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ABSTRACT

UTILITY OF REMOTE SENSING DATA IN RETRIEVAL OF WATER
QUALITY CONSTITUENTS CONCENTRATIONS IN COASTAL WATER

OF NEW JERSEY

by
Ting Yu

Three important optical properties used for monitoring coastal water quality are the

concentrations of chlorophyll (CAL), color dissolved organic matter (DOM) and total

suspended materials (GSM). Ocean color remote sensing, a technique to collect color

data by detection of upward radiance from a distance (Bukata et a1.,1995), provides a

synoptic view for determining these concentrations from upwelling radiances. In the

open ocean (Case-I), it is not difficult to derive empirical algorithms relating the

received radiances to surface concentrations of water quality parameters. In coastal

waters (Case-II), there are serious unresolved problems in extracting chlorophyll

concentration because of high concentration of suspended particles (Gordon and Morel,

1983).

There are three basic approaches to estimate optical water quality parameters

from remotely sensed spectral data based on the definitions given by Morel & Cordon

(1980): (1) an empirical method, in which statistical relationships between the upward

radiance at the sea surface and the quantity of interest are taken into account; (2) a semis-

empirically method, in which the spectral characteristics of the parameters of interest are

known and some modeling of the physics is introduced; and (3) an analytical method, in

which radiative transfer models are used to extract the inherent optical properties (IOUs)

and a suite of analysis methods can be used to optimally retrieve the water constituents

from the remotely sensed upwelling radiance or irradiance reflectance signal.



The focus of this research is the modification and application of analytical and

statistical algorithms to characterize the physically based surface spectral reflectance for

the waters of the Hudson/Raritan Estuary and to retrieve the water constituent

concentrations from the NASA Airborne Visible/Infrared Imaging Spectrometer

(AVIRIS) and LIght Detection And Ranging (LIAR) signals. The approaches used here

are based on the unique capabilities of AVIRIS and LIAR data which can potentially

provide a better understanding of how sunlight interacts with estuańne/inland water,

especially when complemented with in situ measurements for analysis of water quality

parameters and eutrophication processes.

The results of analysis in forms of thematic maps are then input into geographic

information system (CIS) of the study site for use by water resource managers and

planners for better monitoring and management of water quality condition.
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CHAPTER 1

INTRODUCTION

The color of natural water is determined by the light scattered out of the water and light

reflected at the water surface. Light originating from below the water surface shows

characteristic influences of the diverse colors of components in the water. Parameters

related to water color and recorded by ocean color sensors are used to study

environmental processes like the primary production of biomass and the distribution of

suspended matter.

Measurements of the spectral distribution of light intensity can be obtained by

optical remote sensing, a technique to collect color data by detection of upward radiance

at a distance. Remotely sensed data can provide greater economy in many types of

hydrologic surveys than using conventional methods. This is possible since certain

biological and geochemical constituents of surface/nearsurface water produce changes in

reflectance that can be measured by the remote sensing sensors (Baggier et al., 2005).

Three important optical properties used for monitoring water quality are the

concentrations of chlorophyl (CHL_a), color dissolved organic matter (DOM) and

total suspended material (TIME). In coastal water, the major constituents are the CHL_a,

DOM, GSM and the water itself causing absorption and scattering of light. The intensity

of reflected light increases with the amount of scattering and decreases by absorption.

Remote sensing of coastal waters has developed since the early seventies from an

empirically based method producing qualitative water quality maps to more quantitative

methods such as semi-analytical and analytical methods, which produce thematic maps

1
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of spatial and temporal distribution patterns of parameters of water quality based on the

image interpretation and calibration.

With respect to remote sensing, two main types of seawater have been defined

(Morel and Prier, 1977; Gordon and Morel, 1983). Case I waters are characterized by a

strong correlation between scattering and absorbing substance concentrations and the

chlorophyll a concentration. Open ocean surface water is typical Case I water. Case T

waters can be characterized by a single parameter - chlorophyll concentration. Case II

waters are characterized by a lack of any correlation between scattering and absorbing

substance concentrations and chlorophyl concentration as an indication of

phytoplankton. Coastal waters are often referred to as Case II water, where the marine

phytoplankton is not the dominant, optically active water substance. Particulate matter

and colored dissolved organic matter (DOM), which do not always co-vary with

chlorophyll, also affect case II water optical properties. Case II water can be referred to

as multiparameter water. It must be acknowledged that this classification concept is

somewhat idealized because, in reality, all waters belong to an intermediate case (Gordon

et al., 1975).

For analysis and interpretation of the ocean color, whether observed from just

beneath the sea surface or at satellite altitudes, Morel and Gordon (1980) describe three

approaches: (i) an empirical method, relying completely on statistical relationships

between the upward radiance at the sea surface and the quantity of interest; (ii) a semis-

analytically method, in which the spectral characteristics of the parameters of interest are

known and some modeling of the physics is introduced; and (iii) an analytical method, in

which radiative transfer models are used to extract the inherent optical properties (IOUs)
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and a suite of analysis methods can be used to optimally retrieve the water constituents

from the remotely sensed dwelling radiance or irradiance reflectance signal.

In the open ocean (Case I), it is not difficult to derive empirical algorithms

relating the received radiances to surface concentration of water quality parameter

CHL_a. In Case II waters, however, this is much more difficult due to the presence of

high concentrations of suspended sediments and dissolved organic material, which

interfere with the spectral signal from chlorophyl. In this research, the analytical

approach is selected as the principal method because of the availability of

atmospherically corrected AVIRIS data developed as a part of the NIF supported project

(BES-9806982).

The focus of this research is the modification and application of analytical

algorithms to characterize the physically based surface spectral reflectance for the waters

of the Hudson/Raritan Estuary and to retrieve the water constituent concentrations from

the NASA Airborne Visible/Infrared Tmaging Spectrometer (AVIRIS) and LIght Detection

And Ranging (LIAR) signals. The approaches used here are based on the capabilities of

AVIRIS and LIAR data which can potentially provide a better understanding of how

sunlight interacts with estuarine/inland water, especially when complemented with in situ

measurements for analysis of water quality parameters and eutrophication processes

(Bagheri et al., 1999 and Bagheri et al., 2001).

This research is aimed to provide quantitative data in support of use of remote

sensing and CIS technologies as an operational monitoring tool for better management of

water quality conditions of Hudson/Raritan Estuary.



CHAPTER 2

CONCEPTS AND THEORY

2.1 Inherent Optical Properties (IOUs)

Apparent optical properties are those characteristics of the water body that are dependent

on the ambient light; therefore, the measurements can not be taken in the laboratory, only

in situ. By contrast, Inherent Optical Uroperties (SOU) are independent of the illumination,

and they do not depend on the angular radiance distribution of the incident light field

(Preisendorfer, 1976). The two basic inherent optical properties are:

1. Absorption coefficient a

2. Scattering function /3(Θ, ψ)

In general optical properties depend on the wavelength of the incident radiation,

but the wavelength dependency is omitted in the notation unless it contributes to the

clarity of the formulas.

Figure 2.1 Basic interactions between electromagnetic energy and an earth surface
feature

4
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2.1.1 Absorption Coefficient (a)

Absorption is the ability of matter to absorb light energy impinging on it. This light

energy is converted into heat, or in the case of plant matter, it is converted into

photosynthetic energy or secondary energy processes such as fluorescence emission. The

net light lost from an incident beam of light is referred to by the absorption coefficient or

absorbance.

The definition of the absorption coefficient (a) is the fraction of the incident flux

absorbed divided by the thickness of an infinitesimally thin layer of medium (Krijgsman,

1994).

The amount of light absorbed by materials in the water depends on the materials

themselves and the wavelength of light incident upon them. By varying the wavelength of

light, one can deduce information relating to specific material in the water. This is a basic

principle behind spectrophotometer. Figure 2.2 shows the absorption spectra of two

different phytoplankton species commonly found in Hudson/Raritan Estuary.

Figure 2.2 Absorption spectra of two phytoplankton species (Chlorophyta and
Chiorophyta) commonly found in Hudson/Raritan Estuary

(Baggier, 1996)
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Various laboratory techniques are reported in the literature to measure absorption

spectra of suspensions of particulate matter (Krijgsman, 1994). The methods differ with

respect to the illumination of the sample, sample preparation, detection optics, the

amount of scattering included, and the calibration factor between the optical and

geometric path length.

In Case II water, total absorption a includes the absorption of seawater aft,, and the

absorption of all constituents a t . Herein, assume that the absorption is caused by three

absorbing constituents: phytoplankton α h, DOM acDOM, and TSM aTsM:

2.1.2 Scattering Coefficient (b)

The volume scattering function β(Θ, ψ) describes the angular distribution of the light

scattered out of the direction of an incident ray, with θ the angle of light scattered away

from this direction and ψ the azimuth angle. The volume scattering function becomes

independent of the azimuth angle ψ for spherical particles without internal structure and

for randomly oriented particles of arbitrary shape; therefore, scattering function β(θ) can

be substituted for β(Θ, 0) (Krijgsman, 1994).

Scattering coefficient (b) is defined as fraction of the incident flux scattered

divided by the thickness of an infinitesimally thin layer of medium (Krijgsman, 1994).
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Forward scattering coefficient be is the integral of the volume scattering function

β(Θ) over the hemisphere preceding the incident flux (defined by the angular ranges 0 < Θ

Similarly, backscattering coefficient bb is the integral of the volume scattering

function β(θ) over the hemisphere trailing the incident flux (defined by the angular

The total backscatter coefficient bb is the scalar sum of the backscatter of seawater

bb and all constituents bat (Krijgsman, 1994). That is,

The backscatter coefficient of all constituents in seawater bb' is difficult to

measure. Petzold's results in San Diego Harbor (1977) are in common use to model

scattering characteristics of turbid surface water. Because the relationship, ba it = 0.019 Ft ,

was developed over a broad wavelength band and the presence of a wide variety of

particle types and sizes in any given sample, the relationship may represent a wavelength-

independents average backscattering ratio. The ba it/ Ft ratio of 0.019 is of the same order of

magnitude as that derived experimentally by Sydor and Anon (0.013) and from

measurements by Morel (1988) as the value of 0.021.
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2.1.3 Beam Attenuation Coefficient (c)

Attenuation is the total light lost from a beam of light propagating through water. These

losses are due to scattering from suspended materials and the molecular scattering of the

water itself, and to particulate and dissolved materials and the water itself absorbing the

light. The amount of attenuation is primarily dependent upon the wavelength of the

propagated light, the concentration of suspended materials and the concentration and

composition of both particulate and dissolved absorbing materials. The decrease in light

energy from a collimated beam that is passing through a water sample at a specific

wavelength is the beam attenuation coefficient (Krijgsman, 1994).

By the definition of beam attenuation coefficient, the relationship between beam

attenuation coefficient c and other SIOPs is:

2.2 Specific Inherent Optical Properties (SIOPs)

Specific Inherent Optical Properties (SIOPs) are the inherent optical properties of a water

column that can be attributed to the individual scattering and absorption centers

comprising the water column. Correspondingly, there are specific absorption coefficient

α * , specific scattering coefficient b *, and specific backscattering coefficient bb * .

The combined processes of absorption and scattering control the manner in which

impinging radiation propagates through a natural water body. The nature and magnitude

of these absorption and scattering processes are controlled by the bulk optical properties



9

of the aquatic medium. The bulk optical properties are, in turn, direct consequences of the

amounts of scattering and absorption that may be attributable to each optically significant

organic and inorganic component comprising the natural water body. These absorption

and scattering which are referred to as specific absorption and specific scattering

coefficients, therefore, provide the direct linkages between the optical properties of a

natural water body and its composition (Bukata et al., 1995).

Specific absorption coefficient a* is the absorption a at wavelength λ that may be

attributed to a unit concentration of aquatic component i , C1 .

Similarly, the specific scattering b * and backscattering coefficient beware the

scattering b and backscattering bb at wavelength λ that may be attributed to a unit

concentration of aquatic component i , C1 .

Specific scattering coefficient:

Specific backscattering coefficient:

Based on the relationship between SIOPs and SIOPs (Equations 2.7 — 2.9), the

constituent concentrations may be obtained from their specific absorptions upon retrieval

of the IOPs. Those two matrix inversion models described in this thesis will also apply

the above relationship to retrieve the constituent concentrations.



10

2.3 Apparent Optical Properties (AOPs)

Apparent optical property is an optical property of a water body that is dependent don

the spatial distribution of the incident radiation. Apparent optical properties depend on

both the inherent optical properties and the characteristics of the light field

(Preisendorfer, 1976).

The two basic apparent optical properties are:

1. Irradiance Ε(λ)

2. Volume reflectance R(λ,z)

2.3.1 Irradiance Ε(λ)

Irradiance is the radiant flux per unit area at a point within a radiative field or at a point

on an extended surface (Krijgsman, 1994). As apparent optical properties, irradiance can

be used to estimate the inherent optical properties of water. It includes duelling and

downwelling irradiance, Au  and Ad.

The dward irradiance E u(z) is the integral overall dward directions of the

radiance distribution measured with a flat cosine detector looking downward, and the

absolute value of the cosine of the zenith angle were used to obtain positive values.

where, Θ is the zenith angle and φ is the azimuth angle.

The downward irradiance Ed(Z) is the integral over all downward directions of the

radiance distribution measured with a flat cosine detector looking dward.



2.3.2 Reflectance R(z)

The reflectance R(z) is defined as the ratio of the measured dwelling irradiance to the

downwelling at a given wavelength (Krijgsman, 1994). For the special case of

underwater reflectance, this reflectance is termed the subsurface irradiance reflectance or

the volume reflectance.



CHAPTER 3

LITERATURE REVIEW

3.1 Application of Remote Sensing in Ocean Color Study

The goal of measuring ocean color is to estimate the concentrations of certain water

constituents such as phytoplankton biomass, dissolved organic and inorganic matter and

suspended particles.

Since the launch of Landsat in 1972, the images have been used to detect the

chlorophyll and suspended solid concentrations of seawater. Sensors used onboard the

Lands series of satellites were the Multispectral Scanner (MSS) and the Thematic

Mapper (TM). Each of these sensors collected data over a swath width of 185 km, with a

full scene being defined as 185 km x 185 km. Alfoldi and Monday (1978) applied

Lands MSS and TM in discriminating suspended solids. Khorram and Cheshire (1983)

used Lands MSS digital data combined with surface measurements of water quality

parameters to map conditions in the Meuse River Estuary, North Carolina. Kozasa (1984)

studied the distribution of chlorophyll in the East China Sea using Landsat images.

Almanza et al. (1985) evaluated the seasonal differences of chlorophyll concentration in

Mono Lake, California based on Landsat images. Aranuvachapun and Walling (1988)

examined Landsat MIS radiance data for estimating suspended solids concentrations in

the Lower Yellow River, China. Lyon et al. (1988) processed multitemporal Landsat data

to determine water quality parameters in Sandusky Bay, Lake Erie. Doerffer et al. (1989)

analyzed Landsat TM data with respect to its capability for mapping the complex

structure and dynamics of suspended-matter distribution in the coastal area of the Cerman

Bight. Jensen et al. (1989) attempted to model salinity and suspended solids distributions

12
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in Laguna de Terminus, Mexico, using Landsat TM data. Ritchie et al. (1990) compared

six concurrent Landsat MIS and TM scenes to relate Lands digital data to suspended

solids, chlorophyll and temperature in the surface water of Moon Lake, Mississippi.

Schiebe et al. (1992) evaluated several possible models linking Landsat MSS data and

measurements of suspended solids in Lake Chic, Arkansas.

The data collected with Coastal Zone Color Scanner (CZCS) during 1978-1986

demonstrated the value of space observations of water-leaving radiance. For

measurements of phytoplankton pigment chlorophyll concentrations, the green/blue

radiance (GAB ratio) was normally used (Clark, 1981, Gordon et al., 1980). In general the

G/B ratio technique works best in oligotrophic waters such as the open ocean, where the

chlorophyll concentration is low and the duelling blue radiance is high (Gower and

Borstal, 1981). In estuarine (Case II) waters, however, greater chlorophyll absorption,

DOM absorption and organic detritus absorption result in very low blue reflectance and

therefore the GAB ratio becomes increasingly insensitive at higher pigment

concentrations. Estimated errors based on the use of CZCS data are reported to be up to

50% in chlorophyll concentration (Gordon et al., 1983). This problem is compounded by

the insensitivity of the sensor to dissolved organic matter.

The Advanced Very High Resolution Radiometer (AVHRR) on the NOAA polar-

orbiting meteorological satellites has provided almost daily imagery at a 1 km pixel size

for over 25 years. While the visible bands on the instrument were designed for cloud and

land studies, they have shown value in the study of turbid coastal water (Stumpf and

Pennock, 1989; 1991; Stumpf et al., 1993; Gower, 1994; Walker et al., 1994; Walker,
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1996). Το date, AVHRR offers the instrument for documenting changes in water clarity

occurring within large estuaries.

During 1990's, data from other earth observing satellite-based sensors has aided

researchers in the study of ocean productivity, color, and pollution conditions. These

include the Sea viewing Wide Field of view Sensor (SeaWiFs) and the Moderate-

resolution Imaging Spectroradiometer (MODISH). SeaWIFS, the ocean color satellite,

images the oceans at 1 km resolution in six visible spectral bands compared to the four

bands of CZCS. SeaWIFS is an improvement over CZCS in sensor noise and calibration.

The six narrow visible bands center at 412 nm, 443 nm, 490 nm, 510 nm, 555 Om (for

water leaving radiance measurements) and 670 nm (for aerosol radiance measurement).

For ocean study, algorithms have been developed for data processing such as SeaWiFS

Ocean Color 2 band algorithm (0C2) and Ocean Color 4 band algorithm (0C4)

(O'Reilly, 2000; Gohin et al., 2002). Also empirical and neural network algorithms were

developed for estimation and validation of Chl-a from SeaWiFS data (O'Reilly, 1998;

Habbane et al., 1998; Feiner and Brown, 1999; Kahru and Mitchell, 1999). SeaWiFS

Data Analysis System (SeaDAS) software was developed specifically for SeaWiFS data

processing (Bait et al., 2000).

MODISH is the key instrument aboard the satellites Terra (EGOS AM-i), launched

on 18 December 1999 and Aqua (EGOS PM-i), launched on 4 May 2002. MODISH views

almost the entire surface of the Earth every day, acquiring data in 36 spectral bands over

a 2330 km swath. MODISH is ideal for monitoring large-scale changes in the biosphere

providing new insights into the global carbon cycle investigations. Some algorithms have
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been developed to retrieve CHL-a concentrations using MODISH data (Clark, 1999;

Carder et al., 2003; Gross et al., 2004.).

Although satellite remote sensing is a proven technique for monitoring and

analyzing water bodies, most available satellite sensors with suitable resolutions were

designed for land applications or large scale ocean study (Case 1 water) (Hilton 1984;

Han et al., 1994; Dekker and Peters, 1993). Therefore, the number of spectral channels,

their distribution, and the range of brightness have not been optimized for water resource

monitoring. As a result, the application of Lands, SeaWIFs and MODISH images to

studies of Case II water systems have been limited mainly by the low spatial resolution

and poor spectral band location with respect to the features of most interest in the

reflectance spectrum.

In recent years, imaging spectrometers have become available which have higher

spatial and spectral resolutions. Imaging spectrometers, or multispectral sensors, are

instruments that acquire multispectral images in many, very narrow, contiguous spectral

bands throughout the visible, near-IR, and mid-JR portions of the spectrum. These

systems typically collect 200 or more channels of data, which enables the construction of

an effectively continuous reflectance spectrum for every pixel in the scene. The intent of

these systems is to permit discrimination among earth surface features that have

diagnostic absorption and reflection characteristics over narrow wavelength intervals that

are "lost" within the relatively coarse bandwidths of the various channels of a

conventional multispectral scanner (EASEL, 1991). Initial imaging spectrometry

research was conducted with data acquired by the Airborne Imaging Spectrometer (AIDS)

in 1985. This system collected 128 channels of data, which were approximately 10nm



16

wide in contiguous between 2400nm and 2400nm. Literature review indicates the

successful use of the airborne imaging spectrometers such as Compact Airborne

Spectrographic Imager (CAI), CCD Airborne Experimental Scanner for Applications in

Remote Sensing (CAESAR) and Ceophysical and Environmental Research Imaging

Spectrometer (ERIS) with high spectral resolution in environmental applications

(EASEL, 1991).

A second-generation airborne imaging spectrometer is the Airborne Risible-

Infrareds Imaging Spectrometer (AVIRIS). This system typically collects data in 224

channels, at 9.6nm interval, in contiguous bands between 400nm and 2450nm.

Latest reports on the use of AVIRIS data over water have been very encouraging.

Carder et al. (1993) have used ARIRIS data in the study of dissolved and particulate

matter in Tampa Bay, Florida. In another water application, Hamilton et al. (1993) used

AVIRIS data to study chlorophyll concentration and bathometry in Lake Tahoe. Dekker

and Hoogenboom (1996) presented results of their modeling efforts on simulated

ARIRIS data in which the specific inherent optical properties (SIOPs) were related to the

subsurface reflectance, R(0-), over atrophic lake waters. In more recent water

applications of the AVIRIS, Gastil and Melack (1998), and Baggier et al. (1999, 2000,

2001, 2002, 2003) demonstrated an improved retrieval of chlorophyll concentrations

using atmospherically corrected multitemporal ARIRIS data in inland lake and nearshore

environment respectively. Table 3.1 compares AVIRIS with other sensors.



Table 3.1 Technical Differences Between Lands MIS, TM, AVHRR, SeaWIFs,
MODISH and AVTRIS

17

(Source: http://www.nasa.gov)

Airborne ocean color measurement can be separated into two distinct subdivisions

(passive and active) defined by the two individual methods of detection and

measurement. Passive ocean color measurement is the original, traditional method

whereby incident solar radiation is diffusely backscatter into a spectroradiometer

(Hoge et al, 1981). CAI, CAESAR, ERIS and AVIRIS mentioned above all belong to

passive airborne measurement. Active ocean color measurement is defined herein as the

received fluorescence or other backscatter resulting from the stimulation of the water

column with man-made electromagnetic radiation such as from laser (Hoge et al., 1986).

The most common active ocean color measurement system is the fluorescence LIAR.
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Fluorescence refers to the characteristic of various materials to absorb energy of

one wavelength and then reemit energy, generally at a longer wavelength, shortly after

excitation by the original energy source (Bristow et al., 1981). Fluorescence signal from

the crop of phytoplankton was first identified by Morel and Prier (1977) from

subsurface measurements of spectral diffuse reflectance and by Neville and Gower

(1977) from measurements of nadir radiance above the sea surface. Gordon (1979) and

Kattawar and Vastano (1982) presented a mathematical description of the relationship

between this natural or solar-induced fluorescence, the concentration of CHL a, and the

ambient light intensity which excites the fluorescence. Based on those studies,

Fluorescence Line Imager (FLIP) was developed in the 1970's and designed to have

sufficient sensitivity and spectral resolution to measure chlorophyll pigments by making

use of their characteristic fluorescence (Gower and Borstal, 1981; Hollinger et al., 1987).

Unfortunately the system was poorly calibrated and was sensitive to internal scattering.

More recently, Kishino et al. (1984a, b), Topliss (1985), Topliss and Platt (1986), Dirks

and Spitzer (1987), and Preisendorfer and Mobley (1988) have further investigated

factors affecting natural fluorescence in the field.

Based on the FLIP method, the Airborne Oceanographic Liar (GAOL) fluorosensing

was built by the AVCO Everette Corporation under a joint program sponsored by NASA,

NAVOCEANO, and NOAA in the 1977. The purpose of the joint interagency program

was to allow investigation of the potential for an airborne laser sensor in the areas of

altimeter, hydrography, and fluorosensing. During the past 17 year period, the instrument

has undergone considerable modifications including several major redesigns. The

instrument modifications and the results of investigations with the GAOL for various
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marine and terrestrial applications have been reported in numerous papers presented in

refereed journals (Hoge et al, 1980; Hoge and Swift, 1983; Grabill et al, 1984; Hoge et

al., 1986; Wadhams et al., 1992).

The NASA GAOL Fluorosensor is a laser fluorospectrometer (and associated

instruments) which is carried onboard a NASA P-3Β or NASA C-130 aircraft. The

AOLFL measures a variety of reflected and induced light properties, from which a

number of oceanographic surface water properties can be derived. It was designed to

have sufficient sensitivity and spectral resolution to measure chlorophyll pigments by

making use of their characteristic fluorescence (Hoge, 1986; Chekalyuk et al., 2000;

Wright et al., 2001). The GAOL fluorescence uses a pulse of laser light fired from the

aircraft down into the ocean. The laser light hits the single celled plants in the ocean. The

chlorophyll inside the plants absorbs the laser light, and fluoresces, giving off red light, in

much the same way as certain paints glow under a "black light". A telescope onboard the

aircraft collects the light from the plants, and electronic equipment converts the signal

into numbers a computer can record. Literature search indicates successful applications of

GAOL Fluorosensor and retrieval of IOUs on the shelf, the slope, Gulf Stream and in the

Sargasso Sea (Hoge and Lyon, 1996; Hoge and Lyon, 1999; http://aol.wff.nasa.gov ,

2004).

It should be noted that rather large variations in the penetration depth of the laser

beam may exist over short horizontal distances, particularly in the near-shore portion

(Hoge et al., 1983). If left uncorrected, this spatial variability in water column optical

attenuation would manifest itself as variability in the pigment fluorescence signal caused

by the laser beam not fully accessing the constituent fluorophores. Since the Raman
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scatter is due only to the water molecules, the relative penetration depth may be defined

by the strength of this spectral line. Thus, the apparent variation of pigment fluorescence

caused by water column optical attenuation can be corrected by normalization using the

water Raman backscatter signal (Hoge and Swift, 1981; Hoge and Swift, 1983; Bristow

et al., 1981). The use of this technique assumes that the fluorophores are uniformly

distributed in the water column volume being sensed. The water Raman normalization

procedure has been found to produce an essentially linear response to chlorophyll

concentrations (Bristow et al., 1981). The water Raman normalization technique has

become an accepted method for removing the variability of water column optical

attenuation effects.

Bristow et al. (1981), Hoge and Swift (1983), Poole and Esaias(1982) and Exton

et al. (1983) found a nearly linear relationship between normalized laser-induced

fluorescence and in situ chlorophyll concentration in laboratory tests using both natural

and artificial mixtures:

Where,

C---chlorophyll concentration

k---coefficient of the linear relationship between normalized laser-induced fluorescence

and chlorophyll concentration

f ---normalized fluorescence signal by water Raman signal
r
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In this study, a combination of data from dedicated flights acquired by

hyperspectral (AVIRIS) and GAOL were used in order to take advantage of those

wavelengths necessary for detailed analysis of the Hudson/Raritan estuarine (Case II)

waters.The unique capability of ARIRIS and LIAR data potentially can provide better

understanding of how both sunlight and laser light interact with estuarine/inland water,

especially when complemented with in situ measurements for analysis of water quality

parameters and eutrophication processes. The AVIRIS uses the absorption-based

principles, and GAOL uses fluorescence-based principles. The fluorescence-based

algorithm is not likely to be influenced by DOM absorption since the DOM

absorption in the red part of the spectrum is negligible. The main differences between the

two techniques are outlined in Table 3.2 (IOCCG,1999). Note that both techniques

require calibration against in-situ measurements.

Table 3.2 Technical Differences Between Absorption-based and Fluorescence-based
Signals of Chlorophyll a

(Sourced: IOCCG,1999)



22

3.2 Review of Bio-optical Motels

To develop analytical algorithms for Case II waters, an optical model needs to link the

water quality parameters (WQPs) to the Inherent Optical Properties (SIOP), linking these

in turn to the subsurface irradiance reflectance R(0-) (Baggier, 2004).

3.2.1 Gorton's 1975 Optical Water Quality Motel

To construct a bio-optical model which relates the constituent concentrations to the

subsurface irradiance reflectance, R(0-), several workers have investigated the

relationship between R(0-) and the IOPs for ocean and inland water systems (Cordon et

al., 1975; Whitlock et al., 1981; Kirk, 1991; Krijgsman, 1994). Dekker et al. (1997) found

that the following model originally developed by Gordon (1975) was appropriate for

Case II waters:

where:

a-total absorption coefficient

bb-backscattering coefficient

r-a factor based on the geometry of incoming light and volume scattering in water

The SIOP a and bb were assumed to be linear functions of the constituent

concentrations. This allowed the SHOP to be introduced that link the concentrations of all

optically active components to the subsurface irradiance reflectance. The SOU per unit

concentration, e.g. the specific inherent absorption by phytoplankton, a* Ρh, was the

absorption caused by 1mg m -3 CALF (Equation 2.7). Using Beer's law (Equation 2.1), the
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total absorption coefficient a can be written as sum of the absorption by phytoplankton,

TSM, DOM, and water. It should be noted that specific absorption for DOM could not

be calculated because no concentrations of DOCK or POCK were measured during field data

analysis. Therefore, the DOM absorption measured at 440 nm was taken as measure of

concentration. The values for absorption coefficient (kw ) and the scattering coefficient

(b,.v) of pure water were taken from Bukata (1974) The backscattering (bb) is used here

which is based on the conversion of the scattering coefficient to the backscattering

coefficient. The volume scattering function of Petzhold (Kirk, 1994) is assumed to be

valid, therefore bb was obtained as 0.019b. For pure water, this ratio is 0.5 but for Heston

measurements depends on the composition of the water (Morel and Prier, 1977).

Where:

ad — absorption of pure water

b — scattering of pure water

a* ph — specific absorption of the phytoplankton

bb*rsM - specific backscatter of TSM

a*rsM - specific absorption of TSM

0.5 — backscatter to scatter ratio of pure water

quality parameters concentrations. For example, Hoogenboom (1998) and Hakvoort
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(2000) used it to develop the matrix inversion models which are described in matrix

inversion models (ΜΙ) section of the thesis.

3.2.2 Gordon's 1988 Optical Water Quality Motel

Gordon and Clark (1981) defined the normalized water-leaving radiance L as:

where F0 is the extraterrestrial solar irradiance, Γο  is the solar zenith angle, t(80) is the

diffuse transmittance of the atmosphere, and R is the irradiance reflectance just beneath

the sea surface. R = Ευ  / Ad, where Auk and Ad are the upwelling and downwelling

irradiance, respectively, just beneath the surface. Q is the ratio of the dwelling radiance

to the dwelling irradiance toward zenith. Q equals π for a totally diffuse radiance

distribution and, although it has received little experimental attention, appears to be

between 4 and 5 and somewhat dependent on wavelength for radiance distributions

observed in nature (Austin, 1979). M is defined by

Fresnel reflectance of the sea surface for normal incidence, ρ is the Fresnel reflection

abed of the sea surface for irradiance from the sea and sky, m is the index of refraction

of seawater, and r is the water-air reflectance for totally diffuse irradiance. For the (1-rR)

term, r — 0.48 and accounts for the effect of internal reflectance of the dwelling radiance

field by the sea surface. Nearly independent of wind speed, the value of ρ is taken to be

0.021 over the visible spectrum (Hoge, et al., 1996). Gordon et a1.,(1988) further indicate

that ρ depends in a complicated manner on the solar zenith angle through the
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dependence of the relative amounts of direct sunlight and diffuse skylight incident on the

sea surface. Finally, Cordon et al. (1988) suggest that for 0 < Bo < 60° , the term (1- P )

would be expected to vary between 0.934 and 0.979. For those conditions, M was chosen

to be a constant ti 0.55. For the research herein the solar zenith angle θ was held fixed at

zero degrees and the effect of atmosphere assumed to be absent due to low flying altitude

Equation (3.5) shows that L is related to the optical properties of the water

through R and Q in the combination R/Q, which depends on the specific details of the

scattering phase function in the backward direction.

Gordon et al. (1988) have determined that R/Q can be directly related to the total

absorption a and the total backscatter bb by

where 1i = 0.0949 and /2 = 0.0794 (Hoge et al., 1996) were calibrated as constants

Gordon et al. (1988) also concluded that the error in (3.5) is significantly less than

10% for a wide range of realistic scattering phase functions.

Compared with Gorton's 1975 model (3.2), this model is more precise, however,

more parameters need to be calibrated. Hoge and Lyon (1996) employed this model in

their matrix inversion model which was used in this research.
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3.3 Retrieval of Water Quality Parameters Using Bio-Optical Models

In order to analyze and interpret the color of coastal waters, Dekker and Hoogenboom

(1996) redefined the definitions originally determined by Morel and Gordon concerning

three possible approaches to estimate water quality parameters from remotely sensed data

(Figure 3.1). Three approaches used in water quality modeling are: the empirical method,

semi-analytical method and analytical method.

3.3.1 The Empirical Method

In the empirical approach, statistical relationships are sought between measured spectral

values ("remote sensing image" section in Figure 3.1) and measured water parameters.

Α typical example of the empirical approach is the CZCS basic algorithm

(Gordon et al., 1983):

were C1 or C2 is the total pigment concentration, i.e., the sum of the concentrations of

are ratios of water-leaving radiances in CZCS spectral bands. Pigment retrievals from

CZCS data in Case I waters have achieved reasonable results. However, the retrieval of

pigment concentration may be less than 50% accurate for Case II waters (Carder et al.,

1991).
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The SeaWiFS basic chlorophyl algorithm is another example of an empirical

approach. It is expressed as a cubic polynomial (O'Reilly et al., 1998):

where C0 and A l, i=0, 1, 2, 3 are empirical coefficients, and r=lοg[R rs(488)/R rs(555)]. Rτs

is remote-sensing reflectance, the ratio of water-leaving radiance to downwelling

irradiance just above the sea surface.

For different water bodies, those calibrated coefficients were different. The

coefficients for the SeaWiFS chlorophyll a algorithm are: Co =-0.0929 mg/m Αα

However, the limitation of such empirical algorithms is that spurious results may

soccer, because causal relationships between the parameters are not necessarily implied. In

such cases, so-called semi-analytical and analytical algorithms are promising (Dekker

and Hoogenboom, 1996).
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Figure 3.1 The forward and inverse model for remote sensing of water quality
(Dekker et al., 1996)

3.3.2 The Semi-Analytical Method

This approach may be used when the spectral characteristics of the parameters of interest

are known. In figure 3.1 this relates to the "forward water" section, but only the sections

"measured water parameters" and "measured R(0-)" are used for the statistical analysis
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by focusing on well-chosen spectral areas and appropriate wavebands or combinations of

wavebands, which are used as correlates. Quantitatively, the coefficients from any such

relationship only apply to the data from which they were derived. Each application must

therefore be individually calibrated.

For the semi-analytical, Morel (1988) and Gordon (1988) were the first to

introduce these methods. They created objective functions which are square of the

difference between the measured and the modeled reflectance and minimized the

objective functions to obtain the solutions as the spectral reflectance under the situations

with different water constituent concentrations.

where F(C) is the objective function, which defines how well data fit the hypothesis and

expresses the quantity to be minimized, Rι=R(λ^) is the modeled spectral reflectance, C^ is

the water constituent concentrations, and σιΡ=σ( λιΡ) is the spectral weighting function.

There have been many applications of the semi-analytical algorithms to the

retrieval of the water optical properties and constituent concentrations since 1985

(Burenkov et al., 1985; Sugihara et al., 1985; Carder et al., 1991; Lee et al., 1994;

Doerffer and Fischer, 1994; Roesler and Perry, 1995; Vasilkov, 1997; Garver and Siegel,

1997). Minimization of the nonlinear function (equation 3.9) was used in Burenkov et al.

(1985), Lee et al. (1994), Doerffer and Fischer (1994), Roesler and Perry (1995), and

Garver and Siegel (1997). Since the minimization of the nonlinear function of several

variables (Equation 3.9) may be computationally expensive, it cannot be used for

operational purposes.
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3.3.3 The Analytical Method (the "inverse atmosphere" and "inverse water"

sections in Figure 3.1)

In an analytical model, the apparent optical properties (ATOP) and inherent optical

properties (SOP) are used to model the reflectance and vice versa. Apparent optical

properties include irradiance and reflectance, and the two basic inherent optical properties

are absorption coefficient and volume scattering coefficient. The water constituents are

expressed in their specific (per unit measure) absorption and backscattering coefficients.

Subsequently a suite of analysis methods have been used to optimally retrieve the water

constituents from the remotely sensed duelling radiance or radiance reflectance signal.

In Case II water, the variation in water composition and thus in water color is

wider than in Case I waters. From measurements in 125 Case II waters, it has been found

that the concentration of the sum of pheaophytin and chlorophyl (CAL) ranges from 1

to 900 mg m -3 , GSM dry weight 1 to 100 g m -3 and DOM (color dissolved organic

matter) with an absorption coefficient g440 from 0 to 60 m -1 at 440nm (Rijkeboer et al.,

1998). The presence of several non-correlated constituents makes Case II waters

optically more complex than most Case I waters. The color of Case I waters quantified by

the spectral subsurface irradiance reflectance, R(0-), is predominantly a function of

absorption and scattering by algal pigments and water itself. In Case II waters,

backscattering from particles is the dominant scattering factor. In those waters the

combined effects of particulate backscattering and high absorption introduce complex

interacting relations between the water constituents and subsurface irradiance reflectance.

Therefore, retrieval of constituents concentrations from the reflectance requires an

analytical approach (Doerffer, 1989). In the analytical approach, the retrieval is based on
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a bio-optical model which describes the relation between the reflectance and the

concentrations of the constituents.

To develop a purely analytical method, all optical properties in the water and

reflectance must be known, since the water color is an apparent optical property of water.

Water reflectance (R), the irradiance ratio of duelling to downwelling, is another

apparent optical property, which depends not only on seawater constituents but also on

the ambient light environment (sky light, cloud, sea surface roughness, sea bottom

conditions, etc.). However, the reflectance will be changed primarily with variations in

water constituents. Hence, the ocean reflectance contains all the essential information

concerning the qualitative and quantitative properties of seawater constituents (Cordon,

1975).

During the last ten years, progress has been made in the analytical inversion of

relatively simple bio-optical models that simulate the underwater light field. Analytical

inversion of these models leads to algorithms to retrieve concentrations of optically active

constituents from remotely observed water spectra. Three analytical inversion methods

have been developed, each with its own strengths and weaknesses.

(1) Matrix Inversion Method (ΜΙ)

The linear matrix inversion developed by Hoge and Lyon (1996) retrieves the IOPs (from

which the constituent concentrations are obtained). The model (Equation 3.10) describes

the generation of updwelled water-leaving spectral radiance caused by backscatter and

absorption of incident downwelling solar irradiance.
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The MGM can estimate the concentrations of the constituents consistently for a

wide range of inland water types. In principle, this method is capable of using all spectral

information provided by different instruments, including imaging spectrometry data. The

MIME is predominantly sensitive to the mean "hull" of the spectrum. For different water

bodies, it is necessary to calibrate the different wavelengths - λ, spectral slopes - s, total

constituent backscattering spectral exponent — n, and phytoplankton Gaussian model

spectral width — g.

An alternate form of ΜΙΜ was obtained by taking the correlation between GSM

and CAL into account (Hoggenboom et al., 1998). Accordingly, the total GSM (TSΜ 0Ι _

TSΜΡh + TSM SS) values include the part of the dry weight determined by the biomass of

phytoplankton as correlated to CAL concentration. An average value of 0.07

(TSΜ h=0.07 CALF) was used here based on Buiteveld (1990).



33

R	 subsurface irradiance reflectance

a*cDoM 	 specific absorption of DOM

DOM 	 averaged DOM concentration

CAL----average CALF concentration

f 	 a multiplication factor that depends on the apparent optical properties of the light

field (Ads, 1987; Stain et al., 1989; Kirk, 1994; Weidemanr et al., 1995). An average

factor of 0.34 is used by Dekker (1993) for a range of 0.12 to 0.56 values. In this research,

a range of 0.28 to 0.34 for f has been used.

In the matrix inversion model introduced by Hakvoort, the retrieval of DOM

concentration was included (Hakvoort et al., 2000).
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The modified versions of the models as applied to data collected from

Hudson/Raritan Estuary will be described in detail in the subsequent chapters.

(2) Ratio Matrix Inversion (RMI)

In the last decade, ratio-based algorithms have proven to be very successful for the

determination of pigment concentrations (Dekker, 1993; Gongs, 1999).

The following algorithms for estimating chlorophyl (CALF) were developed

using the RMI method:

Equations (3.13) and (3.14) were by Dekker et al. (1993, 1997) based on CAI

and PR650 sensors respectively. Equations (3.15) and (3.16) were used for SeaWiFS and

Tedium Resolution Imaging Spectrometer (MERITS) by Althuis et al. (1996)
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Peters et al. (2001) developed a new analytical method which combines the

advantages of ratio algorithms (i.e., stability, robustness, etc) with the advantages of

inversion using all spectral bands.

B Backscatter to scatter ratio

Due to the nonlinearity in Equation (3.15) caused by the occurrence of TSM in

C5 and C6, the solution needs some assumptions: C4/TSM and C4/TSM can be neglected

at higher TSM concentrations. The method requires R(0-) to be available for at least three

spectral bands, a known SHOP, and a reasonable estimate of B. Thus, for any number of

relevant band ratios a system of linear equations can be built that can be solved for the

water quality parameters.

However, in many inland waters the reflectance and thus the ratio of two bands, is

significantly influenced by TSM and DOM (Dekker, 1993; Gitelson et al., 1993). As a

result, the ratio algorithm may give ambiguous estimates of the concentrations of CAL

depending on the water composition.
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(3) One-band Algorithm for TSM Retrieval

One of the more successful applications in marine remote sensing is the automated

operational processing of satellite images obtained by the SeaWiFS and other satellites to

obtain GSM maps (Van der Woered et al., 2000; Pasterkamp et al., 1999). SeaWiFS was

designed for the analysis of clear oceanic waters and features with only six usable

spectral bands for parameter retrieval. In this model, fixed values for DOM and CAL

were adopted:

Peters et al. (2001) performed several testing of this algorithm on independent

datasets of spectra and concentrations of the Dutch North Sea, collected during the year

2001 spring bloom of algae. He found the algorithm seems to underestimate TSM at low

concentrations (less than 20 mg/i) and to overestimate at higher concentrations

(>20mg/1). This may be due to the fact that the Specific Inherent Optical Properties

(SIOPs) for both ranges of concentrations differ from the data set on which the algorithm

was calibrated. The underestimation at low concentration ranges is in accordance with the

findings of Van der Jeered et al., 2000, who found the same phenomenon when

comparing the algorithm results (applied to SeaWiFS) with long-term field observations.

Given the strengths and weaknesses of the methods described, the modified

matrix inversion models originally developed by Hoge and Lyon (1996) and

Hoogenboom et al. (1998), were used as the principal models to retrieve concentrations

of water quality parameters from the AVIRIS and LIAR data acquired over the NJ/NY

estuary in 2001 and calibrated with in-situ measurements. The adjustments made on the
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model parameters included are phytoplankton Gaussian model spectral width - g, spectral

slopes - s, total constituent backscattering spectral exponent — n and the selected

wavelengths — λ (Hoge, et al., 1996; Hoogenboom et al., 1998).



CHAPTER 4

CHARACTERISTICS OF THE STUDY AREA

The study area is the Hudson/Raritan Estuary of New York — New Jersey located south of

the Verrazano Narrows and bordered by western Long Island, Staten Island and New

Jersey (Figure 4.1).

The Hudson/Raritan Estuary is a complex ecosystem that is important to the New

York metropolitan area and is considered "the most intensively developed and

industrialized estuary on the U.S. east coast" (Pearce, 1988). The major freshwater

discharges are the Hudson, Raritan, Passaic and Hackensack Rivers. Hudson/Raritan

estuarine waters are degraded by municipal and industrial wastewater discharges, land

runoff and combined sewer outflows, which contribute to low dissolved oxygen. The
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freshwater discharge from the Hudson River contributes a monthly average discharge

ranging from about 100 m 3/s in dry seasons to about 1800m 3/s in spring, while the

combined monthly average discharges of the Raritan, Passaic and Hackensack rivers

ranges from 10 to 100 m 3/s (Baggier, 1999). The number of wastewater inputs include 26

major waste treatment plants, about 100 point sources of industrial and municipal origin

and in excess of 700 combined storm drains and sewer outflows (O'Connor and Mueller,

1984). There are four major sewage sources; two with a combined mean discharge of 11

m3/s are located near the mouth of the Passaic River and near the mouth of Kill Van Kull

that opens to the part of the estuary. A third in the East River has a mean discharge of 42

m3 /s, and the fourth sewage source is Jamaica Bay with a mean discharge of 14 m 3 /s.

The volume discharged into the system from Staten Island, New Jersey and the

Raritan River is small compared to these sources. Conditions in the lower part of the

estuary can be quite variable due to its shallowness and the speed with which it can

change in response to factors such as tide, rain and wind. However, the net movement of

water within the estuary is counterclockwise. The following two factors govern the

circulation patterns in the estuary (Oey, et al., 1985):

• The geometry of the estuary with open boundaries (Sandy Hook connection with

the Atlantic Ocean and East River Strait connection with Long Island Sound)

• Surface wind stress which is considered part of the surface boundary conditions.

The partially mixed drowned river estuary is relatively shallow (< 8 m) (Oey et

al., 1985). The estimated flushing time of the estuary, 16-21 days or 32 to 42 tidal cycles

(Jeffries, 1962), tends to retain pollutants entering the system and delay dilution with

receiving waters.
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Many organisms continue to use the estuary for part or all of their lives. These

organisms include commercially valuable shellfish and finish and lower organisms such

as polychaetes, zooplankton and phytoplankton that are essential to the estuarine food

web. Many fish depend on the estuary as a nursing and critical stages of their life cycle

occur in these waters, while others use it as a key migration route between fresh and

seawater. At one time both shell- and fin-fishery fisheries thrived in the estuary. Some, such

as oyster, hard calm and soft calm sheilfisheries collapsed or were reduced because of

bacterial contamination. The commercial fin-fishing was relocated offshore due to

legislation preventing fishing in the estuary. Today, outside of a few pound nets in the

part of the estuary, most fin-fishery has been reduced to sport activity, although some

clams are harvested for deputation or transfer to cleaner waters (Mackenzie, 1990).

However the estuary is used for many recreational purposes including swimming, boating

and sport fishing, which is now one of the biggest industries. Over the last century the

quality of the estuary has degraded in part due to eutrophication, the process of nutrient

enrichment through either natural or anthropogenic processes. Eutrophication disrupts the

pre-existing natural balance of the system, resulting in zooplankton blooms of both

increased frequency and intensity in response to the over-enrichment. Noxious

zooplankton blooms are among the potential negative impacts, as are shifts to less

desirable species of zooplankton, diminished aesthetics (e.g. from brown tides) and

changes in zooplankton cell size. The latter can adversely affect the nutrition of

organisms that have cell size-related food requirements (e.g. clams). Likewise, dense and

accelerated zooplankton blooms ultimately increase oxygen demand on the system

leading to episodes of hypoxia. One indicator that the Hudson/Raritan Estuary is in an
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advanced stage of eutrophication is the high concentration of chlorophyll found in

Raritan Bay (Pearce, 1984). Phytoplankton increases are a definite manifestation of

eutrophication or enrichment of New Jersey estuarine/coastal waters.

Phytoplankton populations in the Ηudson/Raritan estuary, the Bight Apex and

coastal waters of New Jersey are dominated by diatoms (> 20μm) such as Skeletonema

costatum during the stratified winter/spring months (Novermber-April) and by

Nannochioris atomus (between 0.7-2.0 μm) dating the stratified summer/fall months

(May-October). Diatoms typically dominate at all times in the offshore waters of the

Bight (Baggier, et al., 1999).

Dinoflagellate blooms off New Jersey are recurrent events during the summer.

Since 1968, red tides have been associated with Olisthodiscus luteus (1976, 1978, 1979)

and Prorocentrum micanas (1968, 1972, 1983). The bloom of Gyrodinium aureoles off

the coast of southern New Jersey in 1984-85 was termed "green tide" because of its

brilliant green color. Nannochioris atomus is another common species that causes green

tides in New Jersey waters (DEEP, 1986).

Brown tides are caused by the bloom of the Aureococcus anophageffereus. It had

first appeared in Narragansett Bay, Rhode Island and Long Island's Peconic and Great

South Bays as well as the New Jersey's Barnegat and South Bays. The brown tides occur

in spring and summer months. They can kill shellfish and block sunlight to the

underwater plants destroying the habitat of many marine resources. The brown tides have

a major effect on shellfish industry. In 1985, a brown tide in Peconic Bay reduced a $

2 million scallop industry to a few thousand dollars. Research has shown that iron can

stimulate growth of brown tides. Environmental factors such as a warmer climate,
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increased salinity of water and lack of rainfall could contribute to the bloom formations,

but the exact causes or cure are not known yet (NY SeaCrant, 1998).

To improve the quality of water and control the problem of excessive fertilization,

regular monitoring of water quality is required. Currently there is no systematic

management tool for operational monitoring and prediction of spreading of pollution for

Hudson/Raritan Estuary. This research is aimed to utilize the data acquired by dedicated

remote sensing flights in modeling of water quality parameters and thus better

management of water resources.



CHAPTER 5

RESEARCH MATERIALS

5.1 Airborne Visible Infra Red/Imaging Spectrometer(AVIRIS) Data

Airborne Visible Infra Red Imaging Spectrometer (AVIRIS) is usually flown on the

aircraft platform of a NASA ER-2 jet at approximately 20 km above sea level.

The AVIRIS instrument contains 224 different detectors, each with a wavelength

sensitive range of approximately 10 manometers (nm) (nominal width is 9.6 nm),

allowing it to cover the entire range between 400 nm and 2500 nm. When the data from

each detector is plotted on a graph, it yields a spectrum. Comparing the resulting

spectrum with those of known substances reveals information about the composition of

the area being viewed by the instrument. AVTRIS uses a scanning mirror to sweep back

and forth ("whisk broom" fashion), producing 614 pixels for the 224 detectors each scan.

The AVIRIS is capable of measuring hydrologic optical properties at a level of

detail unmatched by any existing satellite instrument. The instrument is composed of four

spectrometers (A, B, C, and D). The A spectrometer records the data for the first 32

bands while the B, C and D spectrometers record 64 bands each. Because of band overlap

between the four spectrometers, 210 discrete bands are available. The pixel size and

swath width of the AVTRIS data depend on the altitude from which the data is collected.

When collected by the ER-2 (20km above the ground), each pixel produced by the

instrument covers an area approximately 20 meters square on the ground (with some

overlap between pixels), thus yielding a ground swath about 11 kilometers wide. The

ground data is recorded on board the instrument along with navigation and engineering

data and the readings from the AVTRIS onboard calibrator (http://aviris.jpl.nasa.gov ).
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Figure 5.1 illustrates one means commonly employed to display AVIRIS data. In

AVIRIS image, the data can be thought of as a "cube" of the dimensions lines x columns

x bands.

Figure 5.1 AVIRIS remote sensing concept
(http://aviris.jpl.nasa.gov  /html)



Figure 5.2 AVIRIS image acquired on 7/13/2001 over a transact of the study area
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5.2 LIght Detecting And Ranging (LIAR) Data

LIght Detecting And Ranging (LIAR) uses the same principle as RADAR. The LIAR

instrument transmits light out to a target. The transmitted light interacts with and is

changed by the target. Some of this light is reflected/scattered back to the instrument

where it is stored. The change in the properties of the light enables some properties of the

target to be determined.

The LIAR data used in this research were acquired by NASA Airborne

Oceanographic Lidar (AOL). The NASA GAOL Fluorosensor is a laser fluorospectrometer

which is carried onboard aircraft as small as twin engine planes. The Airborne

Oceanographic Lidar Fluorosensor instrumentation acquires measurements of

fluorescence from certain oceanic pigments. These include chlorophyll and phycoerythrin

from marine phytoplankton and chromophoric dissolved organic matter (DOM), from

which a nesber of oceanographic surface water properties can be derived. The wafter-

Ragman backscatter is also acquired and is used to normalize the laser-induced

fluorescence data for surface layer spatial differences in water attenuation properties. The

GAOL fluorescence uses a pulse of laser light fired from the aircraft down into the ocean.

This sensor transmits two laser wavelengths, one UV (355nm) and one green (532nm) to

the ocean surface from the aircraft. These laser frequencies interact with the water

molecules, causing a shift in the laser frequency. If biological organisms containing

chlorophyll and/or phycoerythrin are present in the water, the 532nm laser light is

absorbed, and reemitted as particular bands of fluorescence. A telescope onboard the

aircraft collects the light from the plants, and electronic equipment converts the signal

into numbers a computer can record. The GAOL collects the laser-induced fluorescence
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spectrum in a contiguous region covering the spectral band from 370 nm to 740 nm, for

each laser pulse (http://aol.wffnasa.gov).

Figure 5.3 Map of the transacts covered by GAOL during 4/11/2002 data acquisition
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5.3 Spectroradiometers (0L754) Data

The COL 754 Portable UV-Visible-NIR spectroradiometric are a series of compact,

portable, double monochromatic based spectroradiometric capable of making highly

accurate spectroradiometric measurements in the laboratory or in the field. Three optic

heads are available for covering the wavelength range of 200 to 1600 Om. The COL 754's

innovative design combines compact Visible-NIR (350-1100 nm) optimized double

monocbromators with a separate controller that houses all data acquisition and controls

electronics. The system can be configured to make spectral measurements at wavelength

resolutions from 1 Om to 10 urn for computation of normalized percentage reflectance

curves. Fast and accurate spectroradiometric measurements can be made in the

laboratory, or with the battery/dc power option, outside with total portability under

demanding field conditions.

The instrument is designed with the largest possible port diameter to sphere size

that is consistent with a good cosine response, hence maintaining high performance while

minimizing self-shading effects. Measurements of upward and downward light fields will

establish the relationship between inherent optical properties and the concentrations of

water constituents within the water column. For the purpose of the research project

sdported by NSF (1998-2001), 0L-754 data were collected in the study area during the

course of project (1998-2001). The data measured on July 13, 2001 were used in model

development for retrieval of water constituent concentrations.



Figure 5.4 Configuration of the 0L754-ΡΜΤ Optics Head
(Optronic Laboratories, 1995) ,
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Figure 5.5 The reflectance spectra recorded by OL-754 at designated sampling stations
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5.4 Shipboard Sampling Data

5.4.1 Optical Water Quality Concentration Measurements

Water samples were collected (0.2 to 0.5 m depth) from selected sample stations as

marked in figure 4.1 for laboratory analysis. They were taken in 1-1 bottles and placed in

a cooler with melting ice before transport to the laboratory for analysis. Standard

procedures as described by Rijkeboer et al. (1998) were used to determine the

concentrations of total chlorophyl (TCHL) defined as the sum of CAL and

phaeopigment (as indication of concentration of phytoplankton) and total suspended

matter (GSM). The pigment concentration was determined according to the Dutch

standard method ΝΕΝ 6520 (1981). This method is based on the extraction of CAL

pigments from the phytoplankton using hot ethanol (80%, at 75 °C). The CAL is then

determined spectrophotometrically, using the extinction of the solvent at 665nm and

750nm. The phaeopigment concentration is determined similarly after acidification of the

sample. All analyses were performed in ddlicates. The TSM concentrations were

determined according to the Dutch standard method ΝΕΝ 6484 (1982). The samples were

filtered over 0.45 mm Whitman GF/F filters with volumes ranging from 100 ml to 200

ml. The filters were dried at 80°C. Ignition loss was determined by bashing the filters with

TSM at 550°C. The filters were flushed with 10 ml tap water to prevent overestimating

the GSM concentration due to remaining salt left on the filter. Table 5.1 shows the

concentration of WQP as sampled during 1999-2001, indicating that sampling did not

coincide with any major phytoplankton bloom. Likewise, the TSM ranges were within
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the expected values for the time of year when the measurements taken (Bagheri et al.,

1999, 2000).

The samples were analyzed for their IOUs as well as the identification/

enumeration of the phytoplankton species. This was done to demonstrate the variety and

composition of phytoplankton populations. The most abundant organisms identified were

the Diatoms, Skeletonema bp. Also present in low counts were Flagellates, Eutreptia bp.

and Prorocentrum minimes. The TCHL concentrations varied between 73mg m -3 and 6

mg m"3 indicating that the measurements did not coincide with any major outbreaks of

phytoplaiikton blooms. Likewise, the GSM ranges (26-5 g m -3) were within the expected

values for the time of year when the measurements taken (Bagheri et al., 1999, 2000).

5.4.2 IOUs Measurements

The two main SOP are the spectral absorption and scattering. Absorption is mainly caused

by organic particles and dissolved organic particles while scattering is mainly caused by

inorganic particles. The spectral absorption causes a reduction in R(0-), and the spectral

scattering causes an increase in R(0-). Spectral beam attenuation (c) and spectral

absorption (a) were obtained using Ocean Optics-2000. The Ocean Optics-2000 is a

modular spectrophotometric/spectroradiometric system relying on optical fibres and fore-

optics to enable it to carry out a variety of optical measurements. (Note: use of Ocean

Optics-2000 for measuring lOP is experimental and has not been referenced in the

published literature.) From these measurements, the spectral scattering (b) was deduced

via subtraction of spectral absorption from the spectral beam attenuation (b=c-a). The

samples were filtered through a 0.45 mm Whitman GF/C glassfibre filter. Then the
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coloured dissolved organic matter (DOM) absorption was measured in a 10 cm curette

against DI water. The DOM absorption spectra were normalized at 440 nm, and the

absorption at 440nm was taken as a measure of the concentration (Rijkeboer et al. 1998).

The seston (GSM) absorption spectra were measured using the filtered method.

After extraction of the ethanol-soluble pigments from the filter using approximately 5-10

ml hot (80°C) 80% ethanol, the absorption spectra of bleached Heston were measured

using the filtered method. Phytoplankton absorption was calculated as the difference

between Heston absorption and bleached seston absorption. Scattering was calculated as

the difference of the beam attenuation and the total absorption (seston + DOM). GSM

specific scattering and absorption were calculated by dividing the total scattering and

total (Heston) absorption by the simultaneous measurement of TSM concentrations.

TCHL specific phytoplankton absorption was calculated by dividing the phytoplankton

absorption with the TECH concentration. These data as shown in table 5.1 and discussed

below were used to simulate subsurface irradiance reflectance (or water leaving radiance)

and to estimate the concentrations of various WQP (Baggier et al., 1999, 2000).
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Table 5.1 Sample Locations and Water Conditions As Recorded on Board R!V Salford
and Blue Sea



CHAUTER 6

RESEARCH METHODS

Since no single method is yet available to derive concentrations from all optically active

water quality erameters, two complementary inversion techniques are used for retrieval

of constituent concentrations. This chapter covers the establishment of bio-optical model

for the study area and "Inverse Modeling" followed by "Statistical Method" for

validation.

6.1 Calibration of Bio-optical Model for Hudson/Raritan Estuary

To link the WQP and SOP the Gorton's 1975 optical water quality model, Equation 3.2

was calibrated for measurements of optical water constituent

concentrations and ΙΟΡ in the Hudson/Raritan Estuarine waters (Bagheri et al., 2001).

To establish values for r and bb for a specific location, knowledge of the volume

scattering function is required. Vows et al. (1998) demonstrated that a practical solution for

measurement of the volume scattering function is to estimate r by matching modeled

R(0-) to measured R(0-) values. According to Kirk (1991), the factor r for a large number

of water bodies measured varied between 0.34 and 0.39 depending on the solar zenith

angle and atmospheric conditions. Dekker et al. (1997) reported that the r values ranged

from 0.12 to 0.56 with an average of 0.29 for four inland water types in the Netherlands.

These water types were: shallow strophic lakes, shallow mesotrophic lakes, deep lakes,

and river and canals. Baggier (1999, 2000, 2001, 2002) calibrated this optical water

quality model (3.2) in related research for measurements of optical water constituent

54
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concentrations and SOP. The ΙΟΡ were calculated using Equation 3.3

Based on the field data obtained in the estuary and calculations made by fitting measured

R(0-) spectra to measured ION (see Figure 6.1), in the Hudson/Raritan Estuary the value

for factor r was established and varied between 0.28-0.34.
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6.2 Inverse Modeling

In principle, the Matrix Inversion Model (ΜΙ) accounts for the mutual influence of the

constituents. MIME provides a generic framework for interpreting spectral reflectance

recorded with any band set and is thus very suitable for imaging spectrometry data

(Hoogenboom et al., 1998). Two matrix inversion methods used for the retrieval of

constituent concentrations from the subsurface irradiance reflectance are described as

follows.

6.2.1 Matrix Inversion Model (Hoge, et al., 1996)

Hoge et al. developed a matrix inversion model based on Gorton's 1988 bio-optical

model described in chapter 3. Gorton's 1988 model (Equation 3.5,

can be solved in terms of total absorption coefficient a

and total backscattering coefficient bb: a + bb (1-1/ Χ) = 0, where X is given by the

solution of Equation (3.6), R /Q = (1 1 Χ + 12 Χ 2 ) . Next, define v = (1-1/ X)  and separate

the seawater absorption and seawater backscattering contributions from the total

constituent absorption and total constituent backscattering,

Substituting Equation (2.1) for the absorption of all constituents in (6.1) for

wavelengths Ai, where i=1, 2, 3, the equation describing the IOUs is:

where, h(λ' ) is defined as the right side of (6.1) that contains the column matrix, or

vector, of hydrosphere constants (seawater absorption and backscattering) and oceanic
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water-leaving radiances. Equation (6.2) contains three unknowns kph, ad, and bb' for each

spectral radiance measurement. Additional equations are provided by SΟP spectral

models for these unknowns as follows:

where n is total constitute backscattering coefficient.

The above equation is used to describe the total constituent backscattering

coefficient bathe;) at any wavelength A ; relative to the total constituent backscattering at a

reference wavelength AM.

Furthermore,

is a good representation of the spectral absorption coefficient of CDOM at any

wavelength λί relative to the DOM absorption coefficient at an arbitrary reference

wavelength 2d• S is the spectral slope for DOM and the reference wavelength 2d does

not need to coincide with the sensor observational bands (Brocade et al., 1981; Hoge et

al., 1993).

Finally, a single Gaussian is used to represent the phytoplankton absorption

coefficient in the chosen spectral regions (Hoepffher and Sathyendranath, 1993). For

more complex analytical studies, several Gaussians can be used to more accurately

represent the phytoplankton absorption including chlorophylls (Hoge et al., 1996). Thus

where g is a parameter that defines the spectral width of the Gaussian about the peak

wavelength Ng  . The Gaussian peak does not need to be located precisely coincident with
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the phytoplankton pigment absorption peak as long as the spectral width erameter g

permits accurate representation of the relative specific absorption coefficient in all three

sensor observational bands.

The substitution if (6.3), (6.4) and (6.5) into (6.2) yields:

any wavelengths λί  . Thus a consistent solution can be obtained using only three sensor

wavelengths λ, , 22 , and 23 . The inversion matrices are easily obtained by sequentially

writing (6.6a) for 2, 22 , and 23 . Essentially, the three observational sensor wavelengths

at 2., , 2,2 , and 23 enumerate or label the rows of the matrices, while the three constituents

label the columns of the

explicit matrix arrangement of (6.6a) so that

The oceanic state vector of unknown IOPs at their reference wavelengths,

where T denotes the transpose, is the solution of a

matrix equation of the form

where D is the data and model matrix and h is the vector of seawater absorption and

backscattering hydrosphere constants and radiance data. It is important to emphasize that
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the D matrix must be inverted for every pixel or oceanic radiance/reflectance spectrum

since it contains radiance data in addition to model parameters. Equation (6.7) is

comparable to the well-known linear matrix equation A • x = b whose solutions have

been extensively studied. The direct solution to (6.7) is represented by

D -1 denotes the inverse of the data and model matrix D.

According to Hoge, the above model has not yet been applied to any actual

airborne and satellite-derived water-leaving radiance data for retrieval IOPs (Hoge et al.,

1996). In this study, Hoe's model with minor modifications is applied to airborne

AVIRIS reflectance data and laser-induced fluorescence data.

In Hoe's model (6.6b), n is the total constitute backscattering (TCB) coefficient

which is hard to measure as explained in chapter 2. For nonabsorbent backscattering such

as coccoliths, Gordon et al. (1988) used a n >1. Lee et al. (1994) suggested that the

exponent can vary from 0 to 2.4. Maffione et al.'s (1995) field measurements showed that

the spectral backscattering exponent can vary from 2.0 to 4.1. Hoge et al. (1995) used a

particulate backscattering model with n=1.5 during retrieval of the DOM absorption

coefficient.

However, Hoe's TCB coefficient is not appropriate for this research and there is

a serious bias between the measured and retrieved absorptions (Figure 6.2). Thus, in this

research, a modified n needs to be chosen for Hudson/Raritan Estuary water using the

least square algorithm to get a better retrieval. Similarly, the DOM spectral slopes - s,

and phytoplankton Gaussian model spectral width - g, should be modified based on in

situ measurements.
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Figure 6.2 Measured and Retrieved Phytoplankton absorptions at Braid Bridge in 1999
using Hoe's model

It is clear that the matrix inversion can be extended to any number of constituents

as long as accurate SOP models can be found to satisfactorily represent the spectral

absorption and backscattering of each band (note: sufficient sensor bands are needed in

the observational data to yield a solution). However, if the columns or rows of D in

equation (6.7) are linear dependent, then columns (or rows) degeneracy occurs, the

determinant vanishes (det D = 0), and D is singular. In order to avoid the singularity of D,

in this research, D is replaced with a data and model matrix G, which includes not only

three bands but all thirty-six bands of the spectra sensitive to optical water quality

erameters covering the range of 400-750nm (Bidigare et al., 1988; Hoogenboom et al.,

1998). Thus, (6.6b) becomes
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and G•p=h.

Tic solve the overdetermined matrix system (Equation 6.9), one commonly used

measure of the misfit is the 2-norm of the residual. A model that minimizes the 2-norm

of the residual is called a least-squares (LS) solution. In addition to linear least-squares,

the singular value decomposition (SVD) method can be used to solve the above system.

SVD method is an excellent analytical tool and allows a quantitative evaluation of

singularities. However, the SVD solutions may become extremely unstable when one or

more of the singular values is small. In order to make the solution more stable, the

Tikhonov regularization technique can be used. The Tikhonov method effectively gives

larger weight to larger singular values in the SVD solution and gives lower weight to

small singular values. In this study, all the three methods were applied for validation (See

Appendix B in reference to LS, SVD and Tikhonov methods). As shown in Figure 6.3,

results from the three methods are very similar with the SVD method yielding a better

output. Note that in the modified version of Hoe's linear matrix inversion model, the

following values were assigned: n = 1.8, s = 0.03 and g = 30.
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Figure 6.3 Comerison between measured and modeled absorptions of phytoplankton
and DOM using LS, SVD and Tikhonov methods (continued)
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Using k, = a , the concentrations of CHL_a and DOM can be retrieved fromCc

their corresponding absorption values. Table 6.1 lists the calculated concentrations versus

measured concentrations for selected stations sampled in July, 2001.

Hoe's model is also validated by applying the fluorescence-based algorithm to

LΙDΑR data acquired on 4/5/2001 for retrieval of CHL_a concentration (figure 6.4).

As described in chapter 3, Poole et al. (1982) obtained a linear relationship

between	 normalized	 laser-induced	 fluorescence	 and	 in	 situ	 CHLa a

concentration: C = k • 
f

 , where, C is the CHL concentration; k, the coefficient of the
Y

linear relationship between normalized laser-induced fluorescence; and CHLa a

concentration and 1 , laser-induced fluorescence normalized by the 650nm water Raman
r

signal. Table 6.1 lists the measured and modeled concentration values as computed by the

above fluorescence-based algorithm and comered with the field samples.



GAOL Flight 05APR01
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Figure 6.4 Map of the transacts covered by GAOL during 4/5/2001 data acquisition
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6.2.2 Matrix Inversion Model (Hoogenboom et al., 1998)

Hoogenboom (et al. 1998) developed an inverse model based on Gorton's 1975 bio-

optical model (Equation 3.2):

where a = the total absorption coefficient

bb = the total backscattering coefficient

r is a multiplication factor that depends on the aperent optical properties of the light

field. For the Hudson/Raritan Estuary, Baggier et al. (1999, 2000, 2001, 2002) calibrated

the values for factor r which varied between 0.28-0.34 for the stations sampled within the

estuary.

by taking the correlation between TSM and CHL into account. Accordingly, the total

GSM (GSM  jot = GSM ph + TSMSS ) values include the part of the dry weight determined by

the biomass of phytoplankton which is correlated to CAL concentration. The correlation

coefficient can vary between 0.02 and 0.1 for freshwater algae (Gongs et al. 1992). An

average value of 0.07 (TSM h-0.07CAL) is used here based on Buiteveld (1990):
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Evaluating Equation (6.10) for every wavelength of interest yields a set of

equations, conveniently put in one matrix equation:

In this basic case of matrix inversion one can solve this system (6.11) for two

concentrations from two spectral bands. In that case a two-by-two matrix has to be

inverted analytically yielding the following expressions for the concentrations:

In Hoogenboom model (6.11), two equations were created to solve two

unknowns, CAL and GSM concentrations. Since relationship (6.10) holds for each band,

as a result, any two bands can be theoretically selected and put into the matrix system

(6.11). Hoogenboom applied reflectance data at 677nm and 705nm acquired by Case over

the Lake Brasses, the Netherlands. However, results from this model (6.11) using those

two bands of AVIRIS over the study area are seriously biased with measured data. Thus,
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the two bands selected for input should be based on the characteristics of the AVIRIS

data.

It should be noted that Hoe's model (model #1) was based on Gorton's 1988

bio-optical model. It retrieves IOPs first, and uses the relationship between absorption

and specific absorption (ail = α) for retrieval of water constituent concentrations while
C;

the Hoogenboom's model (model #2) was based on Gorton's 1975 bio-optical model

from which the retrieval of water constituent concentrations can directly be obtained.

Comering Hoe's model (6.6b) with Hoogenboom's model (6.11), the latter has few

input erameters making it a less complicated model to use.

Table 6.1 lists the measured and modeled concentration values as computed by

two MIME models cited before and comered with the field samples. There are reasonable

matches between the measured and calculated concentrations using model #1 and #2.

Table 6.1 Retrieval of TECH and AGSM Concentrations

Note:
Model 1 	 Hoe's model (AVTRIS data)
Model 2 	 Fluorescence-based algorithm (LIAR data)
Model 3 	 Hoogenboom's model (AVIRIS data)
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Figure 6.5 Comparison of the retrieved CHL_a concentrations using absorption-based
and fluorescence-based algorithms

As shown in Table 6.1, the results from Hoe's model applied to LIAR data are

closer to measured values than those from AVIRIS data. It is worth mentioning that the

AVIRIS uses the absorption-based principles, and LIAR uses fluorescence-based

principles. The fluorescence-based algorithm is not likely to be influenced by DOM

absorption since the DOM absorption in the red part of the spectrum is negligible.

Although the retrieved CHLa a concentrations from Hoogenboom's model are not as

good as those from Hoe's model, the algorithm is applicable to data for retrieval of AGSM

concentrations. Table 6.1 lists the computed values of GSM as compared with measured

values for selected stations within the study area using the two complementary models.
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6.3 Statistical Method

Regression is a statistical technique used to determine the equation of the line or curve

which minimizes the deviations between the observed data and the regression equation

values (Blank, 1980). Regression analysis between in-situ and remotely-derived values

are widely used to assess the accuracy of the MIM-generated water constituent

concentrations (Hoge et al., 1996, 2001).

In this study, a regression analysis is performed on the AVIRIS data. This

regression analysis is an all-possible-regressions procedure, which calls for considering

all possible subsets of the pool of potential independent variables and detailed

identification of a few "good" subsets according to some criterion. The independent

variables are the reflectance data from different AVIRIS bands or band ratios at different

sampling stations, while dependent variables are the concentrations of CHL_a, and GSM.

The ultimate goal is to obtain comerable results when using the MIME on the same data.

Figure 6.6 presents the strategy for the building of the regression model. This

strategy involves four phases:

1. Data collection and preeration

2. Reduction of independent variables (bands reflectance)

3. Model refinement and selection

4. Model validation



Figure 6.6 Strategy for Building the Regression Model
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6.3.1 Data Refinement/Sample Extraction

The data collection requirements for building a regression model vary with the nature of

the study. In general, there are four types of studies: Controlled Experiments, Controlled

Experiments with Supplemental Variables, Confirmatory Observational Studies and

Exploratory Observational Studies. This study is a controlled experiment in which the

experimenter controls the levels of the independent variables (reflectance at different

bands or band ratios) and assigns a treatment, consisting of a combination of levels of the

independent variables, to each experimental unit and observes the response (water quality

constituents concentrations). Since the ocean reflectance contains all the essential

information concerning the quantitative properties of water constituents (Gordon, 1975),

reflectance acquired by ARIRIS was used as the input data for the regression model. All

the reflectance were derived from AVIRIS, and the concentrations of CALF and AGSM

were determined according to the Dutch standard norm (NEON 6520, 1981 and NEON 6484,

1982) respectively.

Once the data have been collected, edit checks should be performed and plots

prepared to identify gross errors as well as extreme outlier. Difficulties with data errors

are especially prevalent in large data sets and should be corrected or resolved before the

model building begins.

6.3.2 Reduction of Independent Variables

The reduction of independent variables in the model-building phase is very important in

this study. The purpose of independent variables reduction is to identify a small grod of

regression models that are "good" according to a specified criterion so that a detailed
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examination can be made of these models, leading to the selection of the final regression

model to be employed. AVIRIS can measure reflectance of 224 bands from which 41

bands were selected for this study, covering the rage of wavelengths from 340 to 740nm.

(Note: those bands beyond 740nm will not be used to retrieve water quality

concentrations due to the temperature-dependence of the absorption coefficient (Pegau

and Zaneveld, 1993)). In addition to the selected 37 bands (340-740nm), researchers

applied the band ratios in statistical regression models (Carder et al., 1991; Dekker and

Hoogenboom, 1996; Aithuis et al., 1996; Maritorena, 1994; O'Reilly et al., 1994; Lew et

al., 2001;). In this research, ten band ratios are preered and put into the pool of

independent variables making the total of forty-seven independent variables in the pool.

Many of those bands and band ratios are highly intercorrelated. Hence, the nesber of

bands and band ratios should be reduced in the final model for the following reasons

(Meter, et al., 1996):

a) A regression model with numerous independent variables may be difficult to apply;

b) Regression models with a limited number of independent variables are more easily

understood;

c) The presence of many highly intercorrelated independent variables may

substantially increase the sampling variation of the regression coefficients, detract from

the model's descriptive abilities, increase the problem of roundoff errors, and not

improve, or even worsen, the model's predictive ability.

In the following regression procedures, the selection of bands or band ratios is not

restricted to the significance in absorption or scattering properties. It is based on the

statistical criterions which are described in succeeding sections.
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1. Scatter plot matrix and correlation matrix

Scatter plots of the response variable against each independent variable can aid in

determining the nature and strength of the bivariate relationships between each of the

independent variables and the response variable and identifying gaps in the data points as

well as outlying data points. Scatter plots of each independent variable against each of the

other independent variables are helpful for studying the bivariate relationships among the

predictor variables and for finding gaps and detecting outliers. Figure 6.9 is a ert of the

scatter plots of reflectance for all the bands/band ratios and CAL a concentrations.

A component to the scatter plot matrix is the correlation matrix. This matrix

contains the coefficients of simple correlations between CHLa concentration and each

of the independent variables, as well as all of the coefficients of simple correlation among

the independent variables. From scatter plots and the correlation matrix defined in

Appendix A.1 and A.2, the intercorrelation between all the variables can be qualitatively

and quantitatively found. All independent variables with correlation coefficients greater

than 0.50 should be dropped from the pool of potential independent variables. As a result,

Band4(450nm), Band8(450nm), Bandl2(490nm), Band4(450nm) to Band19(540nm),

Band17(540nm), Band25(660nm), Band29(660nm) to Band31(680nm), Band34(710nm)

to Band37(740nm) bands reflectance and 4 ratios: R(0—) 10 R(0-)560 - R(0—) 740 

R(0—)680 ' R(0—)510 — R( 0—)7αο

R(0—)560 — R(0—)7a0 and R(0
—)490

' 
totally 20 variables, are kept as the new pool of

R(0—)520  — R(0—)740 	 R(0—)56o

independent variables.
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Figure 6.7 Part of scatter plots between CHL_a concentrations and reflectance at
different bands

In the above figure, the response variable CHL_a concentration for any one

scatter plot is the name found in its row, and the independent variable is the name found

in its column. Thus, the scatter plot matrix in figure 6.7 shows in the first row the plots of
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CHLa (CHLa concentrations) against ratio of Bandi (380nm) to Banded (740nm).

Alternatively, by viewing the second column, the plots of Bandi (380nm) against CHL_a

concentrations and other bands reflectance can be studied.

2. Rp2 or SSΕ Criterion

The Rpm criterion calls for the use of the coefficient of multiple determination Rm ,

defined in Appendix A.5, in order to identify several "good" subsets of independent

variables — in other words, subsets for which Rp2  is high. The number of erameters in

the regression model is shown as a subscript of Rm . Thus Rpm indicates that there are p

erameters, or p-1 independent variables, in the regression function on which Rp2  is

based.

The Rpm criterion is equivalent to using the errors sum of squares SSΕ (Appendix

A.6) as the criterion (the number of parameters in the regression model is again shown as

a subscript). With the SSΕ criterion, subsets for which SSΕ is small are considered

"good".

The Rpm criterion is not intended to identify the subsets which maximize this

criterion and SSΕ do not increase any more as additional X variables included in the

model. Hence, Rpm will be a maximes when all p- i potential independent variables are

included in the regression model. The intent in using Rpm criterion is to find the point

where adding more independent variables is not worthwhile because it leads to a very

small increase in Rpm (Figure 6.8, Table 6.2).



Figure 6.8 Rpm plot for reduction of independent variables

Figure 6.8 contains a plot of the Rpm values against p, the number of parameters in

the regression model. The maximes Rp2 value for the possible subsets each consisting of

p-1 predictor variables, denoted by max (Rp2 ), which appears at the top of the graph for

each p. These points are connected by dashed lines to show the imect of adding

additional independent variables. Figure 6.8 makes it clear that little increase in max(R pm )

takes place after 13, 14 or 10 bands reflectance or band ratios are included in the model.

Hence, a subset with 13 independent variables including band7, band9, bandl0, bandl0,

band28, band23, band25, band23, band35, ratio, ratio, ratio and ratio, a subset with

14 independent variables including band7, band, bandl0, bandl5, bandl0, band23,
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band27, band27, band75, ratio, ratio, ratio, ratio? and ratio and a subset with 15

independent variables including band27, band, bandl0, band35, bandl0, band27, band28,

band27, band75, bandied, ratio, ratio3, ratio, ratio? and ratio within the regression

model appear to be reasonable according to the Rp2 criterion.

7. Rae or MSE Criterion

Since Rp2 does not take account of the number of erameters in the regression

model and since max (Rp2 ) can never decrease as p increases, the adjusted coefficient of

multiple determination Rae (Appendix A.7) and MSE are used as another criterion. From

Appendix A.7, it can be seen that R ae increases if and only if MEE decreases. Hence, Rae

and MSEp provide equivalent information.

MSE shows the number of erameters in the regression model as a subscript of

the criterion. The smallest MSE for a given number of erameters in the model, min

(MSE), can, indeed, increase as p increases. This occurs when the reduction in SSE

becomes so small that it is not sufficient to offset the loss of an additional degree of

freedom. The MSE criterion seeks to find a few subsets for which MSE is at the

minimes or so close to the minimum that adding more independent variables is not

worthwhile.

Figure 6.10 contains the MSE plot for this regression. The min (MSE) values

are connected by dashed lines. The conclusion of the MEE T  plot in figure 6.10 is very

similar to that of the Rpm plot in figure 6.8, and R ae plot in figure 6.9. The subsets with 17,

14 and 15 independent variables have the maximum R ae and minimum MEEK values.



Figure 6.10 MSΕ plot of independent variables
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In Table 6.2, the first several rows which stand for different combinations of

independent variables have the maximes R ae and minimum MSE values. Due to the R a
e

and MSE criterions, the independent variables combination for the best regression model

should be one of them.

4. Cps Criterion

In using the Cps (Appendix A.8) criterion, we seek to identify subsets of

independent variables for which (1) the Cps value is small and (2) the Cps value is near p.

Subsets with small Cps values have a small total mean squared error, and when the Cps is

also near p, the bias of the regression model is small.
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From Table 7.2, the first subset with 14 bands (Band17, Banda, Band23, Band37,

Band29, Band23, Band37, Band37, Band17, Band37, ratiol2, ratio, ratios and ratiol0) is

the best one which satisfies Cps criterion very well.

6.3.3. Model Refinement and Selection

Once the all-possible-regression procedure has identified a few "good" subsets from the

pool of potential independent variables, a final choice of the model variables must be

made. This choice, as indicated by the model-building strategy in Figure 7.5, is aided by

residual analysis and other diagnostics for each of the competing models, and is finally

confirmed by model validation.

a. Models resulted from all-possible-regression procedure

Inputting the above subset with 13 bands reflectance or ratios as independent

variables, the regression model can be estimated by the least square method (Appendix

A.4). The result is:

Table 7.3 is NOVA table for this regression model.



Table 6.3 NOVA Table for Regression Model (6.13)
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Result for the subset with 15 independent variables is:



Table 6.5 NOVA Table for Regression Model (7.15)
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as Table 7.4 and Table 7.5 which means the regression using the subset of thirteen bands

reflectance or ratios as independent variables produces the same statistical model as that

subset of fourteen or fifteen independent variables.

b. Application of stepwise regression procedure

In those occasional cases when the pool of potential independent variables

contains forty or more variables, some automatic search procedures were developed to

minimize computational effort, as comered with the all-possible-regressions procedure.

The stepwise regression procedure is the most widely used of the automatic search

methods. Essentially, this search method develops a sequence of regression models, at

each step adding or deleting an independent variable. The criterion for adding or deleting

an independent variable can be stated equivalently in terms of error sum of squares
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reduction, coefficient of ertial correlation, t* statistic, or F* statistic (Appendix .A. 9,

A.10)

The result for this regression model is:

Table 6.6 NOVA Table for Regression Model (7.17)

Table 6.3, 7.4, 7.5 and 7.7 show the regression coefficients of the above three

regressions are 0.8743, 0.8835, 0.8922 and 0.9182 respectively, and the adjusted

regression coefficients are 0.7835, 0.7877, 0.7911 and 0.7465. Before the final regression

model is determined, the multicollinearity of each model should be diagnosed.
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c. Selecting model and identifying outlying observations

One formal widely used method of detecting the presence of multicollinearity is

by means of variance inflation factors (VIF). VIF measures how much the variances of

the estimated regression coefficients are inflated as compared to when the independent

variables are not linearly related. The mean VIF value of all independent variables is

often used as an indicator of the severity of multicollinearity. In this research, the mean

value of VIF(Appendix A.11) for the above models (7.13), (7.14), (7.15) and (7.17) are

44.72, 43.58, 48.91 and 225.57 respectively, which indicates the best model is (7.14) with

the subset of 14 bands reflectance or band ratios as independent variables.

d. Residual analysis

Whether a regression model is appropriate for the data being analyzed can be

studied from a residual plot against the independent variables or, equivalently, from a

residual plot against the fitted values. The plot of the residuals against the fitted values

can also be used to find the outliers in the data set.

Figure 6.11 Residual plot against predicted CHL_a concentrations from model (7.14).



Figure 6.12 Partial leverage residual plots for model (7.14)
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Figure 6.12 Partial leverage residual plots for model (7.3) (continued)

In Figure 7.11, P_CHL stands for the predicted CHL_a concentrations using

model (7.14) and RACAL stands for the residuals using the same model. Figure 7.11

shows the residuals distribute randomly instead of following some specific curve, which

means the regression model is appropriate. Figure 7.4 are the partial leverage residual

plots for intercept and each selected explanatory variable in model (7.14). Two reference

lines are also displayed in the plots. One is the horizontal line, and the other is the fitted

regression of CHLa concentrations against that specific independent variable. The

leverage plot shows the changes in the residuals for the model with and without the

independent variable. For a given data point in the plot, its residual without the

explanatory variable is the vertical distance between the point and the horizontal line; its

residual with the explanatory variable is the vertical distance between the point and the

fitted line. From Figure 7.11 and all plots in Figures 7.4, the observations #27 and #32

are clearly shown as outliers which should be ruled out from the model.

After the outliers are taken away, a new regression model resulting from the same

regression procedure described above is:



Table 6.7 NOVA Table for The Regression (7.17)

Comparing Rm and Rae from Table 7.7 and 7.7, we find the regression model has

been improved. The residual plots for the new model are figure 7.13, figure 7.14 as

following:
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Figure 6.13 Residual plot against predicted CHL_a concentrations for model (7.17).



Figure 6.14 Partial leverage residual plots for model (7.17)
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A normal quantile-quantile plot of residuals is illustrated by the following plot.

See the Appendix A .4 for an explanation of the horizontal axis. The empirical quintiles

are plotted against the quintiles of a standard normal distribution. If the residuals are

from a normal distribution with mean 0, the points tend to fall along the reference line

that has an intercept of 0 and a slope equal to the estimated standard deviation.

Figure 6.15 Residual normal QQ plot for model (7.17)

The coefficient of correlation between the ordered residuals and their expected

values under normality is 0.977. This high value (the interpolated critical value for

a=0.05 is 0.94 in Table "Critical Values for Coefficient of Correlation between Ordered

Residuals and Expected Values under Normality when Distribution of Error Terms Is
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Normal", Neater et al., 1997) helps to confirm the reasonableness of the conclusion that

the error terms are fairly normally distributed, which again indicates the model (7.17) is

appropriate.

6.3.4 Model Validation

The results of the comparison between CHL_a concentration measured in situ from water

samples against the concentration deduced from regression model (7.5) are presented in

Figure 7.17.

Figure 6.16 Comparison of CHL_a concentration derived from regression model (7.17)
against water sample measurements



Similarly, the regression model for GSM concentration retrieval can be obtained
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Table 6.8 NOVA Table for the regression (7.18)

Figure 7.17 is a comparison between AGSM concentration measured in situ from

water samples against concentration deduced from regression model (7.18).
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Figure 6.17 Comparison of TTSM concentration derived from regression model (7.18)
against water sample measurements.

The statistical models can be used to validate the MIME methods. The selection of

independent variables are independent of the significance of the selected bands

absorption/scattering, and it is based on the pure statistical correlation between band/band

ratios and CHL/TSM concentrations.



CHAUTER 7

GIS AUULICATION

Geographic Information System (CIS) is a system that contains spatially referenced data

that can be analyzed and converted to information for a specific set of purposes or

applications. In the CIS system, we can collect, store and retrieve information based on

its setial location, identify locations within a targeted environment which meet specific

criteria, analyze the related data setially as an aid to making decisions about that

environment and display the selected environment both graphically and neserically

either before or after analysis.

In this research, the technology of the CIS is used to map the distribution of water

constituent concentrations and to develop a database for assessing the water quality

conditions of the study area. Varieties of geospatial data in both digital and analog forms

were input for the GIS database development and spatial analyses were performed using

a GIS software ArcView. This database provides a baseline integrated GIS system

which can be used by water resource managers and planners for better monitoring and

management of water quality condition.

The GIS system of the study area represents a variety of qualities and

characteristics reflecting the water quality conditions of the study area. All these

qualities and characteristics are referenced and linked to the base map which was

digitized from the navigational chart with the locations of the sample points cruised

during data collections (1999-2001). The characteristic data integrated into GIS are:

distributions of PH value, temperature, secchi depth, salinity, CHL_a, TTSM and DOM
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concentrations (Figure 7.1). They are stored as theme layers in the CIS, with each layer

linked to the same georeferencing system.

In addition to the spatial characteristics, each thematic layer has a unique non-

spatial component which is stored as an attribute. Table 7.1 lists the geographic

characteristics of each layer in this CIS.



Table 7.1 Geographic Characteristics of Each Layer
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The incorporated system is an analytical tool for locating water quality parameters

throughout the study area quickly, improved performance for data retrieval, geographic

analysis capabilities, and rapid generation of high quality map products. In addition,

planners can now access metadata about each layer of information in this system along

with high-resolution images. The following maps (Figures 7.2 — 7.7) were generated for

the GIS database system of the study area.



Figure 7.2 PH values distribution map of study area
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Figure 7.3 Salinity values distribution map of study area



Figure 7.4 Temperature distribution map of study area
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Figure 7.5 Secehi Depth distribution map of study area



Figure 7.6 CHL_a Concentration Image of study area
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Figure 7.7 AGSM Concentration Image of study area



CHAPTER 8

CONCLUSION AND FUTURE WORK

This research is aimed to provide quantitative data in sdport of the use of remote sensing

and CIS technologies as a monitoring tool for better management of water quality

conditions of Hudson/Raritan Estuary. The estuary is located south of the Verrazano

Narrows and bordered by western Long Island, Staten Island and New Jersey.

There are three basic approaches to estimate optical water quality parameters

from remotely sensed spectral data and based on the definitions given by Morel &

Gordon (1980), can be outlined as follows: (1) an empirical method, in which statistical

relationships between the dward radiance at the sea surface and the quantity of interest

are taken into account; (2) a semi-empirical method, in which the spectral characteristics

of the parameters of interest are known and some modeling of the physics is introduced;

and (3) an analytical method, in which radiative transfer models are used to extract the

inherent optical properties (lOP). In this research, an analytical method-- the modified

matrix inversion models developed by Hoge et al. (1997) and Hoogenboom et al. (1998),

were used as the principal models to retrieve concentrations of water quality parameters.

The remotely sensed data used here consist of NASA/AVIRIS and NASA/AOL data

acquired over the Hudson/Raritan Estuary in 2001 which were calibrated with in-situ

measurements.

In order to apply inverse modeling to the study area which is characterized as case

II water, it is necessary to calibrate an appropriate bio-optical model linking the water

constituents to the inherent optical properties(IOUs) and to link the inherent optical

properties to the subsurface irradiance reflectance. In this research, the Gorton's 1975
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bio-optical model which was calibrated for Hudson/Raritan Estuary was used (Baggier et

al., 1999-2002). The establishment of the IOUs of the estuary and the validation of bio-

optical variables are critical factors to use remote sensing as a monitoring and

management tool. The modifications of different parameters used in inverse modeling are

listed below:

• Adjustment of spectral slope for the a d model---s

• Adjustment of total constituents backscatter spectral model exponent---n

• Adjustment of phytoplankton Gaussian spectral width for the ape model---g

Note: the model was extended to an overdetermined system and the results are shown in

Table 7.1.

In addition to the inverse modeling, regression analysis was used to assess the

accuracy of Matrix Inversion Method (MIM) which resulted in estimation for

concentrations of water quality parameters and validation of the results based on in situ

measurements.

In conclusion, the approaches used in this research are based on the caebilities of

AVIRIS and LIAR data which can potentially provide a better understanding of how

sunlight interacts with estuarine/inland water, especially when complemented with in situ

measurements for analysis of water quality parameters and eutrophication processes. The

AVIRIS hyperspectral data provide us with an opportunity to apply such algorithms using

a wide range of spectral reflectance offered by the sensor characterizing estuarine

environment. The methodology described above provides a reference baseline of remote

sensing and in situ measurements that will have significance for future work on

underwater light field and remote sensing methodology development for the
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Hudson/Raritan Estuary. Currently there is no systematic management tool for

monitoring and prediction of pollution that is applicable to the Hudson/Raritan Estuary.

Remote sensing can provide greater economy in such application than using conventional

methods. The products of remote sensing data derived from AVIRIS/LIDAR analysis in

forms of thematic maps representing the spatial/temporal distributions of water quality

parameters are important input into a CIS for better management of the water resources

of the study site.

Because of Jerld Wide Web(WWW) becoming a primary means of

disseminating information, utility of such a CIS system in the future will be more

promising. Over the last decade CIS has grown at such a rapid rate that Web-GIS

technology has appeared and CIS visualization tools for interacting with spatial data are

available. Interactive mapping is growing as a mechanism for users to investigate data

and perform spatial visualization analysis. This technology uses the Internet client-server

scenario where the user (client) submits commands, the web server processes the

commands, and the results will be passed to the client in the form of an ddated map in a

Web browser window (Halls JAN., 2003). In a Web-based CIS application, it would be

possible for users to navigate existing spatial objects (points, lines and polygons) or other

information related to spatial objects on the Web browser with ease (Park D. J., 2001). In

such approach, the application of Web-GIS will facilitate the communication among

different interest grods like water resources managers, environment planners and

citizens.

The configuration of the Web-based GIS is depicted on Figure 8.1. The

realization of this Web-based CIS as future work will be achieved with the application of
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the software — ArcIMS developed by SRI (Environmental Systems Research Institute).

With ArcIMS, the dynamic maps and data via the web can be delivered, easy-to-use,

task-focused applications that use geographic content can be created, and custom

applications using industry-standard web-based environments can be developed, sharing

data with others to accomplish tasks and implement GIS portals.
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AUUENDIX A

STATISTICS FORMULA USED IN THIS RESEARCH

The correlation matrix has its elements as the coefficients of simple correlation between

all pairs of Χ variables. This matrix is defined as follows:

Here, r 12 again denotes the coefficient of the simple correlation between X i and

Χm, and so on. Note the main diagonal of is because the coefficient of simple correlation

between a variable and itself is 1. The correlation matrix r χχ is symmetric, roar;.

In regression analysis, matrix algebra is widely used. To express the general linear

regression model:

in matrix terms, we need to define the following Patrice:
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The least squares normal equations for the general linear regression model (Α.3) are

Hence, some frequently used items in regressions can be defined as follows:

where J is an nn matrix of is.

Then, the coefficient of multiple determination, denoted by R m , is defined as

follows:

In the stepwise regression routine, the F* statistic for testing whether or not the

slope is zero is obtained:



The independent variable with the largest F* value is the candidate for first addition. If

this F* value exceeds a predetermined level, the independent variable is added.

ΧΊ  , • • • , Χ^ are the independent variables which are already in the model, and Χκ  is the

candidate variable. MSR(XK  Ι Χίο  , . • • , Χ^) measures the additional contribution to the

mean of the regression sum square when Ε κ is included, given that Ε ; , • • • , Ε Í are

already in the model.

To study the multicollinearity, variance inflation factors (CIF) are defined as:

Where LK is the coefficient of multiple determination when Εκ  is regressed on the p-2

other independent variables in the model.

The normal quantize of the ith ordered residual is computed as
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where Φ —1 is the inverse standard cesulative normal distribution. If the residuals are

normally distributed, the points on the residual normal quintile- quintile plot should lie

approximately on a straight line with the residual mean as the intercept and the residual

standard deviation as the slope. In SAS output, the normal quintiles of the residuals are

stored in variables named Byname for each response variable, where yiiame is the

response variable name.



AUUENDIX B

SOLUTIONS TO INVERSE UROBLEMS IN THIS RESEARCH

Consider a discrete linear inverse problem. We begin with a data vector, d, of m

observations, and a vector m of n model erameters that we wish to determine. We

assume that there are more observations than model erameters, and thus more linear

equations than unknowns. As we have seen, the inverse problem can be written as a

linear system of equations:

For a full rank system with more equations than unknowns, it is frequently the

case that no solution m satisfies all of the equations in (B.1) exactly. This happens

because the dimension of the range of G is smaller than m and a noisy data vector can

easily lie outside of the range of G. A useful approximate solution may still be found by

finding a particular model m that minimizes some measure of the misfit between the

actual data and G • m. The residual is given by

One commonly used measure of the misfit is the 2-norm of the residual. A model

that minimizes the 2-norm of the residual is called a least-squares solution. The least—

squares or 2-norm solution is of special interest both because it is very amenable to

analysis and geometric intuition, and because it turns out to be statistically the most likely

solution if data errors are normally distributed. The 2-norm solution for m is,

109



110

It can be shown that if G is of full rank then (G TG) -1 always exists.

In addition to linear least-squares, the singular value decomposition (SVD)

method can be used to solve the above system (B.1).

In SVD, G can be factored into

Where, U is an m by m orthogonal matrix with columns that are unit basis vectors

senning the data space, Am , V is an n by n orthogonal matrix with columns that are basis

vectors spanning the model space, A", and S is an m by n diagonal matrix. The singular

values along the diagonal of S are generally arranged in decreasing size, s 1> s2> s3...>0.

If only the first p singular values are nonzero, we can partition

and G can be compacted into

where Up denotes the first p columns of U, Bp  denotes the first p columns of V.

Therefore, the following solution can be obtained:

However, the SVD solution (B.5) can become extremely unstable when one or

more of the singular values, s, is small. In order to make the solution more stable, the
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Tikhonov regularization technique can be used. Tikhonov regularization effectively gives

larger weight to larger singular values in the SVD solution and gives lower weight to

small singular values.

For a general linear least-squares problem there may be infinitely many least-

squares solutions. If we consider that the data contain noise, and that there is no point in

fitting such noise exactly, it becomes evident that there can be many solutions which can

adequately fit the data in the sense that BIG • m — d (I2 is small enough. Under the

discrepancy principle, we consider all solutions with Ί G • m — d II <_ δ and select from

these solutions the one that minimizes the norm of m. That can be expressed as follows:

where a is the Lagrange multipliers.

Note that as Ι G • m — dll 2 increases, the set of feasible models expands, and the minimes

value of Ilmll 2 
decreases. We can thus trace out a curve of minimum values of Ilmll 2 versus

BIG • m — 4 2 .  When plotted on a log-log scale, the curve of optimal values of Ilmll 2 and

ll G • m — dll 2 
often takes on an L shape. For this reason, the curve is called an L— curve. In

addition to the discrepancy principle, the criterion for picking the value of a is the L—

curved criterion in which the value of a that gives the solution closest to the corner of the

L-curve is selected (see Figure B.1).



where k=min(m, n) so that all singular values are included, no matter how small they

might be, an sÍ is the i-th diagonal element in matrix Sp (B.5).
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