
New Jersey Institute of Technology
Digital Commons @ NJIT

Dissertations Theses and Dissertations

Fall 2005

Quantifying software architecture attributes
Bo Yu
New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/dissertations

Part of the Computer Sciences Commons

This Dissertation is brought to you for free and open access by the Theses and Dissertations at Digital Commons @ NJIT. It has been accepted for
inclusion in Dissertations by an authorized administrator of Digital Commons @ NJIT. For more information, please contact
digitalcommons@njit.edu.

Recommended Citation
Yu, Bo, "Quantifying software architecture attributes" (2005). Dissertations. 762.
https://digitalcommons.njit.edu/dissertations/762

https://digitalcommons.njit.edu?utm_source=digitalcommons.njit.edu%2Fdissertations%2F762&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/dissertations?utm_source=digitalcommons.njit.edu%2Fdissertations%2F762&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/etd?utm_source=digitalcommons.njit.edu%2Fdissertations%2F762&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/dissertations?utm_source=digitalcommons.njit.edu%2Fdissertations%2F762&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.njit.edu%2Fdissertations%2F762&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/dissertations/762?utm_source=digitalcommons.njit.edu%2Fdissertations%2F762&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of
the personal information and all signatures from
the approval page and biographical sketches of
theses and dissertations in order to protect the
identity of NJIT graduates and faculty.

ABSTRACT

QUANTIFYING SOFTWARE ARCHITECTURE ATTRIBUTES

by
Bo Yu

Software architecture holds the promise of advancing the state of the art in software

engineering. The architecture is emerging as the focal point of many modern

reuse/evolutionary paradigms, such as Product Line Engineering, Component Based

Software Engineering, and COTS-based software development.

The author focuses his research work on characterizing some properties of a

software architecture. He tries to use software metrics to represent the error propagation

probabilities, change propagation probabilities, and requirements change propagation

probabilities of a software architecture. Error propagation probability reflects the

probability that an error that arises in one component of the architecture will propagate to

other components of the architecture at run-time. Change propagation probability reflects,

for a given pair of components A and B, the probability that if A is changed in a

corrective/perfective maintenance operation, B has to be changed to maintain the overall

function the system. Requirements change propagation probability reflects the likelihood

that a requirement change that arises in one component of the architecture propagates to

other components. For each case, the author presents the analytical formulas which

mainly based on statistical theory and empirical studies. Then the author studies the

correlations between analytical results and empirical results.

The author also uses several metrics to quantify the properties of a Product Line

Architecture, such as scoping, variability, commonality, and applicability. He presents his

proposed means to measure the properties and the results of the case studies.

QUANTIFYING SOFTWARE ARCHITECTURE ATTRIBUTES

by
Bo Yu

A Dissertation
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy in Computer Science

Department of Computer Science

January 2006

Copyright © 2006 by Bo Yu

ALL RIGHTS RESERVED

APPROVAL PAGE

QUANTIFYING SOFTWARE ARCHITECTURE ATTRIBUTES

Bo Yu

Dr. Ali Mili, Dissertation Advisor

Professor of Computer Science, NJIT

Dr. Joseph Leung, Committee Member 	 Date
Distinguished Professor of Computer Science, NJIT

Dr. Frank Shih, Committee Member 	 Date
Professor of Computer Science, NJIT

Dr. Qun Ma, Committee Member 	 Date
Assistant Professor of Computer Science, NJIT

Dr. Robb Klashner, Committee Member 	 Date
Assistant Professor of Information Systems, NJIT

Date

BIOGRAPHICAL SKETCH

Author:	 Bo Yu

Degree:	 Doctor of Philosophy

Date:	 January 2006

Undergraduate and Graduate Education:

• Doctor of Philosophy in Computer Science,
New Jersey Institute of Technology, Newark, NJ, 2006

• Master of Science in Computer Science,
New Jersey Institute of Technology, Newark, NJ, 2001

• Bachelor of Science in Chemistry,
Shandong University, Jinan, P. R. China, 1987

Major:	 Computer Science

Presentations and Publications:

Bo Yu and Ali Mili,
"Estimating Requirements Change Propagation from Software Architecture",
WSEAS Transactions on Computer, Issue 5, Volume 3, November 2004, page:
1674.

Bo Yu and Ali Mili,
"Assessing and Quantifying Attributes of Product Line Architectures",
International Conference on Computing, Communications and

Control Technologies: CCCT'04, August 2004, Austin, Texas.

W. Abdelmoez, D. M. Nassar, M. Shereshevsky, N. Gradetsky, R. Gunnalan, H. H.
Ammar, B. Yu, A. Mili,

"Error Propagation In Software Architectures",
10th International Symposium on Software Metrics (METRICS'04), 09 11 - 09,
2004 Chicago, Illinois, pages: 384-393.

W. Abdelmoez, M. Shereshevsky, R. Gunnalan, H. H. Ammar, B. Yu, S. Bogazzi, M.
Korkmaz, A. Mili,

iv

"Quantifying Software Architectures: An Analysis of Change Propagation
Probabilities", ACS/IEEE International Conference on Computer Systems and
Applications, Cairo, Egypt, 3-6 January, 2005

W. Abdelmoez, M. Shereshevsky, R. Gunnalan, H. H. Ammar, B. Yu, S. Bogazzi, M.
Korkmaz, A. Mili,

"Software Architectures Change Propagation Tool (SACPT)",
Proceedings of the 20th IEEE International Conference on Software Maintenance
(ICSM'04), 09 11 - 09, 2004 Chicago, Illinois, page: 517

To my wife, Dr. Yongxia Wang, without her support this dissertation would have been

impossible.

The author also wants to dedicate this dissertation to his daughter, Catherine Yu, whose

birth bettered his life in every aspect.

vi

ACKNOWLEDGMENT

The author would like to express his utmost gratefulness to Dr. Ali Mili for all the help he

got from Dr. Mili over the years, and the good working environment Dr. Mili provided.

Dr. Mili's support and patience are sincerely appreciated. The author also wants to

express his deep appreciation to Dr. Hany Ammar (from West Virginia University) for

his help and all the discussions.

The author expresses his heartfelt gratitude to all the committee members, Dr.

Joseph Leung, Dr. Frank Shih, Dr. Qun Ma, and Dr. Robb Klashner, for their

participation and the time spent on this dissertation.

The author is also in debt to Mr. Sergio Bogazzi who made big contributions in

building the automatic tools.

vii

TABLE OF CONTENTS

Chapter	 Page

PART I BACKGROUND 	 1

1 SOFTWARE ARCHITECTURE 	 2

1.1 Software Architecture Definition 	 2

1.2 Software Component Definition 	 4

1.3 Architectural Structures and Views 	 5

1.4 Measuring Software Architecture 	 5

1.5 General Design Rule for Good Architecture Design 	 6

1.6 Software Architecture Styles 	 7

1.7 Software Product Line Architecture 	 8

1.7.1 Software Product Line Definition 	 9

1.7.2 Essential Activities of Product Line Architecture 	 9

1.8 Architecture Description Language 	 11

1.8.1 UML 	 11

	

1.8.2 ACME 12

2 SOFTWARE METRICS 	 13

2.1 Software Metrics Definition and Classification 	 13

2.2 Software Architecture Metrics 	 15

2.3 Premises of Quantitative Approaches 	 16

2.3.1 The Goal-Question-Metric Approach. 	 16

2.3.2 Goal-Function-Metric Paradigm 	 17

viii

TABLE OF CONTENTS
(Continued)

Chapter	 Page

PART II ERROR PROPAGATION PROBABILITIES 	 20

	

3 ERROR PROPAGATION ANALYTICAL STUDY 21

3.1 Error Propagation: Definition 	 23

3.2 Cumulative Error Propagation 	 24

3.3 The Error Insulation Coefficient 	 27

3.4 Estimating Error Propagation Analytically 	 28

3.5 Example: A Command and Control System 	 29

3.6 Analytical Results 	 33

4 EMPIRICAL STUDY OF ERROR PROPAGATION 	 36

4.1 Fault Injection Experiment 	 36

4.2 Experimental Results 	 39

4.3 Statistical Validation 	 40

4.3.1 Correlating One Step Matrices	 41

4.3.2 Correlating Cumulative Matrices 	 43

4.3.3 Statistical Significance of the Correlation 	 44

4.4 Conclusion 	 45

4.5 Comparison to Related Work 	 46

PART III CHANGE PROPAGATION PROBABILITIES 	 51

5 ANALYTICAL STUDY OF CHANGE PROPAGATION 	 52

5.1 Background and Definition 	 53

ix

TABLE OF CONTENTS
(Continued)

Chapter	 Page

5.2 Change Propagation: Usage 	 55

5.3 Analytical Approach 	 59

5.3.1 Context and Assumptions 	 60

5.3.2 Analytical Formula 	 60

5.3.3 Estimation Procedure 	 64

5.4 Analytical Result 	 65

6 CHANGE PROPAGATION EMPIRICAL EXPERIMENT 	 71

6.1 Sample System 	 71

6.2 Change Propagation Probabilities: Empirical Observations 	 72

6.3 Correlation between Analytical Results and Empirical Results 	 75

6.4 Statistical Significance of the Correlations 	 75

6.5 Multi-Step Change Propagation Matrix 	 76

6.6 Related Work 	 80

6.7 CASE Tool 	 81

6.7.1 Functional Description 	 82

6.7.2 Structural Description 	 83

PART IV REQUIREMENTS PROPAGATION PROBABILITIES 	 85

7 REQUIREMENTS CHANGE PROPAGATION ANALYTICAL STUDY .. 	 . 86

7.1 Background and Definitions 	 86

7.2 Propagation Types 	 87

x

TABLE OF CONTENTS
(Continued)

Chapter	 Page

7.3 Related Work 	 87

7.4 Usage of Requirements Propagation 	 88

7.5 Analytical Study 	 88

7.5.1 Analytical Approach 	 88

7.5.2 Analytical Results 	 90

7.6 Empirical Experiment 	 92

7.6.1 Sample System 	 92

7.6.2 Empirical Experiment Procedure 	 93

7.6.3 Empirical Results 	 94

7.7 Correlation between Analytical and Empirical Results 	 95

7.8 Conclusion 	 95

PART V EXTENSIONS 	 97

8 QUANTIFYING ATTRIBUTES OF PRODUCT LINE ARCHITECTURE 	 98

8.1 Product Line Architecture Introduction 	 98

8.2 PLA Specific Attributes 	 100

8.3 Scoping 	 101

8.4 Variability 	 104

8.5 Commonality 	 106

8.6 Applicability 	 108

8.7 Conclusion 	 109

xi

TABLE OF CONTENTS
(Continued)

Chapter	 Page

	9 SUMMARY 111

9.1 Error Propagation 	 111

9.2 Change Propagation 	 112

9.3 Requirements Propagation 	 112

9.4 Metrics for Product Line Architecture... 	 113

9.5 Conclusion 	 113

APPENDIX A Analytical Formula of Error Propagation 	 114

APPENDIX B SharpTool Application Summary Matrix.. 	 118

	

APPENDIX C SharToop Features and Their Corresponding Classes. 119

REFERENCES 	 120

xii

LIST OF TABLES

Table Page

3.1 Conditional Error Propagation Matrix - Analytical Results 	 33

3.2 Unconditional Error Propagation Matrix - Analytical Results 	 34

3.3 Cumulative Error Propagation Matrix - Analytical Results 	 35

4.1 Unconditional Error Propagation Matrix EE - Empirical Results 	 39

4.2 Cumulative Error Propagation - Experimental Results 	 40

4.3 Correlation between Analytical and Experimental EP Probabilities 	 43

5.1 Analytical Change Propagation Result For Sharp Tool 67

6.1 Experimental Change Propagation Result For Sharp Tool 	 73

7.1 Forward Functional Dependency Matrix 	 90

7.2 Backward Functional Dependency Matrix 	 91

7.3 Total Functional Dependency Matrix 	 91

7.4 Experiment Result of Requirement Change Propagation 	 94

7.5 Correlation Coefficients 	 95

8.1 Components and Their Sizes in Function Points 104

LIST OF FIGURES

Figure Page

1.1 Essential product line activities 	 10

2.1 Goal-Question-Metrics model structure 	 17

3.1 Top-level software architecture of the system 	 31

3.2 The architecture of Sub-System (Z) 31

3.3

	

A sample of a sanitized message protocol 32

3.4 A state diagram of a component.. 	 32

4.1 The framework of experimental error propagation analysis. 36

4.2 An illustration of log comparison 38

4.3 Correlation between analytical and empirical error propagation.... 	 44

5.1 An example on how to calculate Mn(C 8) = 8. 57

5.2 Parameterization of the categorization of the change behavior... 59

5.3 Single-step change propagation estimation 62

5.4 The architecture of a sample System.. 64

5.5 A sample of a message protocol.. 65

5.6 A reversed-engineered partial class diagram of Sharp tool 	 69

5.7 Graphical representation of the critical change propagation 	 70

6.1 Different Components OCP behavior Observed during experiments 	 77

6.2 Mn(Ci) of the components through multi-step change propagation 	 78

6.3

	

Pattern of Ripple components 79

6.4 Pattern of a potential Avalanche component 79

6.5 Pattern of wave components 80

xiv

LIST OF FIGURES
(Continued)

Figure Page

6.6 SACPT metamodel (CML/MOF metamodel). 83

6.7 SACPT architecture. 84

7.1 Requirements Change Propagation Diagram 93

8.1 Scoping is the maximum distance between any two systems from the PLA 	 102

8.2 Architecture of the library system PLA 	 103

8.3 Variability is the minimum distance between any two systems from the
PLA. 105

8.4 Applicability is the minimum distance from the requirements specification
of a PLA to the requirements of a system R 109

xv

PART I BACKGROUND

1

CHAPTER 1

SOFTWARE ARCHITECTURE

The foundation of software architecture was laid in the 1960s through the 1980s [89-91].

Software architecture did not get popular until 1990s [92]. It is not because of some

masters advocate the concepts but because of the necessity. Software systems were

growing larger and larger: systems of millions of lines of code are not rare anymore. The

large systems were getting very difficult to develop, to manage and to understand. Then

there came the software architecture to rescue.

There are three main reasons why software architecture is important to large,

complex software system [1]:

• It is a vehicle for communication among stakeholders

• It is the manifestation of the earliest design decisions

• It is a reusable, transferable abstraction of a system

It can be seen that software architecture forms the backbone of building large,

complex software systems.

1.1 Software Architecture Definition

In this section, the author tries to provide a definition to software architecture. There are

many definitions but one is more popular than the others. The most popular one is given

by Bass et al. [4] which states as: "The Software architecture of a program or computing

system is the structure or structures of the system, which comprise software components,

2

3

the externally visible properties of those components, and the relationships between

them".

It is common to distinguish between five broad classes of architectures, called

architectural styles, where each style is defined/characterized by: component types;

communication patterns/protocols between the components; semantic constraints; and a

vocabulary of connectors. The five architectural styles are:

• Independent Components. In this style, an architecture is an aggregate of
independent processes/objects that communicate through data or control messages.

• Virtual Machines. In this style, an architecture is an aggregate of virtual
machines arranged in layers, where each layer invokes the layer below it and
provides the vocabulary to define the layer above it.

• Dataflow Architectures. In this style, an architecture is an aggregate of
processing nodes whose activation is driven by the flow of data streams.

• Data Centered Architectures. In this style, an architecture is an aggregate of
interacting components that communicate through a shared data repository.

• Call and Return Architectures. In this style, an architecture is an aggregate of
components that are defined in programming terms (procedures, functions
routines) and whose interactions are restricted to programming language
supported interactions (call and return, parameter passing, etc).

Perhaps with some loss of generality, the author focuses his attention in this study

on the first architectural style, i.e. independent components. This style is characterized by

its relative genericity: its topology is an arbitrary graph; its messages can be data or

control signals; and its interactions can take place through a central message medium, or

through one-to-one links. This style is very close to the definition given by Software

Engineering Institute (SEI) [3] which is stated as:

The software architecture of a program or computing system is the

structure or structures of the system, which comprise software elements,

4

the externally visible properties of those elements, and the relationships

among them.

From the definition, it can be seen that a software architecture is an abstraction of

a software system. It omits some less important information, such as purely local

information and private component details. In order to reduce the complexity of the

problem at hand in most of this dissertation, the author uses a simplified view of a

software architecture. He views software architecture as a system blueprint which

comprises components and connectors. Connectors are the relationships among

components.

1.2 Software Component Definition

In this section, the author tries to provide a definition to a software component. Since the

author uses the following definition of software architecture, component is a pivotal part

of a software architecture.

The Software architecture of a program or computing system is the structure or

structures of the system, which comprise software components, the externally visible

properties of those components, and the relationships between them.

What is a component? Bachman et al. [22] state that "all software systems

comprise components"; "phrase component-based system has about as much inherent

meaning as 'part-based whole'. To the author, a component is mainly the part(s) of the

software system that are the result of the system decomposition. It also could be a COTS

component. This definition is very close to Szyperski's definition [23] which is:

5

A software component is a unit of composition with contractually

specified interfaces and explicit context dependencies only. A software

component can be deployed independently and is subject to composition

by third party.

1.3 Architectural Structures and Views

A lot of modern systems are large and very complex. It is very difficult to describe the

whole system using just one structure or view. Obviously it takes multiple structures or

views to describe all the aspects of a software system. According to reference [4], the

architectural structures can be divided into three groups:

• Module Structures

In this group elements are modules. An element is a unit of implementation.

• Component-and-Connector Structures
In this group elements are runtime components and connectors. Components are
the major executing units; and connectors describe how components interact with
each other.

• Allocation Structures

In this group, elements are resource allocation structures. These structures show
the relationship between the elements of a software system and outside world of
the system. Examples could like, on what processor a particular element runs on.

1.4 Measuring Software Architecture

Using software architecture has a lot of benefits. Different architects could design the

same system in different ways. If there are multiple architectures for a same system

which should a user pick over the others. Even there is a single architecture for a system

people need to know what the quality of the architecture is. Is this system reliable or is it

6

easy to maintain? People can see the necessity to evaluate architectures. There are a lot of

benefits of measuring software system. The author lists several of them.

• Software measurement can lead to process improvement which leads to lower
development cost. Lower development cost means higher productivity, shorter
development cycle.

• Based on the measurement of some historical architectures an organization can
improve its ability to develop new architectures. After measuring some
architectures, the organization should have better understanding about the domain
and its systems.

• An organization can increase its customer's confidence by showing its customers
the measurements. Measurements show the knowledge of an organization about
its systems.

1.5 General Design Rule for Good Architecture Design

Different architects will design different architectures for the same software system.

There are no absolute measurements to rank an architecture. It is very difficult to

differentiate given architectures in terms of which one is better than another because it

depends on how one priorities the non-functional attributes. Although it is hard to tell

which architecture is better there are some rules of thumb to follow to make a good

software architecture. According to reference [4], these rules can be put into two

categories: process recommendation and product (or structural) recommendation. A few

of them are listed below.

Process Recommendation

• There should be one architect or a small group of architects.

• The architect or architect team should have all the functional requirements
available to them and a list of quality attributes.

• The architecture should be well-documented and easy to understand.

7

• All the stakeholders should be actively involved in the design of the architecture.

Product Recommendation

• The architecture should be divided into well-defined modules. The design of the
modules should base on the principles of information hiding and separation of
concerns.

• Each module should have well-defined interfaces that encapsulated or hide
changeable aspects.

• Modules that consume data should be separated from the modules that produce
data.

• The architecture should do the same thing in the same way throughout the system.
This rule shall increase the understandability and productivity of developers. It
also shall enhance modifiability.

1.6 Software Architecture Styles

Architectures can be partitioned into architectural styles, which are characterized by

topological properties, message data types, and interaction protocols. An architectural

style or pattern is analogous to a conventional architectural style in buildings. It consists

of a few features and rules for combining them so that architectural integrity is preserved.

Architecture styles are determined by the following factors [31] as stated previously:

• A set of element types, such as the data repository

• A set of semantic constraints, such as the properties of a filter

• A topological layout of the elements

• A set of interaction mechanism, such as event-subscriber

Buschmann et al. [72] group architectural patterns into four categories:

• From Mud to Structure
Patterns in this category support the controlled decomposition of an overall
system into components. This category includes the following architecture

8

patterns: the Layers pattern [73], the Pipes and Filters pattern [74] and the
Blackboard pattern [75].

• Distributed Systems
This category has one pattern, Broker pattern [76]. Broker pattern provides a
complete infrastructure for distributed system.

• Interactive Systems

This category has two patterns, the Model-View-Control pattern [77], and the
Presentation-Abstraction-Control pattern [78]. These two patterns support the
structuring of software systems that feature human-computer interaction.

• Adaptable Systems
This category has two patterns inside, the Reflection pattern [79] and the
Microkernel pattern [80]. Both of these patterns support extension of applications
and their adaptation to evolving technology and changing functional requirements.

Bass et al. distinguish between at least five distinct styles, the most prominent of

which is the Independent Components style. This style is characterized by its:

1. relative genericity

2. topology as an arbitrary graph

3. messages can be data or control signals

4. interaction can take place through a central message medium or through one-

to-one links.

1.7 Software Product Line Architecture

In the previous several sections, the author discusses the characteristics of general

software architecture. In this section, the author discusses the architecture for a group of

systems which is called Product Line Architecture (PLA). This architecture is heavily

promoted by Software Engineering Institute (SEI) [15].

Most of the software organization today develop and maintain a set of software

products rather than a single product only. These products typically are similar products

9

in the same application domain and thus significantly share common characteristics. In

order to make software-related tasks as efficient as possible, these commonalities among

products should be exploited systematically.

Product line engineering is one such approach that tackles the problem by making

components systematically as generic as needed for a particular product family and thus

allows components to be reused easily within a family context. The architecture shared

by multiple products is called product line architecture. A software product line is also

referred to as software product family. It originates from domain-specific software

architectures [49].

1.7.1 Software Product Line Definition

A Software Product Line (SPL) is defined as:

A set of software-intensive systems that share a common, managed set of features

satisfying the specific needs of a particular market segment or mission and that are

developed from a common set of core assets in a prescribed way [15].

Core assets often include, but are not limited to, the architecture, reusable

software components, domain models, requirements statements, documentation and

specifications, performance models, schedules, budgets, test plans, test cases, work plans,

and process descriptions. The architecture is the key among the collection of core assets.

1.7.2 Essential Activities of Product Line Architecture

SEI defines three essential and highly iterative activities that blend technology and

business practices. Fielding a product line involves core asset development and product

10

development using the core assets under the aegis of technical and organizational

management, which is illustrated in Figure 1.1 [27].

Figure 1.1 Essential product line activities.

• Core Asset Development: Establish the production capability for product.
Outputs: core assets, production scope, and production plan.

• Product Development: build products.
Output: products.

• Management: oversees the core asset development and the product development
activities, ensuring that the groups building core assets and those building
products engage in the required activities, follow the processes defined for the
product line, and collect data sufficient to track progress.

11

1.8 Architecture Description Language

It is necessary to describe software architectures using natural (i.e., common) language so

that others can understand their basic functionality and benefit in analysis. An

Architecture Description Language (ADL) is a language used to describe software

architectures. There are several ADLs developed so far: ACME (developed by CMU),

Rapide (Stanford), Wright (CMU), and Unified Markup Language (UML) (OMG).

Although some people dispute that UML is not an ADL [88], many people use it as an

ADL. In the following several paragraphs, the author gives a short description to a couple

of the ADLs.

1.8.1 UML

The author uses UML as the main architecture description language (ADL) throughout

this dissertation. UML is becoming a de facto language for modeling software system

throughout industry and academic world. The history of UML's evolution is described in

detail by Kobryn [21]. UML 0.9 unified the modeling notations of Booch [50], Jacobson

[51], and Rumbaugh [52]. In 1997, OMG 53 adopted UML 1.1 as an object modeling

standard.

Model-Driven Architecture Approach:

OMG is currently promoting Model-Driven Architecture [54] approach for software

development. In this approach, UML models are developed prior to implementation.

According to OMG, UML is methodology-independent. UML is a notation for describing

the results of an object-oriented analysis and design developed via the methodology of

12

choice. There are several UML tools available. For this dissertation the author uses IBM

Rational Rose® [55, 56] as the main tool to draw the UML diagrams.

1.8.2 ACME

ACME was developed by a group at Carnegie Mellon University [86, 87]. It was

originally developed as a common interchange format for architecture design tools. Later

on it becomes an architecture definition language too. It has the following main features:

• Architectural Ontology, six basic elements: Components, Connectors, Systems,
Properties, Constraints, and Styles.

• Flexible Annotation, supporting non structural information.

• Type mechanism, abstracting common, reusable, architectural idioms and styles.

• Open Semantic Framework, reasoning about architectural descriptions.

CHAPTER 2

SOFTWARE METRICS

In this chapter, the author gives the definition of software metrics and discusses the uses

of software metrics. Then, he focuses on the discussion of one category of metrics that

are architecture metrics.

2.1 Definitions and Classifications of Software Metrics

The groundwork of measuring software systems using software metrics was established

in the 1970s [42]. There were four primary technology trends that occurred at that time

that have evolved into the metrics used today.

1. Code Complexity Measures
Examples include McCabe's Cyclomatic Complexity Measure [6], Halstead's
Software Science [45].

2. Software Project Cost Estimation
Examples include Barry Boehm's COCOMO Model 46 and Larry Putnam's SLIM
Model [47].

3. Software Quality Assurance

4. Software Development Process

Metrics have proven to be an effective technique for improving software system

quality and productivity [43]. Effective management of any process requires

quantification, measurement, and modeling. Software metrics provide a quantitative basis

13

14

for the software development and validation of models of the software development.

Metrics can be used to improve software productivity and quality.

A metric quantifies a characteristic of a process or product. Metrics can be

directly observable quantities or can be derived from one or more directly observable

quantities. Examples of raw metrics include the number of source lines of code, number

of documentation pages, number of staff-hours, number of tests, number of requirements,

etc. Examples of derived metrics include source lines of code per staff-hour, defects per

thousand lines of code, or a cost performance index. Software metrics can be classified

into three categories: process metrics, product metrics, and resource metrics [71].

• Process metrics: are collections of software-related activities which include the
following metrics:

o Maturity metrics

o Management metrics

o Lifecycle metrics

• Product metrics: are any artifacts, deliverables or documents that result from a
process activity which may include the following metrics:

o Size metrics

o Architecture metrics

o Structure metrics

o Quality metrics

o Complexity metrics

• Resource metrics: are entities required by a process activity which include the
following metrics:

o Personal metrics

o Software metrics

15

o Hardware metrics

2.2 Software Architecture Metrics

All of these metrics are important to software development. Since this dissertation is to

quantify architectural attributes the author focuses on architecture metrics. According to

reference [2], architecture metrics can be further divided into three classes:

• Components metrics

o Number of (language) paradigms

o Part of standard software

o Quality level

• Architecture characteristics

o Open system level

o Integration level

• Architecture standard metrics

o Used standards metrics

o Part of standardization

Today's practices of software metrics utilize global indicators which provide

insights into improving the software development and maintenance process. In the future,

software metrics may be applied more frequently for the prevention of faults within a

feedback mechanism to analyze where problems have occurred so that the development

process can be improved.

The author uses software metrics to quantify a variety of attributes of a software

architecture. These metrics include: error propagation, change propagation, and

16

requirements change propagation probability metrics. The author also uses metrics to

quantify some attributes of a Product Line Architecture, such as scope, commonality,

variability, and applicability.

2.3 Premises of Quantitative Approaches

As stated before, software development requires measurements of evaluations or

feedbacks. To measure the quality of a software system or the quality of software

development processes, measurement models or mechanisms are required. There are

several models that have been proposed, such as the Quality Function Deployment

approach [81], the Software Quality Metrics approach, and the Goal Question Metrics

approach [82, 83]. Researches done by Forrest Research show that the Goal-Question-

Metric model is still the most programmatic approach [84].

2.3.1 The Goal-Question-Metric Approach

The Goal-Question-Metrics (GQM) approach [19] to process metrics, first suggested by

Basili and his colleagues, has proven to be a particularly effective approach to select and

implement metrics. This approach is based on the assumption that if an organization

wants to measure software development or a process it must specify the goal of the

measurement. The GQM measurement model has three levels:

1. Conceptual level (Goal). A goal is defined for an object with respect to some
attributes of the software systems or processes.

2. Operational level (Question). A set of questions is used to characterize the way
the assessment/achievement of a specific goal is achieved.

3. Quantitative level (Metric). A set of data is associated with every question in
order to answer it in a quantitative way

The structure of the GQM model is shown in Figure 3.1.

17

Figure 2.1 Goal-Question-Metrics model structure.

2.3.2 Goal-Function-Metric Paradigm

The GQM model is for general software development measurement. It requires

knowledge of the systems or processes to be measured. This dissertation work is to study

software architectures. There is no system specific information available at the

measurement time. The GQM model can not be directly applied to this study. The model

has to be modified or extended to suit this study.

The focus of this study on software architectures (rather than source code, for

example) has a direct impact on what attributes the author may wish to define,

characterize and quantify. Traditional software metrics that characterize source code (e.g.

complexity [6], fault density, size) or depend on the executable/operational nature of

source code for their definition (e.g. reliability, dependability) are not meaningful at the

18

architectural level. Architectural quality attributes can be divided into two distinct

classes:

• Attributes that view the software architecture as an intrinsic product, and
characterize it as such.

• Attributes that view the software architecture as a blueprint for operational
software systems, and characterize it by the properties of these systems.

In this study, the author focuses on the latter class, so that when he states that an

architecture has some attributes, he actually means that operational software systems that

are derived from this architecture have these attributes (or are likely to).

As a matter of separation of concerns, and in order to facilitate the discussions,

the author defines a three-tier hierarchy of attributes [17]:

• Qualitative Attributes, which represent relevant features of an architecture that the
author wants to define and characterize. These are typically complex, multi-
dimensional attributes, for which people have some intuitive understanding, but
not necessarily a simple quantitative definition. Examples include: dependability,
maintainability, evolvability.

• Quantitative Functions, which represent formally defined functions that may be
related to the qualitative attributes or may represent some aspect of a qualitative
attribute. These are typically easy to define but not necessarily easy to
compute/estimate in practice. Examples include: error propagation probabilities
(related to dependability); change propagation probabilities (related to
maintainability); requirements propagation probability (related to evolvability).

• Computable Metrics, which represent quantitative functions that people can
compute by analyzing the architecture [8, 17]. These are typically used as
approximations for quantitative functions. Example: the entropy of random
variables representing the flow of information through an architecture [18].

In the spirit of the Goal/Question/Metric of Basili and Rombach [19], the author

maps the attribute of interest onto a computable metric that can be evaluated on the basis

of information that is available at the architectural level. At this level, usually the wealth

of structural and semantic information that is available at the code level is not available,

19

but the available information is the information about the flow of control and data within

components and between components. This precludes using traditional software metrics,

which are based on such code-level features as tokens [20], flow graphs [6], data

dependencies [7] and control dependencies (to mention a few). The author's approach

can further be characterized by a combined Bottom - Up/Top Down discipline, whereby he

complements the top down approach advocated by Basili and Rombach's

Goal/Quality/Metric paradigm with a bottom up approach that analyzes the architecture

and derives a matrix that quantifies architectural attributes. In the absence of structural

and semantic information, the author cannot analyze the flow of information within an

architecture deterministically; hence he resorts to a stochastic approach.

The link between qualitative attributes and quantitative functions is usually an

informal, intuition-based relation, such as: if one is interested in this qualitative attribute,

he ought to look at this quantitative function, as it quantifies/reflects one

aspect/dimension of the attribute, or is otherwise related to it. By contrast, the link

between a quantitative function and a computable metrics is more formal: the

quantitative function is approximated by means of computable metrics. Along with the

formula for the quantitative function, the author usually aims to provide: the

approximations that are made in deriving the formula; the rationale for the

approximations; the conditions under which the approximations are most legitimate; and

the scope of the approximation.

Part H ERROR PROPAGA HON PROBABILITIES

20

CHAPTER 3

ERROR PROPAGATION ANALYTICAL STUDY

In this part, the author focuses his attention on the study of error propagation probabilities

in an architecture. Given an architecture made up of N components, the author derives an

N x N matrix whose entry at row A and column B contains the probability that an error in

component A propagates to component B at run time. If the author claims that this

quantitative function is related to dependability, he does not mean that he represents

dependability by this function; he merely means that if he is interested in the attribute of

dependability, then he may want to look at this function as it reflects some relevant aspect

of dependability.

The contributions of this part are outlined as follows:

• The author presents a simple but formal definition of the error propagation
probability between two components based on an error in the message from the
sending component and the behavior of the receiving component.

• The author derives an analytical expression for estimating error propagation
probabilities based on information theoretic entropy measure for the information
exchanged between components and the impact of this information on the
dynamic behavior of the receiving components.

• The author derives an upper bound on the error propagation probability which can
be calculated easily based on the number of messages and the number of states of
the receiving component.

• The author derives an expression for the cumulative error propagation measuring
the probability that an error propagates from a sending component to a receiving
component through any number of intermediate components.

21

22

• The author defines a single scalar measure of an architecture called the Error
Insulation Coefficient that reflects, using a value between 0 and 1, how close they
are to the ideal architecture in which errors does not propagate to other
components.

• The author presents an empirical approach for measuring error propagation
probabilities and uses it to validate the analytical measures.

Given a matrix of error propagation probabilities, one may want to use it in the

following manner:

• If row A has high values, it means that an error in A is likely to propagate widely
through the architecture; this calls for taking special steps to minimize faults in A
at design/development time, so as to minimize errors at run-time.

• If column B has high values, it means that B tends to be affected by errors arising
throughout the architecture; this calls for taking special steps to immunize B
against errors, e.g. by providing it with fault tolerance capabilities (error detection,
damage assessment, error recovery).

• If one is considering two candidate architectures and dependability is an
important consideration, he may want to compute their error propagation matrices
and rank the candidates accordingly.

• An ideal error propagation matrix is an identity matrix, which has one's on the
diagonal and zero's outside. One can measure how close a given error
propagation matrix is to the identity matrix, and use this as a scalar measure of the
fitness of an architecture with respect to error propagation.

If, in addition to the matrix of error propagation probabilities (say, EP), a vector

(say, V) can be derived. V measures for each component the probability that an error

originates in the component. One can multiply vector V with EP to obtain another vector

(say, W) that represents for each component the probability that an error arises in the

component, be it by originating there or by propagating from another component. Vector

V can be established by considering the frequency with which components are expected

to be invoked, and the fault density of components (which can, in turn, be estimated from

23

component complexity). If vector W has a high value for component A, then A must be

provided with means to handle errors (e.g. error detection and error recovery).

3.1 Error Propagation

Let us assume components A and B of an architecture are to be analyzed. Let X be the

connector that carries information from A to B. For the purposes of the current discussion,

the specific form of connector X is not important. It will be merely modeled it as a set of

values that A may transmit to B. Also, the specific form of components A and B is not

important for the purposes of this discussion. The author will merely model them as

functions that map an internal state and an input stimulus into a new state and an output.

Definition 1. The Error Propagation Probability from component A to

component B is denoted by EP(A,B) and defined by:

EP(A, B) = Prob([B](x) # [B](x') I x # x'), 	 (3.1)

Where [B] denotes the function of component B, and x is an element of the

connector X from A to B. the author interprets [B] to capture all the effects of executing

component B, including the effect on the state of B as well as the effect on any outputs

produced by B. The author interprets EP (A, B) as the probability that an error in A is

propagated to B (as opposed to being masked by B) because the outcome of executing B

will be affected by the error in A. By extension of this definition, one can let EP (A, A)

be equal to 1, which is the probability that an error in A causes an error in A. Given an

architecture with N components, one can let EP be an N x N matrix such that the entry at

row A and column B be the error propagation probability from A to B.

24

Note that nothing in the definition above indicates that x' is an erroneous message;

all the definition says is that x' is different from x—as far as this definition is concerned,

both could be correct. While this may seem to be an anomaly, all it means is that the

author is measuring error propagation probabilities by a wider property, which is the

probability that different arguments are mapped by function [B] to different images (a

measure of injectivity of [B]).

3.2 Cumulative Error Propagation

Note that the definition of the error propagation given above uses the concept of

conditional probability, i.e. the author calculates the probability that an error propagates

from A to B under the condition that A actually transmits a message to B. It is often

useful, however, to use the unconditional error propagation which the author denotes

simply as E (A, B), and defines as the probability that an error propagates from A to B not

conditioned upon the event that A sends a message to B. Function E (A, B) is clearly

dependent on EP (A,B), but it further integrates the probability that A does send a

message to B. In order to bridge the gap between the original (conditional) error

propagation and the newly introduced unconditional error propagation, let us consider

the transmission probability matrix T where the entry T(A, B) reflects the probability that

connector (A ---> B) will be activated during a typical/canonical execution. T is the N x N

matrix whose entry T(A, B) is the probability that the component A sends a message to

component B given that the A is expected to transmit a message to some component.

Note that:

• It is reasonable to assume that T(A, A) = 0 for all components A,

25

E T (A, B)
• Clearly, T is a stochastic matrix, i.e. B	 = 1 for every component A.

The matrix T is used to distinguish between a connector that is invoked

intensively in each execution and one that is invoked only occasionally, under

exceptional circumstances. The matrix T reflects the variance in frequency of activations

of different connectors during a typical execution. By virtue of simple probabilistic

identities, the author finds that the unconditional error propagation is obtained as the

product of the conditional error propagation probability with the probability that the

connector over which the error propagates is activated, i.e.

The concept of unconditional error propagation is useful when the author

discusses cumulative error propagation probabilities, which the author does in the next

subsection. Whereas so far the author has focused his attention on single step error

propagation from some component A to some component B, he wants to consider, now,

the probability that an error in some component A propagates to some component B in an

arbitrary number of transmissions (steps) starting in A and ending in B. The author calls

this the cumulative error propagation probability from A to B. The author submits two

premises pertaining to the analysis of cumulative error propagation:

Cumulative error propagation probabilities must be derived, not from matrix EP

(re: conditional error propagation probabilities) but rather from matrix E (re:

unconditional error propagation probabilities). Indeed, the probability that an error

propagates along some path depends first and foremost on the probability that the path is

26

actually taken (re: matrix 7), combined with the probability that the error is propagated

through each arc of the path (re: matrix EP).

Second, the matrix of cumulative error propagation probabilities cannot be

derived as the traditional transitive closure of matrix E, because while matrix T is

stochastic, matrix E is not (there is no basis to claim that if component A has an error,

then it propagates to one component or another with probability 1). Hence the author

needs to find a specific formula for this case, which he does in the sequel.

The author denotes the cumulative error propagation probability from A to B by

E*(A, B), and lets E* be the matrix of such probabilities. The detailed mathematical

developments that the author has followed to derive the formula of E* are given in

Appendix A. The author contents himself, in this part with presenting the formula:

Where E s is the s-step error propagation matrix, i.e. E S(A, B) is the probability that an

error in A propagates to B via exactly s connectors. The s-step error propagation matrix

E s is given by:

Where A#B; and E S(A, A) = 0 for all A.

27

3.3 The Error Insulation Coefficient

Whereas the two previous features are matrices (like the original EP), this feature is a

scalar. Through this scalar, the author aims to reflect the potential of an architecture to

insulate its components from each other's errors. Obviously, the ideal Error Insulation

Coefficient (EIC) corresponds to a conditional error propagation matrix where only the

diagonal cells are 1 s and the rest of the matrix is 0, i.e. an identity matrix; in such a

matrix, no component propagates errors to other components. At the other extreme, the

worst possible EIC is one for which all cells of the conditional error propagation matrix

are ls; in such a matrix, whenever an error arises in some component, it propagates to all

other components. The author wishes to define the error insulation coefficient in such a

way as to reflect, using a value between 0 and 1, how close the matrices are to the ideal

matrix and how far the matrices are to the worst possible matrix. Without dwelling into

detailed mathematics, the author submits that the following formula satisfies the criteria,

and let it be the definition of the Error Insulation Coefficient (EIC):

(3.5)

Where N is the number of components in the architecture. A low EIC value indicates an

architecture where errors do not easily propagate between its components.

28

3.4 Estimating Error Propagation Analytically

The author has found (see Appendix A) that analytically, the error propagation

probability (as defined in this chapter), can be expressed in terms of the probabilities of

the individual A-to-B messages and states, via the following formula:

where Fx 1(y)= { v E VA->BI Fx(v)= y}, and the author assumes a probability distribution

PB on the set of states SB of component B, and a probability distribution PA->B on the set

of messages VA->B passed from A to B.

2nd order Renyi entropy [9], which according to the recent studies [12] is closely related

to the classical Shannon entropy [10]. If one can assume that the states of B, as well the

messages passing through the connector from A to B are equi-probable, the Equation (3.6)

for error propagation is simplified into

Since the software practitioner cannot always extract from the available artifact

the detailed information on the transition table F for the architectural components, it

would be helpful to be able to estimate the right-hand side of (3.7) without using any

29

knowledge of function F. The following inequality (see Appendix for the proof) gives

precisely such an estimate (upper bound)

(3.8)

Thus, for instance, if the receiving component B has two states, and is capable of

receiving five different messages from component A, the A-to-B error propagation cannot

exceed (1-0.5)/(1-0.2) = 0.625.

Notice (see Appendix A for explanation) that the inequality (3.8) can be used as a

close approximation of the actual EP(A—>B) value whenever for every initial state of B

the number of messages that trigger its transition to a new state is approximately the same,

no matter what that new state is.

3.5 Example: A Command and Control System

The example case the author uses to illustrate the work is a large command and control

system that is used in a life-critical, mission-critical application. This system was

modeled using the Rational Rose Realtime CASE tool [13]. It is a Computer Software

Configuration Item (CSCI) that provides the following functions:

• Facilitating Communication, Control, Cautions and Warnings including
subsystem Configuration Management, C&DH (Communication and Data
Handling), Communications Control, Processing, Memory Transfer, C&DH
Failure Detection, Isolation, and Recovery and Time Management,

• Controlling a secondary electrical power system, and

• Environmental Control, which provides temperature and humidity Control.

30

The author concentrates on the Thermal Control part of the system, which is a

rather complex system with operations setting controller, fault recovery procedures, and

pump control functionalities. The system is responsible for providing overall

management of pumps as well as performing the necessary monitoring and response to

sensors data. Also, it is responsible for performing automated startup, and controlling

Thermal System reconfigurations. During each execution cycle, a check is performed for

incoming commands. Received commands are validated in the same execution cycle.

Mode change commands, which will reconfigure the Internal Thermal System, are also

accepted from other components of Thermal System to compensate for system

component failures or coolant leaks. A failure recovery system detects failure conditions

and performs recovery operations in response to the detected failures. Failure conditions

include combinations of Pump failures and Shutoff Valve failures.

The system has a hierarchical architecture. The top-level software architecture of

this system is shown in Figure 3.1. Also, the internal architecture of SubSystem Z is

shown in Figure 3.2. Using these artifacts, one can identify the components and the

connectors that describe the components-based system architecture and label the EP

matrix rows and columns with the components names.

Figure 3.1 Top-level software architecture of the system.

31

Figure 3.2 The architecture of Sub-System (Z).

Figure 3.3 shows a sample message protocol between a pair of components in the

system. This artifact provides the author with the message set VA->g and Vb->A that is

going between the two components A and B. Similarly, using the Rose-RT tool the

32

author can get the whole sets of messages that are going on between each pair of

components in the system.

Figure 3.3 A sample of a sanitized message protocol.

Figure 3.4 A state diagram of a component.

The state chart shown in Figure 3.4 is a sample of state chart of a component in

the system. This provides us with the state set SB for this sample component. Using the

33

Rose-RT tool, the author can easily identify the triggering messages from one state to

another. In a similar way, one can get all the state sets for all the components.

3.6 Analytical Results

Considering the CSCI system discussed above, the author gets the set of states SB and

messages VA->B from the artifacts of the system specification. The author obtains the

matrix EP of (conditional) error propagation probabilities of this system (Table 3.1),

using the approximation (3.8). The author assumes equi-probability of states and

messages.

Table 3.1 Conditional Error Propagation Matrix - Analytical Results

B

Cl C2 C3 C4 C5 C6 C7 C8 C9 C10

Cl 1.0000 0.1061 0.4210 0.3368 0.4472 0.4623

C2 0.2001 1.0000 0.5238

C3 0.0105 0.4722 1.0000

C4 0.0190 0.2332 1.0000

C5 0.2765 1.0000

C6 0.1265 1.0000

C7 0.3761 1.0000

C8 1.0000

C9 1.0000

C10 0.0014 1.0000

For this particular case study, the author has derived the connector activation

matrix T as a stochastic matrix of probabilities that contains for each entry (A, B), the

probability that connector (A, B) is activated, given that component A is broadcasting a

message. Using this connector activation matrix, the author derives the unconditional

34

error propagation matrix EA, also referred to as the 1-step error propagation matrix of

the system; this is given in Table 3.2. The author gets the matrix T through a simulation

of the system representing the operational profile of the execution.

Table 3.2 Unconditional Error Propagation Matrix - Analytical Results

B

Cl C2 C3 C4 C5 C6 C7 C8 C9 C10

<

Cl 0.0012 0.0132 0.0102 0.0146 0.0145

C2 0.1104 0.1264

C3 0.0060 0.2024

C4 0.0107 0.1026

C5 0.1005

C6 0.0506

C7 0.3761

C8

C9

C10 0.0014

Using the unconditional error propagation matrix, say EA, given above, the author

derives the matrix of cumulative error propagation probabilities, which called E*A. The

author finds the following matrix (Table 3.3):

35

Table 3.3 Cumulative Error Propagation Matrix - Analytical Results

B

Cl C2 C3 C4 C5 C6 C7 C8 C9 C10

¢

C 1 1.00 1.16E-03 1.32E-02 1.02E-02 1.46E-02 1.45E-02 1.46E-04

C2 1.10E-01 1.00 1.46E-03 1.12E-03 1.61E-03 1.60E-03 1.26E-01

C3 6.04E-03 2.02E-01 1.00 6.15E-05 8.82E-05 8.78E-05 2.56E-02

C4 1.07E-02 1.03E-01 1.41E-04 1.00 1.56E-04 1.55E-04 1.30E-02

C5 1.11E-02 1.01E-01 1.47E-04 1.13E-04 1.00 1.61E-04 1.27E-02

C6 5.59E-03 5.06E-02 7.39E-05 5.69E-05 8.15E-05 1.00 6.40E-03

C7 3.76E-01 4.35E-04 4.98E-03 3.83E-03 5.49E-03 5.47E-03 1.00 5.49E-05

C8 1.00

C9 1.00

C10 1.41E-03 1.62E-06 1.86E-05 1.43E-05 2.05E-05 2.04E-05 0.00 2.05E-07 0.00 1.00

Except for possible round-off errors, matrix E*A is greater than matrix EA, entry

by entry. The error isolation coefficient of this architecture is found to be:

EIC = 0.0447

CHAPTER 4

EMPIRICAL STUDY OF ERROR PROPAGATION

4.1 Fault Injection Experiment

In order to validate the analytical study, the author developed a framework for

experimental error propagation analysis in which he utilizes fault injection experiments to

alter architecture specifications. The author then simulates the corrupted specifications

and records component traces as "faulty-run" logs. Finally he compares the faulty-run

logs against a fault-free "golden-run" log obtained by simulating the uncorrupted

architecture specifications [14]. The author performs the simulation-based error

propagation analysis in two phases (as shown in Figure 5.1): an acquisition phase and an

analysis phase. In the acquisition phase:

Figure 4.1 The framework of experimental error propagation analysis.

36

37

The author extracts architecture information about the components and connectors

that make up the software system. The underlying finite state machines in the

components, and the inter-component messages. The author uses a message swapping

fault model [36] to generate fault injection experiments. In each of the fault injection

experiments the author replaces all occurrences of a message nominally flowing over a

connector (from component A to component B) by a different message (as a result of an

error in component A) that belongs to the set of messages that A may send to B.

The author simulates the corrupted specifications and records simulation traces

for the different experiments that cover all messages for the different connectors present

in the architecture. The faulty-run logs also contain markers that indicate instants when

faults are injected.

In the analysis phase: the author conducts post-simulation comparison between

the faulty-run logs and the reference (fault-free) log. The comparisons are based on state

transitions at simulation time instances following a fault injection. Immediately before

injection of a fault, there is no difference between the state of component B as recorded

on the reference log and its state recorded on the faulty log. After a fault is injected, any

discrepancy between the two logs is due to error propagation from A to B. A faulty-

message propagating (from A to B) will at most cause a single instance of error

propagation (from A to B).

The author computes the experimental error propagation probability from

component A to B as the percentage of the fault injections (corresponding to errors in A)

that propagate to component B.

38

Figure 4.2 An illustration of log comparison.

Figure 4.2 shows an example of how the author compares a faulty-run log (dashed

line) with a reference log (solid line). The indices on the vertical axis correspond to the

states of the receiving component (B), while the horizontal axis indicates the time during

the simulation (in milliseconds). The triangular marks (A) correspond to instants of

injecting the fault. The star symbols (*) correspond to log-alignment markers, which the

author uses to compensate for any timing skews between faulty logs and the reference log.

In this example, three faults were injected and in two incidences of the three, error

propagated (from the sending component A) to component B whose faulty state-

transition log is shown in Figure 4.2.

39

4.2 Experimental Results

Table 4.1 shows the experimentally obtained error propagation matrix EE from the fault

injection experiment explained in section previous section. Considering the same mode of

operation whose analytical error propagation matrix EA is given in Table 4.1. (Note: for

both Table 4.1 and 4.2 blank cell means zero value)

Table 4.1 Unconditional Error Propagation Matrix EE - Empirical Results

B

Cl C2 C3 C4 C5 C6 C7 C8 C9 C10

Cl 0.5000 0.0557 0.4912 0.1331 0.1280

C2 0.7838 0.4286

C3 0.0161 0.7083

C4 0.7917 0.6429

C5 1.0000

C6 1.0000

C7 0.7500
_

C8

C9

C10 1.0000

Using matrix EE, the author derives matrix E*E of cumulative error propagation

probabilities, and finds the results shown in Table 4.2. Note that except for round-off

errors, this matrix is greater than the matrix of unconditional probabilities, entry by entry.

40

Table 4.2 Cumulative Error Propagation - Experimental Results

B

Cl C2 C3 C4 C5 C6 C7 C8 C9 C10

d

Cl 1.00 5.00E-01 5.57E-02 4.91E-01 1.33E-01 1.28E-01 2.14E-01

C2 7.84E-01 1.00 4.37E-02 3.85E-01 1.04E-01 1.00E-01 4.29E-01

C3 1.61E-02 7.08E-01 1.00 7.91E-03 2.14E-03 2.06E-03 3.04E-01

C4 7.92E-01 6.43E-01 4.41E-02 1.00 1.05E-01 1.01E-01 2.76E-01

C5 7.84E-01 1.00E+00 4.37E-02 3.85E-01 1.00 1.00E-01 4.29E-01

C6 7.84E-01 1.00E+00 4.37E-02 3.85E-01 1.04E-01 1.00 4.29E-01

C7 7.50E-01 3.75E-01 4.18E-02 3.68E-01 9.98E-02 9.60E-02 1.00 1.61E-01

C8 1.00

C9 1.00

C10 1.00E+00 5.00E-01 5.57E-02 4.91E-01 1.33E-01 1.28E-01 2.14E-01 1.00

4.3 Statistical Validation

In this section, the author confronts the results computed by the analytical formula from

Chapter 3 against the results derived from the fault injection experiment from previous

section to assess the validity of the analytical formulas. He lets EA and EE be

(respectively) the analytical matrix and the empirical matrix of (unconditional) error

propagation for the sample architecture; these are both 10x 10 matrices. The author then

uses a number of criteria to this effect:

The first possible criterion is simply the correlation between the entries of the two

matrices; because these matrices contain 100 values each, the correlations do bear some

significance. The second possible criterion is to correlate, not all the values of the

matrices, but rather the non-trivial values (other than those that are either 0 or 1 by

definition); the rationale behind this criterion is that trivial values do not really test the

analytical results. The third criterion discriminates between empirical values that were

41

derived from a small number of fault injections and those that were derived from a large

number of fault injections. If the analytical results are accurate, one should find empirical

values that stem from large numbers of fault injections to be highly correlated to their

corresponding analytical values, whereas those values than stem from small numbers of

fault injections are not guaranteed to correlate to their corresponding analytical results.

Orthogonally, the author finds it useful to compare not only EA and EE, which

represent single step propagations, but also cumulative versions of these matrices, which

represent probabilities of error propagations that may have taken more than one step

through the architecture. There are two reasons why the author may want to consider the

cumulative matrix E* in addition to the single-step matrix E:

A person interested in the probability that an error in A propagates to B from a

practical perspective does not usually care how many steps the propagation requires.

Hence, E* is a better reflection of what the author wants to measure than E. Also, if there

is any discrepancy between what the analytical study defines as a single step and what the

empirical study does, this discrepancy will be smoothed out once the author consider

propagations of arbitrary length. In the remainder of this chapter, the author applies these

criteria to matrices E and E* in order to determine to what extent the values obtained

empirically are consistent with those found analytically.

4.3.1 Correlating One Step Matrices

In this section, the author presents the results of the study that he conducts to explore the

correlation between the analytically estimated single step error propagation matrix and its

experimentally derived counterpart. The correlation coefficient between all the cells of

42

the analytical EA matrix and the experimental EE matrix is:

Cor(EA, EE) = 0.628	 (r value)

where 'r' denotes the Pearson product-moment correlation coefficient.

The author notes, however, that there are only 15 non-trivial entries in each of the

two matrices. Trivial entries correspond to self-loops from a component to itself (with

error propagation probability of 1 by definition) and to the non-directly connected

components (with error propagation probability of 0 by definition). It may be useful to

evaluate the correlation between the set of non-trivial values of matrices EA and EE

having a significant number of fault injections(> 20). The connectors that have < 20 fault

injections are shaded in Table 6.1. The author finds:

Cor'(EA, EE) = 0.5576 (r value)

Table 4.3 contains the 15 non-trivial entries corresponding to the 15 connectors

over which faults were injected during the controlled experiment. Note that the number of

injected faults over connectors varies considerably across the entries. The connectors in

the table follow a descending order with respect to the number faults injected over each

connector. Overall, the correlation decreases as the number of injected faults drop,

although not monotonically; the disturbances in the first few rows may stem from the fact

that a correlation is not necessarily meaningful when too few values are involved.

The results in this table are interesting, in that they show a fairly high correlation

between experimental results and analytical results in those cases where the experimental

result is based on a large number of fault injections. Also, predictably, the correlation

drops (as shown in Table 4.3) as the number of fault injections drop (though not

monotonically). [You haven't described why the bottom entries are shaded.]

4.3.2 Correlating Cumulative Matrices

The correlation between matrices EA and EE represent the one-step unconditional error

propagation probabilities, estimated analytically and experimentally In addition to

analyzing this correlation, the author is interested in analyzing the correlations between

matrices E *A and E * E, which represent the cumulative (multi-step) versions of these

44

matrices. The results of the study are shown in Figure 6.2. The author finds for all

elements,

Cor (E* A, E*E)=0.737	 (r value)

Also, the author finds that the correlation for multi-step error propagation for non-

trivial values, is

Cor'(E*A, E*E) = 0.460	 (r value)

Hence the analytical formula can be used to predict cumulative error propagation

probabilities throughout an architecture with a significant positive correlation, at least in

this sample case study - all the while using nothing more than the UML-RT description

of the system.

Figure 4.3 Correlation between analytical and empirical error propagation.

4.3.3 Statistical Significance of the Correlation

Now the author wants to validate the results, i.e. to make sure that the positive correlation

values observed are statistically significant. To further test the relationship between

45

analytical and experimental error propagation hypothesis testing was done using the T-

test (One-tail) [37] for the non-trivial entries using the level of significance a = 0.05

• HO: p = 0 (There is no linear association between analytical change propagation
values and empirical change propagation values).

• Hl: p > 0 (There is a positive linear association between analytical change
propagation values and empirical change propagation values).

The null-hypothesis is rejected when the P value is smaller than 0.05. The author

computes the value of t statistic for the non-trivial values of 1-step matrices tob = 2.015

(n=11), and the corresponding P < 0.05; whence he infers that the correlation of 0.628 is

statistically significant. Likewise, the value of t statistic for the non-trivial values of

cumulative error propagation matrices is found to be tob = 3.5893 (n=50), and the

corresponding P < 0.05 which shows that the correlation between experimental and

analytical cumulative error propagation matrices is statistically significant.

The T-test results showed that there is a linear association between analytical

error propagation and experimental error propagation as well as between cumulative

analytical error propagation and cumulative experimental error propagation as in both

cases based on the P value the null hypothesis of no linear association was rejected.

4.4 Conclusion

In this chapter, the author has derived an analytical approach to estimate the probability

of error propagation between components in a software architecture. Further, he

illustrates his proposed formula by means of a fault injection experiment, applies on a

large command and control system, and found a fairly meaningful correlation between

46

the analytical estimates and the experimental observations. Given that the analytical

approach is based on architecture specifications, and uses exclusively information that is

typically available at an architectural level, the author submits that the results can be used

to estimate the error propagation behavior of an architecture, at a time when relatively

little is known about the actual execution of products that instantiate the architecture. In

addition to providing the basic conditional probability of error propagation over a given

connector (conditioned on the activation of the connector), the author ahs also provided

analytical formulas for unconditional error propagation (which incorporate the

probability of connector activation) as well as the cumulative error propagation

probability, which quantifies the probability that an error propagates from one component

to another in an arbitrary number of connector activations. Finally he has briefly explored

ways for a software architect to analyze and use the information provided by the

analytical estimates.

4.5 Comparison to Related Work

Software metrics has been a very active field for several decades, and it is impossible to

do justice to all the relevant work in this area. The author briefly discuss some of the

research efforts that he finds most closely related to his work, highlighting in what way

his work are different from the others. Many authors have used information theory to

derive software metrics. Some, such as Allen and Khoshghoftaar [93], Chapin [95], and

Harrison [94] do so explicitly; others, such as Halstead [20], do not invoke information

theory explicitly, but their metrics can be interpreted in terms of this theory. Whereas all

these authors define metrics by interpreting the source text of the program as the message,

47

the author derives metrics by interpreting information flow throughout the architecture as

messages whose entropy the author is estimating.

Basili and Rombach [19] introduce an analytical paradigm for the derivation of

software metrics, called the Goal/Question/Metric paradigm. It is based on a systematic,

goal-oriented, procedure for the derivation of software metrics. In [96], Fenton presents a

Representational Theory of Measurement, and argues that software metrics work must

adhere to it. Also, he evaluates various metrics efforts with respect to the guidelines of

this theory, and argues that Basili's GQM is but an instance of it. In the author work he

combines the top-down goal oriented approach advocated by Basili and Rombach and

Fenton with a bottom-up approach, which analyzes the architecture and produces a

matrix of information theoretic measures, where each cell in the matrix is associated

either with a component (for diagonal elements) or with a connector (outside the diagonal)

in the architecture. These measures are used for the purposes of estimating error

propagation.

In [97], Voas analyzes error propagations between COTS components and

presents an automated tool to simulate error propagation, which is used to deploy a fault

injection experiment. Michael et al. [98] present an empirical study of data state error

propagation behavior. They argue that at a given location either all data state errors

injected tend to propagate to the output, or else none of them does. In [14] Hiller et al.

analyze error propagation conceptually, introducing the concept of error permeability

and discussing means to measure it using fault injection techniques.

In [99], Geoghegan and Aversky propose a formal approach for adding fault

detection to software. An assertion-based formalism is used to represent algorithm

48

specifications. This representation is then used to generate a flowgraph or ddgraph [?],

which is used to construct an execution path tree. The information gained from this

algorithm representation is used to aid in the design of software based fault tolerance

techniques. [99]'s approach provide a software developer the opportunity of placing

checks in an application, of determining the coverage, and possibly of adding more

checks to the application until the desired level of coverage has been achieved. The

approach of Geoghegan and Aversky can be used in conjunction with the author's work

to make provisions for components with high error propagation values.

Using whitebox knowledge of a software artifact, [100] aims to reduce inter-

modular error propagation by design. The main aims of [100] are to be able to calculate

the influence values between a source module and a target module in the system, and to

use these values to determine candidate modules for replication or to equip with error

detection and error recovery mechanisms. That paper first analyzes the error propagation

process, which provides the relevant information needed when performing fault injection

experiments, i.e., which metrics to evaluate to allow calculation of influence. In this case,

the metrics are error transmission probabilities and error transparency along a certain

input set. That paper shows that the analytical framework can predict to a very high

degree of accuracy the influence value between a pair of modules. Using this influence

value (and associated metrics such as error transparency or error transmission

probability), the authors are then able to derive probability estimates. Furthermore, the

influence values provide insights into whether a system has been built too defensively.

The work of [100] is close to the authors in terms of its goals, but quite distinct in its

means (deterministic analysis) and its focus (finished software products).

49

In [101], Shin and Lin use a direct graph to represent a multi-module computing

system and error propagation in the system is modeled by general distributions of error

propagation times between all pairs of modules. Two algorithms are developed to

systematically and efficiently compute the distributions of error propagation times.

Experiments are also conducted to measure the distributions of error propagation times

within the fault-tolerant multiprocessor (FTMP). Statistical analysis of experimental data

shows that the error propagation times in FTMP do not follow a well-known distribution,

the Weibull distribution, thus justifying the use of general distributions in their model.

This paper has similar goals to ours, but use a different metric (propagation time rather

than propagation probability) and a different focus (system structure rather than software

architecture).

In [102], Iyer and Tang discuss methodologies and advances in the area of the

experimental analysis of computer system dependability. Because the focus of the chapter

is system dependability, the chapter covers several fault injection techniques, such as

hardware-implemented fault injection, software-implemented fault injection, and

radiation-induced fault injection. In this dissertation, the author's main concern is the

error propagation probabilities; fault injection is merely a tool in performing his empirical

experiment.

Powell et al. [103] address the problem of estimating the coverage of a fault

tolerance mechanism through statistical processing of observations collected in fault

injection experiments. A formal definition of coverage is given in terms of the fault and

system activity sets that characterize the input space. Two categories of sampling

techniques are considered for coverage estimation: sampling in the whole space and

50

sampling in a space partitioned into classes. The estimators for each technique are

compared by means of hypothetical examples. Techniques for early estimations of

coverage are then studied. These techniques allow unbiased estimations of coverage to be

made before all classes of the sampling space have been tested. Then, the 'no-reply"

problem that hampers most practical fault-injection experiments is discussed and a

posteriori stratification techniques are proposed that allows the scope of incomplete tests

to be widened by accounting for available structural information about the target system.

This reference uses various sampling methods to estimate coverage factor (which is

defined as: the probability of system recovery given that a fault exists). The author uses

fault injection technique in his experiment but fault coverage is not a big concern for him.

PART HI CHANGE PROPAGATION PROBABILITIES

51

CHAPTER 5

ANALYTICAL STUDY OF CHANGE PROPAGATION

In this chapter, the author studies a specific architecture-level attribute Change

Propagation Probability, which reflects the probability that a change that arises in one

component of the architecture (in the context of corrective/adaptive maintenance)

requires changes to be done to other components. As stated before, this study is part of a

larger project that investigates a wide range of architecture-level attributes, including

Error Propagation Probabilities, Requirements Propagation Probabilities, Diagonality,

etc.

In the spirit of the Goal/Question/Metric of Basili and Rombach [19], the author maps the

attributes of interest onto a computable metric that can be evaluated on the basis of

information that is available at the architectural level. At this level, one does not usually

have the wealth of structural and semantic information that is available at the code level;

instead, he only has information about the flow of control and data within components

and between components. This precludes using traditional software metrics, which are

based on such code-level features as tokens, flow graphs, data dependencies [16], and

control dependencies. The approach can further be characterized by a combined Bottom-

Up/Top Down discipline, whereby the author complements the top-down approach

advocated by Basili and Rombach (in their Goal/Quality/Metric paradigm) with a

bottom-up approach that analyzes the architecture and derives a matrix that quantifies the

flow of information within and between components of the architecture. In the absence

of detailed functional /behavioral information, one cannot analyze the flow of

information within an architecture deterministically; hence, the author resorts to a

52

53

stochastic approach. This stochastic approach captures information flow within the

architecture by means of random variables, and quantifies this flow by means of entropy

functions applied to these random variables.

5.1 Background and Definition

If one is given a software architecture, modeled by components and connectors, and he is

interested in the maintainability (or, conversely, the maintenance costs) of the products

that can be instantiated from it, he may want to consider the change propagation

probability matrix for this architecture, which reflects, for a given pair of components A

and B, the probability that if A is changed in a corrective/perfective maintenance

operation, he has to also change B. Whence the author propose the following definition

for change propagation.

Definition 1. Given components A and B of a system S, the change propagation

probability from A to B is denoted by CP (A, B) and defined as the following conditional

probability:

Where S' is the system obtained by changing A into A' (and, possibly, B into B' as a

consequence).

In practice it is useful to add some qualifications to the above definition and

distinguish between the 1 -step and multi-step change propagation. By the 1 -step change

propagation, the author means the change propagation pertaining to individual

connectors in the architecture, i.e., the 1 -step change propagation accounts for the change

54

propagating from one component to another directly as a result of one component using

services (information) provided by another. The author denotes the 1-step change

propagation from A to B by CN1(A, B). For the 1-step change propagation from A to B to

be non-zero, it is necessary (but not sufficient) that they are adjacent nodes in the

architecture graph, i.e., a connector must exist between them.

However, it is obvious that in some architectures a change may propagate

between a pair of components even when they are not directly linked by a connecter: the

change transmission may occur via a chain of changes in intermediate components. In

order to account for this phenomenon, the author introduces the notion of n-step change

propagations, which collectively (for all n>2) are referred to as multi-step change

propagations.

The term n-step change propagation (n>2) refers to the probability of a change

propagating from one component to another as a result of n consecutive acts of 1-step

change propagation. The author denotes the n-step change propagation from A to B by

CPn(A, B). For the n-step change propagation from A to B to be non-zero, there must

exist in the architecture graph a simple directed path of length n that begins at A and ends

at B. This implies in particular that for every n ISI (where 1St is the number of

components in the system S), the n-step change propagation between any pair of

components is always zero, since every simple path in a graph has a length less than the

number of nodes of the graph.

The author finds it both convenient and useful to represent (for any n>_ 1) the n-th

step change propagation probabilities for various pairs of components in a system S, in

the form of a square (ISI x ISI) matrix in which the entry at the intersection of the i-th

55

column and j-th column is CPn(Ci,Ci)	 i,j<SI) , where C, denotes the i-th component of

the system.

5.2 Change Propagation: Usage

In addition to the many applications the author has briefly discussed in the introduction,

he finds that the availability of change propagation probabilities of an architecture allows

him to quantify an important classification of change propagations, first proposed by

Clarkson et al. Clarkson et al. present a three-tiered classification of changes as follows:

1. Ripples of change: the introduced changes will result in an acceptable behavior to
be observed for the maintenance process. Changes are controlled and limited.

2. Waves of change: the introduced changes will still result in an acceptable behavior
to be observed for the maintenance process. Although there are many changes, they
are under control.

3. Avalanches of changes: the introduced changes will result in an unacceptable
behavior to be observed in the maintenance process. There are many changes and
they are uncontrolled.

The avalanche type of change propagation is the one that software maintainers

worry about most. Such avalanche changes would make managing the software

maintenance very difficult and very costly. It would be a great benefit to be able to

predict in advance if a certain change could cause this kind of avalanche of changes.

Because of its highly heuristic and qualitative nature, the above classification,

while being conceptually useful, cannot be applied directly for an analytical study. In

order to make Clarkson 's classification more usable for the purposes of the quantitative

analysis of change propagation, the author gives it a more rigorous quantitative

56

interpretation. Whereas Clarkson et al. present this classification to characterize

individual changes; he uses it to characterize components. Specifically,

• The author considers that a component belongs to the Ripple class if, on average,
the changes initiated in this component produce a ripple effect.

• He considers that a component belongs to the Wave class if, on average, the
changes initiated in this component produce a wave effect.

• He considers that a component belongs to the Avalanche class if, on average, the
changes initiated in this component produce an avalanche effect.

In order to give meanings to these concepts, the author must introduce some

numeric parameters. The classification of any given change (or component) depends on

what value the author gives to each parameter (these parameters can be "tuned" by the

analyst according to the degree of change tolerance or sensitivity that he or she considers

appropriate for the system under consideration):

• The negligibility threshold 8 (0< 5<1), indicates the level, below which the
change propagation probability is considered negligible.

• The ripple area coverage p (0< p <1), determines the fraction of the total number
of components affected by a ripple change propagation; p can be expressed as a
fraction or as a percentile.

• The avalanche area coverage a (0< a <1), determines the fraction of the total
number of components that must be affected by avalanche change propagation; a
could be expressed as a fraction.

Having chosen a value of 8 , the author can, for each integer n>0 define the n-th

step CP-graph CPGn, a of the architecture to be the subgraph of the original architecture

graph G obtained by erasing in G all the edges (A,B) for which CP n(A,B)< 8. Notice that

57

the graph CPGn, s monotonically decreases as S increases (for S sufficiently close to 0,

CPG,, s = G, while increases for S sufficiently close to 1, it is empty).

For any value of Sand n, one can associate with each component in the system an

integer-valued CP-based metric. Since, as noted above, CP,(A,B) = 0 for all 	 1S1, the

graph CPGn, g is empty for any	 !SI. Thus, henceforth, when speaking of the steps of

change propagation, "for all 	 actually means "for all n<ISI".

Definition 2. The n-th step CP range of A (with sensitivity threshold 8), denoted

by Mn, (A), is the out-degree of the node A in the graph CPGn, s , i.e.,

Figure 5.1 An example on how to calculate Mn(C8) = 8.

If the author applies the definition on the part of the graph for a single-step

change propagation for component C8 presented in Figure 1 , he finds that Mn(C8) = 8.

Based on these metrics, one can interprets Clarkson's classification of CP behavioral

patterns of the system according to the dynamics of Mn , 8 (A) considered as a function of

the step n. (Here, the author interprets the step of the unfolding process of change

58

propagation, as an analogue of the time into the maintenance cycle in Clarkson's

classification.)

Definition 3. For any component A in the architecture S, one can say that A has a
potential for generating

• A ripple of changes, if Mn, g(A) < p ISI for n=1,2; and Mn, s(A) = 0 for all n > 2,
i.e., the first and second steps of change emanating from A affect not more than
pISI other components, and all steps beyond the second do not affect (have
negligible affect on) any other component;

• An avalanche of changes, if for some n a such that M na,o (A) a SI; and Mn, s(A)

p ISI for all	 i.e., all steps of change emanating from A affect at least p IS
of other components, and (at least) one step affects no less than a SI of them (as
noted above, it is enough to verify this condition for all n< ISM only);

• A wave of changes, if neither of the two conditions above are satisfied (i.e., it is
neither ripple nor avalanche). This case has intermediate severity between the
ripple and the avalanche.

Note that the type (severity) of change propagation behavior as defined above is

relative to the choice of parameters: a component may be classified as having a potential

for generating an avalanche of changes for a low value of 5, while it shows a potential for

generating only a wave or a ripple of changes for a higher value of 5. An illustrative

description for change propagation behavior is presented in Figure 5.2.

where:

Figure 5.2 Parameterization of the categorization of the change behavior.

Using these parameters, the author can now characterize Clarkson's classification

in terms of change propagation probabilities.

5.3 Analytical Approach

The analytical (as well as experimental) study of change propagation in its most general

form, i.e., encompassing all kinds of changes that may be made in software components

appears to be extremely difficult. The author suggests a rather simplified but viable

classification of the types of changes into two major classes:

59

60

• Interface changes, i.e., those changes that affect the signature of the interface
variables of the affected component; and

• Functionality changes, i.e., those changes that affect the "mapping" of the
input/output data processing performed by the component, within fixed interfaces.

Of course, there may also exist more complex changes that involve a combination

of both interface and functionality types of changes. In this study, the author addresses

only the first class of changes — the interface changes. It is fairly obvious to the author

that much (thought not all) of the methodology he has developed for the treatment of this

case can also be used to deal with the propagation of functionality change. A similar

study of functionality change propagation will be the subject of the future work.

5.3.1 Context and Assumptions

The author uses the unified modeling language UML to represent architectures. He

selects UML because of its widespread use in industry.

In the study of change propagation, the author limits his scope to interface

changes between components as the cause of changes. This assumption is justifiable

since changes in any component, as long as they do not reach the interfaces, will remain

local to that component.

5.3.2 Analytical Formula

In this section, the author first discusses single step change propagation, and then moves

on to multi-step change propagation.

5.3.2.1 Single Step Change Propagation. In this section, the author introduces some

formal notations and describes an analytical procedure for estimating the change

propagation probabilities. The author views an architecture as a collection of components

61

C„ i=1,...,N. With every component C, he associates the set V, of all the variables of all

the provided functions of C i. For every variable v EV, and every other component

he determines the variable usage coefficient value n vi, which is a binary value:	 = 1, if

the variable v (provided by C) is used by (required by) Cj ; otherwise, he sets it = 0. It is

easy to see that any signature change in component C, (no matter what particular "old"

type is being replaced by what "new" one) associated with variable v will propagate to

component C3 if Tr y.; =1.

From this observation, it follows that for every pair of components C, and C 1,

the (interface) change propagation probability ICP(C„ C3) can be determined based on

the table of the variable usage coefficients 	 by the formula (5.3): i.e. by averaging all

the v-to-j variable usage coefficients over all the variables v. provided by C. The author

remarks here that formula (5.3) is based on the assumption that an interface in C i whose

propagation he is trying to trace is equally likely to affect any of its interface variables, as

shown in Figure 5.3.

(5.3)

The method described above allows us to evaluate the (1-step) change propagation

probabilities, given the information on the interface specification of the architecture.

Once the 1-step CP values are obtained, the author can get upper-bound estimates on the

multi-step CP.

62

Figure 5.3 Single-step change propagation estimation.

5.3.2.2 Multi-Step Change Propagation. Suppose one has obtained (say, using the

formula (7-3)) the 1-step interface change propagation matrix ICP he can derive multi-

step change propagation matrix, for convenience, here the author uses shorter notations:

In the directed graph G representing the architecture, let FIG(i, j) be the set of all

simple (directed) paths leading from node (i.e. component) i to node j (i #j). For a path 71-

- (i, il, i2,..., in-1,i) E 1-1 G(i, j), where n= In is the length of 7E, let us denote by A(7r) the

probability of a change in i propagating to j via the path 71; i.e., the probability that a

change in i causes a change in i l , which in turn causes a change in i2 , etc., finally causing

a change in j. If one makes the simplifying assumption that change propagation events in

different connectors are independent, he obtains:

63

Let Ak(i, j) be the probability of a change in i propagating to j in k steps (k..1). It

is easy to see that Ak(i, j) is the probability of the union of the events that consist in the

change propagating from i to j along particular simple paths of length k in G. Since the

probability of a union is never greater than the sum of the probabilities of the constituent

events, the author gets:

(7.4)

The reason the author only considers simple paths is that he is interested in the

first propagation of change to its destination.

Proposition 1:

where Äk (i, j) is the kth power of matrix X , and A is obtained from matrix A by setting

its diagonal elements to zero, i.e., formally, A = A—I,

Proof	 Using (7.4), one has

Note that if the author uses the original matrix A instead of A , the entries of its k-

th power would also incorporate the paths of length less than k. Indeed, for example, the

sum that defines A3(i, j) may include such members as A(i, m) A(m, m) A(m, j) (where m

64

is some other component in G), which actually equals A(i, m) A(m, j) (because all

diagonal elements A(m, m) are 1), and thus describes a simple path of length 2 from i to j.

5.3.3 Estimation Procedure

To compute the change probabilities, one needs the internal architecture of the system

under investigation, as shown in a structure diagram such as in Figure 5.4. Using these

artifacts, one can identify the components and the connectors that describe the

component-based system architecture and can label the CP matrix rows and columns with

the component names.

Figure 5.4 The architecture of a sample System.

Figure 5.5 shows a sample message protocol between a pair of components in a

sample system. This artifact provides us with the sets VA-->g and VB->A of messages

between the two components A and B. Similarly, using the case tools the author can get,

for any pair of components in the system, the sets of messages between them. The analyst

is required to decide which of these sets of messages might propagate a change from

component A to component B, according to the domain information and the design of the

interfaces between the components.

65

Figure 5.5 A sample of a message protocol.

5.4 Analytical Result

Using the interface specification of the automatic tool (see Chapter 6 for the tool details),

the author does his analytical study on a sample system. The sample system is described

in detail in Chapter 6. The author first determines the interface variables that have an

effect on the neighboring components of the architecture of the system. Then, he

analytically computes an estimated change propagation matrix for the system. This gives

him an estimate of the probability that an interface change will propagate to a

neighboring component due to that change.

The analytical result is presented in Table 5.1. To have a better understanding of

the resulting matrix, the author produces a graphical representation of it. One can see that

there is a significant amount of change propagation between pairs of components that

have a small value. Due to this fact, the author sets a relatively high threshold value to

have a better focus on more critical components that have larger values of change

66

propagation. This gives him a graphical representation of the critical change propagation

of the system, as shown in Figure 5.7. In this example, the author lets the significance

threshold be 0.4 in order to identify the more critical components of the system.

Table 5.1 Analytical Change Propagation Result for Sharp Tool

67

Table 5.1 Analytical Change Propagation Result for Sharp Tool (Continued)

68

Figure 5.6 A reversed-engineered partial class diagram of Sharp tool.

Figure 5.7 Graphical representation of the critical change propagation.

CHAPTER 6

CHANGE PROPAGATION EMPIRICAL EXPERIMENT

In this chapter, the author applies his view of change propagation to a sample case study.

First, a brief description of the system under consideration is presented. Then, the

aforementioned single-step change propagation on the system is applied. And then, the

correlations between the analytical results and the observations from empirical study are

examined. Next, the author expands the single step change propagation results to get a

multi-step change propagation view of the same system. Using these results, the author

tries to categorize the change propagation behavior of this system into ripple, wave, or

avalanche.

6.1 Sample System

The system selected for the experiment is a spreadsheet application written in Java. It

features full formula support (nested functions, auto-updating, and relative/absolute

addressing), a file format compatible with other spreadsheets, printing support, undo/redo,

a clipboard, sorting, data exchange with Excel, histogram generation, and a built-in help

system. A partial class diagram of this tool was reverse-engineered to get a better

understanding of the system (Figure 5.6).

71

72

6.2 Change Propagation Probabilities: Empirical Observations

In order to validate the analytical results, a controlled experiment on this system is

performed. The author introduces interface changes on the interfaces of the components

of the system. And with the help of the Java compiler and Understand for Java [85], the

author tries to identify where the interface changes propagate in the system. That gives

him experimental results for single-step change propagation in the system. From the

single-step change propagation results, the author can get an estimate of the multi-step

change propagation according to Section 5.2. The empirical observation is list in Table

6.1.

From Table 6.1, the author can see the rows corresponding to component C8,

C26, and C31 have high values. This information means a change in these three

components has a higher probability to require changes in other components to maintain

the overall functionality of the system.

Table 6.1 also shows that columns corresponding to components C6, C9, and C 10

have high values. This information means if a change has to make in the system these

three components has high probability to get changed. These three components should be

designed for easy modification.

Table 6.1 Experimental Change Propagation Result For Sharp Tool

73

Table 6.1 Experimental Change Propagation Result for Sharp Tool (Continued)

74

75

6.3 Correlation between Analytical Results and Empirical Results

In this section, the author shows the correlation between the matrices CA from analytical

calculation and the matrices CE from the empirical observations mathematically. The

correlation coefficient between all the cells of the analytical single-step matrix and the

experimental single-step matrix is:

Where "r" denotes the Pearson product-moment correlation coefficient.

For the nontrivial values the author finds:

A significant relationship between some variables does not necessarily mean that

the relationship is very useful in building predictive models. Thus the R-Sq values are

also shown above to assess the explanatory power of each model.

6.4 Statistical Significance of the Correlations

Now the author needs to validate the correlation results, i.e., to make sure that the

positive correlation values observed are statistically significant (did not occur by chance).

To test the relationship between analytical and experimental change propagation, a

statistical hypothesis testing was performed using the t-test (one-tail) for the nontrivial

entries using the level of significance a = 0.05.

76

The hypotheses are

Where p denotes the correlation coefficient.

The author has computed the value of the t statistic for the nontrivial values of

single-step matrices as tob = 18.98632 (with n=140 samples), and the corresponding P

value is less than a = 0.05. Thus, the author rejects the null hypothesis of no correlation,

and thus infer that the correlation of 0.85 is statistically significant.

The t-test results showed that the fairly high correlation values between analytical

and experimental change propagation values the author obtains do not occur by chance

(i.e., are statistically significant).

6.5 Multi-Step Change Propagation Matrix

Form the single-step change propagation results, one can get an estimate of the multi-step

change propagation according to Chapter 7 Section 7.1.The author can then estimate the

outgoing change propagation of a component as the total change propagation that is

exported by this component to other components. He can track the outgoing change

propagation as change propagates in multi-steps, and observe the behavior of this

component. Thus, he can categorize the components according to their outgoing change

propagation as ripple, wave or avalanche.

Ripple components are those having outgoing change propagation that dies out

rapidly with very few steps of change propagation. Wave components are those that

77

sustain a large value of outgoing change propagation for a number of steps, but this value

dies out eventually. Avalanche components are those that have an increasing value of

outgoing change propagation as the number of steps of change propagation increase, and

this value does not die out eventually. From the experimental results, the author can

recognize the following patterns of outgoing change propagation for the three kinds of

components. This is shown in Figure 6.1.

Figure 6.1 Different Components OCP behavior Observed during experiments.

The Mn(Ci),which is directly proportional to outgoing change propagation, for

each component in the architecture is shown in Figure 6.2. The author can see that there

are only ripple and wave components and no avalanche components. Based on the

observation, he can expect that, when making a change in this system, he can recognize

ripple change propagation or at most a wave of change propagation. But, it is highly

unlikely to have an avalanche change. One can recognize that any change for component

C8 should be handled with care, as it is a highly change propagating component. Any

maintenance effort that might be needed to deal with this component should be expected

78

to cause a wave of changes since this is a highly centralized component that might affect

the others much by its high mutual dependencies. Then, component C8 is the most

critical component in context of any maintenance process involving it.

Three different patterns of change propagation in the analysis can be seen. Figure

6.3 shows a pattern for ripple components where the Mn(Ci) tends to decay in very few

steps. When checking Figure 6.4, the author finds a pattern of a potential avalanche

component. The Mn(Ci) still have a significant magnitude over a large number of steps.

In Figure 6.5, one can recognize a pattern of wave components that are midway between

the ripple and the avalanche components.

Figure 6.2 Mn(Ci) of the components through multi-step change propagation.

Figure 6.3 Pattern of Ripple components.

79

Figure 6.4 Pattern of a potential Avalanche component.

80

Figure 6.5 Pattern of Wave components.

6.6 Related Work

In the software engineering field, change propagation in evolutionary development is

handled by a few models [104, 105]. In these models, a program is divided into parts that

are used to construct a propagation graph. These techniques focus upon the potential

necessary changes that are required in redesigning the software. They use program

variables to locate links that might propagate the change, but they only predict one step of

change at a time.

In the computer-aided mechanical design field, engineers use tools, such as C-

FAR system [106], to trace and predict change propagation. They divide the system

under investigation into parts that are described according to their attributes. Interactions

of the attributes are stated in semi C-FAR matrices. Then, the interactions are analyzed to

predict the mutual effect between the attributes. C-FAR's computational complexity

makes it appropriate for small or relatively simple products.

Also, Design Structure Matrices (DSMs) [107] can estimate how change would

81

propagate in a system. They are well-established techniques used to identify relationships

between the components of the system or the design tasks [108]. High connectivity found

between design tasks suggests that high levels of dependency will exist between the

resulting system components. No indication such as the probability or scale of any such

redesign is given by the DSMs.

The work discussed in [109] is concerned with the prediction and management of

changes to an existing product resulting from faults or new requirements. It develops

mathematical models to predict the risk of change propagation in terms of likelihood and

impact of change.

In [110], L. Briand et al. propose a UML model-based approach to impact

analysis that can allow early decision-making and a change planning process. They first

make a consistency check for UML diagrams. Then they identify changes between two

different versions of a UML model according to change taxonomy, and determine model

elements that are impacted by changes using defined impact analysis rules. They

prioritize the results of impact analysis according to the likelihood of occurrence using a

measure of distance between a changed element and potentially impacted elements. They

also present a prototype tool that provides automated support for their impact analysis

strategy.

6.7 CASE Tool

To assist the empirical analysis of the proposed metrics, the author has developed a web-

based CASE tool that automates the capturing, modeling, and inspection of software

82

architectures, in order to derive and display the proposed metrics. At this point, the CASE

tool only calculates Change Propagation metrics.

6.7.1 Functional Description

The process of deriving the proposed metrics through the CASE tool consists of a 5-step

approach centered on the analyst uploading the software architecture's metadata,

configuring the resulting model, and finally validating and purifying this model before it

is analyzed by the tool's metrics layer.

First, through a user-friendly web-interface, the tool enables analysts to upload

architectural artifacts (i.e., source code) for the software they wish to analyze. The CASE

tool subsequently parses this input for metadata consisting of components, datatypes, and

connectors, and generates a corresponding MOF-based model in a centralized repository,

as shown in Figure 6.6.

Once the initial model has been generated, the analyst is further presented with

various configuration options for the model. These options allow the analyst to specify

grouping levels for the model's various component and datatype artifacts. The tool

supports a standard grouping, which applies the original grouping semantics extracted

from the software being analyzed, as well as a custom grouping, where the analyst

explicitly assigns datatypes to specific components within the model. In addition, the

analyst has the option of altering metadata for orphan or unknown types, that is, those

datatypes and components whose definitions are absent from the initial software

architecture's input.

With the model configured and refined by the analyst, the tool can now display a

set of hyperlinks that represent various metric-specific multi-dimensional views of the

83

software's architecture. Each view displays the relationship between the model's

components and their corresponding metric values. In addition, each view can be further

refined and analyzed through a rich set of filtering tools.

Figure 6.6 SACPT metamodel (CML/MOF metamodel).

6.7.2 Structural Description

The CASE tool's technology can be partitioned into three logical layers, as shown in

Figure 6.7. First, a metamodel layer captures, models, and stores a software

architecture's component, datatype, and connector information. Second, a metrics layer

inspects the generated model and applies the algorithms defined in Chapter 7 to derive

the corresponding metrics. Finally, a web-based user-interface layer displays the metric

results to the analyst. Each of these layers is implemented as a series of software

84

component libraries written in C# on the Microsoft .NETTM platform. In addition, the

metamodel layer is consistent with the * OMG Meta-Object Facility (MOFTm).

Currently the CASE tool supports two different input formats, Java Understand

[68] and UML, to produce the change propagation matrix. In the future the author and the

group members are planning on adding more input format types that the CASE tool

supports. The CASE tool is available online at the following URL:

http ://www. cc s .nj it. edu/swarch/tools . htm

Figure 6.7 SACPT architecture.

MOF is an extensible model driven integration framework for defining, manipulating and integrating metadata and data
in a platform independent manner. MOF-based standards are in use for integrating tools, applications and data.

PART IV REQUIREMENTS PROPAGATION PROBABILITIES

85

CHAPTER 7

REQUIREMENTS PROPAGATION PROBABILITY

In this chapter, the author studies another type of propagation, requirements propagation.

The author believes this attribute is highly related to the modifiability of software

systems.

7.1 Background and Definitions

The subject of this chapter is the propagation of requirements changes in a software

architecture viewed as an aggregate of components and connectors. Requirements

propagation probability represents the expected changes to component A stemming from

requirements evolution in the context of an adaptive maintenance. Those evolutionary

operations of A will cause changes to a neighboring component B in order to evolve the

overall function of the system. In this chapter, the author investigates the analytical

means to estimate these probabilities from architectural information, and he explores

ways to validate the analytical formulas by means of empirical experiments.

Software systems are expected to evolve and undergo modifications on a

continuous basis during their lifecycles. Studies show that 50-70% of the total lifecycle

cost of a software system is spent on modifications after initial development [38]. The

author defines the requirements propagation probability from component A to

component B as the probability that a change in component A mandated by a requirement

will cause a change in component B, as formally defined in Equation 7.1. This definition

can be used to estimate the change impact in an architecture and also can be used to

86

87

evaluate the quality of a given architecture.

Where S is the overall system of which A and B are components. For an architecture

having N components, the author envisions organization of the requirements change

propagation probabilities in a square N x N matrix.

7.2 Propagation Types

As discussed in Chapter 6, the changes can be classified into three categories: ripple,

wave and avalanche changes. The avalanche type of change propagation is the one that

software maintainers worry about most; such changes would make managing the software

maintenance very difficult and very costly. It would be a great benefit to be able to

predict in advance if a certain change could cause this kind of avalanche of changes. The

author can use the estimates of requirement propagation to identify which type of

propagation is taking place.

7.3 Related Work

A lot of research has been done on change impact analysis [24, 38, 44, 65-67], which is

related to the author's concept of requirements propagation probabilities. Most of this

research used manually collected data; the data is either from documentation or from

technical personnel. Bengtsson et al. [38] discusses how to select scenarios to get a good

estimation of change cost. Lock and Kotonya [44] use traceability and dependency

information to construct the complete change propagation path structure. Rajlich [69]

88

models the change propagation of a system by graph rewriting. Deruelle et al. [70] use

similar techniques to model multi-language source code and heterogeneous database

system.

7.4 Usage of Requirements Propagation

Given a matrix of requirements change propagation probabilities, one may want to use it

in the following manner:

• A summary inspection of the matrix can reveal quickly the difficulty and the cost
of requirements change operations on the system. An ideal system is perfectly
modular and has an identity matrix. This characteristic is because each change is
localized to the component where it is applied and does not propagate to other
components. The closer a matrix is to this ideal case, the better.

• If the row corresponding to a component A has high values, the author infers that
changes to this component must be avoided because they propagate widely
throughout the system. Preventive measures include focusing verification and
validation activity on this component (to minimize subsequent corrective
maintenance), and optimizing the design of this component (to minimize
subsequent perfective maintenance).

• If the column corresponding to a component A has high values, the author infers
that this component is likely to undergo frequent changes in the maintenance
phase. Preventive measures include special care to design this component for
ease of modification.

• This matrix of requirements change propagation probabilities can also be used to
compare candidate system architectures when change impact is an important
consideration

7.5 Analytical Study

7.5.1 Analytical Approach

The author anticipates that functional dependency is strongly related to requirements

change propagation. He proposes using any of the following three metrics to predict

requirements change propagation.

89

Backward functional call Dependency (BD) metric: this metric reflects

distribution that the services in component i are used by its neighbors. The author defines

BD(j, i) as the total times that component j calls functions (or services) in component i

divided by the total times that functions (or services) in component i are called by all

components, as shown in Equation 7.2.

(7.2)

Where RC (j, i) is the total number of times that component j calls functions in

component i. The denominator is the total number of times that functions (or services)

inside component i are called by other components.

Forward functional call Dependency (FD) metric: this metric reflects the

distribution that component i uses the services from other components. The author

defines FD(j, i) as the total times that component i calls functions in component j divided

by the total times that component i calls functions in other components, as shown in

Equation 7.3.

(7.3)

Total of forward and backward functional call Dependency (TD) metric: This

metric combines the previous two. It reflects the total of Fan-in and Fan-out, as shown in

Equation 7.4

90

(7.4)

7.5.2 Analytical Results

Using the sample system described in next chapter, the author has derived the three

matrices using the equations 7.2, 7.3, and 7.4, respectively. It can be seen the rows

corresponding to component C2 and C7 have high values. To the author it means if a

requirement of C2 or C7 has to be changed, this change has a high probability to require

changes to other components. The architects of this system should pay extra attention to

these two components. The architects should make effort to minimize the changes to

these two components at design time.

It also can be seen that the column corresponding to component C2 and C7 have

high values. To the author this information means that these two components have high

probability to go through changes during maintenance time. The architects of this system

should make effort to design these two components for easy modification.

Table 7.1 Forward Functional Dependency Matrix

Cl C2 C3 C4 C5 C6 C7
File (Cl) 1.000 0.432 0.227 0.000 0.023 0.000 0.341
Table (C2) 0.000 1.000 0.532 0.092 0.009 0.193 0.073
TableOp (C3) 0.000 0.382 1.000 0.000 0.088 0.059 0.206
Edit (C4) 0.000 0.643 0.857 1.000 0.357 0.071 0.357
Chart (C5) 0.000 0.291 0.139 0.114 1.000 0.000 0.152
Function (C6) 0.000 0.214 0.000 0.000 0.000 1.000 0.000

GUI (C7) 0.100 0.250 0.150 0.150 0.250 0.050 1.000

91

Table 7.2 Backward Functional Dependency Matrix

Cl C2 C3 C4 C5 C6 C7

File (Cl) 1.000 0.000 0.000 0.000 0.000 0.000 0.640

Table (C2) 0.162 1.000 0.105 0.210 0.238 0.257 0.029

TableOp (C3) 0.273 1.000 0.618 0.164 0.327 0.000 0.309

Edit (C4) 0.000 0.417 0.000 1.000 0.417 0.000 0.333

Chart (C5) 0.016 0.016 0.049 0.098 1.000 0.000 0.164

Function (C6) 0.000 0.145 0.016 0.016 0.000 1.000 0.040

GUI (C7) 0.654 0.346 0.462 0.308 0.423 0.000 1.000

Table 7.3 Total Functional Dependency Matrix

Cl C2 C3 C4 C5 C6 C7

File (Cl) 1.000 0.432 0.227 0.000 0.023 0.000 0.705

Table (C2) 0.156 1.000 0.633 0.294 0.239 0.440 0.101

TableOp (C3) 0.221 0.500 1.000 0.132 0.309 0.029 0.353

Edit (C4) 0.000 0.583 0.500 1.000 0.417 0.042 0.792

Chart (C5) 0.013 0.304 0.177 0.190 1.000 0.000 0.278

Function (C6) 0.000 0.218 0.016 0.016 0.000 1.000 0.040

GUI (C7) 0.722 0.538 0.577 0.423 0.615 0.038 1.000

92

7.6 Empirical Experiment

The author conducts an empirical study by changing the requirements of a system and

tracing how these changes propagate throughout the architecture. By making many such

observations, he can estimate requirements propagation metrics that correlate with the

requirements propagation probabilities.

7.6.1 Sample System

The author uses the same system which is used for Change propagation empirical study to

study requirements propagation empirically. As stated in Chapter 8 the system the author

has used is a spreadsheet written in Java. It features full formula support (nested functions,

auto-updating, and relative/absolute addressing), a file format compatible with other

spreadsheets, printing support, undo/redo, a clipboard, sorting, data exchange with Excel,

histogram generation, and a built-in help system. The author obtains the requirements and

architecture of the system by reverse engineering the source code, which was written in

Java.

93

Figure 7.1 Requirements change propagation diagram.

7.6.2 Empirical Experiment Procedure

The basic procedure the author follows is to make a requirements change and map this

change to a component/components (called "source" component(s)). He makes the

necessary changes in the "source" component. Then check all the neighbors that require

necessary changes. The following steps describe the procedure to make requirements

changes in the system. One can make as many changes as he wants but the author argues

the best results can be achieved if he only selects one change from each type of changes

as discussed in [38].

Experiment procedure..

1. Make a requirements change

2. Map the change to a component(s)

94

3. Find out where the functionality is carried out in the "source component".

4. Check/Guess what part needed changes

5. Check all the neighbors to see any of them need changes to adopt the changes in
the "source" component(s).

7.6.3 Empirical Results

The result of the experiment is an N x N matrix (N is the total number of components in

the system). If one makes m changes to component i and there are k times the changes

propagated to component j, in the propagation matrix cell (Ci, Cj) = k/m. The result is

shown in Table 7.4.

Table 7.4 Experiment Result of Requirement Change Propagation

Cl C2 C3 C4 C5 C6 C7

File (Cl) 1.000 0.250 0.000 0.000 0.000 0.000 0.250

Table (C2) 0.000 1.000 0.000 0.000 0.000 0.500 0.500

TableOp (C3) 0.000 0.750 1.000 0.000 0.000 0.000 0.750

Edit (C4) 0.000 0.571 0.000 1.000 0.000 0.000 0.286

Chart (C5) 0.000 0.000 0.000 0.000 1.000 0.000 0.250

Function (C6) 0.000 0.333 0.000 0.000 0.000 1.000 0.333

GUI (C7) 0.125 0.000 0.000 0.125 0.000 0.000 1.000

From Table 7.4, the author can see the same pattern as the analytical matrices. The rows

corresponding to component C2 and C4 have high values. This information means the

changes in these two components have high probabilities to require changes in other

components. From Table 7.4, the author also can see high values in the column

corresponding to component C2. This information means component C2 has high

probability to go through changes during maintenance time. Component C2 should be

designed for easy modification.

95

7.7 Correlation between Analytical and Empirical Results

In this section, the author tries to validate the analytical result using empirical

observations. The correlation coefficients between the matrix obtained from the

experiment and the analytical matrices from the architecture are listed in Table 7.5.

Table 7.5 Correlation Coefficients

Matrix 1 Matrix 2 Coefficient

BD Exp 0.812

FD Exp 0.814

TD Exp 0.755

The table shows that the correlation coefficients are significant. The author can conclude

that the three analytical matrices are highly correlated to the experimental requirements

change propagation matrix.

7.8 Conclusion

In this chapter, the author has investigated analytical means to estimate requirements

propagation metrics from architectural information. He has conducted a controlled

experiment to validate the proposed analytical formulas. Furthermore, he has performed a

case study to observe, explore and validate hypotheses pertaining to the requirement

propagation phenomena.

The empirical experiments conducted on two case studies show that requirements

changes propagate prevalently to components that are directly coupled to the source or

originating component. Furthermore, these studies show that functional dependency

96

metrics may not highly correlate with requirements propagation metrics. However further

empirical studies are needed to support these hypotheses.

Requirements propagation probability depends on two factors. Probability of a

requirement change affecting a component and the probability that this change will

propagate to other components in the system. The work here focuses on the probability of

a requirement change affecting other components in the system. The author's current and

future work involves conducting further empirical studies. Also of interest is determining to what

degree a requirement change affects a component by examining how stable the requirements for

that component are determined.

PART V EXTENSIONS

97

CHAPTER 8

QUANTIFYING ATTRIBUTES OF PRODUCT LINE ARCHITECTURE

8.1 Product Line Architecture Introduction

In traditional software reuse, a library of reuse code components is developed. This

approach requires the establishment of a library of reusable components and of an

approach for indexing, locating, and distinguishing between similar components [35].

The reusable components in this approach are the building blocks used when constructing

the new systems. Components are considered to be largely atomic and ideally unchanged

when reused. The problems with this approach include managing the library system

which contains all the reusable components, documenting the components, and locating

the components. The most important disadvantage of this approach is that the reuse is

mainly on code level. The overall reuse of this approach is relatively low.

While software reuse has fallen short of the high expectations placed on it [32, 25],

and has failed to deliver on its many promises, a specialized form of software reuse,

namely Product Line Engineering, has been very successful in fulfilling the goals of

software reuse in terms of productivity, quality, and time to market [27, 58-63]. Product

Line Engineering deploys the methods of software reuse within the confines of a limited

application domain, thereby streamlining and focusing the reuse activity. Product Line

Engineering is typically divided into two phases: Domain Engineering, where the reuse

infrastructure and the reusable assets are developed and cataloged; Application

Engineering, where actual applications are derived from the domain engineering

deliverables in a predefined, streamlined development procedure.

98

99

As is usually the case in software engineering, managerial and organizational

aspects play a dominant role in Product Line Engineering (PLE) [41], overshadowing

technical aspects, and dominating the stakes and the costs associated with projects. To

support the management of PLE projects, one must focus his attention on

characterizing/quantifying relevant PLE artifacts. The author argues that the Product

Line Architecture is one of the most important artifacts in a PLE project, since it is the

focal point of the domain engineering activity, and has a long term impact through its

influence on application engineering. In this chapter, the author explores means to

characterize important properties of product line architectures, and he attempts to

quantify these properties, to the extent that it is possible and meaningful to do so. The

approach to this problem can be characterized by the following premises:

• The author distinguishes between two kinds of attributes of product line
architectures: Generic attributes that are meaningful for any software architecture;
and attributes that are meaningful only to product line architectures.

• He does not interpret quantification as assigning numbers. There are situations
where it is not only impossible to assign numbers; it may in fact be counter-
productive. Some artifacts are so complex and/or multi-dimensional that no single
numeric function will do them justice.

• He occasionally contents himself with quantifying attributes by mapping them
onto a partially ordered set, whenever he feels that assigning a number is either
not possible or not meaningful. In such cases, the quantification allows partial
comparisons between artifacts.

• He distinguishes between two phases in the derivation of metrics: Definition and
Quantification. In the definition phase, he is primarily concerned with defining a
concept that captures the relevant attribute. In the quantification phase, he
considers how to quantify the concept in practice, and how to compute its numeric
value, if applicable. Separating these two phases helps him ensure that the latter
does not affect the former.

100

8.2 PLA Specific Attributes

Whereas the attributes (Error Propagation, Change Propagation, and Requirements

Propagation) the author has discussed in previous chapters apply generally to any

software architecture, the attributes he discusses in this chapter apply specifically to

product line architectures. Specifically, he considers the following attributes

• Scoping

• Variability

• Commonality

• Applicability

For the purposes of the discussions, the author invokes the previous work on

measuring distances between specifications done by other members of the author's

research group. In [25], Jilani et al. introduce a wide range of different measures between

specifications, and assessed their ability to predict adaptation effort. These measures

consist of one specification representing the function of a system and the other

specification representing the requirements constraining the system modification The

distance between the two specifications is used as an indicator of the modification effort.

For the purposes of this discussion, two measures of distance are of interest:

• Functional Consensus. The measure of functional consensus between two
specifications A and B is denoted by F(A, B) and represents the functional
features that are common between A and B. Details on this measure are given in
[25].

• Refinement Distance. The measure of refinement distance between two
specifications A and B is denoted by 8(A,B) and represents the functional features
that are in A and not in B, as well as those that are in B and not in A. Details on
this measure are given in [25]. The authors in [25] find that this measure of
distance satisfies all the axioms of distance, interpreted over the partially ordered
set of specifications (8 is symmetric, takes value zero only when A = B, and
satisfies the triangular inequality).

101

Both of these measures take their values, not in the set of real numbers (the author

has argued that this is not strictly necessary), but rather in the set of specifications that are

partially ordered by the refinement ordering. The author does keep the possibility of

mapping these to numeric values, using function points [28] where applicable.

8.3 Scoping

Scoping is traditionally thought of as a measure of the range of applications that are

covered by a product line. The author takes a slightly different interpretation in this

chapter by equating it with the maximal refinement distance between any two

applications of a product line. Formally,

Scoping = Max A,B 8(A, B).

If one pictures the application domain as a set represented in a topological space,

then scoping can be interpreted as the diameter of the set, as shown in Figure 8.1. One

way to approximate this term in practice is to choose two sample applications that are as

distinct as possible (e.g. one has all the optional features that are possible, the other has

none), and compute their refinement distance, which is a specification. If one wants to

quantify scoping by a numeric value, he can then compute the function point values (or

other values) of the specification that he obtains.

102

Figure 8.1 Scoping is the maximum distance between any two systems from the PLA.

Application: The author uses a library system architecture [26] as his case study.

The architecture of the system is shown in Figure 8.2. In that figure, solid lines represent

core assets (included in all the systems derived from the architecture); dashed lines

represent optional components (some systems have them and some systems do not); a

layered view indicates variance (a component has multiple versions).

Table 8.1 shows the component sizes (they are pseudo numbers) and two systems

derived from the architecture. The check mark in a cell defined by a system and a

component means that the system includes the component. The two sample systems from

the PLA are two extreme systems. One (P2) has all the optional components and if a

component has multiple versions the system includes the version with the largest size.

Another one (P1) goes opposite direction, i.e. it does not have any optional components

and if a component has multiple versions the system includes the version with the

smallest size.

The distance between these two systems should represent the scoping of the PLA. Using

the data in Table 8.1 the author can calculate the scoping. Scoping = Dist (P1, P2) = (P1

u P2) — (P1 n P2). The author considers (P1 u P2) as one system and (P1 n P2) as

103

another system. He gets the distance as 300 function points. If one decides the PLA

should not include Medium Service component. Then this time the scoping is 200

function points. This shows with fewer optional components the scoping is smaller. This

shows how by reducing the scope of the domain (understood in the intuitive sense), one

can reduce the measure of scoping (as defined above) from 300 to 200 function points.

Figure 8.2 Architecture of the library system PLA.

104

Table 8.1 Components and Their Sizes in Function Points

CP FP P1 P2

Account Manager C 40 Ai 4
External Database (ED) 0 10

Item Manager C 10 4 4

Library System C 90 4 4
Loan Manager (V1) (LM1) V 60 4
Loan Manager (V2) (LM2) V 70 Ai

Message Handler C 10 4 4
OPAL C 10 4 4
Printer C 10 4 4
Report Writer C 20 4 4
User Interface (V1) (UI1) V 230 4
User Interface (V2) (UI2) V 190

User Interface (V3) (UI3) V 90 4
Medium Services (MS) 0 100 4
Advanced Services (AS) 0 40 4

Table 8.1 Legend: CT — Component Type; C — Core component; V —

Variance component; 0 — Optional component. Pl, P2 — two products

(or systems) derived from the PLA.. Check mark means the product has

the component.

8.4 Variability

The author interprets variability to represent the degree of variation between the

functional properties of applications within the domain of interest. This is important

because it has an impact on the precision that is required to identify a particular

application in the domain, hence could potentially have an impact on many aspects of

105

domain engineering and application engineering, such as:

• The effort required to specify an application (with sufficient precision to
distinguish it from other applications in the domain)--an application engineering
impact.

• The effort required to build an application from specifications, using domain
engineering assets--an application engineering impact.

• The effort required to support/provide for all the dimensions of variability that the
author wishes to support--a domain engineering impact.

To use an analogy with geography, if the author represents the domain by a

territory, scoping measures the size of the territory while variability measures its

population density; together, they can be used to assess the size of the population (or the

domain). The author has not found a totally satisfactory measure for this feature; one

possible candidate is the minimal distance between any two distinct applications, as

shown in Figure 8.3.

Variability = Min A, B: A*B 8(A, B)

The distance 8(A, B) is itself a specification, to which the author can apply

function point procedures to derive a numeric value.

Figure 8.3 Variability is the minimum distance between any two systems from the PLA.

106

Application: The author uses the same Library System PLA to do this case study.

In order to estimate variability, he needs to find the minimal distance between any two

products of this domain. As a substitute for computing the distance between any two

products to find the smallest, he merely computes the distance between two neighboring

products, and uses that as an upper bound of the distance. To this effect, the author lets

product P3 have every feature of P 1 , and have an extra feature, External Database (ED).

Then, 8(P1, P3) = Size (ED) = 10 Function Points. Then, he can say the variability of this

PLA is less than 10 Function Points.

Variability < 10

8.5 Commonality

Commonality is usually understood to be a measure of how much [what?] applications in

the domain have in common. In [25], the authors have defined the functional consensus

of two specifications A and B as the composition of A and B by a lattice operator, which

is commutative and associative. Hence, this operator can be applied on more than two

arguments, even on an infinity of arguments (due to properties of the lattice, whose

discussion is beyond the scope of this paper). Using the measure of functional consensus,

the author defines commonality as the functional consensus of all the applications in the

domain.

Intuitively, this definition provides that the commonality of a domain is the

specification that captures all the functional details that all applications of the domain

have in common. Even though, formally, this measure involves all the applications in the

107

domain, in practice it does not require that one enumerates all the applications to compute

their product. The information that all applications of the domain share is usually readily

available as a prominent feature of the domain description. If one wants a numeric value

for commonality, he can apply the function point process to the specification derived

from the definition above.

Application: The author still uses the Library System as the sample PLA. If one

requires all the applications derived from the PLA has the following features:

• Account Management which has the following functions: create an account,
identify an account, remove an account from the system, and print the
information of an account.

• Item Manager which has the following functions: get an item.

• Library System which has the following functions: identify an account, create a
new account, remove an account, identify an item, loan an item, print out
information of an account, return an item, re-loan an item, and search the
system.

• Loan Manager which has the following functions: loan an item, print the
information of an account, provide loan information, re-loan an item, return an
item, set up an account, and close an account.

• Message Handler which shall display messages to users.

• OPAC which shall provide online access catalog.

• Printer which has print function.

• Report writer which shall have print account information and print function.

• User interface which shall provide users at lease with the access to the following
functions: identify an account, create a new account, remove an account,
identify an item, loan an item, print out information of an account, return an
item, re-loan an item, and search the system.

The above description represents the common features required for all the

108

applications derived from the PLA. So the description is the commonality of the PLA. If

one wants to represent it in a numeric value the commonality should be the size (could be

in function points or in other measurements) of all the common features. In this case, one

just adds all the function points of the core components resulting 340 function points.

8.6 Applicability

The author understands applicability to refer to the ease with which one can produce a

domain application from domain assets. The domain engineer has to find a tradeoff

between two conflicting requirements

• Usefulness. To enhance the usefulness of the application domain, the domain
engineer must widen the scope; a wider domain caters to more needs and
encompasses more applications.

• Usability. To enhance the usability of domain assets, the domain engineer must
minimize the effort required to derive an application within the domain.

These requirements are clearly in mutual conflict: To enhance usefulness one

needs to make domain assets more general. In other words, what one needs to make them

cater to a wider range of possible functions. Whereas to enhance usability, one needs to

make domain assets more specific or specialize them to a narrower range of functions.

Genericity helps maintain usefulness (generality) without adversely affecting usability.

The author wants applicability to reflect/measure where the domain engineer has

struck the tradeoff between usefulness and usability. The author uses two possible

definitions of applicability:

109

• The refinement distance between domain requirements and application
requirements; a numeric value can be obtained by computing the corresponding
function point value.

• More simply, the average application engineering cost, computed over all possible
domain applications.

Empirical studies conducted by Jilani et al. [25] show that these two measures are

correlated. There approach gives a sense that refinement distance can be used to predict

application engineering costs. Hence for the purposes of this definition, the author defers

to the first interpretation of applicability:

Applicability = Min A e DOMAIN δ(R,A)

Where R is the domain requirements specification and A is the requirements specification

of a variable element of the domain. The interpretation is shown in Figure 8.4.

Figure 8.4 Applicability is the minimum distance from the requirements specification of

a PLA to the requirements of a system R.

8.7 Conclusion

In this chapter, the author has attempted to propose some attributes that pertain to product

110

lines, and have discussed means to characterize them and quantify them. He has shown

how some of the proposed characterizations/quantifications reflect the desired properties.

He feels that the design of a product line involves a lot of tradeoffs between the

imperatives of usefulness and usability, and that the set of measures (scoping, variability,

commonality, applicability) can potentially provide a sound objective basis for

quantifying these tradeoffs, and possibly optimizing them. To define these measures, the

author has used measures of distance between specifications, and have taken some

liberties with converting these into numeric functions; this matter needs to be revised

carefully, for possible revision. This work is clearly in its infancy, and at a very tentative

stage. However, it does show some potential for further exploration.

CHAPTER 9

SUMMARY

In this dissertation, the author introduces what is software architecture; what are the

benefits of using software architecture. The necessity of measuring software architecture

is discussed. Three metrics for general architecture are proposed, mathematically

modeled, and validated by empirical studies; four metrics for product line architecture are

proposed, discussed.

9.1 Error Propagation

In Chapter 3 and 4, error propagation metrics is defined. The error propagation can be

used in the following ways.

• Good indicator for the reliability of a system.

• Help architects to design better software architecture; minimize the EP.

• If a component has high EP value to all other components, take special action to
minimize errors at run-time.

• If a column has high values, take special steps to immunize this component
against errors, e.g. by providing it with fault tolerance capabilities (error detection,
damage assessment, error recovery)

A mathematical model is proposed. A case study is carried out on a lift-critical sample

system. The author uses a fault injection experiment to validate the analytical result. The

correlation coefficient is 0.628, which indicates analytical result is related to the

empirical study result.

111

112

9.2 Change Propagation

In Chapter 5 and 6, change propagation metrics are defined. Change propagation can be

used in many ways to help architects to design better system. The following is several

ways CP can be used.

• Good indicator for the Modifiability of a system.

• Lower CP indicates lower changing cost.

• A good software architecture should have minimum CP

If a component has a high CP value, take special caution to design it. Intense validation

and verification should be carried out when changing such a component.

A case study on a spreadsheet application is performed. The analytical results are

validated by the results from an empirical study. The correlation coefficient between

analytical results and empirical results is 0.85. It is concluded that the results are highly

related.

9.3 Requirements Propagation

In Chapter 7, the author proposes a metrics called requirement propagation. This metric

has at least the following usages.

• This matrix can be used to find out components that are likely to undergo frequent
changes in the maintenance phase.

• RP matrix can also be used to compare candidate system architectures when
change impact is an important consideration.

• If the row corresponding to a component A has high values, the author infers that
changes to this component must be avoided because they propagate widely
throughout the system.

• If the column corresponding to a component A has high values, the author infers
that this component is likely to undergo frequent changes in the maintenance
phase.

Three mathematic formulas are proposed. A same system as used for CP is used

to perform a case study. The correlation coefficients between analytical results and the

empirical results are high.

113

9.4 Metrics for Product Line Architecture

Product line architecture is a common structure among a group of related products. In

Chapter 8, the author quantifies some properties of product line architecture. Four metrics

are proposed, scoping, variability, commonality, and applicability.

• Scoping is used to measure the scope of the whole architecture.

• Variability is used to explore the variation of a given PLA.

• Commonality is the measurement of how much in common of the products
derived from the architecture.

• Applicability is the cost to produce a system from a PLA.

A library system is used to perform a case study. Although most of the measurements are

done using requirement specifications, the author tries to convert some of the

specifications into numbers.

9.5 Conclusion

In this dissertation, several metrics for software architecture are defined. Mathematic

models are proposed. The results from analytical results are validated by empirical

studies. Also an automatic CASE tool is developed for calculating change propagation.

The author argues that EP metrics is related to reliability of a software system. CP and

RP metrics' are reflections of modifiability and maintainability of software systems.

APPENDIX A

ANALYTICAL FORMULA OF ERROR PROPAGATION

Analytically, the error propagation probability (as defined in Chapter 4), can be shown to

have the following expression in terms of the probabilities of the individual A-to-B

messages and states of B:

where Fx-1(y) = v E VA-->B I Fx(v) = y}, and the author assumes a probability distribution

PB on the set of states SB and a probability distribution PA-->B on the data vocabulary VA->13.

As one can see from the above formula, the value of EP (A B) depends on two

expressions. The expression

Interestingly, the expression

behaves very much like the Shannon entropy of the probabilistic ensemble (VA-->B, PA-->B):

the more homogeneous is the distribution— the larger is the value of (4), which reaches its

maximum of logl VA-->BI at the ensemble of highest uncertainty (all elements have equal

114

115

probabilities), and its minimum of 0 at the ensemble of lowest uncertainty (all but one

elements have probability zero). In fact, expression (4) turns out to be the so-called 2nd

order Renyi entropy 4(vA_>B,PA,B) (see e.g. [9]) of the A-to-B data flow ensemble (VA-13 ,

P A -->13). Thus,

Let us now look at the expression that appears in the numerator of the error

propagation formula,

Assume, for the sake of simplicity, that all states x e SB of component B are equi-probable

(with probabilities PB(x) = 1), and all messages v E VA->B sent by A to B are also equi-
I SB I

probable probable (with probabilities P AFB (v) =
1	

). In this case the expression for
I V A->B1

il(A,B) is reduced to:

where IF,-1 (y)1 is calculated simply by counting the number of messages B receives from

A that trigger the state transition from x to y.

Also, when all the messages are equally probable, the expression (A,B) reaches

116

of logl VA-.4B I). Thus, under the equi-probability assumption (stated above), the formula

for the error propagation from A to B gets simplified as follows:

Since one cannot always extract from the available representation the detailed

information on the transition table F for the architectural components, it would helpful to

be able to estimate the term in the absence of any knowledge of function F. For any fixed

which may be empty. Thus,

And it is easy to see that, for such a partition, the sum

reaches its maximum value of I VA->B 1 2 for the trivial partition consisting of a single set,

and it reaches its minimum value of I VA--)B 1 2 SB I for a 'uniform' partition that consists

of I SB I sets of equal cardinality. It should be noted that, clearly, the minimum is

reachable only when I SB I divides I VA-->B I; otherwise it is an unattainable (but tightest

possible) lower bound. Thus

This yields the following bounds for the error propagation value

Thus, for instance, if the receiving component B has 2 states, and is capable of receiving

5 different messages from component A, the A-to-B error propagation cannot exceed (1-

0.5)/(1-0.2) = 0.625.

117

APPENDIX B

SHARPTOOL APPLICATION SUMMARY MATRIX

Appendix B lists all the files in SharpTool application.

File Name Alias
No. of
Lines

No. of
Methods

Avg.
Complexity

AddressField Cl 117 5 2
Cell C2 317 19 2
CellPoint C3 130 10 1
CellRange C4 147 12 1
Config C5 230 10 2
ConnectDialog C6 244 6 3
Database C7 230 4 5
Debug C8 23 3 1
EditOp C9 434 12 3
FileOp C10 876 29 3
FindDialog C11 84 6 1
Formula C12 1166 32 4
Function C13 943 76 1
Help C14 243 8 2
HistoDialog C15 472 35 1
Histogram C16 189 9 1
History C17 291 17 1
NewFileDialog C18 141 8 1
Node C19 300 34 1
Numberield C20 233 10 2

ParserException C21 61 5 1
PasswordDialog C22 129 6 2
SharpCellEditor C23 73 4 1
SharpCellRenderer C24 144 4 3
SharpClipboard C25 122 7 1
SharpDialog C26 356 27 1
SharpOptionPane C27 236 8 2
SharpTableModel C28 1676 56 3
SharpTools C29 1189 81 1
SortDialog C30 199 11 1
TableOp C31 311 9 3
TabPanel C32 502 22 2

118

APPENDIX C

SHARPTOOL FEATURES AND THEIR CORRESPONDING CLASSES

Appendix C lists all the features of SharpTools system.

Features Related Components

1. File Operation

1.1 New File C10: FileOp & C5: Config
1.2 Open File C10: FileOp

1.3 Open Database
C10: FileOp, C7: Database, C6:
ConnetDialog

1.4 Save C10: FileOp
1.5 Save as C10: FileOp
1.6 Print C10: FileOp
1.7 Set Password C10: FileOp & C22: PasswordDialog
1.8 Exit C10: FileOp

2. Record the history of recently used files C10: FileOp & C5: Config
3. Table C28: SharpTableModel, C2: Cell,

C3: CellPoint

4. Edit Operations

4.1 Undo C17: History
4.2 Redo C17: History
4.3 Cut C9: EditOp
4.4 Copy C9: EditOp
4.5 Paste C9: EditOp

5. Search Ability
5.1 Find C9: EditOp
5.2 Find Next C9: EditOp

6. Table Operations

6.1 Insert Row C32: TableOp, C4: CellRange
6.2 Insert Column C32: TableOp, C4: CellRange
6.3 Delete Row C32: TableOp, C4: CellRange
6.4 Delete Column C32: TableOp, C4: CellRange
6.5 Sort Row C32: TableOp, C30 SortDialog
6.6 Sort Column C32: TableOp, C30 SortDialog
6.7 Set Column Width C32: TableOp, C5: Config

C27: SharpOptionPane

7. Chart Operation
7.1 Display Histogram C16: Histogram, C31: TabPanel
7.2 Hide Histogram C16: Histogram, C31: TabPanel

8. Functions Function

9. Help ❑
9.1 Help File C14: Help
9.2 Function Info C14: Help, C13: Function, C12: Formula
9.3 About C14: Help

10. Graphical User Interface C29: SharpTools

119

REFERENCES

1. P. Clements, "Evaluating Software Architectures: methods and Case Studies",
Addison-Wesley, 2002.

2. J.J. Marchiniak, "Encyclopedia of Software Engineering", John-Wiley & Sons (Vol.
I), 1994.

3. SEI software architecture website:
http://www.sei.cmu.edu/architecture/definitions.html . (Accessed December 5,
2005)

4. Len Bass, Paul Clements, and Rick Kazman, "Software Architecture in Practice",
Addison Wesley, 1998.

5. M. Shereshevsky, H. Ammari, N. Gradetsky, A. Mili, and H. Ammar, "Information
theoretic metrics for software architectures", In Proceedings, COMPSAC 2001:
Computer Software and Applications, Chicago, IL, 2001.

6. T.J. McCabe, "A complexity measure", IEEE Transactions on Software Engineering,
Vol. 2(4), 1976, pp. 308-320.

7. J.M. Bieman and B.K. Kang, "Measuring design level cohesion", IEEE Transactions
on Software Engineering, Vol. 24(2), February 1998, pp. 111-124.

8. L.C. Briand, S. Morasca, and V.R. Basili, "Property based software engineering
measurement", IEEE Transactions on Software Engineering, Vol. 22(1),
January 1996.

9. A. Renyi. "On Measures of Entropy and Information", in N. Neyman (editor),
Proceedings of the Fourth Symposium on Mathematics, Statistics, and
Probability. San Francisco, CA 1961, pp. 547-561.

10. C. Shannon. "A Mathematical Theory of Communication". Bell Syst. Tech. Journal,
Vol. 27, 1948, pp. 379-423 and 623-656.

11. D. M. Nassar, W. A. Rabie, M. Shereshevsky, N. Gradetsky, H.H. Ammar, Bo Yu, S.
Bogazzi, and A. Mili, Estimating Error Propagation Probabilities in Software
Architectures", Technical Report, College of Computer Science, New Jersey
Institute of Technology 2002. http://www.ccs.njit.edu/swarch/ep.pdf. (Accessed
December 5, 2005)

120

121

12. Karol Zyczkowski, "Renyi Extrapolation of Shannon Entropy", 2003
http://arxiv.org/abs/quant-ph/0305062 . (Accessed December 5, 2005)

13. Rational Rose Realtime, IBM Rational Software, http://www.rational.com . (Accessed
December 5, 2005)

14. M. Hiller, A. Jhumka, and N. Suri, "An Approach for Analyzing the Propagation of
Data Errors in Software," Dependable Systems and Networks, 2001, pp. 161-
170.

15. SEI Product Line Web site: http://www.sei.cmu.edu/productlines/index.html .
(Accessed December 5, 2005)

16. J.M. Bieman and L.M. Ott. "Measuring Functional Cohesion". IEEE Transactions on
Software Engineering, Vol. 20(8), August 1994, pp. 644-657.

17. M. Shaw. "Architectural Issues In Software Reuse: It's Not Just The Functionality, It's
The Packaging", Proceedings, Symposium on Software Reusability, Seattle,
WA, April 1995. Association for Computing Machinery.

18. M. Shereshevsky, H. Ammari, N. Gradetsky, A. Mili, and H. Ammar. "Information
Theoretic Metrics For Software Architectures". In Proceedings, COMPSAC
2001: Computer Software and Applications, Chicago, IL, 2001.

19. V.R. Basili and H.D. Rombach, "The Tame Project: Towards Improvement Oriented
Software Environments", IEEE Transactions on Software Engineering, Vol.
14(6), June 1988, pp. 758-773.

20. M. H. Halstead, "Elements of Software Science", North Holland, Amsterdam, 1977.

21. C. Kobryn, "UML 2001: A Standardization Odyssey", Communications of the ACM
Vol. 42(10), pp. 29-37, New York: ACM Press.

22. F. Bachman, Bass, S. Buhman, S. Comella-Dorda, F. Long, R. C. Seacord, and K. C.
Wallnau, "Volume II: Technical Concepts of Component-Based Software
Engineering", Report CMU/SEI-2000-TR-008, Software Engineering Institute,
Carnegie Mellon University, 2000.

23. C. Szyperski, Component Software - Beyond Object-Oriented Programming, ISBN 0-
201-17888-5, Addison-Wesley, 1998.

24. P. Bengtsson, et al., "Architecture-level modifiability analysis (ALMA)", The J. of
System. And Software, Vol. 69, (2004 pp. 129-147.

122

25. L. Jilani, J. Desharnais, A. Mili, "Defining And Applying Measures of Distance
Between Specifications", IEEE Transactions on Software Engineering, Vol. 27
(8), 2001, pp. 673-703.

26. J. Bayer, D. Muthig, B. Göpfert, "The Library System Product Line- A KobrA Case
Study", http://www.iese.fraunhofer.de/pdf files/iese-024_01.pdf. (Accessed
December 5, 2005)

27. P. Clements, and L. Northrop, "Software Product Lines: Practices and Patterns",
Addison-Wesley Pub Co, 2001.

28. D. Garmus, and D. Herron, "Function Point Analysis: Measurement Practices for
Successful Software Projects", Addison-Wesley, 2001.

29.0. Gotel, and A. Finkelstein, "An Analysis of the Requirements Traceability
Problem", Proc. First Int'l Conf. Requirements Eng., 1994, pp. 94-101.

30. B. Ramesh, and M. Jarke, "Toward Reference Models for Requirements Traceability",
IEEE Transactions on Software Engineering, Vol. 27(1), Jan 2001, pp. 58-93.

31. L. Bass, P. Clements, and R. Kazman, "Software Architecture in Practice", Addison
Wesley, 1998.

32. C. Atkinson, J. Bayer, C. Bunse, et al., "Component-based Product Line Engineering
with UML", Addison Wesley, 2002.

33. D. Yakimovich, J.M. Bieman, V.R. Basili, "Software Architecture Classification For
Estimating The Cost Of COTS Integration", Proceedings of the 1999.

34. B. Boehm, E. Horowitz, et al., "Software Cost Estimation with COCOMO II",
Prentice Hall PTR, 2000.

35. R. Prieto-Diaz, P. Freeman, "Classifying Software for Reusability", IEEE Software,
Vol. 4(1), 1987, pp. 6-16.

36. H. Ammar, S. M. Yacoub, A. Ibrahim, "A Fault Model for Fault Injection Analysis of
Dynamic UML Specifications," International Symposium on Software
Reliability Engineering, IEEE Computer Society, November 2001.

37. D.S. Moore and G.P.McCabe, "Introduction to The Practice of Statistics", W.H.
Freeman and Company, 4th edition, 2003.

38. P. Bengtsson, et al., "Architecture-Level Modifiability Analysis (ALMA)", The
Journal of Systems and Software, Vol. 69, 2004, pp. 129-147.

123

39. P.J. Clarkson, C.Simons, and C.M. Eckert, "Change Propagation in the Design of
Complex Products", in Engineering Design Conference (EDC2000), Brunel
University, Uxbridge, 2000, pp. 563-570.

40. P.J. Clarkson, C.Simons, and C.M. Eckert, "Predicting Change Propagation in
Complex Design", Proceedings 13th International Conference on Design
Theory and Methodology (DETC'01), ASME Design Engineering Technical
Conferences and Computers and Information in Engineering Conference,
Pittsburgh, Pennsylvania, USA, 2001.

41. H. Mili, A. Mili, S. Yacoub E. Addy, "Reuse-Based Software Engineering:
Techniques, Organization, and Controls", Wiley-Interscience; 1st edition
(December 15, 2001).

42. K. Moller, "Software Metrics: A Practitioner's Guide to Improved Product
Development", Chapman & Hall; 1st edition, 1993.

43. V. Cote, P. Bourque, S. Oligny, and N. Rivard, "Software Metrics: an Overview of
Recent Results", The Journal of Systems and Software, Vol. 8, 1988, pp. 121-
131.

44. S. Lock, G. Kotonya, "An Integrated Framework for Requirement Change Impact
Analysis", proceedings of the 4th Australian Conference on Requirements
Engineering, September 1999.

45. M. Halstead, "Elements of Software Science". Elsevier, New York, 1977.

46. B. Boehm, "Software Engineering Economics", Prentice Hall PTR (1981).

47. L. Putnam, "Tutorial on Software Cost Estimation and Life Cycle Control: Getting
the Software Numbers", Computer Society Press, Los Alamitos, CA, 1980.

48. H. Gomaa, "Designing Software Product Lines with UML : From Use Cases to
Pattern-Based Software Architectures", Addison-Wesley Professional (July 7,
2004).

49. H. Gomaa, "Reusable Software Requirements and Architectures for Families of
Systems", Journal of Systems and Software, Vol. 28, 1995, pp. 189-202.

50. G. Booch, "Object-Oriented Analysis and Design with Applications", 2nd Ed.
Reading, MA: Addison-Wesley, 1994.

51. I. Jacobson, "Object-Oriented Software Engineering: A Use Case Driven Approach,
Reading", MA: Addison-Wesley, 1992.

124

52. J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorenson, "Object —
Oriented Modeling and Design", Upper Saddle River, NJ: Prentice Hall, 1991.

53. OMG website: http://www.omg.com. (Accessed December 5, 2005)

54. R. Soley and the OMG Staff Strategy Group, "Model-Driven Architecture",
ftp://ftp.omg.org/pub/docs/omg/00-11-05.pdf. (Accessed December 5, 2005)

55. IBM Rational: http://www-306.ibm.comisoftware/rational/.

56. W. Boggs, M. Boggs, "Mastering UML with Rational Rose 2002", Sybex Books,
2002.

57. OMG Meta-Object Facility:
http://www.omg.org/technology/documents/formal/mof.htm . (Accessed
December 5, 2005)

58. J.D.McGregor, L.M. Northrop, S. Jarrad, K. Pohl, "Initiating Software Product
Lines", IEEE Software, Vol. 19(4), Jul/Aug, 2002, pp. 24-27.

59. F. Van der Linden, "Software Product Families in Europe: the Esaps & Cafe projects",
IEEE Software, Vol: 19(4), Jul/Aug, 2002, pp. 41-49.

60. K. Schmid, M. Verlage, "The Economic Impact of Product Line Adoption and
Evolution", IEEE Software, Vol 19(4), Jul/Aug, 2002, pp. 50-57.

61. J.Bosch, "Product-Line Architectures in Industry: a Case Study", Proceedings of the
1999 International Conference on Software Engineering, 16-22 May 1999, pp.
544-554.

62. D. Batory, "Product-Line Architectures, Aspects, and Reuse", Proceedings of the
2000 International Conference on Software Engineering, 4-11 June 2000, pp.
832-832.

63. A. Garg, M. Critchlow, P. Chen; C. Van der Westhuizen A. van der Hoek, "An
Environment for Managing Evolving Product Line Architectures", 2003. ICSM
2003. Proceedings. International Conference on Software Maintenance, 22-26
Sept. 2003, pp. 358-367.

64. J.S. O'Neal, D.L. Carver, "Analyzing the Impact of Changing Requirements", 2001.
Proceedings. IEEE International Conference on Software Maintenance, 7-9 Nov.
2001, pp. 190-195.

125

65. A.J.C. Blyth, J. Chudge, J.E. Dobson, M.R. Strens, "A Framework for Modeling
Evolving Requirements", COMPSAC 93. Proceedings., Seventeenth Annual
International Computer Software and Applications Conference, 1-5 Nov. 1993,
pp. 83-89.

66. J. Han, "Supporting Impact Analysis and Change Propagation in Software
Engineering Environments", 8th International Workshop on Software
Technology and Engineering Practice [incorporating Computer Aided Software
Engineering], July 14-18, 1997, pp. 172 —182.

67. S. A. Bohner, "Software Change Impacts-an Evolving Perspective", Proc. 2002 IEEE
Int. Conference on Software Maintenance, 3-6 Oct. 2002, pp. 263-272.

68. Java Understand: http://www.scitools.com/uj.html . (Accessed December 5, 2005)

69. V. Rajlich, "A Model for Change Propagation Based on Graph Rewriting", Proc.
1997 IEEE Int. Conference on Software Maintenance, 1997, pp. 84-91.

70. L. Deruelle, M. Bouneffa, N. Melab, H. Basson, "A Change Propagation Model and
Platform for Multi-Database Applications", Proc. 1997 IEEE Int. Conference on
Software Maintenance, 2001, pp. 42-51.

71. N. Fenton, and S. Pfleeeger, "Software Metrics: A Rigorous & Practical Approach",
2nd Ed, PWS Publishing Company, Boston, MA, 1997.

72. F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal, "Pattern-
Oriented Software Architecture", Volume 1: A System of Patterns (Hardcover),
1st Ed, John Wiley & Sons, August 8, 1996.

73. A.S. Tanenbaum, "Modern Operation System", Prentice Hall, 1992.

74. A. Aho, R. Sethi, J. Ullman, "Compilers- Principles, Techniques, and Tools",
Addison Weseley, 1986.

75. R. Engelmore, T. Morgan, "Blackboard Systems", Addison Weseley, 1988.

76. Object Management Group, "The Common Object Request Broker: Architecture and
Specification", OMG Document Number 91.12.1, Revision 1.1 1992.

77. A. Goldberg, D. Bobson, "Smalltalk-80: the Language and its Implementation",
Addison Wesley, 1983.

78. C. Traving, H, Stadtherr, "Building a Traffic Management System with C++",
Proceedings of the C++ User Group Technical Conference, Munich, 1993.

126

79. S. Kee, "Object-Oriented Programming in Common Lisp — A Programmer's Guide to
CLOS", Addison Wesley, 1989.

80. Chorus systems, "Chorus Kernel v3.2, Implementation Guide", CS/TR-90-5.

81. M. Kogure, Y. Akao, "Quality Function Deployment and CWQC in Japan", Quality
Progress, October 1983, pp. 25-29.

82. W. Boehm, J. R. Brown, and M. Lipow, "Quantitative Evaluation of Software
Quality", Proceedings of the Second International Conference on Software
Engineering, 1976, pp. 592-605.

83. J. A. McCall, P.K. Richards, G.F. Walters, "Factors in Software Quality", Rome Air
Development Center, RADC TR-77-369, 1977.

84. Forrest Research,
http://www.forrester.com/Research/Document/Excerpt/0,7211,37381,00.html .
(Accessed December 5, 2005)

85. Scientific Toolworks, Inc., Understand for Java, http://www.scitools.com/ . (Accessed
December 5, 2005)

86. Carnegie Mellon University, "The Acme Architectural Description Language", On-
line at: http://www.cs.cmu.edu/-acme/ . (Accessed December 5, 2005)

87. D. Garlan, R. T. Monroe, and D. Wile, "Acme: An Architecture Description
Interchange Language", Proceedings of CASCON '97, Toronto Canada,
November 11, 1997, pp. 169-183.

88. S. Roh, K, Kim, and T. Jeon, "Architecture modeling language based on UML2.0",
Rapid System Prototyping, 2005. (RSP 2005). The 16th IEEE International
Workshop on 8-10 June 2005, pp. 202-208.

89. N. Wirth, "Program Development by Stepwise Refinement", Communications of the
ACM, Vol. 14(4), 1971, pp. 221-227.

90. D. Parnas, "On the Criteria to be Used in Decomposing Systems into Modules",
Communications of the ACM, Vol. 15(12), 1972, pp. 1052-1058.

91. E. Yourdon and L. Constantine, "Structured Design: Fundamentals of Discipline of
Computer Program and Systems Design", Prentice Hall, 1985.

92. D. Perry and A. Wolf, "Foundations for the Study of Software Architecture",
Software Engineering Notes, Vol. 17(4), October, 1992, pp. 40-52.

127

93. T. M. Khoshgoftaar, K. Ganesan, E. B. Allen, F. D. Ross, R. Munikoti, N. Goel, and
A. Nandi, "Predicting fault prone modules with case-based reasoning", 8th
International Symposium on Software Reliability Engineering, Albuquerque,
NM, November 1997.

94. W. Harrison, "An entropy-based measure of software complexity", IEEE
Transactions on Software Engineering, Vol. 18(11), Nov. 1992, pp. 1025-1029.

95. N. Chapin, "Entropy metric for systems with COTS software", Proceedings, Metrics
2002, Ottawa, Ont, Canada, 2002.

96. N. Fenton, "Software measurement: A necessary scientific basis", IEEE Transactions
on Software Engineering, Vol. 20(3), March 1994, pp. 199-206.

97. J. Voas, "Error propagation analysis for COTS system," Journal of Computing &
Control Engineering, Vol. 8(6), Dec. 1997, pp. 269 —272.

98. C. Michael, and R. C. Jones, "On the Uniformity of Error Propagation in Software,"
Proc. of the 12th Annual Conference on Computer Assurance (COMPASS'97),
1997, pp. 68-76.

99. S. J. Geoghegan, D. Aversky, "Method for Designing and Placing Check Sets based
on Control Flow Analysis of Programs", Proc. Int. Symposium on Software
Reliability Engineering (ISSRE' 96), 1996, pp. 256-265.

100. A. Jhumka, M. Hiller, and N. Suri, "Assessing Inter-Modular Error Propagation in
Distributed Software", in Proc of the 20th Symposium on Reliable Distributed
System, 2001, pp. 152-161.

101. K. G. Shin, T. Lin., "Modeling and Measurement of Error Propagation in a Multi-
module Computing System", IEEE Transactions on Computers, Vol. 37(9),
1988, pp. 1053-1066.

102. Iyer R. K., Tang D., "Experimental Analysis of Computer System Dependability",
Chapter 5 in Fault-Tolerant Computer System Design (ed. D.K, Pradhan),
Prentice Hall, 1996.

103. Powell D., et al., "Estimators for Fault Tolerance Coverage Evaluation", IEEE
Transactions on Computers, Vol. 44(2), 1995, pp. 261-274.

104. V. Rajlich, "Modeling Software Evolution by Evolving Interoperation Graphs,"
Annals of Software Engineering Vol. 9, 2000, pp. 235-248.

105. S. R. Schach, and A. Tomer, "A Maintenance-oriented Approach to Software
Construction," Journal of Software Maintenance-Research and Practice, Vol.
12(1), 2000, pp. 25-45.

128

106. T. Cohen, S. Navthe, and R. Fulton, "C-FAR, Change Favorable Representation."
Computer-Aided Design, Vol. 32, 2000, pp. 321-38.

107. D. V. Steward, "The Design Structure System: A Method for Managing the
Design of Complex Systems," IEEE Transactions on Engineering Management,
Vol. 28 (3), 1981, pp. 71-74.

108. S. D. Eppinger, D. E. Whitney, R. P. Smith, and D. A. Gebala, "A Model-based
Method for Organizing Tasks in Product Development," Research in
Engineering Design, Vol. 6(1), 1994, pp. 1-13.

109. P. J. Clarkson, C. Simons, and C. M. Eckert, "Predicting Change Propagation in
Complex Design", Proceedings, 13th International Conference on Design
Theory and Methodology (DETC'01), ASME Design Engineering Technical
Conferences and Computers and Information in Engineering Conference,
Pittsburgh, Pennsylvania, USA, 2001

110. L. Briand, Y. Labiche, "Impact Analysis and Change Management of UML
Models", Technical Report SCE-03-01, Carleton University, Feb. 2003.

	New Jersey Institute of Technology
	Digital Commons @ NJIT
	Fall 2005

	Quantifying software architecture attributes
	Bo Yu
	Recommended Citation

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract (1 of 2)
	Abstract (2 of 2)

	Title Page

	Copyright Page
	Approval Page
	Biographical Sketch (1 of 2)
	Biographical Sketch (2 of 2)

	Dedication Page
	Acknowledgment Page
	Table of Contents (1 of 5)
	Table of Contents (2 of 5)
	Table of Contents (3 of 5)
	Table of Contents (4 of 5)
	Table of Contents (5 of 5)
	Chapter 1: Software Architecture

	Chapter 2: Software Metrics

	Chapter 3: Error Propagation Analytical Study
	Chapter 4: Empirical Study Of Error Propagation

	Chapter 5: Analytical Study Of Change Propagation

	Chapter 6: Change Propagation Empirical Experiment

	Chapter 7: Requirements Propagation Probability

	Chapter 8: Quantifying Attributes Of Product Line Architecture

	Chapter 9: Summary

	Appendix A: Analytical Formula Of Error Propagation

	Appendix B: Sharptool Application Summary Matrix

	Appendix C: Sharptool Features And Their Corresponding Classes

	References

	List of Tables
	List of Figures (1 of 2)
	List of Figures (2 of 2)

