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ABSTRACT

GAS FLUIDIZATION OF NANOPARTICLES

by
Bun  Vu

The primary objective of this study is to perform a systematic investigation on the gas

fluidization of various nanoparticle agglomerates. Firstly, the gas fluidization

characteristics and regime classifications without any additional external force fields are

identified using both experimental measurements and modeling. Secondly, the effect of

introducing certain external force fields on nanoparticle fluidization is experimentally

investigated. Two external force fields were applied: sound waves from a loud speaker

(acoustic assistance) and in-bed magnets that were excited by an external oscillating

magnetic field (magnetic assistance). Thirdly, exploratory experimental research on the

use of nanoparticle agglomerates as a granular filtration media for airborne fine particles

is conducted. The last part of this dissertation is an exploratory modeling study to

interpret the newly-found core-annulus-wall flow structure in gas fluidization.

The experimental study on the gas fluidization of nanoparticle shows that most

nanoparticle can be fluidized in the form of nanoparticle agglomerates. For those

agglomerates (fluffy carbon black and very large agglomerates) that are difficult to

fluidize, channeling always occurs. For those nanoparticle agglomerates that can be

fluidized, the fluidization behaviors can be classified into two general categories, namely,

agglomerate particulate fluidization (APB) and agglomerate bubbling fluidization (ABA).

The classification appears to be depend mainly on the primary nanoparticle size and the

bulk density.



Nanoparticle agglomerates have a special structure with extremely high porosity.

In this study, an analytical model is developed to calculate the flow partition through and

around the porous agglomerates, as well as the drag force on an agglomerate of

nanoparticles in a swarm of other similar agglomerates. Also, an analytical model based

on the Richardson-Zaki equation has been developed to predict the fluidizing

agglomerate size, the voidage around the agglomerates, and the minimum fluidization

velocities of APB nanoparticle.

The introduction of an external field such as sound excitation and magnetic

excitation with in-bed magnets can significantly change the fluidization characteristics of

nanoagglomerates, including a significant reduction in the minimum fluidization velocity

and agglomerate size. The intensity and frequency of the external sound and magnetic

fields will influence the fluidization quality of the nanoparticle.

In this study, a series of exploratory experiments have been conducted to remove

submicron particles (including solid particles and liquid droplets) generated by burning

incense. The results show that nanoparticle agglomerates in a packed bed can be used

successfully as a filter media for airborne submicron particulates.

In addition, this study interprets the formation mechanism of the recently

discovered core-annulus-wall structure in a circulating fluidized bed, which originates

from the wall region mixing of a down flow of solids from the top section of a riser and

the upward solids flow near the bottom of the riser, and the strong solid particle collisions

in the dense phase suspension. A mathematic model of this phenomenon has been

successfully developed and solved numerically.
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CHAPTER 1

INTRODUCTION

1.1	 Background and Dissertation Structure

Gas fluidization of small solid particles has been widely used in a variety of industrial

applications because of its unusual capability of continuous powder handling, good

mixing, large gas-solid contact area and very high rates of heat and mass transfer.

Extensive research has been done in the area of gas fluidization, and the fluidization

behavior of classical powders in the size range of 30 to 1000 Amp (such as Geldart group

A and B powders) is relatively well understood (Flayed and Outten, 1997; Fan and Zhu,

1998). However, the fluidization behavior of ultrafine particles, including nanoparticles,

is much more complex and has received relatively little attention in the literature.

Because of their unique properties of very small primary particle size and very

large surface area per unit mass, nanostructured materials are already being used in the

manufacture of drugs, cosmetics, foods, plastics, catalysts, energetic and biro materials

and in mechatronics and micro-electro-mechanical systems (MEMOS) (Jung and

Gidaspow, 2002; Wang et al., 2002a; Nam et al., 2004). Sherefore, it is necessary to

develop processing technologies, which can handle large quantities of nanosized

particles, e. g., mixing, transporting, modifying the surface properties (coating) and

downstream processing of nanoparticles to form nano-composites. But before processing

of nanostructured materials can take place, the nanosized particles have to be well

dispersed. Gas fluidization is one of the best techniques available to disperse and process

powders belonging to the Geldart group A and B classifications. Based on their primary

particle size and material density, nanosized powders, however, fall under the Geldart



group C (<30 microns) classircation, which means that fluidization is expected to be

difrcult due to cohesive forces that become more prominent as the particle size

decreases, as shown in Figure 1.1.

Due to the strong interparticle forces such as van der Waals, electrostatic and

moisture-induced surface tension forces, nanoparticle are always found to be in the form

of large-sized agglomerates, rather than as individual nano-sized particles in a gaseous

medium. Hence, gas fluidization of nanoparticles actually refers to the fluidization of

nanoparticle agglomerates.

However, only limited and scattered experimental data on the fluidization

characteristics, such as the minimum fluidization velocity, agglomerate size, hysteresis

effects, and effect of nanoparticle material properties, are available (Jung and Gidaspow,

2002; Wang et al., 2002a; Nam et al., 2004), which calls for a systematic experimental
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study over a wide spectrum of nanoparticle materials. Moreover, since the fluidization of

nanoparticle agglomerates is a relatively new research area, although several researchers

made some modeling efforts (Jung and Gidaspow, 2002; Wang et al., 2002a; Nam et al.,

2004), the theoretical studies in this area are still in the early stage, especially the

hydrodynamic analysis of highly porous nanoparticle agglomerates.

For the same reason, studies on new techniques to improve the fluidization quality

of nanoparticles, and potential applications of nanoparticle (in the dry state) utilizing

their unique properties, are also in an early stage, and demand more research efforts.

Hence, this dissertation firstly aims to conducting a systematic study of gas

fluidization of nanoparticle agglomerates using a wide range of different nanoparticle by

means of both experimental and modeling approaches, which will be included in Part I;

secondly, the effects of external excitations, particularly the effect of sound and magnetic

assisted fluidization, are experimentally investigated in Part II; and thirdly, in Part Ill, a

preliminary experimental study is carried out on rltration of airborne submicron particles

(burning incense) using the fractal nanoparticle agglomerates as a granular filtration

medium; and fourthly, to further understand the general structure in circulating

fluidization systems, a preliminary mechanistic modeling is proposed and discussed in

Part Ν. Finally, conclusions are drawn in the last part, and future research directions are

proposed as well.
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1.2 Conventional Fluidization of nanoparticle

Because of the limited and scattered experimental data on the fluidization behavior, one

of the primary obdictives of this study therefore is to experimentally determine the

fluidization characteristics of a variety of different nanoparticle and to correlate the

macroscopic fluidization behavior of the nanoagglomerates with the properties of the

primary nanoparticles in a conventional gravity-driven fluidized bed without any

additional external forces present. For nanoparticle which can be fluidized, Wang et al.

(2002a) have already classired them as either agglomerate particulate fluidization (APF)

or agglomerate bubbling fluidization (ABA), but the complete fluidization characteristics

have never been investigated in a systematic manner. Sherefore, in this study, the

fluidization characteristics of both APF and ABA nanoparticle, such as the minimum

fluidization velocity, agglomerate size, hysteresis effects, and effect of nanoparticle

material properties, are systematically studied

Another task is to develop a simple and effective method to estimate the average

size of the agglomerates and the bed voidage around the agglomerates which can then be

used in models to determine the minimum fluidization velocity, pressure drop and other

pertinent variables of the fluidization process.

She classical Richardson-Zaki equation is based on the hydrodynamic force

analysis of solid particles in a liquid; however, nanoparticle agglomerates are hollow

structures with typical porosities up to 98% or higher (Jung and Gidaspow, 2002; Wang

et al., 2002a; Nam et al., 2004). While it may be assumed that nanoparticle agglomerates

in fluidization behave similarly to solid particles of the same size and bulk density in

published model approaches, a rigorous hydrodynamic analysis of nanoparticle
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agglomerate fluidization has not yet been done. Sherefore this study is also aimed to

provide an analysis of flow partition through and around an agglomerate of nanoparticle

during fluidization as well as the resulting hydrodynamic force on the agglomerate. A

simple model is also developed to estimate the size and minimum fluidization velocity of

nanoparticle agglomerates, which is also validated experimentally. All of the work on

conventional fluidization of nanoparticle agglomerates is included in Part I.

1.3 Fluidization of nanoparticle with External Excitation

In addition to conventional gravity-driven fluidization, nanoparticle agglomerates can

also be fluidized in a rotating or centrifugal fluidized bed where the centrifugal force

acting on the agglomerates can be set much higher than gravity (Nevada et al., 2005, in

preparation). It is also found that the minimum fluidization velocity of nanoparticle

agglomerates in a conventional fluidized bed can be significantly reduced by introducing

external force excitations to the bed, such as vertical, sinusoidal vibration, (Nam et al.,

2004).

So far all studies on sound-assisted fluidization have been focused on the

fluidization of micron or submicron sized particles (Chorine et al., 1994; Levy et al.,

1997) No results have been reported on the effects of sound on the fluidization of

nanoparticle agglomerates. Shis study presents an investigation of sound-assisted

fluidization of nanoparticle agglomerates and their fluidization characteristics, which are

not only different from those observed using other fluidization enhancement methods for

nanoparticle agglomerates, but are also different from sound-assisted fluidization of

micron or submicron sized particles. She effects of sound frequency and sound pressure
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level on the fluidization behavior, such as the minimum fluidization velocity, the

bubbling regime, pressure drop across the bed, and bed expansion, is demonstrated.

All previous studies of improving fluidization by applying magnetic excitation

with in-bed magnetic particles have been conducted on micron-sized particles where the

magnetic particles are also fluidized (Filippov, 1960; Arnaldos et al., 1985; Liu et al.

1991; Saxena et al., 1994). So our knowledge, no one has studied the effect of adding

large magnetic particles to a bed of nanoparticles, which do not fluidize, but serve to

disrupt the interparticle forces between the nanoparticle, so that smooth fluidization of

nanoagglomerates can occur. Sherefore, another obdictive of this study is to

experimentally determine the fluidization behavior of both APB and ABTA nanosized

particles by applying an oscillating magnetic reld to the nanoparticles that have been

premixed with some very large magnetic particles. It is anticipated that the excitation of

the magnets will provide sufficient energy to the system to overcome the interparticle

forces and form stable smaller agglomerates that will fluidize smoothly at a lower

minimum fluidization velocity.

Shis study presents an investigation of the fluidization behavior of nanoparticle

agglomerates with the assistance of millimeter-sized magnetic particles excited by an

oscillating magnetic reld. She effects of the intensity and frequency of the oscillating

magnetic field and the weight of magnets, on important fluidization parameters such as

the minimum fluidization velocity, pressure drop across the bed, and bed expansion, are

demonstrated. She fluidization of nanoparticle agglomerates with external excitations are

discussed in Part Π.
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1.4 Nanoparticle Filtration

It is well known that submicron size particles (0.1 to 1 Om) are the most difficult to filter,

and are commonly known as the most penetrating particle size (MPPS) (Tardos et al.,

1979; Flagen and Seinfeld, 1988; Sien, 1989). She nanoagglomerates which are formed

during fluidization are hierarchical fractal structures consisting of sub-agglomerates or

aggregates at a number of different length scales (Wang et al., 2002a; Nam et al., 2004),

and based on this fact, it occurred to us that they should behave as an ideal filter media to

remove particles (solid and liquid) from industrial gas streams, especially MPPS. She

nanoagglomerates are relatively large in size, which would result in a low gas pressure

drop; they are extremely porous with an overall internal porosity greater than 0.99 which

suggests that some of the "dusty" gas would flow through them; and if used for filtering

liquid particles (mists) that wet their surface, they would act as a sponge and suck in the

liquid drops by capillary action. Best of all, because of the relatively large distance

between adjacent nanoagglomerates (high external porosity), they should act as a deep

bed filter (unlike fiber-based HEPA filters) without surface cake formation, which

invariably causes HEPA filters to clog rather quickly (Penicot et al., 1999).

Based on these favorable properties and structure, it is anticipated that the

nanoagglomerates will perform well (high collection efrciency) as rber media for

filtration of submicron particles and liquid droplets in gas stream. In this study, a set of

preliminary experiments has demonstrated the validity of these ideas; these are described

in Part 11Ι.
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1.5	 Core-Annulus-Wall Model for General CFB Riser Flows

Recent experimental studies using Electrical Capacitance Somography (ECS) show that

there exists a double ring structure in solids concentration in a circulating fluidized bed

riser (Du et al., 2004). It was found that the solid concentrations at the dense core region

can be as high as rve times those at the dilute annulus region, which indicates that the

radial flow structure for dense circulating fluidized bed should be treated as a core-

annulus-wall three-region structure, instead of the well-known core-wall two-region

structure. In Part IΕ, the formation mechanisms of the core-annulus-wall structure in a

CFB riser are discussed. An analytic model is developed for quantifying the flow

structure in the developing regime, especially the solids concentration in the core. In

addition, this study provides a rough evaluation of the effect of solids acceleration on the

solid holdup measurement that is determined from pressure gradient measurements in a

CFB riser.
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CHAPTER 2

LITERATURE REVIEW

Previous studies of gas fluidization of nanoparticle agglomerates have found that the

minimum fluidization velocity is about several orders of magnitude higher than the

minimum fluidization velocity of primary nanoparticle (Chaouki et al., 1985; Wang et

al., 2000; Wang et al., 2002a; and Nam et al., 2004). She size of the fluidized

nanoparticle agglomerates is typically from about 100 to 700 Om, while the primary

particle size ranges from 7 to 500 nm (Chaouki et al., 1985; Wang et al., 2002a; Jung and

Gidaspow, 2002; and Nam et al., 2004). For some nanoparticles, very smooth

fluidization occurs with extremely high bed expansion, practically no bubbles are

observed, and the velocity as a function of voidage around the fluidized agglomerates

obeys the Richardson-Zaki equation (Chaouki et al., 1985; Wang et al., 2002a; and Nam

et al., 2004). Shis type of fluidization of nanoparticle agglomerates has been termed

agglomerate particulate fluidization (APB) by Wang et al., 2002a, and some fluidization

characteristics have also been given although they are not complete and have not been

studied systematically.

For other nanoparticles, fluidization results in a very limited bed expansion, and

large bubbles rise up very quickly through the bed (Pacek and Nienow, 1990). Shis type

of fluidization has been termed agglomerate bubbling fluidization (ABF) by Wang et al.,

2002a. Here again, experimental studies and the understanding of ABA nanoparticle

fluidization are far from complete. However, even for homogeneously fluidized

nanoparticles, relatively large powder elutriation occurs at the high gas velocities



required to fluidize the nanoagglomerates. Shis loss of particles may hinder the

applicability of fluidization of nanoparticle agglomerates in industrial processes.

A number of studies dealing with modeling and numerical simulation of the

fluidization of nanoparticle agglomerates can be found in the literature. Shese models are

based either on force (Chaouki et al., 1985; Zhou and Li, 2002; and Nam et al., 2004) or

energy balances (Morooka et al., 1988; Matsuda et al., 2002) around individual

agglomerates, the use of the Richardson-Zaki equation (Wang et al., 2002a), or a

combination of the Richardson-Zaki equation with fractal analysis (Nam et al., 2004) for

APB fluidization, or a modired kinetic theory (Jung and Gidaspow, 2002).

However, not much experimental data on the fluidization characteristics and

differences between APBS and ABF nanoparticles, such as minimum fluidization velocity,

agglomerate size, hysteresis effects, and the effect of nanoparticle material properties are

available, which calls for a systematic and experimental study of a wide spectrum of

nanoparticle materials. She primary obdictive of this study therefore is to experimentally

determine the fluidization characteristics of a variety of different nanoparticle (silica,

alumina, titanic, and carbon black nanoparticle), and to correlate the macroscopic

fluidization behavior (APB or ABF) of the nanoagglomerates with the properties of the

primary nanoparticles in a conventional gravity-driven fluidized bed without any

additional external forces present.

Another task is to develop a simple and effective method to estimate the average

size of the agglomerates and the bed voidage around the agglomerates which can then be

used in models to determine the minimum fluidization velocity, pressure drop and other

pertinent variables of the fluidization process. Furthermore, since nanoparticle
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agglomerates are hollow structures with typical porosities up to 98% or higher, it is

necessary to determine the difference in the hydrodynamic force between the porous

nanoparticle agglomerates in fluidization and solid particles of the same size and bulk

density. So accomplish this, an analytical model of flow partitions through and around an

agglomerate of nanoparticle in fluidization as well as the hydrodynamic force on the

porous agglomerates is developed in this study and the results of the model will be

discussed below.
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CHAPTER 3

EXPERIMENTAL SETUP

A schematic diagram of the experimental fluidization system for conventional

fluidization is shown in Figure 3.1. She system consists of a fluidized bed of nanoparticle

agglomerates, flow and pressure measurement devices, a flow visualization system, and

an optical sensor system for in-situ size measurement of agglomerates.

3.1 Fluidized Bed

She fluidized bed is a vertical transparent column with a distributor at the bottom

consisting of a sintered stainless steel metal plate of 2 mm thick having a pore size of 20



Am. She column is a section of acrylic pipe with an inner diameter of 57 mm and a height

of 910 mm. So generate a uniform gas field, glass beads of diameter between 2.5 and 3.5

mm are charged into a chamber placed below the distributor and above the gas inlet to

form a packed bed about 100 mm high. An ultra-fine mesh rlter is located at the gas

outlet to rlter out any elutriated nanoparticle agglomerates. Figure 3.2 is a photograph of

the experimental system. So minimize any effect of humidity on the fluidization, pure dry

nitrogen from a compressed nitrogen tank is used as the fluidizing gas.

Figure 3.2 Experimental system for conventional nanofluidization.
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3.2 Flow and Pressure Measurement Devices

She gas flow rate is measured and adjusted by two calibrated rotameters (Gilmont,

Sype23200-23210, and 014191-014200) placed in parallel with a combined flow range of

up to 30 liters per minute. She bed pressure drop is measured between the two pressure

taps, one located at the top of the column near the flow exit and the other located slightly

above (3 mm) the distributor, so that it is not necessary to measure the pressure drop

across the distributor. A digital manometer (Cole Parmer, 1.0 in. WC) is used to measure

lower pressure drops (up to 25 mm Η20) and an inclined tube manometer (Dewyer Mark-

II) is used for higher pressure drops. She flow fluidization structure is visualized with the

aid of a lighting device (Illumination Sechnologies, Model 150SX), recorded by a digital

camcorder (Sony, Digital 8), and analyzed by a PC-based image processing software.

Figure 3.3 is the photograph of the measurement devices of the pressure drop and flow

rate. She left picture shows the digital pressure transducer and the right one shows the

flow meters with the inclined manometer.

Figure 3.3 Digital pressure drop transducer and flow meters.
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3.3 Optical Sensor System for In-situ Size Measurement

In-situ images of fluidized agglomerates are obtained with the aid of a laser source (Laser

Physics Reliant 1000m) focused on the fluidized bed surface, a CCD camera (LaΕision

FlowMaster 3S), and an image processing system (Dual Xeon CPU). Figure 3.4 is a

photograph of the in-situ size measurement system. Since the fluidized bed is relatively

dense, the laser beam can not penetrate the bed effectively. Sherefore it is difficult to

measure the size of agglomerates throughout the bed; hence, the size of the agglomerates

near the bed surface is measured instead.

Figure 3.4 Photograph of the in-situ size measurement system.
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3.4 Preparation of Nano-powder

In this study, eleven types of nanoparticle agglomerates are tested. Before the

experiments, the particles were sieved using a shaker (Octagon 2000) and a 35-mesh

sieve opening (about 500 Am). She sieving process serves to remove very large

agglomerates, which may have been generated during packing, storage, and

transportation. However, it should be noted that even after sieving, due to fragmentation

and re-agglomeration during fluidization, some agglomerates in the bed might still

exceed the sieve openings. She selection of a mesh opening of 500 Amp is based on

previous experimental findings that the typical size of fluidized nanoparticle

agglomerates is between 100 to 400 Amp. Shis typical size range of fluidized nanoparticle

agglomerates is also validated in the current study, with the help of a laser source (Laser

Physics Reliant 1000m), a CCD camera and an image processing system.

The bulk densities of the different sieved nanoparticle varied from 30 to 250

kg/m3 . Due to surface treatment by the manufacturer, the nanoparticle are either

hydrophobic or hydrophilic. Fourteen different nanoparticle of various materials,

primary particle size, and surface modircation are investigated in this study; their

properties are listed in Sable 3.1.
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Table 3.1 Properties of nanoparticles.

Note:
* PEARLS 2000 and REGAL 99R carbon black are provided by Cabot Company, and all
of the other particles are provided by Degussa Company, with trademark as Degussa
Aerosil®.
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CHAPTER 4

MODELING WORK

Shere are two obdictives in this chapter: the rrst one is to investigate the hydrodynamic

behavior of hollow nanoparticle agglomerates as compared to those of solid particles with

the same size and density; the second obdictive is to estimate the size of the fluidizing

nanoparticle agglomerates and the minimum fluidization velocity.

While the hydrodynamic analysis of solid particles in fluidization has been

extensively performed (Happel, 1958; Davis and Birdseed, 1988; Fan and Zhu, 1998; and

Rhodes et al., 1998), hydrodynamic studies of agglomerates (i.e., effect of porosity) are

very limited. Hence, in Section 4.1, a simple model is developed to show that drag force

on a porous nanoparticle agglomerate in a swarm of nano-agglomerates (with a porosity

up to 99% and bed voidage up to 0.8 in the fully fluidized bed) is close to that on a solid

sphere in a similar swarm of solid spheres with a difference of less than 20%. Sherefore,

within an error margin of 20%, all of the existing modeling approaches based on classical

solid particles in fluidization may be extended to nanoparticle agglomerates.

Agglomerate size is one of the key factors that influence the fluidization behavior

of nanoparticles, and some models to predict the agglomerate size have been proposed for

cohesive micron-size particles (Zhou and Li, 2002), and for nanoparticle (Chaouki et al.,

1985; Wang et al., 2002a; and Nam et al. 2004). Chaouki et al, 1985 proposed a

mechanistic model to theoretically predict agglomerate size based on using the

Richardson-Zaki equation without experimental validation, but it was assumed that the

initial bed voidage is 0, which is not physically possible. Wang et al., 2002a applied this

model to predict the agglomerate size using their experimental data, but also assumed the



initial bed voidage is 0, and this incorrect assumption lead to some unreasonable results.

Nam et al., 2004a proposed a model, which combined the Richardson-Zaki equation with

fractal analysis, and successfully predicted the agglomerate size based on their own

experimental data, but the mathematic derivation and calculation was relatively

complicated. In this study, a simpler analytical model is developed to predict the size of

the agglomerates, and is described in Section 4.2.

4.1 Drag Force Correction on Porous Nanoparticle Agglomerate in a Swarm in

Creeping Flow

From SEM analysis, as shown in Figure 4.1, it appears that most nanoparticle

agglomerates have highly porous structures, and exist in the form of multi-stage sub-

agglomerates. She primary (normally, less than 20 nm) nanoparticle form chainlike

clusters, and these three-dimensional netlike structures agglomerate into simple sub-

agglomerates of a size range between 1 and 100 Amp, but typically around 20 to 40 Amp,

and then these sub-agglomerates group together to generate large, 100 to 400 Amp, porous

floc-like agglomerates (Wang et al., 2002a; Nam et al., 2004). Even though it is well

known that these large agglomerates are highly porous structures, with a typical porosity

about 99% or higher, previous studies of nanoagglomerate fluidization have always

assumed that the agglomerates are solid particles for the purposes of hydrodynamic

analysis. Although some researchers (Wu and Lee, 1998; Wu and Lee, 2001) point out

that treating porous floc-like nanoparticle agglomerates as solid particles may lead to

oversimplification, no one has actually calculated the effect of the flow through the

porous agglomerates of nanoparticle. Using a simple model, the drag force correction
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factor for the hydrodynamic force on highly porous floc-like agglomerate in a swarm of

other similar agglomerates is estimated.

Figure 4.1 Porous structure of nanoparticle agglomerates. (Degussa Aerosil® A300,
Si02, primary nanoparticle size 7 nm)

Based on Happel's free surface cell model (Happel, 1958), Neale et al., 1973)

proposed a model to evaluate the drag force FDp exerted on a permeable sphere in a

swarm of permeable spheres in creeping flow (low Reynolds number):

where V is the superficial fluid velocity flowing through the swarm, and AM  is the drag

force correction factor due to the permeability of the sphere and the effect of neighboring

spheres, and is given by:
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da is the sphere diameter, k is the permeability of single permeable sphere, and η is a bed

voidage dependent dimensionless parameter defined as:

where Nay is the bed voidage around the whole swarm.

For very large β (very low k) the hydrodynamic behavior of a permeable sphere in

a swarm of permeable spheres is similar to that of a solid sphere in a swarm of solid

spheres; therefore, as β --+ co , Equation (4.2) will reduce to Happel's formula for a solid

sphere in a swarm of solid spheres:

where 0 S is the drag force correction factor for a solid sphere in a swarm of solid spheres

due to the effect of neighboring spheres. Hence, the drag force FADS can be expressed as:

If Ω is defined as the ratio of the drag force for a permeable sphere in a swarm of

permeable spheres (FDP ) to the drag force for a solid sphere in a swarm of solid spheres

(FADS ), then A can be obtained by combining Equation (4.1) and (4.6):
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Hence, from Equations (4.2), (4.3), and (4.5), to get the value of Ω , the value of

the permeability related dimensionless agglomerate radius β and the permeability of

single permeable sphere k has to be obtained.

Figure 4.2 Schematic diagram of flow around and through a nanoparticle agglomerate.

Figure 4.2 is the schematic diagram of flow around and through a nanoparticle

agglomerate. For a single agglomerate, most of fluid will pass around the agglomerate,

but some of fluid may penetrate through the agglomerate because of the high porosity.

This flow partition between flowing around and passing through the agglomerate will

cause a drag force reduction compared with a solid particle. From Equations (4.2) and

(4.5), if the permeability dependent dimensionless sphere radius β can be determined,

then for any particle bed voidage, the drag correction factor can be obtained.
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From Dare's law, the pressure drop per unit length over porous agglomerate is

related to the superficial fluid velocity as:

If it is assumed that the single agglomerate represents a packed bed, and we treat

the sub-agglomerates as individual solid (impermeable to the gas) particles in this packed

bed, then the Argun equation (for low Reynolds number) can be applied to obtain a

relation between the pressure drop per unit length, the voidage, and the sub-agglomerates

size as:

Here, the volume fraction of gas (voidage) within the single large agglomerate but

surrounding the sub-agglomerates (which are assumed to be solid) is derned as εg,sub

and the size of the sub-agglomerates as dsuc  It should be noted that εg,sυb is the gas phase

volume fraction around the sub-agglomerates in a single porous nanoparticle agglomerate

and is neither the gas phase volume fraction for the entire fluidized bed, which is

expressed as ε g, nor the gas phase volume fraction surrounding primary nanoparticle.

Combining Equations (4.8) and (4.9), we obtain a relation between the

permeability, k, of single porous agglomerate, the sub-agglomerates porosity, Nay  Sub and

the sub-agglomerates size, dsub:
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She permeability related dimensionless agglomerate radius β can be calculated

from Equation (4.3), as:

Hence, if the size of agglomerate, the size of agglomerates, and the porosity

around a agglomerates is known, then the drag correction factor can be obtained. She

quantitative analysis is given in Chapter 5.

4.2 Analytical Model to Predict the Agglomerate Sizes for APB nanoparticle

(Modified Richadson-Zaki Equation)

It is well known that the Richardson-Zaki equation and the Argun equation are applicable

for solid (non-permeable) particles, but whether or not these equations are still valid for

permeable nanoparticle agglomerates has not been addressed in the previous literature. It

have been shown (see Section 4.1 and Chapter 5) that the error in assuming that the

nanoparticle agglomerates behave as solid particles for the purposes of hydrodynamic

analysis is very small for ABA nanoparticle (within 5%), and is also small for APB

nanoparticle (within 20%) when they fluidize at very high bed expansions. Shis implies

that the Richardson-Zaki and Argun equations derived for solid particles should be

applicable to these porous nanoparticle agglomerates.

By ignoring any elutriation and/or adhesion on the walls of the vessel, an overall

mass balance on the powder in the fluidized bed is given by:
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where Ca  is the bulk density of the agglomerates and N g  is the bed voidage around the

agglomerates. It should be noted that N g excludes the voidage within the agglomerates

themselves. In the model of Wang et al., 2002a), they assume that Cab pb so that

and the initial bed voidage (when Η = Η 0) Ago = 0 or αp0 = 1, which is physicaedy

unrealistic. When the nanoparticle agglomerates are loosely packed in the fluidizing

vessel (chamber), the volume fraction of the particles can never reach 1 (Agog = 0), and the

specirc value wied depend on the particle size distribution, sphericity of the particles,

packing method, dimensions of the chamber, surface interaction with the chamber and

other factors.

Normaedy, for "hard" solid particles, the typical bed voidage Ago in a loose packed

bed is within the range of 0.35 to 0.5 (Fayed and Outten, 1997). However, for highly

deformable particles (such as clay) and/or particles of different sizes, the voidage can be

very much smaeder (Fayed and Outten, 1997). Sherefore, due to the highly porous and

fragile structure of the nanoparticle agglomerates, and the relatively wide particle size

distribution, it is possible that the initial packed bed voidage is much lower than the

typical voidage of monodisperse hard solid particles.

An important assumption, which is made here, is that for a nanoparticle bed, the

density of the agglomerates Cab remains almost constant before and during the fluidization

so that:
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Since it has been observed that APF nanoparticle agglomerates fluidize smoothly

without any bubbles, and behave similar to particles fluidized by liquids, we also assume

that the weed-known Richardson-Zaki equation is valid. Shis equation relates the

superrcial gas velocity Ugh with the bed voidage (around the agglomerates) and the

terminal velocity for a single agglomerate Pt  as:

Davis and Birdseed, 1988 have shown that a Richardson-Zaki exponent of n =

5.0 ± 0.1 should be used for the Stokes flow regime. Nam et al., (2004) have also shown

that a Richardson-Zaki exponent of n = 5 is valid for APB nanoparticle agglomerates.

Combining Aquations (4.14) and (4.15), the relation between the superficial gas

velocity and the particle terminal velocity can be written as:

can be drawn, and from a linear regression, the slope —A and the y-intercept B can be
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found. From these values the particle terminal velocity Apt and the initial bed voidage Nab

can be calculated as:

Bigure 4.3 Ag 11n vs. Η0/Η for APB nanoparticle. Solid lines are linear regression results,
and data points are experimental results, for a Richardson-Zaki exponent n = 5.

Figure 4.2 is a typical plot of Upt1" vs. Η0/Η for the eight different APB

nanoparticle (primary size 7- 16 nm, bulk density 33.24 — 62.90 kg/m 3), with n=5; aed of

the data points faed within the zone between the inner and outer solid lines. She figure

also shows that all of the straight lines (for each of the eight nanoparticle agglomerates)

intersect the y-axis fairly close to each other, indicating that the terminal velocities for

these eight nanoparticles are roughly of the same order of magnitude. She curves for each
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of the nanoparticles also have similar slopes, and since the terminal velocities are close to

each other, the initial bed voyages are also close to one another.

From the values of Apt , obtained from the y-intercepts in Figure 4.3 and assuming

Stokes law, the average size of the agglomerates can be calculated from:

She above derivation is the methodology of estimating agglomerate size, and once

the agglomerate size is known, then for APBS nanoparticles at low Reynolds numbers, the

minimum fluidization velocity Umf can be calculated from the simplified Ergun equation:
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CHAPTER 5

RESULTS AND DISCUSSION

She experimental results, as weed as some modeling results of conventional fluidization of

nanoparticle agglomerates wied be discussed in this chapter, and the corresponding

conclusion remark wied also be included in this chapter.

5.1 Bluidization Behavior

As listed in table 3.1, in this study, fourteen types of nanoparticle (Silica, Alumina,

Sitania, and carbon black nanoparticle) are tested. Among these fourteen nanoparticle,

only Cabot Carbon Black ® REGAL 99R could not be fluidized, and since this study

aims to study the fluidization behavior of nanoparticle, so, in this chapter, only the

nanoparticle could be fluidized wied be discussed.

As already discussed in the above chapters, nanoparticle can only be fluidized in

the form of large porous agglomerates due to the very strong interaction forces between

them. Sypical fluidization curves, i.e., bed expansion and pressure drop curves, for APBS

and ABF nanoparticles are shown in Figures 5.1 and 5.2, respectively. For both APBS and

ABTA nanoparticle agglomerates, the pressure drop increases with increasing superrcial

gas velocity and then reaches a plateau and becomes independent of the gas velocity. She

value of the pressure drop plateau is usuaedy close to the weight of the bed per unit area,

indicating that the total weight of the particles is balanced by the pressure drop, aed of the

solid particles are suspended, and the bed is fuedy fluidized. She critical velocity beyond

which a pressure drop plateau is reached is derned as the minimum fluidization velocity.



b. Degussa Aerosil® R106.

Figure 5.1 Sypical fluidization curves for APBS nanoparticles.
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b. Degussa Sitanium Dioxide P25.

Figure 5.2 Sypical fluidization curves for ABTA nanoparticles.
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For APBS nanoparticles, it is observed that the bed fluidizes and expands very

uniformly without bubbles with a large expansion ratio of up to 500% or more, the bed

expansion increases with increasing gas velocity, and the agglomerates distribute

uniformly within the bed. Figure 5.1 shows that the bed starts to expand at a gas velocity

much smaeder than the minimum fluidization velocity; hence the bed exhibits a fluid-like

behavior at velocities much lower than the minimum fluidization velocity. As shown in

Figure 5.2, for ABTA nanoparticles, the bed expands very little with increasing gas

velocity (less than 50%), and large bubbles rise up very quickly through the bed, and the

agglomerates distribute non-uniformly within the bed, the smaeder agglomerates appear to

be smoothly fluidized in the upper part of the bed, while the larger agglomerates could be

found moving slowly at the bottom.
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It appears that the difference in fluidization behavior between APBS and ABA

depends largely on the bulk density and the primary particle size. She fluidization of

relatively smaed (less than 20 nm) nanoparticles with a bulk density less than 100 kg/m 3

(see Sable 5.1) appear to behave as APB, whereas larger and heavier nanoparticle are

likely to behave as ABB.

5.2 Hysteresis Phenomena and Definition of Minimum Bluidization Velocity

A hysteresis in fluidization is referred to the phenomenon where the bed pressure drop or

bed height depends on the mode of changing fluidizing velocity, namely, whether the

velocity is increased from a packed state to a fluidized state or vice versa (Heck and

Oaken, 1987; Petrovic et al., 1989; Deng and Fan, 1995). A theoretical model for the

hysteresis phenomenon is given by Loezos et al. (2002), based on the role of contact

stresses and waed friction in fluidization. Some hysteresis effects have been observed in

the pressure drop and bed height measurements for aed of the eleven different nanoparticle

agglomerates used in this study, but different nanoparticle agglomerates show large

differences in the hysteresis curves obtained (see Figures 5.1 and 5.2). For example, for

some nanoparticles, such as Degussa Aerosil® R974, the pressure drop curves for both

the fluidization branch and the defluidization branch are quite close, and the hysteresis

phenomenon is negligible, but for other nanoparticles, such as Degussa Aerosil®

Sitanium Dioxide D25, the deviation of the pressure drop curves for the fluidization and

fluidization branch is fairly large. Generaedy, nanoparticle agglomerates (ABA

behavior), which are more difficult to fluidize, show a stronger hysteresis.
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When the superficial gas velocity is decreased after the bed has been fluidized, the

pressure drop wied first remain constant, and then decline upon a further decrease in gas

velocity indicating fluidization has occurred. It is observed, however, that for some

nanoparticles the pressure drop begins to decline upon decreasing the gas velocity even

though the bed stied appears to be fuedy fluidized (see Bigure 5.1b) or remains at the

plateau level at velocities much lower than those needed to attain fluidization (see Bigure

5.2b). Hence, in this study, the fluidization branch of the pressure drop ecle has been

chosen as the reference to define the minimum fluidization velocity as the superficial gas

velocity beyond which the bed pressure drop is no longer dependent upon velocity and

becomes constant.

5.3 Estimation of Drag Correction Bactor for Nanoparticle Agglomerates

She voidage Ca
 Sub

 is very difficult to determine, so it is assumed to be 0.5, a typical value

for a loosely packed bed of solid particles (Fayed and Outten, 1997; Fan and Zhu, 1998).

drub is chosen to be 30 Om (the average agglomerates size), based on SEM

measurements by Nam et al. (2004). The size of the large agglomerates, da, is obtained

from the calculated results in Sable 5.4 and β is calculated using Aquation 4.3. Hence

once β is obtained, then the drag force correction factor can be calculated from Aquation

4.2.

Sable 5.2 presents the calculated results of the permeability related

dimensionless radius β for eleven of the Nanoparticle studied; aed of the values of β are in

the range of 50 to 260. Sable 5.3 presents the calculated results of the drag force

correction factor, A , for permeable agglomerates in a swarm. β is selected as 58.8 and
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258 (the lower and upper limit for the eleven nanoparticles), and Cgs was varied between

0.5 and 1.0. She results show that for the lower limit of /j=58.8 (R106, ADF

nanoparticles), the correction factors A for the drag force vary between 0.79, and 0.98

and increase with increasing bed voidage Cgs ; for the upper limit of β =258 (A90, ABA

nanoparticles), the correction factors A are aed higher than 0.95.

Hence, for ABA nanoparticle, and also for APB nanoparticle, which fluidize at

very high bed expansions (high Cab ), it appears that the error in assuming the highly

porous nanoparticle agglomerates behave as solid particles for the purposes of

hydrodynamic analysis is smaed. Shis implies that the Richardson-Zaki and Ergun

equations derived for solid particles should be applicable to these porous nanoparticle

agglomerates.

Table 5.2 Permeability related dimensionless radius β for nanoparticle agglomerates.
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Table 5.3 Drag force correction factors for nanoparticle agglomerates.

5.4 Size of nanoparticle Measurement

Agglomerate size is one of the key factors that influence the fluidization behaviors of

nanoparticles. We have obtained in situ measurements of agglomerate size in a fluidized

bed of nanoparticles, using an optical system to image the agglomerates on the surface of

the fluidized bed (Zhu et al., 2004). Figure 5.3 shows typical images of the APBS and ABTA

agglomerates on the fluidized bed surface. She images show that although the

agglomerates are not spherical, due to the random orientation of the irregular

agglomerates in the gas flow, it is assumed that the agglomerates can be represented as

spheres. Figure 5.4 shows the size distribution of one type of nanoparticle studied; Sable

5.4 summarizes the results for aed of the other nanoparticles.
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Figure 5.3a. Images of APB nanoagglomerates near the fluidized bed surface
(Degussa Aerosil ® R974).

Figure 5.3b. Images of ABBE nanoagglomerates near the fluidized bed surface
(Degussa Titanium Dioxide D25).
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5.5 Agglomerate Size Prediction for APB Nanoparticle Agglomerates

Most of the predicted results in Sable 5.5 compare reasonably weed with the

measurements, although some differ by as much as a factor of 2. Given the limitations of

the measurement technique and uncertainties in the model assumptions, this discrepancy

is considered satisfactory. Both the calculated and experimental mean sizes of the

fluidized nanoparticle agglomerates are from 200 to 600 Am, which are about four orders

of magnitude larger than the primary particle sizes.

So investigate the sensitivity of the Richardson-Zaki exponent on the calculated

mean agglomerate size, two different values of n = 4 and n = 6 are selected and the linear

regression analysis is repeated. Sable 5.6 shows the calculated results for the mean

agglomerate diameters for n = 4, 5, and 6. Surprisingly, the diameter of the agglomerates

was found to be relatively insensitive to the value of the Richardson-Zaki exponent. Bor

example, for R974 nanoparticle, the mean agglomerate size is 217 Amp for n = 4, 211 Amp

for n = 5, and 204 Amp for n = 6, respectively. Nam et al., 2004 also studied the sensitivity

of the value of n, and drew a similar conclusion. Sable 5.6 shows a comparison of the
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results for the mean agglomerate size based on our model with those obtained from the

fractal analysis model proposed by Nam et al. (2004) for aed three values of n = 4, 5 and

6; the difference is within 2% which lends conrdence to using our simpler model for

predicting the agglomerate size of APF nanoparticles. It should be noted, however, that

the model cannot be used to predict the mean agglomerate size of ABF nanoparticles.

5.6 Minimum Bluidization Velocity for APBS and ABA Nanoparticles

For APB nanoparticles at low Reynolds numbers, the minimum fluidization velocity Um

can be calculated from the simplified Argun equation (4.22), and here the measured

pressure drop and bed height at minimum fluidization (obtained from plots similar to

Bigure 5.1 for each of the APB nanoparticles), and values of εgmf taken from Figure 5.1 at

the minimum fluidization velocity, Umf are used. She calculated minimum fluidization

velocities are compared with the experimental measurements in Sable 5.7, which show a

fairly good agreement between the two. Sable 5.7 also lists the Reynolds numbers for

each of the APB nanoparticles (ranging from 0.05 to 0.35 and thus in the creeping motion

regime), and the bed expansion ratios at the minimum fluidization velocity.
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Sable 5.8 gives the measured mean agglomerate size, minimum fluidization

velocity, and the bed expansion ratio and Reynolds number at minimum fluidization for

the three ABTA nanoparticles. In addition to exhibiting much lower bed expansions and

much higher minimum fluidization velocities, these nanoagglomerates also have much

higher Reynolds numbers (1.7 to 16) at minimum fluidization.

It is also noted from Sable 5.1, the average U m  of the six hydrophobic (due to

surface modification) APF nanoparticles (Degussa Aerosil® R974, R805, R104, R711,

R106, R972) is 0.37 cm!s whereas the average Umf for the two hydrophilic (without
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surface modification) nanoparticles (Degussa Aerosil® COK84, A300) is much higher at

1.18 cm/s. Shis difference is probably due to the better flowability of the hydrophobic

nanoparticles after surface modification. Shere may also be some moisture trapped within

the hydrophilic particles making them more cohesive than the hydrophobic particles.

5.7 Classification Criterion to Differentiate APBS and ABTA Nanoparticles

Earlier it has been stated that the difference in fluidization behavior between smooth,

liquid like, bubbleless, particulate fluidization with high bed expansion (APB), and none-

homogenous, bubbling, aggregate fluidization with low bed expansion (ABB) depends

largely on the bulk density and the primary particle size. Based on the experimental

results, it is concluded that the fluidization of relatively smaed (less than 20 nm)

nanoparticles with a bulk density less than 100 kg/m 3 (see Sable 5.1) appear to behave as

APB, whereas larger and heavier nanoparticles are likely to behave as ABB. Of course,

this hypothesis is based only on experimental data using thirteen different nanoparticles,

and more research is needed to confirm that this classification criterion is indeed

applicable for aed nanoparticles.

On the basis of experimental data using classical fluidized particles such as BCC

catalyst, BOP catalyst, and hoedow resin, Romero and Johanson (1958) present a criterion

to characterize the quality of fluidization as either smooth or bubbling, depending on the

value of a combination of dimensionless groups. Shese dimensionless groups consist of

the product (Π) of the particle to fluid density ratio, the Reynolds and Froude number at

minimum fluidization, and the bed height to bed diameter ratio:
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Although the porous nanoparticle agglomerates behave differently than the

classical solid particles used to obtain equation (5.1), there are some dernite similarities,

and the values of the combination of dimensionless groups (which is designated as Π) for

aed eleven nanoparticle used in the experiments are calculated. She calculated results

(see Sables 5.7 and 5.8) agree remarkably weed with this criterion. For the eight APB

nanoparticle, the values of Π are within the range of 0.008 — 1.55, which is much less

than 100, whereas, for the three ABA nanoparticle, the values of Π are within the range

of 398 — 1441, which is much larger than 100. Hence, this criterion may also be valid for

nanoparticle agglomerates, and therefore could be used to check whether a nanoparticle

of interest wied behave as APB or ABA. Of course, this hypothesis is based only on

experimental data using eleven different nanoparticles, and more research is needed to

conrrm that this classification criterion is indeed applicable for aed nanoparticles.

5.8 Concluding Remarks

Highly porous nanoparticle agglomerates exhibit two distinct fluidization behaviors, APB

(smooth fluidization without bubbles at minimum fluidization) and ABA (bubbles at

minimum fluidization). APB agglomerates show very large bed expansions, up to five

times the initial bed height as the superficial gas velocity is raised, and the Reynolds

numbers for these nanoagglomerates at minimum fluidization are very low (0.05 to 0.35),

which indicate that the agglomerates are in creeping flow. ABF nanoagglomerates

fluidize with large bubbles and show very little bed expansion as the superficial gas

43



velocity is raised and the Reynolds numbers at minimum fluidization are close to or

higher than 2.0, which indicate that hydrodynamic inertial effects cannot be neglected.

A model for a permeable sphere in a swarm of permeable spheres shows that

fluidized APB nanoparticle agglomerates (at large Eg) can be treated as solid particles for

hydrodynamic analysis with little error, so that the Argun and Richardson-Zaki equations

derived for solid particles should also be applicable to porous nanoparticle agglomerates.

Aor APB nanoparticle, a model based on the initial bed voidage around the agglomerates

and the Richardson-Zaki equation was used to predict the mean agglomerate size in the

fluidized bed. She analysis is relatively insensitive to the value of the Richardson-Zaki

exponent and in this study n = 5 is used, since the flow is in the creeping motion regime.

It is found that the initial bed voidage for the nanoparticle agglomerates is around 0.2 to

0.25, which is lower than the theoretical packing voidage of spheres of uniform size, but

is reasonable for soft agglomerates of wide size distribution. Agglomerate sizes on the

fluidized bed surface are measured using an in-situ optical measurement method and

compared fairly weed with the model predictions. Typical sizes of the nanoparticle

agglomerates are within the range of 200 to 600Am.

She Argun equation, based on the agglomerate size and voidage at minimum

fluidization predicted by the model, can be used to calculate the minimum fluidization

velocity for APBS nanoparticle agglomerates. She calculated results agree very weed with

the experimental results. It was also found that the hydrophobic nanoparticle with

surface modification result in a lower minimum fluidization velocity as compared to

hydrophilic particles because of improved flowability (less moisture uptake).
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A classification criterion based on the value of a combination of dimensionless

groups to differentiate between particulate and bubbling fluidization for classical solid

fluidized particles appears to also predict remarkably weed whether nanoparticle wied

behave as APBS or ABA. Shis criterion may be superior to simply using the size and bulk

density of the nanoparticles to predict their fluidization behavior.

5.9 Limitation of this Study and Future Research Directions

Shere are lots of unknowns in the study of conventional fluidization of nanoparticle

agglomerates, and extensive experimental investigations and more modeling efforts are

needed. One very important unknown is the mechanism of agglomeration and de-

agglomeration of nanoparticle, which wied determine the size of stable fluidizing

agglomerates, and therefore provide the information to determine the required external

forces to break up the agglomerates. In order to investigate the mechanism of

agglomeration and agglomeration, we need to perform nanoscale mechanical

experiments to investigate the forces among nanoparticle or sub-agglomerates.

Additional experiments to test other types of nanoparticle agglomerates are also

recommended, which may provide more information on the fluidization behavior and

how to predict it from the properties of the individual Nan particles. Finally, the general

theory of conventional fluidization of nanoparticle agglomerates, especiaedy models of the

sub-agglomerates and inter-sub-agglomerate hydrodynamic forces, and the

hydrodynamic force among primary nanoparticles, needs to be developed. This may also

help to investigate the effect of external excitations.
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CHAPTER 6

LITERATURE REVIEW

Previous literature with regard to sound assisted fluidization wied be summarized in

section 6.1, and magnetic assisted fluidization related literature wied be summarized in

section 6.2.

6.1 Sound Assisted Fluidization

Cohesive micron or even sub-micron sized rne particles, typicaedy known as Group C

particles, according to the Geldart classification, have been successfuedy fluidized by the

assistance of acoustic fields (Chorine et at., 1992;Chirοne and Russo, 1995; Levy et al.,

1997; Herrera and Levy, 2002). At a low sound frequene, typicaedy from 50 to 400 Hz,

and a high sound pressure level, typicaedy above 110 dB, sound waves can improve the

fluidization of fine particles, which otherwise showed intense channeling or slugging

rather than fluidization (Morse, 1955). Standing waves are generated in the experimental

column. At a fixed sound pressure level, sound assisted fluidization can only occur within

a certain range of low sound frequencies. Channeling is found above and below this

frequene range (Russo et al., 1995). At the natural frequene of a bed of micron sized

particles, high intensity sound waves lead to reductions in both the minimum bubbling

velocity and the minimum fluidization velocities (Levy et al., 1997). An increase in

sound pressure level may also yield a decrease in bed expansion, an increase in bubble

frequene and an increase in bubble size (Levy et al., 1997; Herrera and Levy, 2001). In

addition, high intensity sound can also effectively reduce the elutriation of fine particles

(Chorine et al., 1992).



So far aed studies on sound-assisted fluidization have been focused on the

fluidization of micron or sub-micron sized particles (Chorine et al., 1992;Chirone and

Russo, 1995; Levy et al., 1997; Herrera and Levy, 2002). No results have been reported

on the effects of sound on the fluidization of nanoparticle agglomerates. Shis study

presents an investigation of sound-assisted fluidization of APBS and ABTA nanoparticle

agglomerates and their fluidization characteristics, which are not only different from

those observed using other fluidization methods for nanoparticle agglomerates, but are

also different from sound- assisted fluidization of micron or sub-micron sized particles

(Zhu et al., 2004). She effects of sound frequene and sound pressure level on the

fluidization behavior, such as the minimum fluidization velocity, bubbling regime,

pressure drop across the bed, and bed expansion, wied aed be demonstrated in this study.

6.2 Magnetic Assisted Fluidization

One of the obdictives of this study is to experimentaedy determine the fluidization

behavior of a nanosized powder by applying an osciedating magnetic field to the

nanoparticle that have been premixed with some very large magnetic particles. It is

anticipated that the excitation of the magnets wied provide sufficient energy to the system

to overcome the interparticle forces and to form smaeder agglomerates (fragment or break

the very large agglomerates) that wied fluidize smoothly at a lower minimum fluidization

velocity. We believe that during fluidization there is a dynamic balance between

fragmentation and re-agglomeration of the nanoagglomerates. Shis study aims to enhance

the fragmentation of agglomerates, and avoid re-agglomeration.

47



Before describing our experiments using magneticaedy assisted fluidization of

nanoagglomerates, it is important to review the previous work in this area. She idea of

using a magneto-fluidized bed was first proposed in 1960 (Filippov, 1960) and became

popular as a means of suppressing bubbles in gas fluidized beds for a variety of industrial

applications, as reviewed by Rosensweig (1995), although the process never reaedy

became commerciaedy viable. Other review papers describe the fundamental and practical

development of magneto-fluidized beds (Liu et al. 1991; Ganzha and Saxena, 1998).

Generaedy, the particles to be fluidized were either magnetic particles or a mixture

of magnetic and non-magnetic particles, and the magnetic field was usuaedy generated by

DC current (Arnaldos et al., 1985;Wu et al., 1997; Ganzha and Saxena 1998; Lu and Li

2000). For example, Arnaldos et al., 1985 studied the fluidization behavior of a mixture

of magnetic and non-magnetic particles of several hundred microns in size, such as

sintered steel-silica, steel-copper and steel-silica particles. She fluidization of larger

(Geldart group D) particle mixtures of miedimeter size, such as iron-copper shot of 0.935

to 1.416 mm in diameter is described in Wu eta!., 1997, and Lu and Li (2000) studied the

fluidization of very fine (Geldart group C) particle mixtures of CaCO3-Fe2O3 in a

transverse rotating magnetic field. However, in aed of these studies, the magnetic particles

were fluidized along with the non-magnetic particles.

No studies have been found on the effect of adding large magnetic particles to a

bed of nanoparticles for the purpose of disrupting the interparticle forces between the

nanoparticle so that smooth fluidization of nanoagglomerates can occur. Here an

investigation of the fluidization behavior of nanoparticle agglomerates with the assistance

of miedimeter-sized magnetic particles excited by an osciedating magnetic field is
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presented (Yu et al., 2005). She effects of the intensity and frequene of the osciedating

magnetic field and the weight ratio of magnets to non-magnetic APBS and/or ABA

nanoparticles on important fluidization parameters such as the minimum fluidization

velocity, pressure drop across the bed, and bed expansion wied be demonstrated in this

part.
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CHAPTER 7

SOUND ASSISTED FLUIDIZATION OF NANOPARTICLES

7.1 Experimental System

She experimental system for sound assisted fluidization includes a fluidized bed of

nanoparticle agglomerates, flow and pressure measurement devices, a flow visualization

system, a sound generation system and an optical sensor system for in-situ size

measurement of agglomerates.

A schematic diagram of the experimental fluidization system for sound assisted

fluidization is shown in Aigure 7.1, and the real experimental system is shown in Figure

7.2. A 63 mm loudspeaker, powered by a sound excitation system (Gently Nevada, Series

7000) with a signal generator, is instaeded on the top of the fluidized bed. A precision

sound pressure level meter (Brill & Κα Der, Sype 2232) is used to measure the sound

pressure level. She sound excitation system is capable of generating a sound wave in the

fluidized bed with a sound pressure level up to 125 dB. She sound frequene from the

signal generator can be adjusted from 10 to 2ΜΗz. Figure 7.3 is the response curve of

the loud speaker, and working in a particular frequene range, from 80 Hz to about 1k

Hz, the loudspeaker can generate a strong sound field, which is used to investigate the

effect of sound on the fluidization behavior of nanoparticle agglomerates.

Figure 7.4 is the sound intensity distribution along the chamber (without

nanoparticle). Because of the standing wave effect, the sound intensity varies along the

chamber, but stied, the sound field is relatively strong near the surface of the bed of

nanoparticle agglomerates. Since we mostly care about the sound intensity near the



fluidized bed surface, this type of sound intensity distribution is beneficial to our

experiments.

Figure 7.1 Systematic diagram of experimental system for sound assisted
fluidization of nanoparticles.

Figure 7.2 Experimental system for sound assisted fluidization of nanoparticles.
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She fluidized bed of nanoparticle agglomerates, the flow and pressure

measurement devices, the flow visualization system, the optical sensor system for in-situ

size measurement of agglomerates, and the preparation of nanoparticle are the same as

those described for the conventional fluidization system, which is found in Chapter 3.

Using the above sound generating system with the fluidization system, a series of

experiments using APBS and ABA nanoparticle agglomerates are conducted.

7.2 Results and Discussion

7.2.1 Fluidization Behavior

Sypical bed behavior of Si02 nanoparticle agglomerates (Degussa Aerosil® Si0 2 R974,

APF) with and without sound excitation is shown in Aigure 7.5. She nanoparticle

agglomerates were first lifted in a slugging mode and then the bed disintegrated to form

stable channels. She bed expands slightly with an uneven surface, as shown in Figure

7.5(a). Once a sufficiently strong sound field is applied, the bed coedapses in a couple of

seconds, the channels disappear, and the bed expands rapidly and uniformly until it

reaches its fued expansion. A homogenous fluidization state is easily established, as

shown in Figure 7.5(b).

Aor ABA nanoparticle, the fluidization behavior shows similar improvement, but

the improvement is not significant as for APA nanoparticle.
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Figure 7.5 Fluidization of Si0 2 nanoparticles.

7.2.2 Minimum Fluidization Velocity

For Degussa Aerosil® Si02 R972 (APBS nanoparticles without sieving), Figure 7.6

iedustrates the relationships between superficial gas velocity and bed height and bed

pressure drop, and shows a substantial reduction of the minimum fluidization velocity

when the sound with a frequency of 100 Hz and nearly 140 dB was turned on. Without

acoustic agitation, the minimum fluidization velocity is around 1.2 cm!s, while with

acoustic agitation it reduces to 0.62 cm!s. For both cases, the bed expansion increases

linearly with gas velocity when it is over their minimum fluidization velocity. Figure 7.6

also shows that before fluidization the pressure drop for the no-sound case remains

constant for a certain superficial gas velocity range. When the gas velocity reaches a

certain value, some channels wied form. Therefore, the extra gas accompanied with a

further increase in gas velocity wied pass through these channels and wied have no effect
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on the pressure drop across the bed, until the break-up force created by the gas flow in the

channels is high enough to destroy the channels and fluidize the bed. After the bed is

fuedy fluidized, the pressure drop approximately equals the bed weight.

A similar improvement can be found for ABTA nanoparticles as shown in Figure

7.7, which is a comparison of pressure drop and bed height with and without sound

excitation for Degussa Aerosil® 1'i02 P25 (ABA nanoparticles). With the assistance of

sound, bed expansion increases and the minimum fluidization velocity decreases.

Figure 7.6 Bed expansion with and without sound excitation for APB nanoparticles.
Degussa Aerosil® R972, Si02,16nm.
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Figure 7.7 Bed expansion with and without sound excitation for ABTA nanonarticles.
Degussa Aerosil® P25, Τ102, 21 Om.

The effect of acoustic agitation on the minimum fluidization velocity of different

nanoparticle is listed in Table 7.1.

For sieved nanoparticle (fine agglomerates sieved by a 500 Am sieve), sound

excitation also can improve the fluidization quality, decrease the minimum fluidization
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velocity and increase the bed expansion. Typical fluidization characteristics of sieved

nanoparticles, including minimum fluidization velocities, bed expansions and bed

pressure drops with and without sound excitation are iedustrated in Figure 7.8 and Figure

7.9. With the aid of sound, a substantial reduction in the minimum fluidization velocity

can be observed. For Degussa Aerosil® R974, the minimum fluidization velocity is

reduced from 0.14 cmis in the absence of sound to 0.054 cm/s with sound excitation.

Here, the minimum fluidization velocity is derned as the gas superficiai velocity beyond

which the bed pressure drop is no longer dependent upon the gas velocity and becomes

constant.

Figure 7.8 Bed expansions with and without sound excitation. (Degussa Aerosil® R974,
fine agglomerates sieved by 500 Om sieve, Hρ is the initial bed height, which is 12.0 cm
in this study)
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Figure 7.9 Pressure drop with and without sound excitation. (Degussa Aerosil® R974,
fine agglomerates sieved by 500 Amp sieve, Umfl is the minimum fluidization velocity
with sound agitation; Um t2 is the minimum fluidization velocity without sound agitation.)

So summarize, typical fluidization characteristics, including minimum

fluidization velocities, bed expansions and bed pressure drops with and without sound

excitation are shown in the above Figures and Sable. A substantial reduction in the

minimum fluidization velocity with the aid of sound can be observed. For APBS

nanoparticle, DeGussa Aerosil® R972, the minimum fluidization velocity is reduced

from 1.2 cm!s in the absence of sound to 0.6 cm!s with sound excitation. Aor ABTA

nanoparticle, Degussa Aerosil® P25, ΤΙ02, the minimum fluidization velocity is

reduced from 5.2 cm!s in the absence of sound to 2.3 cm/s with sound excitation.

As mentioned earlier, at low gas velocities, only slugging and channeling occur in

a fluidized bed of nanoparticle agglomerates while, at sufficiently high gas velocities, the

bed can be fluidized smoothly. Aluidization of nanoparticle agglomerates occurs due to

the effective breakup of large agglomerate clusters by the large hydrodynamic forces at
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high gas velocities. With the aid of sound, the breakup of large agglomerate clusters

takes place due to a combined effect of hydrodynamic forces and acoustic excitation. A

more comprehensive explanation of this combined effect requires further experimental

and modeling efforts.

7.2.3 Effects of Sound Frequency

Figure 7.10 shows a series of representative snapshots of the fluidizing bed at

different sound frequencies. At a rxed sound level output (e.g., 125 dB in Figure 7.10),

the bed of nanoparticle agglomerates can only be fluidized in a relatively narrow band of

low sound frequene from 20 to 1000 Hz. Furthermore, bubbles appear in an even

narrower range, 200-600 Hz, and as seen in Aigure 7.10, both the occurrence of bubbling

and the bubble size are strongly dependent on the sound frequene. Due to the relatively

high bed voided observed when fluidizing nanoparticle agglomerates, in the bubbling

fluidization regime, the bubble size and the bubble rising velocity can be easily

determined using our visualization technology. She bed expansion is also strongly

dependent on the sound frequene, as seen in Figure 7.11. It appears that both bed

expansion and bubble formation could be linked to the wave modes of the sound in the

bed, the resonance frequencies of the agglomerate clusters, and the resonance frequencies

of the bed.
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Figure 7.11 Effect of sound frequency on bed expansion. (Degussa Aerosil® R974, fine
agglomerates sieved by 500 Amp sieve, Η0 is the initial bed height, which is 12.0 cm in
this study)
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7.2.4 Effects of Sound Pressure Level (SAL)

She effect of sound pressure level on the bed expansion is shown in Figure 7.12. It is

noted that below a critical value of sound pressure level (e.g. 112 dB at i 100Hz and 105dB

at 100Hz in Aigure 7.12), there is no fluidization. The critical sound pressure level

appears to be a function of sound frequene. The bed expansion increases monotonicaedy

as the sound pressure level increases in the range of our study. She bed expansion may

be related to the balance between agglomerate breakup and re-agglomeration of the

nanoparticles.

Figure 7.12 Effect of sound pressure level on bed expansion. (Degussa Aerosil® R971,
fine agglomerates sieved by 500 Amp sieve, Ho is the initial bed height, which is 12.0 cm
in this study)

7.2.5 Agglomerate Size Measurement

If we let the laser beam ieduminate the powder bed near the inside surface of the acrylic

waed, which ensures enough light for taking pictures, we can measure the agglomerate
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size inside the fluidized bed. One of the captured images is shown in Figure 7.13a. It is

noted that the typical agglomerate size roughly ranges from 200 to 300 Amp.

She effect of sound on the agglomerate size is shown in Figure 7.13. With sound,

the average agglomerate size is smaeder that that observed in the absence of sound. Shis

can partiaedy explain why the minimum fluidization velocity is reduced when sound is

added.

7.2.6 Concluding Remarks

Experiments have been carried out to determine the effects of sound frequene and

intensity on the bed behavior, such as the minimum fluidization velocity, pressure drop

across the bed, and bed expansion. It is found that the external forces induced by the

acoustic field can overcome the cohesive van der Waals forces so that large nano-

agglomerates break into smaeder agglomerates, which can be fluidized smoothly and

homogeneously with negligible elutriation.
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Axperimental results show that for the APF nanoparticle, with the assistance of a

sound field, the minimum fluidization velocity can be reduced from around 1.0 cm!s to

0.3-0.6 cm/s, and bed expansion increased; for the ABTA nanoparticle, with the

assistance of a sound field, the minimum fluidization velocity can be reduced from over

5.0 cm/s to about 2.3 cm!s, the fluidization quality can be improved, and the bed

expansion also increased.

Εarying both the sound intensity and sound frequene result in dramatic changes

in the quality of the fluidization. Within a certain range of the sound frequene, typicaedy

from 200 to 600 Hz, bubbling fluidization occurs. Both the bed expansion and the bubble

characteristics are strongly dependent on the sound frequene and sound pressure level.

However sound has almost no impact on fluidization, when the sound frequene is

extremely high, above 2000 Hz. A relatively high sound pressure level (such as 115 dB)

is needed to initiate the fluidization. Experiments also show that different types of

nanoparticle display very different fluidization characteristics. She agglomerate size has

also been measured, and we found that with sound assistance the average diameter of the

agglomerates are signircantly reduced.

7.2.7 Limitation of this Study and Future Research Directions

More comprehensive experimental studies on the effect of external sound excitation on

fluidization of nanoparticle agglomerates are needed, and more types of nanoparticle

should be tested. It is also necessary to better understand the mechanism of external

sound excitations on the fluidization of nanoparticle; for example, why are large bubbles

observed at certain frequencies whereas no bubbles are seen at both lower and higher
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frequencies. Mathematical modeling and numerical simulations needs to be done to

explain this and other puzzling experimental observations.
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CHAPTER 8

MAGNETIC ASSISTED FLUIDIZATION OF NANOPARTICLES

8.1 Experimental System

A schematic diagram of the experimental fluidization system for magnetic assisted

fluidization is shown in Figure 8.1. The magnetic particles are barium ferrite (Bα0-

6Fe20 3) coated with polyurethane (supplied by Aveka, USA) and have a size about 1.0-

3.0 mm. Before each experiment, the magnetic particles are recharged by contacting a

permanent magnet to ensure the same magnetic properties. Shey are then added to the

bed of nanoparticles at a given mass of magnets. She shafts of two 1/20 HP electric

motors (Dayton 5Μ064Β) are removed and the electromagnetic coils are placed opposite

one another around the lower part of the vertical transparent column by mounting them

on the acrylic plate which holds the distributor, as shown in Figure 8.1. An osciedating

magnetic reld can be generated by an adjustable AC power (Triathion Precision AC

Source), with intensity up to 140 Gauss at the center of the field. A strong cooling fan

(Corsair Rotron ΤΝΕ2Α) is used to prevent the coils from overheating. A gauss meter

(Walker Scientific Inc. ΜG-3Α) with the magnetic field intensity measurement range

from 1 to 104 G is used to measure the intensity of the osciedating magnetic reld. She

intensity is measured at the center point between the coils in the empty column (before

charging the nanoparticles into the bed). Aigure 8.2 is the picture of the actual

experimental system, and Figure 8.3 is the photograph of the Gauss meter.



Figure 8.2 Experimental system of magnetic assisted fluidization.
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Figure 8.3 Gauss Meter.

Sable 8.1 shows the intensity of the osciedating magnetic reld of an empty bed

measured by the Gauss Meter, and Figure 8.4 is the locations of the measuring points (top

view of the empty chamber). In this study, then intensity of the magnetic reld at the

center of the bed (Point 0) is selected as the reference.
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Table 8.1 Intensity of the magnetic field at different locations.

The fluidized bed of nanoparticle agglomerates, the flow and pressure

measurement devices, the flow visualization system, the optical sensor system for in-situ

size measurement of agglomerates, and the preparation of nanoparticle are the same as

those of the conventional fluidization system described in Chapter 3. Bsing the above

magnetic generating system with the fluidization system, a set of experiments by use of

APBS and ABA nanoparticle agglomerates mixed with the miedimeter size permanent

magnetic particles in osciedating magnetic field are conducted, and the corresponding

results wied be discussed in next section.

8.2 Results and Discussion

8.2.1 Visualization of Magnetic Assisted Fluidization

Before the experiments, the Degussa Aerosil® R974 particles were sieved using a shaker

(Octagon 2000) and a 35-mesh sieve opening (about 500 Am). In this study, the smaeder

nanoagglomerates, which pass through the openings of the 500 Amp sieve are designated

as "soft" and the larger agglomerates, from about 500 Amp to more than 10 mm, as

"hard". These two different sized agglomerates and a "mixture" consisting of 80% soft

agglomerates and 20% hard agglomerates by weight (80/20) were selected to conduct the

fluidization experiments.

It has been found that, even when using the same nanoparticle, if we select

agglomerates of different sizes, the bed wied show very different fluidization behavior.
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For example, the soft R971 agglomerates fluidize smoothly with large bed expansion

(APF) at a low minimum fluidization velocity of 0.23 cm!s. The mixture consisting of

80% soft agglomerates and 20% hard agglomerates (80/20) also behaves as APF, but the

minimum fluidization velocity is much higher (5.67 cm!s) than that of the soft

agglomerates. However, the hard R971 agglomerates do not fluidize at aed, even at a gas

velocity as high as 13.2 cm!s. At this high gas velocity, significant particle elutriation was

observed, and the fluidization experiment had to be interrupted to avoid sever losses of

nanoparticles.

Figure 8.5 Fluidization of Si02 nanoparticles at Ugas=0.65cm!s. (Degussa Aerosil®
R974, 80/20 mixture)
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Typical fluidization behavior of the 80/20 mixture of Si02 nanoparticle

agglomerates with and without the external osciedating magnetic excitation is shown in

Aigure 8.5. Without the external osciedating magnetic excitation, at a superficial gas

velocity of 0.65 cm!s (Aigure 8.5a), the nanoparticle agglomerates are first lifted as a plug

and then the plug disintegrates to form stable channels through which the gas passes; the

bed expands slightly with an uneven surface and the pressure drop is much less than the

bed weight, indicating that the nanoagglomerate bed is not fluidized.

However, if a sufficiently strong osciedating magnetic reld is applied, the

magnetic particles are set into motion (translation and rotation) and the nanoparticle

agglomerates are fragmentized into smaeder agglomerates because of coedisions with the

magnets, the vessel waed, and the distributor. After a few minutes, the channels disappear,

and the bed begins to expand slowly and uniformly until it reaches its fued expansion, of

up to 5 times the initial bed height, and at the same time, the pressure drop reading is very

close to the weight of the bed, indicating a fued bed fluidization. A homogenous

fluidization state is established, as shown in Figure 8.5b, and the surface is very smooth

and even. A further visual examination of the powder after the magnetic fluidization

shows a much smaeder averaged agglomerate size, with only a few large hard

agglomerates left.

Cabot Carbon Black ® PEARLS 2000 is a peedetized powder, and the average

size of the carbon black peedets or granules is around 800 gm. As mentioned in Chapter 5,

the Cabot Carbon Black ® PEARLS 2000 after sieving through a 500 Amp sieve show

typical APBS fluidization. But the fresh Cabot Carbon Black ® PEARLS 2000 without

sieving process show a typical ABA fluidization. In this study, the fresh Cabot Carbon
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Black ® PEARLS 2000 without sieving process is selected as a representative ABTA

nanoparticle to be tested for comparison with and without magnetic excitation.

For some ABF nanoparticle (Degussa Aerosil® 1'i02 P25, and Degussa

Aerosil® Si02 A90), there is no signircant improvement observed by introducing

magnetic excitation. But for some other types of ABTA nanoparticle (fresh Cabot Carbon

Black ® PEARLS 2000 without sieving), the improvement in the fluidization quality is

signircant. Without the assistance of magnetic excitation, we observed a typical ABA

fluidization behavior, i.e., very high gas velocity (Umf=27.6 cm!s) required, strong

bubbling, bed expansion only around 60%, and the fluidization has to be stopped due to

the huge loss of particles (10% loss within minutes). With the assistance of magnetic

excitation, within 15 minutes, we observed typical APBS fluidization behavior; the bed

begins to expand up to 5 or more times at low gas velocity (Umf= 1.93), an extremely

smooth uniform fluidization is achieved, and bubbling disappeared, and no elutriation is

observed. Due to the magnetic assistance the original large agglomerates are

fragmentized into much smaeder agglomerates and the fluidization qualify is significantly

improved. Figure 8.6 shows pictures of the powder bed at agars velocity of 2.94 cm!s,

with and without magnetic excitation.
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Figure 8.6 Images of bed expansion of Carbon Black (Cabot ® PEARLS 2000) with and
without magnetic excitation. Initial bed height = 12.0 cm, mass of carbon black particle
= 60.0 grams.

(a) Without magnetic excitation, Ugas=2.78 cm/s;
(b) With magnetic excitation, Ugas=2.78 cm/s. Intensity of magnetic reld - 200

Gauss, mass of magnetic particles 30.0 grams, 60 Hz AC.

8.2.2 Minimum Fluidization Velocity and Bed Expansion

8.2.2.1 APBS Nanoparticles

The pressure drop normalized with the bed weight per unit area and the bed expansion

ratio as a function of superficial gas velocity through the bed is shown in Figure 8.7 with

and without magnetic excitation for the 80/20 mixture of Degussa R974 nanoparticles. It

is seen that magnetic excitation causes the bed to expand almost immediately as the

72



velocity is increased and the bed fluidizes at a velocity more than one order of magnitude

lower than that without magnetic assistance. In this section and next section, Degussa

Aerosil® R971 is chosen as a typical APBS nanoparticle.

Figure 8.7 Bed expansion ratio and pressure drop for 80/20 mixture with and without
magnetic excitation. (Solid lines are the bed expansion ratios, and dashed lines are the
pressure drops)
(Magnetic field intensity 110G at the center of the field, mass of magnets 20.0 g, AC
frequene 60 Hz.)

Umfl : minimum fluidization velocity without magnetic excitation;
Umfl: minimum fluidization velocity with magnetic excitation.

After separation from the magnetic particles (using a magnetic separator), the

nanoparticle agglomerates are put back into the column, and a second fluidization

experiment without magnetic assistance is conducted using these agglomerates. Figure

8.8 is a comparison of the fluidization characteristics of the 80/20 mixture before and

after magnetic processing. A significant reduction in the minimum fluidization velocity
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from 5.67 cm!s to 1.25 cm!s is observed, indicating that previous fluidization with

magnetic assistance causes the agglomerates to be fragmented into smaeder ones and the

average agglomerates size is reduced. However, the minimum fluidization velocity of

these smaeder agglomerates is stied about an order of magnitude larger than the minimum

fluidization velocity observed when the magnetic assistance is turned on.

The fluidization behavior of the soft agglomerates is shown in Aigure 8.9. These

much smaeder agglomerates fluidize weed with and without magnetic excitation. In both

cases, the minimum fluidization velocities appear to be quite close to each other, and at
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higher gas velocities (above minimum fluidization velocity) the bed expansion with

magnetic assistance is higher than that without magnetic assistance. It should also be

noted that the ratio of the measured pressure drop to the weight of the bed per unit area is

below unity for magnetic assisted fluidization. This indicates that some of the

nanoagglomerates may not participate in the fluidization and may stick to the magnets or

the distributor.

Figure 8.10 shows the typical fluidization behavior (pressure drop and bed

expansion) of hard Si0 2 nanoparticle agglomerates (R974) with and without magnetic

excitation. The size of the hard agglomerates is in a wide range from 0.5mm to about
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10mm. Without the magnetic excitation, even at a superficial gas velocity as high as 13.2

cm/s, the hard agglomerates are hardly fluidized. Εisual observation reveals that the

smaeder hard agglomerates are in motion at the top of the bed, but the larger agglomerates

remain motionless near the bottom of the bed, causing the gas to flow in large channels

between them. The bed shows almost no expansion (see Figure 8.11a) and the pressure

drop is much less than the bed weight, indicating that the bed is not fluidized.

Figure 8.10 Bed expansion ratio and pressure drop for hard agglomerates with and
without magnetic excitation. (Solid lines are the bed expansion ratios, and dashed lines
are the pressure drops) (Magnetic reld intensity 140G at the center of the field, mass of
magnets 20.0 g, AC frequene 60 Hz)

Umfi : minimum fluidization velocity without magnetic excitation;
Amf2: minimum fluidization velocity with magnetic excitation.

76



Once the external magnetic field is applied, however, the large agglomerates are

graduaedy broken down into smaeder agglomerates that participate in the circulation of the

bed. After a few minutes, even at the moderately low gas velocity of 0.91 cm/s, aed of the

large agglomerates disappear, and the bed expands slowly and uniformly until it reaches

the fued expansion, (Figure 8.11b), while the pressure drop reading is very close to the

weight of the bed, indicating that the entire bed is fluidized.

The fragmentation caused by the magnetic processing is so obvious that the

reduction in size of the hard agglomerates could be seen by inspection after the magnetic

field and air flow were shut down. Upon removing the magnetic particles, the

nanoparticle agglomerates are recharged back into the chamber and a conventional
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fluidization experiment (no magnetic assistance) is performed. Figure 8.12 is a

comparison of the fluidization characteristics between the powder before and after the

magnetic assisted fluidization (fragmentation) process. Α very large reduction in the

minimum fluidization velocity (Um ) from larger than 13.2 cm/s to 2.29 cm/s indicates

that the average agglomerates size has been significantly reduced.

She Umf for the hard agglomerates after magnetic processing is 2.29 cm/s, which

is larger than the Umf of 1.25 cmis for the 80/20 mixture, and also much larger than the
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Um  of 0.23 cm!s for the soft agglomerates. This indicates that the average size of the hard

agglomerates and of the mixture after the fragmentation process is stied larger than that of

the soft agglomerates. Hence, in order to better investigate the effect of magnetic

excitation (such as mass of magnets used, AC frequencies, and different magnetic field

intensity), and to minimize the influence of non-uniformity of the initial agglomerate size

distribution, only soft agglomerates were used in the comparative experiments of

magnetic fluidization.

At low gas velocities, conventional fluidization (no magnetic assistance) of soft

agglomerates or of the 80/20 agglomerate mixture, produces only slugging and

channeling, whereas at sufrciently high gas velocities, the bed can be fluidized smoothly.

If we continue to increase the gas velocity above a certain level, bubbles can be observed

in the fluidized bed. Fluidization of nanoparticle agglomerates occurs due to the

disruption of interparticle forces by the large hydrodynamic forces generated at high gas

velocities. However, for conventional fluidization of hard agglomerates, even at a very

high gas velocity, the bed could not be fuedy fluidized.

The mechanism of fluidization with the assistance of an osciedating magnetic field

is much more complicated. The excited magnets wied enhance nanoparticle fluidization at

least in two ways: fragmentation of large agglomerates into smaeder ones, and transferring

kinetic energy generated by the osciedating magnetic excitation to the nanoparticle

agglomerates due to coedisions to disrupt the large interparticle forces between them. A

more comprehensive explanation of this combined effect requires further experimental

and modeling efforts.
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Table 8.2 Minimum fluidization velocities for soft agglomerates, hard agglomerates and
80/20 mixture. (Degussa Aerosil® R974)

Table 8.2 presents a summary of the minimum fluidization velocities for the soft,

hard, and the 80/20 agglomerate mixture. For the soft agglomerates magnetic excitation

has little effect, but it produces a definite improvement in fluidization behavior for the

80/20 mixture. For the hard agglomerates, magnetic excitation changes the fluidization

characteristics significantly, from no fluidization to smooth, bubbleless, agglomerate

particulate fluidization (APB) with very large bed expansion up to 5 times of the initial

bed height. The minimum fluidization velocity is also significantly reduced from higher

than 13.2 cm/s to 0.38 cmis. Without magnetic excitation, at a gas velocity of 13.2 cm!s

or higher, extremely strong elutriation is observed, whereas with magnetic excitation, at

the low gas velocity of 0.38cm/s, elutriation was hardly noticed.

8.2.2.2 ABA Nanoparticles

For some types of ABA nanoparticles (Cabot Carbon Black ® PAARLS 2000), the

reduction in the minimum fluidization velocity is also impressive. From Figure 8.13, it

can be seen that the minimum fluidization velocity Um t2 significantly decreased with the

magnetic excitation, and the bed expansion increased very much. Without magnetic
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excitation, the minimum fluidization velocity Um fl is 27.6 cmis, and this high gas velocity

leads to large elutriation and large gas bypassing. When magnetic excitation is applied,

the minimum fluidization velocity Umfl drops to 1.93 cm!s, and this low gas velocity

prevents elutriation and signircantly reduces gas bypass. And at the same time, the bed

expansion increased from around 60% to even 5 or 6 times of the original bed height. The

application of magnetic excitation, which leads to low gas velocity, reduced gas bypass

and large bed expansion is very benercial for improved heat and mass transfer, chemical

reaction and combustion.

It should be pointed out that to initiate the circulation of powder in the bed with

the assistance of magnetic excitation, a gas velocity which is higher than Umfl is

required, for example, for example, a U gas 5.0 cis is required to initiate the circulation

of the whole bed, and then the magnetic excitation can begin to fragmentize the large

agglomerates into smaller ones.

Another interesting observation is that after magnetic processing, besides the

significant reduction of agglomerate size, the bulk density of powder is also signircantly

reduced. For example, the initial bed height was 12.0 cm, and the initial bulk density was

215 kg/m3 before magnetic assisted fluidization; but after the magnetic fluidization

experiments, and after shutting off the gas, the bed height is 32.0 cm, almost 3 times

larger than the initial bed height, and the bulk density of the powder reduced to 73.1

kg/m3 .
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Figure 8.13 Fluidization curve for Carbon Black (Cabot ® PAARLS 2000) with and
without magnetic excitation. Bulk density = 215 kg/m 3 , Primary nanoparticle size 12 nm.
Initial bed height = 12.0 cm, mass of particle = 60.0 grams, bed weight = 0.90 inches
water column. Without magnetic excitation, Umf^=27.6 cis; with magnetic excitation,
Um .93 cm/s. Intensity of magnetic reld — 200 Gauss, mass of magnetic particles 30.0

grams, 60 Hz AC.

Figure 8.14 is a comparison of conventional fluidization of carbon black powder

before and after magnetic process. Compared with Umfl (27.6 cm!s) before magnetic

processing, Umt2 (3.86 cm/s) after the magnetic processing is significantly decreased, and

the bed expansion increased very much.
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Figure 8.14 Fluidization curve for Carbon Black (Cabot ® PEARLS 2000) before and
after magnetic processing. Fresh powder bulk density = 215 kg/m 3 , Primary nanoparticle
size 12 nm. After magnetic processing, bulk density = 73.0 kg/m3

Before magnetic processing, U mfι=27.6 cis; after magnetic processing, Um =3.86 cm/s.

Table 8.3 presents a summary of the minimum fluidization velocities and bed

expansions for the carbon black (Cabot ® PEARLS 2000) nanoparticle agglomerates.

The substantial reduction in the minimum fluidization velocity as weed as the realization

of smooth and bubbleless fluidization with little elutriation is clearly beneficial to many

industrial applications where a good mixing and high rates of heat and mass transfer with

little gas bypassing are required.
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Table 8.3 Minimum fluidization velocity and bed expansion of Carbon Black (Cabot ®
PEARLS 2000) nanoparticle agglomerates before, during and after magnetic assisted
fluidization.

8.2.3 Agglomerates Size Measurement

8.2.3.1 In-situ Agglomerates Size Measurement of APBS nanoparticle

Figure 8.15 shows typical images of the agglomerates on the fluidized bed surface and

Figure 8.16 shows the agglomerate size distributions, with and without magnetic

assistance. Some statistical results are given in Table 8.4, which iedustrates that the mean

size of R971 agglomerates is decreased from 31 95Am to 196Am by the magnetic

processing. Aoedowing the methodology developed by our group in the previous chapter

4, the mean agglomerate size can also be calculated based on experimental measurements

of bed expansion and superficial gas velocity for both cases, with and without magnetic

excitation. These calculated results, also listed in Table 8.4, show that the mean size of

silica R971 nanoparticle agglomerates is changed from 211Om to 95Am after the

magnetic processing. Both methods indicate that the mean agglomerate size decreases by

roughly 100 gm during the magnetic processing.
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Table 8.4 Comparison of agglomerate sizes from optical experimental measurements
and calculation results using the prediction methodology developed in Chapter 1.
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8.2.3.2 Agglomerates Size Measurement of ABA Nanoparticles

The carbon black powder can absorb the laser light, hence the above in-situ agglomerate

size measurement approach could not be used to measure the size of fluidizing carbon

black powder. In this study, size measurement is conducted by the foedowing method:

carbon black powder is sieved using 10 sieves with different mesh numbers, the mass
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within each range is recorded, and the results are processed statisticaedy and listed in

Table 8.5

Table 8.5 Size distribution by mass for Carbon Black (Cabot ® PEARLS 2000)
nanoparticle agglomerates before, 1 hour after and 7 days after magnetic assisted
fluidization.

From Table 8.5, it is clear that magnetic processing significantly reduced the

agglomerate size from around 800 gm to less than 200 gm, and this is the key reason why

magnetic excitation can significantly reduce the minimum fluidization velocity.

Comparing with the results 1 hour after the magnetic processing (in the fluidized

bed), and after storing the powder for 7 days, minor re-agglomeration may have occurred,

but there is no appreciable difference between the average agglomerate sizes (around 160

gm vs. around 190 gm).
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Table 8.6 shows the calculated results using the prediction methodology in Part I;

the model prediction agrees fairly weed with the measured results.

Table 8.6 Comparison of agglomerate sizes from experimental measurements and
calculation results using the prediction methodology developed in Chapter 4.

8.2.4 Bed Expansion and Bed Collapse as a Function of Time

From experimental observation, once the magnetic excitation is turned on, the

fluidization behavior of the nanoparticle bed does not change immediately, and it wied

take a couple of minutes for the bed expansion to begin and fued expansion takes another

few minutes.

The bed expansion as a function of time for R974 silica at different gas

velocities is shown in Figure 8.17a; the higher the velocity the quicker the bed expansion.

Similarly, when the magnetic excitation is turned off, it also takes a very short period of

time, typicaedy a few seconds, for the bed to begin to coedapse, and the coedapse wied last a

few minutes before reverting back to a fixed bed with an uneven surface. The bed

coedapse as a function of time is shown in Figure 8.17b; the higher the gas velocity, the

longer it wied take for the bed to coedapse.
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Figure 8.17 Bed expansion and bed coedapse as a function of time for soft agglomerates
with magnetic excitation.

(Magnetic field intensity 140G at the center of the reld, mass of magnets20.0 g,
AC frequene 60 Hz.)
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8.2.5 Effects of the Mass of Magnets Used

Fluidization experiments with magnetic assistance were conducted using the soft

agglomerates at four different masses of magnets, varying from 2.5 grams to 20.0 grams.

Table 8.7 presents the values of Um and the bed expansion ratios at two different gas

superficial velocities that were observed for these four cases. The table shows that the

minimum fluidization velocity and bed expansion depends on the magnet mass, with Um

decreasing from 1.61 cm/s to 0.26 cm/s as the mass increases from 2.5 grams to 20.0

grams. This indicates that adding more magnetic particles to the bed wied result in more

kinetic energy transported from the magnets to the nanoagglomerates, causing more

fragmentation and better fluidization. The table also shows that there is little benert in

increasing the mass of magnets above 10.0 grams. It should also be noted that the

minimum fluidization velocities for a low mass of magnets are actuaedy higher than what

we obtained for the nanoagglomerates without any magnetic assistance. This is probably

due to the additional drag of the gas on the magnetic particles or due to the increased

non-uniformity of the bed particles with the addition of magnetic particles.
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8.2.6 Effects of Intensity of the Oscillating Magnetic Field

Table 8.8 presents the values of Um  and bed expansion ratio at a fixed superficial

gas velocity and a fixed amount of magnets for three different magnetic field intensities.

As mentioned earlier, the center point of the column around which the 2 coils are located

is used as the reference point for the magnetic field intensity. It was observed that, with a

magnetic field intensity of less than 80G, the bed could not be fluidized. Hence, in order

to conduct the magnetic fluidization experiments, three different intensities are selected

as 100, 120, and 140G. Table 8.5 shows that the minimum fluidization velocity is a

strong function of the magnetic field intensity and U m  decreases rapidly as the magnetic

field intensity increases, indicating improved fluidization. Although the beds expand

more in a stronger magnetic field, as expected, the expansion ratios are quite close to one

another, indicating a weak dependence upon the magnetic field intensity.

8.2.7 Effects of Frequency of the Oscillating Magnetic Field

Table 8.9 presents the values of Um and bed expansion ratio at a fixed superficial

gas velocity for three different frequencies of AC power, keeping the mass of magnets at

20.0 g and the magnetic field intensity at 120G. The table shows that the frequene of the

magnetic field can signircantly affect the minimum fluidization velocity. At the lower
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frequencies, 45 Hz and 60 Hz, the beds show a similar fluidization behavior, and can be

fluidized easily at a Umf of 0.65 cis and 0.51 cm/s, respectively. But at higher

frequene, 80 Hz, the bed is difrcult to fluidize, Umf is as high as 2.64 cm/s, and the bed

expansion is much smaeder than that at the lower frequencies. At a frequency higher than

90 Hz, the bed could not be fluidized at aed.

Table 8.9 Minimum fluidization velocities and bed expansion ratios for soft
agglomerates with magnetic assistance at different frequencies. (Mass of magnets 20.0 g,
magnetic reld intensity 120 G at the center of the reld.)

8.2.8 Concluding Remarks

8.2.8.1 APBS Nanoparticles

For silica nanopowder (Degussa Aerosil® R971), we observed that the "soft" fraction

(after sieving) could be fluidized at low velocity in contrast to the "hard" fraction, which

could not be fluidized at aed. However with magnetic assistance, fluidization of the "hard"

fraction is achieved due to the fragmentation of the large agglomerates at the bottom of

the rxed bed.

Fluidization of the hard agglomerates occurs due to gas channeling and

interaction with smaeder free agglomerates formed near the bed bottom caused by the

impacts of the magnetic particles. When the free aggregates reach the channel entrance

they move upward together with the gas flow, reach the channel exit, rise above it, and
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spread over the top of the bed top in the radial direction. This leads to the formation of a

new (upper) fluidized bed of smaeder agglomerates on the top of the existing fixed bed.

The transport of the free aggregates to the channel entrance at the bottom of the fixed bed

results in the settling of the fixed bed because the free aggregates that moved to the top of

the bed are replaced by an equal amount of the larger agglomerates. This process

continues until the fixed bed graduaedy disappears and the entire bed is fluidized.

This study has shown that silica nanoparticle agglomerates can be easily and

smoothly fluidized with the assistance of magnetic particles in an osciedating magnetic

field. Due to a significant reduction in the minimum fluidization velocity with magnetic

assistance, both elutriation of nanoparticle agglomerates and gas bypass in the form of

bubbles is greatly reduced. With magnetic excitation, hard (larger than 500 Amp)

agglomerates change their fluidization pattern from no fluidization to agglomerate

particulate fluidization (APB) with large bed expansion. The minimum fluidization

velocity of an 80% soft (smaeder than 500 Amp) and 20% hard agglomerate (80/20)

mixture can also be signircantly reduced, resulting in easier and more uniform

fluidization.

From in-situ agglomerate size measurements on the surface of the fluidized bed

and calculations using a predictive model based on experimental data, it is found that

magnetic excitation wied result in fragmentation of the agglomerates, so that the mean

agglomerate size is significantly reduced. The ability to fluidize these fumed silica

nanoparticle agglomerates depends on the mass of magnets, the intensity of the magnetic

field, and the frequency of the magnetic field.
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8.2.8.2 ABA nanoparticle

For ABA nanoparticle (carbon black: Cabot ® PEARLS 2000), there is also

significant improvement in fluidization quality by introducing magnetic excitation.

Without the assistance of magnetic excitation, bubbling, gas bypassing and substantial

elutriation of particles exists, bed expansion is only around 60%, the fluidization has to

be stopped due to the huge loss of particles (10% loss within minutes), and the particle

shows a typical ABA fluidization with a very large minimum fluidization velocity of 27.6

cmis and strong gas bypassing.

The magnetic excitation can significantly improve the quality of fluidization, with

the assistance of magnetic excitation, within several minutes, the bed begin to expand up

to 5 or more times at low gas velocity, an extremely smooth uniform fluidization can be

achieved, and bubbling disappeared, no elutriation can be observed, the nanoparticle

shows a typical APB fluidization with a much reduced minimum fluidization velocity of

only 1.93 cmis.

The average agglomerate size of original carbon black powder is around 800 gm,

while the original large agglomerates were fragmentized into much smaeder agglomerates

with the assistance of magnetic excitation, and the average agglomerate size significantly

reduced to around 160 Amp. After magnetic assisted fluidization, the powder were stored

in a sealed container for 7 days, then a conventional fluidization with this powder was

conducted, a uniform APB fluidization can be achieved with ignorable elutriation and

large bed expansion with minimum fluidization velocity as 3.86cm!s. Model agrees weed

with experimental measurements.
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8.2.9 Limitation of this Study and Future Research Directions

This study conducted experimental studies on external osciedating magnetic excitation

with in-bed magnets on the fluidization of a limited choice of nanoparticle agglomerates.

Axperimental studies on many more different types of nanoparticle, as weed as

theoretical mechanistic studies are recommended. Numerical simulations would also be

useful in better understanding the effect of external magnetic excitation with in-bed

magnets on the fluidization of nanoparticle agglomerates.
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PART III: FILTRATION OF SUBMICRON PARTICLES USING

NANOPARTICLE AGGLOMERATES

This part wied focus on the experimental study on nanoparticle agglomerates as a filter

media for filtration of submicron particles in gas stream. Chapter 9 summarizes the

existing literature, Chapter 10 describes the experimental system, and the results and

discussion are given in Chapter 11.

CHAPTER 9

LITERATURE REVIEW

9.1 Fibrous and Granular Bed Filtration

The theory of filtration by fibrous HEPA (High Efficiene Particulate Air) filters and

granular bed filters has been weed developed by considering the hydrodynamic flow

patterns around a elinder (or sphere) lying transverse to the flow (Flagen and Seinfeld,

1988;Tien, 1989). As the gas streamlines bend around the coedector, very smaed particles

with low inertia foedow the streamlines, but larger, heavier particles foedow a more direct

path and wied coedide with the coedector. The higher the gas velocity and more massive the

particle, the greater the likelihood of it striking the elinder (inertial impaction

mechanism). However, a particle of radius r p, need only approach the coedector to that

distance to touch (direct interception mechanism) and when there are two particles of the

same mass traveling on the same streamline, the one with the larger radius is more likely

to impinge on the coedector. Aed particles also undergo Brownian motion (diffusion

mechanism) to cause them to deviate significantly from the gas streamlines. The

magnitude of the deviation increases as the particle size and velocity decrease. These



three classical mechanisms, inertial impaction, direct interception and diffusion are the

major factors in particle capture (El-Halwagi, 1990; Court' et al., 1987). A fourth

mechanism, gravity settling is not considered important in HEPA filters used to remove

submicron particles. Of course, electric charges if present on either the particles or fibers,

or both, wied also affect the coedection efficiene or penetration (Tardos et al., 1979).

Since diffusion capture increases as the particle size decreases and inertial

impaction comes into play only as the particle size increases, it foedows that there should

be a particle size which penetrates most easily through fibrous (and granular) filters.

Submicron size solid and liquid particles (0.1 to 1 Amp) which are the most difficult to

rlter, are commonly known as the most penetrating particle size (MPPS). . As the

velocity through the rlter is increased and diffusion becomes less important, penetration

rises to a maximum and then decreases as inertial effects appear. The penetration due to

direct interception does not depend on velocity. Figure 9.1 is a schematic diagram

showing how penetration varies with velocity and other important rlter parameters. If the

penetration is plotted against particle size then the position of the penetration maximum

clearly depends on velocity, shifting to larger particle size as the velocity decreases.

It is assumed that particles are captured by London van der Waals forces or some

other forces on touching a fiber, which is reasonable at the low velocities associated with

HEPA rlters where diffusion is the main mechanism of capture. However, at higher

velocities particles do not always adhere and larger particles may possess sufficient

kinetic energy to bounce off the fibers (D'Ottavio and Goren, 1983). Also, when the filter

becomes heavily loaded, aggregates of coedected particles are often dislodged as
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aerodynamic forces overcome adhesive forces and the filtration efficiency wied drop

rapidly.

Figure 9.1 Penetration as a function of velocity showing MPPS.

The efficiene of particle removal across fibrous filters in the absence of

electrical effects is generaedy assumed to be a combination of the three removal

mechanisms operating concurrently, i.e., diffusion, interception and impaction. It is

generaedy assumed that the coedection efficiencies due to individual mechanisms are

additive, so that the total coedection efficiency of a single fiber (caeded the single particle

efficiene), η=Σηi. The filter media penetration is then given by (Thomas et al, 1999)

where a is the filter packing density (1-ε), L is the filter thickness, and d is the fiber

diameter.
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Currently, HEPA filters are used extensively in the microelectronics (clean

rooms) and pharmaceutical industries, and are also used in hospitals, and in food and

cosmetic production facilities, and even in the home in air purifiers and vacuum cleaners,

for the purpose of filtration of MPPS particulates. In aed of these applications the

obdictive is either to prevent contamination of a particularly sensitive product with

particulate poedutants or to protect human beings from dangerous particulates such as

microorganisms (bacteria, viruses and mold), poeden, asbestos, etc. HEPA fiber-based

rlters are made up of an entanglement of thin, usuaedy less than one micron in diameter,

fibers in which particles are coedected by several classical mechanisms such as diffusion,

interception and inertial impaction.

The two major important characteristics of these filters, the pressure drop and

the coedection efficiene, A (or the penetration, P=1-A), depend on the rlter structure

(packing density, fiber diameter), operating conditions (rlter velocity, temperature) and

the properties of the aerosols to be filtered (density, mean particle size, particle size

distribution, solid or liquid). In addition they depend strongly on the filter loading. SAM

studies (Penicot et al, 1999) of the loading of HEPA rber filters with solid particles show

that the filtration initiaedy takes place in the depth of the filter with the formation of

chainlike agglomerates caeded dendrites not unlike the chains of nanoparticles shown in

Figure 9.2, but 3 orders of magnitude larger in size. During this process the pressure drop

rises linearly with the amount of mass coedected at constant face velocity. However, as the

dendrites begin to fied the spaces between the fibers of the filter, a filter cake of increasing

thickness begins to form at the upstream surface of the filter and the slope of the pressure

drop with increasing loading rises sharply, indicating that the filter is being clogged. This
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occurs at a loading (mass of particulates coedected) of the order of 1 g/m 2 of filter area

(Penicot et al, 1999).

Figure 9.2 SEM image showing individual silica nanosize particles sintered together in a
chain-like structure. Scale bar = 300nm. (Degussa Aerosil® A300).

For liquid particles (mists), in the early stage of filtration, the particles are

deposited as droplets around the fibers and the pressure drop rises slowly with mass

coedected per unit of filter area. However, at a certain point during the rltration, a sharp

exponential rise in pressure drop is observed. This is attributed to the presence of a liquid

film covering the rlter surface. It is assumed that the droplets deposited on the filters

progressively grow and join together to form bridges at the intersection of several fibers.

At the point of clogging, aed the interstices of the first layer of fibers are fieded in,

'forming a film covering the filter surface (Penicot et al, 1999).

When clean, HEPA fiber-based filters provide exceedent rltration efrciene

and low pressure drop for both solid and liquid MPPS and rltration occurs throughout the
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depth (deep bed filtration) of the filter. However, as soon as the upstream surface

becomes heavily clogged with particulates, filtration only occurs at the rber surface

(cake filtration) leading to a sharp rise in pressure drop and the filter needs to be replaced.

9.2 Unique Properties of Nanoparticle Agglomerates as Ideal Filter Media for MPPS

During the above research on the fluidization of Nanoparticle, it is observed that

Nanoparticle could be fluidized in the form of large (400-400 Amp) stable agglomerates

that are extremely porous (ε0.99). Shese nanoagglomerates are hierarchical fractal

structures consisting of sub-agglomerates or aggregates at a number of different length

scales, down to individual nanosize particles as shown in the SEM image in Figure 9.2,

and the schematic drawing in Figure 4.2.

In-situ photographs taken at the surface of a fluidized bed of Degussa Aerosil®

A300 silica nanoagglomerates (primary particle size — 7 Om), for example, and shown in

Figure 9.3, gave a mean agglomerate size of about 200 Am based on image analysis of

over 200 images. The mathematical model based on the Richardson-Zaki equation for

particulate fluidization to predict the mean agglomerate size, which is included in

Chapter 4, also gave results in good agreement with the in-situ experimental

measurements.
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Figure 9.3 Laser and CCD camera results capturing agglomerates in a conventional
fluidized bed. Scale bar = 100Am. (Degussa Aerosil® A300).

Figure 9.4 SEM images of samples, (Degussa Aerosil® A300). Scale bar = 100Am.
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Yet, when the agglomerates were removed from the fluidized bed and studied

under a SEM as seen in Figure 9.4, they appear to be of mean size of about 30 Amp, an

order of magnitude smaeder than that observed from the in-situ photographs. It is

suspected that the large nanoagglomerates are extremely fragile, and removing them from

the fluidized bed and preparing them for SEM analysis fragmented them into what we

caed sub-agglomerates (SA). A high magnircation of single sub-agglomerates, clearly

showing its porous structure, is shown in Figure 9.5.

Figure 9.5 High magnircation of a single sub-agglomerates (SA) showing the highly
porous structure. (Degussa Aerosil® A300). Scale bar = 1 Amp.

Based on the experimental particle characterizations (Figures 9.2-9.5), and what

we perceive to be the structure of the nanoagglomerates (Figure 4.2), they should behave

as an ideal filter media to remove particles (solid and liquid) from industrial gas streams,

especiaedy the MPPS particles.
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The nanoagglomerates are relatively large in size, which would result in a low gas

pressure drop; they are extremely porous with an overaed internal porosity greater than

0.99 which suggests that some of the "dusty" gas would flow through them; and if used

for filtering liquid particles (mists) that wet their surface, they would act as a sponge and

suck in the liquid drops by capiedary action.

Best of aed, because of the relatively large distance between adjacent

nanoagglomerates (high external porosity), they should act as a deep bed rlter (unlike

fiber-based HEPA filters) without surface cake formation, which invariably causes HAPA

filters to clog rather quickly. Based on these favorable properties and structure, it is

anticipate that the nanoagglomerates wied perform as weed (high coedection efficiency) as

fiber-based HAPA filters, but with a much higher dust loading capacity. In this study, a

set of experiments using fractal Degussa Aerosil® A300 nanoaprticle agglomerates are

performed to test the filtration of submiron solid particles and liquid droplets generated

by a bunch of burning incenses.

This study is an exploratory experimental study on filtration of sub-micron

particles using nanoparticle agglomerates as the filter media; aed of the tests in this study

are qualitative rather than quantitative. The major obdictive is to do a proof of concept

and provide a research direction for future quantitative and much more comprehensive

studies.
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CHAPTER 10

EXPERIMENTAL SETUP

A number of simple experiments were performed to test the idea of using

nanoagglomerates as a filter media for HAPA rlters. Hydrophilic silica

nanoagglomerates (Degussa Aerosil® A300) with a primary particle size of 7 nm, a bulk

density 39 kg/m3 and a BET surface area of 300 m2/gram are used in the experiments.

The nanoparticle were first sieved by a 500Om sieve and then, either charged directly or

fluidized (Uajr =0.0 cm/s) in a 2-inch tube for 30 minutes, before being charged into the

filter assembly shown in Aigure 10.1 and Figure 10.2. Swo filters of different thickness

were constructed. The rrst rlter consisted of two layers of fine steel screens (40-50Am

opening), which were glued onto two rubber washers having an inner diameter of 1 inch.

Nanoagglomerates were poured into the space between the washers (on the screens)

forming a packed bed. PΕC flanges were placed on each of the rubber washers, and the

assembly was tightened by nuts and bolts. She thickness of the filter is 5mm and the

amount of nanoparticle charged is 0.074 g. The second filter was made using five

layers of washers instead of two, which increased the thickness to 16mm and the

amount of nanoparticle to —0.15 g; aed of the other experimental conditions were kept the

same.

As shown in Figure 10.1, nanoparticle agglomerates are charged in between two

fine screens to make a filter assembly. If the nanoparticles in the filter assembly are

slightly compressed, then the bed voidage Kg will decrease slightly and the size of the

pores among the agglomerates wied also decrease. This wied result in an increase in flow



resistance of the pores among the agglomerates. Hence more gas wied be forced to

penetrate through the permeable agglomerates, and the ratio of the flow penetrating

through the permeable agglomerates to the flow passing around the agglomerates wied

increase. As shown in Equs. (4.1), (4.2) and (4.4), when the bed voidage Ng decreases, the

bed voidage dependent dimensionless parameter η wied increase, thus the drag force on a

permeable sphere in a swarm of permeable spheres in creeping flow FDp wied

correspondingly decrease, and the overaed drag force on the particles wied also decrease.

Hence, although the compression process decreases the bed voidage Ng, the increase in

pressure drop over a swarm of permeable aggloemrates wied be smaeder than the increase

of the pressure drop over a swarm of solid spheres with the same sphere size and flow

rate. This is beneficial to the filter design. Based on this analysis, nanoparticle

agglomerates in the filter assembly have been slightly compressed before the rltration

experiments.

Figure 10.1 Schematic diagram of filter assembly.
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Figure 10.3 Schematic diagram of experimental set-up.
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The filter was attached to a vacuum pump and a funnel as shown in Figure 10.3

and Figure 10.4. Fourteen sticks of incenses were burned to produce a mixture of smoke

and oily liquid droplets at a relatively high concentration, and one stick of incense was

burned to produce a mixture at a relatively low concentration. The white smoke generated

by the incense is sucked into the transparent vinyl tubing through the funnel by the

vacuum and the concentration of smoke before and after the filter is monitored visuaedy

by eye and by taking photographs at different times after starting the experiment.

Experiments using both filters reded with silica nanoparticles (Degussa Aerosil® A300)

or carbon black nanoparticles (Cabot ® rne PEARLS 2000, REGAL 400R, MONARCH

120) were run for 30 minutes and 2 hours. Here, fine PEARLS 2000 is the carbon black

nanoparticles after magnetic processing for 60 minutes as described in Chapter 8.
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The smoke generated by burning incenses is a combination of submicron solid

particles and liquid droplets. As shown in Figure 10.5, an aerosizer system (Amherst

Instruments) is used to analyze the rltration efficiene by measuring the number

concentration of the smoke for certain size ranges before and after the filters. The results

of these experiments wied be discussed in next chapter.

She incense sticks that were used in the experiments are typical of the incense

commonly burned in Asian temples and were purchased from an Asian store. When

burned they wied generate a white smoke, which is a mixture of micron and submicron

sized solid particles and liquid droplets; the size distribution of the smoke as measured by

the aerosizer is shown in Figure 10.6.
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Figure 10.6 Particle size distribution of incense; Bair  4.20 cm!s; sampling time 60
seconds. Mean particle size 0.78 Amp.
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CHAPTER 11

RESULTS AND DISCUSSION

11.1 Experimental Observation

During the rltration experiments, it was observed that the color of the transparent tubing

changes very slowly, going from clear to yeedow to brown because of the accumulation of

oil and/or water droplets. Also, the lower window (inlet) showed much denser smoke

than the upper window, but some smoke could stied be observed from the upper window,

indicating some penetration. After running both rlters for either 30 min or 2 hours, and

disassembling them it was found that the 5 mm rlter had already become saturated,

(Figure 11.1c), but the 16 mm rlter was not yet saturated (Figure 11.1d) and appeared

similar to the 5 mm rlter run for 30 minutes (Aigure 11.b). The nanoparticles in the 5 mm

rlter became completely dark black, and some black liquid-like components were also

observed, implying complete saturation.

We also observed that the filter media is consolidated and compressed (Figure

11.1d) which could be due to the vacuum sucking the nanoagglomerates towards the

upper screen, the coedected liquid droplets affecting the voidage of the nanoagglomerates,

or to elutriation of some of the smaeder nanoagglomerates. We therefore did a control

experiment and ran the vacuum through a clean bed of silica nanoagglomerates in the 16

mm thick filter without burning incense, and measured the weight of the filter media

before and after. The weight loss was only 0.3% indicating that elutriation was negligible.



Sable 11.1 shows the mass of the filter media before and after filtration for 2

hours. By using the nanoparticle filter (Silica A300), we obtained a mass increase as high

as 491.0 % (16 mm filter, Baird 1.20 cm/s) and 756.4 % (5 mm filter, Baird 14.50 cm/s).

Thus the 5mm filter (which appeared saturated) absorbed smoke particles (solid and

liquid) as much as 8 times its own weight!

Table 11.1 Mass of nanoparticle (Degussa Aerosil® A300) before and after rltration of
burning incense for 2 hours.

Figure 11.2 is a picture of the filter media after being exposed to the burning of

incense for 30 minutes. At location A the rlter media is facing the outlet of the rlter, and

the nanoparticle agglomerates are stied white, indicating that the burning incense has not

yet penetrated to this depth; at location B the rlter media is facing the inlet of the filter,
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and the nanoparticle agglomerates have been contaminated by the burning incense. This

figure clearly indicates that the nano filter acts as a deep bed filter, instead of a surface

filter as observed in a HEPA fiber-based filter. Furthermore, as wied be discussed below,

we used a HEPA filter for comparison and found that it turned almost completely black

from the burning incense within several minutes, while our nanoagglomerate filter media

lasted for over 2 hours.

Figure 11.2 Filter media after being exposed to burning 14 sticks of incenses for 30
minutes. 16 mm filter, Degussa Aerosil® A300. Location A is the filter media facing the
outlet of the filter; location B is the filter media facing the inlet of the filter.

11.2 Penetration of Nanoparticle Filter

The particle size distribution of smoke generated by burning 11 sticks of incense as

measured with an Aerosizer (Amherst Instruments) before and after the 5mm and the

16mm filters are shown in Figures 11.3; the particle size distribution before and after a

HEPA filter are also shown as a comparison. The HEPA filter is cut from a commercial

HEPA filter module (McMaster 9179K11, thickness of 0.7mm, cut-off size of 0.3Am),

113



and is instaeded in the rlter module. As seen in Figure! 1.3, at a superficial air velocity of

4.20 cm/s, the inlet incense smoke had a mean size of 0.78Am, and during a sampling

time of 60 seconds, the number of particles counted by the aerosizer (particle number)

was 134600.

After the HEPA rlter, the number of particles only decreased to 52,800 and the

mean size decreased slightly to 0.51 Amp. However, for the 5mm thick nano filter, the

number of particles decreased to 13612 and the mean size decreased to 0.11 Amp, and for

the 16mm thick nano filter, the number of particles decreased to 832, and the mean size

decreased to 0.35Am. It can also be seen in Figure 11.3 that the effluent particle size

distribution shifts to the left (smaeder size) for both the HAPA filter and the 5mm nano

filter; there is practicaedy no penetration for the 16mm nano filter. This unusual

observation is probably due to the relatively high inlet concentration of smoke particles

(solid and liquid) produced by the burning incense, which causes them to form

agglomerates before entering the rlter. These agglomerates wied be broken up as they

move through the filter, and therefore any particles that are not captured in the rlter

media wied tend to be smaeder in size.

Sable 11.2 is the comparison results of particle penetration by particle number and

by particle weight for the HEPA and the nano rlters. At an air velocity of 4.20cm/s, the

nano filters have higher filtration efficiencies than the HEPA filter. For example, the

penetration by total number of particles for the HAPA filter is 0.392, whereas the 5mm

and nano filter show much lower penetrations of 0.101 and 0.003, respectively. The

comparative results for the penetration by particle weight are also listed in the table.
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Figure 11.3 Particle size distribution of smoke generated by burning 14 sticks of incense
before and after the 5 mm rlter and 16 mm filter (Degussa A300, agglomerate size<500

Amp), and after the HEPA filter; Bair 4.20 cm/s; sampling time 60 seconds.

Table 11.2 Comparison of the particle penetration of the 5mm and 16mm nano filters
with a HAPA filter.

So investigate the penetration of aerosols at a relatively low concentration,

another set of experiments are performed. Figure 11.4 shows the particle size distribution

of smoke generated by burning only one stick of incense as measured with an Aerosizer

(Amherst Instruments) before and after the 5mm rlter reded with silica nanoparticles

(Degussa Aerosil® A300) and carbon black nanoparticles (Cabot ® fine PEARLS 2000,

115



REGAL 100R, MONARCH 120). As seen in Figure 11.4, at a relatively low

concentration of aerosols, the penetration decreases with the filter media used in the

foedowing order: HAPA, REGAL 400R, MONARCH 120, A300, and fine PAARLS 2000,

This indicates that aed the nanoparticle rlters tested have a higher filtration efficiency that

the HEPA rlter, and the carbon black nanoparticle PEARLS 2000 after magnetic

fragmentation processing shows the highest rltration efficiene.

Figure 11.4 Particle size distribution of smoke generated by burning one stick of incense
before and after the 5 mm filter (Degussa A300, Cabot ® fine PAARLS 2000, REGAL
400R, MONARCH 120, agglomerate size<500 Amp), and after the HEPA rlter; Baird 4.20

cm!s; sampling time 300 seconds.

11.3 Pressure Drop Across the Degussa A300 Nanoparticle Filter

Figure 11.5 is a plot of the pressure drop of the clean filters (before exposure to the

incense smoke) versus air velocity. The nano filters show a higher pressure drop than the

HEPA, e.g., at a superficial air velocity of 4.20 cm!s, the pressure drop of the 5mm nano
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filter is 92mm Η20 compared to 66mm for the HEPA filter, but the increase in pressure

drop is within an acceptable range.

Moreover, the pressure drop across the 5mm rlter remains relatively constant

with time before saturation and then rises sharply when the filter becomes saturated

(Figure 11.6) indicating that the nanoagglomerates act as a deep bed filter. During the

filtration experiment, the liquid droplets and solid particulates in the gas stream wied first

be trapped on the surface of the nanoparticle agglomerates, and also be sucked into the

porous agglomerates. Before saturation, the pores among the agglomerates wied remain

open, and the pressure drop across the rlter wied remain almost constant. But after the

interior of the nanoparticle agglomerates are saturated, the pores among the agglomerates

wied begin to be quickly fieded with liquid droplets and solid particulates, the bed voidage

around agglomerates g wied significantly decrease within a short period of time. Once the

pores are fuedy reded with liquid droplets and solid particulates, the pressure drop across

the filter wied suddenly jump up. Hence, the pressure drop across the filter wied behave as

shown in Figure 11.6.
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Figure 11.6 Pressure drop across the 5 mm filter as a function of time. Uair=4.20
cm/s. Filter media: Degussa A300; 14 sticks if incense.
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11.4 SEM Images

Figure 11.7 shows highly magnified SEM images (100 manometer scale) of the fresh

A300 nanoagglomerates showing the extremely porous structure and the —1 Amp primary

agglomerates.

Figure 11.7 Image of fresh nanoagglomerates in the 5 mm rlter. (Degussa
Αerosil®A300)

She images in Figure 11.8a and b, also at the 100nm scale, show the

nanoagglomerates facing the inlet and the outlet side, respectively, of the 5 mm thick

filter after being exposed to incense smoke for 30 minutes. Figure 11.7a shows that the

nanoparticles are covered with a tar-like material and that the primary agglomerates

appear glued together. She image of Figure 11.8b however, is very similar to that of the

fresh powder shown in Figure 11.7 indicating that the burning incense smoke has not yet

contaminated this end of the filter.
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Figure 11.8a. Image of nanoagglomerates after 30 min. of rltration, unsaturated, facing
the inlet of the rlter. (Degussa Aerosil® A300)

Figure 11.8b. Image of nanoagglomerates after 30 minutes of rltration, unsaturated,
facing the outlet of the rlter. (Degussa Aerosil® A300)
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Figure 11.9 shows the nanoagglomerates after being exposed for 2 hours. She

entire rlter media appeared saturated with the tar-like material and no visual difference in

the saturated nanoagglomerates could be observed at the two ends of the filter. These

rgures provide further confirmation that the nanoagglomerates act as a deep bed filter

rather than a cake-forming surface rlter, characteristic of fiber-based HEPA filters.

Figure 11.9 Image of nanoagglomerates after a 2 hours of filtration, saturated. (Degussa
Aerosil® A300).

Figure 11.10 and 11.11 show a comparison of SEM images of carbon black

nanoparticles (Cabot ® fine PEARLS 2000, after magnetic processing) before and after

the filtration experiments. As seen in Figure 11.10, the fresh carbon black nanoparticles

have a clean surface. After a 1-hour of filtration, the nanoparticle agglomerates appear to

have trapped some water or oil droplets. These figures provide further evidence that sub-

micron particulates can be filtered by the nanoagglomerates.
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Figure 11.10 Image of fresh nanoagglomerates in the 5 mm filter. (Cabot ® fine
PEARLS 2000, carbon black)

Figure 11.11 Image of nanoagglomerates after a 1 hour filtration. (Cabot ® fine
PEARLS 2000, carbon black)
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11.5 Concluding Remarks

From the preliminary experiments performed in this study, it appears that fractal

hierarchical structured nanoagglomerates, such as fumed silica Degussa Aerosil® A300

and carbon black nanoparticle (Cabot ® fine PEARLS 2000, RAGAL 400R,

MONARCH 120) can be used as a substitute filter media in a HEPA filter, to remove the

submicron sized solid particles and liquid droplets. The nanoagglomerate-based HAPA

rlters can absorb a large amount of submicron particles, even as much as 8 times of its

own weight before saturated, showing high filtration capacity.

The nanoagglomerate-based HEPA filters result in low penetration for MPPS as

0.0006 or 0.025 for the two filters tested, at an acceptable pressure drop level, showing

high efficiene (lower penetration) to remove submicron size particulates. Both sizing

measurement and SEM images support this observation.

The nanoagglomerate-based HEPA filters work as a deep bed filter, rather than a

cake-forming surface rlter as the traditional fiber-based HEPA filters.

11.6 Limitation of this Study and Future Research Directions

Filtration of submicron particles using nanoparticle agglomerates is a completely new

area, and this study only performed some very preliminary qualitative experimental tests.

Hence there are many new research directions, which must be explored to determine

whether, or not, a nanoagglomerate rlter wied be able to compete with a fiber-based

HAPA filter.
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Εariables such as the size and specific surface area of the primary particles,

surface treatment, hydrophobicity and hydrophilicity, porosity, mean size of the large

agglomerates, subagglomerates (SA) and primary agglomerates (PA) wied significantly

influence the absorption efficiene and capacity for submicron particles. Nantitative

experimental studies using aerosols of specified properties (rather than incense smoke)

and much more accurate particle counters must be performed so as to optimize the

performance of the nanoagglomerate rlter media.

In addition, in order to be able to predict the single particle coedection efrciene

and penetration of MPPS particles and to be able to choose the properties of fractal

nanoagglomerates which wied provide the best results, with respect to penetration,

pressure drop and capacity, theoretical modeling needs to be developed.
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PART IV: CORE-ANNULUS-WALL STRUCTURE IN A CIRCULATING

FLUIDIZED BED RISER

This part wied focus on modeling the core-annulus-waed structure in a circulating fluidized

bed riser. Chapter 12 wied summarize the existing literature and describe the existing

experimental results, Chapter 13 will introduce the mechanisms, while modeling work on

the acceleration region wied be included in Chapter 14. The modeling results and

discussion related to the core-annulus-waed structure in a circulating fluidized bed riser

appears in Chapter 15. A numerical solution algorithm is given in Appendix A, and a

sample input file in Appendix B.

CHAPTER 12

LITERATURE REVIEW

Recent experimental studies using Alectrical Capacitance Tomography (ACT) show that

there exists a double ring structure in solids concentration in a circulating fluidized bed

riser (Du et al., 2004). It was found that the solid concentrations at the dense core region

can be as high as rve times of those at the dilute annulus region, which indicates that the

radial flow structure for a dense circulating fluidized bed should be treated as a core-

annulus-waed three-region structure, instead of the weed-known core-waed two-region

structure. A typical example of such a measurement is shown in Figure 12.1. She color

change indicates the variation of solids holdup. It is further found that near the riser

bottom, the solids concentration in the core is much denser than the solids in the annulus

whereas the solids concentration in the core is less than that in the annulus near the riser

top. Across any cross-section, the solids near the waed have the highest concentration.



This core-annulus-waed structure appears to be stable along the riser, and holds for a wide

range of CFB operation conditions.

Figure 12.2 shows the experimental setup that is used to obtain the results shown

in Figure 12.1. The ECT measurement yields the time averaged cross-sectional

distribution of solids holdup at four different locations, with Planes 1 and 2 near the

bottom and Planes 3 and 4 near the top of the riser. Detailed descriptions of the

experimental methods and operation conditions can be found in Du et al. (2001).
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This study wied rrst discuss the formation mechanisms of the core-annulus-waed

structure in a CFB riser. Secondly, an analytic model is developed for quantifying the

flow structure in the developing regime, especiaedy the solids concentration in the core.

In addition, we provide a rough evaluation of the effect of solids acceleration on the solid

holdup measurement that is determined from pressure gradient measurements in a CFB

riser. The detailed mechanistic explanation, modeling and results wied be included in the

foedowing chapters.
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CHAPTER 13

MECHANISTIC EXPLANATION

Consider a CFB riser with a uniform gas-solids flow at the riser inlet, as shown in Figure

13.1. As the solids move upward against gravity, a waed (boundary layer) region is

developed where the gas velocity is low and the solids concentration is high. At some

bed height, the solids in the waed region have exhausted aed their initial upward

momentum and begin to move downward. At this location the solids velocity in the waed

region is nued. Hence, in a bed section near this height, aed solids from the upper waed

region or from the lower waed region are forced to migrate inward towards the riser

column center (Rhodes et al., 1998).

As a result, and due to axial symmetry of the CFB column, a dense core region

must be formed, as shown in Figure 13.1. While aed solids are accelerated in this

developing region, the radial distribution of axial gas velocity is by no means uniform.

Since a nearly equal pressure gradient must exist in aed regions at the same bed height, the

gas velocity in the core tends to be lower than that in the annulus where the solids

concentration is less. This lowered gas velocity in the core leads to a slower solids

acceleration in the core, and hence preserves the core-annulus-waed structure with a

higher solids concentration at the core. However, based on a mass balance of solids, the

downward moving solids in the waed region in the upper part of a riser must come from

those solids in the annulus and core. Hence, in the upper part of the riser, the solids

migration into the waed results in a depletion in solids concentration, which is more severe

in the core than in the annulus. Sherefore, near the top of a riser, a core-annulus-waed



structure stied exists but with less solids in the core than in the annulus. In summary, the

core-annulus-waed flow structure can be fuedy explained, in good agreement with the ECS

findings in Figure 12.1.

Figure 13.1 Core-annulus-wall structure in CFB.
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CHAPTER 14

MODELING OF DEVELOPING FLOW IN CORE-ANNULUS-WALL REGIONS

To simplify our analysis, it is assumed that at any bed height and within each region, the

solids are uniformly distributed. Figure 14.1 shows that the actual radial distribution of

the solids concentration near the bottom of a CFB riser can be reasonably approximated

by a three-zone structure.

14.1 Governing Equations

To describe the flow in a CFB riser with the core-annulus-waed flow structure, fourteen

independent equations or correlations must be developed for fourteen independent

variables. These variables include gas velocities, solid velocities and solid volume



fractions in each region, region cross-sectional areas, solids flows across regional

interface and the pressure drop. The foedowing is a summary of the equations.
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Solids Alow Across Regional Interface 

The solids transfer across the regional interface is given by Aqu. (11.1), diffusive

transfer due to the solids concentration difference between the two regions and Equ.

(14.2), turbulence convection.

Dernition of Regional Boundaries 

Two equations should be defined for the demarcation of regional boundaries.

Based on ECS measurements, in this study, we propose two simple equations:

14.2 Solids Holdup in Developing Flow in a CFB Riser

The power dissipation due to the solids-waed friction and inter-solids coedisions is not

included in the above model. For solids accelerating in a dense suspension, this effect

could be important. Hence, a further examination of the power partitions from the axial

pressure gradient for solid suspension, solid coedision, and solid acceleration is conducted

for the 1-D flow case.

Due to solids acceleration and the energy dissipation from solid collisions in the

developing regime (typicaedy near the bottom of CFB riser), the measured axial pressure

gradient tends to overestimate the solid holdup, as given by Aqu. (14.15):
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where β' stands for the power fraction from the axial pressure gradient due to the inter-

particle collision and solid-wall friction; χ is the power fraction from the axial pressure

gradient to promote solids acceleration; and δ is the power fraction from the axial

pressure gradient to keep the solids suspended. Typical distributions of β' and χ vs.

apparent solid holdup, i.e., axial pressure gradient, are schematically plotted in Figure

14.2. Hence, the solids holdup can be expressed as:

Figure 14.2 Schematic plot of β' and χ vs. apparent solid holdup.
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Figure 11.3 shows a typical plot of χ as a function of apparent solids holdup, which is

derived based on the experimental data in Sun et al. (1999).

Figure 14.3 Example of χ vs. apparent solid holdup (based on data in Sun et al., 1999).

14.3 Determination of β'

In a circulating fluidized bed riser, the power fraction from the axial pressure gradient β'

is due to inter-particle interactions that include the neighboring particle effect (Zhu et al.,

1991; Liang et al. 1996) and the kinetic energy dissipation by solids collision (Fan &

Zhu, 1998).

Derning FADS as the drag force on a solid particle in a swarm of particles

experiencing strong inter-particle coedisions, and FADS as the drag force on a solid particle

in an inrnite large space, the power fraction from the axial pressure gradient due to inter-

particle interactions β' can be expressed by:
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According to kinetic theory, the drag force due to the kinetic energy dissipation

can be expressed as

where γ is the kinetic energy dissipation rate, and A S  is the cross section of the solid

particle.

According to kinetic theory (Fan & Zhu, 1998), the kinetic energy dissipation

rate γ can be expressed as

where gρ is the radial distribution function, and its value is 1.0; τ ί  is the granular

temperature, which can be expressed as a function of solid velocity fluctuation:

Substituting Equs. (11.19), (14.20) and (14.21) into Equ. (14.18), β can be

expressed as
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For a solid particle in a swarm of particles, the drag force on the particle can be

expressed by

For a solid particle in an infinite large space, the drag force on the particle can be

expressed by

where CD is the correction factor due to the existence of neighboring particles, and is a
CDC)

function of particle distance (center to center) 1', and particle diameter ds (Zhu et al.,
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CHAPTER 15

RESULTS AND DISCUSSION

15.1 Numerical Solver Algorithm

The numerical solver algorithm is shown in Figure 15.1, a FORTRAN 90 code is

developed to numerically solve the sample problem as shown in Appendix A, and the

sample input rle is shown in Appendix B.

Figure 15.1 Numerical solver algorithm.



15.2 Distribution of Solid Concentration

A typical modeling result of axial distributions of solids concentration in the core and

annulus regions is given in Figure 15.2, and the parameters of a sample calculation are

shown in Table 15.1.

As shown in Aigure 15.2, at a constant gas velocity Ug = 1.0 m!s, at different

solid feeding rates of 1.0 kg/m 2s, 2.0 kg/m2s, and 4.0 kg/m2s, the axial solid

concentrations for three cases for both the core and annulus regions show different

patterns.
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Figure 15.2 Axial distributions of solid concentration in core (upper figure) and annulus

(lower figure) regions in a developing regime of CFB (FCC particles, Ugas 1.0 m!s).

It is found that, at low solids circulating rate, the solids concentrations in both

the core and annulus regions monotonically decrease along the riser. However, at a high

solids circulating rate and at a moderate gas flow rate, the solids concentration in the core

region near the bottom of a CFB riser can be very dense, and the gas velocity in the core
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region would be very low compared to that in the annulus, which leads to a very slow

solids acceleration in the core. Therefore it is possible that the strong radial solids flow

from the wall could overbalance the solids dilution by acceleration, resulting in a net

increase of solids in the local core region. This net increase in local solids holdup near the

bottom of riser at a high solids circulation rate and low gas flow rate may trigger the

instability of the solid suspension, which leads to bed collapse. This bed collapse

phenomenon has been observed via ECT measurements by Du et al. (2004) and can be

modeled using our proposed model.

15.3 Concluding Remarks

A mechanistic model has been proposed to interpret the core-annulus-waed flow structure

in CAB risers. This structure originates from the wall region mixing of a down flow of

solids from top section of a riser and an upward flow of solids near the bottom of the

riser. As a result, the solids transport distributions are highly non-uniform both in the

axial and radial directions. An analytical model is developed to calculate the solids

holdup in this developing regime, which accounts for effects of solids acceleration and

energy dissipation by solids collisions.

15.4 Limitation of this Study and Future Research Directions

Although some innovative work has already been done in this study, more research work

needs to be done to fuedy understand the recently discovered core-annulus-wall flow

structure in CAB risers. More experimental measurements, especiaedy more information
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on solid concentration, particle and gas velocities, and pressure drop distribution, both in

the longitudinal and radial directions, and under different operation conditions would be

beneficial to further understanding of the mechanism. More detailed modeling work,

including a more accurate physical description is also necessary. Finally, 3D real time

numerical simulation could also provide valuable information.
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CHAPTER 16

SUMMARY AND FUTURE STUDIES

16.1 Summary

A comprehensive study of fluidization of nanoparticle agglomerates with and without an

external force field has been performed in this study. Both experiments and a theoretical

analysis have been carried out to investigate the fundamental mechanisms of a gravity-

idriven fluidized bed of nanoparticle agglomerates without any additional external forces.

Extensive experiments have also been conducted to investigate the effects of coupling

aeration with an external force reld, including sound waves and a magnetic field, on the

fluidization of nanoparticle agglomerates.

nano agglomerates,In the experimental study of fluidization of nanoparticle   a

laboratory-scaled fluidized bed system with sound excitation and magnetic excitation has

been built, and eleven different types of nanoparticle have been tested. A laser/lamp-

light assisted visualization system have been developed, which enables capturing images

of fluidized nanoparticle agglomerates near the fluidized bed surface for the purpose of

size measurement. All the experiments have been performed with both APBS and ABTA

nanoparticle. Both sound waves and an oscillating magnetic field to assist in the

fluidization have been investigated, and parametric studies have been performed on

various parameters such as sound intensity and frequene, magnetic field intensity and

frequene, and mass ratio of magnets to nanoparticle.

A simple and effective method has been derived to estimate the average size of

the agglomerates and the bed voidage around the agglomerates which can then be used in



to determine the minimum fluidization velocity, pressure drop and other pertinent

variables of the fluidization process. In addition, a simple model has also been derived to

estimate the drag force correction factor for the hydrodynamic force on a highly porous

floc-like agglomerate in a swarm of other similar agglomerates.

Based on the fractal hollow structure and other favorable properties, it appears

that snanoagglomerates can perform as weed (high collection efficiene) as fiber-based

HEPA rlters, but with a much higher dust loading capacity. In this study, a set of

experiments using fractal nanoaprticle agglomerates has been performed to test the

rltration of submiron solid particles and liquid droplets.

In addition, the formation mechanisms of the newly discovered core-annulus-

wall structure in a circulating fluidized bed riser has been described, and an analytic

model has been developed for quantifying this type of flow structure in the developing

regime, especially the solids concentration in the core region. An evaluation of the effect

of solids acceleration on the solid holdup measurement that is determined from pressure

gradient measurements in a CFB riser has also been proposed.

16.2 Major Contribution and Findings

16.2.1 Conventional Fluidization of Nanoparticle Agglomerates

She major contributions and finding of conventional fluidization of nanoparticle

agglomerates are:
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(1) Highly porous nanoparticle agglomerates exhibit two distinct fluidization

behaviors, APBS (smooth fluidization without bubbles at minimum fluidization)

and ABA (bubbles observed at minimum fluidization).

(2) An in-situ optical measurement method is used to measure the agglomerate sizes

on the fluidized bed surface, and experimental results show that typical sizes of

the nanoparticle agglomerates are within the range of 200 to 600Am.

(3) For APBS nanoparticle, a model based on the initial bed voidage around the

agglomerates and the Richardson-Zaki equation was used to predict the mean

agglomerate size in the fluidized bed, and the results agree fairly weed with the

experimental measurements.

(4) The Ergun equation, based on the agglomerate size and voidage at minimum

fluidization predicted by the model, can be used to calculate the minimum

fluidization velocity for APB nanoparticle agglomerates. She calculated results

agree very well with the experimental results.

(5) A model for a permeable sphere in a swarm of permeable spheres (see Appendix)

shows that fluidized APIA nanoparticle agglomerates (at large g) can be treated as

solid particles for hydrodynamic analysis with little error.

(6) A classification criterion based on the value of a combination of dimensionless

groups to differentiate between particulate and bubbling fluidization for classical

solid fluidized particles appears to also predict remarkably weed whether

nanoparticle wied behave as APB or ABA.
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16.2.2 Sound Assisted Fluidization of Nanoparticle Agglomerates

The major contributions and finding of sound assisted fluidization of nanoparticle

agglomerates are:

(1) The external forces induced by the sound field can overcome the cohesive van der

Waals forces of nanoparticle agglomerates so that large nano-agglomerates break

into smaller agglomerates, which can be fluidized smoothly and homogeneously

with negligible elutriation.

(2) For the APBS nanoparticle, with the assistance of a sound field, the minimum

fluidization velocity can be signircantly reduced, the fluidization quality can be

signircantly improved, and bed expansion increased.

(3) For the ABTA nanoparticle, with the assistance of a sound field, the minimum

fluidization velocity also can be reduced, the fluidization quality can be improved,

and the bed expansion also increased.

(4) Both the bed expansion and the bubble characteristics are strongly dependent on

the sound frequene. Within a certain range of the sound frequene, typicaedy

from 200 to 600 Hz, bubbling fluidization occurs. However sound has almost no

impact on the fluidization, when the sound frequene is extremely high, above

2000 Hz.

(5) Both the bed expansion and the bubble characteristics are strongly dependent on

the sound pressure level. A relatively high sound pressure level (such as 115 dB)

is needed to initiate the fluidization.
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(6) The direct measurement of the agglomerate size has also been performed; with the

assistance of sound, the average diameter of agglomerates can be signircantly

reduced.

16.2.3 Magnetic Assisted Fluidization of Nanoparticle Agglomerates

She major contributions and rnding of magnetic assisted fluidization of nanoparticle

agglomerates are:

(1) Silica nanoparticle agglomerates can be easily and smoothly fluidized with the

assistance of magnetic particles in an osciedating magnetic field. Due to a

significant reduction in the minimum fluidization velocity with magnetic

assistance, both elutriation of nanoparticle agglomerates and gas bypass in the

form of bubbles is greatly reduced.

(2) With magnetic excitation, hard (larger than 500 Amp) agglomerates change their

fluidization pattern from no fluidization to agglomerate particulate fluidization

(APB) with large bed expansion.

(3) The minimum fluidization velocity of an 80% soft (smaller than 500 Amp) and

20% hard agglomerate (80/20) mixture can also be significantly reduced, resulting

in easier and more uniform fluidization.

(4) Magnetic excitation results in fragmentation of the agglomerates, so that the mean

agglomerate size is significantly reduced.

(5) The ability to fluidize these fumed silica nanoparticle agglomerates depends on

the mass ratio of magnets to nanoparticle, the intensity of the magnetic field, and

the frequene of the magnetic field.
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(6) For ABTA nanoparticle (Degussa Aerosil®1'102 P25, and Degussa Aerosil® Si0 2

A90), there is no improvement observed by introducing magnetic excitation.

16.2.4 Filtration of Submicron Particles in Gas Stream Using Fractal Nanoparticle

Agglomerates

The major contributions and rndings in the filtration of submicron particles in gas stream

using fractal nanoparticle agglomerates are:

(1) Fractal hierarchical structured nanoagglomerates, such as fumed silica Degussa

Aerosil® A300, can be used as a substitute filter media in a HEPA filter, to

remove submicron sized solid particles and liquid droplets.

(2) Nanoagglomerate-based HAPA filters can absorb a large amount of submicron

particles, even as much as 8 times its own weight before becoming saturated,

showing a much higher capacity than fiber-based HEPA filters.

(3) Nanoagglomerate-based HEPA filters result in low penetration for MPPS as for

the two filters tested, at an acceptable pressure drop level, showing much higher

efficiency (lower penetration) than a fiber-based HEPA filter. Both aerosol

number and size measurements and SEM images support this observation.

(4) Nanoagglomerate-based HAPA filters work as a deep bed filter, rather than a

cake-forming surface rlter such as traditional rber-based HEPA filters.
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16.2.5 Modeling of the Core-Annulus-Wall Structure in Circulating Fluidized Bed

Riser

The major contributions and findings in the modeling on the core-annulus-waed structure

in circulating fluidized bed riser are:

(1) A new mechanistic model has successfully developed to interpret the core-

annulus-wall flow structure in CFB risers. This structure originates from the waed

region mixing of a down flow of solids from the top section of a riser and the

upward flow of solids near the bottom of the riser. As a result, the solids transport

distributions are highly non-uniform both in the axial and radial directions.

(2) An analytical model has also been developed to calculate the solids holdup in the

developing regime, which accounts for effects of solids acceleration and energy

dissipation by solids collisions.

16.3 Suggested Future Research Directions

The fundamental mechanism of either fluidization of nanoparticle agglomerates,

especially with external excitations, and the rltration of submicron particles in gas stream

are far from being fully understood. Also, complete clarification of the mechanism of the

core-annulus-wall structure in circulating fluidized bed riser requires further study.

Hence, in this section, several research topics are suggested to further understand these

phenomena and provide more solid mechanistic explanations.
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16.3.1 Conventional Fluidization of Nanoparticle Agglomerates

There are lots of unknowns in the study of conventional fluidization of nanoparticle

agglomerates, which need extensive experimental investigations and more modeling

efforts. One very much desired piece of information is the mechanism of agglomeration

and agglomeration of nanoparticles, which can determine the size of stable fluidizing

agglomerates and therefore provide information on the required external forces necessary

to break up the agglomerates.

More experiments to test different types of nanoparticle agglomerates are

recommended, which may provide more information on the fluidization patterns. For

example, fluffy nano carbon black which could not be fluidized even with external force

reld assistance.

Finally, models to predict conventional fluidization of nanoparticle

agglomerates, especially sub-models of inter-agglomerate and inter-sub-agglomerate

hydrodynamic force, and the hydrodynamic force among primary nanoparticles, are

dernitely desired.

16.3.2 Sound and Magnetic Assisted Fluidization of Nanoparticle Agglomerates

More comprehensive experimental studies on effect of external force fields such as sound

waves and magnetic field assistance on the fluidization of nanoparticle agglomerates are

desired, and more types of nanoparticles could be tested in these experiments. And at the

same time, more parametric experimental studies could be applied. For example why are

large bubbles observed when the sound frequency is between 200 and 600 Hz , and no

bubbles are observed below and above these frequencies.
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The other suggested research topic is to study the mechanism of external force

reld excitations on fluidization of nanoparticles, and additional modeling based on fractal

analysis and numerical simulations probably can provide useful information.

16.3.3 Filtration of Submicron Particles in Gas Stream Using Fractal Nanoparticle

Agglomerates

Filtration of submicron particles using fractal nanoparticle agglomerates is a completely

new area, and this study only performed some very preliminary qualitative experimental

tests. Hence, to extend the research on this topic, there are lots of possible research

directions, which may significantly influence the results in this area, such as the selection

of optimum rlter media properties and theoretical modeling.

Εariables such as the size and specific surface area of the primary particles,

surface treatment, hydrophobicity and hydrophilicity, porosity, mean size of the large

agglomerates, subagglomerates (SA) and primary agglomerates (PA), and the selection of

different types of nanoparticles will signircantly influence the absorption efrciene and

capacity for submicron particles. More experimental studies should be performed to

optimize those parameters according to different target aerosol particles.

In order to predict the single particle collection efficiene and penetration of

MPPS particles and be able choose the properties of fractal nanoagglomerates which will

provide the best results, with respect to penetration, pressure drop and capacity,

theoretical modeling needs to be developed.
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16.3.4 Modeling on Core-Annulus-Wall Structure in Circulating Fluidized Bed

Riser

With regard to the recently discovered core-annulus-wall flow structure in CAB risers,

although many new important results have already been achieved in this study, more

research work needs to be done. More detailed modeling work, including a more accurate

physical description of the phenomenon is desired to further understand the mechanism

of formation of this structure.

More experimental measurements, especially more information on solid concentration,

particle and gas velocities, and pressure drop distribution, both in the longitudinal and

radial directions, and under different operating conditions would be beneficial to e further

understanding of the mechanism. Finally, 3D real time numerical simulation will also

provide valuable information.
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REAL(KIND=8):: CDRATIOA,CDRATIOC,FOMAXA,FOA,FOMAXC,FOC,
&MSCDOT  Ι ‚F2,DD,ΚΑ,ΚC

REAL(KIND=8):: ΤΙ ‚Τ2,Τ3,Τ4
REAL(KIND=8) :: ALFAS 8,UG 8

PARAMETER (SENSITY=0. Ι,E=0.9,G0=1.0,KΑΡA=0.002,
& ΕΙΤA=0.999998 ,L2=1.O,ΚΕSI1=0.3333,C1=0.5,C2=0.9)

COMMON ROLG,ROLS,US,UGA,UGC,UGW,UG,DS,MUG,ALFASA,KESI,
& A,AW,AC,AA,R,RC,RΑ,ALAASWO

COMMON ISTΕΡ,KSΤΕΡ,GGDOS,GSDOT,USW2,ΑLFASW,UΡS,USW,
& JSΤΕΡ,ALFAS8,UG8

!***** UNKNOWNS:

ΚΑ = Ο
KC=0
DD=O

MSCDOT = AC*ALFASC*USC2*ROLS*(1-Ζ/L2)/ΡURA/L2

MSCDOT = MSCDOT*(1.0-
& ALFASA*AA*Υ(2)/(ALFASA*ΆA*Υ(2)+Υ(3)*AC*Υ(1)))

USC = USC2 * Ζ /L2

IF (ALFASA .LT. 0.15) THEN
CDRATIOC = 1.0

ELSE
CDRATIOA = -10.0/7.0*ALFASA+8.5/7.0

ENDIF

IF (Υ(3) .LT. 0.15) THEN
CDRATIOA = 1.0

ALSE
CDRATIOA = -10.0/7.0*Υ(3)+8.5/7.0

ENDIF

FOMAXA = (1 .O-UPT/ADRATIOC/(UGC-Y(1)))/0. Ι 5/GSDOΤ/(DS/ΜUG)
& /(1-Ε*Ε)

FOAL = FOMAXC*EITA

Τ2 = MSCDOT*2*ΡI*RΑ*(USC-Υ(2))/Υ(3)/Υ(2)/ROLS/AΑ
FOMAXA = (Ι .ΟUΡΤ* (1.0-Τ2 *Υ(2)/G)/ADRASIOA/(UGA-

& Υ(2)))/Ο. Ι 5/GSDOT/(DS/MUG)/(1 Ε*Ε)
FOAL = FOMAXC*EITA
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APPENDIX B

SAMPLE INPUT FILE
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1.0
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