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ABSTRACT

ADVANCED METHODS IN AUTOMATIC MODULATION CLASSIFICATION
FOR EMERGING TECHNOLOGIES

by
Hong Li

Modulation classification (MC) is of large importance in both military and commercial

communication applications. It is a challenging problem, especially in non-cooperative

wireless environments, where channel fading and no prior knowledge on the incoming

signal are major factors that deteriorate the reception performance. Although the average

likelihood ratio test method can provide an optimal solution to the MC problem with

unknown parameters, it suffers from high computational complexity and in some cases

mathematical intractability. Instead, in this research, an array-based quasi-hybrid likelihood

ratio test (qHLRT) algorithm is proposed, which depicts two major advantages. First, it is

simple yet accurate enough parameter estimation with reduced complexity. Second the

incorporation of antenna arrays offers an effective ability to combat fading. Furthermore,

a practical array-based qHLRT classifier scheme is implemented, which applies maximal

ratio combining (MRC) to increase the accuracy of both carrier frequency offset (CFO)

estimation and likelihood function calculation in channel fading. In fact, double CFO

estimations are executed in this classifier. With the first the unknown CFO, phase offsets

and amplitudes are estimated as prerequisite for MRC operation. Then, MRC is performed

using these estimates, followed by a second CFO estimator. Since the input of the second

CFO estimator is the output of the MRC, fading effects on the incoming signals are removed

significantly and signal-to-noise ratio (SNR) is augmented. As a result, a more accurate

CFO estimate is obtained. Consequently, the overall classification performance is improved,

especially in low SNR environment.

Recently, many state-of-the-arts communication technologies, such as orthogonal

frequency division multiplexing (OFDM) modulations, have been emerging. The need for



distinguishing OFDM signal from single carrier has become obvious. Besides, some vital

parameters of OFDM signals should be extracted for further processing. In comparison to

the research on MC for single carrier single antenna transmission, much less attention has

been paid to the MC for emerging modulation methods. A comprehensive classification

system is proposed for recognizing the OFDM signal and extracting its parameters. An

automatic OFDM modulation classifier is proposed, which is based on the goodness-of-

fit test. Since OFDM signal is Gaussian, Cramer-von Mises technique, working on the

empirical distribution function, has been applied to test the presence of the normality.

Numerical results show that such approach can successfully identify OFDM signals from

single carrier modulations over a wide SNR range. Moreover, the proposed scheme can

provide the acceptable performance when frequency-selective fading is present. Correlation

test is then applied to estimate OFDM cyclic prefix duration. A two-phase searching

scheme, which is based on Fast Fourier Transform (FFT) as well as Gaussianity test, is

devised to detect the number of subcarriers. In the first phase, a coarse search is carried out

iteratively. The exact number of subcarriers is determined by the fine tune in the second

phase. Both analytical work and numerical results are presented to verify the efficiency of

the proposed scheme.
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Part I

ADVANCED METHODS FOR SINGLE CARRIER LINEAR MODULATION

CLASSIFICATION

1



CHAPTER 1

INTRODUCTION

Blind modulation classification (MC) is an intermediate step between signal detection

and demodulation. There is a wide variety of applications in both military and civilian

communication. In military communication systems, MC techniques are applied for real-

time signal interception and processing, which are crucial for electronic warfare operations

and other tactical actions. As for the civilian systems, MC is an active research and

development topic in software defined radio (SDR).

MC is a challenging problem, especially in non-cooperative environments, where

no prior knowledge on the incoming signal is available. Approaches to MC problem can

be divided into two categories, one is based on decision theory [2, 3, 4, 5, 6], the other

is feature-based [7, 8, 9, 10, 11, 12, 13]. This research concentrates on the former. A

decision theory-based MC method relies on the likelihood function (LF) of the received

signal and views the MC problem as a multiple-hypothesis testing problem [14, 3, 4]. In

computing the LF, the unknown parameters can be treated either as random variables (RV)

or unknown deterministic, which results in three likelihood techniques to solve the multiple

composite hypothesis testing problem: (a) the average likelihood ratio test (ALRT), where

the unknown quantities are treated as RVs with probability density functions (PDF) known

and the LF is computed by averaging over them; (b) the generalized likelihood ratio test

(GLRT), where the unknown parameters are treated as unknown deterministic, because

PDFs cannot be assigned to these unknowns. In this case, a logical procedure is to estimate

the unknown parameters assuming certain hypothesis is true and use these estimates in the

likelihood ratio test (LRT) as if they were correct. If maximum likelihood (ML) estimates

are used, the test is called GLRT; and (c) the hybrid likelihood ratio test (HLRT), where

only the PDF of several parameters are known, and ML estimates are used for the rest.

2
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Although the ALRT provides an optimal solution, it suffers from high computational

complexity and in some cases mathematical intractability. Therefore, GLRT and HLRT

were investigated as possible alternatives [15] [6]. Nevertheless, the former fails in identify-

ing nested constellations, for example, 16QAM and 64QAM. With the increasing number

of unknown parameters, however, both GLRT and HLRT experience again high computa-

tional complexity, as the LF requires ML estimations, and thus, a multivariate maximization.

Therefore, in this work a quasi-HLRT (qHLRT) classifier is proposed instead, which relies

on simple yet accurate enough parameter estimators [16, 17, 18]. In the proposed scheme,

the unknown data symbols are treated as independent and identically distributed (i.i.d.)

random variables and averaged over them, whereas other unknown parameters, such as

carrier frequency offset (CFO), phase shift and amplitude, are estimated via non-ML estima-

tion methods.

In wireless communication, channel fading is one of major factors to deteriorate the

reception performance. Modulation classification also confronts such problem. Compared

with the research in AWGN channel, unfortunately, much less attention has been paid to

modulation classification in fading channels. It is well known that antenna array is of

great benefit to combat fading [19] [20]. A likelihood-based multi-antenna modulation

classifier was shown [16] to be able to achieve significant performance improvement in

fading channels. Meanwhile, when properly combining the signals received by different

branches, an antenna arrays can increase the received SNR, which is a crucial factor, in

certain estimation methods, for estimating unknown parameters. Therefore, the array-based

qHLRT classifier offers an effective way to handle both channel fading and unknown

parameters as well, in modulation classification.

Furthermore, a practical array-based qHLRT classifier is proposed, which applies

maximal ratio combining (MRC) to increase the accuracy of both carrier frequency offset

estimation and likelihood function calculation in channel fading. In fact, double CFO

estimations are executed in this classifier. The scheme first estimates the unknown CFO,



4

phase shifts and amplitudes for each antenna branch individually, which are prerequisite for

MRC operation. Then MRC is performed using these estimates, followed by a second CFO

estimator. Since the input of the second CFO estimator is the output of the MRC, fading

effects on the incoming signals are removed significantly and SNR is augmented as well.

As a result, a more accurate CFO estimate is obtained, and fed into the LF computation

together with the unknown data symbols as well as estimates of phases and amplitudes to

implement the qHLRT algorithm. Consequently, the classification performance is improved,

especially in low SNR environment.

The selection of estimation schemes for our proposed qHLRT method is of importance.

Since modulation recognition is a non-cooperative communication practice, a blind, non

data-aided (NDA) open-loop algorithm is needed to estimate the unknown parameters.

Several blind, non-ML CFO, phase and amplitude estimation schemes have been proposed

in the literature [21, 22, 23, 24, 25]. In addition, Method-of-moment (MoM) estimator

plays as another attractive candidate for amplitude estimation [26]. In order to find the

proper one, those estimation schemes have been compared in this work. It is worthwhile

to investigate how much an estimator can benefit from antenna arrays, and to determine

appropriate estimators for the array-based qHLRT classifier.



CHAPTER 2

LIKELIHOOD RATIO TEST-BASED MODULATION CLASSIFICATION

2.1 Signal Model

Consider the baseband representation for a noise-free signal, wherein the complex envelope

of the signal for the i-th modulation format is expressed as

where vi denotes the vector of unknown quantities for the i-th modulation format, i =

1, 2, . . . , Nmod , and Nmod is the number of candidates modulations. In this research a

frequency-flat slowly-varying multipath fading channel with v i = [fe α0φ0 si T] T is consid

ered, where channel amplitude and channel phase shift are indicated by α0  and φ0 , respect-

ively. Note that φ0 also includes the carrier phase offset. The unknown carrier frequency

offset is denoted by fe , which is assumed to be a small fraction of the symbol rate, say

less than 10%. The vector s i = [s1(i)s2(i)  . . .s N(i)]Trepresents a sequence ofNcomplex

transmitted data symbols, 1 taken from the i-th finite-alphabet modulation format, and (.) T

is the transpose operator. The variance of the zero-mean i-th constellation is defined as

θ (i ) = E[|sk (i )|2] where E[.] denotes the mathematical expectation. g(t) is the receiver

matched filter with raised cosine pulse shaping, the convolution g(t) ○xg(-t)is Nyquist,

i.e.,

1 Since the length of the observation interval is N symbol periods, it is shown, in Chapter 3,
that the number of incoming data symbols involved in the likelihood function calculation can be
approximated to N.

5



6

and T is the symbol duration which is assumed known in this work. Eq. (2.1) is applicable

to M-ary ASK, PSK, and QAM modulations.

For the quasi hybrid likelihood ratio based classifier presented herein, fe , α0 and φ0

are considered as unknown deterministic quantities to be estimated, for which fe , α0 and φ0

are provided as their estimates. The data symbols {s k(i )}k=1N are treated as independent and

identically distributed random variables, and average over them. For linear modulations,

the data symbols do not depend on t. This property simplifies the classifier derived in the

next Chapter.

The modulation classification problem herein is to identify the transmitted constella-

tion based on the following noise-corrupted received complex envelope:

where w (t) is the complex additive white Gaussian noise (AWGN) with two-sided power

spectral density N0, and correlation E [w (t ) w*(t+τ )] = N0δ (τ ), wherein (•)* is the

complex conjugate and δ (.) is Dirac delta.

2.2 Likelihood Ratio Test-Based Modulation Classification

Within the likelihood -based framework, modulation classification is formulated as a multiple

composite hypothesis testing problem. Under the hypothesis Hi , the i-th modulation is

assigned to the incoming signal. It chooses the i-th hypothesis Hi for which the likelihood

function is maximized, assuming that the a priori probabilities of all hypotheses are equal.

In fact this approach is based on the likelihood ratio test, which uses the likelihood function

of r (t ) over the observation interval [0, NT] . When there is no unknown parameters, except

for the unknown modulated symbols {s k(i)}k=1N, it is well known that with complex Gaussian
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distribution of w ( t ) and for the i-th hypothesis, the likelihood function of r ( t ) is given by

where R[•] stands for the real part of complex quantities.

The decision is made according to the following criterion, to choose i as the modulation

type

Note that equation (2.5) is true with the assumption of equal probability of each modulation

type. In addition, the cost of any decision error is of equal importance. As a sequel, the test

is transformed to a maximum a posterior probability (MAP) test [27].

Simulation results for the LRT modulation classification under ideal conditions are

presented in Fig. 2.1. The ideal conditions stand for the cases without unknown parameters,

the only unknown quantities are the modulated symbols. In the simulations, the pool

of candidate modulations to be classified includes 4-QAM, 16-QAM, 64-QAM, BPSK,

8-PSK and 16-PSK. Raised cosine pulse shaping filter is used with a roll-off factor of 0.35.

Normalized constellations are generated to assure fair comparison, i.e., E [|sk(i)|2] = 1.

The received SNR per symbol is defined as γ  = S0T/N0, where S0 is the power of

the signal, which due to the normalization is independent of the modulation type. In

all the experiments, T = 1 and S0 = 1, and SNR is changed by varying N0 . The

length of data symbol sequence is N = 500, and every simulation result is obtained via

performing 1000 Monte Carlo trials. The probability of correct classification is defined as

Pcc = N mod-1Σi=1NmodPc(i|i)to evaluate the performance of classifiers.Pc(i|i)'is the probability

to claim that the i-th modulation is received, where in fact the i'-th modulation has been

originally transmitted.
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Figure 2.1 The performance of LRT modulation classification when distinguishing 4-
QAM, 16-QAM, 64-QAM, BPSK, 8-PSK and 16-PSK, ideal case, N=500.

2.3 Sensitivity of the LRT algorithm to Unknown Parameters

The sensitivity of the LRT algorithm to model mismatches, with the classifier designed for

ideal conditions (AWGN and all parameters assumed perfectly known), is investigated in

this section. The model mismatches considered in this sensitivity analysis are respectively,

resulted from unknown signal power, phase shift, and carrier frequency offset.

With only the amplitude estimation error, the ALRT algorithm suffers from the model

mismatch of the signal power, the corresponding received baseband waveform is

Fig. 2.2 shows the performance degradation of the classifier designed for ideal conditions

with respect to (w.r.t.) an estimate error in signal amplitude. As expected, classification

performance when discriminating QAM signals degrades rapidly as the amplitude estimate

error increases. In contrast, when distinguishing PSK signals, the classifier is immune from

such model mismatch. An error in estimating the amplitude leads to the variation of the
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Figure 2.2 Sensitivity of the ALRT algorithm to unknown amplitude when distinguishing
4-QAM, 16-QAM, 64-QAM, BPSK, 8-PSK and 16-PSK. SNR=15dB, N=500.

position of the constellation points in the in-phase-quadrature plane. As QAM is a non-

constant envelope modulation, performance degradation caused by an amplitude variation

is more severe than PSK. Because the major feature to be used to identify the constant-

envelope PSK signals is the phase of constellation points.

With only the phase estimation error, the received baseband waveform can be written

as

Fig. 2.3 shows the performance degradation of the classifier designed for ideal conditions

with respect to an estimate error in phase offset. The phase shift is fixed over one realization,

but varies randomly from one realization to the other, obeying a uniform distribution, i.e.,

U [-Δφ 0 ,Δφ 0 ). Such model mismatch results in the rotation of the constellation points

around the origin, which causes the performance degradation. As shown in the figure,
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Figure 2.3 Sensitivity of the ALRT algorithm to time-invariant phase offset when
distinguishing 4-QAM, 16-QAM, 64-QAM, BPSK, 8-PSK and 16-PSK. SNR=l5dB,
N=500.

an acceptable performance ( Pcc ≥ 0.9) is obtained at Δφ0  ≤ 11.3° for PSK signals and

Δφ0  ≤ 9.8° for QAM ones.

With the estimation error only in carrier frequency offset, the received baseband

waveform can be written as

Fig. 2.4 shows the performance degradation of the classifier designed for ideal conditions

w.r.t. an estimate error in carrier frequency offset. The accumulation effect, with a longer

observation interval, of the CFO estimation error leads to a very severe performance degrada-

tion. In other words, as the smearing of the constellation points along arcs is more prominent

for a larger number of observed symbols N, it makes the signal recognition more difficult.

For example, with 100 processed PSK symbols, an acceptable performance (Pcc ≥ 0.9)
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Figure 2.4 Sensitivity of the ALRT algorithm to carrier frequency offset when
distinguishing 4-QAM, 16-QAM, 64-QAM, BPSK, 8-PSK and 16-PSK. SNR=15dB.
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is obtained for a normalized carrier frequency offset feT ≤  3 x 10-4 , whereas with 500

symbols, the value is 7 x 10 -5 , as depicted in Fig. 2.4(b).

2.4 LRT Modulation Classification with Unknown Parameters

From previous section, it is observed that LRT approach is very sensitive to unknown

parameters. To handle this problem, various modifications on the LRT algorithm have been

developed. Depending on the model chosen for the unknown quantities, three likelihood

-based MC techniques have been proposed in the literature: ALRT, GLRT and HLRT.

With ALRT, the unknown quantities are treated as random variables and the LF is

computed by averaging over them,

where ΛA [r (t )|(Hi]is the conditional LF ofr(t),conditioned on the unknown vector vi,

and p (vi |Hi) is the a priori PDF of viunderHi. Ifp(vi|Hi) coincides with the true PDF,

ALRT results in an optimal classifier in the Bayesian sense, i.e., it maximizes the average

probability of correct classification.

When a PDF cannot be assigned to the unknown parameters, a logical procedure is to

estimate the unknown parameters assuming Hi is true and use these estimates in the LRT as

if they were correct. If maximum likelihood estimates are used, the result is called GLRT

and the LF is given by
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The mixture of ALRT and GLRT leads to HLRT, and yields the likelihood function

where vi = [vi1T ,vi2T ]T .

For many cases of interest, the computational complexity and even mathematical

intractability of the ALRT -based classifier, as well as the need for prior knowledge, can

render the ALRT impractical. Meanwhile, with GLRT maximization over data symbols

can lead to equal LFs for nested signal constellations, e.g., 16-QAM and 64-QAM, which

in turn leads to incorrect classification [6]. Averaging over data symbols in HLRT removes

the nested constellations problem of GLRT, though, with several unknown parameters,

HLRT does not seem to be a good solution either, as finding the ML estimates of several

parameters can be very time consuming. Low-complexity estimators can be used instead,

leading to the proposed quasi-HLRT classifiers.



CHAPTER 3

ARRAY-BASED QHLRT MODULATION CLASSIFIER

3.1 Array-Based Quasi-Hybrid Likelihood Ratio Test

3.1.1 System Model

The system model of the array-based qHLRT modulation classifier is shown in Fig. 3.1.

The likelihood-based approach for modulation classification requires the computation of

the likelihood or log-likelihood function of r ( t ) over the interval 0 ≤ t ≤  NT. It chooses

the i-th hypothesis Hi (the i-th modulation candidate) for which the likelihood function is

maximized, assuming that the a priori probabilities of all hypotheses are equal. It is well

known that with complex Gaussian distribution of w ( t ) and for the i-th hypothesis, the

likelihood function of r (t ) , conditioned on the unknown vector v i , is given by

Consider a receiver consisting of L array antenna branches, where the complex

envelope of received signal at each branch bears the same form as in Eq. (2.3),

where 1 is the index of the l-th antenna branch, and

14
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Figure 3.1 Array -based qHLRT modulation classifier.

which is similar to Eq. (2.1). Now for every antenna branch, unknown parameters (α0, 1 ,

(φ0,l and fe ) have to be determined. In the equation above, it is assumed that different

amplitude and phase shift for each branch whilst the same CFO for all the branches. This

is a valid assumption because all the antenna branches may share the same oscillator.

Furthermore, wl(t ) 's are independent complex AWGNs, with the same two-sided power

spectral density No . For the sake of presentation, (3.2) can be rewritten in terms of vector

form

where r (t) =[ r1(t),r2(t),...,rL(t)]T, w (t ) = [w1(t ),w2 (t ),...,wL (t)]T, s(t; vi,array) =[s1 (t;vi,1),s2(t

;vi,2),...,sL

(t

;vi,L)]T, vi,array= [uiT, {sk(i)}k=1N, and ui= [fe{α0,l}l=1L, {φ0,l}l=1L]T.  Then the LF of the array is the product of L LF given in (3.1)
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It is shown in Subsection 3.1.3 that, in fact, MRC is applied in eq. (3.5).

Since the likelihood function contains the unknown parameters v i , array, as well as

the unknown data symbols { sk(i)}k=1N, the modulation classification becomes a multiple

composite hypothesis testing problem. In qHLRT, the unknown parameters are treated as

deterministic and replaced by their non-ML estimates, whereas the unknown data symbols

are considered as random variables and are averaged over the conditional pdf of the i--

th hypothesis p (s i |Hi).Therefore, three steps are involved in calculating the qHLRT

likelihood function for the i-th modulation. First, some blind algorithms are applied to

estimate the unknown parameter u i by assuming Hi, is true and use these estimates ui later

in the LF computation as if they were correct. Then, the likelihood function, conditioned

on the unknown ui is averaged over p (si |Hi)

Finally, by substituting the estimate u i into (3.6) one obtain

The decision is made according to the following criterion, to choose I as the modulation

type
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In the following two subsections, the closed-form expressions of the likelihood function

is derived for linear modulations in Rayleigh fading channels, with both single antenna

and multi-antenna scenarios. The issue of parameter estimation in qHLRT is addressed in

Section 3.2 and 3.3, and the estimation performance are compared thereby.

3.1.2 Conditional Likelihood Function

In this subsection, the derivation for conditional likelihood function is elaborated. As one

will see, while the problem can be put into a simple mathematical framework, its practical

solution requires some approximations due to the introduction of root raised cosine pulse

shaping filter.

Let us concentrate on the first integral in (3.1). Using (2.1) yields

where the fact that for linear modulations, s: ) is independent of t is used. Keep in mind

that g(t) has a limited duration (say, a few symbol intervals about the origin). Thus, when

computing the integrals in the right-hand side (RHS) of (3.9), three scenarios may occur for

position of g(t — (k — 1)T): (i) it is totally outside the observation interval (0, NT); (ii) it

is totally inside the interval; and (iii) it lies across one of the extremes. In the first situation

the integral is zero, while in the second, the integration can be extended to the infinite. By

assuming NT much greater than the duration of g(t), it is observed that the third type cases

are comparatively few. Combining these facts, (3.9) boils down to the approximation
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where z ( k ) is the sample at ( k - 1)T of the waveform

Since g (ξ - (k -  1)T) takes significant values only over an interval Tic of a few symbols

around ξ = ( k - 1)T and it is assumed that |f| << 1/T, the exponentiale-j2πfeξmay be

approximated with a constant e-j2πfe ( k -1) T for ξ E Tk, and, as a sequel, one have

Substituting into (3.10) leads to

such that

Note that rk can be regarded as the output of the matched filters at the receiver, sampled at

t = (k — 1)T , k = 1, . . . , N .

As for the second integral in (3.1), inserting (2.1) yields
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Following aforementioned arguments for (3.10) and bearing in mind (2.2) leads to

By putting (3.13) and (3.16) together, the likelihood function conditioned on v i can

be written as

where

and

Note that ηN(i), when divided by N, represents θ(i), an estimate of the constellation variance

of the i-th modulation format.

In order to facilitate the subsequent derivation, (3.17) can be rewritten in a product

form as

where Rk(i) = sk(i)*e-j2πfe(k-1)T r. Now let us average (3.20) with respect to the unknown
, .

data symbols {s

k

(i)}k=1 Nto obtain the likelihood function conditioned only on the unknown
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parameters ui as shown in (3.6). Due to the independence of data symbols, such averaging

results in

Notice that the unknown carrier frequency offset fe is contained in Rk(i). Also note that

Esk(i) [ .I in (3.21) is nothing but a finite summation over all the Mi possible alphabets of the

i-th modulation, divided by Mi , for the k-th interval.

3.1.3 Conditional Likelihood Function with Multi-Antenna

Intuitively, signal classification may perform better under a higher SNR, provided that all

the other parameters are fixed. Thus, when properly combining the signals received by

different antenna array elements, the received SNR improves due to the array gain, thereby

increasing the classification accuracy.

The signal model of the multi-antenna classifier is given in (3.2). Following the

definition (3.18) and (3.19) for the l-th branch

one may present (3.5) as
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By comparing with (3.17), it is not hard to see that (3.24) is a generic expression of the

conditional likelihood function for an antenna array application. Obviously, (3.24) reduces

to (3.17) for L = 1.

Considering the convenience for averaging the conditional likelihood function over

the unknown data symbols, (3.24) can be addressed as

By taking the expectation of (3.25) with respect to { sk(i )}k=1N
 
one obtain the likelihood

function conditioned only on the unknown parameters u i ,L

The summations of 1 from 1 to L in (3.25) and (3.26) indicate that the computation of the

likelihood function of the antenna arrays is based on maximal ratio combining. In other

words, the antenna arrays -base LRT algorithm explores the spatial diversity to improve the

classification performance.

In the discussed qHLRT scheme, the unknown parameter ui will be estimated via

certain non-ML estimator as described in Section IV. The criterion applied for decision is

given in (3.8).

3.2 Estimation of Phase Parameters

Since modulation recognition is a non-cooperative communication practice, only a nondata-

aided open-loop algorithm is applicable for estimating the unknown parameters. In the

qHLRT scheme, in order to avoid the complexity of ML estimation, non-ML algorithms are

applied to estimate those parameters. As shown in equation 3.3, in this work, the unknown
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quantities include amplitude ( α0, i ) and phase parameters (φ0,1 and fe). The phase estimate

methods are investigated in this section while the next section studies the amplitude one.

In fact, phase offset estimate can only be obtained after the unknown carrier frequency

offset is estimated and removed. Based on the sampling rate of the data sequence, CFO

estimation algorithms can be divided into two categories: over-sampled and symbol rate-

sampled. An over-sampled CFO estimator was proposed in [21] and [22], which relies

explicitly on the cyclostationarity of the over-sampled data. It is modulation-independent,

i.e., the processing procedure is same no matter what kind of modulation is involved.

Sometimes, however, a processing with symbol-rate sampling is preferable due to the

lower complexity. A class of nonlinear least-squares (NLS) estimators with symbol-rate-

sampling are discussed in [23, 24,25]. Optimal NLS estimators are also designed such that

their asymptotic (large sample) variance is minimized [25] . These optimal NLS estimators

are modulation-dependent and more complex to be implemented.

3.2.1 Cyclic Correlation Approach

Gini and Giannakis [21] proposed an approach for fully digital nondata-aided CFO estimation

of a linearly modulated waveform. It exploits the second-order cyclostationarity of the

over-sampled received sequence.

After the receiver matched filter, the received signal is (over)sampled at a rate PIT,

where P is an integer. As a result,the discrete-time data can be written as follows

1 To distinguish over-sampled discrete-time data from the symbol rate sampled data, x is considered
as the over-sampled sequence, whereas r is the symbol-rate sampled sequence.
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It was shown that for raised cosine pulse shaping, the unknown CFO can be estimated from

x(n) as [21]

where Lg is the window length of delay τ , M2x ( k;τ ) is the estimate of the cyclic correlation

M2x( k;τ ) , defined as M2x( k;τ ) = (1/P) Σn=0P-1 E{ x (n ) x* (n + τ )} exp(- j (2π/P ) kn ) .

Note that

M

2x

(

k;τ

)

 is periodic with respect to k with period P, and {2πk/ P, k = -P/2

,..., P/2-1}  are called cyclic frequencies or cycles. The estimate of

M

2x

(

k;τ) is obtained

from {x (n)}n=0K-1, K = PN, according to

Estimates of negative lags are obtained from the Hermitian symmetry as M2 x (k; —T) ,---

exp(- j2πkτ/P )

M2x*( k;τ )

.

3.2.2 Nonlinear Least-Squares Approaches

The NLS estimator was originally proposed by Viterbi and Viterbi (V&V) [23] as a blind

carrier phase estimator for fully modulated phase-shift keying (M-PSK) transmission. Based

on the V&V algorithm, Efstathiou and Aghvami introduced blind carrier phase and frequency

offset estimators for 16-QAM [24] [28]. Wang et al. extended this algorithm to general

QAM modulations [25].

With symbol rate sampling, the output of the receiver matched filter is shown as

(3.14). Substituting (2.1) and (2.3), and bearing in mind (2.2), one obtain the discrete-time

data as
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where wn  = ∫-∞∞w (t ) g (t - nT ) dt with variance σw2 . rn  can be represented in its polar

form as rn =  ρnejφn. By applying a nonlinear transformation one obtains the sequence yn

as

where F(.) is a real-valued non-negative nonlinear function and D is an integer which

depends on the modulation format. For CFO estimation in QAM modulation, D is set to 4,

whereas in M-PSK modulation, D = M.

Monomial Nonlinear Estimators The conventional V&V-like nonlinearities rely on the

monomial transformations F(ρn ) = ρnk, k =0, . . . , 4, which are simpler to compute than

the optimal matched nonlinearities presented in the next subsection. Define the class of

processes y

n

(k) , obtained via the monomial transformations

and the zero-mean processes

 

u

n

(k)  =

 y

n

(k)- E{

y

n

(k) } . It turns out that E{

y

n

(k) } is a constant

amplitude chirp signal, and hence,

 y

n

(k)=E{

y

n

(k)}  +u

n

(k)  can be interpreted as a constant

amplitude harmonic embedded in additive noise. The class of monomial NLS estimators

are given by

Optimal (Matched) Nonlinear Estimators An optimal or "matched" nonlinear CFO

estimator for linear modulations is modulation/constellation-dependent and achieves the

smallest asymptotic (large sample) variance, within the family of blind NLS estimators.
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The optimal NLS estimators for CFO has the same form as the monomial NLS

estimators in (3.33), except that the function F (∙) in (3.31) is optimally derived asF min(∙),

to minimize the asymptotic variances for a specific modulation. For M-PSK,

F

min(∙) is

given by

where TM

(∙)

 denotes the Mth-order modified Bessel function of the first kind. For M-

QAM, the 

F

min(∙) is a little

where

φ = ψmax{l,k},min{l,k}, el,k and ψl,k, are the amplitudes and angles of the normalized QAM

constellation points, respectively, and AM  is the set of constellation points of M-QAM.

Note that optimal NLS CFO estimators need perfect knowledge of the noise power σw2 .

3.2.3 Estimators Performance Comparisons

As mentioned in the first section, the likelihood ratio test -based modulation classifier is

very sensitive to unknown parameters. Therefore, the performance study of aforementioned

CFO estimators is of great importance. This subsection first investigates the accuracy of
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those estimators in terms of the mean square error (MSE) versus SNR, when the modulation

type is fixed. Then the applicability of each CFO estimator to different modulation types

is studied. Finally array-based CFO estimators and their performance are examined when

Rayleigh fading is present. The simulation set-up is the same as discussed in Chapter 2

unless specifically denoted.

Three CFO estimators are examined here. The first is the cyclic correlation estimator

(CC) with over sampled sequence. The over sampling rate P varies from 3 to 8. The second

is the 4-th order monomial NLS estimator (MO NLS), i.e., k = 4 in (3.32), and the third is

the optimal NLS estimator (OP NLS).

Estimators with Single Antenna As shown in the Fig. 3.2, it is observed that in the

low SNR region, the CC estimators perform better than NLS estimators. However, as

SNR increases, the MSEs of both NLS estimators drop dramatically, whereas for the

CC estimators, the performance improvement is very small. One reason for the poor

performance of cyclic-based estimator might be the small number of symbols, which is

200. As expected, the OP NLS estimation always function better than the conventional MO

NLS estimator, but at the cost of computational complexity. Note that the over sampling

rate does not affect the CFO estimation performance. Therefore, in a practical application,

one may save the processing effort by adjusting to a lower sampling rate when the CC

estimator is applied.

The performance of each CFO estimator for different modulation types is depicted

in Fig. 3.3. For the CC estimator, the MSE performance does not change a lot, when

modulation is changed. As for NLS estimators, the CFO estimation results depend heavily

on the modulation type, as well as the modulation order. With those MSE vs. SNR plots,

one can determine which CFO estimation approach is suitable for the given scenario. For

instance, if the involved modulation types consist of 4-QAM, 16-QAM, BPSK, 4-PSK,

and 8-PSK, and the operational SNR is higher that 14dB, then in order to keep the system



Figure 3.2 CFO estimation performance for different modulations, feT = 0.05.
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Figure 3.3 CFO estimation performance w.r.t. modulation type, feT = 0.05.

complexity low, a monomial NLS CFO estimator, rather than a complicated OP NLS one,

is accurate enough to provide MSE< 10 -5 . However, if 64QAM is included, to keep the

MSE below 10', the OP NLS has to be used.

Estimators with an Antenna Array The antenna array can be an effective method to

improve the performance of CFO estimators because of the spatial diversity. Fig. 3.4 shows

the experiment results, where the SNR is fixed at 10dB. In general, as expected, the MSE

of each CFO estimation scheme decreases as the number of elements increases. In most

cases, significant improvement appears only when the second and third elements are added.
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Figure 3.4 CFO estimation performance as a function of number of antenna, feT =
0.05, SNR = 10dB.
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In fact, under AWGN environments, by adding another receiving branch to a single

antenna, the system obtains the same performance enhancement as would be obtained via

a 3dB SNR increase in a single antenna system. For example, it is observed that for OP

NLS estimator and 16-QAM modulation, the MSE decreases from 2 x 10 -4 to 4 x 10-9 by

increasing SNR from 10dB to 13dB in a single antenna system, as depicted in Fig. 3.2(b).

Similarly, Fig. 3.4(c) illustrates the same MSE improvement by adding one more antenna

to a 10dB SNR single antenna receiver.

3.2.4 Estimation of Phase Offset

With the estimate of the carrier frequency offset, certain compensation method is applied

to remove the CFO from the received signal. The phase offset estimation can be processed

once the CFO removal is achieved. Two kinds of estimate approaches can be used; one is

the NLS method as aforementioned, the other is the method-of-moment approach, which

is very attractive because of its easiness in implementation. However, it is shown that the

method-of-moment phase estimator essentially is identical to the NLS estimator [29].

Followed the definition of equation (3.33), the class of monomial NLS phase estimator

is given by

The optimal NLS phase estimator bears the same form as (3.36), except that there is no

superscript (k) for denoting the transformation order.

3.3 Amplitude Estimation

The estimation of unknown amplitude is addressed in this section. Two estimation methods

are examined, one is the NLS estimator and the other is the method-of-moment (MoM)

estimator.
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3.3.1 NLS Estimator

For the sake of presentation, let us rewrite the output of the matched filter (3.30) here

Once the estimations of CFO and phase are obtained, it is not hard to get the amplitude

estimation [30]

where γn = α0sn(i). Comparing with (3.33), it can be seen that the NLS estimates of the

phase parameters are decoupled from those of the amplitude parameters, i.e., the amplitude

variations are irrelevant to the estimation of the phase parameters. In contrast, the estimates

of the amplitude parameters depend on the phase parameters since the estimate essentially

involves de-phasing.

To estimate α0 , squaring the data and followed by the averaging leads to

3.3.2 MoM Estimator

MoM estimators are attractive candidates due to their simplicity, whereas there is a possibility

of getting near-ML performance, depending on the estimation problem at hand [26].

Let M 2 = E [|rn|2 ] and M4 = E [|rn|4]  denote the second and fourth absolute

moment of rn , respectively. Based on (3.37) and the fact that the noise is independence of
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the signal, one can show that

By calculating N0T from (3.40) and substituting it into (3.41), eventually the basis for

estimating α0  is reached

Note that estimates of the second and fourth absolute moment of rn are M2 = N-1Σn=0N-1 | rn|2 and M4 = N-1Σn=0N-1 | rn

|4 .

3.3.3 Performance Comparison

The performance of above two amplitude estimators for Mary QAM and Mary PSK

modulations are plotted in Fig. 3.5. Still, the mean square error versus SNR is used as the

measurement scale. As shown in both figures, MoM estimate is better than NLS estimate,

regardless the modulation format involved, which is consistent with our expectation. The

reason is that MoM estimate does not depend on the phase parameters as the NLS one

does. Therefore, the former method is free of suffering from the imperfect estimates of

phase parameters.
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Figure 3.5 Amplitude estimation performance for different modulations.
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According to this examination, the method-of-moment approach will be applied to

the proposed qHLRT classifier for estimating the unknown amplitude of each antenna

branches.

3.4 Numerical Results of the Array-Based qHLRT Classifier

In this section, the array-based qHLRT classifier is studied using computer simulations.

The performance of the proposed classifier in AWGN channel will be compared to the

classifier with error-free estimate of unknown parameters. The impact of the number of

antennas is also addressed. Furthermore, the effect of the time invariant Rayleigh fading

channel is examined. Simulation set-up is the same as the previous Chapter. Based on the

comparison results presented in Section 3.2, to achieve better performance, one can employ

the monomial NLS or the optimal NLS estimators to estimate the unknown CFO.

3.4.1 Performance of the Array-Based qHLRT Classifier in AWGN

Fig. 3.6 illustrates the system performance of the array-based qHLRT classifier. The solid

lines indicate the performance of the classifier with OP NLS estimator, whereas the dash-

dot lines correspond to MO NLS estimator. As a benchmark, the performance of the

ALRT classifier with perfect CFO estimate (ideal case) is plotted in the same figure with

dash lines. Note that in AWGN channel, there is no need to estimate amplitudes and

phase offsets. As depicted in the figure, by adding only one additional antenna, a large

performance improvement is obtained, in comparison with the single antenna qHLRT case.

It is observed that the performance with MO NLS estimator is very close to the

one with OP NLS estimator. This means that one may use the less complicated MO

NLS estimator for CFO, with accurate enough classification results. In the following

simulations, the monomial NLS algorithm is adopted for CFO estimation due to this simple

implementa-tion yet enough accuracy.

The effect of the number of antennas is examined in Fig. 3.7, which plots the Pc,



Figure 3.6 Performance comparison versus SNR in AWGN. feT = 0.05.
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Figure 3.7 The impact of the number of antenna in AWGN. feT = 0.05. Modulation
pool: 4-QAM, 16-QAM and 64QAM.
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performance versus the number of antennas L. As expected, the more received antennas,

the better recognition of modulation types. Here, one should note two issues from the

system design point of view. One is that the performance is improved much as the number

of antennas increases from one to 2 or 3, but only less as the number of antennas is more

than 3. Therefore, one might save cost and relieve computational burden by limiting the

number of antenna elements in a practical system without sacrificing much performance.

Furthermore, the added performance is more significant at low SNR. This results from the

nature of the CFO estimator, the MSE of the estimator drops as SNR increases, but rather

much faster at low SNR region than at high SNR region [25]. Therefore, antenna array is

reaffirmed as an effective approach to counter unknown carrier frequency offsets in signal

classification, especially under the low SNR environment.

3.4.2 Performance of the Array-Based qHLRT Classifier in Known Fading

In a wireless multi-path channel, transmitted signals face the fading. In this subsection,

the impact of the time invariant Rayleigh fading on the proposed qHLRT classifier is

investigated. Note that although fading is present, in this chapter, the resulted unknown

amplitudes and phase offsets are assumed perfectly estimated. The fading scenario without

this assumption will be examined in the next chapter.

The solid lines in Fig. 3.8 show the MSE of the monomial NLS CFO estimator

in Rayleigh fading for 16-QAM, whereas the dash-dot lines illustrate the MSE without

fading (AWGN only). Obviously, the accuracy of the CFO estimator is deteriorated due

to the fading. However, when the number of the receiver antennas increases, the estimator

performance degrades less. For example, for L = 2 in Rayleigh fading, one needs 7dB

more to get a MSE at 10 -4 , when compared to the AWGN case. However, for L = 3, the

penalty is only 3dB. It means that the NLS method, coupled with an antenna array, offers an

effective way to estimate CFO, when fading is present. Note that herein the channel fading
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Figure 3.8 Array -based monomial NLS CFO estimator performance in Rayleigh fading.
feT = 0.05.

at different antennas are assumed independent identical distributed and antenna spacing is

assumed to satisfy the no correlation between each element.

	

Fig. 3.9 illustrates the fading effect on the systems overall performance. For an

acceptable performance (Pcc ≥ 0.9), the three-receiver antenna system working under

fading channel gains more than 5dB as compared with the single antenna, and only 1.5dB

worse than the three-antenna system functioning in AWGN. Therefore, antenna array is

confirmed to combat fading in signal classification, even when CFO is estimated by a

simple scheme.

	

In Fig. 3.10, the Pcc of qHLRT in Rayleigh fading versus the number of antenna L is

plotted. Compared with Fig. 3.7, the performance enhances with L in all the situations and

the largest jump in Pcc versus L comes by adding the second antenna.



Figure 3.9 The qHLRT classifier performance in Rayleigh fading. feT = 0.05.
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Figure 3.10 The impact of the number of antenna in Rayleigh fading. LT = 0.05.
Modulation pool: 4-QAM, 16-QAM and 64QAM.



CHAPTER 4

ROBUST CLASSIFIER WITH TWO-STAGE CFO ESTIMATION

4.1 System Model and Implementation

Section 3.1 has introduced the concept of the array-based qHLRT modulation classifier

and a simplified system diagram has been depicted in Fig. 3.1 for better understanding.

The non-ML estimates of unknown parameters (CFO, phase offset, and amplitude) are

addressed in Section 3.2 and 3.3. Based on these foregoing works, in this chapter, a

robust classifier with two-stage CFO estimations is invented and the implementation detail

is elaborated.

The likelihood ratio test approaches for blind modulation recognition have been

extensively studied since early nineties. However, to carry out a method in practical

applications is restricted to the non-cooperative conditions, such as the high sensitivity

to unknown parameters as shown in Chapter 2. In practice, moreover, there is no PDF

accurate enough to be assigned to those unknown parameters, which means to average over

them to obtain a correct likelihood function is much hard, whilst the ML estimates suffer

high computation complexity as well. In order to solve such implementation problems a

robust array-based qHLRT classifier is proposed. It utilizes the spatial diversity provided

by antenna arrays, and applies non-ML estimates to reduce the computation complexity

dramatically.

The block diagram of the proposed system is illustrated in Fig. 4.1. Consider the

antenna arrays with L elements, to fully make use of the spatial diversity, the MRC scheme

is adopted to calculate likelihood functions for each possible modulation format. MRC

is such a combiner that adds the incoming signals after phase correction and amplitude

weighting for each branch [31, 32]. Thus, estimation of phase and amplitude for each

branch is a must. At the same time, CFO has to be estimated and corrected as it causes
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Figure 4.1 Robust array-based qHLRT classifier with two-stage CFO estimation.
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accumulated phase shift. According to the investigation results presented in Chapter 3, the

NLS method is used for phase parameters (CFO and phase offset) estimation, whereas the

MoM approach is applied to estimate amplitude.

It is well known that the imperfect estimate of CFO leads to the progressive rotation

of constellation points around the origin. The problem becomes significant as the length

of the observation interval NT increases. On the other hand, the calculation of likelihood

function might need large number of symbols to achieve good classification performance.

These contradicting requirements motivate the introduction of a two-stage CFO estimation

scheme in the system.

In order to acquire the parameter estimates for each branch, the first stage of CFO

estimation is carried out at each branch individually, together with amplitude and phase

offset estimation. This paves the road for combining branches via MRC operation. The

second stage of CFO estimation works with the output of MRC. It is known [29] that

the mean square error of the nonlinear least square CFO estimator becomes smaller as

SNR increases, which has also been shown in Section 3.2. Since MRC is an effective

way to enhance SNR, the second NLS CFO estimate using the MRC output provides a

better result, which is a critical factor for likelihood function computation and modulation

classification. Furthermore, the spatial diversity of the antenna array offers the capability

to combat deep fades. As a result, the performance of the array -based two-stage CFO

estimator is improved in fading channel. The argument is supported by Fig. 3.8.

The subsequent processing and decision criterion are the same as discussed in Chapter

3. The numerical results presented in the next section will corroborate that the proposed

scheme functions well in linear modulation classification with unknown parameters, especially

in the presence of channel fading.
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4.2 Cramér-Rao Lower Bound for Frequency Estimation with Arrays

In order to analyze system performance and design appropriate equipment, it is important

to understand the theoretical estimator performance limits and methods to approach them.

The Cramer-Rao lower bound (CRLB) is useful in this analysis. CRLB is a lower bound on

the error variance of any unbiased estimate, and serves as a useful benchmark for practical

estimators.

The CRLB for the variances of the estimated parameters of complex signals with

constant amplitude and polynomial phase, measured in AWGN has been derived in [33,34].

The modified CRLB [35, 36, 29] and the asymptotic CRLB [37] are good approximations

for the true bound for M-PSK/QAM modulated signals at higher SNR, but depart significantly

from the true CRLB at low SNR. The true CRLBs for BPSK and QPSK phase and frequency

estimation were presented in [38]. Rice et al [39] provide the true joint CRLBs for the

estimation of frequency and phase offset for common QAM modulated signals in AWGN

channels.

This section is concerned with evaluating the CRLB for the variances of joint estimates

of unknown parameters (amplitude, CFO, and phase) with modulated signals, and the

estimates are from the array reception. To evaluate the performance of the second stage

CFO estimation with antenna array, the frequency CRLB is derived here assuming that

channel amplitudes and phase offsets are known. The goal is to deliver the idea that the

estimation variance of the proposed two-stage approach is roughly reciprocally proportional

to the SNR of the MRC output.

Following the same notation as (3.30), the received complex envelopes for the diversity

branches are
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where 1 = 1,..., L are the indexes of branches and n = 1,..., N are the indexes of

samples. Also assume T = 1 for the presentation brevity. The output of the MRC are

where the complex fading gain is assumed known. The w'n's are independent zero-mean

complex Gaussian random variables with variance σw2 = σw2 Σlαl2

The CRLB on the variance of the estimator of f e , namely fe, for a sequence of N

symbols is given by [40]

where p (x|fe ) is pdf for the samples X = (X1 , X2 ,..., XN), which are independent

random variables. For a single received sample, the pdf of the corresponding complex

RV xm,is given by

where C denotes the constellation set of symbols sn(i) .
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Considering that the transmit symbols are equally likely, i.e., the pdf of symbols

ps(sn(i)) is independent of n, p (x|fe ) can be written as

Obviously, 

p (x

|

fe )

 of modulated samples depends on the modulation type. To simplify the

evaluation, BPSK modulation is used in the subsequent discussion. With BPSK assumption,

p (x|fe

) can be further expressed as

where αM  = Σlαl2 , and n = 2πfen.

Taking logarithm yields the log-likelihood function (LLF) of

p (x|fe )

The first-order derivative of the LLF with respect to fe is given by



and the corresponding second derivative can be presented as
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where Λ(xn ) is defined by the three terms within the large curly brackets, divided by the

common factor αM/σw'2(2πn)2. One may observe thatΛ(

xn

) depends only on m, and the

expectation ofΛ(

xn )

 is just an integral over the variable

x

m  and not over the remaining

xn 's. Thus the subscript n in E [Λ(

xn

)] can be dropped. Also,

Combining above facts, the expectation of the second derivative boils down to
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The E [Λ(

xn )]

 in 4.11 is a function of αM/σw'2, thus by definingF(αM2/σw'2)= -E

[Λ(xn)]

,

one can obtain the frequency CRLB with known phase for BPSK as

It can be shown that 

F (

αM

2

/σw'2

)

 is monotonic increasing function with respect toαM

2

/σw'2. In other words, the frequency CRLB decreases asαM

2

/σw'2  increases. In fact,αM

2

/σw'2  is

nothing but the signal-to-noise ratio of the MRC output. Therefore, theoretically speaking

the CFO estimation performance is improved by making use of the MRC outputs. However,

one should note that this conclusion is based on the assumption of perfectly known channel

fading gain. The unknown phase and amplitude will of course deteriorate the estimator

performance. The CRLB for frequency and phase joint estimation as well as the effect

from the unknown fading gain are left for future work.

4.3 Simulations and Discussion

In this section, the proposed robust array -based qHLRT classifier is examined via computer

simulations. The performance of the proposed classifier will be compared to not only the

one of the classifier with the error-free estimate of unknown parameters, but the one of the

classifier with single CFO estimation as well. The impact of the imperfect knowledge on

the additive noise power is also addressed. Moreover, the effect of the correlation among

the antennas is examined.

4.3.1 Performance Comparison

The Pcc performance of the proposed array -based qHLRT classifier with double CFO

estimates in Rayleigh fading, has been plotted in Fig. 4.2(a) using solid lines. There is

no prior knowledge on any unknown parameters. In other words, the CFO, phase offsets
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Figure 4.2 Performance of the proposed classifier in Rayleigh fading, f ,T = 0.05.
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and amplitudes are to be estimated blindly. The number of antennas L for the classifier

shown in the figure is set to two and three. For a system with L > 3, a similar results can

be obtained. At the same time, the performance of the classifier with perfect estimation of

unknown parameters is plotted, using dotted lines, which can be treated as the performance

benchmark.

Obviously, the performance of the proposed classifier is better than any single antenna

system, even for the one with parameters perfectly known. It is because that in Rayleigh

fading channel, some deep fades account for the significant reception performance degrad-

ation. And it is array processing that is the powerful method to deal with such problem.

For instance, for an acceptable performance (Pcc ≥ 0.9), a two-antenna qHLRT system can

win 3dB over the ideal single antenna one, whereas a three-antenna system can win 5dB.

Meanwhile, at the lower SNR range, the multiple antenna qHLRT classifiers achieve

Pcc

very close to the ideal cases.

Fig. 4.2(b) illustrates the improvement of the classifier with double CFO estimates

over the one with only single CFO estimate. Such enhancement is larger in the lower SNR

scenario. As described in Chapter 2, unknown CFO impact seriously the classification

results. The proposed double CFO estimates scheme does increase the accuracy of the

CFO estimation, and as a sequel, the overall system performance is boosted compared to

the simple qHLRT approach.

4.3.2 Some Discussion

In this section, the impact of the imperfect knowledge on the additive noise power for the

proposed scheme is addressed. Besides, the effect of the correlation among the antennas is

examined.

Effect of the Imperfect Knowledge of Noise Power Fig. 4.3 depicts the effect of the

imperfect knowledge of noise power one the system performance. Still, Rayleigh fading

is considered. Without loss of the generality, 4-QAM, 16-QAM and 64-QAM are used
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Figure 4.3 Effect of the imperfect knowledge on noise power.
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as modulation candidates to be classified. Each curve represents the different estimation

error percentage of the additive noise power αw2 . In Fig. 4.3(a), it is observed that the

imperfect noise power estimate does affect the proposed scheme. However, when compared

to Fig. 4.3(b), which shows the impact on the classifier without unknown parameters (CFO,

amplitude and phase offset), it can be found that such degradation occurs in not only the

proposed qHLRT scheme, but also any LRT -based algorithm. The reason is that the the

noise power is only involved in the computation of the likelihood function.

Effect of the Correlation among the Antennas In the derivation of the array classifier

in the previous Chapter and the simulation so far, the antenna elements have been assumed

far apart so that the branches are uncorrelated. To see the effect of correlation on the

performance, in Fig. 4.4 it examined both ALRT with perfect estimates and the qHLRT

with double CFO setup. The correlation between the two antennas is defined by

where ρ11 = ρ22 = 1, and ρ12 = ρ21 = ρ is simulated and 0 ≤ ρ ≤  1. As expected,

Pcc decrease when ρ increases. The performance degradation seems to be less at high

SNRs. Generally, the array classifiers which assume uncorrelated branches, appear to be

reasonably robust to some possible correlations that may exist between the branches.

4.4 Summary

By far, a quasi-hybrid likelihood ratio test approach, incorporated with antenna arrays, is

employed to classify signals with unknown carrier frequency offset, phases and amplitudes.

A double CFO estimation scheme is proposed to increase the accuracy of parameter estimation.

The maximal ratio combining technique, applied for CFO estimation as well as the computation
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Figure 4.4 Effect of the Correlation among the Antennas. Modulation pool: 4-QAM,16-
QAM and 64-QAM. L=2.

of likelihood functions, provides a efficient method to deal with channel fading. For

estimation of phase parameters, the symbol-rate-sampling nonlinear least-squares estimator

with a monomial nonlinearity shows a good compromise between complexity and performance,

whereas the method-of-moment estimator performs better for amplitude estimation. As

shown in the simulation results, our scheme offers an effective way to recognize linear

modulation formats with unknown parameters in fading. Nevertheless, this scheme is easy

to implemented for practical applications with reduced complexity compared to other LRT

algorithms.



Part II

OFDM MODULATION CLASSIFICATION AND PARAMETER EXTRACTION
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CHAPTER 5

OFDM CLASSIFIER SYSTEM

5.1 Overview

Recently, many state-of-the-arts communication technologies, such as orthogonal frequency

division multiplexing (OFDM) modulations, have been emerging [41]. OFDM has been

adopted or proposed for a number of applications, such as satellite and terrestrial digital

audio broadcasting (DAB), digital terrestrial television broadcasting (DVB), broadband

indoor wireless systems, asymmetric digital subscriber line (ADSL) for high bit-rate digital

subscriber services on twisted-pair channels, and fixed broadband wireless access [42,

43, 44]. The advantages of OFDM systems include immunity to multipath fading and

impulsive noise [45]. Since the individual subcarrier signal spectra are affected by frequency-

flat rather than frequency-selective fading, equalization is dramatically simplified.

The need for distinguishing OFDM signal from single carrier has become obvious

in the next generation software defined radio or cognitive radio. As described in Chapter

1, modulation classification problem has been studied for decades considering analog and

digital modulation types. In comparison to the research on modulation classification for

single carrier single antenna transmission, however, much less attention has been paid

to the MC for these emerging modulation methods. Thanks to the fact that the OFDM

is asymptotically Gaussian a classifier based on a statistical test is devised here. The

proposed Gaussianity test is based on the empirical distribution function (EDF) of samples

of the received signal. Actually, it is a hypothesis test problem, in which 7-1 1 hypothesis

(non-Gaussian process) is restricted to the single carrier modulation whereas 'H o hypothesis

(Gaussian process) is assigned to OFDM signals.

Besides distinguishing OFDM from single carrier, some vital parameters of OFDM

signal should be extracted for further processing. These parameters include, but not limit
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to number of subcarriers, OFDM symbol duration and cyclic prefix (CP) duration, etc.

With those parameters detected, one may further recognize the linear modulation type on

each OFDM subcarrier by applying the conventional modulation classification methods. In

this proposal, a comprehensive classification system is devised for recognizing the OFDM

signal and extracting its parameters.

5.2 System Model

The module diagram of the proposed OFDM classification and parameter extraction system

is depicted in Fig. 5.1. First, it pre-processes the incoming signals by down-conversion

and sampling. Then, the type of modulation between the single carrier and OFDM is

determined using Gaussianity test. If the test failed, implying non-Gaussianity, it would

suggest a conventional modulation classification method to be applied for further processing.

A passed test indicates that Gaussianity is present in the received signals and OFDM

modulation exists at given significance.

Figure 5.1 System module diagram.

However, the plain additive white Gaussian noise can smoothly pass the Gaussianity

test either. In order to distinguish the OFDM signal from AWGN, one can apply the

cyclostationarity test. 1 It has been proved that OFDM signal is cyclic stationary with

period Ts [46, 47], where Ts denotes the duration of one OFDM symbol. Note that Ts

includes data duration 

T

b  and cyclic prefix duration Tcp, i.e., Ts = Tb+ Tcp . Therefore, a

1 1n cyclostationary process, the statiscal properties (mean and autocorrelation), are not time
independent, but periodic with time.
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cyclostationarity test can be applied to identify OFDM and AWGN. If the test fails, that

is, no cyclostationarity is detected, then one may claim that there is no OFDM signals fed

in and the positive Gaussianity test result of the preceding module is due to the AWGN.

A beneficial by-product of this test is that, with the cyclic correlation based algorithm, the

OFDM symbol rate (1/T s) is estimated blindly [48,49].

Once OFDM modulation is confirmed, a module has been developed to extract the

important system parameters. Inside this module, the classic correlation test method is used

to determine the cyclic prefix interval Tcp . Moreover, a bank of Fast Fourier Transform

(FFT) processors, followed by a Gaussianity test, has been designed to search the number

of subcarriers. Finally, a QAM classifier is applied to identify the order of the QAM signals

on each subcarrier. 2

In subsequent chapters, each function module individually will be elaborated.

2 Generally speaking, in OFDM signals, the M-ary QAM is usually adopted for modulation type on
every subcarrier.



CHAPTER 6

GAUSSIANITY TEST-BASED OFDM CLASSIFICATION

6.1 Gaussianity in OFDM

OFDM is a technique that divides the spectrum into a number of equally spaced tones,

or subcarriers, and carries a portion of a user's information on each subcarrier. OFDM

can be viewed as a form of frequency division multiplexing (FDM). However, OFDM has

an important special property that each subcarrier is orthogonal to every other subcarrier.

FDM typically requires frequency guard bands between the frequencies so that they do not

interfere with each other. OFDM allows the spectrum of each tone to overlap, and since

they are orthogonal, they do not interfere with each other. By allowing the overlapping, the

overall amount of spectrum required is reduced.

OFDM is a modulation technique in that it enables user data to be modulated onto

the subcarriers. The information is modulated onto a tone by adjusting the tone's phase,

amplitude, or both. Typically, M-ary QAM is employed. An OFDM system takes a data

stream and splits it into N parallel data streams, each at a rate 1/N of the original rate. Each

stream is then mapped to a subcarrier at a unique frequency and combined together using

the inverse FFT (IFFT) to yield the time domain waveform to be transmitted. Orthogonality

among subcarriers is achieved by separating the carriers by an integer multiple of the

inverse of symbol duration of the parallel bit streams.

The continuous baseband waveform of transmitted OFDM signals is given as
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where Xkm is the kth data symbol of the mth transmitted OFDM symbol, fk is the frequency

of the k-th subcarrier

and g(t) is the pulse waveform of each of the OFDM symbols

Sampling the continuous time signal (6.1) at a rate 1/Ts, yields the following discrete-time

data:

In fact, ynm is the nth IFFT output symbol of the mth transmitted OFDM symbol.

As indicated in Eq. (6.1) and (6.4), in OFDM, all the N orthogonal carriers are

transmitted simultaneously. In other words, the entire allocated channel is occupied through

the aggregated sum of the narrow orthogonal sub-bands. The OFDM signal can be treated

as composed of a large number of independent, identically distributed (i.i.d.) random

variables. Therefore, according to the central limit theorem (CLT), the amplitude distribution

of the sampled signal can be approximated as a Gaussian one. Fig. 6.1 has illustrated

the Gaussian property of OFDM signals, where only the amplitude variation of the in-

phase part has been plotted. On the contrary, the amplitude distribution of a single carrier

modulated signal cannot be approximated with a Gaussian distribution. To further confirm

the Gaussianity in OFDM signal, the histogram of the in-phase samples of the signal is

plotted in Fig. 6.2, overlaid with the estimated continuous occurrence curve. Note that the
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Figure 6.1 Gaussianity of OFDM signals.

estimated occurrence curve is nothing but the estimated pdf curve multiplied by the total

number of samples and the minimum unit of the measurement, which is 0.1 in the figure.

Provided this observation, the identification of OFDM from single carrier task becomes a

Gaussianity test, or normality test.
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6.2 Motivation

Common MC approaches, such as likelihood ratio test method, cannot be applied to discrimi-

nate modulation type if the received signal is transmitted over multiple subcarriers. This is

because the fact that the transmitted time domain OFDM waveform is an aggregation of the

weighed original data symbol sequence. In other words, totally N original data symbols

contribute to any OFDM sample at each time slice.

Among the huge number of papers on the blind modulation classification or recogni-

tion, most have dealt with single carrier issue, only few papers such as [50] and [51] , have

considered the automatic classification of OFDM modulation. Akmouche and Grimaldi

el. applied the fourth order cumulants to implement the Gaussianity test. The high order

statistic (HOS) is less sensitive to noise influence. Nevertheless, the computational complexity

becomes heavy with large number of samples, which is favorite for an accurate estimation

of HOS.
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In order to determine the presence of Gaussianity, statistical goodness-of-fit tests are

used [52]. In the formal framework of hypothesis testing the null hypothesis H0 is that

a given random variable ω  follows a stated probability law F (ω ) . The goodness-of-fit

techniques applied to test H0 are based on measuring in some way the conformity of the

sample data to the hypothesized distribution, or, equivalently, its discrepancy from it. The

measures of consistency or of discrepancy are evaluated by test statistics. The goodness-

of-fit methods are feasible to be implemented with relatively less samples as shown in the

next section.

This research conducts tests of fit based on the empirical distribution function. EDF

statistics are measures of the discrepancy between the EDF and a given distribution function,

and are used for testing the fit of the sample to the distribution. The distribution may

be completely specified or may contain parameters which must be estimated from the

sample. Two most well-known goodness-of-fit tests are the Kolmogorov-Smirnov (KS)

and Pearson's chi-square tests. However, in the chi-square test the data must be grouped,

resulting in information loss, especially for small samples. Meanwhile, when parameters

of distribution are estimated, the KS test tends to be weak in power (the probability of

accepting the alternative hypothesis H 1 when the alternative hypothesis is Lure) [52]. Compa-

ratively, the family of Cramer-von Mises (CV) tests is more powerful in the EDF -based

techniques. Essentially the CV statistic is to calculate the integrated square error between

the estimated cumulative distribution function (CDF) and the measured empirical distribution

function of the samples.

6.3 Empirical Distribution Function-Based Gaussianity Test

The EDF is a stair-wise function, which is calculated from the sample. The population

distribution function can be estimated by the EDF. Assume a given random sample of size

n is Ω1, Ω2,..., Ωn, and arrange the sample in ascending order

Ω(1)< Ω(2)<...< Ω(n), Ω(κ)denotes the order statistic. Suppose further that the cumulative distribution function
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of Ω is F (ω ) . The definition of the empirical distribution function is given as

More precisely, the definition can be expanded as

Therefore, as ω  increases, the EDF Fn (ω ) takes a step up of height 1/n as each sample

observation is arrived. One can expect

Fn (

ω ) to estimate

F (

ω

)

, and actually

Fn (

ω) is

a consistent estimator of 

F (

ω

)

. As n → ∞|

Fn (

ω )| decreases to zero with

probability one.

As an example, it has been plotted in Fig. 6.3 both EDFs and hypothesized Gaussian

CDFs for comparison. The samples, coming from either the in-phase or the quadrature part

of the received noise-free baseband signals, stand for the amplitude variation. Since in our

cases a Gaussianity test is conducted, it is assumed that the random samples belong to a

Gaussian distribution

with mean μ  and variance σ2 , and suppose it null hypothesis H0 . Furthermore, the hypothe-

sized distribution has an incomplete specification, i.e., with mean and variance unknown.

Then H0  becomes a composite hypothesis and parameters are estimated from the sample.

Fig. 6.3 represents Eq. (6.6) precisely. For example, in Fig. 6.3(a), there are only four

horizontal values because of the four x-axis or y-axis values of the 16-QAM constellation.
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Figure 6.3 Measured EDF and hypothesized Gaussian CDF of different modulations, with
mean and variance estimated.

As shown in the figure, the EDF of OFDM signal is more consistent with the hypothesized

Gaussian CDF than other single carrier modulations. The less discrepancy between the

EDF and the CDF suggests the higher probability H0 will be accepted.

In order to measure the difference between EDF and CDF quantitatively, the so-called

EDF statistics are introduced. They are based on the vertical differences between Fn (ω )

and F (ω ) . The closer two curves, the smaller EDF test statistics. As described in the

proceeding section, we resort to the Cramer-von Mises statistic, which is defined by
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Thus, CV statistic is nothing but the integrated square error between the estimated cumulative

distribution function and the measured empirical distribution function of the sample.

The computation of W2 is carried out via the Probability Integral Transformation

(PIT), Δ = F(Ω). When F (ω ) is the true distribution of Ω, the new random variable Δ

is uniformly distributed between 0 and 1. Hence Δ has distribution function U (δ ) = δ,

0 ≤ δ ≤  1, Δ  = F(Ω), and let Un (δ ) be the EDF of the values Δκ ,. Thanks to the fact

that

EDF statistic calculated from Δκ with the uniform distribution will take the same value as

if it were calculated for the EDF of the Ω κ . This yields the following formula to calculate

the CV statistic

From the definition and derivation given above, the procedure of the Cramer-von

Mises Gaussianity test is summarized as follows:

• step (a) Sample the incoming signal, take the real or imaginary part of samples to
obtain {Ω1,...,Ωn};

•

step (b) Arrange the sample in ascending order, Ω(1) < ... < Ω (n ) ;

•

step (c) Estimate the sample mean Ω and standard deviation S

• step (d) Apply PIT, calculate the standardized value ζκ , for κ  = 1, ..., n - 1, fromζκ
= (Ω(κ) - Ω)/S , and further Δ(κ) = Φ(κ ), where Φ(x) indicates the cumulative

probability of a standard normal distribution;
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• step (e) Calculate the CV test statistic via the formula (6.10);

• step (f) Use the percentage points given in Table 4.7 of [52] and calculate the
modified statistic 1 . If the modified CV statistic exceeds the appropriate percentage
point at level a, 7-10 is rejected with significance level a. In other words, no Gaussianity
is present in the incoming signal.

Note that significance level is a statistic expression, which corresponds to the probability

of false alarm in engineering. Both belong to the Type I error [53,54].

6.4 Simulations and Discussion

The Gaussianity tests for modulation classification with Cramer-von Mises statistics have

been simulated and numerical results have been presented in this section. The CV test

statistics have been compared for different modulation types, including OFDM, M-ary

QAM, and M-ary PSK. The Effects of AWGN on the CV test have been investigated and

the impact of narrowband interference has also been addressed. Moreover, the classifier

performance over frequency selective fading channels has been investigated.

In simulations, normalized constellations are generated to assure fair comparison.

A 64-subcarrier OFDM signal has been generated, with 16-QAM modulation on each

subcarrier. The incoming signal has been sampled at the rate of 1/ Ts, i.e., the reciprocal

of the OFDM symbol duration. Suppose 10 OFDM symbols are sampled, thus the total

number of samples is 640. Note that the SNR of OFDM signal is defined as E[|ynm|2]/N0,

where 

E

[|ynm|2] is given in eqn. (6.4). It is not hard to show that 

E

[|ynm|2] =

E

[|Xkm|2].

Therefore, the SNR of OFDM can be re-defined as 

E

[|Xkm|2]/ N0, which is nothing but the

same as the SNR of single carrier.

The CV statistics for different modulations have been sketched in Fig. 6.4, where

the SNR is set at 20dB. The CV statistics are calculated from the in-phase or quadrature

part of the tested signal for 100 trials. The value of the dashed line, 0.126, stands for the

'When the CDF is not completely specified and parameters are estimated, the Cramer-von Mises
statistic should be modified to obey the asymptotic theory.
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Figure 6.4 Cramer-von Mises statistics for different modulations at high SNR,
SNR=20dB.

decision threshold at 5% significance level, which is given in Table 4.7 of [521 If the

statistic exceeds the threshold, H0  (Gaussianity hypothesis) is rejected at 5% probability

that actually H0  is true. The CV statistics of all the single carrier modulations are well

above the threshold while the one of the OFDM keeps below the threshold, except for

a couple of trials. This is due to the significance level set to 0.05, thus there is a little

possibility that the CV statistic jumps over the threshold.

Fig. 6.5 shows the coincidence with Fig. 6.4 in terms of demonstrating the Gaussianity

in different modulations. In each figure, the bars denote the actual histogram while the

solid curves denote the hypothesized Gaussian curve plotted with the estimated means and

variances. The higher degree the curve overlays with bars, the more Gaussianity behavior

of the modulated signal, and the lower value of the CV statistics.

Also, it is observed that the higher the order of a single carrier modulation, the closer

the statistic to the threshold. To explain this, one may argue that higher order modulation

indicates more possible real or imaginary values, which leads to that samples looks more

similar to a normal distribution. One may also catch the idea by comparing Fig. 6.3(b) with

Fig. 6.3(a). Moreover, Fig. 6.5(b) and Fig. 6.5(c) deliver the same idea.
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Figure 6.5 Histogram of in-phase samples at high SNR, SNR=20dB.

In comparison, the CV statistics at a lower SNR (10dB) and the corresponding histo-

grams have been plotted in Fig. 6.6 and Fig. 6.7, respectively. The lower SNR shows little

effect on the CV statistic of the OFDM signal. However, the statistic of single carrier is

sensitive to such change, by showing lower values and moving downward to the threshold.

Correspondingly, histograms of single carrier signals get more closer to the hypothesized

Gaussian curves. Interestingly, in QAM modulation, the higher order signals incline closer

to the threshold than the counterpart in PSK modulation.
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Figure 6.6 Cramer-von Mises statistics for different modulations at low SNR, SNR=10dB.

Figure 6.7 Histogram of in-phase samples at low SNR, SNR=10dB.
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6.4.1 AWGN Effects on the Test Statistics

In Fig. 6.8, the performance of the Cramer-von Mises statistics with respect to the SNR

variation has been further studied. Each curve is obtained by running 100 trials at different

SNR values and averaging over the number of trials, such that the average statistics are

sketched. Note that the EDF-test threshold is independent of SNR. The reason is that the

threshold is pre-determined from the derivation of statistical empirical experiments. It is

used to judge if an ensemble samples behave Gaussian and depends on given significance

level (probability of false alarm) [52].

As shown in figures, the CV statistic of OFDM signal always below the threshold,

which means OFDM always behaves like Gaussian. When there is no AWGN, OFDM

itself shows Gaussian due to the property discussed at the beginning of this chapter, while

white Gaussian noise added, the mixture still shows Gaussian. Also, the averaging over the

a number of trials smoothes the CV curve so that it is made almost parallel to the threshold.

On the other hand, the AWGN does affect the CV test result for single carrier, especially in

low SNR region. It makes sense since with high additive noise power, even single carrier

modulation behaves as Gaussian due to the overwhelming AWGN. Therefore, at very low

SNR, one has to resort to other noise-robust techniques to identify OFDM from single

carrier modulation. Another observation is that to distinguish OFDM from Mary PSK

modulation is easier than from QAM one, in particular when high order constellations are

involved.

Some CV test performance behavior might be hidden when the statistic is averaged

over trials. Thus, in Fig. 6.9 the probability of correct classification is employed to further

demonstrate the CV test performance w.r.t. SNR, as what we have done in Part I. Keep in

mind that the correct classification here only denotes the successful decision if the signal

is Gaussian (OFDM), rather than the identification of every modulation type as discussed

in Part I. Still, the AWGN affects the test results for single carrier in low SNR region,

whereas for an OFDM one, it does not affect the test result at all. Obviously, higher order
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Figure 6.8 Performance of CV statistic w.r.t. SNR.

Figure 6.9 Classification performance with CV test.
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QAM modulation suffers more than lower order one, while for PSK, any order modulation

experiences the similar performance. For example, 128-QAM, at P„ = 0.9 level, suffers

2dB SNR loss compared to the 16-QAM. Note that because of the 5% significance level,

the P„ performance curve for an OFDM fluctuates slightly around 0.95.

6.4.2 Impact of Narrowband Interference

It is of great interest, in practical applications, to investigate the impact of narrowband

interference on the Cramer-von Mises test of an OFDM signal. The investigation results

are presented herein, followed by some suggestions on the implementation of the CV test

considering narrowband interference.

First, let the SNR of the narrowband single carrier interference equal the SNR of

OFDM signal. Fig. 6.10 depicts numerical results, which shows the test performance

variation w.r.t. the observation interval, i.e., the length of the sampling window. The

decision threshold is set at 0.126, which reflects the significance level as 0.05. The observa-

tion interval has been measured in terms of the number of periods of a single carrier. It

is observed that the more narrowband signal symbols sampled (or counted), the worse

the test performance. To understand it, one may imagine that since in time domain, the

narrowband signal overlaps with the OFDM, within single narrowband symbol duration,

the set of samples are OFDM modulation plus a fixed value. As the value only changes

the statistic mean of the Gaussian random variable, the CV test experience no performance

degradation at all. However, if the sampling interval is large enough to include multiple

narrowband symbols, the samples can be treated as a group of random variable, which can

be separated into multiple sets. Samples of each set are Gaussian RV with respective mean,

thus the group of sets cannot be considered as a Gaussian RV any more, leading to severe

performance degradation in CV test.

In order to examine the effect of the power of the interference, in Fig. 6.11 the

SNR of OFDM signal is fixed at 10dB while the SNR of the narrowband interference
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Figure 6.10 Impact of narrowband interference with respect to observation interval,
BWSC = BWOFDM/128 .

Figure 6.11 Impact of narrowband interference with respect to SNRSC variation,
SNRSC = 10dB.
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Figure 6.12 Classification performance over frequency selective fading.

varies. The CV test threshold is still set at 0.126. Bear in mind that in this simulation, the

length of the sampling window is single narrowband signal duration. It is shown that both

the interference power and the interference bandwidth do not affect the test performance,

provided that the observation interval is properly selected.

6.4.3 Impact of Frequency Selective Fading

The performance of the proposed OFDM classification technique with frequency selective

fading is plotted in Fig. 6.12, where the significance level is set to 0.1. Raised cosine pulse

shaping is implemented with roll off factor set to 0.35.

The fading is present with τrms > Tb/10 [19], and τrms denotes the root mean

square delay spread. Since frequency selective fading leads to inter-symbol interference

(ISI), any sample of a single carrier signal contains overlapped neighboring symbols. Such

mixture contributes somewhat Gaussianity behavior to single carrier signal. Moreover, the

tail resulted from pulse shaping also cause deterioration in classification performance.

In the simulation, the bandwidth of single carrier is 200kHz, thus Tb= 5μs.A

typical urban (TU) 6-ray multipath delay profile is used, which has been defined in the
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Table 6.1 Typical urban 6-ray multipath power delay profile, from [1].

delay, μs Fractional Power
0.0 0.189
0.2 0.379
0.5 0.239
1.6 0.095
2.3 0.061
5.0 0.037

COST207 study [1]. Table 6.1 shows the power delay profile. The root mean square delay

spread of the TU model is τrms = 1.0552μs . It is shown that in the practical application

environment, the proposed method can offer a probability of correct classification greater

than 80% for distinguishing difference between OFDM and single carrier.

6.5 Summary

In this chapter, the Cramer-von Mises test, an empirical distribution function -based Gauss-

ianity test method, is proposed to identify OFDM signals from single carrier modulations.

Numerical results show that the CV test is applicable for OFDM classification in a wide

SNR range. Moreover, with properly selection of sampling window, it is robust to narrow-

band single carrier interference. Moreover, the proposed scheme can provide the acceptable

performance when frequency-selective fading is present.



CHAPTER 7

OFDM PARAMETERS EXTRACTION

Once the received signal is classified as an OFDM modulation, parameter extraction is

carried out immediately. Parameters to be extracted include symbol duration, cyclic prefix

duration and number of subcarriers.

7.1 Detection of the Symbol Duration (T5)

First, a cyclostationarity test is applied to the incoming signal to detect the OFDM symbol

duration 

Ts

. According to [46] and [47], OFDM signal is cyclic stationary with period

Ts

. Therefore, a cyclic correlation based algorithm can be applied to estimate the OFDM

symbol rate (1/Ts) blindly [48] [49]. If the test fails, in other words, no cyclostationarity

is detected, then one may conclude that the incoming signal is not OFDM. Otherwise, the

classifier truncate a single OFDM symbol based on the estimated

Ts

, and feed it into the

cyclic prefix duration detection module.

7.2 Detection of the Cyclic Prefix Duration (Tcp)

In wireless communications, multipath fading may result in the inter-symbol interference

(ISI). In OFDM systems, to eliminate ISI while maintaining the orthogonality of subcarriers,

the last Tcp of the useful symbol period Tb, termed Cyclic Prefix (CP), is copied to the front

of the symbol. Figure 7.1(a) depicts this structure.

The principle of the Tcp detection is a classic correlation test, which is performed

according to

74
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Figure 7.1 Detection of the cyclic prefix.

where x(t) is a single OFDM symbol, x'(t) = x (t + Ts- τ)is the left-shift copy of x(t), τ

is delay, and x* (t ) stands for the conjugate of x (t ) . The detection procedure is illustrated in

Fig. 7.1(b). The detector makes a copy of one OFDM symbol, and keeps the copy sliding

from tail to head so that an overlapping part is generated. Then it calculates the product of

the overlapping. Finally the correlation value is obtained as the summation of the product.

Since the cyclic prefix is identical to the last Tcp of an OFDM symbol, an extremum (local

maximum) of R (τ ) can be obtained when τ = Tcp .

As suggested in the IEEE 802.11a standards [42], the maximal length of the CP is

restricted to one fourth of the useful symbol duration Tb. Therefore, one may decrease the
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Figure 7.2 Detection of Tcp using single OFDM symbol, NFFT  = 256.

search range for the CP from the whole Ts to Ts/4 or Ts/5. In other words, the upper limit

of τ in (7.1) can be reduced to 0 < τ  < Ts/4.

However, as shown in Fig. 7.2, one may observe that although R (Tcp ) is an extremum,

other extrema nearby may show larger values for 0 < τ < Ts/4 , when the Tcp/Tb becomes

smaller. Hence, the maximum value of R(τ) , may not be present at τ = Tcp,The reason

for such phenomena is that the sample values in one OFDM symbol are correlated due to

the IFFT operation.

In order to alleviate the effect of such correlation, a modified CP detector using

multiple OFDM symbols is proposed in this work. First, multiple OFDM symbols are used

in the CP detection module, and (7.1) is computed individually for each symbol. Then,



77

Figure 7.3 Detection of Tcp using multiple OFDM symbols, NFFT  = 256.

multiple R (τ )'s are summed together so that the extremum R(Tcp ) is strengthened. At the

same time other extrema will be suppressed due to the fact that the original information bits

are generated randomly with equal probability. Fig. 7.3 shows results of the modified cyclic

prefix detector using multiple OFDM symbols, where R(Tcp ) in the first one fourth of the

OFDM symbol duration Tshas been amplified while other extrema have been suppressed.

Thus 

R(Tcp

) is much easier to be detected. The more symbols involved in the detection, the

higher ratio of the top-peak-to-second-peak in the searching range, which is set as

T

s /4.

The probabilities of error Peon detection ofTcphave been plotted in Fig. 7.4. In the

simulation, the number of FFT is 256, and on each subcarrier, the 16-QAM constellation

is used. Most of the points are obtained via running ten thousands trials, while for the very
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Figure 7.4 Probabilities of detection error on Tcp with different number of symbols,
NFFT  = 256.

low Pe, 105 trials have been run to ensure accurate results. The benefit of the multiple-

symbol correlation scheme is distinct over the single-symbol method. For example, with

single-symbol correlation detection, the error probability is around 0.3 at 20dB, whereas

with 10-symbol, one can achieve the error probability lower than 10 -4 . A precise detection

on the duration of the cyclic prefix is critical for the detection of the number of subcarrier,

which is going to be addressed in the coming section. Therefore, with given restriction on

the system complexity, one should choose as more symbols as possible to detect the Tcp,.

7.3 Detection of the Number of Subcarriers

Suppose that the symbol duration is obtained, then as soon as the duration of the cyclic

prefix is determined, it is removed from the OFDM symbol, and only useful symbol data is

fed into the subsequent bank of FFT's module.

7.3.1 Bank of FFT's

As sketched in Fig. 7.5, it consists of several FFT processors in parallel. Each processor,

termed FFT branch, has different length N p , which is power of 2 multiple of Nb , a base



FFT size, i.e.,

where P is the number of FFT branches.
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Figure 7.5 FFT bank structure.

It is reasonable to assume that the size of IFFT processing of the received OFDM

signal, N, is in power of 2, and the value of N is in the set of {N p }p=1P. Therefore, if

Np = N, the output of the p-th FFT branch are perfectly demodulated useful data bits. Just

like a regular single carrier modulated signal, there is no Gaussianity in such demodulated

OFDM data. On the other hand, if Np ≠N,most output entries of thep-th FFT branch still

shows Gaussianity property, whilst at certain equally spaced entries, there is no Gaussianity.

The mathematic justification of this will be elaborated in the sequel.

Note that by increasing the number of OFDM symbols processed at FFT branches,

a more accurate Gaussianity result may be obtained when N p ≠N.But there would be a

tradeoff as the delay in decision is increased.

7.3.2 Mismatched Synchronized OFDM Signal without Cyclic Prefix

In this subsection, the property of the output of the FFT bank is investigated, which will

be utilized later on as the theoretical guideline to design the algorithm for detecting the

number of subcarriers. The so-called "mismatched synchronized OFDM signal" implies
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that the size of the FFT at the receiver side mismatches the one of the IFFT at the transmitter

side, but the sampling rate at the receiver side is assumed synchronized with the transmitter.

Suppose the transmitter IDFT size is N and the classifier DFT size N satisfy N = MN

where M ≥  1 is a positive integer.

The input signal to the classifier DFT is

where Xkm is the kth data symbol of the mth transmitted OFDM symbol, ynm is the nth

IDFT output symbol of the mth transmitted OFDM symbol.

The classifier performs an N-point DFT hence the kth entry of the DFT output is

given by

Now, there are two cases. Case I: If k/M=l'is an integer, i.e., (kmodM)=0, we

have
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Therefore, when k/M- = 1, expression (7.3) can be simplified as

The physical meaning of Eqn (7.5) can be explained as follows. For the k-th entry of the

output of N-point FFT, if k is a multiple of M, then Ykis the summation ofMoriginal data

symbols. Those data symbols come from the k/M-th subcarrier of M transmitted OFDM

symbols. Since M may not be a large number, Yk shows little Gaussianity.

Case II: If k/M is not an integer, i.e., (k mod M) ≠ 0, then

Substituting (7.6) into Eqn (7.3), one obtain

which means that when k is not a multiple of M, the k-th output of N-point FFT is a

mixture of MN data symbols {X lm}l=0:N-1m=0:M-1 . In other words, every data symbols in the

sampling interval contribute to the Yk, and Ykmay show obvious Gaussianity.
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Given the observation above, one is led to a two-phase detection approach based on

Gaussianity test. One may test the equal-spaced sampling points as (7.5) suggested for

non-Gaussianity. Also, another option is that one may test those left points for Gaussianity

as (7.7) suggested.

7.3.3 Two-Phase Searching Approach

Gaussianity test usually requires large number of samples so that the test validity can be

guaranteed. To apply the test at the output of the FFT, there are two implementation

methods, one is to examine certain single branch individually for Gaussianity (or non-

Gaussianity), which collects samples along the time domain; the other is to examine a

group of branches belonged to Gaussian (or non-Gaussian) at one time, along the frequency

domain. The former causes much longer delay and more temporary storage cache than the

latter. As the number of FFT points is large, the samples over frequency domain will be

sufficient for the test. Therefore, the test along the frequency domain is accepted in this

work.

In order to facilitate the later discussion, an example is introduced here to describe the

adopted method. Suppose the Gaussianity test needs 512 samples, the number of FFT N =

1024, and the number of IFFT at the transmitter side N = 128. Based on eqn (7.5), the goal

is to examine if the Gaussianity is present at the FFT outputs { Yk }k=8l , l= 0, 1, . . . , 127.

In the time domain method, one have to wait for 512 mismatched OFDM symbols 1 to

finish one test on each Y

k

. However, in the frequency domain method, { Y0,Y8 ,Y16 ,...}

are collected together to run single test. In contrast, only four (512/128 = 4) mismatched

OFDM symbols are needed to complete the test. The advantage of the frequency domain

method over the time domain method is obvious.

1 The mismatched OFDM symbol denotes the one with N-point FFT. In the example, the length of
one such symbol is 1024.
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According to the derivations addressed in the foregoing subsection, the basic idea to

find the number of subcarriers is a so called two-phase searching approach, which consists

of two phases; iterative coarse search phase and fine tune phase.

In the iterative coarse search phase, first of all, with the incoming signal, it starts at

an /ST -point FFT operation. The initial value of N, say go, is set sufficiently larger than the

possible maximal value of the transmitter IFFT size N. Then it tests the output of the FFT

for Gaussianity. If strong Gaussianity is present, which implies N >>N, N.is divided by

2 and an FFT is run again with the new N-point. Repeat this "N-point FFT—Gaussianity

test—N/2" cycle unless the Gaussianity test is failed, which indicates that N ≈N.

During one iteration, the Gaussianity test is applied over all the FFT output branches.

It is valid in that when N >> N, M is somewhat large, and the summation of M original

data in { Yk }( k mod M)=0  (Case I points) introduces Gaussianity in certain degree. Moreover,

as illustrated in Fig. 7.5, the fact of larger M indicates that the number of Case I points

are much less than the one of Case II points, which are dominant part at the FFT output.

Hence, the overall FFT outputs show Gaussianity. As N decreases and comes close to N,

M is in single digit and the Gaussianity in { Y

k

}(kmodM)=0diminishes. Furthermore, the

number of Case I points is comparable to the one of Case II points. The Gaussianity over

all the FFT outputs tapers off with such transform so that a test against all the FFT outputs

may fail.

When it comes to the fine tune phase, different sets of the FFT output branches are

chosen for Gaussianity test. Since after the iterative coarse search, the size of the FFT at

the receiver side N has been reduced to 8N or less, the final goal becomes to determine if

M is equal to 8, 4, 2, or 1. The technique to guarantee N ≤  8N after the coarse search is

addressed later on in the implementation remarks. The decision criteria for detection of M

and their relations to different output sets are listed in Table 7.1.
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Table 7.1 Decision Criteria for Detection of M.

set M = 8 M = 4 M = 2 M = 1

A : {Yk }k-8lB : {Yk }k-8l+4C : {Yk }k-4l+2D : {Y k }k- 2l+1 non-Gauss.
Gauss.

— —— —

non-Gauss.non-Gauss.Gauss.

— —

non-Gauss.non-Gauss.non-Gauss.

Gauss.

non-Gauss.non-Gauss.non-Gauss.non-Gauss.

For example, if {Y 0, Y8, Y16,...} is found non-Gaussian, while { Y4, Y12, Y20,...} is

caught as Gaussian, then one may claim that M = 8 and divide the current N by 8 to obtain

the estimation of the number of subcarriers N .

7.3.4 Implementation Remarks

Figure 7.6 illustrates the flowchart for the detection of the number of subcarriers. Some

implementation techniques are elaborated as follows. Note that the empirical distribution

function-based Cramer-von Mises (CV) method is used to test the Gaussianity.

As mentioned at the beginning of this subsection, tests are run along the frequency

domain so that with given requirement of test samples number the delay is reduced as

much as possible. In order to ensure that the output N is very close to the true value N

by the end of the iterative coarse search, in each iteration CV Gaussianity tests are applied

over multiple mismatched OFDM symbols, yielding multiple CV statistics. Within these

statistics, the one with the minimum value is selected and compared with a pre-determined

threshold. If it is less than the threshold, which implies that at least one mismatched OFDM

symbol is Gaussian, then the coarse search resumes into next iteration. Otherwise, all the

mismatched OFDM symbols tested show non-Gaussian. Then it is safe to claim the end of

the iterative coarse search and switch to the fine tune phase.

The more mismatched OFDM symbols examined, the higher reliability of the coarse

search (N approximates N). But it also means higher implementation complexity and

longer processing time. There is a compromise between the implementation complexity

and the reliability. Fig. 7.7 shows the histogram for the value of M(N/N) after a test over



Figure 7.6 Flowchart of the detection for the number of subcarriers.
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Figure 7.7 Histogram for the output of the single-test in phase I. N0=4096, total number
of trials is 1000.

single mismatched OFDM symbol. One may observe that the range of M is quite large.

Also, this range becomes larger when the ratio of the initial FFT size N to the IFFT size

N increases. In Fig. 7.8, it is shown that after the iterative coarse search, M is nearly

restricted to 8 and less by carrying out three consecutive tests on the mismatched OFDM

symbols. Based on these observations, three consecutive mismatched OFDM symbols are

to be examined so that the output M from phase I is located in the detectable range of the

fine tune phase.

In the fine tune phase, a similar multiple tests technique is employed to reduce the

probability of false alarm introduced by the pre-determined threshold, as well as to remove
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Figure 7.8 Histogram for the output of the triple-test in phase I. N0 =4096, total number
of trials is 1000.
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Figure 7.9 Performance of simple test in phase II.

the effect of the additive Gaussian noise as much as possible. As mentioned in Section

6.3, the CV Gaussianity test is implemented by comparing the CV statistics with a given

threshold, which is determined by the anticipated probability of false alarm (or equivalently,

significance level) Pfa . False alarm implies that the detector claims non-Gaussian while

actually the examined data is Gaussian 2 . Hence, the lower Pfa required, the higher the

pre-determined threshold. In Fig. 7.9(a),

Pfa

 of two different Cramer-von Mises statistic

thresholds are plotted. The higher CV threshold is 0.201, which corresponds to the lower

pre-determined 

Pfa

, 0.005. The lower CV threshold is 0.126, which corresponds to the

higher pre-determined

Pfa

, 0.05.

However, the additive noise introduces Gaussianity at the Case I points, which results

in the smaller CV statistics value. As a result, a set of Case I FFT output might be judged as

Gaussian by error. The probability of claiming Gaussian (H0 ) while non-Gaussian ( H 1 ) is

true is the so-called probability of miss Pm . A lower threshold is desired for the purpose of

reducing Pm , which is contradictory to the requirement discussed in the previous paragraph.

2 Since in Chapter 6, it defines Gaussian hypothesis as H0 whereas non-Gaussian one as H1 . It
is better to comply with the conventional engineering definition of

Pfa

 and Pm , which will be
addressed immediately
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Therefore, a balance has to be managed. Fig. 7.9(b) illustrates the relationship between Pm

and. CV statistic threshold.

A double-confirmation Gaussianity test is proposed to handle such contradiction.

Figure 7.10 illustrates the proposed technique. The reason to call it double-confirmation

is that in order to make a decision, it needs identical confirmations from two consecutive

observations. Either the CV statistics of both tests are larger than the threshold, which leads

to non-Gaussianity judgement; or both values are less than the threshold, which means

Gaussian. In case that two CV statistics stay across the threshold, a third CV test have to

be carried out and the final decision is based on the value of the third statistic.

Figure 7.10 Double-confirmation Gaussianity test.
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Figure 7.11 Performance improvement from the proposed scheme in phase II.

Fig. 7.11 shows the performance improvement from the proposed double-confirmation

scheme. It is shown that both probability of false alarm and probability of miss are reduced,

no matter the value of the CV statistic threshold. Note that such reductions become significant

when Pfa or Pm are large, which is desired.
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7.3.5 Performance Analysis of Double-Confirmation Scheme

The discrete-time Markov chain [55] is introduced as a mathematic tool to analyze the

performance of the proposed double-confirmation Gaussianity test.

Suppose one uses +1 to denote the event that H 1 is accepted, while -1 to denote

the event that H0  is accepted, in any single test. For instance, ifH

1

 are accepted in two

consecutive observation, the output is +2; if H

1

 is claimed in one test and H0  is claimed

in the next test, then the output is 0. Hence in the proposed double-confirmation scheme,

after two or three consecutive observations, the output should be +2 or +1 so thatH

1

 can

be accepted, or -2 or -1 for the rejection of H

1

.

Define different states according to the "sign" of the accumulative output. Let state

S1 and S2 indicate the positive accumulative output and negative accumulative output,

respectively. And assume state S0 indicate the zero accumulative output, which means

the initial state or undetermined state.

Figure 7.12 Finite step Markov chain for the double-confirmation Gaussianity test.

The Markov transition trains for the proposed scheme are plotted in Fig. 7.12, where

the left items over the arrows stand for the case when Gaussianity hypothesis H0  is true,

and the right items imply non-Gaussianity hypothesis H

1

 is true. Note that the maximum

number of steps is restricted to three, since in the proposed scheme no more than three tests

will be carried out. The transition probability is referred as Pij, which is the probability
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that a process will next be in state j from current state i, regardless of the process history

prior to arriving at i. That is.

where {Zn|n = 0, 1, 2, . .} indicate a discrete-time stochastic process with state space

= {Si|i = 0,1,2}. When H0 is true, the corresponding transition probability matrix is

denoted as

while the transition probability matrix for the true H 1 is

In order to calculate the new probability of false alarm (PFA) and miss (PM ) for the

proposed scheme, the n-step transition probabilities are introduced as
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The Chapman-Kolmogorov equations provide a method for calculating Pijn [56]. They are

given by

Suppose H0  is true (Gaussianity exists), the false alarm for the double-confirmation

approach is composed of two kinds of cases. One kind is that H0  are rejected (H 1 are

accepted) in two consecutive tests and the output is positive (+2), which belongs to state

S1 . No third test is carried out in such case. So only two steps are involved in the transition

from state S0 to state S1 . The other kind is that in the first two tests, the accumulative

output is zero ( H0  is accepted in one trial and rejected in the other). A third test is carried

out and finally H 1 is accepted and its output is positive (+1). Three steps are experienced

in the transition from S0 to S1 in such kind of cases.

Therefore, the probability of false alarm can be expressed in terms of the transition

probabilities

Applying 7.12, yields
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Note that Pfa 3will never happen, because in the proposed scheme it stops testing as soon as

two consecutive trials output same results. As a result, the calculation for the PFA should

be modified as

Equation 7.16 shows that by using the double-confirmation Gaussianity test the system

reduces the probability of false alarm significantly. For example, if without the proposed

scheme, the probability of false alarm Pfa is given at 0.05. Then when applying this

technique, the new probability of false alarm PFA  is reduced to 7.25 x 10 -3 . Such reduction

is very important since it happens in the fine tune phase in which the exact number of

subcarriers is determined. Consequently the overall system performance is dominated by

this phase.
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The new probability of miss PM can be derived in the similar way. After some

manipulation, it is not hard to obtain

As mentioned before, the probability of miss results from the additive Gaussian noise.

Therefore, another benefit of the double-confirmation technique is to alleviate the impact

of the AWGN, which impairs Gaussianity test.

7.3.6 Numerical Results

In this subsection, the overall performance of the proposed two-phase searching scheme

for the number of OFDM subcarriers is examined via Monte Carlo simulation.

For each experiment, total number of trials is 5000. The size of receiver FFT is

initialized at 4096, i.e., N0 = 4096. The number of IFFT at the transmitter side is

randomly generated within the finite set { N|32, 64, 128, 256, 512}. The elements of the

set are generated with equal probability. The performance is evaluated by the probability

of correct detection PD , which indicates that the classifier detects successfully the exact

number of subcarriers.

Figure 7.13(a) shows the noise-free performance of the detector with single decision

and one with the proposed double-confirmation decision. The advantage of the proposed

scheme over the simple decision one is obvious.

When white Gaussian noise is added, both detectors suffer from the extra Gaussianity.

However, the double-confirmation detector obtains considerable benefit from the redundant

operations. Such benefit becomes more significant when the SNR changes to the lower

regime.



Figure 7.13 Probabilities of correct detection for the number of subcarriers.

96



97

7.4 Summary

In this chapter, a multi-symbol correlation test is applied to estimate the duration of the

OFDM cyclic prefix. Moreover, a two-phase searching scheme, which is based on Fast

Fourier Transform (FFT) as well as Gaussianity test, is devised to detect the number of

subcarriers. In the first phase, a coarse search is carried out iteratively. The exact number

of subcarriers is determined by the fine tune in the second phase. Both analytical work and

numerical results are presented to verify the efficiency of the proposed scheme.



CHAPTER 8

SUMMARY AND SUGGESTIONS FOR FUTURE WORK

8.1 Summary of the Dissertation

This dissertation has focused on blind modulation classification for both conventional single

carrier modulations and emerging multiple carrier modulations as well. Major contributions

are as follow.

Modulation classification for single carrier signals:

• Applied the quasi-hybrid likelihood ratio test approach to classify linear modulated
signals; proposed a simple yet accurate enough way to handle with the LRT MC with
unknown parameters;

• Generalized the conventional classifier to exploit signals from an antenna array;

• Invented the two-stage CFO estimation scheme, to be used with an antenna array, to
improve the classification performance over frequency non-selective fading channels.

Modulation classification for OFDM signal:

• Proposed to apply the empirical distribution function -based goodness-of-fit technique
to test Gaussianity; Tested the proposed approach with narrowband interference and
frequency-selective fading channels.

• Applied the correlation test to detect the duration of the OFDM cyclic prefix;

• Invented a two-phase searching method to detect the number of subcarriers, in which
a double-confirmation technique is proposed to reduced the probability of false alarm
as well as the probability of miss. Performance was evaluated via finite step Markov
chains.

For both scenarios, numerous simulation studies were conducted to confirm the validity

of the theory and to test the performance of the proposed algorithms.
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8.2 Suggestions for Future Work

To design and implement blind modulation classifier is a highly challenging work, both for

single carrier modulations as well for multiple carriers. Anticipated research topics include

the following.

Modulation classification for single carrier signals:

• Derive the CRLB for joint estimation of CFO and phase, under MRC condition;

• Investigate the effect of fading (phase offset on each antenna) on the proposed two-
stage CFO estimation, based on the joint CRLB;

• Extend the scheme to frequency-selective channels.

Modulation classification for OFDM signal:

• Compare the EDF-based Gaussianity test scheme with the higher-order statistics
(HOS)-based method;

• Improve the Gaussianity test performance over frequency-selective channel;

• Investigate the impact of carrier frequency offset on the proposed two-phase detection
technique for the number of subcarriers;

• Evaluate the overall performance of the comprehensive system.



APPENDIX

PDF DERIVATION FOR BPSK CONSTELLATION

The probability density function for BPSK modulation (4.6) is derived in this Appendix.

Expanding (4.5), one can obtain

where αM  = Σlαl2  , and ψn = 2πfen. With BPSK assumption, C = {±1}, substituting

into equation above yields
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