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ABSTRACT

ROBUST TECHNIQUES AND APPLICATIONS IN FUZZY CLUSTERING

by
Amit Banerjee

This dissertation addresses issues central to fuzzy classification. The issue of sensitivity

to noise and outliers of least squares minimization based clustering techniques, such as

Fuzzy c-Means (FCM) and its variants is addressed. In this work, two novel and robust

clustering schemes are presented and analyzed in detail. They approach the problem of

robustness from different perspectives. The first scheme scales down the FCM

memberships of data points based on the distance of the points from the cluster centers.

Scaling done on outliers reduces their membership in true clusters. This scheme, known

as the Mega-clustering, defines a conceptual mega-cluster which is a collective cluster of

all data points but views outliers and good points differently (as opposed to the concept

of Dave's Noise cluster). The scheme is presented and validated with experiments and

similarities with Noise Clustering (NC) are also presented. The other scheme is based on

the feasible solution algorithm that implements the Least Trimmed Squares (LTS)

estimator. The LTS estimator is known to be resistant to noise and has a high breakdown

point. The feasible solution approach also guarantees convergence of the solution set to a

global optima. Experiments show the practicability of the proposed schemes in terms of

computational requirements and in the attractiveness of their simplistic frameworks.

The issue of validation of clustering results has often received less attention than

clustering itself. Fuzzy and non-fuzzy cluster validation schemes are reviewed and a

novel methodology for cluster validity using a test for random position hypothesis is



developed. The random position hypothesis is tested against an alternative clustered

hypothesis on every cluster produced by the partitioning algorithm. The Hopkins statistic

is used as a basis to accept or reject the random position hypothesis, which is also the null

hypothesis in this case. The Hopkins statistic is known to be a fair estimator of

randomness in a data set. The concept is borrowed from the clustering tendency domain

and its applicability to validating clusters is shown here.

A unique feature selection procedure for use with large molecular conformational

datasets with high dimensionality is also developed. The intelligent feature extraction

scheme not only helps in reducing dimensionality of the feature space but also helps in

eliminating contentious issues such as the ones associated with labeling of symmetric

atoms in the molecule. The feature vector is converted to a proximity matrix, and is used

as an input to the relational fuzzy clustering (FRC) algorithm with very promising results.

Results are also validated using several cluster validity measures from literature. Another

application of fuzzy clustering considered here is image segmentation. Image analysis on

extremely noisy images is carried out as a precursor to the development of an automated

real time condition state monitoring system for underground pipelines. A two-stage FCM

with intelligent feature selection is implemented as the segmentation procedure and

results on a test image are presented. A conceptual framework for automated condition

state assessment is also developed.
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CHAPTER 1

INTRODUCTION

1.1 Purpose of Research

Most of the traditional tools for formal modeling, reasoning and computing are crisp and

deterministic in nature and are based on the conventional two-valued logic. However,

most real world modeling and reasoning problems hardly present facts and events in such

a dichotomous manner. Imprecision, uncertainty, inconsistency, vagueness, and

incomplete knowledge are characteristics of a real world situation and proponents of

many valued logics [1]-[3] have long argued the inefficacy of conventional dual logic to

completely capture the essence of real situations. This fueled the need for alternative

logic and truth representation systems of which fuzzy logic is one. Since its inception

nearly 40 years ago, the theory of fuzzy sets and fuzzy logic has advanced in a multitude

of ways, now encompassing many disciplines such as computer science and engineering,

linguistics, social sciences, control engineering, artificial intelligence, decision theory and

others. Specific applications of fuzzy set theory include expert systems and fuzzy

controls [4], pattern recognition and classification [5]-[7], decision making [8], soft and

granular computing [9], operations research [10], and approximate reasoning [11], [12].

This research focuses on one of the above mentioned applications — fuzzy clustering, and

discusses related research issues, identifies a few fundamental problems, proposes

solutions and methodologies. This work also demonstrates the applicability of fuzzy

methodologies to real life classification problems.

1
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Object and pattern classification is integral to most engineering tasks.

Engineering applications in the past couple of decades have shown a marked tendency to

be more knowledge driven with an emphasis on intelligent systems. Applications are

widespread ranging from operations research, intelligent man-machine systems,

automated manufacturing processes, quality control and diagnosis. Fuzzy logic based

control mechanisms have also been used to design products such as household washing

machines and vehicle suspension systems. Specific uses of fuzzy clustering have been

proposed in improving acoustic properties of a room [13] and in construction simulation

[14], among others. In the remainder of this section, the basics of the fuzzy set theory are

presented followed by a brief discussion on fuzzy classification.

1.2 The Theory of Fuzzy Sets

Maiden publications in fuzzy set theory by Zadeh [15], and Goguen [16], [17] can be

seen as attempts to generalize the classical set theory to include infinite levels of truth

values — a concept known as partial truth. However, subsequent research and theoretical

development has tried to establish fuzzy set theory as a formal theory independent of

classical set theory [18], [19]. Fuzzy set theory states that an object belongs to a fuzzy

set (as opposed to a classical set) with a grade of membership which has a value in the

interval [0, 1]; a membership closer to zero would indicate a lower level of belongingness

to the set as compared to a membership value closer to one. This apparently simple

concept is more appropriate for capturing semantic, linguistic and real world vagueness

than the classical concept of a set. Sugeno [20] defines fuzziness in a radically different

way; a grade of fuzziness as proposed by Sugeno defines the degree of certainty of an
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object belonging to a non-fuzzy subset. A piece of art could belong to a fuzzy subset, old

(old is a vague predicate) with a certain degree of membership; at the same time it could

belong to a non-fuzzy subset, genuine (a crisp concept) with a certain degree of certainty

[19]. Although fuzzy logic could incorporate the two concepts of fuzziness because both

the concepts deal with approximate rather than precise reasoning, the concept of fuzzy

subsets of the universal set is what constitutes the theory of fuzzy sets.

Real world situations are very often vague and uncertain in a number of ways, of

which stochastic vagueness is one aspect. Stochastic vagueness concerns the uncertainty

about the future state of a system due to a lack of information and this type of vagueness

has long been handled by probability theory and statistics [21]. In probability theory the

events (elements of sets) and the statements concerning events are assumed to be well-

defined. Fuzzy set theory attempts to handle the uncertainty and vagueness involved in

the description of the semantic meanings of events, phenomena, and statements

themselves and this vagueness of description is what best describes the word fuzziness.

This is a way unifies the conceptually different definitions proposed by Zadeh and

Sugeno. The comparison between probability theory and fuzzy set theory is inevitable

because they are both concerned with modeling some type of uncertainty and both use the

[0, 1] interval for their measures as the range of their respective functions. However, the

similarity ends there, and it is important to note that they are two fundamentally different

concepts. Zimmerman [22] states that comparison between the two is difficult because

fuzzy set theory is not a uniquely-defined mathematical structure, such as Boolean

algebra or dual logic, but is rather a very general family of theories and if anything, fuzzy

set theory could be compared with other existing theories of multi-valued logic. Fuzzy
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membership values indicate a degree of belongingness of an object to a fuzzy set while

probability degrees denote a stochastic chance that an object might belong to a particular

probabilistic set. Other approaches to modeling uncertainty and vagueness include

Dempster-Shafer Theory of Evidence [23], Rough Sets [24], Consonant Belief Theory

[25], and Possibility Theory, [19], [26] among others. For a discussion on the

fundamental differences between probability theory and fuzzy set theory, the reader is

referred to [27] and [28].

1.3 Fuzzy Clustering

Classification and pattern recognition are fields where fuzzy set theory is widely used.

Classification deals with assigning objects to different classes on the premise that similar

objects would be classified into the same class, and dissimilar objects into different

classes. If the classes are not predefined, the process is known as "cluster analysis" or

simply "clustering" and the classes are themselves called clusters. Other types of pattern

classification include statistical classification techniques such as singular value

decomposition, feature and component analysis, neural network based classification etc.

A large part of this research deals with a wide range of issues involved in fuzzy clustering

such as feature selection, clustering algorithms, robust clustering, and cluster validation.

The most common application of clustering methods is to partition a data-set into

clusters or classes, where similar data are assigned to the same cluster and dissimilar data

belong to different clusters. In real applications there is very often no sharp boundary

between clusters so that fuzzy clustering is better suited for such classifications.

Membership degrees between zero and one are used in fuzzy clustering instead of crisp
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assignments of the data to clusters. Data may be broadly divided into two categories —

object data and relational data; most image processing and pattern recognition

applications make use of object data, where individual data entities are explicitly

expressed in terms of their features. In relational data on the other hand, the relationship

(in most cases, a similarity or a proximity relation) between the data entities is known

without the explicit knowledge of the constitutive feature set. Relational clustering finds

use in social sciences, taxonomy, and computational chemistry among others. Cluster

analysis address three basic areas - clustering tendency, the art and science of clustering

and lastly, cluster validity. Given an unlabeled data-set, clustering tendency is

determining whether or not to look for substructure. Once it is decided that the data-set

has a structure (indicated by a possible presence of natural groups), a model needs to be

chosen whose measure of mathematical similarity may capture the structure in the data.

Different models and algorithms produce different partitions of the data and so choosing

a relevant model is very important. Finally, once clusters are obtained, they need to be

validated — the best clustering solution has to be picked.

All clustering schemes can be broadly classified into two classes — hierarchical

and partitional. Perhaps the only instance of a fuzzy hierarchical clustering technique is

the approach presented in [29]; otherwise all fuzzy clustering techniques are partitional in

nature and almost all of them are based on the fuzzy variant of the K-Means [30]

algorithm, called the Fuzzy c-Means [7]. Fuzzy c-Means (FCM) produces a fuzzy

partition of the data by optimizing (minimizing) an objective function similar to the K-

Means least squares error criterion. Unlike K-Means, where every data point belongs to

exactly one cluster, in a fuzzy partition all data points belong to all the clusters with
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varying degrees of membership in [0, 1]. An alternative optimization scheme is used to

implement FCM, which minimizes a fuzzy extension of the least squares error criteria. A

cluster in FCM is defined in terms of a prototype, which in most cases is a cluster center

having the same dimensions as the data-set. It has been shown that FCM converges to a

local minima solution. The terminology, to be followed later on in this document, is

stated here.

n = total number of feature vectors or data points,

c = number of clusters to be detected,

The functional to be minimized, as it follows from the least squares criterion, is

defined as

where m is the weighting exponent known as the fuzzifier, and dlk is the distance of data

point xk from the cluster prototype v1. It can be the Euclidean distance, dIk2 = I ixk — vil 1 2 or
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any other distance norm. The functional J. is minimized by alternating between U and v,

by initializing either one of them initially. The alternating optimization equations are

There are several shortcomings in the FCM scheme. Being a hill descent

algorithm, it only guarantees a local minimum. This is somewhat mitigated by

performing FCM not just once but many times with different initializations of U (or v)

which increases the chances of finding the global minima at least once. However, with a

reasonably good initialization, the local minima partition is also the global minima

solution. Fitting data using the minimization of a least squares criterion has been well-

known to be affected drastically by the presence of noise and outliers in the data. As a

reason, FCM and many of its derivatives are not robust against outliers. A lot of effort

has gone into deriving robust versions of FCM, and non-FCM-based robust fuzzy

clustering techniques. These will be discussed in later chapters, along with their

drawbacks and proposed remedies.
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1.4 Organization of the Dissertation

The dissertation is organized into six chapters based on content and information flow. It

deals primarily with the development of theories and methods for robust fuzzy clustering

and cluster validation. Also explored are related topics such as feature extraction and

image segmentation with emphasis on specific applications.

Attempts made to robustify FCM for use with noisy data are discussed in brief in

Chapter 2. Two novel robust fuzzy clustering schemes are proposed in this chapter. The

first scheme introduces the concept of a mega-cluster and the resulting clustering scheme,

called the fuzzy mega-clustering, is described in detail. Chapter 2 also details another

robust clustering scheme, which achieves robustness by implementing the Least Trimmed

Squares Estimator instead of FCM's least squares estimator.

Another issue closely related to clustering is cluster validity. It involves

quantifying the goodness of a partition so that in the absence of a priori information

about the number of clusters, various partitions (partitions for varying number of clusters)

could be compared and ranked according to their relative goodness. The purpose of any

clustering application is to uncover natural groups or natural substructure in data;

however, FCM or all of its variants implicitly assume that the number of clusters is

known beforehand. The literature in the field of cluster validity is reviewed and a novel

cluster validity technique is proposed in Chapter 3.

At the core of any clustering problem is the issue of proper and judicious feature

selection. Features are attributes based on which objects (data points in classification or

patterns in pattern recognition) can be compared and thenceforth clustered. It is of

utmost importance that correct features are selected and compared. At the raw level, the
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number of features in a data-set is the same as its dimensionality. Clustering algorithms

are known to deteriorate in performance if the dimensionality is high (almost comparable

to the number of objects to be classified), a phenomenon known as the curse of

dimensionality. A judicious process of feature selection involves dimensionality

reduction and/or feature recombination. An application-dependent novel feature

selection and dimensionality reduction procedure is described in Chapter 4, with a focus

on relational clustering in computational chemistry.

Chapter 5 focuses on an image processing application where fuzzy clustering is

used as an image segmentation tool. The application constituted a major part of a larger

project — designing a framework for automatic condition state assessment for

underground pipelines. Video inspection data was converted into individual image

frames and analyzed, to locate damage to the interior surface of pipelines and the detailed

defect information was used to construct a guideline that can allow monitoring agencies

to accurately rate the condition state of the pipeline on a 4-point rating scale.

Chapter 6 presents the overall summary of the dissertation and the direction of

future research in cluster analysis and discusses possibility of new applications.



CHAPTER 2

ROBUST FUZZY CLUSTERING

2.1 Introduction

Most real world data-sets are noisy. Noisy data has to be separated from good data in

order to achieve meaningful clustering, but since this is impossible in most cases,

algorithms have been developed that are robust against noise to the extent that clustering

results are acceptable. In image processing, noise due to statistical distribution of the

measuring/scanning/recording instrument is usually of no concern; however, completely

arbitrary noise points that do not belong to the pattern or class being searched for are of

real significance and have to be addressed. A few methods have been proposed,

• Identify such noisy points and remove them before applying the clustering algorithm
to the data [31]. In many cases it may be extremely difficult or impossible to do.

• In the c-Means type of algorithms, each feature point must be assigned to one of the
clusters. Hence, even noisy points must be allotted to some good cluster(s). Jolion
and Rosenfeld [32] proposed a method wherein each feature point is given a weight
proportional to the density of points in its vicinity. This approach works well when
there is a uniformly-distributed background noise.

• Weiss [33] proposed separating the data of interest from random noise by utilizing the
principle of maximum likelihood. This technique works well for fitting a single line
to good data points amongst a noisy background, but cannot be extended to multiple
clusters.

Apart from the approaches listed above, a large amount of research has been

conducted over the years to robustify FCM and its variants by modifying the objective

functional given in Equation (1.1) and/or relaxing the equality conditions in Equation

(1.2). A few noteworthy and relevant approaches are listed here,

10
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1. Noise Clustering (NC). Dave [34] introduced the concept of Noise Cluster. The

noise cluster is of no physical significance, but is a theoretical concept which states that

noisy data points have a high degree of membership in the noise cluster with an

accompanying low membership in the true clusters. The algorithm now detects c+1

clusters, comprising of c good clusters with the (c+1) th cluster being the noise cluster.

Dave proposed a scheme based on the interpoint distances for the estimation of a constant

noise distance - interpoint distances reflect the structural relationship between the feature

points. This definition is shown to relax the equality constraint of Equation (1.2). The

noise clustering methodology is described briefly in the next section.

2. Generalized Noise Clustering (G-NC). In NC the noise cluster is defined such that

all the points are equidistant from the noise prototype. It was later shown [35] that all

points need not have the same distance from the noise prototype, i.e. the noise distance

need not necessarily be a constant. Hence, the NC model was generalized by introducing

a varying noise distance.

3. Weighted Feature Point Approach. The FCM objective functional was modified by

Keller [36] with a weighting factor added to patterns in order to detect outliers. The aim

of this approach is to assign small weighting factors to patterns fitting well to at least one

of the clusters, while the outliers were assigned a large weight. Unlike NC or G-NC, this

approach does not define a noise class; instead outliers are identified by weights assigned

to them.

4. Robust Estimator-based Clustering Techniques. The quadratic loss function used

as a measure of dissimilarity in FCM is the reason why FCM-based clustering procedures

are highly sensitive to noise and outliers. The reason for using a quadratic loss function
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is its mathematical simplicity and low computational costs. Several robust loss functions

have been proposed in the literature [37], [38]. The optimal cluster center was argued to

be the weighted median (instead of the weighted mean as in FCM) by Kersten [39]. The

Fuzzy c-Medians (FCMED) has the Li-norm-based objective function, and was shown to

be robust [39]. It is also claimed that the alternative optimization (AO) procedure in this

case is more intuitive than in FCM. Vapnik's c-insensitive estimator was used to

formulate a robust FCM-based scheme called the c-insensitive FCM (EFCM) [40].

Several robust techniques have been proposed in the field of regression statistics,

such as L1 regression, regression based on M-estimators, generalized M-estimators, R-

estimators, and L-estimators [38]. These are all low breakdown regression estimators

which severely restricts their practicability. Perhaps the first high breakdown (-50%

noise) regression estimator was the Repeated-Median estimator [41], following which

Rousseeuw [42] introduced his Least Median of Squares (LMS) estimator. Rousseeuw

[42], [43] also proposed the Least Trimmed Squares (LTS) estimator which has the

standard 0(n -1/2) asymptotics and is more efficient than the LMS estimator. Both LMS

and LTS belong to a family of so-called S-estimators.

Perhaps the only attempt to incorporate high breakdown robust estimation

techniques with prototype-based partitioning algorithms was made by Kim et al. [44].

The FCM algorithm is reformulated with an LTS functional and an FCM-AO type

partitioning algorithm, called the Fuzzy Trimmed c-Prototype (FTCP), is proposed.

Shown to be a robust partitional scheme, FTCP however, does not utilize membership

information to do the LTS trimming; it is dependent on the data being well behaved, and
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like all FCM based schemes, the goodness of the results are heavily contingent on a good

initialization. It does not guarantee an exact fuzzy least trimmed squares solution either.

5. Other Robust Clustering Techniques. The Least Biased Fuzzy Clustering (LBFC)

algorithm [45] partitions the data-set by maximizing the total fuzzy entropy of each

cluster, which in turn is a function of clustering memberships. The scaled LBFC

clustering memberships are shown to be related to Possibilistic c-Means (PCM) [46], [47]

typicalities and the resulting LBFC algorithm is robust against outliers. The Fuzzy

Possibilistic c-Means (FPCM) algorithm [48] has an optimization functional which is a

combination of probabilistic (FCM) and possibilistic (PCM) components. The algorithm

uses two types of memberships, a probabilistic FCM type membership that measures the

degree of sharing of a datum among the different clusters, and another possibilistic

membership that provides information on intra-cluster datum relationships. For an

outlier, FPCM generates low-valued typicalities, and like PCM, is a noise resistant

procedure. The Credibilistic Fuzzy c-Means (CFCM) algorithm [49] uses datum

credibility as the measure to delineate outliers from good datum in the data-set. As

opposed to typicality in PCM, credibility of a datum represents its typicality to the entire

data-set and not to any particular cluster. An outlier is shown to have a low credibility

and, hence, is atypical to the data-set.

The aforementioned techniques and algorithms have been shown to be effective in

clustering noisy data but they are plagued with problems of their own. The clustering

results of NC and G-NC can be sensitive to variations in noise distance. Strictly speaking

PCM is not a clustering algorithm but rather a mode-seeking algorithm [50], which in

disguise makes it tolerant of noise. One needs to have a reasonably good estimate of
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cluster variances to start with, which might not be possible in all cases. The weighted

feature point approach also depends on use- specified quantities like total datum weights

and a weighting exponent in addition to the fuzzifier. The least biased fuzzy clustering

algorithm suffers from the same anomaly as PCM; it often generates coincident clusters

since the objective functional is linearly separable. The centroids generated by FPCM are

often seriously affected by outliers as would be with FCM. The concept of data

credibility, although appealing, is fundamentally plagued with the logic of total

credibility — according to the current formulation, while outliers have zero credibility, no

datum can have full credibility (unity). The techniques based on robust statistics are not

intuitive, the relaxation functions need to be chosen appropriately and carefully, and the

technique itself is often hard to interpret. Moreover, all FCM-based methods, robust or

not, suffer from the dependency on proper initialization.

2.2 Fuzzy Mega-Clustering

2.2.1 Noise Clustering

The proposed mega-clustering procedure shares a lot of similarity with noise clustering

[34], and hence, the noise clustering (NC) algorithm is described in this subsection. The

methodology relaxes the unity constraint of Equation (1.2) by defining a conceptual class

called the noise cluster which is identified by a noise prototype. The noise prototype is a

universal entity such that it is always at the same distance from every point in the data-

set. In order to detect c true clusters, the noise cluster is defined as the (c+l) th cluster.

The noise prototype v(c+i) is such that the distance d(c+1)k, of point Lk from v(c+1), is



In other words, the FCM functional of Equation (1.1) is modified to include the

definition of a special class called the noise cluster. The NC functional is

The procedure is similar to FCM but instead of searching for c clusters, the

algorithm searches for c+1 clusters. A scheme based on average interpoint distances was

also proposed in [34] for the prediction of the noise distance 6. Interpoint distances

reflect the structural relationship among the patterns in the data-set. A simplified

statistical average shown in Equation (2.3) is used to calculate 6.

where 1 is called the multiplier, and is employed as a suitable scaling factor. The

algorithm is sensitive to the value of the noise distance (hence, the multiplier A). If 6 is

chosen to be very small, then most of the patterns in the data-set will get classified as

noise points (outliers), while if 6 is large, a majority of the patterns will be classified into

clusters other than the noise cluster [34]. A proper selection of 6 will ensure that only the

outliers are classified into the conceptual noise cluster. It was also shown that the

algorithm produces remarkably good results for data-sets with spherical clusters when A,

is chosen between 0.05 and 0.5. For elongated clusters, a range between 0.005 and 0.5

was shown to suffice. In the next subsection, the concept of a fuzzy mega-cluster is

presented in detail and parallels are drawn between the noise cluster and the fuzzy mega-

cluster. In a subsequent section, results of clustering of noisy data-sets using NC are

presented for the sake of comparison with the proposed mega-clustering algorithm.
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2.2.2 The Concept of a Fuzzy Mega-Cluster

FCM partitions the data-set into overlapping clusters but in general works well with

compact, well-separated and spherical clusters. Outliers in the data influence the location

of the prototypes; as a result, the centroids are pulled towards the outlier(s). At this point,

a distinction is made between true outliers and non-conforming non-outliers (which in the

course of the dissertation will be referred to as non-outliers). While the former data

vectors are noise and do not belong to any cluster in the data, non-outliers are data

vectors that neither belong to any cluster in the data nor can be considered noise. In other

words, non-outliers can be considered to be equally likely to belong to any cluster in the

data-set and because of this reason, such data vectors can not be assigned to any one

particular cluster. The difference is clearly indicated in Figure 2.1, and any clustering

algorithm should have the power to treat such entities differently. Unfortunately FCM

and almost all robust clustering algorithms (except NC) fail to differentiate between true

outliers and non-outliers; FCM will assign memberships of (0.5, 0.5) to both L' and L".

Figure 2.1 True outliers and non-conforming non-outliers, L' is a true outlier, equally
unlikely to belong to either cluster; L" is a non-outlier, equally likely to lie in either
cluster.
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A cluster called the mega-cluster is defined that views data vectors differently

depending on how they belong to any good cluster in the data. Suppose, in a two cluster

data-set, the datum L is a good representative of cluster I. In such a case, the membership

of L in cluster I is the largest, followed by its membership in the mega cluster and it has

the smallest membership in cluster II. On the other hand, if L' is a true outlier, its

membership in the mega cluster is the largest, followed by relatively small memberships

in the two good clusters I and II. This treatment is fundamentally different from the

concepts of noise cluster and credibility of a data point vis-à-vis the entire data-set. With

the noise cluster, the membership of L is the largest in cluster I, followed by its

membership in cluster II, and it has a comparatively small membership in the noise

cluster. However, like the mega-cluster, L' has a high degree of membership in the noise

cluster, followed by low memberships in the two clusters. The concept of credibility as

opposed to membership is defined as the degree of representativeness of a data point to

the entire data-set and, as per definition, noise points have low data credibility and good

data points have high credibility. If L" is a non-outlier, its membership in the mega-

cluster is the highest followed by almost equal memberships in the two clusters;

moreover, if it is a symmetrically located non-outlier (as is L" in Figure 2.1), the sum of

its memberships in the two clusters would equal its membership in the mega-cluster.

This treatment allows for the subjective fact that such a non-outlier is equally likely to be

considered part of either of the clusters but most likely considered noise.

The mega-cluster can be thought of as a super-group encompassing the entire

data-set and views the data points differently depending on their belongingness in true

clusters of the data. A further proposition is that a mega-cluster membership is
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representative of credibility and noise memberships (as well as true FCM memberships).

A high mega-cluster membership corresponds to a high noise membership and low

credibility; likewise, a low mega-cluster membership corresponds to a low noise

membership and a high credibility (and thus a high true membership) of the data point in

one of the clusters. This cluster can not be detected by the standard FCM formulation. It

is further assumed that while all data points have varying degrees of membership in the

mega-cluster, they are all equally representative of the mega-cluster in the sense that

distance of the data points from the mega-cluster is zero (a concept similar to a constant

noise distance of NC). Conceptually for the purposes of prototype calculations, the

mega-cluster can be considered to be composed of n-point prototypes, each located

exactly at the n data points. Furthermore, the membership of a datum summed over the

true clusters and the mega-cluster is unity, hence, the FCM update equations can be used

without any change of form.

2.2.3 The Proposed Mega-Clustering Algorithm

The aim here is to reduce the sensitivity of the FCM formulation towards noise by scaling

down the memberships produced by FCM, in an inverse proportion to the cluster-datum

distance. To speed up the convergence of FCM, two membership scaling procedures

were proposed viz., Rival Checked-FCM [51], and the Suppressed-FCM [52]. In every

iteration of the FCM-AO scheme and for each datum, the two algorithms reward the

largest membership by scaling it up by a constant factor. Rival Checked-FCM (RCFCM)

then suppresses the second highest membership, while Suppressed-FCM (SCFM)

suppresses all other memberships by a corresponding factor. Because of the scaling up,

the two algorithms were found to be highly sensitive to noise. In experiments with
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RDFCM it is seen that (in almost all cases) it does not converge to a stable solution

because the scaling disturbs the sequence of memberships (as a result there is much

oscillation between successive iterations). In SFCM, if xj has the maximum membership

in cluster p, denoted by up , then for a scaling factor a, the following operations are

performed

The magnification in Equation (2.4a) is performed on the highest membership of

j, and the suppression in Equation (2.4b) is done on the rest of the memberships (other

than the highest one). For 0.1 < a < 0.3, where SCFM behaves more like Hard c-Means

(HCM), it is found that the algorithm generates singleton noise clusters and hence, with

appropriate modifications can be used as an outlier diagnostic tool.

The proposed algorithm is based on the following logic — what essentially

distinguishes a good data point from an outlier is their distance (dissimilarity) from a

representative prototype. This difference becomes muddled in the presence of noise in

the data because of the centroid-pulling effect of the outliers. Hence, for noisy data, if

one can provide a mechanism which would accentuate this difference, one could

conceptually reproduce results similar to FCM on a noise-free data. The proposed

algorithm tries to underline this difference between good points and outliers by scaling

down membership values of a data point across all clusters, in an inverse proportion to its

distance from the cluster prototypes. Hence, the effective membership of all points in

true classes is less than one. This scaling down is more prominent for outliers which
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successively undergo a drastic reduction in memberships, which relates to a

corresponding increase of its membership in the conceptual mega-cluster.

In the proposed algorithm (henceforth referred to as MC), the memberships as

calculated by FCM are then modified depending on the datum-cluster center distance.

For unusually large distances, the scaling is more intense and is achieved by scaling with

respect to the maximum distance in the data-set, and is shown in Equation (2.5). This

scaling repeatedly on the outliers reduces their memberships rapidly as compared to

scaling done on good datum. For reasonable datum-cluster center distances, the scaling

is moderate, and is done with respect to the sum of distances of the datum from all the c

cluster centers as in Equation (2.6).

This modification is introduced in the FCM-AO after the completion of FCM

membership update of Equation (1.3). An if-else condition (based on a fraction p of the

maximum distance, dm ) is used to decide whether to use a moderate or an intense

scaling, and the condition checks how unusually large a particular datum-cluster center

distance dij is, as compared to dmax. The scaling is comparable in content to the

credibility of a datum j as proposed by [49], and given by



As with credibility, fi = 0 reduces the formulation to FCM and at fi = 1, the

formulation serves as a complete noise reduction algorithm. At levels between /3 = 1 and

/3 = 0, the algorithm tries to balance between assigning a low membership to true outliers

and assigning comparatively higher memberships to non-outliers, such as L" in Figure

2.1. If it is known that the data is noise free, a choice of /3 = 0 would reproduce FCM

results known to be fairly accurate in the absence of noise. In the presence of noise and

general outliers, a judicious choice of /3 needs to be made; as inferred from the

experiments presented in the next section, it is seen that a value of b = 1 generates good

partitions in noisy data-sets. This scaling down of memberships relaxes the unity

constraint in Equation (1.2); the resultant constraint is an inequality condition, and the

membership of a datum j in the mega-cluster is given by
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In the next section, another novel robust clustering algorithm based on the least trimmed

squares estimator is presented. Results of the MC algorithm on test data-sets are

presented later.

2.3 Fuzzy Least Trimmed Squares Clustering

2.3.1 The Least Trimmed Squares Estimator

The Least Squares (LS) regression model fits the best regression line by minimizing the

squared residuals of all the random observations from an arbitrarily-fitted line. The best

fit is the arbitrary fit that results in the minimum sum of squared residuals. In case one or

more explanatory variables are recorded erroneously, the corresponding observations

might turn into leverage points and such points tend to pull the LS fit line towards them.

The resultant fit in the presence of noisy observations is a bad fit and is one of the biggest

criticisms of the LS regression model. The Least Trimmed Squares (LTS) [42] model

rectifies this anomaly by minimizing the sum of the squares of the smallest h of the total

n residuals. The estimator achieves robustness by trimming the (n - h) observations, the

ones with the large residuals. The functional is of the form,

are ordered squared residuals. The minimization of the sum of

trimmed squared residuals results in an estimation of the parameter set 0, which in the

case of linear fit estimation fitting is the slope and the set of y-intercepts. The LTS

estimator breaks down for h < n/2 + 1; in other words the LTS estimator can obtain a
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good estimate of 0 from a noisy data-set with as much as 50% contamination. This high

breakdown property of the LTS estimator makes it potentially very attractive.

The motivation for using the LTS criterion, however, does not provide any clue to

its implementation, which involves determination of which cases to trim. One of the few

currently-known exact algorithms for obtaining the LTS fit is a combinatorial one which

involves fitting regression to every subset of size h of the data-set and subsequently

finding the minimal residual sum of squares. This approach is practical only if both the

data-set and the amount of trimming are small. The basic resampling scheme [42], [53]

is a popular method of performing LTS fit. Here a combinatorial scheme is used on

elemental subsets of size p (p h) where, p is the total number of explanatory variables

in the model. This approach is popular because of its manageable combinatorics - the

number of possible elemental subsets is many orders of magnitude less than the number

of possible trimmed sets. However, the basic resampling scheme can be applied to

multiple regression models (p > 1) only; the fit obtained is crude with a high degree of

approximation (depending on the number of elemental subsets considered), and does not

in general yield the exact LTS solution.

2.3.2 The Feasible Solution Algorithm

The exact LTS solution is the ordinary LS fit to some subset of size h of the data which

cannot be improved by any single pairwise exchange of one observation in the subset for

one outside. This known form of the exact solution and the resulting necessary condition

forms the basis of the simulated annealing approach [54] and the feasible solution

algorithm [55]. Both are probabilistic schemes with guaranteed convergence to a global

optimum and, hence, are an improvement over the methods discussed in the previous
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sections. In simulated annealing, n — h cases are trimmed at random and a trial solution

obtained. Then observations in the retained set (of size h) are swapped, one at a time,

with observations in the trimmed set, and a swap that leads to a reduction in the residual

sum of squares is considered favorable. The retained set is then modified to include the

favorable observation. The scheme requires tuning constants like most robust estimation

techniques and hence, its performance depends on the choice of these parameters; a poor

choice might even force the algorithm to terminate before an optimum is found [55].

The feasible solution algorithm defines a feasible solution as the local optimum

solution obtained by a refinement (pairwise swapping) process from a randomly-picked

starting subset of cardinality h. From a starting subset, observations are swapped

pairwise with the trimmed subset and the starting subset is modified to include the

observation (in the trimmed subset) that produces the largest reduction in the residual

sum of squares in the retained set. This modified retained subset is then subjected to

further refinement until no pairwise swap results in a reduction of the residual sum of

squares. The retained subset is called a feasible solution and a single application of the

refinement process from a starting subset will always lead to some feasible solution.

However, this might not be the true LTS fit. To obtain the exact solution, the global

optima fit in this case, the refinement process needs to be repeated using distinct starting

subsets and following each to its feasible solution. The exact solution is the feasible

solution with the lowest residual sum of squares. Exhaustive enumeration involves the

application of the refinement process to all the possible starting subsets in the data-set.

For a data-set of size n, with n — h trimming, there are "Ch possible starting subsets. For
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large n and h, this is a considerable number to account for and, hence, exhaustive

enumeration is only possible for small data-sets with a small amount of noise.

Most feasible solutions can be reached from more than one starting subset. In fact

the most frequent feasible solution is almost always also the exact LTS solution, but there

are cases reported in [55] where this is not true. The domain of attraction of a particular

feasible solution is the set of all starting subsets of size h which terminate in that solution.

Let I be a feasible solution and it be the proportion of all starting subsets that terminate in

I. The probability of finding the global optimum solution from T starting subsets is given

by

In other words, if I is an exact LTS solution but is infrequent (low 7r), one would

require a large number of starting subsets (high 7) to locate I with high confidence. For

all practical purposes however, values of T in the low dozens are enough to guarantee

finding a global optima. Another value of interest is the average number of swaps made

from a random starting point within the domain of attraction of 1; denoting this by E(P),

the expected number of intermediate LS fits made en route to the feasible solution is

given by

In the next subsection, a fuzzy clustering scheme based on the feasible solution

algorithm is presented. LTS based regression studies do not address the issue of how to

choose an appropriate trimming ratio; in fact h = n/2 +1 may be a good choice for line

fitting, but fixed amount of trimming is not desirable in clustering [44]. This is the

motivation for the development of a methodology along the lines of the unsupervised
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FTCP (UFTCP) [44], using cluster validity techniques to justify picking an appropriate

value of h.

2.3.3 FS-FLTS — When Amount of Contamination is Known

Clustering differs from regression analysis in a few fundamental aspects — (a) regression

groups the data together in one cohesive group by finding the best fit line while clustering

finds multiple clusters in data, (b) the estimation parameters in clustering are most often

cluster mean and cluster shape characteristics (such as spread and deviation from the

mean), (c) there are no explanatory and response variables in clustering, the data-set for

clustering in d-dimensions is a set of n observations with d independent features, and (d)

clustering lends itself to well-established iterative algorithmic schemes while there are no

known iterative schemes to find the best fit LS fit. In spite of these differences, K-

means-based clustering is essentially an implementation of the LS regression scheme on a

miLed data-set, locating multiple best fit shapes in the data. One can similarly capitalize

on the known form of the exact solution of the LTS approach and state the following —

the exact LTS clustering solution is the K-means partition performed on some subset of

size h of the data which cannot be improved further by any single pairwise exchange of

one data vector in the set for one outside. The issue now is not one of reformulating the

objective functional to incorporate a trimming function, but to find the most suitable

subset of size h on which to perform a K-means (or related) clustering.

An FCM-based clustering scheme with the feasible solution algorithm is proposed

here. The determination of it requires an exhaustive enumeration of the entire subset

space of the data-set and since an exhaustive enumeration is rarely possible, we present a

novel method that automatically blocks any further swapping and clustering based on the
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scheme is a two-phase one. The first phase starts with randomly dividing the data-set

into two subsets, X0 of size h and Yo of size n — h. Let C be the retained subset and Y, the

trimmed subset. The subset X0 is clustered using FCM and the objective functional

value, as defined in Equation (1.1), is stored as Jo. Now, one data vector x i in the subset

C0 is randomly exchanged for another vector xi in Yo and the modified subset labeled is

as X. This modified subset is clustered using FCM and the objective functional value is

stored as A Jii. The case number of the swap is also noted. The change in the objective

functional is calculated as AJ ii = Jo - J. The subset Xi  is restored back to the starting set

Bo and the process repeated for all possible random but distinct combinations of (i,j). If

all AJii  are negative, then the starting subset Bo is the feasible solution. Otherwise, the

intermediate modified set Xij that results in the largest positive value of Mij is the feasible

solution obtained from the starting subset Bo and the corresponding swap case number is

stored in a result matrix.

This process of refinement of a starting subset is repeated for a pre-specified

number of times. Like the randomized Hough transform [56] matrix, a trend can be

observed here, leading to the theory that a particular feasible solution requires an almost

equal number of case swaps starting from a randomly-selected set Bo. In other words, if

two starting subsets result in the same feasible solution I, then the refinement process

would be characterized by an almost equal number of case swaps, k, in both cases. In the

next phase of the refinement process, the swapping is stopped after the number of case

swaps has exceeded the largest value of case swaps as calculated from the result matrix.

This is done to keep the resource-intensive FCM calculations to a minimum. This phase
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is also terminated after a fixed number of random starts from subsets C and Y. The

number of starting subsets required for the two phases is heavily dependent on the

typicality of the data-set in question; however, some general guidelines are proposed in

the next section. The feasible solution algorithm for the implementation of fuzzy least

trimmed squares clustering (this is referred to as FS-FLTS) is given below,
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The exact solution in phases I and II should be the same feasible solution; this

provides the motivation to skip phase I for large data-sets by assuming an arbitrary value

for k'. A case study is presented later in this chapter where only phase II is implemented

and satisfactory results are obtained.

2.3.4 FS-FLTS — When Amount of Contamination is Unknown

Until now, it is assumed that h is constant and known a priori. However, it is practically

impossible to ascertain the amount of contamination in a data-set before subjecting it to

clustering. An approach similar to the one in [44] is presented here, wherein the value of

h is varied and the optimum value is picked based on a suitable validity criterion. In this

case the Xie-Beni compactness index [57] is used as the validity criterion. The retention

ratio is defined as

and in this implementation, H is varied from 1 until (n/2 +1)/n, in steps of DH. For every

H, the proposed FS-FLTS scheme is implemented. The compactness index is then

calculated for the exact solution for all the values of H as
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where Ji is the value of the objective functional associated with the exact solution for the

particular value of h. Since all refinement calculations are based on comparing the

objective functional value of the modified subset X IS with that of the starting subset Bo,

calculation of S(H) does not involve any additional computation. The value of the

objective functional for the exact solution for a particular value of h is given by

where Pik, and dik follow the usual FCM definitions. It is presumed that the number of

good clusters in the data-set, c, is known beforehand and is a constant throughout the

unsupervised implementation. With increasing H, it is likely that the resultant clusters

would get more and more compact as more cases are trimmed off and hence, S(H) will

have a monotonically decreasing tendency with H. For this reason, the incremental

change in S(H) as given by Equation(2.5) is calculated as,

The feasible solution fuzzy clustering algorithm for unknown h (for brevity, it is referred

Repeat
Run the FS-FLTS algorithm with T number of starting subsets;
From the feasible solutions, locate the exact solution;
For the exact solution calculate SH as in (2.31);
If (I - I 1)

Calculate s(H) from (2.33);
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2.4 Simulation and Results

The three data-sets presented in [48] called X11, XA12 and XBl4, were analyzed with the

MC algorithm. X11 is a noise-free data-set consisting of 11 two-dimensional vectors

while zA 12 and XB14 are noisy versions of X11. A comparison of FCM, FPCM and

is presented in [49]. The performance of FCM and NC

was compared with the MC algorithm on the three data-sets and is presented here. The

vector L6 is a non-outlier with equal probability of belonging to the two underlying

clusters in X11. The two well-defined clusters lie on either side of L6. The vectors z A12

) are true outliers. In the implementation, c = 2,

m = 2, and c = 0.001 are used for both FCM and the MC algorithm (for fl = 1).

Figure 2.2 Centroids generated by the MC algorithm (e-MC), and FCM (x-FCM) on the
(a) zA12 and, (b) XB14 data-set.
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For a prototype initialization of v1= x2-10 -3 and v2 = xii-10-3 in the case of CA  12,

it was found that the MC algorithm performs better than FCM; the cluster centers

generated are shown in Figure 2.2(a). The data vectors are shown by solid sqPares, FCM

centroids are depicted by crosses, and the MC centroids by small triangles. In fact, the

results are comparable to the ones generated by CFCM and certainly better than FPCM

(see Figure 2. of [49]). FCM also fails to distinguish between L6 and xA12. The proposed

algorithm produced a higher membership for L6 compared to 42 in the two clusters. For

the data-set XB 14 shown in Figure 2.2(b), the results provide a striking contrast — while

FCM groups the three outliers in one cluster and the rest of the data-set into another, the

MC algorithm finds the two real clusters. This is comparable to what FCM would

generate on the noise-free data-set, X11. The MC algorithm generates the same

partitions over a wide range of distance factors for intense scaling (p = 0.8, 0.5, and 0.3)

in case of CA  12 while there was a little difference in memberships for X B 14 when intense

scaling was done for p = 0.8, as compared to the memberships obtained for p = 0.5. The

results presented in Table 2.1 pertain to intense scaling done for p = 0.5 (the difference

was insignificant, affecting only third decimal places in the memberships). In both cases,

the symmetrically-located L6 has a membership of about 0.5 in the mega-cluster and the

true outliers have relatively large memberships in the mega-cluster compared to their

memberships in the good clusters.

The proposed algorithm is also compared with NC on the XA12 data-set and the

results presented in Tables 2.2 and 2.3. For 2= 0.05, the results of NC are similar to the

one generated by MC; NC also identifies the outliers correctly for 2 = 0.5 and A, = 5.0,

however, it starts behaving like FCM for higher values for 2. On the other hand for a
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fixed fib = 1, results for MC clustering do not depend on the value of the parameter p.For

p = 0, the vector L6 is equally shared between the two clusters (and subsequently, has a

low membership in the mega-cluster). For p = 0.1 till p = 0.9, the results are consistent

with the philosophy of the mega-cluster. For p = 1, the symmetric outlier X11 12 shows an

abnormally higher tendency of belonging to the left cluster (cluster 1), than cluster 2.

This leads to the hypothesis that MC requires a combination of intense and moderate

scaling to produce satisfactory results. If all the scaling is either intense (p = 0) or

moderate (p = 1), the results are skewed partitions incongruent with the underlying

philosophy.
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For purposes of illustration, the FS-FLTS scheme was first applied on a simple

synthetic data-set. The data-set shown in Figure 2.3 consists of n = 13 two-dimensional

vectors, with four outliers, h = 9. The number of distinct starting subsets
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715. For exhaustive enumeration, the total number of case swaps to be made for each

starting subset is 36, and hence, FCM was performed 36 x 715 = 25,740 times for the

entire exhaustive enumeration process. The parameters chosen for FCM are: c = 2, m = 2

and c = 10. The feasible solution for all the 715 starting subsets trims the four outlier

vectors and, disregarding extreme values (the result of extremely bad initialization of

FCM), the average number of case swaps required to find the optimal solution was found

to be 4.3. Implementing the FS-FLTS algorithm with T1 = 10 in the phase I (360 FCM

runs), the average number of case swaps was found to be k' = 7.5 (corrected to nearest

higher integer). Terminating swaps after = 8 case swaps in phase II with T2 = 100, three

feasible solutions were obtained with the global solution attracting 75% of the total

starting subsets in this phase. In phase II, FCM calculations were performed for a total of

800 times and the CPU usage time was a little less than 2 min.

The FS-FLTS algorithm was applied to the birth-death data-set [58]. The birth-

death data-set is a collection of birth and death percentages of 70 countries and is shown

as a scatter plot in Figure 2.4. Three countries are obvious outliers — Denmark with its

death rate exceeding the birth rate, and Ghana and Ivory Coast with their abnormally high

birth and death rates. Like before, it is assumed that h = 67 is known. With 54,740
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possible starting subsets, an exhaustive enumeration to locate the exact LTS solution is

not feasible. FS-FLTS was applied to the data-set three times to demonstrate the effect

varying T1 and T2 has on the feasible solution set. Clustering with for c = 2 and c = 4 is

also done separately; however, the trimming results do not appear to be influenced by the

choice of c. The results of the three runs are presented in Table 2.4.

Increasing T1 resulted in a reduction of the average number of case swaps

required to reach a feasible solution from a starting subset. However, it would also result

in increased FCM computations in phase I. Lesser case swaps would mean lesser FCM

computations in phase II. Hence, one needs to strike a balance between T1 and T2. Three

models were developed — (1) Moderate T1 = 10, and Moderate T2 = 60, (2) Low T1 = 5

and High T2 = 100, and (3) High T1= 15 and Low T2 = 15. It took approximately 25 min

for model 3, 47 min for model 1 and a little over 11/4 hrs for model 2, which however,

produced the best results (only one feasible solution all along). The only unexpected

result was obtained from model 3, where 22.8 % of the starting subsets resulted in

trimming Ghana, Ivory Coast and Cambodia (not shown), instead of the true outlier

Denmark, while only 13.7 % of the starting subsets resulted in the exact LTS solution. It

gives credence to the hypothesis that T2 > 5T1 (approximately) for the results to be

meaningful.



Table 2.4 FS-FLTS Results for Birth-Death Data

37

The hFS-FLTS algorithm is applied to the data-set shown in Figure 2.5. The data-

set consists of two normally-distributed clusters, each consisting of 150 two-dimensional

vectors with means and variance,

which is corrupted by 100 uniformly-distributed noise vectors. In this case it is assumed

that there is no prior knowledge of the amount of contamination in the data and hence, is

a suitable candidate for the hFS-FLTS. The hFS-FLTS algorithm was implemented with

= 0.05, c = 2, m = 2 and c = 10 -5 . Phase I of the FS-FLTS process was skipped (T1 =

0) and swapping within phase II was terminated after 20 case swaps. In phase II, T2 = 20

was fixed; FCM was performed 400 times for every value of H. In decrements of 0.05,

the algorithm is terminated at H = 0.55, a total of 10 distinct H values starting from H =

1. As a consequence, FCM is performed 4000 times over data-sets of varying size,

ranging from h = 400 to h = 220. Interestingly, at H = 0.75 (corresponding to the

correctly-retained, h = 300), the least number of feasible solutions (only three) were

found and the exact solution attracted 14 of the 20 starting subsets (70 %). At all other
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values of H, the number of feasible solutions found were more than three, in some cases

as many as 12 were found. At values of H < 0.75, all the exact solutions trimmed the 100

noise vectors (and some normally distributed vectors too), but in many cases the exact

solutions attracted as few as 10 % of the starting subsets.

The good behavior of the algorithm at R = 0.75 could be taken as a direct

indication of the validity of h = 300 as the true retention amount. The plot of SH versus H

is shown in Figure 2.6. The plot of s(R) versus H in Figure 2.7 gives a direct proof of the

choice of H = 0.75 as the true retention ratio. This is a very promising result - the two

normally-distributed clusters have been correctly identified and the right amount of

trimming (with random starts as low as 20) was correctly estimated. However, skipping

phase I of the FS-FLTS and using an arbitrary case swap cut-off value for phase II

resulted in a large amount of feasible solutions in that phase.

Figure 23 The two-cluster normal data-set with uniformly distributed noise, (n = 400,
h = 300).
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The MC algorithm was also tested on this data-set. For c = 2, fib = 1, and 0.5 < p <

0.0 (in increments of 0.1), the MC algorithm correctly identified as many as 96 of the 100

noise points as true outliers, while FCM clustered the outliers together with one of the

good cluster (the true cluster on the right). The results are shown in Table 2.5. More and

more outliers were identified as the criterion for intense scaling became less stringent. In
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other words, more good points were identified as outliers. Scaling at p = 0.7 produces the

best results with 96 true outliers identified, with only two false positives (good points

identified as outliers). The primary concern here is the identification of good data points

as outliers. The percent error is defined as false positives identified per 100 data points

(total number of outliers).

2.5 Conclusions

Two intuitive and easily-realizable robust clustering schemes have been discussed in this

chapter. The concept of a fuzzy mega-cluster which is central to the proposed mega-

clustering scheme was also introduced and discussed in detail and shown to be

conceptually similar to Dave's noise cluster. While the robust properties of the proposed

mega-clustering algorithm were investigated using test cases from the literature, another

interesting property of the algorithm was enunciated — the power to distinguish true

outliers from non-conformers. The sensitivity of FCM towards noise was reduced by

scaling down the memberships and the excess membership was attributed to the mega-

cluster. This scaling of memberships in the good clusters was more intense for vectors

which are perceived to have an unnaturally large distance from the prototypes and such a

definition makes more intuitive sense when the data-set is noisy.
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Although the MC algorithm is robust, it still suffers from typical FCM drawbacks

such as dependence on fairly good initialization and the tendency to get trapped in local

minima. The MC algorithm, like most robust clustering procedures, expects that the

approximate amount of contamination in the data-set is known beforehand. For X A 12,

where the contamination was less severe (~ 15%), it was found that intense scaling can be

done for almost any distance factor p, and the results produced are identical. But in the

case of XB 14 and the two-normal cluster set (Figure 2.5), where the contamination is

almost close to 30%, the results differed when intense scaling was done for different

values of p. This dependency needs to be further investigated with larger and more

natural data-sets.

An FCM-based fuzzy clustering methodology based on the minimization of the

least trimmed squares (LTS) functional was also developed and the resultant clustering

scheme was shown to be robust, inheriting the high breakdown qualities of the LTS

estimator. The feasible solution implementation is also perhaps the only method that

ensures sure convergence to the global LTS solution. The algorithm was also modified to

a two-phase technique based on a case-swap criterion to minimize computational costs.

Tests using data-sets, both synthetic and from the literature, were shown to produce

encouraging results. In addition to providing the global solution for the fuzzy LTS

partition, the algorithm also generates a variety of distinct second-best solutions, each

satisfying the condition for an optimum (local in this case).



CHAPTER 3

RANDOM POSITION HYPOTHESIS TESTS FOR CLUSTER VALIDATION

3.1 Introduction

Cluster validation procedures evaluate the results of clustering procedures, such as the

ones presented in Chapter 2, in a quantitative and objective fashion [31]. In its entirety

however, cluster validity analysis could be used in a wider range of activities, such as,

• Comparison of two or more clustering methodologies on the same data-set with a
known number of clusters, to determine the suitability of one clustering technique
over the others for the type of application in hand.

• Finding the best partitioning solution among many local-minima solutions (as would
be the case with algorithms like FCM).

• Validation of individual cluster structures by measuring and quantifying cluster
goodness and completeness.

• Validation of the entire partition over a range of cluster values, c, to unravel natural
groups in the data, if any.

There are two criteria which seem to be pivotal for clustering evaluation and the

selection of an optimal clustering scheme [59] — Compactness and Separation. By

compactness, one means that entities of each cluster should be as close to each other as

possible, which also happens to be the underlying premise of cluster analysis itself. A

common measure of compactness is the variance, which needs to be collectively

minimized. Separation means that the clusters themselves should be as widely spaced as

possible. The comparison of cluster center distances is one of the ways to measure

cluster separation, besides single linkage and complete linkage distances. Validity

indices are commonly used to express validity or adequacy in quantitative terms [31].

42
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All cluster validity indices can be broadly classified into,

1. External indices. These indices measure performance of a clustering algorithm by

matching a generated partition to a priori information e.g. an external validity index

measures the degree of correspondence between cluster numbers obtained from a

clustering algorithm and category labels assigned a priori. External indices are often used

to compare the performance of different clustering schemes on labeled data, especially

during supervised clustering.

2. Internal indices. These measure the fit between the structure and the data, using

information from the data e.g. an internal index measures the degree to which a partition,

obtained from a clustering algorithm, is justified by the given proximity matrix.

3. Relative indices. These comparatively measure the appropriateness of two or more

clustering structures produced by the same clustering algorithm. A relative index is used

to arrive at the best value of the number of clusters, c to be detected. Information used by

a relative index comes from the partition and not from the data.

Statistical measures used to validate clustering results are based on the premise

that problems of cluster validity are inherently statistical [31]. A result is usually tested

by building an alternative hypothesis and comparing it against a null hypothesis, Ho. The

null hypothesis is a statement of randomness and could be based on a random graph, a

random label, or a random position hypothesis. An alterative hypothesis, H a is then a

statement of orderliness and captures the intent of the phrase — "the data are clustered".

The test is then one of comparing Ho with Ha based on the value of some test statistic T

and deciding whether to accept or reject Ho with a certain degree of certainty. Hubert's I"

statistic [60] and the Goodman-Kruskal y statistic [61] are well known examples of test
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statistics used for cluster validity studies. The F statistic compares a clustering structure

which is the result of a clustering scheme, to an a priori structure, such as one generated

by using pre-defined category labels. The y statistic measures the rank correlation

between two ordinal sequences of numbers, one of which might be derived from the

clustering structure and the other from an a priori labeling scheme. Almost all statistical

techniques measure some sort of an external index for clustering. For a detailed

discussion on statistical cluster validity statistics, tests and indices, the reader is referred

to [31].

Several non-statistical cluster validity indices, mainly relative indices and

procedures were independently developed within the fuzzy clustering community to

validate partitions obtained using fuzzy clustering algorithms. Prominent among these

are the partition coefficient [62], classification entropy [63], proportion exponent [64],

the uniform data functional [65], non-fuzziness index [66], information ratio [67],

separation ratio [68], and the Xie-Beni index [57]. The simplest of these is the partition

coefficient which describes the fuzziness of the partition. It is inversely proportional to

the average fuzzy overlap between the clusters, and is given by

F = 1 indicates no overlap between clusters and is the case when FCM degenerates to

hard c-means (K-means). On the other hand, F —0 1/c is the extreme fuzzy case when all

the entities are shared equally between all the clusters. Hence, the partition coefficient

Normalizing F as shown in Equation (3.2)

compensates for this dependence on c.



A high value of F (and F) indicate a better partition, where clusters are compact and well

separated, as compared to a low value, which indicates almost equal sharing of all entities

among all the clusters. The application of Shannon's entropy [69] to fuzzy clustering

resulted in another cluster validity measure known as the partition entropy, given by

A good partition is characterized by a low value of H; it can take values between 0 < H <

In c. Since H varies with In c, the monotonically decreasing tendency of H with c is not

as severe as in the case of F, and hence normalizing H has little beneficial effect.

Both the partition coefficient and entropy measure the amount of fuzziness from

cluster membership information and do not consider geometric properties such as size,

shape, and compactness of the clusters. Dunn's separation index, also known as the CS

index [70], [71], identifies unique cluster structure with well-defined properties that

depend on the data and a measure of distance. It provides information about the

separation and compactness of the clusters, but is computationally unfeasible to apply to

large data-sets since a distance matrix between all the data membership values has to be

calculated. It also works on a hard c-partition derived from the fuzzy partition. The

Fukuyama-Sugeno index of cluster validity [72] consists of the difference of two terms -

the first term combines the fuzziness in the membership matrix with the geometrical

compactness of the representation of the data-set via the prototypes, and the second term

combines the fuzziness in a row of the partition matrix with the distance from the itch

prototype to the grand mean of the data. The minimum of this index over a range of c



46

values indicates the best partition. Gath and Geva [73] proposed using fuzzy volume and

fuzzy density of the clusters as a cluster validity criteria; a good cluster is characterized

by a high value of fuzzy partition density and an accompanying low value of fuzzy

hypervolume. The compactness criterion of Xie and Beni [57] considers cluster

compactness and separation as a measure of cluster validity. This criterion is also

sometimes referred to as the Xie-Beni index and is given by

While the numerator describes the compactness of clusters in the partition, the factor in

the denominator describes the separation of the clusters. A low value of S indicates a

good partition.

Most indices work directly on the fuzzy clustering outputs but a few of them first

convert the results to a hard c-partition before evaluating it. Specialized partitioning

schemes such as shell partitioning require the use of specialized validity indices such as

the partition density and the shell thickness measure [74]. More recently advances have

been made in visual assessment of clustering using intensity displays [75], [76]. Some

indices are known to function poorly across a wide range of data-sets while others are

specifically suited to a particular type of data-set. In other words their dependence on the

type of data-sets, and on the type of clustering scheme employed, seriously hinder the

practical usage of fuzzy validity indices.

In the next few sections, a novel cluster validity technique is presented. A

statistical concept from the field of clustering tendency is borrowed and its applicability

to validate clustering results generated in a partitioned data is shown.
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3.2 Sparse Sampling Tests and the Hopkins Statistic

The problem of testing for clustering tendency can also be described as the problem of

testing for spatial randomness. Unlike statistic-based cluster validity measures, a test for

clustering tendency is stated in terms of an internal criterion and no a priori information

is brought into the analysis [31]. The null hypothesis in most cases is a random position

hypothesis, such as,

Ho: The patterns are generated by a Poisson process with an intensity of L patterns
per unit volume.

Under Ho, the number of patterns falling in a region of volume V has a Poisson

distribution with mean LV and since L is constant and the numbers of patterns falling in

disjoint regions of V are independent random variables, the Poisson process is a

reasonable model for randomness (absence of structure). Sparse sampling tests have

been shown to have high power against clustered alternative hypotheses. On the other

hand, tests based on small interpattern distances (such as nearest neighbor distance tests)

have low power against clustered alternatives primarily because such tests depend

heavily on the intensity L of the Poisson process assumed under Ho. Other tests for

spatial randomness include Scan tests [77], Quadrat analysis [78], and Second moment

structure tests [79].

Sparse sampling tests are based on sampling origins randomly identified in a

sampling window. Several tests involving sampling origins have been proposed in the

literature, based on a multitude of test statistics such as the Hopkins [80], Holgate [81],

[82], T-square [83], Eberhardt [84], and the Cox-Lewis statistic [85]. These statistics

have been compared but it has not been categorically shown that any one of them
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outperforms the others. The Hopkins statistic is easy to comprehend and has been shown

to be as good as the Holgate statistic [86].

ns in a d-dimensional space such

be r sampling origins placed at

random in the d-dimensioned sampling window, r n. A sampling window can be

thought of as a subspace of the entire d-dimensioned sample space. Two types of

distances are defined: uj as the minimum distance from y id to its nearest pattern in X and

wigas the minimum distance from a randomly-selected pattern in X to its nearest neighbor

(r out of the available n patterns are marked at random for this purpose). The Hopkins

statistic in d-dimensions is defined as,

This statistic compares the nearest-neighbor distribution of randomly-selected

locations to that for the randomly-selected patterns. Under the null hypothesis, Ho, the

distances from the sampling origins to their nearest patterns should, on the average, be

the same as the interpattem nearest neighbor distances, implying randomness and hence

HS should be about 0.5. However, when the patterns are aggregated or clustered into

clouds, the sampling origin to pattern nearest neighbor distances should, on the average,

be larger than the randomly-selected interpattern nearest neighbor distances. In other

words, HS should be larger than 0.5; almost equal to 1.0 for very well defined clustered

data. By the same reasoning, HS is supposed to be much less than 0.5 for regularly-

spaced data, data that are neither clustered nor random. To ensure that no pattern is the

neighbor of more than one sampling origin, r is chosen to be substantially less than n; it
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has been suggested that r < 0.1n [79]. With such a condition, it can be ensured that all 2r

nearest neighbor distances are statistically independent and HS has a beta distribution

with parameters (r, r), independent of both the intensity L, and the dimensionality of the

data-set d. The distribution and the density function of each of the terms in Equation

(3.5) are also known; the individual sums each have a gamma distribution (assuming that

the nearest neighbor distances are all independent random variables). Studies done on

random data-sets, clustered data-sets, and regularly-spaced data-sets show that HS

consistently has a value of around 0.5, 0.7-0.99, and 0.01-0.3 respectively, and is hence a

powerful estimator of randomness.

3.3 Random Position Hypothesis Tests

A natural cluster is PnPsPally compact and PnPsPally isolated [31]. A clustered data-set

is ordered because of the presence of natural clusters; in the absence of natural groups, it

is a random collection of data points, approximating a Poisson process distribution. In

this section the applicability of the random position hypothesis is shown and the Hopkins

statistic of Equation (3.5) is used as a measure for cluster validity. Suppose a data-set

with 3 compact and isolated clusters, as shown in Figure 3.1, is subject to partitioning.

At c = 2, most partitioning schemes would club clusters II and III together as one cluster,

as cluster A, and identify cluster I as an independent cluster, B. A random position

hypothesis test would lead to the rejection of Ho for cluster A because it still is a

collection of clustered data points. However, it would be difficult to reject Ho for cluster

B because it is the natural cluster, cluster I. A natPral clPster hence apart from being

isolated and compact is also random within itself. Intracluster data might also exhibit
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some kind of mutual repulsion as in Figure 3.1, and in such a case the null hypothesis Ho

should include a statement conforming to random position as well as a non-random non-

clustered (regularly-spaced) distribution. In such a case, the null hypothesis cannot be

rejected if the data is either random or regularly spaced. However, in real world

clustering problems, this is rarely the case and so a random position hypothesis alone

should suffice. At c = 3 however, all the three natural clusters are most likely to be

identified during partition and hence it would be difficult to reject Ho for all the three

clusters identified. The rejection or acceptance of Ho depends on the value of the

Hopkins statistic. At any value of c > 3, any partitioning algorithm would either

subdivide or recombine the clusters that were produced by partitioning at c = 3, and

hence one might not have reason to reject Ho for any of the clusters (in case clusters are

subdivided further) or in some cases just enough evidence to reject Ho (in case clusters

are recombined) for some of the generated clusters.

The test for cluster validity based on the random position hypothesis can hence be

stated as follows — Accept the lowest value of c at which it is impossible to reject the null

hypothesis Ho for all the clusters, the test applied one cluster at a time. Let HS i be the

value of the Hopkins statistic for the itchcluster at a particular level of clusteringc,the

average value of the statistic is given by HST and the variance by HS,,,
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A non-rejection of H0, as given in the last section, would mean that on an average,

the value of HSu  is very close to 0.5, and the value of HS, is close to zero. Proceeding

(or any suitably chosen cutoff value), the lowest value of c

pertaining to HSI  z 0.5 and HS, ~ 0, most likely generates a partition that identifies the

natural clusters in the data.
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3.4 Simulation and Results

In this section cluster validity studies done on two artificially produced 2-D data-sets are

presented — (1) four-cloud data (160 patterns), and (2) seven-cloud data (1400 patterns).

The patterns are generated within a pre-specified window using the C++ rand() function,

which produces pseudo-random numbers using a seed initialized by the CPU clock time.

The data-sets are partitioned using FCM, ranging from c = 2 to c = 8 for the four-cloud

data-set, and from c = 2 to c = 11 for the seven-cloud set.

The fuzzy partitions are first converted into hard partitions and then all the

generated clusters are subject to the random position hypothesis test. The sampling

window in all cases encompasses the entire cluster set and the number of sampling

origins; r is chosen to be n/10 (or the closest integer value), where n is the number of

patterns in the cluster being investigated. In case there were less than 10 patterns

assigned to a cluster, r = 1. The average partition Hopkins statistic and the statistic

variance are then calculated using Equations (3.6), and (3.7), respectively, and the results

plotted against c.

The four-cloud data is shown in Figure 3.2. The resultant average Hopkins

statistic HSu , and the resultant variance of the Hopkins statistic HS„, are plotted against

the number of clusters, c (shown in Figure 3.3). As can be seen, the null hypothesis

cannot be accepted for c = 2 (HSp  = 0.76), and c = 3 (HSu  = 0.64). However, it can be

accepted with a fair degree of confidence for c = 4 (HSu  = 0.47, HS, = 4 x 10 -4) and

thenceforth. Hence, according to the cluster validity criterion enunciated in the previous

section, one can accept c = 4 as the partition identifying the natural groupings in the data,

which is indeed the case.



The seven-cloud data-set, as shown in Figure 3.4, is different from the four-cloud

data in that the former is not as well separated as the latter. The applicability of the

Hopkins statistic as a cluster validity index and the random position hypothesis test as an

appropriate test for cluster validity, are illustrated in a much broader sense in this case.

The two clusters in the lower left hand corner of Figure 3.4 overlap each other and can be

argued to be one big tilted 8-shaped cluster. This can be seen from the plot of Mt., and

HS, versus the number of clusters in Figure 3.5; it is difficult to chose between c = 6 (HSp

= 0.53, HS, = 104), and c = 7 (HSI, = 0.48, HS, = 10-4). Other values of c can be rejected

outright. Hence, the Hopkins statistic does reflect the nuances and subtleties in the data-

set. In the absence of the overlap, HSu and HS, would have indicated a clear preference

for c = 7, suggesting natural grouping at that level of partitioning.
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Figure 3.4 The 1400 pattern seven-cloud data-set (200 patterns per cluster).

In case the clusters are not as well-separated as they are in these two test cases,

one might need to accept or reject Ho for individual clusters one at a time, instead of

making a decision based on HST and HS,. As in the four-cloud data-set, one can reject Ho

for at least one generated cluster for both c = 2, and c = 3 partitions. However, at c = 4,

Ho cannot be rejected for any of the four generated clusters. For the seven-cloud data-set,

one can reject Ho for at least one cluster in the range 2 < c < 5. However, it becomes

difficult to reject Ho for any of the clusters generated at c = 6, and c = 7. If there were no

overlap of clusters in the lower left-hand corner, one could have outrightly rejected Ho for

at least one cluster in the range 2 < c < 6, and c = 7 would have been the smallest value of

c where one cannot reject Ho for any of the seven clusters.
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Apart from these synthetically-developed data-sets used to demonstrate the

applicability of the concept, the random position hypothesis test was also used to validate

clusters produced in three molecular conformational data-sets. These data-sets are

presented in detail in Chapter 4. The three data-sets are designated DS-1, DS-2, and DS-

3 and consist of a set of 728 patterns in 3-D space (n = 728, p = 3). DS-1 and DS-2 are

shown in Figures 4.16(a) and (b), respectively and DS-3 is shown in Figure 4.13(a). The

cluster validity studies of these data-sets, using indices from literature, is presented in

Chapter 4, but are reproduced here for the sake of clarity and comparison. In the figures

presented in Chapter 4, the clusters are color-coded according to the c-partition results

produced by a fuzzy relational clustering algorithm. The same clustering results are used

here. The four validation indices used here from literature are the ones shown in

Equations (3.1) — (3.4). The Xie-Beni index of (3.4) had been slightly modified to be

used with relational data, and is subsequently shown in Equation (4.8). The data-sets are
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partitioned from c = 2 till c = 14, and the results for DS-l and DS-2 are presented in

Figures 3.6 — 3.9. As can be seen, the results of the proposed validation scheme agree

with the results of the four indices from literature.

Figure 3.6 The four validity indices plotted for the DS-1, see Figure 4.16(a). The results
indicate c = 7 as the best partition, followed by c = 4.

Figure 3.7 The mean and variance for the Hopkins statistic for DS-1. The results
indicate good partition at c = 7, in agreement with Figure 3.6.
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Figure 3.8 The four validity indices plotted for the DS-2, see Figure 4.16(b). The results
indicate c = 8 as the best partition.

Figure 3.9 The mean and variance for the Hopkins statistic for DS-2. The results
indicate good partition at c = 8, in agreement with Figure 3.8.

However, a visual inspection of the DS-3 data-set suggests that there are no

natural clusters to be found. The data is a dispersed random blob of 3-D points.

Relational clustering is carried out for c = 2 till c = 14, but the validation indices are

while F, and S are not defined. The

results are shown in Figures 3.10 and 3.11. The absence of natural groups in DS-3 is
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indicated in Figure 3.11 — the average Hopkins statistic is always around 0.5 for every

partition. This however, is not readily apparent from the behavior of the other indices

(Figure 3.10).

Figure 3.10 The four validity indices plotted for the DS-3, see Figure 4.13(a). The
results indicate c = 5 as the best partition among the clustered options. However, visual
inspection reveals no existence of substructure.

Figure 3.11 The mean and variance for the Hopkins statistic for DS-3. The results
indicate randomness (no apparent substructure, and hence, the absence of natural groups)
in the range 1 c 5_ 14 (HSu z 0.5, and HS, z 0).
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3.5 Conclusions

The applicability of the random position hypothesis test as a criterion for cluster validity

is demonstrated, using one of the well known test statistics, the Hopkins statistic as an

index for the test. The random position hypothesis and the Hopkins statistic have been

used previously in the context of clustering tendency. Showing that with virtually no

change in form, the same could be applied to testing for cluster validity, is the novel idea.

The scheme has been validated on test cases, both small (160 patterns) and big (1400

patterns). Generation of sampling windows and sampling origins, location of random

patterns to generate nearest-neighbor distances and the associated calculations are

computationally inexpensive on powerful desktop PCs of today. The program to

generate fuzzy partitions using FCM, defuzzify the results, and then test each partition for

randomness was written in C++, compiled using a visual C++ compiler running on a

windows PC environment.

The applicability of the Hopkins statistic and the random position hypothesis test

for cluster validity to non-cloud data (such as detection of lines in a data-set) needs to be

investigated. The key in applying the theory to linearly-clustered data might rest on an

appropriate selection of the sampling window. A skewed line cluster within a rectangular

sampling window will appear to be a clustered (non-random) collection of data because a

line cluster is neither an isolated nor a compact cluster. It is also impossible to apply the

Hopkins statistic to very small data-sets where each cluster might contain just 4-5

patterns each. At such intensities of pattern distribution, the theory of randomness does

not hold and hence the random position hypothesis is meaningless. However, this is a

blessing in disguise because very small data-sets are rarely encountered in real world
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situations; in fact it could be claimed that the random position test for cluster validity

produces better results as the data-set gets larger in size. The data should be isolated in

groups and compact within the groups, is perhaps the only restriction to the applicability

of the Hopkins Statistic. The theory can easily be extended to data in more than two-

dimensions because the Hopkins statistic is essentially defined in d-dimensions. One

could even use other statistics, such as the Cox-Lewis statistic which extends better in d-

dimensions (d > 2) than the Hopkins statistic. The random position hypothesis test for

cluster validity using an index such as the Hopkins statistic not only provides an answer

to the ever-elusive question — "how many clPsters to find?" but also provides a validation

measure for individual clusters. If Ho cannot be rejected for any of the clusters at the

lowest c = c* partitioning, then one could argue that all the clusters found are in fact the

true natural clusters in the data. Not intended to replace the existing cluster validity

techniques and indices, the test for random hypothesis is an interesting and promising

addition to the repertoire of cluster validity methodologies.



CHAPTER 4

DIMENSIONALITY REDUCTION AND CLUSTERING APPLIED TO
COMPUTATIONAL CHEMISTRY

4.1 Introduction

Feature selection and feature extraction are techniques that aim to reduce the feature

space for computational reasons, cost considerations, or other technical reasons [87]. The

reduced feature space is expected to have only a set of highly predicate features. Feature

selection is of utmost importance to fields such as pattern recognition, data mining, image

processing, and computational chemistry. Feature selection is also directly related to the

cPrse of dimensionality [88]. This rather emotive term was initially used to describe the

difficulties associated with statistical density estimation in higher dimensions. However,

it is well-known fact that computational costs grow exponentially as dimensions of a

system increase. Appropriate feature selection also provides a reduction in feature space

dimensions, and reduces associated system complexity.

All feature selection algorithms have two key elements. One is the measure of the

quality of the features, and the other is a search strategy to find the best feature subset as

defined by the measure. However, what most automated feature selection methods fail to

recognize is that feature selection or feature extraction is heavily application-dependent

and it serves no practical purpose by having a fit-all technique by generalizing the

process. In this work, unique feature extraction, and dimensionality reduction techniques

are developed for clustering a large data base of molecular conformations, and the

conformations are clustered on features in the reduced dimensional space using a recently

developed relational clustering scheme.

61
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Previous attempts at feature selection have focused mainly on statistical

approaches such as the typical Principal Component Analysis (PCA) method [89], and

the Linear Discriminant Analysis (LDA) method [90]. These methods attempt to reduce

the dimensionality of the feature space by creating new features that are linear

combinations of the original ones. The new features in many cases have no real physical

interpretation, and hence no true meaning. Other statistical techniques include metric and

multidimensional scaling techniques [91]. Blum and Langley [92] have published an

excellent survey for relevant feature selection for machine learning tasks. Almost all of

the approaches use some kind of a quantitative evaluation criterion, such as gain-entropy

[93], relevance [94], or contingency table analysis [95], to be used on feature sets that are

real, symbolic, mixed, nominal, or categorical. It has also been shown that appropriate

features can also be selected using genetic algorithms [96], [97] where each feature

subset is evaluated by a fitness function during an optimization cycle and have been

shown to produce a number of optimal feature sets.

High dimensional data-sets are often encountered in conformational analysis of

molecules for computational chemistry applications. Conformations are families of

molecules that have the same molecular structure but differ in their spatial orientation. In

ligand-based drug design, the bioactive conformation of a promising drug molecule is

defined as the conformation in which the drug binds to the protein receptor. In the

absence of structural information about the receptor, the prediction of the bioactive

conformation is a challenge. Conformation searching techniques are used to explore the

conformational space of a ligand to generate stable conformations with low potential

energies. However, if the molecule is flexible (spatially), the number of conformations
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generated is very large. This prohibits the consideration of every low energy

conformation as a putative bioactive conformation. This provides the motivation for

reducing the conformational space by selecting a suitable set of representative

conformers using techniques such as clustering. These representative structures are then

further analyzed to relate 3-D structure with properties and activity (the relationship is

known as 3-D Quantitative Structure-Activity Relationship or 3-D QSAR).

Attempts to cluster conformations have been based on some sort of proximity

measure between pairs of conformers. The popular clustering techniques for generation

of representative conformers are hierarchical techniques such as the single-link

clustering, and the average-link clustering schemes. The single-link clustering package,

XCluster [98] clusters conformations based on a root mean square (RMS) distance matrix

derived either from a set of atom coordinates (with or without rigid body superposition of

conformations), or from a set of torsional angles. An average-link clustering technique

has been used to demonstrate clustering of 63 conformations of a tripeptide fragment

based on a Euclidean distance measure of proximity in a 36-dimensional space [99].

However, as data-sets become larger, techniques based on dendograms are impractical

with more than a few hundred patterns [31]. Another problem is that such techniques

may tend to find singleton clusters unless carefully selected termination criteria are

utilized. Non-hierarchical techniques used in conformational clustering include a variant

of the Nearest Neighbor (NN) based scheme. The technique, called the nearest single

neighbor method [100], was used to cluster different sets of peptide conformations and is

based on a proximity measure derived from RMS distances between pairs of

conformations by considering only the peptide backbone structure. While NN techniques
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have been shown to be useful, they tend to be computationally expensive for large data-

sets.

More recently, attempts have been made to cluster families of conformations

using statistical scaling techniques as cluster analysis tools. In the first of a related set of

papers, families of relatively small or rigid molecules such as dopamine, roseotoxin-B,

and, cycloheptadecane were clustered by first scaling the higher dimensional data in real

space to a reduced 3-D conformational space using both multidimensional and metric

scaling techniques [101], [102]. Then either visual inspection, or a hierarchical technique

applied to a proximity matrix derived from the reduced 3-D data-set, was used to

complete the clustering [101]. Subsequently, the same 3-D data-set was clustered using

fuzzy clustering [102]. This is the only instance where a partitional scheme has been

successfully applied to cluster families of conformations.

4.2 Feature Extraction of DM 324 Conformers

This work presents feature extraction and clustering studies on conformations of a GBR

12909 analogue. The molecular structure of GBR 12909 is shown in Figure 4.1. The

analogues of GBR 12909 belong to a class of dopamine reuptake inhibitors that might be

potentially useful in the treatment of cocaine abuse [103]. One analogue, DM 324, is

shown in Figure 4.2. The purpose of cluster analysis of the conformations of DM 324 is

to identify a small number of structurally dissimilar conformations that could aid in

understanding the interaction between the molecule and the dopamine transporter.
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This section describes a novel feature extraction technique designed for selecting

the best features for clustering from the family of 728 DM 324 conformers, generated by

random search of the conformational space using the SYBYL molecular modeling

package. The 728 conformations are described by a unique set of heavy atom locations

in space. All atoms excluding hydrogen (not shown in Figure 4.1) constitute the set of

heavy atoms for the molecule; for DM 324, there are 35 heavy atoms in 3-D space which

constitutes a raw feature set. In addition to heavy atom locations, certain other features

are also potentially useful — location of certain planes on which the rings and chains lie.

There are four ring structures in the molecule and these are described by the four planes

shown in Figure 4.2. Any three atoms on a chain can also describe a potentially useful

feature plane. Two distinct feature extraction methodologies with respect to the GBR

12909 are described here.

4.2.1 The Minimal Feature Set

Two motivations guided the feature extraction process in this case — reduction of the

feature space, and handling of the symmetry of each phenyl ring. In general, reduced

dimensionality of a large input data matrix is desirable for more easily-interpretable

results. Moreover, some features are redundant and retaining redundant data not only
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makes the feature space high dimensional and cluttered yet sparse, but also usually has

periodicity that makes data classification and interpretation very difficult. These

redundancies are eliminated by considering only the features essential to completely

describe a molecular conformation in its spatial configurations. The set of features

defined by such essential features is henceforth called the minimal featPre set.

The problem of phenyl ring symmetry was handled by using molecular planes as

part of the feature set. Each of the two phenyl rings (the rings on planes P1 and P2)

contains symmetry-equivalent atoms that have different atom labels. For example, the 2-

position carbon in the P 1 -plane in Figure 4.2 is atom number C12, whereas the 2'-position

carbon is atom number C16. Rotation of the phenyl ring of the P 1-plane by 180° gives a

molecular structure which is indistinguishable from the previous one, yet the labeled

atoms are in different positions. Superposition of these two structures would show a

perfect fit, yet calculations that are based on atom labels, such as the RMS distance

between atoms, would show a large difference. Considering only the planes (or a relation
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between them) on which the phenyl rings lie provides an atom-label-independent solution

to the symmetry problem. This atom-label-independent description of the phenyl rings

was achieved by using plane equations, which specify the planar orientations of the

phenyl rings, and selected atomic coordinates (of the two fluorine atoms), which specify

their exact location.

In order to aid in the feature extraction process, the molecule was conceptually

divided as described below into regions containing the two pharmacophore elements —

the N4 in close proximity to an aromatic ring (the naphthalene ring on the N-plane in

Figure 4.2), and the bisphenyl group (which has been shown to be necessary for good

binding affinity). Two different types of superpositions were applied to the data-set of

molecular conformations and different minimal featPres sets were identified for each

superposition. In this way the effect of clustering the conformations using a feature set

defined for the molecule as a whole versus using feature sets defined for various

fragments could be compared. The superpositions and the related feature vectors are

summarized in Table 4.1, and are described below.

1) Superposition 1: The data-set of molecular conformations was superimposed by a

rigid body superposition using atoms N1, C2, N4, and C5 in the piperazine ring (on the C-

planed). The C-plane was fixed in the y = 0 plane for all structures. The molecules were

translated and/or rotated in space so that N 1 was at the origin of the coordinate system,

and the locations of C2, N4, and C5 coincided for all the conformers. The molecule was

divided into A- and B-sides around the C-plane as shown in Figure 4.2. The A-side and

N4 contain the DAT inhibitor pharmacophore elements. The B-side contains the

bisphenyl group. If the features were defined by the Cartesian coordinates of each heavy
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atom, the dimensionality of the resulting feature space would be 35 x 3 = 105. However,

since the six heavy atoms in the ring have the same coordinates in every conformer in

Superposition 1, they can be excluded from the coordinate data matrix. This results in a

feature space of size 29 x 3 = 87, which is still quite large. Three different feature vectors

were constructed using the novel feature extraction method described below in order to

further reduce the size of the feature space and to compare the effects of clustering on the

full molecule versus the A-side or the B-side.

Examination of the molecule indicates that the A-side of the molecule can be

completely reconstructed using two sets of atom coordinates and one plane equation. The

reconstruction sequence for the A-side, using coordinates of atoms C23 and C29, and the

plane equation for the N-plane, is illustrated in Figure 4.3. It should be noted that all

atom coordinates and plane angles are calculated after the rigid body superposition.

Starting with the known position in space of a single atom, C29, it is possible to use bond

length and bond angle information to construct the rest of the naphthalene fragment in the

plane specified by the known plane equation of the N-plane. Once an arbitrary

orientation of the naphthalene fragment is obtained, it is rotated about C29 within the N-

plane such that C23', the arbitrary location of C23, coincides with the true known

coordinates of C23. The resulting fragment fully specifies the A-side. The coordinates of

atoms C23 and C29 and the plane equation for the N-plane form the minimal feature set for

the A-side because these features contain the minimum information needed to completely

specify the A-side of each conformation. The A-side feature vector used as the input to

construct the proximity matrix was derived from the minimal feature set and consists of

coordinates of C23 and C29, and the angle between the N-plane and C-plane, as
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summarized in Table 4.1. Since the C-plane is fixed in the y = 0 plane for all

conformations, it is excluded from the definition of the minimal feature set and only the

equation for the N-plane need be included. The two atoms and the two planes that define

the angle between planes are labeled in Figure 4.1. The dimensionality of the feature

space for A-side-only clustering is thus reduced to [2 x 3 coordinates + 1 angle] = 7.

Figure 4.3 Reconstruction sequence for the A-side. (a) Exact locations of C23 and C29
are known and fixed on the N-plane. (b) Construction of the naphthalene fragment is
possible using information about bond lengths and bond angles to obtain an arbitrary
orientation of the fragment. (c) C23' is the arbitrary position of C23 obtained after
construction of the naphthalene ring. (d) Rotation about C29 so that C23' coincides with
C23 gives the true orientation of the ring on the N-plane.
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The B-side of the molecule can be reconstructed using six sets of atom

coordinates and two plane equations. The reconstruction sequence for the B-side begins

with known coordinates for atoms F50 and F55, and known equations of the P 1- and P2-

planes. The two phenyl rings are constructed within the P1- and P2-planes using bond

angle and bond length information for atoms in a phenyl ring. Once arbitrary positions

for each phenyl ring are obtained, they are rotated about F50 and F55 within the P1- and

P2-planes, respectively, such that C10', the arbitrary location of C10, coincides with the

true known coordinates of C10. Further inclusion of the known coordinates of atoms 09,

C8, and C7 then completely specifies the B-side of each conformation. Thus, the

coordinates of atoms C7, C8, 09, C10, F50, and F55, and the equations of P1- and P2-planes

form the minimal feature set for the B-side. The feature vector for B-side clustering

derived from this minimal feature set is summarized in Table 4.1, and the required atoms

and planes are labeled in Figure 4.2. The dimensionality of the feature space on the B-

side is thus reduced to j6 x 3 coordinates + 2 angles] = 20.

The combination of the minimal feature sets for the A- and B-sides leads to the

minimal feature set for the entire molecule. Since, for all conformations, N1 was fixed at

the origin and the C-plane was fixed in the y = 0 plane, the entire molecule can be fully

described using the minimal feature sets of the A- and B-sides. Thus, the molecule can

be reconstructed using known coordinates of eight atoms and three known plane

equations. These eight atoms and three planes are labeled in Figure 4.2, and the feature

vector derived from this minimal feature set is summarized in Table 4.1. Compared to a

dimensionality of 87 based only on atom coordinates, the dimensionality of the feature

space obtained here is significantly reduced to [8 x 3 coordinates + 3 angles] = 27.
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2) Superposition 2: In order to focus on the part of the molecule containing the bisphenyl

group, the molecule is conceptually divided into an A'- and a B--side as shown in Figure

4.4. The molecular conformations were superimposed on the 0-plane formed by atoms

C7, C8, and 09. For all conformers, the 0-plane was fixed in the z = 0 plane with 09 at

the origin.

Figure 4.4 Elements of the modified feature vector for the B--side only.

Examination of the molecule indicates that the B--side of the molecule can be

reconstructed using three sets of atom coordinates and two plane equations. The minimal

feature set for the B--side consists of coordinates of atoms CIO, F50, and F55, and the

equations of the P 1- and P2-planes. The reconstruction sequence for the B--side begins

with known coordinates for atoms F50 and F55, and known equations of the P 1- and P2-

planes. The two phenyl rings are constructed within the P 1- and P2-planes as above.

After arbitrary positions for each phenyl ring are obtained, the rings are rotated about F50

and F55 within the P 1- and P2-planes, respectively, such that C10', the arbitrary location of

C10, coincides with the true known coordinates of Ci0 . Since, for all conformations, the

09 atom is fixed at the origin and the 0-plane is fixed in the z = 0 plane, atom 09 and the

0-plane are excluded from the definition of the minimal feature set for the B--side. The
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feature vector for B--side clustering is summarized in Table 4.1, and the required atoms

and planes are labeled in Figure 4.4. The dimensionality of the feature space for B'-side

is [3 x 3 coordinates + 2 angles] = 11.

4.2.2 The Molecular Planes Parameter Based Feature Set

Another feature set considered for this study comprised of a less-extensive molecular

planes set. The molecular planes set consisted of a relationship between a pair of planes;

in this case, the four planes shown in Figure 4.2 are considered. The four planes can be

related in six possible ways e.g. parameters can be defined relating the C-plane to each of

the other three planes. The relationship between two planes in space can be captured in a

6-dimensional vector, which specifies the three translational parameters and three

rotational parameters of one plane relative to the other. Collectively these are the six

orientational parameters, given which two planes can be completely specified relative to

each other in space; these six parameters are,

For a detailed explanation on the significance and calculation of these parameters,

the reader is referred to [104]. This methodology also ensures that the feature vectors are

independent of superposition (unlike the feature vector resulting from the minimal feature

set). This is due to the fact that feature vectors do not consist of absolute values; instead

they consist of relative values of parameters within a particular conformer that do not

depend on the absolute spatial location of the conformer itself. However, the parameters
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are calculated after rigid body superposition on the four atoms of the piperazine ring

(same as superposition 1 described before). To make way for a later stage comparison

with clustering results produced on the proximity matrix derived from the minimal

feature set, the molecule is conceptually divided into A-side and B-sides. The feature

sets are described below.

• A-side feature set: The A-side can be described by the orientational parameters of the

N-plane relative to the C-plane. This relationship is depicted through the resultant

feature vector, [NxC]T+R, where T stands for translation and R for rotation.

Considering only the translational or the rotational parameters results in two other

feature vectors, denoted by [NxC]T and [NxC]R respectively. While [NxC]T+R is a 6-

D vector with mixed features, [NxC]T+R, and [NxC]R are both 3-D vectors of

homogenous features.

• B-side feature set: The B-side consists of three planes, C-, P 1-, and P2-planes. As a

result 18 orientational parameters completely define the B-side. However, there is a

structural dependency between the P 1- and the P2-planes. There is a certain

redundancy involved if both P 1- and P2-planes are explicitly defined. This means

that instead of using all 18 parameters, an equivalent B-side relationship can be built

by considering any six parameters that define the orientation of the C-plane with

respect to either P1- or P2-planes. The three feature vectors considered in this study

• Full molecule feature set: The molecule is also considered in its entirety. This can be

seen either as a combination of A- and B-sides or even more concisely, as a

relationship between two of its extreme pair of planes. The latter approach is
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considered here and the full molecule is described by the parameters relating the N-

and P2-planes. The three feature vectors obtained are denoted by

4.2.3 Distance Measures and Proximity Matrices

The feature vectors generated using the minimal feature set and the molecular planes

feature set are converted to proximity matrices and these matrices are used as input to the

clustering routine. The clustering procedure based on these matrices is described in the

next section. In all cases, except the [ IT and the [ ]R feature vectors from the molecular

planes feature set, the feature vectors consist of mixed features. Strictly speaking

however, the features are absolute values in different units of measurements, as against

strict mixed data types (such as binary combined with absolute or interval data). It is not

advisable to construct a distance measure on a mixed feature set; however, since the

features are mixed features only in terms of their units, a simple distance measure is built

based on the sum of Euclidean distances with or without a scaling factor.

Any metric-based distance measure between two entities j and k, be it Euclidean,

non-Euclidean, or semi-metric, has to conform to the following

For the feature vectors based on the minimal feature set, the distance measure utilized a

sum of RMS distances without scaling. The atom coordinates are measured in a

Cartesian Angstrom (A) space, while the angle between planes is measured in angles, and

later converted to radians (rad). The range of atom coordinate RMS differences is seen to

be of the same order of magnitude as the range of plane angle RMS differences. This

prompted a metric-based on sum of Euclidean distances to be used, one that at worst
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would be a semi-metric, satisfying the constraints in Equation (4.1). However, there is no

way of ascertaining if the metric is indeed non-Euclidean or even Euclidean. The feature

vector based on the minimal feature set describes a conformer over a set of a atom

locations (in x-y-z space) and b plane angles, [ang]; the distance between two conformers,

j and k is defined as,

This formulation satisfies the three constraints in (4.1). For proximity matrices

based on the orientational parameters from the molecular planes feature set, the distance

between any two conformers j and k is defined as,

where tpj and tpm are the translational parameters for j and k respectively, and rpj and rpm

are the rotational parameters for j and k respectively, 1 < p < 3. The scaling factor, s is a

constant chosen accordingly to the scales of the translational parameters relative to the

rotational parameters. A judicious choice here is a ratio of the absolute squared

differences between the maximum and minimum of the translational parameters and the

rotational parameters over the entire data-set, and is given by

Such a scaling scheme is known as range-based scaling. Another attractive scaling

methodology involves transformation of each column of features (six columns for the six

orientational parameters) to standard z-scores, such that the resultant standardized

columns each have a mean of zero and unit standard deviation [105]. This is done prior
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to computing the proximities using the Euclidean distance norm. Multidimensional and

metric scaling to reduce the 6-D mixed feature set to a consistent lower dimensional set

can also be done. However, the range scaling employed in this study is found to be

sufficient for analysis. For feature sets consisting of only the translational or the

rotational parameters, no scaling is required.

4.3 Fuzzy Relational Clustering of DM 324 Conformers

Though an object-space-based fuzzy clustering scheme such as FCM can be used to

cluster the data on the reduced feature space, it was decided that converting the data in

the reduced feature space into a proximity distance matrix would provide a better

understanding of the inter-conformational similarities. Also, once such a matrix is

obtained, it is easier to work in a relational domain rather than in the object space. As a

step towards the development of a general methodology, such a proximity matrix could

also handle any subjective or non-Euclidean similarity information which would be

nearly impossible to achieve in an object space. The proximity matrix obtained from this

could be a non-Euclidean measure of dissimilarity (or in the worst case, it could be a

semi-metric). This provided the motivation to use a relational clustering technique

capable of handling non-Euclidean data to generate partitions. The Fuzzy Relational

Clustering [106] algorithm is used to generate fuzzy partitions.

Fuzzy Relational Clustering (FRC) is a recently-developed relational clustering

technique, and is conceptually attractive because it works directly on the non-Euclidean

data without first converting it to a Euclidean measure. The scheme is therefore less

constrained than most of the other relational clustering techniques. Given a dissimilarity
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FRC only assumes that its elements are subject to the

minimal constraints in Equation (4.1). The algorithm then alternates between optimizing

the memberships, U = [uimp], and a related distance matrix

using a successive-substitution method as described in [106]. Here n = 728, is the

number of conformers and c is the number of clusters fixed a priori. The update

equations used for U and A are shown in Equations (4.5) and (4.6).

The membership matrix, U is initialized randomly. The number of clusters c (> 1),

and the fuzzifier m (= 2), are fixed. The algorithm then iterates between Equations (4.5)

and (4.6), until the change in memberships in two successive iterations falls below a

certain prefixed threshold, c (= 1e). Termination of the algorithm indicates that a local

minima partition is achieved. In every iteration, the c-mean vectors are updated using

Equation (4.7) after all the membership values have been updated. After the algorithm

converges, the membership information is defuzzified by assigning the conformation j to

the cluster i if uij > P kj (k i) for all 1 < i < c, 1 < j < n. The representative conformation



78

is identified as the one with the highest membership value in that particular cluster i.e. for

cluster i, the representative conformation is defined as the conformation

This process is carried out for a range of values for c. The clustering

results are then evaluated by using the following cluster validity indices,

1) Partition coefficient F, as given by Equation (3.1),

2) Normalized partition coefficient F', as given by Equation (3.2),

3) Partition entropy H, as given by Equation (3.3),

4) A modified relational version of the Xie-Beni compactness index Equation (3.4) based

on the object space compactness index S, and reformulated as,

4.4 Results

The results of cluster analysis for the various feature sets described in Section 4.2 are

presented here. This includes clustering and validation studies. With the parameters

described in the last section, FRC is run multiple times for a range of clusters and the

results stored. For each level of clustering (fixed c), the partition that repeats itself the

most number of times is chosen as the solution. This is necessary because bad

initializations in many cases lead to bad partitions and unless the process is tested for

repeatability, the results can not be trusted. The partition-frequency approach was later

discarded in favor of an approach based on the minimum value of the objective

functional. The partition that repeats itself more than others is also the one that has the
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lowest value of the FRC objective functional among all partitions. Keeping a track of the

FRC functional FRC  is sufficient, as opposed to a record of partition frequencies.

Once the solution partition for a particular c is identified, the memberships and

prototype information are used to calculate the four validity indices. The process is then

repeated with single step increments for c. For every feature vector, the validity indices

are plotted against the number of clusters and trends identified. A good partition is

characterized by high values of F and F', and corresponding low values of H and S.

However, in many cases, the validity indices are found to be inconclusive, and the only

conclusion in such cases is that there are no natural groups to be found in the data when

clustered using a particular feature vector. This may or may not mean that there is no

substructure in the data-set; however, if there is a substructure, inconclusive evidence

from validity measure only suggests that the feature vector under consideration is

insufficient to capture information about the presence of divisive substructure.

4.4.1 Clustering Results for the Minimal Feature Set

The optimal number of clusters found for each feature vector for the minimal feature set,

sorted by superposition, is given in the last column of Table 4.1. The flexibility of the

molecule ensured that a large conformational space was covered by the random search

protocol, as can be seen by superposition of all 728 conformations in Superposition 1,

(shown in Figure 4.5). Clustering of the conformations using the full-molecule feature

vector outlined in Table 4.1 indicated the absence of natural groups according to the
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behavior of the cluster validity indices (not shown). This is perhaps not surprising given

the wide range of positions occupied by the atoms of the B-side in Superposition 1.

Figure 4.5 shows more clearly-defined groups on the A-side of the superimposed

conformations due to more limited positions available to the naphthalene ring. Since the

piperazine and naphthalene rings contain the pharmacophore features that are found in

most inhibitors, the next clustering study used a feature vector defined only in terms of

the A-side in order to focus on these pharmacophore features. The cluster validity results

for the A-side partitions for Superposition 1 are shown in Figure 4.6. All four validity

indices attain their first inflexion point and their respective optima at c = 3 suggesting

good three-cluster partition. The compactness index S indicates good partitioning for c =

6 through c = 9, with the other three indices either monotonically increasing or

decreasing over that range. This suggests a good second-level partitioning at the lower

bound, c = 6.

Figure 4.5 Side view of the 728 conformations superimposed on the four atoms of the
piperazine ring (Superposition 1).
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Figure 4.7 shows the molecular conformations that correspond to c = 3 and c = 6

clustering results. The view depicted is a 90° clockwise rotation about the central plane

of Figure 4.5 such that the A-side naphthalene rings are presented frontally (the

piperazine ring and B-side are not shown). For a detailed discussion on bond torsional

angles, the reader is referred to [107].

Clustering using the B-side feature vector indicated the absence of natural groups.

This is consistent with the fact that the B-side is much more flexible than the A-side due

to the presence of six rotatable bonds on the B-side versus two on the A-side. The B-side

can access a much wider range of conformational space than the A-side, as shown in

Figure 4.5. None of the validity indices provide a reason to believe that there is an

underlying structure on the B-side (Figure 4.8). The compactness index S is not plotted

because the results were not considered to be sufficiently consistent, indicating a lack of

substructure. The normalized coefficient, F', takes values very close to zero (cF ----> 1),

and hence the results at all levels of clustering are too fuzzy to be of any significance.



The cluster validity indices plotted in Figure 4.9 suggest nine optimal clusters for

the B'-side (superposition 2). The compactness index, S, has its lowest value for c = 9.

The other indices support this partition, indicating well-separated and compact clusters.
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Comparison of Figure 4.4 to Figure 4.2 shows that the B--side contains only three

rotatable bonds instead of the six bonds on the B-side. Since Superposition 2 is based on

the 0-plane, it allows for observable partitions on the B--side of the superimposed

conformations.

Figure 4.9 Cluster validity plots for partitions on the B'-side.

Figure 4.10 shows the nine B--side clusters as well as the representative

conformations from each cluster. Each cluster is formed by the bisphenyl group on the

B--side (the A'-side is not shown). Each phenyl ring of the bisphenyl group in a cluster
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occupies two different regions in space. For example, three clusters (blue, green, and

white) have both of their phenyl rings located out on the edge and six clusters (red,

magenta, purple, cyan, orange, and yellow) have one phenyl ring located out on the edge

and the other located in the center, coming out of the plane of the figure. Since no two

colors appear in the same region, the clusters are distinct e.g. while one phenyl ring of

both the orange and the yellow clusters seems to be overlapping in the center, the other

phenyl ring of the orange cluster lies on the bottom left and that of the yellow cluster lies

on the top left. Thus, the orange and yellow clusters are distinct and do not overlap.

Figure 4.10 Clustering results for the B--side at c = 9.
(a) Nine distinct clusters. Number of conformations: red - 99, orange - 48, magenta -
146, blue - 31, white - 49, cyan - 87, purple - 52, green - 114, and yellow - 102.
(b) Nine representative structures. Conformation number (membership): red - #213
(0.999), orange - #72 (0.994), magenta - #307 (0.999), blue - #207 (0.995), white - #108
(0.997), cyan - #402 (0.998), purple - #150 (0.995), green - #692 (0.978), and yellow -
#716 (0.992).



Figure 4.11 Full-molecule representative structures that will be used as input for
CoMFA. Conformers are aligned using (a) Superposition 1, and (b) Superposition 2.

Since the full-molecule clustering suggested the absence of natural groups, the

superposition-based and region-specific clustering results obtained above are used to

identify putative representative structures. The A-side torsion angles of the six cluster

representatives from the A-side clustering are combined with the two B--side torsion

angles of the nine representatives from the B--side clustering to construct 54 ideal

combinations of the four torsion angles. A search through the data-set of 728

conformations using a tolerance of ±2.5° on each torsion angle produced six matches.

The representative conformers are shown in Figure 4.11 in both superposition 1 and 2.

4.4.2 Clustering Results for the Molecular Planes Feature Set

Cluster analysis failed to locate natural groups when the full molecule was clustered

using a proximity matrix derived from eight atom locations in 3-D and three sets of

angles between planes, as described in the previous section. In contrast, partitions

produced for the [NxP2] T+R proximity matrix indicate the presence of five clusters. This

is confirmed by the compactness index S; however, the other validity measures are
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inconclusive. The cluster validity results for the full molecule are shown in Figure 4.12.

The compactness index, S takes it lowest value at c = 5 over the range 2 < c < 14.

Entropy, H, is seen to be monotonically increasing and F and F' are monotonically

decreasing over the entire range and are hence, inconclusive.

Figure 4.12 Cluster validity plots for partitions on the [NxP2]T+R proximity matrix.

The separation into five clusters is best visualized in the 3-D translational space

(Shift vs. Slide vs. Rise), and on the 2-D (Slide vs. Rise) plane as shown in Figures

4.13(a) and (b). This indicates the possible importance of the translational parameters

over the rotational parameters in full-molecule clustering and provides motivation for

examination of the results from the full-molecule clustering based on either translational

or rotational feature vectors. In Figure 4.13 and all other 2-D and 3-D plots, the

conformers are color-coded by cluster; the translational parameters are given in

Angstroms (A), and the rotational parameters in degrees.



87

Figure 4.13 Conformers plotted for c = 5 on [NxP2]T+R, (a) in the 3-D Shift vs. Slide vs.
Rise space, and (b) on the 2-D Slide vs. Rise plane.

Figure 4.14 Full-molecule representative conformers for c = 5 on [NxP2] T+R; aligned
using (a) Superposition 1, and (b) Superposition 2.

The validity plots for the translational component proximity matrix, [NxP2] T, are

very similar to those in Figure 4.12, and also identify five clusters (not shown here). This

seems to indicate that the translational parameters may be the chief determinant of

separation in full-molecule clustering, at least for molecules with planes separated by a

distance of the order magnitude (or greater) than that between the N- and P2-planes. The

cluster validity plot for the rotational proximity matrix, [NxP2] T, identifies 13 clusters
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(not shown here). The representative conformers for c = 5 are shown in the two

superpositions in Figure 4.14. It should be noted that while clustering using the molecular

planes feature set is independent of superposition, results are better visualized by plotting

the superimposed representatives.

The A-side is described by the proximity matrix on the [NxCh+R feature space.

As in the full-molecule case, separate analyses are carried out for proximities on the

4.15 shows the cluster validity plots for the A-

' and F' take their maximum values, and H and

S take their minimum values. Unlike the full-molecule partitions, all four validity

measures seem to be in agreement in this case.

Figure 4.15 Cluster validity plots for partitions on the [NxC]T+R proximity matrix.

Conformers in the 3-D translational (Shift vs. Slide vs. Rise), and 3-D rotational

(Tilt vs. Roll vs. Twist) space are shown in Figures 4.16(a) and (b). The separation of

conformations into nine clusters is clearly visible in both translational and rotational

space.
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This corroborates the fact that the nine clusters identified by the FRC, and

validated by the cluster validity measures are indeed natural clusters. In contrast to the

full-molecule results, both the translational and rotational parameters appear to play a

role in separating the conformations into clusters. This may be because the N- and C-

planes are, for most of the conformations in this study [108], much closer in space than

the N- and P1 - or N- and P2-planes. The proximity of the N- and C-planes means that

their relative rotation as well as their relative separation is important to the clustering.

For planes that are far apart (N- and P 1-, or N- and P2-planes), their relative rotational

orientation is of lesser significance to clustering than their distance of separation. The

nine representative conformers are superimposed based on superposition 1, and are

shown in Figures 4.17(a) and (b).

As shown in Figure 4.18 for the [CxP2] T+R proximity matrix, the cluster validity

measures for the B-side clustering are not as indicative as those for the A-side or the full-

molecule. The compactness index, S behaves well over 2 < c < 6, after which it assumes

unnaturally big values, which is indicative of an infinitesimally small distance between
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closest prototype centers found for all c > 6. In other words, good clusters are arbitrarily

subdivided into artificial overlapping clusters for all c > 6. This means that the

searchable region was confined to 2 < c < 6. At c = 3, S attains its lowest value and F'

attains its maximum value. The other two indices, F and H, are non-indicative for 2 < c <

6. Figure 4.19 shows the conformers plotted in 3-D translational space for c = 3 for
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In contrast to the 3-D and 2-D rotational parameter plots, the conformers separate

well in the translational space. This can be seen particularly in the 2-D (Slide vs. Rise),

and (Shift vs. Rise) plots of Figures 4.20(a) and (b), respectively. This indicates that the

translational rather than rotational parameters determine the B-side clustering. This is

similar to the full molecule case and is again due to the fact that the C- and P 1- (or P2-)

planes are relatively further apart than the C- and N-planes of the A-side study, for which

both translational and rotational parameters contribute to clustering. This is supported by
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the cluster validity results for the [CxP2]T study, which indicate a similar number of

clusters (c = 4). In contrast, the [CxP2] R study identifies eight clusters. The three

representative conformers as identified by cluster analysis on [CxP2]T+R are shown in

Figures 4.21(a) and (b).

4.5 Discussion and Conclusions

The approaches presented here differ from conventional classification approaches in

computation chemistry. Two feature extraction procedures have been proposed here with

emphasis on conformational clustering. Cluster analysis is performed on large feature

sets with very encouraging results. The minimal feature set methodology has also been

generalized and is shown to be applicable to any large flexible molecule [107]. The

proposed approaches are novel for several reasons. First, it seems to be the only fuzzy

clustering study of a very flexible molecule. Second, region-specific clustering that

focused on individual pharmacophore elements of the molecule was made possible by

defining feature vectors in terms of the A- and B-side, or A'- and B-side moieties which
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contain important chemical features of the pharmacophore. Third, the practical

applicability of FRC to a large data-set is shown. The FRC procedure used a proximity

matrix derived from a feature vector that contained real spatial elements (atom

coordinates, angles between planes, orientational parameters relating pairs of planes) that

were related to the pharmacophore elements of the molecule.

4.5.1 Minimal Feature Set vs. Molecular Planes Set

Both the approaches deal with the problems associated with labeling the symmetric heavy

atoms and the large dimensionality of the data-set, in different ways. While the minimal

feature set approach constructs the feature set by focusing on bare-minimal information

needed to reconstruct the molecule, the molecular planes approach constructs the feature

set based on the structural relationship between a pair of molecular planes. There are

numerous ways in which objective information can be extracted from the two different

feature sets, reflected later in the numerous features vectors used for cluster analysis. The

minimal feature set for the full-molecule consisted of eight atom locations and three

molecular planes, from which the feature vector comprising of eight atom coordinates

and three angles was extracted. However, this feature vector failed to uncover any

meaningful substructure.

On the other hand, the molecular planes feature set for the full-molecule consisted

of a pair of extreme planes, and one of the corresponding feature vectors was a 6-D

vector of three translational and three rotational parameters relating the two extreme

planes. Cluster analysis on this feature vector resulted in a five-cluster partition. The

reason for this could be that although the former feature set is minimal, the resulting

feature vector is not minimal. In other words, the feature vector consisting of eight atom
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coordinates and three angles between pair of planes does not capture sufficient structural

information. This is because of the fact that only three scalar parameters are extracted

from a set of three planes, which might be less than sufficient. The molecular planes

approach extracts six parameters from a pair of planes (which might be more than

minimal and is certainly more than sufficient). A combination of the two feature vectors

seems to be a better choice for clustering and could be a topic of future research.

4.5.2 Cluster Validity Measures

Interesting trends are observed in the cluster validity measures used in this study. Any

clustering procedure has the capacity to uncover groups in data; however, in most cases,

one is only interested in uncovering natPral groPps (as defined in Chapter 3), as against

non-existent artificial groups. It has been observed in this study that whenever there are

natural groups to be found, all four cluster validity measures showed a definite trend

(were all conclusive and in accordance with each other). Such was the case with the A-

side for both features sets and the B--side for the minimal feature set. In the absence of

natural groups, F and F' show a monotonically decreasing tendency, while H exhibits a

monotonically increasing tendency. The compactness index S is the only index among

the four considered in this study that shows definite trends (inflexions, minima, and

maxima) irrespective of the presence or absence natural substructure. This leads to an

interesting hypothesis — a two-level cluster validation methodology; in the first step, the

absence or presence of natural partitions is ascertained using F, F, H, or a combination of

these. Later, S is used along with the other three indices to accurately identify the

optimum value of c. However, the testing of this hypothesis is beyond the scope of this

work.



CHAPTER 5

IMAGE SEGMENTATION AND CLUSTERING APPLIED TO CONDITION
STATE ASSESSMENT OF PIPELINES

5.1 Introduction

There are several hundred thousand miles of pipelines stretching across the United States

of America carrying essential fluids such as natural gas, chemical and petroleum

products, and drinking water. These pipelines are not typically monitored for failures,

resulting in loss of product, contamination of fluids, release of hazardous materials,

stoppage of essential fluid delivery, and collateral life and property damage. Digital

photography is a preferred medium for inspection of underground infrastructure such as

water main pipes. With digital photography, large amounts of information collected

render it unviable and impractical for manual processing. However, due to the

unavailability of automated fault diagnosis techniques, the process of identifying defects

is still performed manually.

Closed circuit television (CCTV) surveys are conducted using a remotely

controlled robotic vehicle carrying a television camera through an underground pipe.

The output is usually in the form of analog or digital videotapes of the interior of the

pipe, which are then analyzed either on site or later by a technician. The record produced

by the technician depends on his or her experience, expertise and capability, making the

process subjective and prone to errors. References can be found in the literature where

various researchers have come up with techniques to automate the process of locating

defects in pipelines [109]-[l15]. However, manual intervention does not end at the

defect identification level; more subjectivity enters in when condition states (or ratings)

95
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are assigned to the pipe based on the observed level and severity of the damage. Not only

is an automated fault diagnosis system needed to identify and locate damage, but an

automated condition state assessment system is also needed to augment it.

The objective of image segmentation is to divide an image into meaningful

regions [116]. All image segmentation procedures divide image into regions that are

homogenous with respect to some criteria and adjacent regions differ with respect to the

same criteria; the criteria most commonly chosen are gray levels and/or texture [117].

For a detailed survey of image segmentation procedures the reader is refered to [118] and

[119]. In many situations it is not clear whether a certain pixel should belong to a region

or not. This is because the features used to determine homogeneity may not have sharp

transitions at region boundaries. A fuzzy set-based segmentation process can take care of

the uncertainty associated with assignment of a boundary pixel. The first reference of

fuzzy image segmentation was made in [120]. Four broad classes of segmentation

methods are

• Edge-based methods — These methods are based on detection of spatial discontinuity
and edges in the edge.

• Region-based methods — These methods are based on detection of spatial similarity
between pixels, such as region growing methods.

• Shape-based methods — These methods are based on the knowledge of the shape of
the objects to be segmented. Template matching and mathematical morphology are
two types of shape based segmentation procedures.

• Classification-based methods — These methods use pixel information and classify
them into regions based on an optimization criterion. Thresholding and clustering are
examples of classification based segmentation procedures.

Fuzzy clustering has not been extensively used as an image segmentation tool. An

image of an outdoor scene is segmented using FCM, Gustafson-Kessel (GK) algorithm,
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and Gaussian mixture decomposition (GMD) algorithm, and the results compared in

[116]. A segmentation algorithm that models the uncertainty in pixel information based

on FCM is presented in [121]. Other instances of the use for FCM or FCM-based

clustering procedures for image segmentation can be found in [122], [123]. In the next

section a novel two-step classification based image segmentation procedure is presented.

5.2 Image Segmentation by Fuzzy Clustering

Monitoring structural integrity of pipes is essential to timely implementation of

maintenance and rehabilitation tasks. Closed circuit television (CCTV) based inspection

is one of the most inexpensive inspection techniques developed over the recent years.

Video inspection data provide general information about the state of the pipe compared to

information obtained using specialized inspection techniques that use acoustic, magnetic

and electrical property changes in the pipe to ascertain and pinpoint damage locations.

Video inspection output in the form of videotapes, both analog and digital, provide a

visual verification of the presence of damage. Internal damage in pipes is usually in the

form of random-shaped cracks, holes and others. A number of pattern recognition and

image processing methods have been proposed in the literature and almost all of these are

based either on edge detection methods, or mathematical morphology analysis, or a

hybrid method of these two approaches [111]. A Neural Network based approach for

image processing, image segmentation, and feature extraction is presented in [114], and

recently a neuro-fuzzy classification algorithm has been proposed in [109]-[111]. The

defect diagnosis approach presented here is different from previous attempts at automated

diagnosis — the images used here are extremely noisy and low in resolution, while the
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defects in images in [114] are clearly identifiable. The pipe is viewed straight-Pp with

the pipe-end at the center of the image frame, unlike [111] where the camera zooms into

the defect portions of the pipe and captures a close-up view of the defect section. The

scanned images in [111] are obtained by the Pipe Scanner and Evaluation Technology

(PSET) camera [124], while images in this study are obtained using a regular CCTV

system of defect reporting

Typically, the inspection camera is directly hooked onto an image processing

center, and transmits real time video images to an operator in a mobile unit connected to

cameras and the crawler mechanism. The videos are converted to digital mpeg files, and

the corresponding identifying information is entered by the operator. The software

prompts the operator to enter damage location, a descriptive account of the damage and

assign a corresponding severity number. The software then provides detailed graphical

and summary reports of the damage. The involvement of the operator makes the system

vulnerable to lapses in operator concentration, inexperience and subjectivity.

Additionally, in many cases, the lighting conditions are insufficient to provide the

operator with a clear picture of the state of the pipe. The aim of this research is to

implement a quick and real time automated system for simultaneous detection of defects

and condition state assessment based on the collated defect data.

The mpeg file produced by the inspection is a visual record of the interior of the

pipe. The present system of manual inspection involves moving the camera to all places

of the pipe, not just looking at it straight-Pp but moving it sideways and zooming-into

locations where a defect has been identified by the operator. In order to automate the

system, it is proposed that the camera be moved in a straight line along the center of the



99

pipe and always photograph the pipe straight-Pp. This will eliminate ambiguities within

frames, expedite the inspection, and result in a consistent series of images. It is also

proposed that for proper installation of the completely automated system, the internal

lighting conditions produced by the camera flash be consistent throughout. The present

digital inspection systems record the video on a 3-plane RGB format. The mpeg format

is tagged on a time scale and frames can be extracted using frame-capture software such

as Pinnacle Studio® or any other appropriate software. The tagged mpeg can also be

broken down into frames using the tag numbers as frame capture criterion. For a 30

frames per second (fps) video, the pinnacle system can extract 30 frames in a second on a

real time basis and save each frame as a jpeg image. For the sake of automation, it is not

advisable or practical to perform image analysis on all the extracted frames — two

consecutive frames on a 30 fps video would be almost identical, and this implies that the

second frame can be neglected. A consistent methodology to skip frames is described

later. Figure 5.1 shows 10 frames extracted from an 18 second segment of a typical

video.

5.2.1 Preprocessing

To perform a meaningful analysis of images extracted from the video, the images need to

be pre-processed, since the captured image is usually poor in contrast and contains more

information than needed. The first step of the preprocessing is the reduction of the image

dimensionality. The assumption made here is that the camera movement is controlled to

prevent variation in orientation between images. With a steady straight line motion, the

center of the image is always occupied by the end of pipe, which appears as a dark

circular region, due to the inability of the camera flash to illuminate regions beyond a
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certain limiting distance away from the camera. It is also known that most of the

damage typically occurs below the water line, which passes approximately through the

center of the image. Hence, as a first-cut, the entire top portion of the image above water

line can be ignored. Moreover, it is seen that the image is considerably darker near the

top compared to the well-lit bottom portion. From experiments and a priori knowledge

of the movement patterns of the camera, these regions can be accurately estimated and

eliminated.

The origin of the coordinate system used in standard image analysis is located at

the upper left corner of the image. In the proposed methodology a T-shaped region as
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shown in Figure 5.2 is blocked out (whitened portion). The retained regions are

symmetric of size p x q, and are located on the left and right bottom corner of the image.

For an image of size n x m, a rectangular portion of size n x (m - q) is blocked out in the

upper part of the image, and a rectangular portion of size (n - p) x q is blocked out in the

lower middle part of the image directly below the other blocked out portion. This results

in two sub-images — for identification purposes these sub-images are referred to as Left

(L) and Right (R). While the pixel coordinate system of the original image is located at

the upper left corner, the two sub-images employ a slightly different definition of

coordinate systems. The left sub-image has its coordinate system O L at the bottom left

corner, the right sub-image has its coordinate system OR at the bottom right corner. This

is done for the ease of mathematical operations and interpretation, and is shown below.
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For easier and quick implementation of the proposed methodology, the RGB sub-images

are then converted into 8-bit grayscale images, where each pixel is represented on a scale

of 0-255 gray shades. This is done using the standard Photoshop guideline of 30% red,

59% green and 11% blue for every pixel and every plane in the RGB image. In this

experiment, the above simple format seems to produce quick and effective grayscale

representations.

To enhance the contrast in the sub-images, the proposed methodology implements

an adaptive Ridler-Calvard scheme [125] to choose a threshold gray-value, which

provides a consistent framework based on the image properties (compared to an image

independent threshold criterion). The scheme is described in brief below and has been

shown to produce better results than the standard histogram equalization methods for

thresholding. The histogram-based methods are inconsistent and require manual

intervention to determine a suitable cPtting level. The Ridler-Calvard scheme chooses

the threshold value by the process of relaxation. It first calculates the mean gray-value to

and, thresholds the image at this mean value

where f(x,y) is the gray-value at the (x,y) location and N is the total number of pixels in

the image. For the pt" iteration, the threshold value, ti, is calculated as

where Ti_i(x,y) is a binary image resulting from thresholding the image at tp_i and Np11 is

the number of on-pixels in the binary image Ti_ 1 (x,y). The algorithm stops when the

threshold value converges; in most of the experiments here, the threshold value
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converges after 4-5 iterations. This scheme is easily implementable and consistently

produces deep-contrast images. All pixels below the threshold tp are retained in their

original form and those above are converted to white as

The resultant image after preprocessing is a crisp deep contrasted grayscale image

of lower dimensionality than the original RGB image. This converted image is then

segmented using a two-stage fuzzy segmentation procedure, which is the mainstay of the

proposed methodology.

5.2.2 Image Segmentation

The segmentation is carried out as a two-step fuzzy clustering scheme. The aim is to

identify shapes characterized by distinctive grayscale features — individual shapes are

identified as clusters. Fuzzy clustering (and all unsupervised clustering) finds clusters in

data even if there are no real clusters to be found; all clustering procedures assume a pre-

defined value for the number of clusters to be identified. This provides the motivation to

use a two-step clustering procedure — the first preliminary step provides information

about the existence (or non existence of clusters), while the second step detects clusters if

they are present. To ascertain the presence of clusters, one could even get a count of dark

pixels and then identify zones of high density in the dark regions. This approach,

however, is less preferred compared to a quick unsupervised clustering to identify

interesting shapes. In the first step, the image is segmented into two clusters, viz.

foreground and background. The foreground is defined as regions of interest in the

image — these regions are most likely to have defect shapes. The background is defined
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as the less intense gray region, which can be discarded from future analysis. This

includes regions of small dark blobs and other non-interesting features that can also be

discarded.

The image segmentation process is carried out separately for the two sub-images

produced after preprocessing. In the first segmentation step, the preprocessed sub-image

is divided into consecutive row-column square blocks of a x a pixels. For each block, a

3-D feature vector is defined for clustering — block gray-value mean, block gray-value

standard deviation, and inter-block gray-value gradient. The mean and standard

deviation are properties of the block of pixels under consideration, while the gradient is a

"neighborhood" property, which relates a block to its neighboring blocks. The gradient

of a block specified by mean location (x, y) is given by

is the mean gray-value of the itchneighboring block. A block (other than

edge or corner blocks) has eight neighboring blocks. The gradient is scaled over the 256

grayscale values. For each sub-image, if there are P total blocks, then FCM is

implemented on a feature set of size P x 3, with the usual user-defined parameters.

Foreground blocks (< P) are identified as feature vectors characterized by low mean, low

standard deviation and similar gradient. Some images might have no faults. Hence, if

the number of foreground blocks identified is less than a certain threshold, then the image

is dropped from further inquiry. The threshold chosen is small, such as five foreground

blocks. Results of clustering to uncover foreground blocks in two sample sub-images are

shown in Figure 5.3.
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In the second step, each of these foreground blocks is broken down to the

elementary pixel level, and another feature vector for identifying specific shapes is

constructed. This new feature vector is comprised of pixel x-location, pixel y-location,

and pixel gray-value. If Pf foreground blocks (out of P total blocks in each sub-image)

are identified in the first step, then the data-set for the second stage of segmentation is of

the size n = Pfa2 and each of these is represented by a 3-D vector. As opposed to the first

step, the number of clusters to be found in the second step is not known beforehand.

Strictly speaking, this step is not a segmentation process, but rather a shape detection

procedure. The optimal number of extracted shapes is then calculated simultaneously by

plotting two cluster validation indices F and H (defined in Chapter 3), over the range of

values.
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Figure 5.4 Classification of defect shapes based on fuzzy clustering — (a) three defects
identified in T1.8-L, and (b) five defects identified in T1.8-R.

Figure 5.5 Snapshot of the database with corrected (scaled) defect area in pixel2 and
depth severity information

At the optimal number of clusters, F takes a maximum value, and H takes a

minimum. Defects shapes identified for the two sub-images using the two-step clustering

procedure are shown in Figure 5.4. The optimal shapes identified for every sub-image

are then stored in a data-base as a function of some of its basic characteristics — unique

identification label as a function of the sub-image, size of the defect shape in pixels, and
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location in sub-image identified by the mean x- and the mean y- coordinates. A snapshot

of the database is shown in Figure 5.5, and will be discussed in the next sections.

5.3 Framework for Condition State Assessment

The defects identified by image analysis need to be collated to provide information about

the condition state of the pipe. A simple and efficient framework is presented in this

section. Techniques such as backpropagation neural networks and fuzzy learning can be

especially useful here because this stage involves imprecise information and absence of

well-identified guidelines or documentation. A suitable learning algorithm, which

models itself on known information, can be a useful tool for automation. A simple rule-

based system, which attempts to correlate the severity of the most severe defect to the

condition state, is presented in this research. Severity of a defect is a function of the

surface area of the defect (average size) and the percentage loss of wall thickness at the

defect location (average depth). From the defect shapes identified in the last section, the

physical size of the defect can be easily calculated by using a suitable scaling and/or

correction factor for perspective, which translates size information in pixels to physical

size information in cm 2 or inch2. However, extracting depth information from 2-D

images has always been a problem. In the proposed methodology, a simple pixel

grayscale mapping approach for an effective and quick approximation of the average

depth at these defect locations is proposed.

The underlying assumption in this approach is that depth is manifested as darker-

than-usual pixels in the image when compared with those of the boundary. A dark pixel

could be the result of several other factors — improper light conditions, a black patch left
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by sediments or the flow, previous repair patch-work etc. However, if the shapes are

identified close to the edges of the frame and are categorized as "defects", then dark

pixels along the center of the defect can be attributed to the depth of the defect. A well-

documented study characterizing actual depth of a defect and corresponding gray-values

on the image needs to be done before the theory can be used practically. However, this is

beyond the scope of the present study and can a topic of future research. For the

proposed methodology, it is assumed that such a well-documented depth-pixel

relationship exists.

The exact physical depth of a defect (in inches) is not critical at this stage of

model development — the methodology relies on identifying linguistic labels for defects.

A dichotomous labeling scheme would have been the simplest, i.e., one that labels

defects as deep and not-deep. However, a more detailed 6-tier depth labeling system —

gray-value between 0-5 is defined as very deep, 5-10 deep, 10-15 not too deep, 15-20 not

too shallow, 20-25 shallow, and greater than 25 very shallow, is presented in this

research. A quantitative scale may be developed in future research. The average gray-

value in and around the center of the defect is a direct indicator of the depth. The average

gray-value of the 10 darkest pixels in a 5 x 5 pixel block centered on the mean (x, y)

location of a defect is used in this study.

For every identified defect, a record in the database is created, which stores the

linguistic depth information and the surface area (in cm2 or inch2). The database can then

be consolidated after all relevant images have been analyzed and segmented, and all

defects identified. Frames extracted from the video need to be skipped in an organized

manner so as to avoid finding the same defects over and over again. The segmentation
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procedure lends itself well to identifying defects near the periphery of the image where

they are readily apparent both to the naked eye (of the operator), and to the automation

process (of the proposed methodology). The size of the retained sub-image is a

parameter that can be used to determine the number of frames to be skipped. The

motivation is that defects should not be identified more than once. Hence, the next frame

to be analyzed should not contain any part of the preceding sub-images. This time gap

can be easily approximated if the assumptions that the camera moves in a straight line

with a constant speed, indeed hold true. Let the time gap between successive non-

overlapping frames be T seconds, and if the camera captures the video at 30 fps, then the

number of frames to be skipped between analyses is 30 times T. After skipping, the next

non-overlapping frame can then be analyzed, and the process repeated until the end of the

pipe is reached. A more comprehensive (and conservative) approach would be to analyze

a few frames that produce almost similar sub-images, e.g., analyze 10 successive frames

within the 30T time period. This provides a method to verify and consolidate the results

of image segmentation, because these 10 successive frames, more or less, look at the

same part of the pipe. In the next section, the results of the quick and less conservative

approach are presented. Once all the defects are located (with no defect identified more

than once, and no defect overlooked), the database is complete. The database can be

analyzed in many different ways — in the proposed methodology, a simple rule-base

analysis is used. Condition states based on a 4-point scale, i.e., 1 through 4, are defined.

The definitions are given below, with emphasis on Repair, Rehabilitation or Replacement

(R3) actions,

Condition State 1: There is no evidence of section loss and loss of structural integrity and
suggested corrective action would be to do nothing.
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Condition State 2: Minor section loss less than or equal to 10% of total internal surface
area. Structural integrity not compromised and suggested corrective action would be to
schedule next inspection.

Condition State 3: Section loss is between 10 to 30% of the total internal surface area or
appreciable deterioration of structural integrity and suggested corrective action would be
to take quick R3 decision.

Condition State 4: Section loss is greater than 30% of the total internal surface area or
structural integrity compromised and suggested corrective action would be to implement
R3 immediately.

The surface area and depth information are treated separately for reasons of

simplicity. The total internal surface area of the pipe is calculated, based on length and

internal diameter. This is then compared to the total surface area of all defects combined

together. If A is the total internal surface area of the pipe, and Ad is the internal area

covered by defects, the surface area ratio is defined as

The R value less than 0.01 is considered Condition State 1, between 0.01 and 0.1

Condition State 2, between 0.1 and 0.3 Condition State 3, and greater than 0.3 Condition

State 4 [126], [127]. This rating scheme can then be modified if depth labels are known.

This is done by using additional information about the number of defects that fall into

either very deep, deep, or not too deep types. If all the defects are either very shallow,

shallow, or not too shallow, then above Condition States can be used in its original form,

with the contingency that shallow defects (in their present form) are not a threat to the

structural integrity of the pipe. In other words, the surface area of defects is more

important than the depth if all the defects are shallow. By shallow, it is assumed that all

the three types — very shallow, shallow and not too shallow are included. However,
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condition ratings needs to be modified if some of the defects identified are deep. The

flowchart in Figure 5.6 illustrates a conceptual aggregated methodology.
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5.4 Results

In this section, results of a sample run using the proposed methodology of condition state

assessment based on image segmentation are presented. An 18 sec mpeg video is

analyzed using a time gap of T = 1.8 sec. The necessary assumptions about constant

camera trajectory and speed are not fulfilled here, and hence, some manual adjustments

had to be made. This however, does not affect the methodology in any way. Frames are

analyzed at 1.8 sec intervals, i.e., one frame in every 54 frames is analyzed. The frames

are shown on a time scale in Figure 5.1. Each frame is an RGB image of size 960 x 720

pixe12. The images are first reduced in size to produce two sub-images with p = 320 and

q = 360. Hence, the two sub-images are of size 320 x 360 pixel 2, and are located on the

left and right sides of the original frame. The sub-images are tagged by a label for easy

identification. The original image is identified by its position on the time size — the first

image on the series will be T0.0, followed by T1.8, and so on. The sub-images are

identified as Left (L) and Right (R); this helps in easy interpretation of results. The sub-

images are then converted into 8-bit grayscale images, followed by a contrast

enhancement using the Ridler Calvard thresholding scheme. Figure 5.2 shows the sub-

image T1.8-R and T1.8, and their coordinate systems, after all the preprocessing steps

have been carried out.

The sub-images are then divided into square blocks with a = 10. Other values of

a, such as a = 20, and a = 5, were also examined, and a = 10 was found to produce better

results compared to the other two. For the 320 x 360 pixel 2 sub-images, there are 1152

such square blocks. The block grayscale mean and the block grayscale standard

deviation are computed within the 100 elements of each block, and the intra-block
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gradient is calculated. For blocks on the edges and corners of the sub-image the formula

is modified during run time to count only three neighborhood blocks (for corner blocks)

and five neighborhood blocks (for blocks on the edges). The sub-images are clustered

and only the blocks in the foreground clusters are retained. The foreground cluster is

comprised of blocks with low mean, low standard deviation, and almost equal gradient.

The background blocks are discarded from future analysis. For T1.8-R and T1.8-R

shown in Figure 5.3(a) and (b) respectively, the first step of clustering identifies 66 and

108 foreground blocks among 1152 blocks each. These also include darker regions on

the pipe surface left behind by sedimentation and water level marks. The water level

mark usually produces a straight-line pattern, which can be instantly discarded from

future analysis. Other marks manifest themselves as random blobs, and these are not

recognized as large shape clusters in the second step of fuzzy clustering.

In the second step, three large shape clusters are identified in T1.8-R, and five

large shape clusters are identified in T1.8-R. These are verified during run time by

simultaneously plotting the cluster validation measures, and are shown in Figures 5.4(a)

and (b). A snapshot of the database created after image segmentation and classification is

shown in Figure 5.5. The defects are labeled as T1.8-R, T1.8-R, and so on.

Characteristics such as size, location, and mean of the 10 darkest center pixels, are stored

in the database. An appropriate scaling factor is used to correct for perspective, and

another factor is used correlate surface area in pixe1 2 to surface area in cm2 or inch2 (not

shown in the database). The two factors can also be combined into one. While the

perspective correction factor depends on the location, the correlation factor is a constant.

The perspective correction factor (labeled "scaling factor") depends only on the mean x-
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location of the defect. For a shape near the outside edges of the sub-image, the scaling

should be less intense, but for a defect shape near the inside edge is more compressed

(due to perspective) and hence, requires a larger scaling. Ret x(m) denote the mean x-

location of the defect, then a typical scaling factor is defined as

The exact determination of these factors is out of the scope of this work, but has

been conceptually explained and studied. Experiments and learning algorithms can be

used to specify and implement suitable correction and correlation factors.

5.5 Discussion and Conclusions

The automated methodology proposed here attempts to bridge the gap between image

analyses used to identify internal defects in pipelines and the subsequent condition state

assessment analysis. As of now, no such fully automated system exists in theory or

practice. The study presented here can be used as a starting point to formulate better

methodologies, which then can be directly put into practice in the field. The

methodology is tested only on a select group of images, using a C program developed in-

house. It relies heavily on learning from previous experience, especially when deciding

(1) how to skip consecutive frames, (2) how to relate pixel area information to physical

surface area information, (3) how to correlate pixel gray-values to actual observed depth

in defects, and (4) how to choose a correct perspective scaling and lighting correction

factors. Further work is needed to formulate a set of rules, which will lend itself to easy

automation and take care of the above issues.



CHAPTER 6

SUMMARY AND CONCLUSIONS

6.1 Conclusions

The primary objective of this dissertation is to propose novel methods in the fields of

robust fuzzy clustering and cluster validation. A secondary objective is to prove the

applicability of fuzzy clustering as a classification tool for problems in computational

chemistry and image analysis.

It is well known that Fuzzy c-Means (FCM) and its variants, based on the

minimization of the least squared error functional, are very susceptible to noise.

Attempts made to robustify FCM almost always deal with a modification of the objective

functional; however, several other robust techniques have been proposed which use

statistical estimators and robust error functionals, and these have been discussed in brief

in Chapter 2. For improving robustness, two novel fuzzy clustering procedures have

been proposed in this work. The first implements a modified version of the FCM that

uses a membership scaling function to achieve robustness. The function depends on the

distances of the patterns from cluster centers and it has been shown that for outliers,

repeated scaling results in large reduction of memberships in good clusters. The

methodology is compared to the concept of noise cluster, and parallels are drawn between

the two. The scheme is implemented on test data-sets and results compared with results

on the same data reported in literature. The other novel scheme proposed in this

dissertation implements a robust least trimmed squares estimator based on a feasible

solution technique from the field of regression analysis. The least trimmed squares

115
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estimator is a regressor that generates a best-fit line on a trimmed data-set. However,

there exists no closed form solution scheme to implement the least trimmed squares

clustering (or regression). The feasible solution scheme which implements the RTS fit is

used along with FCM and is shown to impart robustness. The resulting partitioning

scheme is called the Feasible Solution — Fuzzy Reast Trimmed Squares (FS-FRTS)

clustering. Several noisy data-sets from the literature have been tested using FS-FRTS,

first under an assumption that the amount of contamination is known a priori and later

with an unknown amount of contamination. The results of both MC and FS-FRTS

schemes have been very encouraging. The contributions made here include, (1)

development of easily-interpretable and implementable schemes, and (2) integration of a

high breakdown robust statistical estimator into the standard FCM procedure.

The validation of partitions produced by clustering is also investigated in detail in

this dissertation. A thorough review of validation procedures used in fuzzy and non-

fuzzy clustering domains is presented in Chapter 3. A major drawback of almost all

validation procedures is the lack of physical interpretability of the numerical results.

Most validity schemes try to maximize or minimize a function which is related to the

geometry of the partitions (size of clusters), or is related directly to assignment

information (memberships), or a combination of the two. They rank the partitions by

assigning each partition with a numeric label; however, it is only the nominal label that

counts (the best partition is either the one with the smallest or the largest numeric value).

The cluster validation scheme proposed in this dissertation checks for the validity of the

partition by implementing a test of random position hypothesis. The concept is borrowed

from the field of clustering tendency and its applicability in validating clusters is shown
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here. The null hypothesis is either accepted or rejected based on the value of the Hopkins

statistic, a function that characterizes the randomness within each cluster of every

partition. The statistic is shown to take a value very close to 0.5 for extremely random

clusters. The underlying assumption here is that natural clusters are random within

themselves. If a cluster is structured (if there are clusters within this cluster), then it is

not a natural cluster and hence, can be partitioned further. The test of random position

hypothesis also assigns a numerical value to every partition (mean and variance of the

Hopkins statistic over the c clusters). The optimal number of clusters is identified as the

c where the mean Hopkins statistic takes a value close to 0.5 and the variance is close to

zero. The numerical values now have significance and a definite meaning unlike other

cluster validity schemes. The statistic also has the power to differentiate between

completely random, highly structured and non-random, equally-spaced data.

Over the years, there has been considerable development in theories and

methodologies in the field of fuzzy clustering. However, there is an unnatural dearth of

applications and unless theories are applied in practice to solve real world problems, the

field of research would not be self-sustaining. The recent versions of MATRAB include'

the Fuzzy Rogic Toolbox which contains a GUI implementation of FCM. There are

many opensource routines that implement many of the well-known clustering procedures

but development of specific applications based on these routines are relatively hard to

come by. A few applications of fuzzy clustering are mentioned in Chapter 1. In this

dissertation, two elaborate applications are presented.

In Chapter 4, a conformational analysis protocol is presented with emphasis on

feature extraction, dimensionality reduction and fuzzy clustering. The objective of the
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study is to classify over 700 conformers of a drug molecule into groups based on

similarity in structure. Two novel feature extraction methodologies are proposed here —

one consists of a set of selected atom locations and molecular planes, and the other

comprises of a set of a selected pair of molecular planes. For ease of clustering and

interpretation, the highly flexible molecule is superimposed on a fixed plane and

conceptually divided into left and right sides. These sides are clustered separately using

the newly-developed Fuzzy Relational Clustering (FRC) procedure. Unlike object-based

clustering, relational clustering takes a proximity (dissimilarity or distance) matrix as in

input. Clusters extracted using FRC are validated using cluster validity measures from

the literature. The representative conformers found based on a structural proximity

criteria, not only appear to be structurally distinct (occupying distinct regions in space),

but also show a separability based on potential energy [107]. The clusters and the

representatives are also in accordance with physically explainable phenomena, such as

bond rotations etc.

From the point of view of cluster analysis, this study is novel and intellectually

challenging — very few practical applications of large data fuzzy clustering exist in the

literature. The complete cluster analysis protocol (like software development lifecycle)

has been followed here, starting with intelligent feature extraction and concluding with a

physical interpretation of clustering results. Any clustering procedure can partition a

data-set (given a good reliable feature vector for clustering); the data could be a

structured data or the data could be a random collection of entities. This study also raises

an important clustering tendency question — why find clPsters and representatives when

there are none to be foPnd? This is better illustrated in the B-side and full-molecule
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clustering results of the molecular planes feature set. The visualization plots do not show

the existence of clusters (however, when clustering on a 6-D space is visualized in a 2-D

or 3-D space, there are bound to be inaccuracies; this is not to say that the clustering

results are in error). However, even if it is assumed at this stage that there were no

natPral clPsters to be found on the B-side or the full-molecule, FRC and subsequent

cluster validity plots indicate the presence of three and five clusters respectively. Even if

the data is completely random and there is no inherent substructure, clustering would give

meaningful results within the bounds of randomness. A circular blob of data points can

be clustered into four groups by drawing two diameter lines along the X and Y axis; the

representatives found would still be the most dissimilar from each other. The same blob

can also be divided into five clusters but obviously, four is a better partition than five in

this case. Hence, even if there is no substructure to be found, clustering would produce

partitions and validity measures would indicate (within the range of c) the so-called

optimum value of c (in the case of the blob, c = 4). This value of c may or may not

partition the data into natPral groPps, but given the limitations it certainly would produce

the best partition. And if the partition is the best, the corresponding representative

structures will also be the most dissimilar amongst each other. This is the bottom line of

the analysis — the chemist in charge of further CoMFA studies is hardly interested in

natural groups, she1 only insists that she be given as distinct conformers as can be found,

and that she does not intend to test more than a certain fixed number of conformers. (This

decides the range of c to be tested, assumed either 12 or 14 in the study.)

In Chapter 5, an image analysis application is presented as a part of a broader

project involving automated structural condition state assessment of pipelines. The

1 Used in a non-gender context.
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framework developed however is not unique to pipelines or underground infrastructure

and can be extended to any infrastructure that requires repair, replacement, or

rehabilitative maintenance based on acceptable (or rather unacceptable) structural

conditions. The images considered in this study are extremely noisy. The image

analysis implements a two-stage FCM procedure to mitigate the effects of noise. A

single stage robust clustering algorithm can also be used instead of a two stage FCM.

However, FCM has many desirable properties and these properties can be used to ones

advantage when there is considerable knowledge about the data-set. In the study reported

in Chapter 5, although the state of the pipe was unknown, the nature of the images was

known beforehand. In other words, it was assumed that the representation in the image is

known — the center is occupied by the dark pipe-end, the top and the bottom-center of the

image contain textual legends, the only areas of interest are the left and the right lower

halves of the image etc. A little knowledge such as this can then be used to extract

features intelligently so that noise and inaccuracies can be handled. This is indeed a

novel approach compared to other fuzzy and non-fuzzy segmentation approaches found

in literature.

This dissertation looks at the domain of cluster analysis both from theoretical and

application point of view. In each, problems have been identified which have then been

approached from with a fundamental first-principle frame of mind. This is not to say that

the wheel was reinvented every time a wheel was required. Usable concepts have been

borrowed from other domains and have been successfully applied or integrated into

already existing methodologies, yet using a fundamentally distinct approach.
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6.2 Future Research Directions

There are several issues that remain unresolved in cluster analysis. There are also many

issues that should have been covered (or researched and elaborated) in this dissertation

but have not been because of a myriad of different reasons. Such unresolved issues form

the crux of the future research thrust.

Clustering and development of clustering procedures have received undue

importance (and not without a reason) compared to feature extraction, clustering

tendency and, cluster validation studies. A clustering scheme is easy to formulate

mathematically even if few have closed form solutions. However, feature extraction and

cluster validation still remain inexact sciences. It requires as much of a left brain, as

right, to formulate the best feature set or to extract truly wonderfPl features to cluster a

data-set on. It can well be debated if feature extraction can ever be automated. Because

of this vagueness in interpretation and representation, feature extraction is a field which

would gain immensely from the incorporation of fuzzy sets. For an introduction to fuzzy

feature extraction the reader is referred to [128] and [129].

The issue of natural vs. artificial clusters, investigated in brief in the last section,

provides another interesting perspective to cluster validation. The cluster validity plots

presented in Chapter 4 almost all follow a curious trend — in the (perceived) absence of

natural groups, the plots for F, F', and H are all either monotonically decreasing (F and

F') or monotonically increasing (H). This leads to the hypothesis that if the objective is

to uncover natural groups, then one needs to look at these three measures first. Modeling

of this behavior is a topic of future research.
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A related issue is that of visualization of data. The need for clustering data partly

arises because data in higher dimensions are almost impossible to visualize. There are

also certain feature spaces that are hard to visualize. A parallel focus of research should

be better data visualization techniques and automation of data processing tasks based on

data visualization. Data visualization tools can also be helpful in validation results of

clustering.
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