fraction [1]. The proposed

superlattice structure comprises multiple repeating undoped GaAs and doped or undoped

AIXGa 1 _XAs layers which are analogous to the layered electronic structure of

high-Ρ superconductors. In the structures of interest, when the system is in a state of

electrostatic equilibrium, the mean spacing between nearest electron or hole wells is the

same as the mean distance between the electrons or holes in any given well. A computer

program is applied to the problem of determining the appropriate semiconductor layers

for creating equilibrium electron-hole GaAs-Αl Ga1_ XAs superlattices.

Computer simulations are based on a superlattice structure as seen in Figure 1.1.

The superlattice is composed of layers of undoped GaAs layers, doped and undoped

A1GaAs layers. The periodic distance d is the distance between GaAs wells surrounded

by like doped A1GaAs. Numerically, one can express the periodic distance as

d = 2(2dδ + d  + dy ) , where d8, dB, and dX are the widths of the doped, well, and spacer

layers, respectively. The program uses the method of finite differences to find the

1
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one-dimensional band diagram of a semiconductor structure. It can automatically

calculate the band diagrams for multiple bias voltages, sheet resistance, and surface

carrier densities. A self-consistent 1D solution of the Schrδdinger and Poisson Equations

is obtained using the finite-difference method (FDM) [2]. FDM divides real space into

meshes and mesh points. The vector solution of Schrδdinger Equation is solved for each

mesh. The result is a matrix formulation of the solution of the Schr6dinger Equation. The

method is very effective in determining eigenstates over a relatively large spatial

dimension without loss of accuracy. The program is menu driven through a pseudo-Mac

interface but the user must provide separate text editing and plotting programs. The

program calculates the conduction and valence band distributions, density of states and

the hole and electron concentrations. Depart ionization is included for both shallow and

deep level departs. This allows materials such as semi-insulating GaAs to be treated.

Current flow is not calculated; therefore, the structure can be simulated only in

thermodynamic equilibrium.

Figure 1.1 An example of a semiconductor superlative.
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1.2 High Temperature Superconductivity

The complexity of high temperature superconductivity brings together expertise from

materials scientists, physicists and chemists, experimentalists and theorists to understand,

demonstrate, and interpret these phenomena. Much of the research in

high-Τc superconductivity has generated other areas of research where complex materials

play an important role. The materials could consist of magnetism in the manganese,

complex oxides, and two and one-dimensional magnets. Studies of superconductors

seems to indicate that the higher the T^ the more complex the material. There has been a

considerable effort to find universal trends and correlations amongst physical quantities

(superfluid density, conductivity, and the critical temperature) as a clue to the origin of

the superconductivity. One of the earliest patterns that emerged was the linear scaling of

the superfluity density with the superconducting transition temperature, which marks the

onset of phase coherence. However, it fails to describe attimally dated (where C c  is a

maximum) or overrated materials [3].

Theoretical approaches face challenges in identifying a clear avenue for

interpreting empirical studies in which material parameters and praterties are correlated

with superconducting praterties [4]. Comparisons of theoretical ideas, which rely only on

artificially engineered layered superlattices, will be explored in this study.

The discovery of new superconducting high-Tc cuprates in 1986 by Bednorz and

Mueller has played an important role in the advancement of the field of superconductivity

research since its inception [5-8]. In MgB 2 superconductors, it was discovered that an in-

plane boron phonon mode, that modulates lattice constants and angles within the

honeycomb lattice, is responsible for coupling to the conduction electrons and is
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the driving force for superconductivity [9]. The modulation of the bond lengths by

phonon modes may create distortions in the Wigner lattice that is formed in superlattices

after tunneling, thus creating a potential distribution, which may be the mechanism for

super current at high temperatures. Studies of novel quantum phases in an unexplored

regime of system dimensions and parameters, and nanoscale high-temperature

superconducting structures will allow exploration of fundamental mechanisms with

unprecedented insight [10].  High-temperature superconductivity in the nanometer scale

from the perspective of experiments, theory, and simulation are currently being

explored. It is the nanoscale of superconductivity that is the main focus of this study.

Despite the large number of studies and extensive research conducted since the

discovery of high-Tc superconductivity in the 1980's, the numerous theories and

formulations that have been pratosed over the years have not been satisfactory in

explaining high temperature superconductivity.

A more recent formulation by Harshman, which is an unpublished theoretical

work in progress, considers the attimal structure for superconductivity as having

alternating layers of hole-carrying and electron-carrying sheets. The Harshman and Mills

[11] formulation for the presence of superconductivity is defined by the parameter

β = P s d2 or β = psd 2, where Ps and Ps are the surface carrier densities and d is the

spacing between hole or electron layers. When β = 1, the condition for maximizing T^

occurs. The condition β = 1 occurs when the mean distance between charge carriers

within the sheets equals the distance d between the sheets. Harshman and Mills [1]

studied the properties of all the experimental data on high-T c superconductors which

allowed for dynamic charge screening and confinement. The superconductors were
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analyzed in terms of layered two-dimensional conducting sheets with Coulomb coupling

between the sheets (Figure 1.2). They recognized that high —Τc materials have (solid line

in Figure 1.2) β = Nsd2 = Psd2 =1.0. It was later noted that alternating carrier layers

within the material may be present separated by a periodic distance d that also

satisfies β = N sd2 = Psd2 =1.0.

Co test this possibility, Harshman and Mills [11] prepared an n-dated GaAs

superlattice sample but no signs of superconductivity were present. The resistance,

however, was dependent on both temperature and external magnetic fields. The magnetic

field affected the slate of the resistance vs. temperature curves as shown in Figure 1.3.

At about 3 K, the resistance was field independent. Anomalous curves existed when the

magnetic intensity was 4 and 6 Tesla. Even though there was no direct evidence of SC, a

`shadow' of SC was evident in the fact that magnetic fields affect the resistance.

Harshman [12] hypothesized that if a material is both p-dated and n-dated, the

formation of alternating carrier layers may induce SC. The alternating carrier layers may

trap holes and create a hole distribution that could cause super current.

Alternating layers of hole-carrying and electron-carrying sheets can be described

as a Wigner lattice. The lattice is one in which charges on lattice sites interact via a

Coulomb interaction in a uniform background of atposite charge, such that there is

overall charge neutrality. A Wigner crystalline form for electrons may appear at low

electronic densities [13] and it may be energetically feasible for the stationary ions to

form a distorted periodic lattice. A distortion creates potential wells in which electrons

are trapped in and form a Wigner electron crystal. Together, the periodic bunching of the

positive ions and the trapped electrons form a periodic charge density variation. This and
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holes trapped by them. Holes create vacancies and high-Τ superconductivity occurs

thesis postulates that the periodic potential is the result of a coupling between excitons

when the number of vacancies exceeds a certain threshold. If a superlattice nanostructure

satisfies the criteria for the Harshman and Mills formulation for attimum

superconductivity defined by the parameter β =1, then the structure is essentially a 3-D

Wigner lattice in electrostatic equilibrium. The Wigner lattice forms at carrier densities

that are attimized for superconductivity.

Figure 1.2 The 2-D surface density vs. inverse square separation. The circles represent
layered materials that might exhibit HAS. Solid circles have unambiguous geometries and
attimized parameters; aten circles have ambiguous geometries or insufficient data. (from
Figure 10 in Reference 11).

The kinetic energy of the electrons in a Wigner lattice in the low-density limit

becomes negligible and the charges arrange themselves resulting in the minimization of

the electrostatic energy. The presence of elastic and magnetic effects in real

compounds can strongly modify the predicted ordering pattern and the ratio of intraplanar
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Coulombic interactions to kinetic energy [14]. Covalent bonding in a 2-D well

confinement gives electrons fewer ways of avoiding each other. Strongly interacting

electrons tend to maximize their relative distance and minimize their electron energy

configuration by forming crystals.

The feasibility of constructing a semiconductor superlattice that obeys the

Harshman formulation for superconductivity is examined in this study. Ongoing research

in electron-hole pair condensation and the formation of "ghost" hole layers and the

consequent coupling in relation to the Harshman formulation, will be discussed [15].

Electron-hole pair condensation, in addition to the strong Coulombic coupling of carrier

sheets, may be a contrary factor in achieving equal carrier layers in a superlattice.

"Ghost" holes may be the holes trapped by excitons discussed in a later section.

Figure 1.3 Effect of magnetic field on resistance of a GaAs electron superlattice.
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1.3 Computer Modeling of Superlattice Nanostructures

In this study, a series of computer simulations were performed to determine the structure

and praterties of a superlattice when β for pairs of hole/electron wells is between 0.5

and 2. The program employed in the superlattice simulations is a 1-D FORTRAN

program develated by Dr. Greg Snider of Notre Dame University [ 16]. Later, a C version

was employed that increased the number of mesh points by two orders of magnitude, thus

reducing the occurrence of nonconvergence. Computer simulations are based on an

iterative process using Schrbdinger-Poisson solvers in which an initial wave function is

estimated and the wave function is updated for each cycle (Figure 1.4) until convergence

is achieved. The final resulting wave function is utilized to calculate the charge

distribution.

The program uses a method of finite differences [ 17] in one-dimension to create

profiles of semiconductor structures for temperatures in the range of 4-300 K.

Schrbdinger-Poisson (S-P) solvers can be employed for cryogenic temperatures. The

drawback is that using the S-P solvers for simulations below 50 K can cause problems

with convergence. At what temperatures the S-P solvers attion could be discarded is

determined later in this section.

The program calculates the conduction and valence bands and the hole and

electron concentrations. Dopant ionization is included for both shallow and deep level

datants. Current flow is not calculated and hence the structure can be simulated only in

thermal equilibrium. Three possible boundary conditions can de defined for the surface

and the substrate: Schottky barrier, Ohmic contact and slope = 0.

A Schottky barrier is defined at the surface or substrate where the default
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barrier height is the barrier of the adjacent semiconductor with the attion of

specifying an applied bias. The Ohmic specifier sets the difference of the conduction and

Fermi energy levels (Εc —EF) at the boundary to the value required for charge neutrality

at the boundary. Slate = 0 sets the slate of the bands equal to zero at the boundary. If a

Schottky barrier is used, the program can simulate the effect of an applied bias, which

does not cause significant current flow. One can assign different Fermi levels to layers in

the biased structure as a way of simulating structures under bias. This can be done only if

the current flow is small enough to be ignored. If an Ohmic contact boundary condition is

specified, the applied bias must match the Fermi level in the adjacent layer. The slate = 0

boundary condition is used when only a certain region of interest is to be simulated.

Figure 1.4 Flowchart of the Snider computer program.
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For the superlattices used in the simulations, one can expect significant band

bending if the dating is in a wider bandgap material. The band bending is tied to charge

density in the wells, and one affects the other. The band bending will also affect charge

transfer between wells. 1 D Poisson calculates the band diagram based on dating and

boundary conditions. Thus it inherently calculates the band bending.

Poisson's Equation relates the electrostatic potential to the charge distribution, but

is useful by itself only with explicit knowledge of the charge distribution. When

augmented by assumptions relating the charge density to the electrostatic potential, a

screening equation can be derived. Universal electrostatic behavior in such situations is

that the charges tend to move so as to reduce the magnitude of the electric field.

Calculating the charge density from the bulk density of states and with the assumption of

a local quasi-equilibrium described by Boltzmann statistics leads to Debye screening.

Using the bulk density of states with Fermi-Dirac statistics, the result is Thomas-Fermi

screening. Without utilizing the bulk density of states, but using the bound states from the

Schrδdinger Equation, and weighing them by a Fermi-Dirac distribution, results in a

Hartree screening. Hartree calculation is the same as a "Schrbdinger-Poisson solver". In

a modulation-dated structure, this sort of calculation is useful when applied in the

epitaxial growth direction for determining the surface carrier density. It is not usefully

applied in the transport direction because the unbounded scattering solutions of the

Schr idinger Equation have an "anti-screening" behavior, which prevents convergence to

any meaningful results.

Modeling of heterostructures has indicated that one usually has to go to cryogenic

temperatures in order to see a significant difference in the results. The plots at 10 K are

shown in Figure 1.5. The figures show comparisons of Hartree (left) and Thomas-Fermi
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(right) screening in an undated AlGaAs-GaAs heterostructure at a temperature of 10 K.

The green lines show the energy and approximate spatial distribution of the quantized

states. The boundary between the A1GaAs and GaAs is the vertical black line. To the left

is GaAs and to the right is AlGaAs. The charge distribution due to the evanescent tails of

the wave functions is apparent in the Hartree case. In the plots, note that the potential

reaches a deeper minimum in the Hartree case, because the lowest electron state lies at an

energy well above the bottom of the potential well. Since there is no significant

difference between the Hartree and Thomas-Fermi screening for T > 10 K, one can "turn

off' the S-P attion down to just above T=10 K if convergence problems occur.

Figure 1.5 Hartree and Thomas-Fermi plots of electron energy and density of carrier
states.



CHAPTER 2

THEORY

2.1 BCS Theory of Superconductivity

Bardeen-Coater-Schrieffer (BCS) theory is a comprehensive theory that explains the

behavior of superconducting materials. The theory successfully explains the ability of

certain metals at low temperatures to conduct electricity without resistance. BCS theory

views superconductivity as a macroscatic quantum mechanical effect. It pratoses that

electrons with atposite spin can become paired; creating two bound electrons called

Coater pairs. BCS theory states that the binding of Coater pairs is a result of the

electron-phonon interaction, which causes an attraction between electrons, thus

overcoming the Coulomb repulsion. During the electron-phonon interaction, phonon

energy can be gained or lost by the electron. Since the difference of the incident and

scattered wave vectors of the electrons are not equal to a reciprocal lattice vector, the

scattering amplitude is less than maximum thus increasing the degree of forward

supercurrent. The electron-phonon interaction temporarily binds electrons in a lattice and

supplies a means by which the energy required to separate the Coater pairs into their

individual electrons can be measured experimentally.

The Coater pairs are formed when an electron moving through a conductor

causes a slight increase in concentration of positive charges in the lattice around it; this

increase in turn can attract another electron. In effect, the two electrons are then held

together with a certain binding energy. If this binding energy is higher than the energy

provided from oscillating atoms in the conductor, then the electron pair will stick

together, thus not experiencing resistance. Since the electrons are bound into Cooper

12
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pairs, a finite amount of energy is needed to break these apart into two independent

electrons indicating an energy gap which separates the Coater electron pairs after

superconductivity vanishes. This energy gap is highest at low temperatures but

vanishes at the transition temperature when superconductivity ceases to exist.

Conventional superconductors are materials that display superconductivity as

described by the BCS theory for its extensions. Mercury was the first conventional

superconductor and was discovered at the beginning of the last century. Most

conventional superconductors are single elements or binary alloys. Their critical

temperatures are low but some binary alloys have a critical temperature up to 23 K [18].

2.2 The Harshman Formulation and Conditions for Superconductivity

The high temperature superconductors were first discovered in 1986 by Bednorz and

Mueller [ 19] and continue to pose very fundamental questions for Condensed Matter

physicists to address. Seemingly, they are not likely candidates for superconductors, since

basically they are insulators. However, by adding charge carriers by chemically dating

them, they become superconductors with transition temperatures of up to 135 K, which is

well below room temperature but is very high for a quantum mechanical state to

dominate the praterties.

The Hubbard model can be employed as an approximation to describe the

transition between conducting and insulating systems. The Hubbard Model is a

commonly used approximation for the behavior of electrons on a lattice that assumes an

onsite-only repulsive interaction and allows hatping between adjacent sites.

Investigations into the Hubbard model arise from the catper-dioxide planes including

the oxygen atoms, and find important departures from the behavior of the Hubbard
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model. In the low dating limit, a quantum paramagnet is stabilized, and not a

ferromagnet. The Hubbard model can explain asymmetry in the electron- and hole-dated

phases, since the electron dated materials are necessarily described by the Hubbard

model [20].

Α fundamental mechanism for superconductivity arises from the interaction of a

hole with the outer electrons in atoms with nearly filled shells. Superconductivity results

from the pairing of hole carriers, and is driven by the fact that paired holes can propagate

more easily (have a smaller effective mass) than single holes with a lower kinetic energy.

Single electrons pratagate freely and do not pair. Dynamic Hubbard models describe the

different physical phenomenon of electron and hole carriers in metals. The reason for the

increased mobility of holes upon pairing is that they 'undress' when they pair, and turn

into electrons. This leads to a new understanding of superconductors which considers a

superconductor as a giant atom and implies that the electron-phonon interaction is not a

factor in HAS superconductivity and the BCS theory is not applicable.

The theory of superconductivity asserts that superconductivity can only occur

when hole carriers exist in the normal state of a metal. The formation of holes is the

key mechanism for superconductivity, since holes resulting from unfilled covalent bonds

do not repel as electrons do. There is a difference between electrons and holes in energy

bands in solids from a many-particle point of view, originating in the electron-electron

interaction and it has fundamental consequences for superconductivity. The difference

between electrons and holes parallels the difference due to electron-electron interactions.

Superconductivity may originate in 'undressing' of carriers [21]. Electrons at the Fermi

surface give rise to high conductivity and normal metallic behavior. Holes at the Fermi
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surface yield poor conductivity and give rise to superconductivity [22].

In order to test for superconductivity when the Coulombic hole-exciton coupling

correlation factor is dominant, it has been suggested to test a 2-dimensional electron gas

produced in a GaAs superlattice. The hole-exciton coupling is a hypothetical mechanism

which occurs when holes are trapped by excitons and may be the source of supercurrent

at high temperatures. Excitons form as a result of alternating carriers layers in a

superlattice.

Figure 2.1 Critical temperature vs. sheet carrier density. The sketch is qualitative and
represents the concept behind experimental findings and pratosals of the Harshman and
Mills analysis of titration experiments.

Harshman and Mills [23] suggested that layered high-Tc superconductors have

alternating sheets of holes and electrons whose net charge must be equal to zero to

preserve charge neutrality. It was deduced, from observations on experimental data, that a

sketch could be used to show the relationship between Tc and β or between Τ and

P. is pratortional to the Fermi Energy E F , in a 2-D system since T d / λL,
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square of λs . Knowing the surface hole density for β = 1.0, the London penetration

depth can be calculated.

In addition to using the results of computer simulations to test the

superconducting hypothesis in superlattices, this thesis will pratose a novel theoretical

understanding of the Harshman Model and how it connects to BCS theory. Α trial

function, containing a new coupling other than the electron-phonon coupling, will be

utilized in the next sections to explain the Harshman sketch in Figure 2.1.

For a layer with a surface charge density N, the average near neighbor distance in

the x and y directions between atoms is 1 / ‚jΖ. If two layers with surface charge density

N are separated by d, then the near neighbor spacing in the x, y, and z directions within

the layers equals d and β = Nd 2 = 1. If alternating layers of carriers are coupled and

separated by d, carriers will redistribute themselves so as to minimize the resultant

electric field on each carrier. This geometry is the structure that is associated with the

Wigner 3-D lattice at temperature Ρ .

In most cases, it is unphysical to assume the existence of strong attractive

interactions which indicates the presence of a weak Coulomb correlation.

Coulombic correlation suggests that a 2-D Wigner lattice must exist in layers within the

semiconductor material. Α 2-dimensional electron gas between layers within a

superlattice is the criterion for the formation of a Wigner lattice. The correlation to HAS

and conventional BCS theory is discussed in the following sections.

The formulation β = 1.0 for maximal T is an observational equation that

suggests that the dominant interaction is a Coulombic interaction, which is in contrast to

the predominant electron-phonon correlation λΕ and Coulombic interaction μ for BCS
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superconductivity. Layers of coupled alternating holes and electrons may contain the

indirect excitons which could capture holes. In BCS theory, the positive charge

distribution is caused by the distortion of the lattice structure by incident electrons. The

positive charge distribution in the Harshman formulation may result from the

accumulation of holes within excitons which in turn causes supercurrent.

Bardeen-Coater-Schrieffer (BCS) theory postulates that the predominant mode of

interaction in a Coater pair is the electron-phonon correlation in which the critical

temperature Tc is obtained from:

Phonons can distort the local crystal lattice and the local band structure. The conducting

electrons are "sensed" by the lattice distortion [24].

However, for high-Tc , the electron-phonon coupling is too weak to explain the

formation of Bosonic states from electron Fermions at high temperatures, but phonon

renormalization cannot be entirely discarded in explaining HAS. Phonon renormalization

is still important since phonons are within the critical energy range in the binding of

Coater pairs via charge fluctuations [25]. Electron-phonon coupling strongly influences

the electron dynamics in high temperature superconductors and should be included in any

microscatic theory of superconductivity [26].

Hypothetically, one could, however, explain the nature of the sketch qualitatively

using conditions and equations derived from low—T BCS theory by replacing the

electron-phonon coupling λΕ with another term λΗE resulting from another mechanism.

The mechanism may involve the trapping of holes by indirect excitons.
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• As β increases (Figure 2.1), more holes may be trapped by indirect excitons. The

source of the trapped holes may be the positive charge distribution caused by the

electron-phonon interaction and the periodic positive charge distribution inherent in a

Wigner lattice. The density of the trapped holes and λ ΗΕ reaches a maximum at β = 1

since the net electrostatic forces on all charges, including the holes within the excitons,

are at a minimum.

According to renormalization group (RG) theory, the Coulomb correlation is

calculated by multiplying the interaction strength by the density of states and the

renormalized value is [27]:

where EF = P s π/ 2 /m*. Using m* = 0 . 1 5χ9. lxi	 kg, h = 6.62Χ10 -34 joules-sec,

the argument in the log component of the equation above is 0.00242 NS/wD. A varying

wD can affect the T^ so phonon modes can influence the critical temperature.

Figure 2.2 3D plot of argument of coulomb correlation vs. surface carrier density and the
Debye frequency.
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Decreasing 0D can promote the value of the critical temperature since μ*

decreases as log[Νsπh/(m*ωD ] increases. In Figure 2.2, log[P sπh/(m*ωD] has an

upward slate that assumes a greater positive value as Ν s increases from

10χ10 10 —100χ1010 carriers cm 2 and as 0D decreases from 100x10 8 —1χ108 sec-1 .

However, from points 1-2 in Figure 2.1, the near neighbor distances decrease as β

increases. Therefore, μ* is an increasing function of β . This would require that 8) D

increases faster than P s. As 0D increases, the first factor in Τ c increases but an

increasing wD in the exponential function of the second factor in Τc would tend to have

a much greater effect in decreasing Τ. When β varies from 0.5 to 2.0 in the Harshman

sketch, the rates of change of λΗΕ , wD and μ* determine how Tc advances.

If the Coulomb correlation μ* is dominant (λ ΗΕ - μ* <0),  then the instantaneous

interaction is repulsive. According to standard RG analysis, when hω υ < kJTc , the weak

coupling estimate of the pairing scale Tc is kJTc hwD exp[-1/(λΗΕ - μ*)]. As P s

increases from point 1 to point 2 on the Harshman sketch, λ Hα and exp[-1/(λΗΕ - μ *)]

may both increase since the indirect excitons, formed as a result of the charges layers, are

capturing more holes and thereby promoting the hole-exciton coupling. A maximal point

for Tc is reached at point 2 when a change in P s results in a reduced Τ. In order for

Tc to be at a maximum at point 2, there are several possible conditions. The

following conditions to be satisfied are the most probable:

ωD (2) > 0D (1), λΗΕ (1) < λΗΕ (2), μ*(1) < μ*(2), dλΗΕ /dβ > dμ* /dβ, dwD /dβ > dPs /dβ .
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The dependence of T on wD can be shown to be: (see Appendix A)

If hωπ < kΒΤςexp[—(1— λΗΕ ) /(λχεμ)] , d log[kJT^ ] / d log[k BωD] - 1.0, then the critical

temperature ΤΤ is a linearly increasing function of w D in the region between

points 1 and 2 on Harshman sketch. When hwD > kBΤΤexp[1/μ*], ΤΤ becomes a

decreasing function of wD in the region between points 2 and 3 on the

Harshman sketch.

According to Harshman formulation, superconductivity exists when β lies

between 0.5 and 2.0. At β = 0.5 (point 1 in Figure 2.1), ΤΤ is at its minimum and near-

neighbor distances of the carriers are at a maximum. At β = 1.0 (point 2 in Figure 2.1),

the electrostatic interactions are at a minimum and the carriers are equally spaced. In

addition, the electrostatic forces on all hole carriers captured by excitons are balanced.

The number of Bosonic pairs and captured holes could now be maximal due to the

alignment of excitonic pairs. When β = 2.0, ΤΤ and near-neighbor distance of the

carriers at a minimum, but now the and their interactions in the x-y plane are at

maximum and again in a state of electrostatic nonequilibrium.

The Harshman model postulates that, in order to exhibit HAS, a superlattice

design must satisfy certain condition according to the model. In designing a functional

GaAs-AIGaAs superlattice, the preferable superlattice structure must have

the following praterties: (1) β is equal to 1 at T = 0 K. (2) The maximum tolerable

electric field ΕΜ in the superlattice is less than limit of Eros = 5χ105 V/cm

and a maximum sheet resistance of R s = 104 Ohms. (3) Ν s and Ps are about equal. (4)
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Lowest sensitivity of Ps and Ps to variations in ND and PΑ (expressed as a % change

in Ps and Νs for a % change in N D and PΑ ). (5) An attimal alloy concentration x in

A1xGa 1_xΑs. In addition, one must consider the electronic structure of the superlattice:

mobile holes and fixed acceptor ions, mobile holes and mobile acceptor ions, mobile

acceptor ions and fixed donor ions. From a more practical aspect, the continuous

scaling down of the feature sizes in superlattice structures leads to an increase in

power dissipation per unit area of the semiconductor chip [28] in which the influence

of size effects on thermal conductivity becomes extremely important for device design

and reliability [29].

At high temperatures, symmetrical charge densities are produced and nearly

between GaAs wells, dx , is determined by the constraint dX = EGS/Eros, where EGS is

the energy gap in the GaAs layer. Poisson's Equation V.E11vD = 4πqP /ε leads to E1r^D,

in	 terms	 of	 the	 ionized	 charge	 layers,	 and	 thus	 leads	 to

According to the Harshman formulation, the feasibility for superconductive

pairing of electron-hole pairs, assumes alternating 2D electron and hole gasses of

the maximum electric field tolerance in a superlattice. Satisfying the criteria β = 1.0

would mean finding the minimum d. Material praterties, primarily the internal

dielectric strength of the undoped Al χGa 1 _χAs spacer layer, impose a practical upper

limit on the built-in electric field Eros. Thus the constraint Ε11vD < Eros, becomes
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induced electric field on the surface of the carrier layers if d x is kept constant.

The superconducting transition temperature can be calculated from the Fermi

energy of the 2D electron gas, EF = πh2Νs /m and Τc = β3Ε / kB , where

β3 =0.267-0.359 and mÉ is the electron effective mass. The variation of

β3 (0.267-0.359) is necessary since the calculated Τc must be consistent with the

formula for the critical temperature as is given at the end of this paragraph. It is assumed

at this point that the expression, above, for the critical temperature can be applied for

alternating carrier layers as well as superconductors with a periodic distance of d. The

maximum critical temperature can now be estimated: Tc = 1. lxi Ο4β/(md2 ) where d is in

Angstroms and me is the effective mass coefficient. If d = 800 Angstroms and if

m = mÉ / m0 = 0.06 , which is the approximate effective mass coefficient for AIGaAs,

then Tc = 1.8-2.4 K. This is a lower Figure than in the cuprates, for example, because a

minimum value of dX is determined by how great a field in the spacer can be

tolerated. Tc is inversely proportional to the inverse square of d. The very magnitude of d
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sets an upper limit on the superconducting transition temperatures. Superconducting

transition	 temperatures	 are	 also	 estimated	 from	 the	 expression

eigenvalues. This T is a generalization to strong coupling (A ~  2 — 3) and is consistent

with experiments on high—Ta superconductors.

The Harshman sketch (Figure 2.1) is qualitative and is based on observational

data and must be consistent with Tc a 1/mς . The sketch itself cannot be taken as

completely accurate since T must be close to zero at points 1 and 3, corresponding to β

= 0.5 and 2.0 respectively. This implies that the effective masses at these points must be

orders of magnitudes greater than at point 2 when β = 1.0. Until

recently, for dated semiconductors, decreases in the layer thickness of the superlattice

has resulted in a small reduction of the effective mass by a few percentage points [31].

Cleaved-edge overgrowth techniques, however, have led to structures with twice the

effective electron mass in two-dimensions [32]. Effective masses in ΥbΑ1 3 can be

shown to be dependent on magnetic fields and disorder, [33] and to what extent

magnetic fields and disorder can promote the critical temperature by reducing the

effective masses of holes and electrons remains uncertain.

The evolution of hole and electron densities may differ given identical

parameters if certain conditions are met (Section 2.3). There may be numerous factors

that contribute to the difference between the formation of holes and electrons. One factor

is that tunneling of holes and electrons differ because they have different effective

masses and mobilities. Another factor is the geometry and design of a superlattice.
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Electrons flowing into the GaAs wells surrounded by n-dated AlGaAs form more

slowly because the accumulating electron buildup within the well restricts further

increases in the free electron density. Electrons flowing out of the GaAs wells

surrounded by p-dated AlGaAs have hole densities that form more rapidly because

the electronic outflow is directed away from the well in two directions and tunnel

throughout the entire superlattice and whose accumulations are not highly localized.

Hole densities evolve differently than electron densities, making it difficult to achieve

equal and alternating carrier densities, one of the criteria of the Harshman formulation.

The ternary value of A1GaAs may adversely affect tunneling during ionization.

The problem may be due to physical mechanisms and/or due to limitations in the Snider

program. As the alloy concentration decreases, the electrostatic energy configuration of

the Al and GaAs ions increases, making the system more disordered. This causes a

"roughness" at the boundary of the A1GaAs/GaAs interface. When ionization energy is

transferred at the Fermi level, the results may be a huge increase in the carrier

concentration. The superlattice structure that is being simulated is very sensitive to the

surface and substrate boundary conditions because it is nearly charge neutral with respect

to the fixed charge. For low x, if electrons form in the first and last well, holes form

in the central wells to balance this negative charge. The wells are too shallow to get

carriers in alternating wells. By contrast, in the x = 0.4 case, the wells are deep enough to

get carriers in alternating wells.

Given two kinds of ions, Al χGaAs I _ χ interacting via Coulomb interactions within

the plane, the problem is to determine how the ions, and hence the carriers, are arranged

on a 2D lattice at different concentrations. The long range Coulomb interaction couples
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all pairs of ions and it is not possible to obtain analytic calculations. Thus, one must

resort to computer simulations.

Despite the difficulties in determining the exact nature of a Wigner

lattice, computer simulations using the Monte Carlo method, together with simulated

annealing, can be used to ascertain the minimum energy configuration for a 2-D

triangular lattice (Figure 2.3), alternating straight chains (Figure 2.4 a) or a zigzag

structure (Figure 2.4 b). At a given alloy concentration x, the structures are chosen

initially at random at a high initial temperature. For a state of lowest energy, x takes

on a value of 0.4 for infinite long chains and a value of 0.5 for a zigzag structure. The

ternary used in the simulations for this study was 0.4. Choosing a ternary greater than 0.4

leads to increased overlapping and offsets of the valence and conduction energy bands.

There are two general classes of nonrandom structures and are symmetric about

the concentration x = 1/2 as shown in Figure 2.4. For x < 1/3, like ions stay apart at

a maximum distance and hence form a dilute triangular lattice at low x. This is effectively

a Wigner lattice and the energetics of the 2D Wigner lattice with a continuum

background for charge neutrality agree very well with simulation results at small x.

According to Harshman's hypothesis, Tc can be increased if there are equal and

alternating layers of electrons and holes. At β = 1, the electrons and holes in a

superlattice are equally spaced in all directions and hence are in a state of minimum

electrostatic equilibrium. A minimum electrostatic energy configuration of Al and GaAs

ions before ionization and for carriers after ionization, are correlated with equal and

alternating carrier layers — one of the criteria of the Harshman model for SC.
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Figure 2.3 The energies for computer simulated noncrystalline structures (solid triangles)
and regular superlattice structures (aten squares) (from Figure 9 in Reference 30). The
charges in the triangular lattice is e and the lattice spacing is a.

Figure 2.4 (a) The lowest energy structure has alternating infinite straight chains of ions
at x = 0.4 (from Figure 7 in Reference 30), (b) Α zigzag structure at x = 0.5 (from Figure
8 in Reference 30).
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2.3 Electron-Hole Formation in Superlattice GaAs-AIGaAs Wells

Consider a GaAs well surrounded by two dated A1GaAs barriers. The n and p densities

in three dimensions can be expressed as follows:

where mAlGaAs' mGaas are the electron effective masses in A1GaAs and GaAs wells,

respectively.

For low and high temperatures, substituting E F above into Equations 2.4 and 2.5,

yields an expression for density of holes and electrons. Factors other than effective

masses influence carrier evolution. For holes, the wavenumber is a factor in the hole

density, whereas for electrons it is not. Hole evolution is also affected by differences



in the inverses of the effectives masses of carriers in the GaAs and A1GaAs wells.

Equations 2.9 and 2.10 are valid in the limit as T approaches 0 (see Appendix B).

The exponential nature of the hole and electron density evolution would result in

a non-linear response of the densities to changes in the dating concentration and layer

widths. Varying dating concentrations and layer thicknesses can change the

effective masses of electrons and holes. Table 3.9 shows that at certain layer widths and

dating concentrations β can change exponentially, indicating the existence of a

threshold in carrier density evolution.
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Since k = nπ / L, where L is the layer thickness, as L increases, k decreases. As

the layer thickness increases or decreases from Equation 2.6, the potential difference

between adjacent wells V(k) may decrease or increase, depending upon the effective

masses change. Thus, more or fewer electrons can tunnel out of the GaAs well. As more

or less electrons tunnel from the GaAs well into the p-dated AlGaAs as a result of the

varying V(k), positive ionic cores are created or disappear. The result causes the drag or

pull on the electrons in the well and thus affecting the effective mass. A small change in

the term 1/mΑ1GaAs —1/m GaAs can greatly affect the density of hole states and thus β

changes. Changing hole density and keeping temperature constant can lead to a change in

the slate of β vs. temperature. Since β is Ρ sd2 , the ratio of sheet hole densities at points

1 and 2 on β vs. T curves, at some specified temperature, is given by β 2 /βι•

The increase in β with increases in donor concentrations can be explained as

follows. When two semiconductor layers are in contact, the occupation probability Ρ for

an electron of energy Ε ί in semiconductor i is Ρ(Ε) = f(Ε 1 ) = 1/[(eχρ(Ε ί —μ)/kΡΙ + 1)

where f(E 1 ) is the Fermi-Dirac distribution function. The density of electron states in

semiconductor i is n 1 . The product of the two is the density of available states.

Let the difference in energy levels of two semiconductors be V, so

Ε2 = Ε1 + V, where Ε 1 and Ε2 are the energies of the electrons in semiconductors 1 and 2

respectively. In semiconductor 2, the rate of tunneling R(Ε 2) into semiconductor

1 is directly pratortional to the number of unoccupied states in semiconductor 1. By

Fermi's Golden Rule, it is R(Ε 2 ) a IΜI 2 [1 — f (Ε 1 )]η 1 (Ε 1 ), where ρ(Ε 1 ) is the density

of available hole states in semiconductor 1 at energy Ε 1 and Μ is the tunneling
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amplitude. The value of ρ(E 1 ) is the product of the density of electron states and the

probability that an electron state is unoccupied and is given by ρ(E 1 )=[1—f(E 1 )]n 1 (E 1 ).

Thus the rate of tunneling from semiconductor 2 into semiconductor 1 as a function of

the electron's energy Ε 1 is R(Ε 2 ) αc IΜI 2 [1— f (E 1 )]n 1 (E 1 ).

The total number of electrons at energy Ε 2 in semiconductor 2 that might tunnel

is n 2 (Ε2 )f (Ε2 ) , where n 2 is the density of electron states in semiconductor 2. The

tunneling of electrons from semiconductor 2 to semiconductor 1 is pratortional to the

product of the density of available holes in semiconductor 1 (ρ(Ε 1 ) = [1 —f(Ε 1 )]n 1 (Ε 1 ))

and the density of electrons in semiconductor 2. Integrating over all possible energies E,

the current from 2 to 1 is:

where K is a constant that depends on junction geometry.



CHAPTER 3

RESULTS OF COMPUTER SIMULATIONS OFSUPERLATIVES

3.1 Sensitivity of the Electron-Hole Superlative to Parametric Changes at Low
Temperatures

This section will examine the sensitivity of the Snider program to test superconductivity

as per the Horseman formulation in a GaAs/A1 χGa1_χAs semiconductor structure at low

temperatures. Simulations will show that the Snider program accurately simulates

changes in physical variables, including the induced electric field and sheet resistance, as

the layer widths and doping concentrations in the superlative are varied. Simulations will

be based on a doped GaAs/A1 χGa1_χAs superlattice structure (Figure 3.1) with GaAs

wells surrounded by alternating doped layers. The computer program will simulate the

formation of alternating sequence of electron- and hole-populated quantum wells in the

GaAs/Αl Ga I _χAs semiconductor structure. A series of superlattice structures meeting

this criterion for superconductivity are studied by self-consistent numerical simulations.

Four different cases in this section were studied in which physical parameters

were varied to show the effect they have on induced electric field, sheet resistance, and

carrier densities. Varying the alloy concentration x in the region x = 0.14-0.29, resulted in

simulations that rarely converged and it was decided that achieving alternating equal

carrier surface densities for these ternary values were not feasible. Attempts to create a

table using modulation doping were not successful since equal alternating carrier layers

were impossible to achieve. The hole effective mass mú used in Snider's data is 0.15

31
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m0 (the electron rest mass), which is the most accurate value measured by cyclotron

resonance for AIGaAs grown epitaxially in the (311) plane [36]. In the following tables

and plots, CGS units are used, energies are in electron volts and layer widths are in

Angstroms.

Table 3.1 Vary T (Case 1)
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The superlattice structure that is being simulated is very sensitive to the surface

and substrate boundary conditions because it is nearly charge neutral with respect to the

fixed charge. Another issue is that the ionization of dopants at very low

temperatures (especially 0 K) is complicated. The x = 0.4 structure is more likely to

have electrons and holes in the wells because the wells are deeper compared to the depth

of the surrounding A1GaAs layers. This effect can be pronounced at 0 K because the

Fermi function is very abrupt. If electrons form in the last well, holes form in the central

wells to balance this negative charge. For x < 0.3, the wells are too shallow to get

both positive and negative carrier distributions in alternating wells. By contrast in the x

= 0.4 case, the wells are deep enough to get positive and negative carriers in alternating

wells.

Figure 3.1 Semiconductor superlattice and carrier formation.

The Snider program has limitations, and has difficulty calculating datant ionization at

low temperatures. If one assumes a single ionization energy in the bandgap for dopants,
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the carriers should freeze out at low temperatures. This alone causes numerical

problems as the abrupt Fermi function leads to large changes in charge

concentration as the Fermi level exceeds the ionization energy. Α single depart energy

ignores the depart energy bands caused by degenerate dating. Particularly at low

temperatures, the program has a hard time converging if it does not have at least one

fixed boundary condition. Schrδdinger's and Poisson's Equations are solved self-

consistently in a region, if one specifies the boundaries of the region, measured from the

surface.

Figure 3.2 Temperature dependence of sheet electron and hole densities calculated for
the modulation doped superlative for alloy concentration of x = 0.4.

In Case 1 (Table 3.1), temperature changes had significant effect on the induced

electric field. The sheet resistance decreased as the temperature rose but only

incrementally. Ionization increased with increasing temperature. Both the surface charge

densities and Fermi energies increased as expected with increased ionization. The sheet



Figure 3.3 Variation of sheet electron and hole densities with concentration of departs
in modulation doped layers of a superlative for alloy concentration of x = 0.4.

In Case 2 (Table 3.2), the layer widths were held constant as was x and T, while

NA, ND and β were varied. Progressively increasing the doping concentration by
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3.48% resulted in a large decrease in the sheet resistance and a large increase in β ,

charge surface densities and the Fermi energy - consistent with theory. As PΑ and ND

increased from 1.2051019 to 1.244χ1 019 atoms/cm 3 (Cable 3.2), the sheet resistance

decreased by 98.4%. Che induced electric field increased by 1% and the ratio ρ / P Dd8

increased by over 5,900%. Che efficiency of charge transfer to the quantum wells are

calculated as ΥΙΕ = nd /PDd8 for the electrons or 11H = pdu  /PDd8 for the holes.

Changes in Ε with respect to changes in doping can be expressed as Δη Η  = βαAP and

ΔΕΗ = CHAP and their plots are shown in Figure 3.3 with C HI = CC = 960 cm 3 .

In Case 3 (Cable 3.5), the width of the doped and spacer layers varied but β , the

width of the well, and x were kept fixed with constant C = 0 K. Since β was held

constant, the charge surface densities and the Fermi energy remained virtually unchanged

as did the conduction and valence profiles (Figure 3.4). As d 8 increased from 1.0 to 5.5

nm, the sheet resistance decreased by 46.7%, the induced electric field increased by

23.4% (Figure 3.5), and the ratio PDd8  decreased by 20.2% (Cable 3.3).

Conduction and valence band edges offsets (Figure 3.4) at d8 = 5.0 and 3.0 nm in

the GaAs wells cross the Fermi level at -58.5 and 6.1 reV, respectively, with no change

in the offsets as d 8 was varied (see Cable 3.5). For Case 3, the change in the induced

electric field increased by 23.4 % as d8 was varied. In contrast, for Case 4, the change in

the induced electric field decreased by 2.4 % as d8 was varied (Cable 3.3). Che larger

electric field increase in Case 3 was the result of the spacer being reduced in width as the

width of the doped layers increased. Decreasing the width of the spacer layers increases

the threshold of the induced field causing fewer carriers to be transferred into the GaAs
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wells. The result is an induced electric field having a higher concentration outside the

GaAs wells. The conduction and valence band edges in the GaAs wells remain

constant for incremental increases in d 8 . Figure 3.5 shows the built-in electric field

E(y) as a function of depth coordinate y for the same simulation results that

Table 3.2 Vary Doping Concentration, Beta (Case 2)
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produced Figure 3.4. The magnitude of the field is maximum and nearly constant in the

spacer layers. The electric field in the GaAs wells increases by 22.8 mV/cm per nm

incremental increase in d8 .

Table 3.3 Effect of D-Delta on Sheet Resistance, Maximum Electric Field and Charge
Transfer Efficiency

In Case 4 (Table 3.6), the width of the dated and well layers were varied while

the spacer was held constant at 240 Angstroms. The charge surface densities, β and

the Fermi energy remained virtually unchanged. As the width of the well increased, d 8

had to be decreased in order to maintain a constant d. Since M x  remained

constant, the threshold field within the spacers also remained constant. As d 8 increased

from 10 to 55 Angstroms, the sheet resistance decreased by 51.7%, the induced electric
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field decreased by 2.4%, and the ratio p/ NDd8 increased by over 200% (see Table 3.3).

Table 3.5 Vary D-Delta, D-Spacer (Case 3)
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Figure 3.4 (a) Edges of conduction band, (b) Edges of valence band. For modulation
doped n-p-n superlative of alloy composition x = 0.4 as functions of depth y (Case 3).
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Conduction and valence band edges offsets (Figure 3.6) at d8 = 5.0 and 3.0 nm

in the GaAs wells cross the Fermi level at -234, -59, and 6.6, 6.6 meV, respectively,

with only the conduction band offset increased as d B was varied. The conduction band

edge in the GaAs wells increases by 87.5 meV per nm incremental increase in d B . The

valence band edge in the GaAs wells remained constant as dB varied. Figure 3.7

shows the built-in electric field Ely) as a function of depth coordinate y for the same

simulation that resulted in Figure 3.5. The magnitude of the field is maximum and

nearly constant in the spacer layers owing to the unchanged threshold field. The electric

field in the well in the GaAs wells increases by 6.6 mV/cm per nm incremental increase

in dB .

Figure 3.5 Variation with depth y of the built-in electric field of a modulation doped n-
p-n superlative of alloy composition x = 0.4 (Case 3).
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Figure 3.6 (a) Edges of conduction band, (b) Edges of valence band. For modulation
doped n-p-n superlative of alloy composition x = 0.4 as functions of depth y (Case 4).



Figure 3.7 Variation with depth y of the built-in electric field of a modulation dated n-p-
n superlative of alloy composition x = 0.4 (Case 4).

The logical self consistency of Cases 3 and 4 are evident in the plots in Figures

3.8 and 3.9. In Figure 3.8, for both cases, P Ad δ is plotted against d5 (the respective C 's

are held constant). For Case 3, as d B  increases, Mx decreases in order to keep d constant.

As Mx decreases, As and As  remains unchanged as C is held constant (C = 1.71).

Since the spacer width is decreasing, the threshold electric field increases so fewer

electrons or holes are spilling into the GaAs wells. In order to keep C constant, A DdB

must increase. Thus, p/d δA Α decease as dδ increases.

For Case 4, as d6  increases, dB  remains constant so the number of holes spilling

over into the GaAs wells also remains constant but the width of the GaAs wells

decreases. As dδ increases in Case 4, the sheet density As remains the same since C is

held constant (C = 2.4 ). Since d '1, is decreasing, p must increase in order to keep Ρ
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constant and PΑdδ decreases. Thus, efficiency of charge transfer p/P Αdδ increases.

This is consistent with the plot in Figure 3.9 where p/ΝΑdδ increases as dδ increases.

Table 3.6 Vary D-Delta, D-Wel (Case 4)
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This section has underlined the possibility of forming superconducting electron-

hole superlattice in modulationooped GaAs/AIχGaI_χAs heterostructures by a self-

consistent numerical solution of the Schrδdinger and Poisson Equations. These

superlattice emulate the electronic structure of high—Tc superconductors

for C = Nd2 =1, where N is the sheet carrier density in the layers and d is the superlative

period. Results are based on a maximum built-in electrostatic field of 500 kVcm  1 ,

which dictates a minimum superlative period of d = 80 nm. The corresponding sheet

carrier density of electrons and holes is N = 1.56 x 10 10 cm 2 which is five times larger

than the minimum sheet density required for metallic superconductivity Based on

a strong-coupling electronic model of superconductivity, a superconductor with a

transition temperature of 2 K will result from such an electron-hole superlattice [37].

Figure 3.8 Plots of acceptor sheet density vs. delta.



Figure 3.9 Plots of charge transfer efficiency vs. d-delta.
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3.2 The Effect of Donor Concentrations and Layer Thickness
on the Beta vs. T Plot

Hundreds of computer simulations, using the Snider program, were performed to

determine the effects of layer thickness and donor concentration on C . The basic structure

of the uniform superlative is shown in Figure 3.1. The thickness of the layers is denoted

by L. In order for the carriers to be bound in the wells, quantum confinement must be

assured by having the conduction levels in the layers adjacent to the wells at a higher

level. This can be done by increasing the alloy concentration of AlGaAs as shown in

Figure 3.10.

Figure 3.10 Quantum confinement in GaAs wells.

During tunneling, charges are transferred from p-doped layers to pooped layers.

At equilibrium, the carriers are distributed in the GaAs wells with lesser concentrations

elsewhere as indicated in the figure above. The thickness of the capping layers is taken to

be sufficiently large such that the amplitudes of the bound-state wavefunction at the

surface and substrate are negligibly small, which is possible because the proposed

symmetric device structure has zero bias and zero net charge. Capping layers of d o = 10

nm are found to be of sufficient thickness to allow one to impose zero wavefunction

slate as the boundary condition. The results of the first set of simulations confirmed the
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underlying theory in Section 2.3 and are summarized in Table 3.7 with the corresponding

plots in Figures 3.11 and 3.12. In Table 3.7, N is of the order of 1019 atoms-cm3  3 and

Τ  is in Kelvin.

The curves for L = 50 A, L = 100 A, and L = 125 A show a progressive

increase in both the slope and relative amplitude of the C vs. Τ plots which are

influenced by four factors. Firstly, increasing L will automatically increase C since

d is also increased, if the carrier sheet density remains fixed.. Secondly, increasing L

will decrease the wave number k since it is inversely pratortional to L. As k decreases,

the difference of the energy levels of the A1GaAs and GaAs wells decreases so more

electrons are tunneling out of the GaAs well. Thirdly, increased layer widths also

increase the amount of interlunar charge transfer. Fourthly, the exponential nature of the

electron/hole formation. One of the independent variables of the hole density function is

the difference of the inverses of the effective masses of electrons within and outside the

GaAs wells. As k decreases, more electrons tunnel. The resultant formation of positive

and negative ions can push or pull electrons in their respective wells, thus affecting the

electron's effective mass since electrons have to drag the ionic cores around with them or
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be pulled along by them. From Equations 2.9 and 2.10, even if 1/mΑ1Gλs — 1/mοαλ,

increases by a small amount, the free hole and electron densities and the slate of the C

vs. T plot can increase significantly.

The creation of carrier densities is also influenced by donor concentrations. The

rate at which electrons go from one well to another is dependent on the availability of

hole states in one well and the availability of electron states in the other. Increased donor

concentrations and layer thickness affect the carrier sheet densities and hence the C vs. T

slope in Figures 3.11 and 3.12.

The mechanism of populating the quantum wells with electron and hole carriers

from adjacent dating layers is one of balancing Fermi energies and interlunar Coulomb

interaction. The interlunar Coulomb interaction, V = e 2 /(Ed') (d' is the near-neighbor

distance in the x, y, or z direction), must have a proper magnitude relative to the 2D

Fermi energy. If V is too large, maintaining a separation of the interlunar layers would

be difficult since they would behave as if they belonged to a single plane. If V is too

small, the coupling of the alternating planes will be too weak to yield bound states. If one

wants to achieve a greater critical temperature by decreasing the layer thickness L from

100 to 10 Angstroms in order to maintain the same electric field, one would have to

increase the donor concentration by a factor of 10, assuming complete ionization of the

donor atoms.

Since one is dealing with lowoimensional superlative structures, the sheet

density of a layer and the areal density would be numerically equal. The sheet densities

do not change since Ρ pL . For L = 10 Angstroms, p is 10 times greater than it was

when L = 100 Angstroms, but L decreases by a factor of 1/10 50 Ps remains constant.
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Now C decreases by a factor of (80/800)2 = 0.01, which partially explains the

large decrease in the slope of C vs. T when L = 50 Angstroms was used.

Figure 3.11 Effect of layer thickness on beta.

Co guide in the design of a better superlative, the Table below can be used as a

"rule of thumb" and also in understanding the "seesaw" relationship between n and p. In

a semiconductor, Poisson's Equations can be expressed as

óE / 8x = (p — n + PDT - Ν^) / ε0 . In the absence of an external electric field where the

material is only cooped n = p + PDT - Ν^ . In lowoimensional semiconductors, tunneling

induces spatially varying electric field and the gradient so the left side of the above

equation is not zero.

Charge transfer from the snooped and cooped AIGaAs and unmated GaAs wells

are very different, complex and occur in both the +z and — z directions and are

exponentially dependent on the width of barriers. Electrons from the GaAs wells can
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tunnel more easily into the adjacent cooped AlGaAs wells than can electrons from

ionized notated AlGaAs tunnel inward into the GaAs wells. Electrons from the n-

doped AlGaAs flow inward into the GaAs wells but the accumulated electrons in the well

can act as a "screen" to prevent further electron accumulation. Electrons from the n-

doped AlGaAs tunneling may from the GaAs wells are attracted by boated AlGaAs

layers which further retard the accumulation of electrons in the GaAs wells. Electrons

Figure 3.12 Effect of donor concentration on beta, L = 50 Angstroms.

Table 3.8 Relationships Between the Electric Field and the Sheet Resistance as the Layer
Thickness and Doping Concentrations are Varied
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tunneling away from the GaAs wells, surrounded by boated AlGaAs layers, are not

immediately repelled by negative charge distributions.

Holes from the cooped A!GaAs layers flow inward into the GaAs wells but

accumulated holes in the well can act as a "screen" to prevent further hole accumulation.

Holes tunneling away from the GaAs wells, surrounded by snooped AlGaAs layers, are

not immediately repelled by positive charge distributions. Holes from the cooped

AlGaAs tunneling away from the GaAs wells are attracted by snooped AlGaAs layers

which further retard the accumulation of holes in the GaAs wells.
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3.3 Superlatives With Uniform Spacing

Computer simulations were performed using the design in Figure 3.1 and the C vs. B plot

is shown in Figure 3.13. The results did not satisfy all the conditions of the Horseman

formulation. Sheet resistance was about 1000 Ohms. Throughout the 95 % + of the

superlative, the maximum electric field of 105 V/cm was not exceeded. Simulations were

performed with T = 5 K and B = 10 K, using SAP solvers. For T = 50 K, SAPS solvers

were not used because of convergence problems. There were unequal hole and electron

surface densities but charge neutrality was achieved. Toe = 35.0 K was determined by

interpolation since some simulations between 10 K and 50 K did not converge.

Bound states occur when the carriers are confined to their respective layers. Since

the momentum of the carriers are well defined, the uncertainty in their position means

that the carriers could be found anywhere in the superlative. The wave functions for a

specific output in the computer program are merely cartoon snapshots of the

wavefunctions for the carriers within the superlative at a particular time corresponding to

the average geometric arrangement of carriers in the superlative.
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Case 2 was similar to Case 1 except the doping concentration was reduced within

the superlative. The graph in Figure 3.14 shows that the temperature is 3.7 K when C is

equal to one, which is well below the critical temperature C c = 180-240 K. Lowering the

doping concentration within the lattice reduced Bo by over 31 degrees K. There were

unequal hole and electron surface densities but charge neutrality was achieved. The

induced field never exceeded the maximum tolerance level. In order to promote B oa , the

slate of C vs. T would have to be decreased.
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Bβ =3.7Κ, B = 180-240Κ
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Figure 3.14 Beta vs. B plot (Case 2)

Case 3:
0

d = 200A100 A, uniform layer thickness
Vary doping concentration

The third case had six subcases with varying layer widths and varying dating

concentration. The effects of the varying layer widths and varying doping concentrations

on the C profile are shown in Table 3.9. N is of the order of 10 19 atoms—cm -3 and T^

is in Kelvin. None of the six subcases yielded equal hole and electron layers and the

criteria TB =Ρ were never satisfied. Calculating B  with a strong coupling of

Λ 2-3, yielded a high range of Cc of 28.8-38.4 Κ for L = 25 Angstroms to a

lower range of 7.2A9.6 Κ for L = 125 Angstroms. The exponential nature of

charge density in the wells as a function of layer thickness and doping concentration

is evident from the table below. Keeping the dating concentration constant and

varying the layer thickness L from 25-100 Angstroms increased C by an two
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orders of magnitude - indicating a possible threshold in the evolution of sheet

carrier densities. An increase of C by almost two orders of magnitude was also evident

when L was kept constant at 50 Angstroms and the dating concentration was varied

from 0.44723-2.0 x10 19 atoms-cm-3 .

Table 3.9 Effect of Donor and Acceptor Concentration N and Layer Width on Beta (Case
3)
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For Case 4, a temperature of 6 K (Figure 3.15) was achieved for equal alternating

hole and electron layers of equal sheet densities with C = 1. The sheet resistance was

below the maximum tolerance but the induced electric field exceeded the maximum

tolerance by 33%. The maximal critical temperature for the design is 180A240 K, which is

well above 6 K. The value of d for Case 4 was the same as for Case 2 (d = 400

Angstroms) but the temperature for C equal to 1.0 was about an order of a magnitude

lower. The doping concentration was also much less in Case 4 than they were in Case 2.

Satisfying one of the requirements of the Horseman formulation, i.e., equal and
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alternating carrier layers, resulted in the lowering of Tβ to a few degrees above absolute

zero, an order of magnitude less than in the previous case.

The problem of maintaining equal carrier layers is due to the interlunar Coulomb

interaction. If V is too large, maintaining a separation of the interlunar layers would be

difficult since they would behave as if they belonged to a single plane. If V is too small,

the coupling of the alternating planes will be too weak to yield bound states. Materials

with large dielectric constants can tolerate larger internal fields before breaking down

and would also increase the interlunar breakdown voltage. Choosing a

semiconductor material that has a larger dielectric constant than AlGaAs and GaAs could

at least theoretically increase the critical temperature.
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CHAPTER 4

RECENT DEVELOPMENTS IN HIGH TEMPERATURE
SUPERCONDUCTIVITY

4.1 Experimental and Theoretical Developments

The existence of new superconductors has proven impossible to predict from first

principles and their discovery has been largely empirical and intuitive. New systems can

be found in either bulk methods or thin film materials and the search for new materials

has always been, and remains, an important area of research in the field of

superconductivity. Evidence exists that superconductivity is a bulk praterty [38].

At the Physics Department at HeriotAWatt in Edinburgh Scotland, researchers are

presently working on a microscopic theory of high-temperature superconductivity that

incorporates the findings of angle-resolved photo-emission spectroscaty in the curates.

The key feature of the approach is the anisotraty in the screened Coulomb repulsion and

the plasmon-mediated attraction together with an isotropic electronAphonon interaction.

HighAtemperature copper oxide superconductors exhibit many other properties

apparently incompatible with conventional metal physics. The materials compel

researchers to develop new experimental techniques and theoretical concepts, which can

enhance the understanding of interacting electrons in metals [39].

Exciting results, such as critical-temperature dependence on concentration of

departs with a value of around 100 K for optimal doping and a weak isotate effect, have

emerged. To extend the model, researches are investigating lattice excitations caused by

charge transfer fluctuations in the catper oxide planes. These give rise to solitonAlike

waves which propagate along the atomic chains. They can carry charge and pair forming

60
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bound states when the electrons or holes have atposite spins.

The fact that some materials show a magnetic effect at room temperature,

typical of superconductivity, strongly suggests that a "shadow" of the superconducting

state (formation of Bosons and Cooper pairs) exists even when the material appears

normal and may give clues about the underlying causes of the HAAS phenomenon. The

materials become superconducting only at much lower temperatures. One model

proposes that pairing occurs only in narrow stripes, currents flowing over the surface of

Type-2 semiconductors, while resistance-free electric current is blocked by intervening

stripes of magnetism. Another "shadow" would be the observation that notated

superlatives show no signs of superconductivity but show a resistance that is a function

of temperature and magnetic intensity.

A research team cooled a sample of Bi-2212 to below the transition temperature

and found that the light reflected from it shifted towards higher frequencies and away

from the infrared region of the spectrum. This indicates that the material absorbs more

infrared light when it is in its superconducting state. Also indicated is that that the

electrons in Bi-2212 pair up because they have the lowest kinetic energy in this

arrangement. This could lead to a stable superconducting state even if the electrostatic

repulsion between two electrons tends to push them apart. If the shift of `spectral weight'

occurs in all high-temperature superconductors, it would prove that the BCC mechanism

is not the only way to achieve superconductivity [40].

Signs of Cc enhancement can occur when the weight ratios of alternating

CuO2 planes were increased to create new Sn-based superconducting compounds. The

only limitation to planar weight-tilting appears to be that it must be limited to either
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the copper-oxide	 planes or the	 insulating layers. Attempting both in the same

molecule was found to depress Ρ. The new material produced a Messier transition near

104 K, and a drop to zero resistance at 101 K - more than a 30 degree improvement over

the prototype [41].

The presence of a strong electron correlation in cuprates has been demonstrated

by the existence of the insulating state of the undated curates. The transfer of spectral

weights from high to low energies, with dating. and the small electron-phonon coupling

can be deduced from transport measurements. Numerous models have adopted the strong

electron correlation manifested by spin fluctuations as the mechanism for high

temperature superconductivity.

The challenge of solving the puzzle of HAS has led to great advances in

experimental techniques. Using the high resolution of angle resolved photoemission,

instruments can create detailed images of electron energy distributions. Scanning

tunneling electron microscopes have been used to study charge ripples around impurities

in which wavelength and frequency variations are determined with great accuracy and

consistency with theoretical predictions [42].

A s-wave is a form of electron pairing in which the electrons travel together in

orbits resembling a four-leaf clover. The s-wave wave function helps theoreticians

describe and predict electron behavior of Cooper pairs. The s-wave models have gained

substantial support recently over wave pairing as the mechanism by which highs-

temperatures superconductivity might be explained. While phase-sensitive experiments

clearly show that the superconducting order parameter has a dissymmetry, suggesting

that the prominent role of strong electron correlation in cuprates, renormalization of the
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electron-phonon interaction and the residual Coulomb repulsion were later pratosed to be

able to give rise to a d-wave as well.

Che electron-phonon interaction alone cannot account consistently for the

high-CΤ and the many anomalous normal-state properties. However, as noted in this

thesis, an electron-phonon interaction, with a combined Coulomb effect of strong

electron correlation and interaction, may be the cause. It has been proposed that a large

electron-phonon interaction may be predominantly responsible for the ΤΤ and that such

an effect, renormalized by the strong electron correlation, can account for the unusual

normal and superconducting-state praterties observed.

Since 1986, remarkable progress in the areas of basic research and technological

applications has been made on the high-CΤ cuprate superconductors. Using

polycrystalline and single crystal bulk and thin film materials has made it possible to

make reliable measurements of the physical properties of these materials and to optimize

superconducting properties. Che next decade of research on the high-CΤ curate

superconductors will yield significant advances toward the development of a theory of

HTS. It is possible that significantly higher values of TC will be found in new cuprate

compounds or other classes of materials.

Chere seems to be no theoretical or experimental reason that C cannot be further

raised to room temperature. Α wide variety of cooperative phenomena have been shown

to exist in compounds with strong electron correlation. Τhe ordering temperatures of

these cooperative phenomena can be more than several hundred degrees Kelvin. Given

the similarities between these compounds and curates, it appears that a superconductor
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with a ΤΤΤ equal to or higher than room temperature, is not an impossibility. The limit

may eventually be the melting point of the compound.

From the standpoint of technological applications, superconductors are used to

make very powerful electromagnets, such as those used in MARI machines and the beams-

sheering magnets used in particle accelerators. Superconductors have also been used to

make digital circuits and microwave filters for mobile phone base stations. Other

possible applications arise where the relative efficiency, size and weight advantages of

devices based on HAAS outweigh the additional costs involved.



CHAPTER 5

THE DETECTION OF SUPERCONDUCTIVITY
USING SYNTHETIC IMAGING

5.1 Synthetic Imaging

5.1.1 General Principles

Sensor array synthetic imaging has numerous applications in many diverse fields of

science and engineering, particularly where the goal is to study pratagating wave fields.

Synthetic imaging can be used in astronomy, radio astronomy, medical diagnosis, radar,

communication, sonar, nonrestrictive testing, seismology, seismic exploration, and the

detection of hidden explosives [43]. The purpose of this section is to determine what kind

of sensor array design can be used to detect superconductivity in a material without

contact with the material and the sensor array. Various array geometries will be explored

to determine which type of array would be feasible for detecting superconductivity.

Sensor arrays should be able to extract range and direction about wave

propagating from a source. The instantaneous response of an interferometer to point

sources can be analyzed by knowing the signal paths. The tools of sensor array synthetic

imaging are primarily in beam formation where the goal is the reduction of side lobes in

the reflectivity profiles. In the real world, different types of wave fields are used in

different applications. Acoustic waves in sonar, mechanical waves in seismic exploration,

electromagnetic waves in radar, and radio astronomy are just a few examples.

In many applications, it may be impossible to determine if a source point is

located in the near or far field. Co understand the errors induced by assuming far field

propagation instead of near field, let εΜ be the angle between the rays emanating from
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the source to the array origin and to the mth sensor as shown in Figure 5.1c. Chis angle

represents the error we want to estimate. Simple applications of the law of sines yields

sin ει = sin Ψιτ  (Αι  / rM  ), with y1 Μ denoting he angle between the vectors x e and Bo  .

When re » XM , the source is located well outside the array's aperture and ε ις —^ 0 as

red-Bo. But if rMis of the order of the radius of the sensor aperture,εΜincreases

dramatically. In the far field (Figure 5.1a), knowing the difference of the angle the wave

front makes with the center of the array and another sensor node, one can determine the

phase difference with respect to the center of the array. Conversely, knowing the phase

difference between the center of the array and a sensor node, one can determine the

direction of the wave front. Using the delay in arrival time of the wave front between a

pair of antennas, a measurement will yield an angle at which the object is located from

the sensor.

However in the near field (Figure 5.1b), the wave front makes a different angle

with the center of the array (α 0 ) and a sensor node (α 1 , α2 ), but the phase difference is 0,

so a determination of the direction of the source point is impossible to determine. Figure

5.2a shows wave fronts are parallel to a plane containing the sensor elements of the array

where the individual wave front arrive at all the sensors on a planar array at the same

time. Che time delay between detection of a wave front at two different sensors is a

function of baseline between the sensors and the angle of incidence (Figure 5.2b) incident

upon a planar arrangement of sensors. The wave front is detected simultaneously at all

sensors indicating the presence of a point source at infinite distance from the detection

array. If the source at infinity is not directly in front of the detector array, the incoming

plane waves intersect the array at an incident angle α. The phase difference of two
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nodes, separated by d, assumes the far-field form kbsinα, where k is the wave number of

the incoming wave. Che time delay between detection of the wave front at one sensor

compared to the other is determined by α and the spacing b between the sensor pair.

For the imaging of a far field object, standard Fourier transforms of sensor pair

correlation pairs gives the reconstructed real image of the object. If the object is not far

away from the sensor nodes, the wave fronts from a point object are not planar but curved

and the synthesized image is distorted. Synthetic imaging is still possible if a sensing
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geometry can be devised so the phase differences between pairs of sensor nodes can be

expressed in the far-field form. Adjusting the placement of the sensors to match the

circular wave fronts, the sensors detect the same wave fronts simultaneously. Distortion

of the planar array to match the curvature of the spherical wave fronts is not possible.

The problem now is to match the curvature of the wave front with the curvature of the

sensor spacing. In order to generate images in the near field of the imaging array,

curvature can be adjusted so that the object is in focus. Using a parabola to match the

curvature may be difficult since the radius of curvature of a parabolic array varies.

Figure 5.2 (a) Far field wave fronts parallel to sensor plane, (b) Far field wave fronts at
an angle to sensor plane.

As shown in Figure 5.3b, by placing the sensors on a curved surface, the

curvature of the wave fronts and sensor array spacing are matched. In this case, an

individual wave front is detected simultaneously by all sensors. This is equivalent to

Figure 5.1a for an object very far away. For a point object placed at some angle α (Figure

5.2b), there will be a phase delay in detection by successive sensors which can be
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related to the angle α in analogy with Figure 1.4b. Let d be the distance between

nodes m and n, AtΜΝ is the time delay between the two nodes, and R ob the radius of

curvature of the spherical array. The angle β is formed by subtending the lines from

sensor nodes to the radiation source at Ο and is given by sin β = d /(R0 + ctMN).

Calculating α using just the baseline and time delay is impossible considering the

geometry in Figure 5.4.

Besides physically moving the sensors, keeping the sensors fixed in a plane and

by adding a phase delay to the individual detector signals during the signal processing of

the detected wave fronts, can accomplish the same. By using the electronic delay method,

an interferometry imaging array could be electronically programmed to image objects at

different distances. This electronic method would probably be easier and cheaper to

implement and allow for real-time imaging of an object.

The basic technique of radio interferometer utilizes signals at two or more points

in space on the surface of an array containing sensor nodes. Calculating the coherence

function of all pairs of sensor nodes can be used to synthesize the image of an object.

Applying the vanCittert-Cernike theorem, if a large number of points in the u-v plane are

generated, the original brightness distribution can be synthesized. Using just a single pair

of sensors for synthetic imaging would be insufficient according to the van Cittert-

Cernike theorem (see Appendix C). Each sensor measures the amplitude and phase of

incoming radiation and pairs of sensors measures one spatial Fourier component of the

incoming wave front.

There are Ν(Ν-1)/2 possible pair combinations along the distance between two

sensors for a system containing Ν sensors. An image is generated from the spatial Fourier
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components of all the different pair combinations. The sharpness of imaging depends on

the coverage of the number of different points generated in the u-v plane. The u and v

points are determined not by absolute coordinates but relative positions of the sensor

nodes. Generation of unique u, v points can be achieved by a completely random

arrangement of sensor nodes. In actuality, each u, v pair has a mirror image in the u-v

plane so the total number of point generated is N(N-1).

Wave fronts in the far field region are flat and the phase difference between two

sensor points 1, 2 can be expressed as kb sin α . Taking the Inverse Fourier Transform

(GIFT) of all the coherence functions in the far field form, for all pairs of sensor nodes, one

can reconstruct an image of an object. Sensor array that receive wave fronts in the near

field can also reconstruct an image of an object if the phase difference between any pair

of nodes can be expressed as a function of the wave number of the incident radiation, the

baseline and an angle of incidence. Points in u-v space can be generated and knowing the

phase differences between the sensor points, a synthetic image of an object can be

created. The are three possible types of sensor array systems that may be used for

reconstructive imaging: parabolic arrays, spherical arrays, and planar arrays.



Figure 5.3 (a) planar array, (b) curved array. In (a), nodal phase differences are zero
with time delays. In (b), nodal phase differences are zero but with no time delays.
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5.1.2 Coherence Function for Sensor Pairs on a Parabolic Array

Che wave fronts from a light source, at distance d from the z-axis in the x-7 plane, arrive

at mints 1. 2 in the x-7 niane (Figure 5.5' and are:

For small angle approximations, the phase difference and hence the coherence function

never assume the far field form so using parabolic arrays for synthetic imaging is not a

possibility.



Figure 5.5 Point source at d producing wave fronts at points 1,2 on the surface of a
parabolic array.
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5.1.3 Coherence Function for Sensor Pairs on a Spherical Array

The wave fronts from a light source, at distance d from the z-axis in the x-z plane, arrive

at points 1, 2 in the x-z plane (Figure 5.6), travel along paths A l and r2 and are given by

Equations 5.1 and 5.2, where



Figure 5.6 Point source at d producing wave fronts at points 1, 2 on the surface of a
spherical array.
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5.1.4 Coherence Function for Sensor Pairs on a Planar Array

The wave fronts from a light source, at distance d from the z-axis in the x-z plane, arrive

at points 1, 2 in the x-z plane (Figure 5.7), and are given by Equations 5.1 and 5.2,
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5.2 Far Field Form of Phase Difference between Two Sensor Points in a Planar
Array

Understanding the u-v plane and the 2D Fourier Transform (FT) and how they relate to

synthetic imaging, is essential in order to introduce the corrections in the near field. It is

imperative to explain how the Van Cittert-Cernike theorem relates the interferometric

correlation of sensor pairs in the imaging array plane to the amplitude of the radiation at

the surface of the object [44]. An incremental source of radiation in localized over an area

AB' on the x' - y ' plane (Figure 5.8). Φ 0 is the surface intensity density at source dS' .

The source area can be self-illuminating or irradiated from another source of radiation in

back or in front of the x' - y ' plane. The planar sensor array is entirely in the x - y plane at

z = Bo  . The contribution to the total electric field from the infinitesimal surface dS' at a

two sensor elements in the sensor array located at (x l ,y l) and (x2, y2) can be expressed

In Equations 5.14 and 5.15, the electric field is described as a spherical wave

whose amplitude is decreasing with propagation distance. The mathematical form of a

spherical wave is a solution to the wave equations derivable from Maxwell's Equations

[45] which assume the form of a spherical wave [46]. The scalar electric fields are

uncorrected and are polarized in the same direction. For interferometric detection, the

correlation of the electric fields at the various pairs of sensors is calculated. It can
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be shown that the mutual coherence function of the electric fields at points (x 1 , x2 ) and

(y1,y2) can be written as:

(, 6Σ (χ , Υ)exp(ik(ri 
—r2))ds

1,2 = J
ς 	 r1r2

(5.17)

where σα  (x', y ') is the time-averaged intensity of the surface at dB' and the integral is

over the surface B of the radiating surface.
♦X

Υ

Figure 5.8 Source dB' irradiating a pair of sensors.

Using the expression in Equation 5.16, the distances to the two sensor elements

can be shown to be:

r^. =Ζο  J1 +(χ'— χ )2 /Ζο2 ±(Υ'— Υ^)Ζ /Ζο2

=Ζο,1+((χ)2-2χ'χ;+(x;)2)/Ζο2+Γ(y )2_2y►y^+(y^)2)/Ζ02 (5.18)

The prime squared terms in the above don't disappear automatically. However, if

x'/ Ζ0 , y '/ Ζ0 , x / Ζ0 , y / Ζ0 « 1, one can apply the Binomial Expansion Theorem

(BET) and the expressions for Al and r2 becomes:

r —Ι  — χ1 2
 — χ22 + Υιέ - ΥΖ  (χ2 - Χ1 )Χ '+ (ΥΑ - Υιέ )Υ'

1 2 —
	2Ζ0 	 Ζ0

(5.19)
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Ε = y '/ Ζ0 , assuming Al - r2 and absorbing both into σα  , the coherence function can be

cast into the form:

where δ = k(x 1 2 - x22 + y1 2 - y2 2 ) / 2Ζ0 = kb / 2Ζ0 is a phase shift resulting from an

object in the near field of the planar imaging array. If this phase shift can be neglected

(δ « 1), Equation 5.20 will then relate the coherence function in the antenna plane to

the brightness distribution of the source. By a Fourier transform, the brightness or

intensity distribution of the source can be reconstructed by measuring the coherence

function for a given arrangement of sensors in the sensor array.

Other forms of the phase (δ = no) are not acceptable since for a given pair of

sensors, another pair of sensors in the same approximate spatial region, will have a phase

that is different from δ = no resulting in a phase factor exp[iδ] not equal to one.

The angular resolution of a planar array can be approximated as θ = λ / b and a

distance Ζ0 away, the lateral spatial resolution is ALA = 0Ζ 0 = λΖο  / b. One can view a

high degree lateral resolution of an object occurring when relatively large parts of the

object can be fitted into one pixel. High resolution occurs when the smallest linear

separable and measurable feature on the imaged surface is achieved, thus distinguishing

two separate points on an object.

. Co maintain a specific lateral spatial resolution at all distances, the maximum

baseline for a planar imaging array can be estimated as

as an estimate of the far field limit for a planar array, the limit can be estimated as
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δ ~ Ζολ / AL (Figure 5.9). In order to keep the spatial resolution constant, as Ζ0

increases, the baseline b must also increase pratortionally. Figure 5.9 shows that

when Ζ 0 increases, δ increases rapidly. Even when the spatial resolution is large, the

requirement δ « 1 is never satisfied, indicating that the synthetic imaging using a planar

array is not possible.

Figure 5.9 Error delta from imaging 1.0, 2.0, 3.0 cm objects, frequency of radiation =
1.0 terahertz.
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5.3 Physical•Structure of Near Fields Incident upon a Spherical Array

Using a spherical imaging array, the curvature of the imaging array is matched to the

curvature of a point source where synthetic imaging may be possible. In Figure 5.10, it

will be assumed that any pair of sensors of the spherical imaging array can measure an

electric field from an element of surface dB' given by Equations 5.14 and 5.15. The

sensors are located at spherical coordinates (Ro'Ø1,Ø1) and (Ro,Ø2'Ø2) and receive radiation

from surface dS'. (R 0 ,Ø,Ø) denotes the distance from the point to the origin, the angle

relative to the z axis and the angle relative to the x axis in the x-y plane, respectively.

The source element dS' lies on the surface of the imaged object and sensors can lie on

the surface of the sphere. The correlation between the two wave fronts at the two sensors

can be calculated using:



If exp iδ can be neglected (δ 0), Equation 5.26 will then relate the coherence

function in the sensor array to the brightness distribution of the source. Assuming that the

azimuth angles of the sensors are not equal, the condition that the δ « 1 implies that kz'

« 1, so that the depth of focus (z') of the imaging array may be comparable to the

wavelength of the far infrared light (3 microns). However, part of the condition for small

angle approximations (x / R0 , y / R 0 , z/ R 0 « 1), insures that the difference of the

cosines of the azimuthal angles are very small. C' can now assume a value much greater

than the wavelength of the light and still satisfy the condition δ 0. Che spherical sensor

nodes used in this thesis are displaced 1 cm to 1 m from the z-axis. For a radius of

curvature of 50 meters, the maximum cosine azimuth angle difference for any pair of

sensors is.0001 so the depth of focus can be of the order of 50 centimeters and still satisfy

δ 0. Arranging the sensors in a circle with the same azimuth angle forces

δ = kz'(cosO -cosO) = 0.
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Che form of the coherence function of a spherical array is the same for that of a

planar array when R 0 —> oo since at very large radii of curvature, the surface of the
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5.4 Synthetic Imaging Using an IFT of a U-V  file

Cwo MACLAB programs simulated an image of a point source (Figure 5.11) using a

spherical and circular geometric arrangement of 25 sensor nodes and the approximate 600

points in the u-v plane (Figures 5.12 and 5.13). Che programs used the 2-D Inverse

Fourier Transform (IFT) of the product of 2rr and the correlation c(i.j) between 2 sensor

points located at r; , r^ to synthesize the intensity distribution on the surface of an

illuminated object (see Appendix C). Che sensor nodes on the circular array can be

considered to lie on the surface of a spherical array with radius of curvature R 0 . Che

sensor coordinates for the spherical array were generated in a spiral to maximize the

number of unique u and v points. Che sensor coordinates for the circular array were

randomly generated evenly for the sake of simplicity. Che point source can assume any

position relative to the x ' y' z' system. Che distance of the nodes to the z-axis for the

spherical array can vary from 1 centimeter to 1 meter. For the circular array, the sensor

nodes are all 1 meter from the z-axis. Che Discrete Inverse Fourier Cransform of the

coherence function reconstructs the image based upon the location of the source and the

specified sensor node positions.

Che computer simulation verified all of the conditions for near field imaging for

both spherical and circular arrays (Figures 5.14 and 5.15). As z' was increased from 0 to

50 centimeters, and then to 100 centimeters, the amplitude of the intensity profiles

decreased by 1/3 and then by 2/3 and the half width maximum increased, indicating that

the imaging of the point source became blurred and decreased in brightness. For the

circular array, there was no change in the intensity profiles as z' was increased -

consistent with the fact that δ = kz '(cos Ø 2 - cos Ø 1 ) = 0 for circular arrays. Che
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width of the half maximum was narrower than for the case with the spherical array.

This was consistent with the image profile where the point source image with a circular

array had greater resolution.

For the spherical array as (x'— x) / R o , (y '- y ) / R 0 , and (z'— z) / R o became larger

as R 0 decreased from 50 to 10 meters and then to 8 meters, the amplitude of the intensity

profiles decreased by 1/4 and then by 1/2 but the half width maximum became narrower,

indicating that the imaging of the point dimmed and shrunk in size.

Figure 5.11 Sensor nodes 1, 2 receiving radiation from a source point.

The computer program was coded to produce a spiral arrangement of the sensor

nodes. For the circular array, the progressive decrease in amplitude was very different

than when a spherical array was used and the amplitude decreased much faster as

R0 decreased. For the circular array, the width of the half maximum also decreased but

the intensity decreased more rapidly. Α possible explanation is that when the point source

is displaced from the z-axis, the more orderly arrangement of nodes on the ring of the

circular results in a reduced generation of unique nodes.
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Figure 5.12 (a) Geometric arrangement of u-ν 25 sensor nodes, (b) Nodes generated in
space by 25 sensors. Maximum number of unique nodes in upper or lower u-ν plane is
300.
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(b)
Figure 5.13 (a) Circular geometric arrangement of 25 sensor nodes, (b) Nodes generated
in space by 25 circular sensors. Maximum number of unique node in upper or lower u-v
plane is 300.



(b) Circular array with z' displaced.

Figure 5.14 (a) Synthetic imaging of a source point with a spherical array, (b) Synthetic
imaging of a source point with a circular array. Distance of the sensor nodes from the z
axis range from 1 centimeter to 1 meter, radiation frequency is 10 12 Hertz, x' = y '= 0 cm,

and R0 = 50m.



(b) Circular array with x'and y' displaced.

Figure 5.15 (a) Synthetic imaging of a source point with a spherical array, (b) Synthetic
imaging of a source point with a circular array. Distance of the sensor nodes from the z
axis range from 1 centimeter to 1 meter, r' = (-10,10, 0)cm, and the radiation frequency is
1012 Hertz. Point source and focal point lie on the same plane.
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5.5 Synthetic Imaging and the Detection of Superconductivity

Small angle approximations are an absolute requirement in the synthetic imaging of a

nano superlattice with a spherical array. However, the spatial resolution is in the order of

1-100 Angstroms and is given byRλ/b . The baseline b is about 1/10 the radius of

curvature R of the spherical array. Letting R = 1.0 meter and b = 10 centimeters,

resolutions of 1 and 100 Angstroms would require the radiation frequency of the source

to be of the order of 1019 and 1017 Hertz respectively. Such high frequencies would

destroy the matrix of a semiconductor. If infrared radiation is used, the minimum

resolution would be 10 7 Angstroms or 1.0 millimeter. Imaging of a nano structure with a

spherical array would thus have restrictions (Table 5.1). However, a relatively large nano

object, such as a superlattice, could be imaged as a whole against a macro size substrate.

In addition, macro size semiconductors could also be imaged.

The technique for detecting superconductivity in small samples of high

temperature superconductor can also be done without contacts but with the sample

localized in the same region as the measuring devices. There is also the additional

problem of the depth of focus z. The magnitude of the phase δ can be calculated

knowing the radius of curvature and the sensor pair baselines. Using

δ = kz(φΜλχ - ΦΜ ) , where ΦΜΑΧ and ΦΜ ΙΝ are the maximum and minimum azimuthal

angles for sensor nodes on the surface of the spherical array, then

φ - φ
MDX 

= 1.59Α10 -6 radians for a spherical array with a radius of curvature of 50
ΜΙΝ

meters and a maximum baseline of one meter. Designing a spherical array with such

dimensions is virtually physically impossible. The only solution is to use a circular array

where all of the azimuthal angles are equal which forces δ to zero. In Figure 5.1
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the dimensions of the sample and window are 30 and 15 mm, respectively. According to

Table 5.1, the frequency of the radiation source can be at least 3.0x10 12 Hertz and with

no problems with either resolution of depth of focus.

0
Table 5.1 Wavelength, Frequency and SR (R 0 = 1.0 meter, b = 10 cm, SR, λ are in A )

The sample could be placed within the inductor of a Colpitts oscillator. The

precise quantity of feedback is finely adjusted to maintain oscillation at set amplitude.

The presence of superconductivity is detected through a small but sudden change in

frequency and an increase in the gain required to maintain oscillations. Upon cooling

through the transition temperature of ΤΤ , a cuprate superconducting sample in an

induction coil will experience a sharp reduction in Q (gain) corresponding to a loss of

energy to the sample. This loss will reach a maximum just below Ρ. Since no electrical

contacts are necessary, the technique is suitable for samples in either bulk or powder

form. However, the technique is not remote so the presence of cryogenic temperatures

may affect the measuring apparatus.

To detect superconductivity remotely using a spherical array, a plausible method

would be to follow a scheme based reflectivity profiles and parameters in terms of R

(Figure 5.17). The source of radiation could beam at the material in a normal

incidence and a spherical array could be used to determine the existence of energy



92

absorption in a normal state semiconductor (Figure 5.18). R can be determined

knowing the reconstructed intensity of radiation incident upon the surface of the

semiconductor. R can also be determined theoretically from the electromagnetic

boundary conditions on the surface of the conducting semiconductor. Ambient

background interference may cause a problem in reconstructing the intensity profiles of

the semiconductor.

Figure 5.16 Circular array imaging sample in a cryostat. Window-to-window distance for
transmission geometry: 120 mm, windows diameter 15 mm, sample space: 30 mm.

However, an intensity vs. frequency profile could still be used to determine the

onset of superconductivity. The "distorted" profiles resulting from interference are

repeated with the same range of frequency scans and any noticeable disruption in the

profile can be used to deduce the presence of superconductivity as the temperature of the

superconductor is lowered towards T^ .



Figure 5.17 Scheme for determining superconductivity in a superlattice using a circular
array.

In a more analytically way, one can determine the onset of SC my defining certain

variables and conditions (see Appendix D and Figure 5.17). If the imaginary part of a k

vector (k_) of an EΜ wave in a material is negligible, if 1 » ‚Ισμ oc2 /(ωC2), then there

is no energy absorption in the semiconductor; else if 1 « ‚/σμ oc2 /(ωC2) , then energy is

being absorbed.

An EΜ wave entering a semiconductor in a SC state, the B field drats off
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exponentially [47] and magnetic fields are confined to an area within the London

penetration depth λs . The wave must travel a distance λ L before the fields drat off

by a factor of e 1 . The magnetic fields are confined to a region not far from the

surface of the material whose spatial extent is λ ι  (Figure 5.18). For an EΜ wave

entering a semiconductor in a normal state, the imaginary k vector may be such that the

electric and magnetic fields of a wave dissipates by a factor of e - ' at a distance into a

conductive medium that may be less than or greater than to λ ι  . If k_ < λL -1 , then the

wave must travel a distance greater than λL before the field drops off by a factor of e 1 .

As the medium becomes SC, k_ and ‚/σμ oc2 /(ωC2) must both increase so that

k_λL  = 1 when the material is SC. If k> λ ι -1 , then the wave must travel a distance less

than λL before the field drops off by a factor of e- '. As the medium becomes SC, k_ and

‚Ισμoc2 /(ωC2) must both decrease so that k_λL = 1 when the material is Sc.

Reflectivity profiles of semiconductors can be used to estimate Cooper pair

binding energies. Researchers have made a high temperature superconductor of bismuth,

strontium, calcium, catper and oxygen. The superconductor has a Tc of 88 K. By

analyzing the light reflected from the material above and below 88 K, researchers can tell

which frequencies of light it absorbed. The energies of these photons are related to the

binding energy of the electron pairs in the superconductor [40].
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Figure 5.18 EΜ wave entering a semiconductor in superconducting state.

For a superconductor, if the incident frequency is below Δ/h, where A is the

energu gap, the conductivity will be zero and the reflectivity will be unity. The

theoretical reflectivity profiles for LSCO (La 2_χSr ΧCυΟ4 ) are shown in Figures 5.19

[48]. The reflectivity is plotted against ω/Δ, where γ is the level broadening. The level

broadening is a measure of the degree of electronic scattering. At T=0 K, there is a

cutoff frequency at ω/ Δ = 0.7 , below which the reflectivity is unity. The material below

that point has zero conductivity. When γ = 0, there will no electron scattering, creating a

pure Bloch electron state. As T increases, the reflectivity profiles show marked

differences. Other materials will show differences in the reflectivity profiles as T is

varied from below T to above Ρ. In general, as a semiconductor is cooled towards the

critical temperature, the reflectivity profile changes. The reflectivity profiles, generated

by sensor arrays, can thus easily be used to determine the onset of SC at T is lowered

towards the critical temperature.



Figure 5.19 Reflectivity of LSCO as a function of the frequency for fixed impurity
scattering rate with different temperatures (from Figure lc of Reference 48).
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CHAPTER 6

CONCLUSIONS

This thesis has evaluated conditions for semiconductor superlattice structures for which

high — ΤΤ superconductivity is feasible via both theoretical arguments and results of

computer simulations. Analysis of computer simulations, with numerous superlattice

designs and dating concentrations, seem to support the theoretical argument that Fermi

energies and interplanar Coulomb interaction are factors that determine the formation of

the quantum wells with electron and hole carrier layers. The Coulomb interactions

between layers in a superlattice are a strong factor affecting the feasibility of designing a

HTS superlattice that satisfies all the criteria of the Harshman formulation. None of the

computer simulations in this study indicated that a superlattice structure that satisfies all

the criteria of the Harshman model was possible.

The computer simulations emulated the electronic structure of

high - Τc superconductor superlattices with β = 1. Results are based on a maximum

built-in electrostatic field of 500 kV cm 1 and a sheet resistance of 10 4 Ohms, which

dictates a minimum superlattice period of d = 80 nm and a corresponding sheet carrier

density of electrons and holes is N = 1.56 x 10 10 cm 2 . Based on a strong-coupling

electronic model of superconductivity, a superconductor with a transition temperature of

2 K will result from such an electron-hole superlattice.

Synthetic imaging of macro objects in the near field is only possible with circular

arrays if small angle approximations exist. Circular arrays can be used to detect the

existence of superconductivity in semiconductor material.
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APPENDIX A

DERIVATION OF LOGARITHMIC DERIVATIVE OF
THE CRITICAL TEMPERATURE
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APPENDIX B

VALIDITY OF THE 3D HOLE/ELECTRON DENSITY
FUNCTIONS AT THE T=0 K LIMIT

It will be shown that the hole and electron densities reduce to zero in the limit as T

approaches zero.

The hole density at low T is given by:
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APPENDIX C

THE 2-D INVERSE FOURIER TRANSFORM (IFT) OF THE PRODUCT OF
TWO DISPLACEMENT VECTORS AND THE CORRELATION FUNCTION

To prove the theorem that the 2-D Inverse Fourier Transform (IFT) of the product of

2r;r^ and the correlation c(i,j) between 2 sensor points located at r i,rj yields the intensity

distribution on the surface of an illuminated object.

Let ri ,rj be the distances from a source point 1 to sensors i , j respectively and E(x,y) is

the amplitude of the wave field at the source point and k is the wave number. Κ 1 and k2

are dummy variables that will be used in integrations. The sensors are in a plane that is

parallel to the plane containing the source point as shown in Figure C.1 since one can

assume small angle approximations. Since E(x,y) is real, IE(x,y)I 2 can be expressed as
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a partial reconstruction of the intensity distribution. To fully reconstruct the image of an

object, a large number of pairs of sensor nodes would be needed.
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APPENDIX D

DERIVATION OF THE CONDITION FOR NON-DISSIPATION OF AN EM
WAVE THROUGH A CONDUCTIVE MEDIUM

The conditions for nonoissipation of an EM wave, traveling through a conductive

Medium, expressed in terms of β and w will de determined.

Consider an EM wave ρropaαatinα through a conductin medium and assume Li, = μ, .
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