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ABSTRACT

MATHEMATICAL PROBLEMS ARISING IN INTERFACIAL
ELECTROHYDRODYNAMICS

by
Dmitri Tseluiko

In this work we consider the nonlinear stability of thin films in the presence of electric

fields. We study a perfectly conducting thin film flow down an inclined plane in the

presence of an electric field which is uniform in its undisturbed state, and normal to the

plate at infinity. In addition, the effect of normal electric fields on films lying above,

or hanging from, horizontal substrates is considered. Systematic asymptotic expansions

are used to derive fully nonlinear long wave model equations for the scaled interface

motion and corresponding flow fields. For the case of an inclined plane, higher order

terms are need to be retained to regularize the problem in the sense that the long wave

approximation remains valid for long times. For the case of a horizontal plane the fully

nonlinear evolution equation which is derived at the leading order, is asymptotically correct

and no regularization procedure is required. In both physical situations, the effect of the

electric field is to introduce a non-local term which arises from the potential region above

the liquid film, and enters through the electric Maxwell stresses at the interface. This term

is always linearly destabilizing and produces growth rates proportional to the cubic power

of the wavenumber — surface tension is included and provides a short wavelength cut-off,

that is, all sufficiently short waves are linearly stable.

For the case of film flow down an inclined plane, the fully nonlinear equation can

produce singular solutions (for certain parameter values) after a finite time, even in the

absence of an electric field. This difficulty is avoided at smaller amplitudes where the

weakly nonlinear evolution is governed by an extension of the Kuramoto-Sivashinsky (KS)

equation. Global existence and uniqueness results are proved, and refined estimates of

the radius of the absorbing ball in L2 are obtained in terms of the parameters of the



equations for a generalized class of modified KS equations. The established estimates

are compared with numerical solutions of the equations which in turn suggest an optimal

upper bound for the radius of the absorbing ball. A scaling argument is used to explain

this, and a general conjecture is made based on extensive computations. We also carry out

a complete study of the nonlinear behavior of competing physical mechanisms: long wave

instability above a critical Reynolds number, short wave damping due to surface tension

and intermediate growth due to the electric field. Through a combination of analysis and

extensive numerical experiments, we elucidate parameter regimes that support non-uniform

travelling waves, time-periodic travelling waves and complex nonlinear dynamics including

chaotic interfacial oscillations. It is established that a sufficiently high electric field will

drive the system to chaotic oscillations, even when the Reynolds number is smaller than the

critical value below which the non-electrified problem is linearly stable. A particular case

of this is Stokes flow, which is known to be stable for this class of problems (an analogous

statement holds for horizontally supported films also). Our theoretical results indicate that

such highly stable flows can be rendered unstable by using electric fields. This opens the

way for possible heat and mass transfer applications which can benefit significantly from

interfacial oscillations and interfacial turbulence.

For the case of a horizontal plane, a weakly nonlinear theory is not possible due to

the absence of the shear flow generated by the gravitational force along the plate when the

latter is inclined. We study the fully nonlinear equation, which in this case is asymptotically

correct and is obtained at the leading order. The model equation describes both overlying

and hanging films — in the former case gravity is stabilizing while in the latter it is destabi-

lizing. The numerical and theoretical analysis of the fully nonlinear evolution is complicated

by the fact that the coefficients of the highest order terms (surface tension in this instance)

are nonlinear. We implement a fully implicit two level numerical scheme and perform

numerical experiments. We also prove global boundedness of positive periodic smooth

solutions, using an appropriate energy functional. This global boundedness result is seen



in all our numerical results. Through a combination of analysis and extensive numerical

experiments we present evidence for global existence of positive smooth solutions. This

means, in turn, that the film does not touch the wall in finite time but asymptotically at

infinite time. Numerical solutions are presented to support such phenomena.
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CHAPTER 1

INTRODUCTION

We consider several mathematical problems arising in interfacial electrohydrodynamics.

Electrohydrodynamics deals with the fluid motion when an electric field is applied. It

can be considered both as a branch of fluid dynamics which is involved with the effects

of applied electric fields, and as a branch of electrodynamics which is involved with the

effects of moving media on electric fields. Applications of electrohydrodynamics include

spraying, ink jet printing, mixing and emulsification, coalescence, boiling, enhancement of

heat and mass transfer, fluidized bed stabilization, pumping, and polymer dispersion.

Perhaps the earliest known electrohydrodynamic experiments were done by William

Gilbert in the seventeenth century. He described the formation of a conical shape upon

bringing a charged rod above a sessile drop, see Taylor [115]. Until the 1960s most work

focused on problems including perfect conductors or perfect dielectrics as the liquids.

Other branches of electrohydrodynamics include problems which deal with poorly con-

ducting liquids (leaky dielectrics) and electrolytes, see Allan & Mason [5], Russel et al.

[99], Saville [102].

In the present work we study the evolution of thin liquid films on inclined and

horizontal planes when electric fields act on them. Thin films have received a lot of

attention since the experiments of Kapitza & Kapitza [64] (also Binny [16]). They arise in

a variety of physical and technological applications including cooling systems and coating

processes for example, as well as in biological applications, for example in fusion of

lipid bilayers or biological membranes. In cooling applications, for instance, it has been

observed that heat or mass transfer can be increased by an order of magnitude if there are

waves present on the liquid film — Bontozoglou [18], Dukler [35], Nagasaki et al. [83],

Serifi et al. [105], Sisoev et al. [107], Yoshimura et al. [127].

1



2

The initial linear stage of the instability on falling films was considered by Benjamin

[10] and Yih [126] who showed that the flow becomes unstable to long waves above a

critical Reynolds number that depends on the angle of inclination (for vertical inclinations

the critical Reynolds number is zero); the waves travel with a speed which is twice the

unperturbed flow speed at the interface. Periodic, two-dimensional nonlinear waves emerge

whose structure depends on the forcing frequency that produces them (see Alekseenko et

al. [4], Liu et al. [78]), and in general these are susceptible to three dimensional instabilities

and ensuing spatiotemporal complexity — Chang et al. [23], Johnson et al. [60], Joo &

Davis [62], Liu & Gollub [76]. It is observed that the long time behavior of the flow

is dominated by solitary wave pulses and the interactions between them, and hence a

fundamental understanding of their existence and dynamics, in different physical situations,

is of importance. Experiments confirming the central role of solitary wave structures have

been carried out by Argyriadi et al. [6], Liu & Gollub [77], Vlachogiannis & Bontozoglou

[121].

Direct numerical simulations of the falling film problem on flat substrates have been

carried out by several investigators including Argyriadi et al. [6], Gao et al. [42], Gu et

al. [49], Kunugi & Kino [69], Malamataris et al. [80], Salamon et al. [100]; calculations

and experiments over wavy walls can be found in Malamataris & Bontozoglou [79] and

Vlachogiannis & Bontozoglou [122], respectively. The computations of Malamataris et

al. [80] evaluate the spatial linear stability stage of the dynamics and consider in detail

the velocity profiles beneath solitary waves with the finding that a strong non-parabolicity

emerges in front of the main humps along with a small region of backflow. The dynamics

is quite delicate and it is useful, therefore, to obtain reduced systems that can be studied in

detail both numerically and analytically.

At Reynolds numbers not too far from critical, then, it is feasible to develop a

long wave nonlinear theory as in Alekseenko et al. [4], Benney [11], Gjevik [43], for

example, giving rise to the so-called "Benney" evolution equation. Even though this



3

equation contains different physical mechanisms and is potentially capable of describing

the nonlinear dynamics, it lacks a global existence theory for its solutions. Evidence of this

can be found in numerical experiments by Joo et al. [63], Pumir et al. [97], Rosenau & Oron

[98]. On the other hand, it has been used to successfully describe experimental observations

of three dimensional fingering instabilities in falling films — see Diez & Kondic [30], Diez

& Kondic [31], Kondic & Diez [68]. Reviews of falling film flows and in particular their

nonlinear analysis via long wave models at small and moderately large Reynolds numbers,

can be found in Chang [22] and Chang & Demekhin [24].

Weakly nonlinear analysis of the Benney equation leads to the Kuramoto-Sivashinsky

(KS) equation, which deserves a special mention. This equation arises in a variety of

physical problems and is one of the simplest one-dimensional evolution equations which

exhibit complex dynamics. Applications include falling film flows (Benney [11], Hooper

& Grimshaw [55], Shlang & Sivashinsky [106], Sivashinsky & Michelson [110]), core-

annular flows (Coward et al. [28], Papageorgiou et al. [90]) flame-front instabilities and

reaction diffusion combustion dynamics (Sivashinsky [108], Sivashinsky [109]), chemical

physics for propagation of concentration waves (Kuramoto [70], Kuramoto & Tsuzuki [71],

Kuramoto & Tsuzuki [72]), and plasma physics (Cohen et al. [25]). The rescaled KS

equation on 27-periodic intervals contains a single parameter v = (7/L) 2 (here L is half

of the interval on which the equation is considered) which is inversely proportional to the

square of the length of the system. In scaled variables, the equation takes the following

form:

ut uux uxx vuxxxx = 0, (x, t) E R x R+, (1.1)

u(x, t) = u(x + 27r, t).

The equation was extensively studied computationally (Frisch et al. [41], Greene & Kim

[46], Hyman & Nicolaenko [56], Hyman et al. [57], Kevrekidis et al. [65], Papageorgiou &

Smyrlis [92], Sivashinsky & Michelson [110], Smyrlis & Papageorgiou [112], Smyrlis &
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Papageorgiou [113]) as well as analytically (Collet et al. [26], Collet et al. [27], Goodman

[45], Ilyashenko [58], Jolly et al. [61]). It is established that the KS equation produces

complicated dynamics in both space and time, and when the parameter v is small enough

the solutions become chaotic. A computational verification of a period-doubling route to

chaos according to the Feigenbaum scenario along with calculation of the two universal

constants, can be found in Papageorgiou & Smyrlis [92], Smyrlis & Papageorgiou [112],

Smyrlis & Papageorgiou [113]. The analyticity properties of the solutions of the Kuramoto-

Sivashinsky equation were studied by Collet et al. [26]. They showed that the solutions are

analytic in a strip around the real axis, and gave a bound for the width of this strip. They

also provided several stronger results regarding the analyticity of the solutions based on a

series of numerical experiments.

The possibility of controlling the film flow using a vertical electric field has been

suggested by Bankoff et al. [7], Bankoff et al. [8], Griffing et al. [48], Kim et al. [66],

Kim et al. [67] in their consideration of the electrostatic liquid film radiator. The idea

is to utilize the reduction of pressure induced by the electric Maxwell stresses at the

liquid/air interface, to reduce or stop leakage of fluid out of punctures on the outer casing

of cooling equipment which is exposed to cosmic particle impacts in space applications.

The theoretical study of Kim et al. [66] is two-dimensional (so the holes are slits) and

considers a perfect dielectric liquid and a finite length electrode placed relatively close to

the grounded infinite plane substrate. An evolution equation is derived which is similar to

the Benney equation but contains an additional local term due to the electric field (surface

tension is not included); an analogous analysis is performed for higher Reynolds numbers

using the von Karman-Pohlhausen parabolic profile approximation to obtain closure — see

Chang & Demekhin [24]. Numerical solutions show reasonable agreement with direct

Navier-Stokes simulations and indicate the feasibility of attaining sufficiently negative

pressures in the vicinity of the electrode that can arrest leakage. The linear stability is also

considered for perfectly conducting fluids and it is found that the presence of a vertical
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electric field reduces the critical Reynolds number below which the flow is stable. A

comparison between experiment and lubrication theory (for a finite length electrode) is

made in Griffing et al. [48] and agreement is reasonable. A striking experimental demonstra-

tion of the instability due to a vertical field in the absence of a shear flow can be found in

Dong et al. [33], where the field induces the formation and protrusion of liquid columns

of one liquid into a second immiscible liquid with different electrical properties. Even

though the observed phenomenon is three-dimensional, a fundamental understanding of

two-dimensional nonlinear interfacial electrohydrodynamics is a suitable starting point and

is one of the aims of the present work. The presence of shear (see the experiments of

Bankoff et al. [7] and Griffing et al. [48]) is found to nonlinearly saturate the interfacial

amplitudes and this is also established by our theoretical study of the modified KS equation.

An interesting analogue of shear stabilization is that of the nonlinear saturation of capillary

instability in core-annular flows — see for example Papageorgiou et al. [90].

Recently, Gonzalez & Castellanos [44] considered a perfectly conducting liquid film

on an inclined plane with the upper electrode placed far from the grounded substrate. A

Benney type equation is written down which contains a nonlocal contribution due to the

electric field above the liquid layer and the fact that the second electrode is at infinity. The

form of such nonlocal terms has been derived formally in related horizontal electric field

problems by Papageorgiou & Vanden-Broeck [93], Papageorgiou & Vanden-Broeck [94],

Tilley et al. [117]. The weakly nonlinear version of this equation is a KS equation with an

additional linear term due to the electric field that induces a linear growth which is worse

than the negative diffusion but is still dominated by the fourth order damping. The scaled

version of the equation is (see Chapter 3 for details):

ut + uux + u„ + vu„„ + μH[uxxx] = 0, (x, t) E R x R+, (1.2)

u(x, t) = u(x + 27r, t),
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where 9-1 is the Hilbert transform operator, p > 0 measures the electric field intensity and

the ± sign is taken for Reynolds numbers above and below critical, respectively.

At sufficiently small Reynolds numbers, Gonzalez & Castellanos [44] identify a

critical electric field strength above which a mode with non-zero wavenumber first becomes

un-stable. They in turn use a Ginzburg-Landau weakly nonlinear expansion to establish a

supercritical bifurcation. The behavior of the flow at arbitrary electric field values was

not studied and is undertaken in a systematic way in the present work. It is important to

also emphasize that if the Reynolds number is sufficiently large (so that the non-electrified

problem is linearly unstable to long waves), the weakly nonlinear theory of Gonzalez &

Castellanos [44] is not possible and the problem must be addressed numerically. We

address the modified KS equation numerically (at Reynolds numbers above and below

critical) as well as analytically. The dynamics is quite different depending on the Reynolds

number, but in all cases the system evolves to mostly chaotic dynamics as the length of the

system is increased. We also observe numerically that the solutions remain bounded and

exhibit a complex behavior including chaotic oscillations as in the case of the usual KS

equation. Analytical results of global existence, uniqueness and uniform boundedness of

the solutions were obtained by Duan & Ervin [34], who also obtain a bound for the radius

of the absorbing ball.

We also study analytically a generalization of the modified KS equations with the

extension of the nonlocal operator that enables a parametric study of the increasing instabi-

lity. Results of global existence and uniqueness of the solutions are proved (based on the

general theory of initial value problems for abstract nonlinear evolutionary equations, see

Henry [52] or Sell & You [104]). Also, we prove the existence of the absorbing ball in

the L2 -norm and we also obtain new estimates for its radius, which improve those of Duan

& Ervin [34]. The analytical estimates are also compared with the results of extensive

numerical experiments which in turn guide us to conjecture an optimal bound for the

attractor which we can explain using scaling arguments.
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The basic idea in obtaining the estimate of the radius of the absorbing ball in L 2 -norm

is the use of the method of Liapunov. We find a functional F with the property that there

is a constant F., such that if u is a solution of the modified KS equation and F[u] >

then dF[u]/dt < 0. This implies (with careful analysis) that lira sup t-->∞ F[u] is bounded. The

functional F should be chosen such that the inequality F[u] < F. holds if and only if

I I u112 < C1 for some constant C1 . Then we get boundedness of limsup t-->∞114 2 as well.

The approach of Nicolaenko et al. [86] was to consider the following functional

where φ(x) is a well chosen gauge function. This approach works well for odd periodic

solutions of the usual Kuramoto-Sivashinsky equation. For general solutions (not necessarily

odd), the idea of Collet et al. [27] was to consider a generalization of the comparison

function φ. Namely, they considered the following Liapunov function:

where φa(x) = φ(x + a), and a = a(t) is a suitably chosen translation function. We used

Goodman's choice for a(t) (see Goodman [45]), namely a(t) is chosen such that

for all t > 0. Here S is the following translation invariant set of functions:

This is equivalent to saying that

In the present work we also consider the related problem of a perfectly conducting

liquid film on a horizontal plane with the upper electrode placed far from the grounded
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substrate. A long wave theory leads to a nonlocal nonlinear evolutionary equation at leading

order, which by a modification of the sign of the gravitational parameter also describes

thin liquid films wetting the underside of flat plates when a normal electric field is applied

appropriately. A similar equation for the nonelectrical case was derived by Ehrhard & Davis

[38], who studied spreading of viscous drops on smooth horizontal surfaces which are

uniformly heated or cooled. (In the isothermal case, with the no-slip boundary conditions

their equation coincides with the equation derived here when there is no electric field.)

The same "nonelectrical" equation was also obtained and studied numerically in Yiantsios

& Higgins [124] who considered the behavior of a viscous fluid film bounded below by

a wall and above by a second heavier immiscible fluid. For the case when the ratio of

the viscosities m = μ1/μ2  is 0(1), they obtained the same evolution equation for the

interface. In Ehrhard [37], using the model of Ehrhard & Davis [38], the author considered

the quasi-steady evolution of a viscous drop hanging on the earth-faced side of a smooth

horizontal plate, which is either uniformly heated or cooled. Also, other similar equations

arising in the modelling of thin liquid films have been derived and studied in Bertozzi [12],

Dussan [36], Greenspan [47], Haley & Miksis [50], Hocking [54], Myers [82], Oron et

al. [88]. For clarity, we include the equation derived in Chapter 5 below. If u(x, t) denotes

the scaled interfacial position, then the equation takes the form

where C > 0, We > 0 and G can be positive or negative. The sign of the gravitational

parameter G depends on whether the film is resting above or wetting the underside of a

horizontal flat plate, respectively. In the absence of an electric field the film is linearly

stable or unstable depending on whether G > 0 or G < 0, respectively, as is expected

on physical grounds. The addition of an electric field can always make the film unstable

irrespective of the sign of G.
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A weakly nonlinear theory is not possible in this situation and we are confined to

the study of the fully nonlinear equation (the physical reason for this is the absence of

an underlying shear flow). Even though the electric field term is always destabilizing, we

succeeded in proving that positive smooth solutions on a periodic interval [—L, L] do not

blowup and are uniformly bounded for all time in the H'-norm (if they exist). The approach

is based on the construction of an appropriate energy functional E [h] having the steady

state solutions as extrema. Our analysis extends that of Bertozzi & Pugh [14] to nonlocal

equations. Let us also note that Hocherman & Rosenau [53] considered a generalized class

of long wave thin film equations (when the coefficients in front of the derivatives have more

general form, e.g., are polynomials of higher or lower degree of unknown function). They

were interested in identifying when such equations admit solutions that blow up in finite

time, and they made a conjecture regarding when the solutions blow up or are globally

stable. The possibility of finite time blow-up was also recently studied in Bertozzi & Pugh

[14], Bertozzi & Pugh [15], and Witelski et al. [123] based on both rigorous analysis and

numerical computations.

For the equation derived here it can also be established analytically that the spatial

integral of positive solutions is bounded on each time interval. This could be used to show

the global existence of the positive smooth solutions (i.e., that the film does not touch the

wall in finite time) if we had proven the boundedness of the H 2 -norm of the solutions on

each time interval (this has not been done yet and is a topic of future research).

In order to obtain the quantitative characteristics of the solutions, we have implemen-

ted a fully implicit two level numerical scheme for this class of equations. We used the

ideas introduced in Bertozzi & Pugh [13], Diez et al. [32]. The equation is solved on a

uniform spatial grid, and the spatial derivatives are discretized using central differences.

Our numerical experiments suggest boundedness of the H 2-norm of the solutions, which,

as was noticed above, also implies that the film does not touch the wall in finite time

(though it is likely that it happens in infinite time). The numerical scheme can also be used
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to provide numerical "proofs" of conjectures (in the manner of Bertozzi & Pugh [14])

on finite/infinite time singularities, or the global existence and the boundedness of the

solutions of generalized electrified horizontal thin film equations.

The structure of the present work is as follows: In Chapter 2 we consider the governing

equations of electrohydrodynamics. In Chapter 3 we first formulate the mathematical

problem and the nonlinear interfacial boundary conditions for the problem of an electrified

thin film flow down an inclined plane; we then develop a formal asymptotic solution valid

for long waves and point out some associated difficulties for fully nonlinear waves. A

weakly nonlinear analysis of the fully nonlinear system is shown to lead to the modified

KS equation. Next we present detailed numerical solutions and construct a fairly complete

picture of the competing nonlinear dynamics (for Reynolds numbers above and below

critical); some analytical results are also provided. At the end of this chapter we present

our conclusions. In Chapter 4 we present analytical results for the modified KS equations.

First we compile some relevant general results regarding existence and uniqueness of the

solutions for Cauchy problems for nonlinear evolutionary equations on Banach spaces,

which are used to prove global existence and uniqueness of the solutions of the modified KS

equations in H 1 . First, we prove local existence following the approach of Duan and Ervin

[34] (see also Henry [52]) and then establish global results by proving uniform boundedness

of the solutions in H1 on each time interval. To establish uniform boundedness of the

solutions in 1/ 1 we first prove uniform boundedness in L2 , which is done by a modification

of the method of Collet et al. [27]. After proving global existence this also provides the

existence of the absorbing ball in L2 as well as estimates for its radius. We also compare

the analytical estimate with values obtained from numerical computations. In Chapter 5 we

consider electrified liquid films on a horizontal plane. First we formulate the mathematical

problem and derive the long wave evolution equation for the interface. Then we discuss

the numerical schemes for this equation and present detailed numerical solutions. Rigorous

analytical results are also established. Finally, we provide some conclusions.
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GOVERNING EQUATIONS OF ELECTROHYDRODYNAMICS

In this chapter we consider the governing equations of electrohydrodynamics. First, we

present Maxwell's equations and the charge conservation law and explain how these can be

simplified to the so-called electroquasistatic equations under certain assumptions. Next, we

present the equations that govern the motion of a fluid, and finally the boundary conditions

are considered. For more a detailed description of the governing equations and boundary

conditions of electrohydrodynamics see Castellanos [20], Castellanos & Gonzalez [21],

Saville [103].

2.1 Electrical Equations

The basic laws governing the behavior of electromagnetic fields are given by the well-

known Maxwell's equations, see Jackson [59], Landau & Lifshitz [74], Panofsky & Phillips

[89]. The differential form of these equations in the MKS system of units is

Here E and B are the electric and magnetic fields, D is the electric displacement vector,

H is the magnetic field intensity, q is the volume charge density, and J is the current

density. The above equations represent Gauss's law, Faraday's law, the solenoidal nature

of the magnetic field, and the Ampere-Maxwell equation, respectively.

11
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Another equation relating the volume charge density q and the current density J is

the charge conservation law

(2.5)

This conservation law essentially states that the rate of decrease of the charge density inside

a small control volume, is equal to the rate at which charge flows out by crossing the

bounding surface of the volume. Use of the divergence theorem enables the physical law

to be written in the form (2.5).

The electric displacement vector is defined by

where εo = 107/47c2 8.8542 x 10-12F m-1 is the permittivity of free space (here

c 2.9979 x 108 m • s -1 is the speed of light in free space), and P is the polarization vector

(the dipole moment per unit volume). In most cases the polarization vector is proportional

to the electric field and can be written in terms of the electric susceptibility x e as follows:

The displacement vector becomes, therefore,

where 'e = 1 + Xe is called the dielectric constant. The constant e = Coke is called the

electric permittivity.

The magnetic field intensity H is defined by

where μo = 47r x 10-7wb A-1 m-1 1.2566 x 10-8Wb • A-1 • m-1 is the permeability

of free space, and M is the magnetization vector (the magnetic moment per unit volume).
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In most cases the magnetization is proportional to the magnetic field intensity, enabling us

to write

where xm  is called the magnetic susceptibility. So, we get

where 'm = 1 + x,,, is called the relative permeability of the medium, and μ = μ okm is

called its absolute permeability.

For the sake of simplicity, it will be assumed that the electric permittivity s and the

magnetic permeability ,u, are constant (this is the case in the problems of interest here). We

will also assume that the electroquasistatic assumption is satisfied (see Plonsey [96], for

instance). This condition can be written as I kL I << 1, where L is the characteristic unit

of length and I 1 /k I is the spatial wavelength of an infinite, parallel, electromagnetic plane

wave of angular velocity w (the temporal frequency of interest) travelling in the material.

Consequently, a physical interpretation of this assumption is that the ratio of the length of

the structure to the spatial wavelength is small.

Under the previous assumptions Maxwell's equations (2.1)-(2.4) can be reduced to

the following system of equations:

Under the electroquasistatic assumption, therefore, Maxwell's equations can be written

as a separate set of equations (2.12), (2.13) for the electric field and equations (2.14), (2.15)

for the magnetic field. Since we are not interested in finding the magnetic field we will
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consider the electric equations only. Besides, when the external magnetic field is absent,

magnetic effects can be ignored completely, see Saville [103].

To relate the distribution of current to the electric field, an equation is required which

connects the current and the electric field at any particular point. Typically this equation is

given by

where m is the mobility of the charge carriers, D is the coefficient of the molecular

diffusion, and u is the flow velocity (in the given liquid or gas). In most cases D << m,

at ambient temperature, and unless the electric field is of order Dim, diffusion may be

neglected, i.e.,

where c = mq is called the electrical conductivity.

In electrohydrodynamics, then, the electric equations reduce to

Note that since the electric field is irrotational (V x E = 0), it can be written as the

gradient of some scalar field. Therefore the electric equations (2.18) can also be written in

the following form:

where V is the voltage potential, and J is given by (2.17).

Finally, we consider the motion of charges in the given fluid governed by the charge

conservation law (2.5). We will present an argument that shows that if charges are initially

present in the fluid and there are no current sources, then the charge density will decay

to zero in a short time scale. This is the phenomenon of charge relaxation. The initially
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imposed charge will move onto the interface (see later for a discussion of interfacial condi-

tions). If the electrical conductivity is constant, equation (2.5) together with (2.17) imply

Using equations (2.12) and the continuity equation (2.23) of hydrodynamics discussed in

the next section, we get

For a medium at rest (i.e., u = 0) the charge relaxes exponentially, the solution can be

written as q = qo e-tIT , where T = ε/ς is the charge relaxation time constant. The

relaxation time can be estimated by using typical values for the conductivity and ε

8.85 x 10 -12F • m-1 . Considering liquids such as Castor oil, for example, we have

3.54 x 10 -11 Siemens • m-1 (see Burcham & Saville [19]). This gives the estimate T

0.25s. In applications relevant to the present study, the relaxation time scales can be

significantly smaller; as pointed out by Craster & Matar [29], a typical range of values in

the related problem of electrically induced pattern formation is 10 -11 Siemens • m-1 < S <

10-3 Siemens•m-1 . This in turn leads to relaxation time scales in the range 10 -8s < T < is.

Since the hydrodynamic scales are much longer than these, it is consistent to ignore time

derivatives in the Maxwell equations in the present problem.

2.2 Hydrodynamical Equations

The equations governing a viscous incompressible fluid flow are the Navier-Stokes equati-

ons (which follow from conservation of momentum) and the mass conservation equation,

see Acheson [3], Batchelor [9], Landau & Lifshitz [73]. Let us consider a Newtonian fluid

of density p and dynamic viscosity μ . Let u = u(x, t) be the velocity field in the fluid

which describes the velocity u of a particle at any point x at any time t.
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The mass conservation law in differential form is

(2.22)

where 1)-2-t- = at + u • V is the material derivative. In many cases, including the present class

of problems, the fluids are incompressible, i.e., p = const. Then, the mass conservation

equation (2.22) reduces to

V • u = O. 	 (2.23)

The Navier-Stokes equations in vector form can be written as

where g is the gravitational acceleration, and T is the stress tensor. Generally, in electro-

hydrodynamics the stress tensor has two parts, the mechanical stress tensor T mech and the

Maxwell stress tensor Telec which appears due to the presence of the electric field, see

Castellanos [20], Jackson [59], Panofsky & Phillips [89], Saville [103], i.e.,

where I is the unit tensor, p is the pressure, ε is the permittivity, and a = (p/ε)(dε/dp)

is the electrostriction coefficient. In our case the permittivity is assumed to be constant,

so a = 0. (In general there is also a magnetic part in the Maxwell stress tensor, but since
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magnetic effects are ignored we consider the electric part only.) We also note that both

for the case of perfect electric conductors and perfect dielectrics of constant permittivity,

the divergence of the Maxwell stress is zero, see for example Pease & Russel [95]. So the

Maxwell stress can be ignored completely in the Navier-Stokes equations and appears only

in the stress jump condition at the interface (see the next section).

In Cartesian coordinates (x i ) (i = 1, 2 in two-dimensions or i = 1, 2, 3 in three-

dimensions) we can write

Here (u i ) are the components of the velocity field u, and (Ei ) are the components of the

electric field E.

2.3 Boundary and Jump Conditions

First, we consider the conditions at a fluid-solid boundary. The impermeability of the solid

implies continuity of the normal component of the velocity across the boundary. Also,

experimental observations reveal continuity of the tangential component of the velocity.

This condition is known as the no-slip boundary condition. Hence, at the solid interface

where u and u3 are the velocities of the fluid and the solid at the boundary.

Next, we consider the conditions at the interface. Let S be the interface between two

fluids (or between a fluid and a hydrodynamically passive region, e.g., air). Let us denote

the corresponding regions by Region I and Region II. The condition that reflects the fact

that a particle on the surface remains on it during the course of evolution, is called the
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kinematic condition. If F(x, t) = 0 is the equation of the interface, then this condition can

(More rigorously we should write limx-->s —Dirt = 0, and if both regions are occupied with

fluids we get two conditions - the first condition when x -+ S from points in Region I, and

the second condition when x --> S from points in Region II.) Using A = 1 + u • V, we

can write

(2.32)

For an illustrative example, let us consider the two dimensional case. Let (x 1 , x2 ) be the

Cartesian coordinates and (u1, u 2 ) be the components of the velocity. If the equation of the

interface is given by x 2 = h(x i , t) (i.e., F(x i , x2 , t) = x2 - h(x i , t)) then the kinematic

condition can be written as

Note that when both regions are occupied by fluids, the kinematic condition also implies

the continuity of the normal component of the velocity.

Another condition follows from the equilibria of forces at the interface. It states

that the difference between the values of the stress on two surface elements parallel to the

boundary and immediately on either side of it, is a normal force due wholly to surface

tension. Let a be the constant surface tension coefficient, n be the unit normal vector

pointing out of Region I. Then this condition can be written as

Here T is the stress tensor defined by (2.25), (2.26), (2.27), and K = -v • n (in two

dimensions k is the curvature of the curve representing the interface, in three dimensions



19

IC is the doubled mean curvature of the surface representing the interface). We use the

notation [*] III = (*)I — (*)II for the jump in quantities between Regions I and II.

In two dimensions (2.34) can be written as

where t is the unit tangent vector to the interface. In Cartesian coordinates (x 1  , x2 ) we get

and the curvature IC of the interface x 2 = h(x i , t) is given by

Now we consider the jump conditions at the interface satisfied by the electric field.

First, the tangential components of the electric field must be continuous:

or equivalently the potential V must be continuous at the interface

Another condition is for the jump of normal components of the electric displacement:

where q, is the surface charge density. This condition arises by application of Gauss's law

over a control volume that contains an element of the interface and whose upper and lower

faces are locally parallel to the interface and lie in regions I and II, respectively (such a
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volume element is known as a "pillbox"). Using the fact that q is non-zero on the interface

alone and applying the divergence theorem to the pillbox, gives the desired result.

Finally, the surface charge conservation law is (see Castellanos [20], Castellanos &

Gonzalez [21])

where qs is the surface charge density, un = u • n is the normal velocity, K, is the surface

current density. The primed time derivative means the derivative when we follow the

surface along a direction normal to itself, 4.- = at unn • V, and the operator V3 is

the surface gradient operator. The surface current density can be written in the form

where A s is the surface mobility, c, is the surface conductivity and D, is surface diffusion

coefficient. In addition E, and u s denote the electric field and fluid velocity tangential

to the interface as measured by an observer in a fixed laboratory frame. The charge

conservation law (2.42) has been given in its most general form and various simplifications

can be made in different modelling situations. For example, if a s , Ss , D, << 1, that is

surface mobility, conductivity and diffusion coefficients are small with respect to other

effects such as convection and stretching of the interface, then K, = qs u s , to leading

order, a version that has appeared in the literature (see for example Craster & Matar [29],

Papageorgiou & Petropoulos [91]). In addition, if equation (2.42) is considered at times

t >> T, then the charge densities in the bulk regions are zero and the last source term in

the equation can be dropped. In the problems studied here the fluid in Region I is a perfect

conductor and hence c >> 1. In such problems any charge that may be present on the

interface can be determined by use of Gauss's law (2.41) after the voltage is found. In the

problems considered here such calculations for the charge can be carried out a posteriori

as explained above.



CHAPTER 3

TWO-DIMENSIONAL FLUID FLOW DOWN AN INCLINED PLANE UNDER

NORMAL ELECTRIC FIELD

3.1 Physical Model

We investigate a two-dimensional fluid flow down an inclined plane when an electric field

acts on it. We consider the isothermal case. The physical model of a two-dimensional

flow is depicted in Figure 3.1. A Newtonian liquid of constant density p and viscosity ,a,

Figure 3.1 Schematics of the problem.

flows under gravity along an infinitely long flat plate which is inclined at an angle i3 to

the horizontal. A coordinate system (x, z) is adopted with x measuring distance down and

along the plate and z distance perpendicular to it (see Figure 3.1). The film thickness is

z = h(x, t) and its unperturbed value is Ito . The surface tension coefficient between the

liquid and the surrounding medium is a and the gravitational acceleration in denoted by g.

The plate is taken to be an infinite electrode which, without loss of generality, is held at

21
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zero voltage potential, i.e., the electrode is grounded. Far from the plate the electric field

E0 is uniform and normal to the plate. The surrounding medium is assumed to be a perfect

dielectric with permittivity εa , and the corresponding voltage potential in it is denoted by V.

In this study the liquid is assumed to be perfectly conducting implying that the potential on

the deformed liquid interface is zero (the electric field in the liquid is also zero). Along with

the usual viscous stresses at the free surface, the electric field causes additional Maxwell

stresses which can affect flow stability and the ensuing dynamics. Physically, this occurs

by a reduction in pressure just beneath the interface due to the field and we wish to study

systematically this effect on the nonlinear dynamics of the falling film. More details of the

mathematical model are presented next.

3.2 Governing Equations

Let the velocity field in the (x, z) coordinate system be u = (u, v). In what follows we

denote the liquid layer by Region I and the surrounding medium by Region II:

The governing equations in Region I are the mass conservation equation (2.23) and

the momentum equations (2.24). There is no electric field in Region I since in our case the

fluid is a perfect electric conductor. Therefore the stress tensor T has only the mechanical

part Tmech . Using the component form of Tm"h given by (2.28) with i, j = 1, 2, and
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We note that since the liquid is a perfect electric conductor the electric field is zero in

Region I. Hence we consider equations (2.19) only in Region II. Also, in Region II there

are no free charges, i.e., q = 0 and J = 0. So, in Region II the electric field can be written

as the gradient of a potential function V, E = — V V, and the potential V satisfies the

Laplace equation:

or in the component form:

The boundary conditions are those of no slip at the wall,

and a uniform field condition at infinity,

At the interface z = h(x, t) we must satisfy a kinematic condition, the zero (or constant)

potential condition and balance of normal and tangential stresses. The out pointing unit

normal and unit tangent vectors at any point on z = h(x, t) are given by n = (—hi , 1)1(1+

and noting that V V • t = 0 is equivalent to a constant potential on the interface, we obtain
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and in Region II

where patm is the constant atmospheric pressure. Here, and everywhere in this chapter,

we assume that i, j = 1, 2, x 1 = x, x2 = z, u1 = u, u2 = v, and (E 1 , E2 ) are the

components of the electric field. Note that the stresses in Region I do not have an electric

part due to the absence of a field, while those in Region II do not have a viscous part since

the outer phase is assumed to be hydrodynamically passive. In general, both viscous and

electrical stresses are present (for perfect dielectrics see Savettaseranee et al. [101], for

example). The Maxwell stresses do not contribute to the tangential stress balance unless

there is a finite conductivity in either of the two phases as in the leaky dielectric model

(see for example Papageorgiou & Petropoulos [91]). This can be verified directly for the

present problem by using condition (3.11) in (2.35); if in addition we use ux = —v, from

the continuity equation, the boundary condition (2.35) becomes

Using a similar procedure and the identity uz + vx = — ,,...41, h2x , which follows from (3.14)

above, yields the following normal stress boundary condition

This completes the statement of the problem which, when supplemented with initial con-

ditions, constitutes a formidable nonlinear free boundary problem. We will proceed asymp-

totically and seek nonlinear evolution equations valid for long waves. Before doing this it

is useful to identify an exact (albeit unstable) solution and an appropriate nondimension-

alization.

An exact solution exists which has h(x, t) = h0 with ho being a positive constant.

This is analogous to the Nusselt solution for the non-electric case (see Benjamin [10],



Nusselt [87]) and is given by
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We see that the steady velocity profile is parabolic in z, while the electric potential varies

linearly with z.

3.3 Dimensionless Equations

To nondimensionalize the equations distances are scaled by the unperturbed depth ho,

velocities by the base velocity at the interface 74 Iz=ho= U0 = gh20sin β/2v sin β, the time scale is
vchosen to be ho/Uo=gho2in Q 'pressure is scaled bypU20,and the unit for the voltage potential

is taken from the change in the basic potential, which is Eo ho . Introducing the following

nondimensional variables,

substituting into equations (3.3)-(3.7) and the boundary conditions (3.10), (3.11), (3.14)

and (3.15) and dropping the stars, provides the following nondimensional equations and

boundary conditions: In Region I the Navier-Stokes equations become
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and in Region II we have the Laplace equation for the electric potential:

No slip holds at the wall, u1,0 = 0, v1,0 = 0 and at infinity we have

At the interface z = h(x, t) we have:

where Pat m = Patm/(PUD20) is the nondimensional constant pressure in Region II. The other

dimensionless parameters are a Reynolds number R (measuring the ratio of inertial to

viscous forces), a Capillary number C (measuring the ratio of viscous to capillary forces)

and an electric Weber number We (measuring the ratio of electrical to gravitational forces),

The exact solutions (3.16)-(3.19) are nondimensionalized analogously. In what follows we

write all dependent variables as the undisturbed dimensionless solution plus an arbitrary

disturbance. Thus, we introduce new unknowns U, v, p, V:



27

and drop tildes in the field equations and boundary conditions (note that we use bars

to denote corresponding dimensionless base solutions). For brevity, we only give the

transformed boundary conditions at the interface z = h(x, t):

3.4 Derivation of the Long Wave Evolution Equations

Assume that typical interfacial deformation wavelengths A are long compared to the undis-

turbed thickness h 0 , i.e., 6 = << 1. This condition can also be formulated as 121 << 1.

Since lengths have been scaled with ho , there is a separation of length scales in the liquid

layer (Region I) and we introduce the following appropriate change of variables:

Boundary condition (3.43) contains a nonlocal contribution since V satisfies the Laplace

equation in the potential region above the fluid layer — see Figure 3.2. Before proceeding
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Figure 3.2 Rescaling of x and z in Regions I and II.

with an asymptotic solution in Region I we calculate the nonlocal contribution in (3.43)

in terms of h(e, t). To achieve this, we introduce the following independent variables in

Region II:

The boundary condition at the interface is

keeping the leading term in b.

To solve this problem we note that f (x) = ii — iVς is an analytic function of the

complex variable x = + K. Next we apply Cauchy's theorem (see for example Ablowitz
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& Fokas [2], Markushevich [81]) to f (x) on a rectangular contour bounding Region II,

see Figure 3.3; the upper part of the contour is located at ( = D and the vertical parts are

placed at = ±L, for some D, L > 0 (periodicity in can be achieved also — see later).

As D oo the contribution to the integral along the line ( = D vanishes (see (3.46)) as

Figure 3.3 Contour of integration C.

does the contribution along the vertical parts as L-->∞ (in the periodic case the vertical

contributions vanish due to the direction of the contour integration). As ς--> 	 0 the contour

integration gives

where PV denotes the principal value of the integral. Taking the imaginary part of equation

(3.48) and differentiating (3.47) with respect to to obtain TA 0) = 	 gives

where 7-1 is the Hilbert transform operator defined by:

Some properties of the Hilbert transform are given in Appendix A.
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With the nonlocal contribution of the electric field known, and noting that V., trans-

forms to 6V( in terms of outer variables, boundary condition (3.43) becomes

In order to retain the effect of surface tension and the electric field in the leading order

dynamics, we take the canonical scalings

where C and W e are order one constants. This leads to

In Region I the appropriate asymptotic expansions are

In what follows the Reynolds number R is assumed to be of order one (for long wave

analyses at large R the reader is referred to the monograph of Chang & Demekhin [24] and

numerous historical references therein). At the leading order we find:

The last equation represents mass conservation and is also found in the non-electrical case

— Benney [11], Lin [75], Nakaya [84]. In general, the solution of this equation has infinite
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slope singularities after a finite time and the long wave asymptotic expansion breaks down

near the singularity; the usual way to proceed is to regularize the dynamics by incorporating

high order effects. We also note that for the case of weakly nonlinear evolution considered

later, H0 += 1 satisfies (3.59) exactly and there is no need of composite solutions that

contain both order one and order 6 terms. Proceeding to the next order we find the following

equation for H1 :

where

Using these expressions in (3.60) casts the latter into the more compact form:

A regularized equation for the new dependent variable H = Ho + 6111 can now be sought

by adding 6 times equation (3.60) to equation (3.59). It is essential to show, however,

that the resulting evolution equation for H (e, 'r) is correct to order 6 2 to ensure asymptotic

consistency. This calculation is provided in Appendix B. The resulting regularized equation

is given by

This equation was derived by Gonzalez & Castellanos [44] using an intuitive approach

rather than formal asymptotics. It is an electrostatically modified version of the nonlinear

interfacial models of Lin [75], Nakaya [84] and the extensive analytical and numerical



32

study of Pumir et al. [97]. The latter study is particularly interesting because it shows

that equation (3.65) with W e = 0 supports solitary as well as heteroclinic travelling

waves. In addition, numerical solutions of the initial value problem provide strong evidence

that solutions may not exist for all time and for all values of the parameters. One such

calculation corresponds to our parameters R = 13, cot 0 = 5, C = 1/2000, and is found to

blow up in a finite time, t, say; a self-similar structure is postulated in the form

where G is a scaling function that was not calculated. In addition to the evidence that global

existence of solutions is unlikely, we see from equations (3.59) and (3.64) that in general

Hoc and higher derivatives become infinite in finite time and this also holds for H 1 and its

derivatives. In fact if H = Hod + 6H4, for example, is to remain bounded (as is the case

for most parameter values) then H1 and higher terms become unbounded in finite time.

As shown in Appendix B the neglected order 62 terms that lead to (3.65) contain H1 and

these will become as large as the retained terms even when H remains smooth. We must

proceed iteratively, then, writing H = Σnj=oδjHj, n = 2, 3, . . . , and showing that an

evolution equation is obtained which is correct to 0(6 71+ 1 ), for each n. This calculation has

not been carried out for n > 3. In the light of these difficulties, then, we construct rational

asymptotic solutions that do not have a 6-dependence. This is achieved by looking for

weakly nonlinear corrections to Ho = 1 which solves (3.59) exactly — see also Sivashinsky

& Shlang [111] for the related problem of film flow down a vertical column when the

column radius is asymptotically large compared to the film thickness. It is also important

to note that when the plate is horizontal, 0 = 0, a fully nonlinear long wave evolution

equation which is independent of 6, appears at leading order — see Oron et al. [88]. This

case is analyzed in a separate chapter (see Chapter 5).
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3.4.1 Weakly Nonlinear Evolution

We seek a consistent asymptotic evolution of long waves by imposing H o (e, 7-) I. We

write H = 1 + a(δ)η where a(6) = o(6 112) and n = 0(1). Substituting into (3.65) we

obtain, correct to order 6,

where D = cot 0 — 4g. R. The advective term 27k is removed by a Galilean transformation

and a canonical equation arises from (3.66) when the following change of variables is used:

to obtain

Note that u from now on represents the scaled interfacial amplitude and is unrelated to

previous dependent variables; 'y = 2WeC /ID1 1 / 2 is a positive constant and the plus sign

in front of uxx is taken if D is negative while the minus sign is taken if D is positive.

As a weakly nonlinear approximation of (3.65) equation (3.68) is valid for u = o(δ -1/2).

When the electric field is absent, i.e., We = 0, and D < 0, the canonical equation is the

Kuramoto-Sivashinsky (KS) equation (see Pumir et al. [97] and Introduction):

3.4.2 Linear Stability

Linearizing (3.68) about u = 0 gives u t uxx + uxxxx + yH[uxxx] = 0 which has normal

mode solutions proportional to exp(ikx st) if the dispersion relation
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Figure 3.4 Changes in the dispersion relation due to the electric field. The left panel
corresponds to the flow above the critical Reynolds number, the right panel — below the
critical Reynolds number.

is satisfied. This dispersion relation was also given by Gonzalez & Castellanos [44] in an

unscaled form. The case with the positive sign corresponds to D < 0 (R > R, = 5 co: /3 )

±V,2 +4
and gives a band of unstable modes for 0 < k < γ2' .As7increases the size of the

band as well as the corresponding maximum growth rate, increase. Representative results

are shown in Figure 3.4.

If D > 0 (R < R,) we obtain the negative sign in (3.70), and as pointed out in

Gonzalez & Castellanos [44] there are two sub-cases: (i) -y < 2 where all modes are stable,

i.e., s(k) < 0 for all k, and, (ii) 7 > 2 where there appears a band of unstable waves
_ ,V,2 _4 ,V,2 _4

extending from k = '
, 

2' to k = '
,4_ 

2' . Typical results are shown in Figure 3.4.

In both cases the electric field is destabilizing. The weakly nonlinear stability in the

vicinity of 7 = 2 was carried out by Gonzalez & Castellanos [44] where a Ginzburg-Landau

equation admitting supercritical states was derived. The present work has very little overlap

with that study since we are interested in the dynamics well-beyond critical in Case II; we

also study Case I which is not amenable to a similar weakly nonlinear theory.
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3.5 Spatio-temporal Dynamics: Regular and Chaotic Solutions

Linear theory predicts that sufficiently long waves are unstable and that the electric field

increases the instability band to include relatively shorter waves. For the KS equation it is

established (numerically and analytically) that nonlinearity acts to saturate the instability

(negative diffusion and fourth derivative damping) to produce a host of rich dynamical

behavior: steady states, Hopf bifurcations to time periodic solutions, period doubling

cascades to chaos according to the Feigenbaum scenario, chaotic attractors with coexisting

stable multi-modal fixed points, etc. The electric field enhances the instability and the

objective of this section is a systematic mapping of its effect on the dynamics as compared

to those known for the KS equation. Note also that Case II above, is not the KS equation

when = 0, and in what follows we present evidence that chaotic states emerge in this case

also if 7 is sufficiently large. This suggests that the electric field can be used to produce

interfacial turbulence at small or zero Reynolds numbers where all disturbances would

otherwise be damped. We are not aware of any controlled experiments that have observed

such behavior, and the present calculations could be useful in suggesting such studies.

Consider (3.68) on a finite interval [—L, L] with periodic boundary conditions; L

measures the size of the system and controls the number of unstable modes present (in the

context of the KS equation). We can normalize equation (3.68) to 27-periodic domains

using the rescaling

which (on dropping the bars) casts the equation into

where v = (π/L)2 and = (7/L)7. Periodic initial conditions are also prescribed (see

later).
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We used two different numerical methods. The first method implements a linear

propagator so that the linear part of the operator is done exactly in Fourier space and the

stiffness is removed (see for example Trefethen [118]). For example if hats denote Fourier

transforms, and U = e-s(k)tu , the equation becomes

where s(k) is the spectrum from linear theory (see above). Using a pseudo-spectral repre-

sentation of derivatives, equation (3.73) becomes an ordinary differential equation (ODE)

for U (for each k), and is solved with a fourth order Runge-Kutta method.

The second method is a Fourier-Galerkin one. Let ilk (t) be the Fourier coefficients

of u(x, t), i.e.,

Equation (3.72) is equivalent to the following infinite dimensional system of ODEs

These equations were integrated using the Matlab integrator ode 2 3 tb for stiff differential

equations with variable step size to ensure stability and accuracy. The modes uk are only

computed for kl < K max , all other '14 being set to 0, with Kmax chosen so that the neglected

modes have magnitudes less than 10 -15 . The value of K max depends on μ and v and in most

of the computations described here it has a value of 30 or less.

The initial condition used is

where the coefficients αk , βk, k = 1, 2, . . . , 10, are chosen randomly in the interval [0, 1].

The methods were implemented and tested for a very large number of the values of the

parameters v and μ. For the first method, for example, the space discretization ranged from
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128 to 512 modes and the time step was taken to be 10 -3 or smaller with typical maximum

integration times of 100-1000 time units. A variety of diagnostics are used to determine

the form of the solution - these include the tracking of the maxima and minima of the L2

norm of the solution, return maps using these, and Fourier transforms of large time series

data. Such diagnostics have been used successfully in the past for different problems - see

Smyrlis & Papageorgiou [112], Smyrlis & Papageorgiou [113], Hall & Papageorgiou [51],

Blyth et al. [17]. Typically, for each set of the parameters we track the time evolution of

the profile, its energy (L2 -norm) and its Fourier modes. The evolution of the energy was

used to classify various attractors. For example, for steady or steady-state-travelling waves

the energy reaches a constant value at large times, and for periodic attractors the energy is

a periodic function of time. For chaotic solutions the energy becomes highly oscillatory

and information is extracted by numerically constructing return maps and studying their

geometry - e.g., self-similar folding behavior is strong evidence of a chaotic attractor - see

references above.

3.5.1 Numerical Results, Case I: Modified Kuramoto-Sivashinsky

Equation

All our numerical results indicate that the solutions remain bounded as t becomes large.

A proof of such a result is available for the KS equation (see Introduction) and this has

been extended to the modified KS equation recently (Duan & Ervin [34], Tseluiko &

Papageorgiou [120]). In what follows we provide a quantitative description of the different

attractors as v and vary (decreasing v corresponds to an increased length of the system

and increasing corresponds to an increased applied voltage difference).

It was also observed numerically that as the coefficient μ of the integral term goes

to zero, the solutions of the modified KS equation converge in L 2 to the corresponding

solutions of the usual KS equation, i.e., the results confirm that for given t,



38

Figure 3.5 Schematic of the various attractors.

where Sμ(t) and 8(t) are the solution operators (semigroups) for the modified KS equation

and the usual KS equation, respectively. At u = 0 we recover the results obtained for the

usual KS equation; this also confirms the accuracy of the numerical simulations.

In Figure 3.5 we depict a summary of the results for different values of μ as v

decreases. The two parameter phase space is quite large and we confine our results to

an overall description of the dynamical features rather than a detailed study of individual

attractors. The letters A-F are used to identify windows of the parameter v for various

attractors for fixed but moderate values of μ. As u increases the qualitative dynamics
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is unaltered but the windows A-F widen in v. The boundaries in the v — ,u, plane that

separate the attractors A-F are shown in Figure 3.6, from which it is seen that all follow

linear laws (for μ sufficiently large) with slopes larger than or equal to one. The right-most

boundary separating attractors A and B has been established analytically but we do not

have an explanation for the linear behavior of the other boundaries at present. We note that

the lines "fan" out and do not cross. A brief description of the different attractors along

with sample numerical results is given next.

Figure 3.6 The boundaries between attractors in the v μ plane. Case I.

In the attractor labelled A, the solutions decay to zero as time increases and a trivial

steady state is achieved (note that the initial condition has zero spatial mean). This result

can be proved analytically for any μ, using the Poincaré inequality (see Temam [116D:

for periodic functions of period 2π. In fact we can prove the following: If v > 1 + μ, then

the solutions of (3.72) converge to zero (in L 2per,) as t goes to infinity. (Here Lp2er is the
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Figure 3.7 Window A, II = 0.5, v = 1.6. The left panel shows the evolution of the profile
and the right panel shows the semi-log plot of the evolution of the energy, verifying the
decay predicted by the theoretical estimate (3.84).

subspace of L2 ( — π , π) consisting of periodic functions with period 2π.) To prove this, we

multiply equation (3.72) by u, integrate from —π to 71" with respect to x and use periodicity

to obtain

Using the Cauchy-Schwarz inequality and the properties of the Hilbert transform, we can

estimate

Using this in (3.79) along with inequality (3.78) for g = ux , gives

The Poincaré inequality (3.78) also implies



Therefore there exists a nonnegative constant C such that

This implies that 114 2 -4 0 as t —> ∞ , as required. This fact is fully reflected in the

results of Figure 3.5 and hence serves as an additional check on the numerical work. A

sample run which quantifies the rate of decay, is given in Figure 3.7 for μ = 0.5, v = 1.6;

it is verified numerically, therefore, that the decay is exponential with a rate given by the

estimate (3.84).

Figure 3.8 Window B: Unimodal steady state for μ. = 0.5, I/ = 0.7. The left panel shows
the evolution of the profile and the right panel shows the evolution of the energy.

For v < 1 + μ the trivial solution bifurcates to provide a branch of unimodal (2π-

periodic) steady states — window B in Figure 3.5. These are globally attracting and are

stable (the latter observation is based on our time-dependent numerical procedure). Figure

3.8 depicts the evolution of the profile and the corresponding energy for v = 0.7, μ = 0.5.

The solution reaches its steady state in about 10 time units and the long integration to 150

time units provides strong evidence of stability. The size of the windows of attractor B
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Figure 3.9 Window C: Unimodal steady state travelling wave for μ = 0.5, v = 0.5. The
left panel shows the evolution of the profile and the right panel shows the evolution of the
energy.

increase as μ increases but at the same time the lower boundary of attractor B shifts to

larger values of v. For example when μ = 0 the lower boundary of B is at v 7.; 0.31

while for μ 0.5 the corresponding value is v 0.5. This behavior persists for higher

values of μ and for different attractors as is seen in Figure 3.5. Physically, the implication

is that as the voltage potential difference is increased, more complicated dynamics emerge

as compared to the KS equation.

As v decreases further, solutions in attractor B loose stability through a Hopf bifur-

cation to travelling wave states. These nonlinear travelling waves are unimodal (i.e., they

have spatial periods of 2π). For fixed μ the speed of the travelling waves increases mono-

tonically as v is decreased. Typical results from this window are shown in Figure 3.9 for

μ = 0.5, v = 0.5. It is observed from the evolution of the energy that the initial transient

stages of the solution are oscillatory in time, indicating the presence of a time-periodic

attractor in the vicinity of these values of the parameters. These transient oscillations

become longer lived as v is decreased (for all discussed here), and indeed another Hopf

bifurcation takes place this time producing temporally homoclinic bursts. It is found that

the solution between bursts is a bimodal fixed point (i.e., the shortest spatial period is π —

alternatively, all the energy is carried by the even Fourier modes). The bursts are identical
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Figure 3.10 Window D: Periodic homoclinic bursts for μ = 0.5, v = 0.45. The left panel
shows the evolution of the profile and the right panel shows the evolution of the energy.

(this has been checked by studying the phase plane of the energy, for example) but the

time between bursts is not constant and so the solution is not strictly time periodic — this is

also true for the KS equation, Smyrlis & Papageorgiou [113]. The minimum time between

bursts (after transients disappear) increases as v is decreased for a fixed value of μ. Typical

results are shown in Figure 3.10 which depicts the profile evolution and the corresponding

energy evolution for μ = 0.5, v = 0.45.

Further decrease of v leads to a new bimodal fixed point attractor denoted by E in

Figure 3.5. This attractor emerges from attractor D as the period of oscillation of the

homoclinic bursts becomes increasingly larger. We have checked the stability of these

fixed point solutions by integrating to very large times. Typical results are depicted in

Figure 3.11 for μ = 0.5, v = 0.35.

In the initial stages of window F, the bimodal steady states loose stability and a Hopf

bifurcation to time periodic solutions takes place. As v decreases the period increases

monotonically until a period doubling takes place. Sample results are given in Figure 3.12

which depicts the profile evolution and the corresponding energy evolution for μ = 0.5

and v = 0.298. The period has undergone several period doublings and its current value

is approximately 0.8. This pattern of subharmonic bifurcations follows the Feigenbaum
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Figure 3.11 Window E: Bimodal steady state for μ = 0.5, v = 0.35. The left panel shows
the evolution of the profile and the right panel shows the evolution of the energy.

Figure 3.12 Window F: Time periodic attractor for μ = 0.5, v = 0.298. The left panel
shows the evolution of the profile and the right panel shows the evolution of the energy.

scenario in much the same way as for the non-electric case (see for example Papageorgiou

& Smyrlis [92], Smyrlis & Papageorgiou [112], Smyrlis & Papageorgiou [113]). We have

not carried out an exhaustive study to estimate the Feigenbaum universal constants as was

done in the papers above, but have confirmed the trend and the geometric contraction

of time-periodic windows of increasingly larger periods. Just beyond the accumulation

point (in v for fixed μ), the solutions get attracted to chaotic homoclinic bursts which are

spaced apart at roughly equal time intervals, the profile between bursts being bimodal.

Representative solutions are given in Figure 3.13 for μ, = 0.5 and v = 0.29. In this case
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Figure 3.13 Window F: Chaotic homoclinic bursts for = 0.5, v = 0.29. The left panel
shows the evolution of the profile and the right panel shows the evolution of the energy.

the time between chaotic bursts is approximately 44 time units. As v decreases further the

dynamics becomes more complicated and we have computed solutions in small windows

supporting multimodal fixed points, for example. The strongest attractors appear to be

chaotic, however, in line with the dynamics of the KS equation. Such features are illustrated

in Figure 3.14 which contains computations for μ = 0.5 and v = 0.1 (the value of v is

substantially below the accumulation point that heralds the beginning of the first chaotic

attractor). The solution is a pentamodal fixed point (the spatial period is 2π/5 and only

the Fourier modes which are multiples of 5 appear in the spectrum) and the trough to

crest distance is relatively large, approximately equal to 95 units. Such waves have been

observed in KS calculations also — see Frisch et al. [41], Smyrlis & Papageorgiou [113].

We note also that the transient to the steady state is about 20 time units and appears to be

chaotic, but fixed point solutions are more attracting in this particular region of the phase

space (this statement is based on the fact that our initial conditions are chosen randomly).

Finally, in Figure 3.15 we reduce the value of v to 0.05 and the emerging solution is chaotic

for the duration of the run which is 100 time units.



46

Figure 3.14 Window F: Multimodal steady attractor for μ = 0.5, v = 0.1. The left panel
shows the evolution of the profile and the right panel shows the evolution of the energy.

Figure 3.15 Window F: Chaotic oscillations for μ = 0.5, v = 0.05. The left panel shows
the evolution of the profile and the right panel shows the evolution of the energy.
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3.5.2 Numerical Results, Case II: Damped Modified

Kuramoto-Sivashinsky Equation

In this case the minus sign is picked in the canonical equation (3.72) and if μ, < 20; the

growth rate is non-positive and all waves are stable. A necessary condition for instability

is i2 > 4v in which case all waves in the interval (k_, k+ ) are unstable where

Clearly, if μ is fixed and v is sufficiently large, all modes are stable. In fact, modifying the

analysis of Section 3.5.1 we can prove that 1114 2 ---> 0 as t -+ ∞  as long as

The main difference is the minus sign in the first term on the right hand side of (3.79)

and the expression of the bound in terms of 1 I u x I I2 first rather than II uxx  11 2 . It has been

established numerically that the bound (3.86) is sharp as long as u > 2, that is trivial

solutions are guaranteed at large times in this case. When μ < 2, the analysis is modified by

introducing the Poincaré inequality for multimodal solutions. This is guided by numerical

solutions as well as linear theory for the finite periodic domains of interest here, as we

describe next.

Consider the countably infinite set of points (p,, v) where the modes k = 1, 2, .. .

first become unstable (note that we are restricted to integer k due to the particular choice

of periodic boundary conditions). These must lie on the curve μ = 2.0; (see above), and

must satisfy

Solving we obtain
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which shows that if we fix = 7,+i. and increase v above 1/m2 , a trivial solution emerges at

large times. To get a sharp stability boundary we need to consider values of v and μ away

from these neutral points. For example if k = m is to be unstable, then we require it to be

contained in the interval (k_, k +) , that is

The boundary of these regions is seen to be the tangent curve to μ = 2v at each of the

neutral monochromatic modes (3.88) for each m 1, 2, . . . . The stability boundary is

therefore a polygonal curve made up of the segments μ = mu + 1/m so that the curve with

the smallest μ is kept. The points of intersection of two such curves at successive values m

and m + 1, say, indicate points (v, u) where the modes k = m and k = m 1 are neutral

simultaneously. These intersections are given by

Note also that the m = 1 line becomes the sharp first bifurcation boundary μ = v + 1 that

holds for u > 2 analyzed earlier. In Figure 3.16 we show the first three segments of this

boundary — higher elements become increasingly difficult to distinguish from the parabolic

curve due to the geometric clustering of the higher neutral points as m increases.

Bifurcations in the neighborhood of the circles produce m-modal non-uniform steady

states of period 2π/m as m increases (that is as 11, , V 0). For large v trivial solutions

emerge when (3.86) is satisfied. In general the bifurcated solutions near this curve are

unimodal steady states since the k = 1 mode becomes active first. The bifurcation near

the points (3.90) marked by squares in Figure 3.16 produces unimodal behavior due to the

nonlinear interaction of modes which differ by unit wavenumber. These stability results

provide some explanations for the the results of numerical experiments described next.

We have carried out extensive numerical experiments and the results are collected in

Figure 3.17. As described above, the limit μ, v 	 0 deserves separate attention since we
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Figure 3.16 The first bifurcation boundary in the v — μ plane. The first three segments
of the boundary are shown. Circles (from top to bottom) denote points where the modes
k = 1, 2, 3 are neutral, respectively. Squares (from top to bottom) are points where the
modes k = 1, 2, k = 2, 3 and k = 4, 5 are neutral.

expect a host of interesting dynamical behavior such as multimodal attractors and resonant

wave interactions. We do not pursue this limit further in the present work, but note the

run having p, = 1 in Figure 3.17. This run is chosen to correspond with the dynamics

originating from the bifurcation point denoted by an open circle at (1/4, 1) in Figure 3.16.

The run fixes μ = 1 and decreases v below 0.25. As discussed above, a bimodal steady state

is expected since a wave with k = 2 is marginally stable at (1/4, 1). The numerical results

show that a supercritical bifurcation takes place and a bimodal steady state is supported

in the region 0.227 < v < 0.25, indicated by the letter E. Just below v = 0.227 the

dynamics become complicated with chaotic solutions emerging as labelled by the attractor

F on the Figure. Two other values, p. = 0.8 and 1.4 fall within this "small" μ, V region.

For p. = 0.8 a non-trivial steady state bifurcates at v = (0.8 — 1/3)/3 ≈ 0.1556 (this

comes from the segment defined by (3.89) for m = 3 — see also Figure 3.16). The neutral
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wavenumber has k = 3 but the long time dynamics computed here indicate attractor F

behavior. One explanation for this is that due to the geometric contraction of the segments

comprising the polygonal stability boundary, it is increasingly difficult to find attractors

which are supported on windows of diminishing size. A bifurcation analysis of this limit is

the subject of future work. Similar reasoning can be applied to the other numerical example

that has u = 1.4. The bifurcation is now through a k = 2 neutral mode and the sequence

of computed windows begins with periodic homoclinic bursts, to bimodal steady states to

dynamics in attractor F.

The other results in Figure 3.16 are at values of u > 2, and they all have similar

bifurcation paths, namely the sequence of attractors A -4 B -> C D E F, in

much the same way as was discovered for Case I earlier. These cases lie outside the small

v bifurcation scenario given above and all bifurcations are unimodal with k = 1 being

the neutral mode. In addition, subwindow lengths increase as u increases, the behavior

being linear and similar to that depicted in Figure 3.6. Ultimately, however, our numerical

results indicate that for any the dynamics gets attracted to chaotic states if v is sufficiently

small. This happens at small electric fields also and generic dynamical phenomena are

observed.

3.6 Summary and Further Discussion

We have derived and used long wave model equations to study the behavior of falling

films when a normal electric field is present. Through a combination of analysis and

computations, we have established the spatio-temporal interfacial dynamics when the amp-

litudes are small but a nonlinearity is present. This has been done by considering solutions

of a modified KS equation, the modification being a non-local term due to the electric

field. There are two canonical evolution equations, one valid for Reynolds numbers above

critical value, R > 4 cot /3, and one below critical; both canonical equations depend

on two parameters: v = (π/L) 2 > 0, where L is the length of the system, and ,a =



Figure 3.17 Schematic of the attractors for Case II.
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2v1/2WeCi t R11/2Cot /3 — > 0, which is proportional to the reduced electric Weber

number W e (this in turn is proportional to the square of the applied electric field, see

(3.31)). In the absence of an electric field, the evolution equation above critical Reynolds

numbers is the KS equation which has a band of linearly unstable waves for all values of

v < 1. Below critical, however, there are no linearly unstable waves and instability is

possible only if 11, is sufficiently large. We have established numerically, that as long as a

uniform constant interface is linearly unstable, then the large time dynamics depends on the

value of v: trivial states emerge if v > μ + 1 or v > μ - 1 for flows above/below critical,

respectively; as v is decreased, different attractors are found supporting non-uniform steady

state solutions, time-periodic solutions and chaotic solutions if v is sufficiently small. It is

interesting to note that our results predict that interfacial chaos can be achieved at zero

Reynolds numbers also, when fluid inertia is completely absent - the electric field provides

the energy input for this phenomenon.

Finally, we consider some physical systems where such dynamics can be expected. In

particular, we consider the experimental work of Griffing et al. [48] introduced in Chapter

1. In those experiments the fluid is a Convoil 20 with the following properties: p =

890 kg/m3 , v = 1.425 x 10-4 m2/8, 0. = 3.32 x 10 -2 Nlm and a relative permittivity

ef = 2.13. We note that the theory developed here is for perfectly conducting fluids,

that is cf = co - as pointed out by Griffing et al. [48], however, the perfect conductor

approximation retains a lot of the fluid-field coupling features observed in the experiments.

The experiments were performed for inclines with angles 80° < /3 < 90° and Reynolds

numbers in the range 0 < R < 0.375 (we are using our definition of the Reynolds number

as defined in (3.31) and note that this differs from that used by Griffing et al. [48] by a

factor of 3/2). Using the smallest angle reported, we estimate the critical Reynolds number

to be Re = 4cot /9 r-:-., 0.22, approximately, hence the experiments cover both Cases I and

II that we analyzed above. Even though a direct comparison of profiles is not possible

(the experiments use a finite electrode at a finite distance), we can use the operating and
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physical parameters to evaluate the asymptotic approximations leading to the evolution

equations. The available experiments are for electrodes of length L = 0.0237 m and

voltage differences of V0 = 25 kV; the permittivity of free space is f a, = 8.85 x 10- 12 Fl m.

In Table 1 we collect data from the experiments and use it to estimate the capillary number

C and the electric Weber number, We , and in turn their scaled versions C = C/82 and

We = 6We. The theory leading to the modified KS equation takes C and W e to be of

Table 3.1 Experimental Results from Griffing et al. [48] and Calculation of the Parameters
C and We Used in the Asymptotic Derivation of the Long Wave Model

order one and they are eventually scaled out of the problem to achieve a canonical evolution

equation. This is reasonable in view of the qualitative agreement seen between lubrication

theory and experiments in Griffing et al. [48] where the analogous C, for example, is

of order 10 4 . An additional feature of the measured experimental profiles, is that their

amplitudes are less than 1% of the undisturbed film thickness, implying that a weakly

nonlinear analysis is a useful limit to analyze. In addition a comparison between numerical

solutions of long wave model and experimentally observed profiles found good agreement.



CHAPTER 4

A GLOBAL ATTRACTING SET FOR NONLOCAL

KURAMOTO-SIVASHINSKY EQUATIONS

In the previous chapter we presented results from extensive numerical computations for the

modified Kuramoto-Sivashinsky (MKS) and the damped modified Kuramoto-Sivashinsky

(DMKS) equations. As was pointed out, the presence of the electric field enhances the

instability - the spectrum contains a "negative diffusion" term which is 0 ( I k I k 2 ) and is

worse than the usual 0 (k2 ) negative diffusion present in the KS equation. The new term

is still overcome by the fourth derivative stabilization at sufficiently short waves. It is

well known that the KS equation can be described by low modal dynamics and possesses

a globally attracting set that attracts the large time trajectories. Proofs are available for

the global existence of solutions (see Nicolaenko & Scheurer [85], Tadmor [114]), for the

estimates of the dimension of the attracting set (see Collet et al. [27], Il'yashenko [58],

Jolly et al. [61]) as well as analyticity results (see Collet et al. [26]). The present study

allows an interesting modification of these theories due to the additional growth supplied

by the electric field. In fact we will study a generalization of the physical system presented

in the previous chapter, where the nonlocal term has a growing spectrum proportional to

I k IP, where p E [3, 4). As the limit p 4- is approached, the problem becomes ill-posed.

Our aim is to provide rigorous estimates for the dimension of the attractor as p varies (p = 3

then gives the problem of Chapter 3). We do this for parity and non-parity solutions.

We consider, then, the following generalization of equations (3.72):

on a 2π-periodic interval with v > 0, > 0. Here p E [3, 4) (for p = 3 equations (3.72)

and (4.1) are identical), and the operator CH o Ox )P is defined by its symbol in Fourier space,

54
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namely TRW o ax ) 11 = 110) — see properties in Appendix A. We call the equation with

the plus sign in front of uxx the Modified Kuramoto-Sivashinsky (MKS) Equation, and the

equation with the minus sing in front of uxx — the Damped Modified Kuramoto-Sivashinsky

(DMKS) Equation.

Linear stability of (4.1) follows by writing u = E exp [ilex + wt] (k E Z), linearizing

with respect to € and using the properties in Appendix A, to obtain

where co+ and co_ correspond to the MKS and DMKS equations, respectively. The nonlocal

term is always destabilizing and enhances the hydrodynamic instability (for MKS) and can

make a hydrodynamically stable flow unstable (for DMKS) if μ is sufficiently large. The

extension of the nonlocal operator as defined above, to the interval p E [3, 4), enables a

parametric study of the increasing instability. We expressly exclude the case p = 4 because

equation (4.1) becomes ill-posed when u > v (it becomes a fourth derivative negative

diffusion equation).

We prove global existence and uniqueness results and the existence of the absorbing

ball in L2 . In all the results presented in the sequel the dependence on p E [3, 4) is explicit

and the physical problem results (when p = 3) follow readily. In fact we derive estimates

for the L 2 -norm of the solution as a function of μ, v and p.

Throughout this Chapter we denote by L2per, Hpker , k = 1, 2, ..., the subspaces of

the Sobolev spaces L2 (-π, π), Hk (-π, π) consisting of periodic functions with period

2π. We also use Lp2er, 
Hier to denote the subspaces of L 22per , Her consisting of functions

with zero mean, and use L 2odd , Hokdd to denote the subspaces of L p2 er , Hpker consisting of odd

functions.
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4.1 Existence and Uniqueness Theory for Nonlinear Cauchy Problems

In this section we review some basic results regarding existence and uniqueness theory of

the solutions of nonlinear partial differential equations which are relevant to our problem.

For more information see for example Henry [52] or Sell & You [104].

Consider the following Initial Value Problem for an abstract nonlinear evolutionary

equation:

on a Banach space W, where A is a sectorial operator (for the problems considered in this

chapter it is enough to consider self-adjoint operators which are bounded below and have

point spectrum, for more general definition of a sectorial operator see for instance Henry

[52] or Sell & You [104]). We also assume that F maps some open subset U C W' x R+

into W, for some α E [0, 1), and that F E CLip;9(U, W), where Cu p; 0(U, W) are those

functions which are locally Lipschitz continuous in u and locally Holder continuous in t on

U, i.e., for each (u1 , t1) E U there exists a neighborhood V C U of (u 1 , t 1 ) such that for

any (vi, s1) E V, (v2, s2) E V,

for some constants L > 0, 0 E (0, 1]. It is also assumed that for every bounded set B C U,

the image F(B) is bounded in W.

Let 7 > 0 and I = [t0 , t0 + 7- ) be an interval in R+.

Definition 4.1.1 A pair (u, I) is said to be a solution of (4.4) in the space Wα on I if

: I —> W is (strongly) continuous, u(to) = u 0 , and on (t 0 , t0 + r) we have (u(t), t) E U,

u(t) E D(A) (where D(A) is the domain of the operator A), the mapping t F(u(t), t)

is locally Holder continuous, u is (strongly) differentiable, and u satisfies the equation

бtu(t) + Au(t) = F(u(t), 	 (4.6)
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in W, at each t E (t0, t0 + 'r).

The following local existence and uniqueness result holds:

Theorem 4.1.2 Let A be a sectorial operator, α E [0, 1), F E CLip;θ(U, W), where U is

an open subset of Wα x R+. Then for every (u 0 , t0) E U the initial value problem (4.4)

has a unique solution in Wα on some interval I = [t 0 , t0 + T) , for some T > 0.

Let (u 1 , li) and (u2 , /2 ) be two solutions of (4.4), where I i = [t0 , t0 + Ti ), i = 1, 2,

and T1 < T2. The uniqueness of solutions implies u1 (t) = u2(t) for t E /1 . Hence (u2, 12)

is an extension of (u 1 , /1). If Ti < 72 then (u2 , /2 ) is said to be a proper extension of

(u 1 , /1 ). A solution (u, I) is said to be a maximally defined solution if it has no proper

extensions.

Theorem 4.1.3 Let A and F be as in Theorem 4.1.2 above. Then for every (u0, t0) E U

the initial value problem (4.4) has a unique maximally defined solution (u, I) of (4.4) in

Wα, where I = [t0 , T). Furthermore, either T = oo, or there exists a sequence to -4 T- ,

n = 1, 2, . . . , such that (u(tn ), tn ) -4 бu as n -4 ∞ . (If U is unbounded, the point at

infinity is included in бu, e.g., if бu has only the point at infinity, then limtt-->T- llu(t)Ilα =

∞ .)

4.2 Results for the MKS and DMKS Equations

In this section we study the behavior of the solutions of equations (4.1) with periodic

boundary conditions. Note that the operator 7-t o бx is self adjoint, densely defined and

bounded below in L2per. Hence it is sectorial, and the powers (H o бx )P can be considered

which are linear operators.

We will consider solutions having a vanishing spatial integral. This assumption is

correct due to the conservation of spatial integrals, as can be seen by integrating equation

(4.1):
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So, if initially the spatial integral is zero, it remains zero for all time.

First, we will show local existence and uniqueness of the solutions in //pi, on some

time interval [0, T(u0)) using the results above (Theorem 4.1.2) and then we will show that

if T(u0 ) is finite then the solutions are uniformly bounded for all time in 4r , which by

Theorem 4.1.3 also implies global existence.

An estimate for the upper bound of the L 2 -norm of the solutions in terms of the

parameters of the equation will also be obtained. This will be done using the method of

Collet et al. [27] by considering first the problem for antisymmetric (odd) solutions, and

then expanding the results for general (not necessarily odd) solutions.

4.2.1 Local Existence and Uniqueness

For equations (4.1) we fix the basic space to be the real Hilbert space 4er . We define the

operator A l : D(A1) 	 'per

Let a be chosen such that the eigenvalues of A l are all positive, i.e.,

Then A l is a positive sectorial operator. By Theorem 1.4.2 in Henry [52] the operator Ai-P14

is a bounded linear operator. It is easy to see that the operator A2 o A-1 1'74 is also bounded.

Hence, Corollary 1.45 of Henry [52] implies that A = A l + A2 is a sectorial operator.
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Equations (4.1) take the form

where the nonlinear operator F : Hier 	 L2per is defined by

It can be verified that F E pier, L
2per ) • Therefore, by Theorem 4.1.2, for every

Up E 14r there exists a unique maximally defined solution in H1pler on the interval [0, T),

where 0 < T = T (no ).

It remains to prove that the solution is uniformly bounded in H1pler on every finite time

interval. Then, from theory in the previous section (Theorem 4.1.3) it follows that T(u0 ) =

∞ . In order to accomplish the proof, we first need to establish uniform boundedness of the

solutions in L2per . This is done next, for both odd-parity and non-parity solutions.

4.2.2 Uniform Boundedness of the Solutions in L2per

In what follows we analyze the MKS equation (the plus sign is taken in equation (4.1))

and prove uniform boundedness of the solutions in the L2per and //pi, norms, along with

estimates for the radius of the absorbing ball. When the DMKS equation is considered, the

results are similar and are briefly discussed in Section 4.5.

The Antisymmetric Case First we study the antisymmetric case, i.e., we consider the

solutions in Lodd . It is noticed that if a solution of (4.1) is initially in L o2dd then it remains

in Lo2dd for all time.
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Then equation (4.1) can be written as

If we express u as u(x, t) = v(x, t) + φx), where φ E L2odd is an appropriately

chosen gauge function found in the sequel, then the equation becomes:

Multiplying the last equation by v and integrating over the interval [—r, 7r] gives
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The main idea now is to find an odd function φ such that the bilinear form (4.19)

becomes positive definite and for large enough L 2 -norm of v the right hand side of (4.20)

becomes negative.

We define the following auxiliary quadratic forms:

Proposition 4.2.1 There exists a function φ E Ho2dd such that for 1.1 > 0 and v E (0, vo(μ)),

and for all v E Ho2dd and all a E [o , 1]

(The upper bound vo (μ) is the unique positive solution of ko(μ, v) = 1 where ko is the

unique positive solution of w + (ko ) = 0. Note that for p = 3 it follows that vo (μ) = 1+ ii. If

v > vo (μ), it can be proved, using Poincaré inequalities, that 11u11 2 decays to zero uniformly

as t tends to infinity. Also, αo  is some fixed number in (0, 0.5) and C(7, v) is a function of

'y and v only, which will be determined later)
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Proof: We work with the Fourier series of v and (pi. Since v and Sp are odd functions

Next we will find the expressions for Raw (v) and Q (v) in terms of the coefficients vn,

and On . First, note that



To prove the first part of the proposition, we need
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where 7 = vl-P/2μ as was defined before, and also x = v 1 / 2 n.

In the general case 3 < p < 4, consideration of the large γ behavior of equation

(4.35), yields N = 0 (v--1/2γ1/4-p) Note that as p -4 4- , N -> oo and the analysis

breaks down as expected. When p = 3 it can be easily verified that inequality (4.35) holds

for x > 2.2(7 + 1), which implies n > 2.2v-1 /2 (7 + 1). Therefore, when p = 3, we can

take N = [2.2v -1 /2 (-y + 1)1.

Next, let B = B(7, v) be determined as follows:
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Even though (5 cannot be obtained in closed form for general p, its large behavior

can be calculated asymptotically, yielding

We choose

The remaining coefficients ψk are chosen to be nonnegative and will be specified later. Now
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So, we need to get (w, w) > —4α(w, rw). The sufficient condition for this is that the

Hilbert-Schmidt norm of 4αr is less than 1, i.e.,

On the other hand, however, we need to find the coefficients /Pk such that (φ,φ)αφ  is

minimized (this is needed in the estimates that come later). We can satisfy (4.45) by

choosing 'IN to be constant. But then the corresponding Fourier series does not converge

and the norm of φ becomes infinite. Therefore, we choose 7/4 to be a nonnegative and

non-increasing function of k, vanishing sufficiently fast as k goes to infinity. This can be

done by taking

where M is an integer which will be chosen later (of course we should take M > N to

be consistent with (4.39)), and f E C 1 [0, 00] is a nonnegative non-increasing function

satisfying the conditions f (0) = 1, PO) = 0, sup In < 1, and

A plot of the function (φ(x) is provided in Figure 4.1.

For k > 1 we get 10k+t — ψk-11 = 0 if k + 1 < 2M and also if k + 1 and k — 1 are both

odd numbers (i.e., if k and 1 are of a different parity).

Next, if k and 1 are of the same parity and k + 1 > 2M, we get:
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Figure 4.1 The graph of the gauge function φ(x) for v = 0.5, p = 1, in physical space,
when the function f (k) in equation (4.46) is chosen as f (k) = e- k2 .
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We choose M > N such that the right hand side of the last inequality becomes less

than 1/16. This can be done since the right hand side of (4.61) is a positive function

of M that decays to zero as M --> ∞  . For "small" v (that is v E (0, 1]) if we take
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When p = 3 we obtain M = 0 (77 15 v -7 11° ) , a result that is used later.

Next we estimate the value R„,,φ((φ). Using (4.24) we first note that Rav ((p) = Ro(p),

since the part which is dependent on α is equal to zero due to the periodicity of cp. Also, if
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Now we are ready to prove uniform boundedness of the L 2 -norm of the solutions of

the MKS equation.

Theorem 4.2.2 Let IL be any positive number and v E (0, vo(μ)). If u(x, t) is a solution

of equation (4.1) such that u(x, 0) = u o (x) E Hoidd, then there is a constant K > 0

(independent of μ,, v, u o), and a constant D > 0 (independent of μ, u o) such that

where cφ is the function constructed in Proposition 4.2.1, and C(7, v) is given by (4.67).

Proof: Let φ be the function defined in Proposition 4.2.1. Then the bilinear form

(4.19) is positive definite. Indeed, for any nonzero function w we get (w, w),,,,, = Rα φ(w) >

Q (w) > 0. Then, applying first the Cauchy-Shwarz inequality and then Young's inequality

(see Appendix C) to the second term in (4.20) we obtain
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Remark 1. We also have the following estimate for 11c0112:
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where v = (π/L)2 and t = (7/L)7 (see Chapter 3 and Tseluiko & Papageorgiou [119]).

In unscaled variables, therefore, the estimate for the radius of the absorbing ball takes

the following form:

which significantly improves the estimate 0 (76L5/2 ) obtained by Duan & Ervin [34].

Remark 2. If p. = 0 then 'y = 0 and 6 = 1 which implies R = O(v -21/10) .) This

value corresponds to the case of the usual Kuramoto-Sivashinsky equation:

In unsealed variables, therefore, the estimate for the radius of the absorbing ball in L2odd

is O(v1/4v-21/20) = O(v-4/5) = 0(L8/ 5 ).) This is the estimate which was obtained by

Collet et al. [27] for the case of the usual Kuramoto-Sivashinsky equation.

Remark 3. It can be seen from the estimate (4.80) that in the general p case (recall

that 3 < p < 4), the estimated radius of the absorbing ball is an increasing function of p

which blows up as p 4- . This is expected due to the ill-posedness of the equation when

p = 4.

The General Case For the general case, when solutions of (4.1) are not necessarily odd

functions, the idea is to consider a generalization of the gauge function φ. We start by

introducing the following Liapunov function:

where S is the following translation-invariant set of functions:



This is equivalent to saying that
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Noting that the last term is zero due to our choice of a, and using the bilinear form (4.19),

we can write this as
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For a given t we can assume for simplicity that a(t) = 0 in (4.95) (since the right hand side

of this equality is invariant under translations a —> a + constant).

Next we want to get a result similar to Proposition 4.2.1 for the general case. Let w

be any function in H2per and decompose it as follows:

where ws(x) = 2 [w(x) + w(—x) — 2w(0)] is an even 27-periodic function of x, and

wa (x) 	 [w(x) — w(—x)] is an odd 2π-periodic function of x. Besides, ws (0) = 0.

Now, let us introduce the following operator:

For simplicity, let us reduce our consideration to half the interval, i.e., let us assume

that all the functions are 7-periodic. (We can perform this reduction without loss of

generality, since it is always possible to transfer from L-periodic intervals to 27-periodic

domains and vice versa, without changing the form of the equation, see for example trans-

formation (4.84). The only impact of such transformations on the equation is that the

coefficients /..t and v are rescaled.) Then T[w s] is an odd 27-periodic function. Also, since

Rαφa (ws) Rαφa (T[ws]) and Q(ws) = Q(T[w s]) we get that Proposition 4.2.1 holds not

only for wa but for w s too:
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for all α E [αo , 1]. Next, it can be easily checked that

for all α E [o, 1]. Hence, (4.99) and (4.100) imply

This means that with our choice of a = a(t) Proposition 4.2.1 holds for the general case

also.

After this point the proof of the nonlinear stability becomes the same as for the

antisymmetric case. Thus the following result holds:

Theorem 4.2.3 Let ,u be any positive number and v E (0, vo(μ,)). If u(x, t) is a solution

of equation (4.1) such that u(x, 0) = uo(x) E 'Per, then there is a constant K > 0

(independent of μ, v, u 0), and a constant D > 0 (independent of μ, u 0) such that

where φ is the function constructed in Proposition 4.2.1, and C(7, v) is given by (4.67).

(The constants D and K are the same as in Theorem 4.2.2.)

4.2.3 Uniform Boundedness of the Solutions in H er

To prove global existence of the solutions in // pi, it is enough (according to Theorem 4.1.3)

to prove uniform boundedness of the solutions in H1i;„. This will be established by showing

uniform boundedness of the L 2-norm of uxx , which by Poincaré's inequality also implies

boundedness of the L 2 -norm of ux .
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Using Young's inequality, Agmon's inequality, the Nirenberg-Gagliardo inequalities and

the interpolation inequalities (see Henry [52], Sell & You [104], Temam [116], and also

Appendix C), the integrals on the right hand side of this expression can be estimated as

follows:
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Applying the uniform Gronwall inequality (see Temam [116], and also Appendix C) implies

that Iluxx II is bounded on the time interval [0, T(u0)) if T(u0 ) is finite. This also implies

boundedness of I I ux 11 2 . Theorem 4.1.3 then gives T(u0) = ∞ . Therefore the following

result holds:

Theorem 4.2.4 For every u0 E 1.1p1 er there exists a unique globally defined solution of

equation (4.1).

Now, having global existence of the solutions of (4.1), Theorem 4.2.3 implies existence of

an absorbing ball in :Lp2 , and the following estimate for the radius of this absorbing ball:

Corollary 4.2.5 Let μ be any positive number and v E (0, vo(μ)). If u(x, t) is a solution of

equation (4.1) such that u(x, 0) = uo (x) E H1pler, then there is a constant K (independent

of μ, ll, u0 ), such that

(Here K, C(7, v), cφ are the same as in Theorem 4.2.2.)

4.3 Numerical Evaluation of the Analytical Results

The MKS equation (4.1) was solved numerically with periodic boundary conditions using

a modification (when p 3) of the methods used in Tseluiko & Papageorgiou [119]. Our

main objective is to compare the analytical bound (4.122) for the radius of the absorbing

ball in the space Le er , with the "exact" numerically computed value 1142. A comparison

at large values of 7 (equivalently large μ = v 1 /2 7) for fixed v , is particularly amenable

due to the simple algebraic nature of the estimate in this limit (see (4.80)) — the large
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Figure 4.2 Variation of max II u11 2 with increasing II for fixed v = 0.5, p = 3. Diamonds —
numerical computation (solid line is of slope 3); dashed line — current theoretical estimate
(4.80); dashdot line — estimate of Duan & Ervin [34].

7 and large ti, behaviors are identical due to the fact that v is fixed. The computations

are carried out to values of time beyond which transient behavior dies out and we can be

confident that the computed trajectories lie close to the attractor. Given values of p, I), and

μ , the quantity max(11u11 2 )(p, v; pc) is found over a time interval beyond transients. This is

repeated for a fixed v = 0.5 and a range of increasing values of p. = 22 , 23 , ... , 28 . The

results are presented on logarithmic scales in Figures 4.2 and 4.3 for p = 3 and p = 3.2,

respectively. As can be seen from the Figures, the behavior is linear and an estimate for the

slope, providing a numerical best bound for the L 2per norm as a power of 1.1 (for large μ), is

determined. The numerical results give the behavior
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Figure 4.3 Variation of max flub with increasing y for fixed v = 0.5, p = 3.2. Diamonds
— numerical computation (solid line is of slope 3/(4 — p) = 3.75); dashed line — current
theoretical estimate (4.80).

Our corresponding analytical estimates (the values are 4.1 and 5.7, for p = 3, 3.2,

respectively) are also given in the Figures along with the estimate of Duan & Ervin [34]

when p = 3. The analytical results overestimate the numerically constructed bound, but

the present estimates are better than those found in the literature.

As indicated in equations (4.116)-(4.117), the numerically computed large ti estimates

are O (μ,71- )- ) . This can be understood by the following order-of-magnitude argument valid

for large ft. Considering the equation

a balance must take place between the nonlinearity, the fourth order diffusion and the

nonlocal term (the unsteady term provides a time scale a posteriori). We have, then,
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which in turn provides the scalings

These scalings suggest that as a increases typical amplitudes increase and at the same time

the spatial scale over which the solution varies, decreases; in addition, the solution varies

over typical time scales which are also decreasing asymptotically. This behavior places

severe restrictions on the numerical parameters. Taking the case p = 3, for example, we

observe that doubling the value of μ requires a decrease of the time-step by a factor of 2 4

and a doubling of the number of modes. In accordance with the scalings (4.120), in order

to resolve the solution for the largest value p = 256, we used a time-step of 1.16 x 10 -11

and 2 14 Fourier modes. As p increases the situation worsens as evidenced by (4.120).

As shown in Figures 4.2 and 4.3, the values of Hub follow the scaling for u shown

in equation (4.120). This is consistent with the numerical solutions which exhibit pulses
1

of width 0 (p,- 4---70 and height 0 (μ,4P ) whose net contribution over the interval [-7r, 7]

gives Hub ~ μ 14 
3
-P . This pulse behavior is indicated in Figures 4.4 and 4.5 for p = 3 and

ti = 16 and 32, respectively. There are approximately 28 pulses for μ, = 16 and 52 pulses

for μ = 32, while the pulse heights are approximately equal to 2 x 10 4 and 1.5 x 105 ;

these numerical observations are in agreement with the scaling laws (4.120) and have been

confirmed for all the computations presented here.

These findings enable us to formulate the following conjecture.

Note that the values of p, need not be too large for (4.121) to hold. The numerical results

give values of approximately 2.
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Figure 4.5 The solution u(x, t) after 20000 time-steps; it = 2 5 , v = 0.5, p = 3.
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4.4 Analyticity of the Solutions of Nonlocal Kuramoto-Sivashinsky Equations

In this section we use the approach of Collet et al. [26] to prove that the solutions of the

MKS equation are analytic in a strip around the real axis. The results for the DMKS

equation are analogous and can be achieved by slight modifications of the analysis of this

section.

Theorem 4.4.1 If the initial condition uo for equation (4.1) with 2π-periodic boundary

conditions is in Hier then for large enough t the solution u(x, t) satisfies the boundp

where A = 71 o 0x , and a*, t* are functions of 1.1, v, and p which will be determined later.

Proof. First, let t' > 0 be such that Hub < 1.5R(//,, v) for all t > t', and let us shift

the origin to t'.

Let ilk (t) be the Fourier coefficients of u(x, t), i.e.,
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Let A = 11 o (9x , i.e the operator A acts by multiplication on the Fourier coefficients

as follows:
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where el, 629 6.39 64 are some constants. Choosing these constants so that the coefficient of

I1A2vH becomes zero, i.e.,
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To get a wider estimate for the strip of analyticity we should choose ε1, E2, E3, E4 and α so

that αt* is maximized while condition (4.137) is satisfied. Let the corresponding values be

ET, 4, E  and α*. Then

To finish the proof we note that 117/112 < 1.5R(μ, v) for t > t'. Therefore we can shift the

origin to any time t > t' and the statement of the theorem follows. Condition (4.123) is

satisfied for t > t*. ■

Remark 4.4.2 Note that when μ, v are fixed and v < μ„ condition (4.137) implies that

E3 -> 00 as p 	 4- . Then it can be easily seen that α*t* -4 0 as p 	 4- . This suggests

that analyticity breaks down in the limit p 	 4- .

Theorem 4.4.1 implies that for large enough t the Fourier coefficients of the solution

of (4.1) satisfy

Thus, the following result holds:

Theorem 4.4.3 If the initial condition u0 for equation (4.1) with 27r-periodic boundary

conditions is in H-1Per then for large enough t the solution u(x, t) is an analytic function ofp

x in a strip around the real axis of width at least α*t*.
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4.5 Summary and Further Discussion

We have studied a class of nonlocal Kuramoto-Sivashinsky (KS) equations arising in inter-

facial electrohydrodynamics. Two modifications of the well-known KS equation are aff-

orded by the model: (i) the addition of a nonlocal Hilbert transform term that enhances

the usual second derivative negative diffusion (equation (4.1) with the plus sign), and, (ii)

the case when the nonlocal term is the only term providing instability (equation (4.1) with

the minus sign), all other linear terms being diffusive. We have presented in detail rigorous

results for case (i). In particular we proved global existence and uniqueness of the solutions

in Hi Hier by first proving local results and then establishing global results by proving uniform

boundedness of the solutions in //pier on each time interval. We also established uniform

boundedness of the solutions in Her after proving uniform boundedness in L2per, using a

modification of the method of Collet et al. [27]. Along with global existence, this proves the

existence of an absorbing ball in L 2per and provides estimates for its radius. Our estimates

improve those of Duan & Ervin [34], for p = 3, who used a different gauge function.

Moreover, we have established that the solutions are analytic in a strip around the real axis.

An evaluation of the rigorous estimates valid at large values of the electrical para-

meter p, as compared to numerical solutions of the equations is also carried out (see Figures

4.2, 4.3). The numerical work indicates that an optimal L2per solution bound arises; this

is explained by a simple scaling argument. A conjecture valid for all p (and verified by

extensive numerical simulations) is made regarding these findings.

In case (ii), results which parallel those above have been obtained when μ is larger

than the threshold value Po (v; p) above which linearly unstable modes enter — for example

when p = 3, we can take Po = 20;. (When μ < Po the value of 114 2 decays to zero

as t oo.) The main differences are technical and result in other expressions for the

quantities N, M, 6 and C(y, v) and in turn result in different estimates for the radius of

the absorbing ball. The large y (note that 7 = vi—p/2u ) behavior of this radius is identical

to that given for case (i) — see estimate (4.80).



CHAPTER 5

INSTABILITIES AND SATURATION OF ELECTRIFIED THIN LIQUID

FILMS

5.1 Physical Model

Consider a viscous liquid film wetting a solid horizontal substrate (we assume complete

wetting and hence do not model the physics of contact line dynamics). Two related configu-

rations are of interest: overlying two-dimensional films with the liquid layer resting on

the substrate, and, overhanging two-dimensional films with the liquid layer wetting the

underside of the horizontal substrate. A schematics is provided in Figure 5.1 for the

overlying film and with a normal electric field present as analyzed later.

Figure 5.1 Schematics of the problem.

The essential physical difference between the two configurations is very intuitive:

gravity is stabilizing for overlying films and destabilizing for overhanging ones. When

surface tension is present, short waves are also linearly stable implying that overlying films

will normally be stable and expected to return to their rest state of uniform thickness and

zero flow. When the film wets the underside of the plate, gravity is destabilizing and the

ensuing dynamics depend on several factors including the initial thickness of the layer

(equivalently the mass), the size of the capillary forces, and the electric field if present.

89
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If the mass is sufficiently large we expect to see two-dimensional lobes of fluid forming

and falling vertically away from the plate. These may in turn break to leave disjoint

threads of fluid which can in turn undergo secondary capillary instabilities in the transverse

direction to form droplets. This breakaway scenario is very complicated and needs to

be addressed by direct numerical simulations. Our interest in the present study is the

modelling and analysis of interfacial flows which do not develop breakaway structures.

It is reasonable to expect that sufficiently thin films (equivalently those having small mass)

with sufficiently large surface tension, will evolve without breakaway structures. In the

present chapter we derive model long wave equations which contain the competing physical

mechanisms of gravitational stabilization or destabilization, surface tension, and electric

field destabilization. The model equations are studied analytically and solved numerically

to confirm the intuitive conjectures. Overlying films (with no field present) produce rather

trivial and uninteresting dynamics with solutions approaching uniform states. Addition

of a normal electric field introduces an instability that is not active in its absence — the

instability has a high wavenumber cut-off which depends on surface tension. We find

(through analysis and computations) that non-uniform large time structures emerge with

positive solutions remaining smooth for all time — touchdowns occur locally but only after

infinite time. According to our model equations, hanging films which are gravitationally

unstable, do not form breakaway structures when surface tension is present. This result

persists in the presence of the destabilizing electric field also. Evidence for the dynamical

behavior of both configurations comes from a global boundedness of solutions theorem, as

well as accurate numerical computations which indicate that the film thins locally to zero

after infinite time (physically, when the film is thin enough, Van der Waals forces will enter

to cause rupture and de-wetting in finite time).

The fluid is Newtonian of a constant density p and dynamic viscosity y and is assumed

to be a perfect conductor as in Chapter 3. The surface tension coefficient between the liquid

and the surrounding medium is a. We denote by h(x, t) the local film thickness, which is
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a function of space and time, and the unperturbed thickness of the liquid layer is It o . The

gravitational acceleration g acts in the vertical direction. By a small modification which

switches the sign of g, the equations that we will derive also describe hanging films below

horizontal plates. The plate is considered to be an infinite electrode which is held at zero

voltage potential, i.e., the electrode is grounded. Another flat electrode is parallel to the

plate and is placed infinitely far from it, such that, in the limit, the resulting electric field

is uniform and perpendicular to the plate, i.e., we assume that at infinity the electric field

E approaches a constant value E0 which is normal to the plate. The surrounding medium

is assumed to be a perfect dielectric with permittivity Ea , and the corresponding voltage

potential in it is denoted by V. Since the liquid is a perfect electric conductor, the potential

is zero on the interface and there is no electric field inside the liquid layer (see Chapter 3

also).

5.2 Governing Equations

First, we introduce a rectangular coordinate system (x, z) with the x-axis pointing along

the plate and the z-axis pointing up and being perpendicular to the plate; the associated

velocity field is denoted by u = (u, v). As in Chapter 3, we denote the liquid layer by

Region I and the surrounding medium by Region II.

The governing equations in Region I are the mass conservation equation (2.23) and

the momentum conservation equations (2.24), which for the present problem take the form:
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In Region II the electric field can be written as a gradient of a voltage potential V, E =

—V V, and the potential V satisfies Laplace's equation:

The boundary conditions are the no-slip condition and the impermeability condition at the

wall:

The condition that the electric field is constant and normal to the plate at infinity implies:

At the interface z = h(x, t) the kinematic condition is satisfied:

Also, due to the assumed perfect conductivity of the fluid and continuity of the potential

across the interface, the potential is zero at the interface:

which implies

Finally, the tangential and normal stress balances at the interface become

and
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where paten is the constant (atmospheric) pressure in Region II.

This system of equations admits a zero flow basic solution which has h(x, t) = ho ,

and u = 0. This solution can be obtained assuming that all the dependent variables are

functions of z only. The solution is

5.3 Dimensionless Equations

Let the unperturbed depth h o be the scale for the lengths, U0 be the velocity scale, the time

scale be chosen to be uoh=Q- , 	 hothe pressure scale be 	 and let the unit for the voltage potential μUo'

be taken from the change in the basic potential, which is E oho . Hence, we introduce the

following nondimensional variables:

We substitute these variables into the system of governing equations and boundary conditions,

and drop stars for convenience. The nondimensional equations in Region I are

and in Region II we obtain



The dimensionless boundary conditions become

and at the interface z = h(x, t) we have
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where Patm = (patmho/μUo) is the nondimensional constant pressure in Region II. The

other dimensionless parameters are a Reynolds number R = 	 , a Capillary number

C = 	 an electric Weber number We = 	 , and a gravity number G =
σ 	 2μUo 	 μUo

measuring the ratio of gravitational and viscous forces.

Assuming that all dependent variables are independent of the longitudinal coordinate

and time, yields the following basic solution of the dimensionless problem (5.18)-(5.27):

and in the following we will consider arbitrary changes to these quantities. Thus, we

introduce new unknowns u, v, /3, V:



The equations take the following form (dropping the tildes):

In Region I:
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The above dimensionless system is fully nonlinear and presents a formidable computational

and analytical task. In what follows we make analytical progress by studying the physically

relevant case of thin films using a long wave nonlinear theory. The main difference between
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this analysis and that of Chapter 3, is the absence of a shear flow due to the zero inclination

of the plate. This in turn produces a fully nonlinear model for the evolution that is not

amenable to a weakly nonlinear analysis and Kuramoto-Sivashinsky type dynamics.

5.4 Long Wave Asymptotics

In the analysis presented next we assume that the typical length A of the interface deformation

is long compared to the undisturbed thickness h i) , i.e., we assume that 6 = if is a small

parameter. The separation of scales provides for the following rescalings in Region I:

The scaling for v follows from the continuity equation (5.35) noting that u = 0(1),

while the size of the pressure is picked to enable capillary forces to enter. Using the

transformations



97

The last boundary condition contains a nonlocal contribution since V satisfies Laplace's

equation in the potential region above the fluid layer. Equations (5.45)-(5.47) and boundary

conditions (5.48)-(5.51) are exact and amenable to an asymptotic analysis for small J.

Before developing such expansions we consider the problem in the potential region above

the liquid layer.

Considering the problem in Region II, we will calculate the nonlocal contribution in

(5.51) in terms of the interface position. We introduce the scalings

i.e., we also introduce a large vertical coordinate in order to facilitate the application of the

voltage condition (5.38) at infinity. Noting that a x = 8.9, az = 68( yields the following

harmonic problem for V:
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This voltage potential problem is solved in the same way that the problem (3.45)-

(3.46) was solved in Chapter 3. Using those results, we obtain

where we recall that 1i is the Hilbert transform operator defined by

(See Appendix A for definitions and properties of the Hilbert transform.)

Knowing the nonlocal contribution due to the electric field in Region II, we can

reconsider the normal stress boundary condition (5.51), noting that V, transforms to (517(

when the Region II change of variables (5.52) is applied. We obtain

In order to arrive at a system whose dynamics retains the effects of the electric field, gravity

and surface tension, we are led to the following canonical scalings:

where C, We , G are order one quantities. The Reynolds number R is assumed to be of

order one throughout.

The derivation of the nonlinear evolution equation of the interface is accomplished

by introducing the following asymptotic expansions
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along with the scaled dimensionless groups (5.60). Substituting these expansions into the

equations in Region I yields the following leading order solutions:

Using the solution for the velocities (5.63) and (5.64) in the kinematic condition (5.49)

gives, to leading order,

Written in full, by use of expression (5.65) for P0 , the evolution equation is

There are several noteworthy features of this equation. First, the electric field enters

through a nonlocal term and has a destabilizing effect in much the same way as described

for electrified falling films in Chapter 3. Gravity is also present, and if we allow the sign

of G to become negative then the equation describes the long wave thin film dynamics of

hanging films. In the absence of an electric field (W e = 0) and if G > 0, the flow is stable

to small disturbances — gravity and surface tension act to damp out perturbations. Instability

is possible (with W e = 0 still) if G < 0 as is intuitive for hanging films (this case has been

considered by previous investigators, see Bertozzi & Pugh [14], Ehrhard [37], Ehrhard &

Davis [38], Yiantsios & Higgins [124], Yiantsios & Higgins [125]). The electric field,

however, can be utilized to destabilize liquid films lying on top of a substrate electrode

(G > 0), and the novel equation (5.67) enables a quantitative study of such phenomena.

In order to quantify some of the physically intuitive observations outlined above,

we carry out a linear stability analysis which is helpful in identifying stable and unstable
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regimes when the electric field is present. The fully nonlinear evolution is considered in

later sections.

5.5 Linear Stability Analysis

For simplicity we write t and x for r and e, and H for Ho . We also drop the bars above the

nondimensional parameters C, G, W e to get

We write H = 1 + en, and substitute into the equation. This gives the following

linearized equation at (€) :

Looking for normal mode solutions 77 = fj exp(st + ilex), where η is in general a complex

constant, leads to the following linear dispersion relation

Figure 5.2 Changes in the dispersion relation due to the electric field. The left panel
corresponds the positive sign of G, the right panel corresponds to the negative sign of G.
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When G > 0, we get that for We < (G/C) 1 /2 all modes are stable, i.e., s(k) <

0 for all k, and for We > (G/C) 1 /2 there is a band of unstable waves extending from

Typical results are shown in Figure 5.2 (left panel).

When G < 0, there is always a band of unstable waves extending from k = 0

scales with We when this is large and hence increasingly shorter wavelengths become

linearly unstable as We increases. Damping of sufficiently high wavenumber modes (and

hence well-posedness) is provided by the presence of surface tension which is extremely

important in this case.

5.6 Numerical Methods

We have used two methods to solve the initial boundary value problem corresponding to

equation (5.68). In both cases the solution is assumed to be periodic of period 2L (the

equation is solved on the periodic interval [—L, L]), and H is taken to be an even function

of x (it can be seen from (5.68) that if H is an even function of x initially, then it will

remain so for all t). The complicating feature for numerical methods is the nonlinearity in

the coefficient of the highest derivative (the Hxxxx term here). Both methods are implicit,

but the first uses a linearization of the nonlinear "diffusion" coefficient while the second

method is fully implicit. In the former case linear pentadiagonal systems need to be solved

at each time step while in the second case an iterative Newton method is used to solve the

nonlinear systems. We find that the linear solver method behaves diffusively in the sense

that mass is lost over large computational times. We note that the evolution develops to

slow draining dynamics where the film appears to touch down at infinite times (we do not

have a proof of this, but we prove rigorously that the solution does not blow up in finite

time). The importance of accurate large time computations, therefore, leads us to choose
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the fully implicit scheme as the more appropriate for the problem at hand. In what follows

we describe both methods in detail.

5.6.1 Numerical Method 1: Linearized Implicit Scheme

We consider equation (5.68) on a finite interval [—L, L] with periodic boundary conditions;

L measures the size of the system and controls the number of linearly unstable modes

present (when the electric field is large enough to produce instabilities). As noted earlier,

we will compute even solutions H, so it is enough to consider the equation on the half

interval [0, L] with the corresponding boundary conditions Hx (0, t) = Hxxx (0, t) = 0,

Hx (L, t) = Hxxx (L, t) = 0.

First, we rewrite the equation as follows:

We use a semi-implicit scheme to solve equation (5.73) numerically. Let 1/ 17:, denote

the numerical approximation for H at x = xm = mAx, t = to = n/st, m = 0, 1, . . . , M,

n = 0, 1, . . .; here Ax =  IL— . Define 6,,n+1 = H71+1 
— H-nm. On the left side of the

equation the terms are treated implicitly, where for the second term [H4 ] xxxx we expand

the function α (H) = H4 into Taylor series at H = Hnm   and keep only the first two terms

of this expansion, namely,
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The terms on the right side are treated explicitly. Denoting fin = {11;:7 HI • • • HM 7' ,

etc., our scheme can be written as

In addition, RHS(1-Hn ) is the approximation for the right hand side of equation (5.73) at

H = _fin. (Derivatives can be approximated using central differences and the Hilbert

transforms can be found with spectral accuracy using the trapezoidal rule for the integral

formula evaluated at midpoints to avoid the singularity of the kernel. Alternatively, we can

approximate the derivatives and the Hilbert transforms spectrally using FFTs).

Finally, we get the following system of linear equations for

At each time step we solve the above pentadiagonal system for 8" 1 and set Hn+1 =

Hn + 671 + 1 . The accuracy of the scheme is monitored by using the fact that the spatial

integral of the solution is conserved.
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5.6.2 Numerical Method 2: Fully Nonlinear Scheme with Newton Iterations

We consider equation (5.68) on a finite interval [—L, L] with periodic boundary conditions.

The numerical method was developed for the following more general equation (this also

includes the fully nonlinear falling film equation derived in Chapter 3 — see below):

thin perfectly conducting liquid film flowing down an inclined plate under the action of

an electric field (see Chapter 3). (Recall that 6 is the ratio of undisturbed film thickness

and the typical interfacial deformation wavelengths, which is assumed to be small, 0 is the

angle of inclination, R is the Reynolds number, and C and We are the rescaled Capillary

number and the electric Weber number, respectively.)

The numerical method for equation (5.78) is a fully implicit two level scheme. We

use the ideas introduced in Bertozzi & Pugh [13], Diez et al. [32], to extend the methods

to nonlinear, nonlocal problems. The equation is solved on a uniform spatial grid, and the

spatial derivatives are discretized using central differences. More precisely, we consider the

following 2M mesh points: x m = (m — M)Ax, m = 1, 2, . . . , 2M, where Lx = L/M.

Let Hm be the values of a 2L-periodic function H at the mesh points x = xm . We also set

H0 = H2M, H_1 = H2M-1, etc., and H2M+1 = H1, H2M+2 = 1/2, etc., which follow by

the periodicity of H. For simplicity we also introduce the points
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To approximate the Hilbert transform of H„ at x = xm+1/2 we use the trapezoidal rule for

the integral in formula (A.7):

Fm (H), m = 1, 2, ... , 2M, is given by the expression on the righthand side of (5.85).

(Note that unlike similar thin film problems that have been studied previously, Fm (H)

depends on all the components of H due to the presence of the Hilbert transform, which is

nonlocal.)

It is important to emphasize that this semi-discrete scheme preserves the discrete

form of the volume. We show this by multiplying (5.85) by Ax and summing over m =
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(5.87)

where Hn = (HI' , 1-1 1 , . . . , H21,1 ) is the numerical solution for H at t = tn , At„ =

tn+1 — tn, and 0 is some real number between 0 and 1.

To advance from the time level n to the time level n + 1, the algebraic system of

nonlinear equations (5.89) for Hn+1 is solved iteratively using Newton's method. The

time step is chosen dynamically for each time level by requiring several constraints to

be satisfied as described below (see also Bertozzi & Pugh [13], Diez et al. [32]). If the

numerical solution violates one of the constraints, then the time step is reduced and the

calculation is repeated. This is done until all the constraints are met. On the other hand, if

all the constraints are met after the first application of the Newton's method, the time step

is increased at the next time level (this is done to prevent using unnecessarily small time

steps). The constrains are the following: (a) the minimum of the solution should change by

no more than 10%, (b) the local relative error should be small (10 -3 say). The local relative

error en, is computed as follows (see Bertozzi & Pugh [13], Diez et al. [32]):

In addition, the spatial grid is refined during the calculation to get better resolution of the

solution. This is done by doubling the number of mesh points when the number of the

significant Fourier modes becomes bigger that some critical value. Typically we double the
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number of mesh points when more than 2/3 Fourier modes are larger than a set tolerance

of 10 -13 . Note that the Fast Fourier Transform is merely used as an accuracy diagnostic

rather than being part of the method.

The numerical method has been described and implemented for the non-parity general

case. If f 0, however, and the initial condition is an even function, then the solution H

will remain even for all time. In this case we can consider 2L-periodic even solutions and

discretize the equation on the interval [0, L] alone. The appropriate boundary conditions

are (see earlier also):

with periodicity used as needed in calculating difference formulas.

5.6.3 Numerical Results

Before proceeding with numerical results of the electrified problem, we briefly describe

two code validation runs that can be compared with the literature.

We consider first the problem studied by Yiantsios & Higgins [124]. They considered

the behavior of a viscous fluid film bounded below by a wall and above by a second heavier

immiscible fluid. For the case when the ratio of the viscosities m = μ1/,a2 is 0(1) they

obtained the following evolution equation for the interface

This is a special case of equation (5.68) when C = 1, G = —1, We = 0. (In our case it

corresponds to a film hanging down from the ceiling without presence of an electric field.)

They solved this equation on the periodic intervals of lengths 2.\77r, 6V2-π, 571.

We have confirmed that our results reproduce those of [124]. More detailed features of the

numerical solutions are shown in Figure 5.3 and are described later.
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A second validation check is the reproduction of the results of Bertozzi & Pugh

[14]. Part of their work involved the numerical solution of equation (5.68) on the interval

[-1, 1], with C = 1, G = —80, We = 0. Our code has reproduced these results with

indistinguishable differences at t = 100, which is the largest time that Bertozzi & Pugh

integrated to.

For the results presented here we take fixed representative values C = 1, and G =

—1 or G = 1 and vary We . We solve equation (5.68) on the periodic interval [-10, 10]

(L = 10) for different values of We . The initial condition is taken to be the following small

amplitude disturbance

The results are shown in Figures 5.3-5.9 for We = 0, 0.5, 1, 1.02, 1.1, 1.5 and 2, respectively.

Each Figure contains eight panels. The top two panels show the evolution of the interfacial

shape H(x, t) (left) and its first spatial derivative Hx (x, t) (right). The second row shows

the time evolution of the norms II H (left) and (right), while the third row of panels

shows the evolution of the 11Hxx il3 (left) along with the evolution of f (1/H(x, t))dx (right).

Finally, the last row of panels shows the evolution of the maximum value of the interfacial

shape, max(H) (left), and its minimum value, min(H) (right).

We see that initially the evolution follows the predictions of the linear theory — the

solution grows exponentially. As time increases, higher harmonics are generated due to the

nonlinearities, and the most dominant mode appears to be the most unstable mode predicted

by linear theory; note that this mode corresponds to the number of the drops which appear

during the course of evolution. This can be seen, for example, for the case when G = —1

and the linear result. It was shown earlier that the wavenumber of the maximally unstable
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Figure 5.3 Evolution of the spatially periodic interface for C = 1, G = — 1, We = 0.
The equation was integrated for 0 < t < 1000. The upper left and right panels show the
evolution of the profile H and Hx , respectively (the time interval between the plots is 10).
Also, the evolution of IIHII, 1Hxfl , 1Hxx g as well as the evolution of oilf 0 (1/H)dx and
the maximum and minimum of H are shown.
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Figure 5.4 Evolution of the spatially periodic interface for C = 1, G = —1, We = 0.5.
The equation was integrated for 0 < t < 100. The upper left and right panels show the
evolution of the profile H and Hx , respectively (the time interval between the plots is 4).
Also, the evolution of IIHH, II Hx113 , 111/x,113, as well as the evolution off 0 (1/H)dx and
the maximum and minimum of H are shown.
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Figure 5.5 Evolution of the spatially periodic interface for C = 1, G = —1, We = 1.
The equation was integrated for 0 < t < 30. The upper left and right panels show the
evolution of the profile H and Hx , respectively (the time interval between the plots is 4).
Also, the evolution of II Hfl, 11Hx fl, IIHsx H, as well as the evolution of f 1 00 (1/H)dx and
the maximum and minimum of H are shown.



Figure 5.6 Evolution of the spatially periodic interface for C = 1, G = 1, We = 1.02.
The equation was integrated for 0 < t < 5000. The upper left and right panels show the
evolution of the profile H and Hx , respectively (the time interval between the plots is 100).
Also, the evolution of 11H fl, 11 H x fl, II H xx fl, as well as the evolution of f 1 00 (11 H)dx and
the maximum and minimum of H are shown.
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Figure 5.7 Evolution of the spatially periodic interface for C = 1, G = 1, We = 1.1.
The equation was integrated for 0 < t < 1000. The upper left and right panels show the
evolution of the profile H and Hx , respectively (the time interval between the plots is 10).
Also, the evolution of IIHH, II HxliZ , 111/A, as well as the evolution of f 1010 (11 H)dx and
the maximum and minimum of H are shown.
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Figure 5.8 Evolution of the spatially periodic interface for C = 1, G = 1, We = 1.5.
The equation was integrated for 0 < t < 75. The upper left and right panels show the
evolution of the profile H and Hs , respectively (the time interval between the plots is 1).
Also, the evolution of illin, II Hxfl , 1Hxx g as well as the evolution of f iclio (1/H)dx and
the maximum and minimum of H are shown.
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Figure 5.9 Evolution of the spatially periodic interface for C = 1, G = 1, We = 2.
The equation was integrated for 0 < t < 20. The upper left and right panels show the
evolution of the profile H and lix , respectively (the time interval between the plots is 1).
Also, the evolution of ll HI13, IiHx113, 1111xx113, as well as the evolution of f l°10 (1/H)dx and
the maximum and minimum of H are shown.
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This can be used, with L = 10, C = —G = 1, to estimate the most unstable wavenumber

to be approximately 2.25, 3.74 and 5.67 for W e = 0, We = 0.5 and We = 1, respectively.

This in turn provides an estimate for the most unstable Fourier wavenumbers to be 2, 4

and 6, respectively, and these correspond to the number of drops which appear in the large

time evolution of the system at the corresponding values of We — see the top left panels

of Figures 5.3-5.5. The linear theory, therefore, provides an excellent prediction of the

qualitative behavior of the solution at large times by predicting the number of large scale

structures. Nonlinearity, of course, is responsible for this evolution and the finer details of

the solution, such as touchdown.

Similar findings are established for the case when G = 1 (i.e., when the film rests

above the plate). Again using the linear prediction (5.95), we predict the most unstable

Fourier modes to be 3, 4, 6 and 9 for We = 1.02, We = 1.1, We = 1.5 and We = 2,

respectively. These again correspond to the number of drops which emerge at large times

as is evidenced in the interfacial evolution results in the top left panels of Figures 5.6-5.9.

It can be seen from the numerical results that the qualitative features of the solutions

for G < 0 and We zero or non-zero, are similar to those with G > 0 and We > 0 (in

the latter case a non-zero electric field is required to destabilize the flow and to produce

non-trivial dynamics). The amplitude of the interfacial shape remains bounded throughout

the evolution, and an increase in We (or equivalently a decrease of a negative G), produces

increasingly more drops at large times, their number is governed by linear theory. This

coarsening behavior is one of the main features of the dynamics as additional unstable

modes enter. In all computed cases, as the time increases the evolution slows down (this

can be seen in any of the different computational panels in the Figures, but is most clearly

evidenced by the evolution of min(H)). The spatial features at large times are also quite

intricate: First, as the interface reaches the vicinity of the wall it tends to flatten and after

that the solution tends to bulge near the ends of the flat regions forming a secondary hump

in between — see Figure 5.3, for example, for the graphically most clear manifestation
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of this phenomenon. All the results indicate that the solution remains positive — the film

does not touch down within finite time. Also, the solution is bounded for all time, despite

the fact that the electric field increases the instability and promotes the process of the

formation of increasingly larger numbers of drops — i.e., coarsening. Numerical evidence

of the boundedness of solutions is seen from the evolution of max(H), for example, in all

the results presented. This is proved rigorously in the following section. The numerical

results also indicate that the L2 norms of H, _fix and Hxs also remain bounded, thus

providing numerical evidence about the smoothness of the solutions. Finally, we consider

the evolution of f (1/H(x, t))dx included in each of Figures 5.3-5.9. The results indicate

that this quantity grows without bound as t increases which is consistent with the fact that

H is tending to zero as t becomes large. In the next section we prove that the rate of growth

is at most linear with t, which in combination with the evolution of the derivative norms

shown in the Figures, implies an algebraic decay rate for the minimum film thickness.

Remark. It is shown analytically in Section 5.7 that the H 1 -norm of positive solutions

is bounded for all time. Due to Agmon's inequality (see equation (C.7) in Appendix C, for

instance) this also implies boundedness of the maximum of the solution. Hence, if the

solution is positive for all time it should be also uniformly bounded above, i.e., it does not

blow up in finite or infinite time. Let us also note that it is shown analytically in Section

5.7 that the spatial integral of a positive solution is bounded on each finite time interval,

i.e., it does not blow up in finite time (though it can happen in infinite time). Together with

the fact that the H2 -norm of positive solutions is bounded it would imply that if a solution

is initially positive, it will be positive for all time. Despite the fact that all our numerical

results indicate the uniform boundedness of the H2-norm of positive solutions, we have not

shown this analytically yet.
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5.7 Analytical Results

5.7.1 The Energy Functional

Let us first consider the following generalized equation:

where f is a function which takes positive values for positive arguments and is zero only

at zero, and A[H] is some integro-differential operator, which involves the function H, its

first and second order derivatives with respect to x, and the Hilbert transform operator. The

additional condition that is satisfied by this operator will be given below. We will consider

this equation on a periodic interval [—L, L] with positive initial data Ho (x) = H(x, 0).

Steady state solutions of equation (5.96) are found by integrating once to obtain

where C1 is some constant. If H vanishes at some point, then C 1 = 0. Otherwise ..,4[H] x =

f(1-1)'C1— and integration gives C 1 IL fix)_ 	 turn= 0, which in tu implies that C i = 0. So, for... _L
steady state solutions A[H] x = 0, i.e.,

where C2 is some constant.

Let E[H] be the energy functional having the following form

for which the steady state solutions of equation (5.96) are extrema. More precisely, we

assume that the following generalized Euler-Lagrange equation,



is a nonincreasing function of time for a nonnegative solution H.
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5.7.2 Uniform Boundedness of Positive Smooth Solutions

In the previous section we have shown that the energy functional E[H] is bounded above

by its initial value for a nonnegative solution H of equation (5.68). In this section we will

show uniform boundedness of solutions. It will be assumed that solutions are smooth. We

will restrict our consideration to positive solutions, since given upper and lower bounds for

positive solutions the equation is uniformly parabolic, which implies small time smoothness

of the solutions (see Eidelman [39] and Friedman [40]).

We begin with the following lemma:

Lemma 5.7.1 Let E[H] be the functional defined on 11 1 (—L, L) by formula (5.108). Then

there exist constants α > 0, /3 > 0, and 7 such that

for all nonnegative H E HiLr. (Here and everywhere else we denote by Lp2„, Hp„,

k = 1, 2, . . . , the subspaces of the Sobolev spaces L 2 (—L, L), Hk (—L, L) consisting

of periodic functions with period 2L.)

Proof: First, using the Cauchy-Schwartz and Young's inequalities and property (A.5)

of the Hilbert transform from Appendix A gives
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Note that flit, Hdx = IIHIl i for a nonnegative H. We denote A = k - E 1 TT- and B =

— 	 2ei+ --14--- + -1- — 	 . Choosing e l sufficiently small gives A > 0, B > 0. Also, usingz 	 2C 	 6.-112

the following interpolation inequality

and applying Young's inequality for the righthand side of the expression above gives

where E2 is some positive number. Therefore

and we get

E  	 Bc2We denote A = A 2 3 Bc3 	8	 anand B = --3- Note that B > 0 and choosing E2 small enough9 	 .62 .

gives A > 0. Thus
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■

We can prove the uniform boundedness of positive smooth solutions to (5.68):

Proposition 5.7.2 Let H (x, t) be a positive smooth solution of (5.68) with periodic boun-

uniformly bounded.

Proof. First, note that equation (5.68) is a conservation law. The spatial integral of

the solution is conserved. Indeed, integrating over [—L, Li] gives

Therefore IIH II 	 11H0 11 1 . Also, since e[H] is a nonincreasing function of time, equation

(5.109) implies

■

Remark. Proposition 5.7.2 is essentially a no blow-up theorem for the solution H.

The result does not prevent a touchdown (as predicted by the numerics). Furthermore,

the boundedness of 111-111 H1 does not exclude touchdowns with cusp-like behavior having

H lxIP, p E [1/2, 1]. Such singular solutions have not been observed numerically, however.

5.7.3 Evolution of f L H-1dx

In this section we show that the spatial integral of H-1 is bounded on each finite time

interval. Indeed,

(5.125)



Substituting the expression for H t from (5.68) into (5.125) gives
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Integration by parts then gives

Using the Cauchy-Schwartz and Young's inequalities and property (A.5) of the Hilbert

transform from Appendix A gives
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APPENDIX A

PROPERTIES OF THE HILBERT TRANSFORM

In this appendix we list some important properties of the Hilbert transform, see also [1].

The Hilbert transform operator 71 is defined as follows:

where the integral is understood in the sense of Cauchy principal value.

The Hilbert transform 7-1 : L 2 (I) -+ L2 (I) (or 9-1 : H' (I) —÷ H k (I)) is a linear,

invertible, bounded operator from L 2 to L2 (and from Sobolev space Hk to H').

Here .F is the Fourier transform operator and I is either R or a periodic interval.

For periodic functions on [-71, 7r] we have
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APPENDIX B

DETAILS OF THE DERIVATION OF EQUATION (3.65)

The evolution equations for the two leading terms Ho and H1 are given by equations (3.59)

and (3.64). Defining H = Ho + 6H1 , we can eliminate H1 in favor of H and Ho in (3.59)

and (3.64), noting that we keep terms up to and including 0(62 ) for (3.59) and 0(6) for

(3.64), so that the combined equation for H is correct to 0(62 ) and with the functional

form of the error known. The equations become:

Next, adding 6 times equation (B.2) to equation (B.1) we find that 0(6) terms of (B.1)

proportional to H1 cancel exactly the same order terms containing H 1 in (B.2), so that a

single equation for H is found consistently at 0(6). The final equation with 0(62 ) terms

included is
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Dropping 0(0 2 ) terms gives a closed system. We note, however, that the correction contains

H1 and its spatial derivatives and cannot be expressed in terms of H alone without going

to higher order and obtaining regularized equations for H 0 + Jill + 02 H2 for example. It

is not clear that this will work and we have not attempted this calculation yet.



APPENDIX C

SOME USEFUL INEQUALITIES



APPENDIX D

USEFUL LEMMA

Lemma D.0.3 There is a constant C such that



After rearranging summation indices, we find
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