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ABSTRACT

SECURITY INFORMATION MANAGEMENT WITH FRAME-BASED
ATTACK REPRESENTATION AND FIRST-ORDER REASONING

by
Wei Yan
Internet has grown by several orders of magnitude in recent years, and this growth has
escalated the importance of computer security. Intrusion Detection System (IDS) is used to
protect computer networks. However, the overwhelming flow of log data generated by IDS
hamper security administrators from uncovering new insights and hidden attack scenarios.
Security Information Management (SIM) is a new growing area of interest for intrusion
detection. The research work in this dissertation explores the semantics of attack behaviors
and designs Frame-based Attack Representation and First-order logic Automatic Reasoning
(FAR-FAR) using linguistics and First-order Logic (FOL) based approaches. Techniques
based on linguistics can provide efficient solutions to acquire semantic information from
alert contexts, while FOL can tackle a wide variety of problems in attack scenario reasoning
and querying. In FAR-FAR, the modified case grammar PCTCG is used to convert raw
alerts into frame-structured alert streams and the alert semantic network 2-AASN is used to
generate the attack scenarios, which can then inform the security administrator. Based on
the alert contexts and attack ontology, Space Vector Model (SVM) is applied to categorize
the intrusion stages. Furthermore, a robust Variant Packet Sending-interval Link Padding
algorithm (VPSLP) is proposed to prevent links between the IDS sensors and the FAR-FAR
agents from traffic analysis attacks. Recent measurements and studies demonstrated that real
network traffic exhibits statistical self-similarity over several time scales. The bursty traffic
anomaly detection method, Multi-Time scaling Detection (MTD), is proposed to statistically

analyze network traffic’s Histogram Feature Vector to detect traflic anomalies.
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CHAPTER 1

INTRODUCTION

The explosive proliferation of the Internet has extended communications to the entire world.
Moreover, the past few years have seen significant growth of cyber attacks on the Internet,
and network security has become a critical issue that cannot be neglected in the development
of computer networks. A significant increase in the spread of viruses, worms and Trojan
horses over the Internet has been observed. Acts of cyber crime such as Distributed Denial
of Service (DDoS) attacks are one of the more serious problems which need to be tackled.
In practice, it is nearly impossible to prevent all network attack incidents. Detection of
network attacks then becomes an important reactive security function. Intrusion Detection
System (IDS) has become an important tool to secure networks by detecting, alerting and
responding to malicious activities. Intrusion [3] is defined as an attack in which a vulnerability
is exploited or a breach (resulting in a violation of the explicit or implicit security policy of
the system) is violated. Intrusion detection is the process of identifying and responding to
malicious activities targeting at computing and network resources.

IDS can monitor and possibly defend against the attempts to intrude into or otherwise
compromise the network systems. An ideal IDS can detect all intrusions and report only real
intrusions (no false alarms). It can also provide instant overview of the type, location, and

severity of the attacks. Current IDS is far from ideal, as it incur high false alarm rate.

1.1 Background in Intrusion Detection System
IDS has recently gained considerable amount of interest in the computer security community.
IDS may be software-based or contains specialized hardware. The major objective is to
detect attack activities that may compromise system security. Figure 1.1 shows the IDS
infrastructure described in [?]. IDS inspects the contents of the network traffic to look for
possible attack signatures (patterns of malicious actions). For example, a SYN flood will be
noticed by an IDS when a particular host is sending SYN packets without ever attempting

to complete the connection. IDS can identify this and issue the corresponding alert to notify






IDS varies according to a number of criteria. IDS can be divided into Network-based
IDS (NIDS)[4, 5] and Host-based IDS (HIDS) [5] on the basis of the type of systems they
monitor. IDS that monitor the network for malicious traffic is called NIDS, whereas those
that monitor the activities on a single host are called HIDS. NIDS consists of several sensors
deployed throughout a network that report to a central console. It can monitor the network
backbones and is effective at detecting outsiders attempting to penetrate the network defense.
HIDS operates on hosts and can monitor the operating and file systems for signs of intrusions.
Since HIDS has a limited view of only one host, it must be installed on every system being
monitored.

The techniques of intrusion detection can be divided into two main detection methods:
the misuse detection (such as Snort (6], Emerald [7]), and the anomaly detection (such as
NADIR (8] and NIDES [9]). A misuse detection system searches for a set of known attacks
that have been stored in a system database. The knowledge of the attacks is encoded
as a set of signatures, which are patterns produced by corresponding attacks. The main
disadvantage of misuse detection is that it can only detect the previously known intrusions,
and it cannot detect new attacks. Anomaly detection detects the intrusions as a pattern
recognition problem, rather than a signature matching problem. Anomaly detection builds
up a set of normal behavior profiles of network traffic or hosts. Anomaly detection IDS
constantly compares the newly generated profiles with the normal profiles. If it detects
what it considers to be a large deviation from normal behavior, it signals an alarm to the
system security administrator. With the anomaly detection, IDS can detect new attacks. The
amount of false positives, however, tends to be very high with this mechanism. Contemporary
commercial IDSs, such as ISS RealSecure [5], Cisco Secure IDS [10], Symantec Manhunt [11],
Enterasys Dragon [4], use mostly the misuse detection methods with a model function of
anomaly detection components.

Alerts generated by an IDS consist of two states: positive (indicating an intrusion)
or false (not indicating an intrusion). Thus, alerts fall into four possible classifications: true
positive means IDS appropriately indicates an intrusion; true negative means IDS appropriately
does not indicate an intrusion; false positive means IDS inappropriately indicates an intrusion;

false negative means IDS does not inappropriately indicate an intrusion. IDS should maximize



the true states, and at the same time minimize the false ones [12]. The most serious problems
of IDS is the high false alarm rate (the high number of false positives), because a large number

of false positives requires large amount of time to investigate.

1.2 Security Information Management
IDS generates a huge volume of alert events which are caused by elementary alerts and
false alarm alerts {13, 14]. It is very time consuming and resource intensive for the security
administrator to analyze this large of data and to review all the alerts, thereby hampering
the performance of attack detection. Furthermore, many enterprises simply cannot afford to
recruit security administrators merely for monitoring the alerts.

Within the past few years, a new security system, Security Information Management
(SIM), has emerged as a solution in solving the above mentioned problems. SIM is defined as
a set of processes undertaken to ensure that IDS events are collected, analyzed, and responded
in the shortest period of time possible, thus ultimately reducing the administrator’s reviewing
time [15]. Why collect the alerts from distributed IDS sensors? With the detailed alerts stored
in the multiple sensors, valuable attack information can be easily lost. By centralizing this
information, events from distributed IDS sensors can be correlated and categorized.

SIM should enable a security administrator to quickly and easily find the hidden attack
scenarios from the collected events, but this requires that the events from the various sources
are normalized. Without the alert normalization, the processing speed at which the events
can be analyzed is significantly decreased. Alert normalization requires a set of schema with
a fixed number of fields to standardize incoming data regardless of its source.

Figure 1.3 shows the architecture of IDS with SIM. The logs from the firewalls,
servers, and network devices are collected by SIM, where the security events are analyzed and
correlated. Attack scenarios are then generated and delivered to the security administrator.
SIM is composed of four parts: aggregation, normalization, correlation, and visualization.
Aggregation means the reduction of redundant data. In the normalization step, SIM collects
the event data from multiple IDS sensors across the network. Since the data from each
security device may not be in a common format, SIM converts them into a common format.

During the correlation process, SIM measures the relationship of security events to determine






sensors require the installations of multi-vendor correlation tools, resulting in costly network
management.

Third, generally there are two methods to analyze the events: real-time analysis and
off-line analysis. The goal of real-time event analysis aims to shorten the time of detecting
and responding to the intrusions, thus reducing the exposure time to any given threat. In
[21], the Exposure Time (ET) is equal to the Detection Time (DT) plus the Reaction Time

(RT). The smaller ET is, the smaller the risk.

Et = Dt + Rt (1.1)

Real-time analysis is the ideal way of protecting information assets. However, the
more complex the real-time event analysis is, the more difficult it is to keep up with all the
events being collected. Off-line analysis collects and analyzes data at longer time intervals,
and provides more detailed results than real-time analysis. Off-line analysis can present
charts and graphs to the administrators so it is easier to make the intrusion conditions more
understandable. Therefore, implementing SIM should keep a balance between the benefits of
real-time analysis versus the necessity for off-line analysis. In this dissertation, First-order
Reasoning (FOR) is used in real-time analysis to extract the attack scenarios, whereas attack
semantic query is used during the off-line analysis.

Fourth, inadequate attention has been paid to the SIM attack knowledge query interface.
A well-designed interface can facilitate attack monitoring by making specific queries for the
attack scenario knowledge. The traditional keyword search, such as Analysis Console for
Intrusion Database [22], which asks the user to enter the keywords (e.g., IP address or alert
message name, etc.) and then returns the alerts containing these items, is not suitable for the
intrusion search because the number of the keyword occurrences cannot tell how relevant the
search result is to the whole attack plan. For example, due to the existence of false alarms and
alerts triggered by the normal network activities, one occurrence of “buffer overflow” alert
may be more significant than tens of “Telnet” alerts. IDS should support attack semantic
query, such as queries like “by which means the attacker controls the host or subnet, and what

is the attack path from controlling the subnet to launching DDoS attacks to the application



server?” To implement such queries, the alerts’ semantic information should be extracted
and the alerts need to be categorized into several intrusion stages.

In this dissertation, the semantics of network intrusion behaviors are exploited and
a security information management system, Frame-based Attack Representation and First-
order logic Automatic Reasoning (FAR-FAR) is proposed to reason the attack scenarios and
categorize the alerts into different intrusion stages based on Natural Language Processing
(NLP) and FOR. The Principal-subordinate Consequence Tagging Case Grammar (PCTCG)
is used to formalize IDS alerts into frame-structured streams. The FOR tree is then used
to extract the attack scenarios. Afterwards, mutual information is applied to determine the
alert context range. Based on the alert contexts, the alerts are represented as the semantic
space vectors. Finally, Vector Space Model (VSM) is used to categorize these vectors into

different intrusion stages.

1.3 Approach Taken in This Dissertation
This dissertation describes the studies on
e exploiting NLP and FOR techniques on FAR-FAR to implement attack knowledge
extraction semantic scheme;

e proposing an IDS semantic event analysis model formalized by Description Logics, which
allows inferring the attack scenarios and enabling the attack knowledge semantic queries;

e using text mining techniques and vector space model to categorize the alerts into
different intrusion stages;

e proposing Multi-Time scaling Detection (MTD) based on Histogram Feature Vector
(HFV) to detect the bursty traffic anomalies;

e proposing Variant Packet Sending-interval Link Padding Method (VPSLP) to defend
against the traffic analysis attacks based on heavy-tail distribution.
More specifically, the work in this dissertation differs from other research work in the following
aspects:
e By converting the attack facts and alert streams into Conjunctive Normal Form clauses,
FAR-FAR can implement both the alert correlation methods and the high-level reasoning.

e The research work in this dissertation applies the NLP method to extract the semantic
concept structures from the semi-structured log alerts and represent them in a uniform
way.



o The FAR-FAR semantic scheme converts alerts from “raw syntax” to “well semantics”
by Description Logics

e With the attack ontology, FAR-FAR generates the semantic space vectors based on
which the space vector model is applied to categorize the intrusion stages.

1.4 Basic Concepts
In this section, the terminologies used throughout this dissertation are introduced, and the
definitions of the attack ontology concepts are adopted from [23, 24].
Access - establish logical or physical communication or contact.

Account - a domain of user access on a computer or network which is controlled according
to a record of information which contains the user.

Action - a step taken by a user or process in order to achieve a result.

Attack - an attempt to compromise the confidentiality, integrity, availability of (the use of)
information residing on a computer.

Attacker - an individual who attempts one or more attacks in order to achieve an objective.

Attack class missing focus alert number - the number of focus alerts that the attack
scenario class does not include.

Attack class false focus alert number - the number of focus alerts that exist in the
attack scenario class, that are not actual focus alerts.

Attack class node instance rate - the percentage of attack instance nodes in an attack
scenario class.

# of nodes in attack scenario instance
# of nodes in attack scenario class

Attack Class Node Instance Rate =

Attack class instance rate - the percentage of attack instance links in an attack scenario
class.

links in attack 10 inst
Attack Class Link Instance Rate = # of links in attack scenario instance

# of links in attack scenario class

Attack class missing attack link number - the number of focus links the attack scenario
class does not include.

Attack class false attack link number - the number of focus links that exist in the attack
scenario class, but are not focus links.

Attack scenario - S = {(e1,a1),(e2,a2), - (en,a,)} is an attack sequence of events and
actions, where 2-tuple (e;,a;),1 < i < n, which implies that attack action a; is the
primary action performed in the attack event e;, and the effect of the event is caused
by a;.



Attack scenario class - given a sequence of the attack actions the attack scenario class
is defined as all possible combinations of correlated actions with the relation weights
above the semantic weight threshold. The attack scenario class includes all possible
attack strategies the attacker may take.

Attack scenario instance - the subset of the attack scenario classes, generated based on
the alert context.

Attack scenario missing attack links Attack scenario missing attack links means the
number of focus links the attack scenario scenario does not include.

Boundary condition - a process attempts to read or write beyond a valid address boundary
or a system resource is exhausted.

Buffer overflow - the classic buffer overflow results from an overflow of a static data structure.

Command - a means of exploiting a vulnerability by entering commands to a process
through direct user input at the process interface.

Configuration vulnerability a vulnerability resulting from an error in the configuration
of a system.

Data - facts, concepts, or instructions in a manner suitable for communication, interpretation,
or processing by humans or by automatic means.

Delete - remove a target, or render it irretrievable.
Denial of Service - intentional degradation or blocking of computer or network resources.

Design vulnerability - a vulnerability inherent in the design or specification of hardware
or software whereby even a perfect implementation will result in a vulnerability.

Exploits - vulnerabilities such as race conditions or undefined states in a hardware or
software component that lead to performance degradation and/or system compromise.

False negative alarm - occurs when there is an attack and IDS does not raise an alarm.

False positive alarm - occurs when there is no attack and IDS raises an alarm. This
case can be problematic because administrators, facing a false positive, might take
unnecessary actions.

Frame - a labeled, typically with the name of the object it represents, and is made up of a
series of slots. Each slot cab contains a variable number of entities.

Histogram Feature Vector - given a trace including some bins, a Histogram Feature
Vector is a vector composed of the histogram frequency of every bin.

Horn clause - a statement containing at most one negative literal.

Increased access - an unauthorized increase in the domain of access on a computer or
network.

Input validation - an input validation vulnerability exists if some malformed input is
received by a hardware or software component and is not properly bounded or checked.
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Kernel space - a process executing as part of the operating system, either compiled into
the kernel or a module that is loaded into and executed by the kernel.
Local - the attacker needs to be “virtually” present at the target.

Malformed input - a process accepts syntactically incorrect input, extraneous input fields,
or the process lacks the ability to handle field-value correlation errors.

Noun sequences - the noun compound or complex nominal.
Probe - access a target in order to determine its characteristics.

Process - a program in execution, consisting of the executable program, the programs
data and stack, its program counter, stack pointer and other registers, and all other
information needed to execute the program.

Race Condition - an error occurring during a timing window between two operations.
Remote - the attacker does not need to be “virtually” present at the target.
Root access - the attack results in the attacker having complete control of the system.

Scan - access a set of targets sequentially in order to identify which targets have a specific
characteristic.

Script or program - a means of exploiting a vulnerability by entering commands to a
process through the execution of a file of commands or a program at the process
interface.

Spoof - masquerade by assuming the appearance of a different entity in network communications.

Toolkit - a software package which contains scripts, programs, or autonomous agents that
exploit vulnerabilities.

Vulnerability - a weakness in a system allowing unauthorized action.

1.5 Dissertation Outline
The rest of the this dissertation is organized as follows:

Chapter 2 describes the related works in NLP, Semantic Web, and First-order Logics.
The semantic scheme of FAR-FAR is also presented.

Chapter 3 introduces the basics of DL, presents Principal-subordinate Consequence
Tagging Case Grammar, and proposes the VPSLP scheme to defend traffic analysis attacks
on anonymous links between IDS sensors and agents.

Chapter 4 describes the 2-Atom Alert Semantic Network, resolution tree, alert window
size and attack scenarios. It also expounds how to generate the feature vectors from alerts,

and apply the vector space model to categorize the intrusion stages.
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Chapter 5 describes the attack scenarios semantic query model and simulation results.
Chapter 6 statistically present the analysis of histograms of ordinary-behaving bursty
traffic traces, and apply MTD to detect bursty traffic anomalies.

Chapter 7 describes the conclusions and future work.



CHAPTER 2

SEMANTICS INSPIRED SECURITY INFORMATION MANAGEMENT
SYSTEM: FAR-FAR

2.1 Related Work
2.1.1 Alert Correlation
The overwhelming flow of alerts generated by IDS make it difficult for the security administrator
to uncover the hidden attack scenarios. Some research studies [17, 18, 19, 20, 25] have
shown that the alert correlation is an efficient solution. In [3], alert correlation is defined
as the interpretation, combination, and analysis of information from all available sources
about target system activities for the purposes of intrusion detection and response. The
alert correlation methods can efficiently relieve the burden on the security administrator in
reviewing the large number of alerts.

In [17], the aggregation and correlation component (ACC) was introduced and its
purpose is to group the alerts into the duplication relationship and consequence relationship.
Duplicate relationship is defined in the duplicate definition file. For example, to be considered
a duplicate, the new alert’s attributes must be equal to the previous alerts. The consequence
relationships are defined in the consequence definition file according to the causal relations.
M2D2 [25] includes four information types in the alert correlation process: the monitored
system, the known vulnerabilities, the security tools, and the alerts. A mapping function
is used to convert the non-formal vulnerability names into the formal ones. Furthermore,
the prerequisites are modeled as remote, remote user, and local. The consequences of the
vulnerability are grouped as CodeExec, DoS, and Info. This kind of classification can be
viewed as a preliminary attack ontology. As a result, M2D2 aggregates alerts as “caused by
the same event” and “referring to the same vulnerability”. SRI [19] introduced a probabilistic
approach that can handle the heterogeneous alerts based on an alert template (not IDMEF).
The correlation approach considers the alert feature similarity. In [18], a new incoming
alert is compared to the latest alerts in all existing scenarios, and then joins the scenario

with the highest probability score. However, this method requires the attack scenarios to

12
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be generated in advance manually and that may not be adapted to the diverse attacks and
attack strategies. In [20], the correlation system uses the hyper alert that includes facts,
prerequisites, and consequences of the intrusion. The hyper alerts can be correlated if the
consequence of a hyper alert fulfills the prerequisites of the second hyper alert. This alert
correlation method is largely based on the causal relation. However, sometimes launching

certain attacks requires several steps which cannot be correlated with the causal relation.

2.1.2 Natural Language Processing and Semantic Web

There are immediate needs for improvement in information security technology that can
protect networks against attacks while eliminating the needs of constant human intervention.
This leads us to explore various automation techniques that can lessen the human workload.
The use of state-of-the-art NLP techniques in information security has been addressed in
several other researches. In [26], Raskin introduced ways in which methods and resources of
NLP can be fruitfully employed in the domain of information assurance and security (IAS).
He expounded that there was more incentive to apply NLP in contemporary IAS applications,
such as the intelligent searching or the attack query answering. Ontological semantics [27] are
employed to standardize terminology in the domain of IAS by translating non-standard terms
in the texts into standard equivalents. Both the approaches and the ontology are borrowed
from the field of NLP and adjusted to the needs of the security domain. Natural language
information security also involves the use of NLP for intrusion prevention and detection. For
example, LAMBDA [28], an attack description language is defined in a syntactic framework.
The CERIAS group [29] developed some IAS applications using NLP. Furthermore, they also
recommended the inclusion of NLP in IDS for more effective use of correlation engines. With
the NLP model, IDS sensors can transform the input alerts into a well-defined format which
can thereby be categorized.

On the other hand, Internet is primarily composed of information designed only for
human to understand, but not for machine interpretation. For example, Extensible Markup
Language (XML) standards provide a syntactic structure for describing data. Unfortunately,
many different ways can be used to describe the same data by XML, and machines cannot

unambiguously determine the correct meaning of the XML documents. In [30], Berners-Lee
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described his vision of the Semantic Web, the aim of which is to add the markups to the web
information and allow them readable by machines. Some previous works on semantic web
have been imported in the area of semantic query. In [31], an approach for information
retrieval over the Semantic Web is presented and used as the knowledge representation
language. Passenger Identification, Screening, and Threat Analysis application (PISTA)
[32] is developed to discover the threats for aviation safety. In [33], the authors proposed
a framework for intrusion detection that is based on runtime monitoring of temporal logic

specifications. The intrusion patterns are specified as formulas in First-order Logics (FOL).

2.2 FAR-FAR Semantic Scheme

Semantic knowledge Attack scenario instances
implementation semantic query
Alert computational formalism I [ Ontology / 2-AASN
Alert machine-understandable
formalism ‘ ’ PCTCG format
Raw alerts data I [ Snort/ RealSecure alerts

Figure 2.1 Attack knowledge representation formalism.

In this section, the attention is focused on how to combine the ideas mentioned
above. Fig 2.1 represents the layered attack knowledge representation formalism, whose
aim is to formalize the raw alerts into the machine-understandable, computable and finally
implementable formalism. In the alert understandable layer, the syntactic-format alerts are
converted into machine-understandable semantic alert streams by PCTCG and the ontology
defined in the intrusion security domain. Every entity in the ontology has a corresponding
element in the Description Logics (DL) formalism. Afterwards, 2-Atom Alert Semantic
Network (2-AASN) was generated from PCTCG streams, and semantic operations are used
over 2-AASN to generate the hidden attack scenarios. In the attack scenarios, entities and
relations referenced in the ontology are translated into individuals within the DL system.
Then, the spreading activation technique is used to implement the semantic attack knowledge
search. Specifically, the conjunctive query is translated into a sequence of query terms using
DL, and the answer to the conjunctive attack knowledge query is constituted by the set of

instances of each query term.
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the incoming alerts but rather the different alerts in the alert log are converted into PCTCG
streams, resulting in less computation. In the ontology layer, the action-based semantic
ontology is applied to the PCTCG streams to generate 2-AASN semantic networks. In the
pragmatic layer (pragmatic means how semantics is used in network security monitoring),
the correlation rules were applied to 2-AASN to derive the attack scenario classes for further
modifications by the security administrator. In addition, the feature index table is also built
up from the frame streams, that records the feature frequencies in the segmented time slots.
Based on the alert contexts, the alerts are transformed into the attack space vectors and
the vectors of the intrusion stages are compared to determine which intrusion the alerts
belong to. Finally, the highly interpretable reasoning results can be forwarded to the security

administrator.



CHAPTER 3

DESCRIPTION LOGICS, PRINCIPLE-SUBORDINATE CONSEQUENCE
TAGGING CASE GRAMMAR, AND LINK PADDING

As mentioned in Chapter 2, FAR-FAR should collect the raw alerts from IDS sensors and
convert the alert contents into formal representations. In FAR-FAR, the alerts are converted
into semantic frame slots by PCTCG first and then the slots are represented with a formal
description. In this dissertation, DL is used as the formalism for representing attack knowledge.
DL is a formal logic language for representing knowledge and is the core of the knowledge
representation system. Furthermore, to defend against the traffic analysis attacks on the links
between the IDS sensors and SIM, the link padding approach based on heavy-tail distribution
is introduced. After the link padding, the first-order statistical features of the traffic of the

links are similar.

3.1 Description Logics
A knowledge representation is a fragmentary theory of intelligent reasoning. To support
reasoning about the intrusion attack, a knowledge representation must describe their behavior
and interactions. DL [34] is a formal language for representing knowledge and is the core of
the knowledge representation system. DL systems provide their users with various inference
capabilities that allow them to deduce implicit knowledge from the explicitly represented
knowledge. In this section, some basic definitions of DL are introduced and the attack

ontology is based on DL.

Definition 3.1.1 (Knowledge Base) A Knowledge Base KB based on DL includes a T Box
T and an ABox A, and is denoted as KB =< T, A >. T contains intensional knowledge
in the form of a terminology while A contains assertional knowledge that is specific to the

individuals of the domain.

Definition 3.1.2 (DL Interpretation) A DL interpretation T is a pair AT and -T, where
the AT is a non-empty set called the domain of the interpretation, and X is an interpretation

function. Interpretation function AT maps

17
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e cach concept name A to a subset AT of AT
e cach role name R to a subset RT of AT x AT

e each individual name i to an element i* of AT

Definition 3.1.3 (TBox terminological axioms) The terminological axioms in T make
statements about how concepts or roles are related to each other, and describe the structure
of a domain. The terminological arioms have the form: A = B,A C B, and ANB = 0,
where the aziom of the first kind is called equation, while the axiom of the second kind is
called inclusion, and the aziom of the third kind is called disjointness. If the interpretation T

satisfies an aziom «, let denote this as T = a.
eI A=B,iff AT=5B?
e I=ANB=0, iff AAnBI=0

e TE=T,iff T satisfies every aziom in 7.

Definition 3.1.4 (ABox assertional Axioms) The assertional arioms “included in” have
the form: a : C or < a,b >: R, where the axiom of the first kind is called the concept

assertion, while the aziom of the second kind is called the role assertion.
eZka:C,iff T €Ct
e ITl=<a,b> R, iff <ot b* > R
o T = A, iff T satisfies every aziom in T

e IEKB=<T,A>iff T€¢ AandT €T

Definition 3.1.5 (DL syntax and semantic) Let A and B be concepts and R be a role.
The following DL constructors build complex concepts and roles from simpler ones. The

interpretation T can be extended to concept descriptions by the following inductive definitions.
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constructor syntaz semantics
atomic negation -A (~A)T = AT\ AT
intersection ANB (AnB)t = ATnB?
union AUB (AuB)* = ATuB?

value restriction VR.C  (VR.C)f = {A € AT |Vb.(a,b) € RT — be C?}
exist restriction ~ 3R.C (VR.C)T = {A € AT | 3b.(a,b) € R — be C*}
min cardinality >nR.C >nR.CT={Ae AT|{b|(a,b) € RT}|>n}
ma cardinality <nRC <nRCT={AeAT|{b]|(a,b) € RT}|<n}

3.2 Attack Ontology

In order to extract the semantic information from raw alerts, the system’s flaws and how
the attacker breaches the network need to be known. For example, the “buffer overflow”
flow can result in the attacker being able to run any arbitrary program and gain the root
or administrator privileges. Attempts have been made to categorize and classify those
computer attacks. The taxonomy should be specific and comply with the established security
terminology. In [35], a summary of the computer misuse techniques was outlined as nine
categories. The work in [36] develops a taxonomy of security threats: from the system to the
program running on the system, then to the result of the breaches.

In Figure 3.1, John Howard [37] categorized the CERT incidents on the Internet and
created an attack taxonomy with types of attackers, tools used, access information (such as
why it was broken and what was used in the access), results of the break-in, and the objectives
of the attack. The taxonomy of computer and network attacks developed for this research
is used to present a summary of the relative frequency of various methods of operation and
corrective actions. This taxonomy was taken and later expanded in the Sandia Laboratory
[24].

The knowledge base refers to the representation of the relevant knowledge about the
application domain. It contains the concepts, the instances, and the relations. In this section,
KB is extended to the Attack Knowledge Base (AKB) in the domain of intrusion security,
which is an expressive modeling approach to implement SIM. 7 and A of AKB, as well as
the Attack Interpretation AZ, are defined so that AZ = AKB =< 7, A >. In 7, semantic



Figure 3.1 Howard’s CERT Taxonomy [37].
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intrusion attack ontology Or is defined based on attack behavior semantics. In Or, the

semantic roles chosen should reflect the semantic logic of attack actions. In this dissertation,

Or’s classes are defined according to the interpretation of the noun sequences in the linguistic

literature, and build up the sub-taxonomy for every class based on the CERT taxonomy.

3.2.1 Classification of Noun Sequences

Table 3.1 Jespersen’s Classification Schema

In NLP, theoretical linguistics has studied the classification of noun sequences (also

known as noun compounds or complex nominals) from various perspectives. Most of these

gold ring, stone wall

RELATION NAME EXAMPLES
Subject earthquake, sunrise
Object sun-worship, childbirth
Place garden party, land-breeze
Time daydream, wedding breakfast
Purpose keyhole, dining room
Instrument gunshot, footstep
Contained in feather bed, sandpaper
Resembles needle fish, silver-fox
Material
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Table 3.2 Lees’ Classification Schema

" RELATION NAME EXAMPLES ]
Object/Property collar size, vapor pressure
Whole/Part oyster shell, whale bone
Contents picture book, air pocket
Resemblance bulldog hairspring
Form brick cheese, lump sugar
Material paper money, butter cookie

studies have focused on the semantic aspect, discovering which are the functional relations
implicit between the nouns in a noun sequence. The discussions in Jespersen [38] and Lees
[30] focused on providing a classification which is sufficient for the description of the noun
sequences. The classifications in [38] are shown in Table 3.1, whereas Lees [39] mentioned

several other categories shown in Table 3.2.

Table 3.3 Downing’s Classification Schema,

| RELATION NAME EXAMPLES |
Whole-part duck foot
Half-half giraffe-cow
Part-whole pendulum clock
Composition Stone furniture
Comparison pumpkin bus
Instrument gunshot, footstep
Time summer dust
Place Eastern Oregon meal
Source vulture shit
Product Honey glands
User flea wheelbarrow
Purpose Hedge hatchet
Occupation Coffee man

The description in Downing [40] focused on the functional roles of a noun sequence.
This attack taxonomy was similar to Jespersen’s because those classes were both descriptive in
nature. Zachman'’s framework for information system architecture (ISA) [41] is widely used for
developing an enterprise information systems architecture. The purpose of ISA is to provide
a basic structure supporting the organization, integration, interpretation, development, and
changing of a set of architectural representations of the organizations information systems.
Tables 3.4 and 3.5 below represent the ISA’s framework. The rows in Table 3.5 describe the

views of the ISA participants, and the columns depict a different focus. (As Zachman put
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it: “The same product can be described, for different purposes, in different ways, resulting
in different types of descriptions”) Together, these six interacting focuses describe the entire
ISA architecture.

Table 3.4 Dimensions Summary

Dimension | Questions | House construction Systems development
Entities what house, room employee, department
Activities how play, eat hire employee, promote employee
Locations where lot, rooms headquarters, district office
People who occupants, guests, pet human resources dept., recruiter
Time when construction sequence during interview, each January
Motivations why reduce lawn maintenance | Ensure adequate staffing levels

Table 3.5 Questions Summary

Views Object of focus Focus items Description

WHAT is it made of? Data Entities, relations organizational information

is made of data
functional descriptions
HOW does it function? Processes, functions inputs, outputs How does the organization do its work?

How are orders filled?

How is inventory maintained?
where the work and information flows
WHERE are things located? Network Nodes, links functional descriptions

within the enterprise?
people (employees) within the

‘WHO is involved? People agent, work enterprise the work (or work products)
they perform
WHEN do things happen? time time cycle event-to-event relationships
WHY do things happen? motivation objectives, goals the motivation of the enterprise

3.2.2 Attack Taxonomy in FAR-FAR

In this dissertation, the semantic roles are constrained based on the following questions that
security administrators would naturally ask: When did the actions happen? Where did the
actions happen? By which means did the actions happen? What results did the actions cause?
etc.,

Figure 3.2 presents the three-layer Or hierarchy of the concepts and relations. Each
concept in the ontology is described by a set of attributes. Object role means the receiving
end of the action, and it has has object and be object of attributes. The meronymy (has an
object) and holonymy (is a part of ) attributes from part-whole role describe the situations that

one entity contains other entity. Consequence tagging role explains at which stage the attack



23

may locate: gather information, making enable or launching attacks. In A, the instances
about the concepts and semantic relations in Of are stored in the intrusion attack instance
base. The Attack Interpretation AZ = (A“Z, A7) represents the mapping form the behavior
action space to attack scenario space. Every semantic role defined in O describes a semantic
aspect of a certain action. Based on O7 , AZ maps these loose and uncorrelated individual
actions into coherent attack plan by the semantic expressive description.

Or = {

semantic roles

in

V Location.W herel VMethod. W hat withn YObject.W ho/W hat

M V(Possible)Cause.What it causesVConsequence tagging,

W here

in

V Include.Has location VInclude.Be location of,

What with

n

V Include.Has instrument location VInclude.By means of,

Who/W hat

in

V Include.Has objectl VInclude.Be object of,

What is part of

in

V Incdude.Meronymyn VInclude. Holonymy,

What it cause

(]

V Include.(Possible) Causeln VInclude.Be (Possible) caused by,

Consequence tagging YV Include.Gather Infon Vinclude.Make enable VInclude.Launch attack,

in

in

Has location V Has attribute.state=active N VHas attribute. weight=4,

n

Be location of V Has attributes.state=passive M VHas attributes.weight=4,

Has instrument

In

Y Has attributes.state=active M VHas attributes.weight=4,

By means of

n

V Has attributes.state=passive N VHas attributes.weight=4,

Has object

N

V Has attributes.state=active N VHas attributes.weight=2,

Be object of

(]

V Has attributes.state=passive N VHas attributes.weight=2,

M

Has location V Meronymy attributes.state=active It VHas attributes.weight=3,

in

Holonymy V Has attributes.state=passive N VHas attributes.weight=3,

(Possiblecause V Has attributes.state=active N VHas attributes.weight=3/5,

n

Be (possible)caused by

N

V Has attributes.state=passive M YHas attributes.weight=3/5.
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semantic information is extracted from heterogeneous alerts by the modified Case Grammar
theory, PCTCG [43].

The reasons for using Case Grammar are three folds: First, Case Grammar structure
specifies the semantic relations (slots) between a verb and other entities [44]. Frame is useful in
representing descriptive or stereotypical conceptualization of events. Second, Case Grammar
is easily represented by a semantic network, which includes abundant semantic relations that
can express the alerts’ associations. Third, unlike the syntactic level, Case Grammar theory
is deep semantic [45], which means it does not change under grammatical transformations. As
shown in Table 3.6, Subject role and Object role change in syntactic level when the sentence
switches from active to passive form. However, the Agent (Agent is what causes the action of
the verb) and Theme (Theme is the object in motion or being located) roles in the semantic
level remains the same.

Table 3.6 Syntactic vs. Semantic

Sentence Syntactic level Semantic level

Object [Subject | Agent | Theme

The man moved the desk. the man | the desk | the man | the desk
The desk was moved by the man. | the desk | the man { the man | the desk

The aim of PCTCG is to normalize the aggregated intrusion alerts into uniform
semantic representation of attack behavioral actions. An attack scenario can be regarded as
a sequence of attack events, in which each includes a certain attack action. When considering
two alerts (two actions), the semantic roles need to be used to correlate them, and the
Principal-subordinate relation is applied on the two alerts. When one alert is in the principal
phase, it is treated as a verb and replace the other alert with its subordinate keywords (noun
phrases). If the subordinate keywords arein a specific case relationship with the verb, then
these two alerts are correlated.

PCTCG is formally defined as G = {M,,C, F, S}, where M, is the alert messages
set of the IDS sensor with sensor name n, C specifies the set of possible semantic roles
(slots) between alerts, F' is the set of case fillers (legal value for each slot), and S is the set

of subordinate keywords. Traditional case grammar includes a selection restriction, which
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specifies accepting or rejecting case fillers between the main verb and the noun phrases [45]
(for example, the object of the verb drinking must be a liquid substance).

In PCTCG, since the selection restriction of case grammar has been shifted to the
semantic knowledge databases, the set of selection restrictions will not be included. For every
alert, there are several subordinate keywords which can describe the alert background well.
For example, consider two Snort alerts: FINGER 0 query and FINGER redirection attempt.
Their semantic attributes and case fillers are shown in Table 3.7.

Table 3.7 Semantic Attributes and Case Fillers

FINGER 0 query |
Semantic roles Semantic case fillers
Has object FINGER daemon
Possible cause User account, password
By means of FINGER command with username ’0’
Consequence tagging Make enabling
Subordinate keywords User name, FINGER daemon
FINGER redirection attempt
Semantic roles Semantic case fillers
Has object FINGER requery
Possible cause Gain information
Cause DDoS, indirect connection
Consequence tagging Launching attack
Subordinate keywords FINGER requery, third party

In this dissertation, FOL [46] is used as the alert representing and reasoning language.

In FOL, there are three types of logic symbols:

e punctuation: “(”, “)”, and “.”

e connectives: “=" Y “F’ “V7 “A” and “ = ”. Note that “=” is logical negation,
“A” is logical conjunction, “V” is logical disjunction, “v” means “for all...”, “3” means
“there exists...”.

e predicate: predicates denote the semantic roles defined in Or.

Based on the alert semantic information, their PCTCG streams are represented by

predicate logic format:

E[Mn:(FINGER 0 query)snort|=
Je.[3v[command(C::has object(FINGER daemon),third party,v)]AC::possible cause

(User account, password)AC::cause (FINGER command with username '0)
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Figure 3.5 PCTCG diagram.

AC::consequence tagging(launching attack)AS:(Finger query, third party))].
E[Mn:(FINGER redirection attempt)snort]=
Xe.[3v[forward(C::has object(FINGER query),third party,v)|AC::possible cause (gain info)

AC::cause (DDos, indirect connection)AS:(Finger query, third party)].

where E is an entity described as “the event in which the Finger daemon forward the
query to the third party”. Je means “there exists an event...”, Jv means “there exists a kind

b

of attack action...”, “ A" is logical conjunction, and :: means “include”. Here, has object,
possible cause, cause, consequence tagging are the semantic roles, finger requery, +info,DDoS,
indirect connection, launching attack fill the slots of the above roles respectively, and FINGER
requery and thirty party are the subordinate keywords. Predict logic describe the conjunction

of the action predicate with other predicates described in the event. Based on [34], the

following formulas are defined to translate the predict logic into DL.

Definition 3.3.8 (Predict logic transform axioms) The following azioms are defined to
translate the predict logic to DL:

e Y3c = Jx AC(x)

o Jarc(z) = Iy.R(z,y) AC(y)
o dvre(x) =Vy.R(z,y) AC(y)
o Jnr(2) = Vo gy W R@, Y1) A - AR(T, Yns1) = Viey (i) = ¥
® V>nr(T) = Jygign WR@, Y1) A - AR, Yns1) = Nicy (1) # Y
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In Figure 3.5, the Entity-Relationship (E-R) diagram is used to represent the PCTCG
format. The E-R scheme can be translated into DL description. Each entity in the E-R
diagram can be translated into a concept in DL, while each E-R role is translated into a DL

role. The DL statement of E-R can be expressed as follows:

(Finger redirection attempt)sport={

Y3INTRUSION SENSOR NAMESnort,

NY3H AS OBJECT.Finger queryFinger redirection attempt,
MI3POSSIBLE CAUSE.gain informationFinger redirection attempt,
MI3CAUSE.DDOS, indirect connectionFinger redirection attempt,
NY3CONSEQUENCE TAGGING.launch attackEinger redirection attempt,

M93SUBORDIANATE KEYWORD.Finger query, third partyFinger redirection attempt}.

3.4 FOL Backward-chaining Reasoning
A clause is interpreted as the disjunction of a set of literals. The clause: By,---, B, = A, if
B;istruefori =1, ---,n, then A is true. A statement is called a Horn clause if it contains
only at most one negative literal [46]. For example, a positive Horn clause [z1, z2, —y] can be
thought as z; A o = y or “if both x; and x5 happen, then y must happen”.

Backward or forward chaining are two primary methods for knowledge reasoning.
Backward chaining starts with the hypothesis, and it works backward from the hypothesis
to the facts which support the hypothesis. Forward chaining travels from the facts to the
conclusions. To determine whether backward or forward chaining should be used depends
on the specific problems. If the given attack facts can reach a large number of resolutions,
and few of which you are interested, then backward chaining should be adopted. Otherwise,
forward chaining should be used. To determine which method is better in reasoning the
attack scenarios, consider the following situation. For the security administrator, what are
known to him/her are the vulnerabilities of the networks and hosts, the malicious attacks
being happened, and the generated alerts; he/she also wants to know if some specific attack
attempts happened. Equivalently, in the view of SIM, FAR-FAR stores the vulnerabilities

of the networks and hosts into the AKB in advance, and converts the generated alerts into
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frame-based streams, and then into Horn clause facts. To extract the attack scenarios, FAR-
FAR needs to check whether or not the AKB together with the production rules can satisfy
questions related attack attempts: when, where, by which means,what resulted from the
attack? With the semantic roles defined in Of, the reasoning goals can be pre-defined.
Furthermore, to guarantee real-time efficiency, reasoning should be done without unrelated
conclusions. Therefore, backward chaining is chosen; that is, given some production rules and
a AKB containing a set of FOL Horn clauses, whether or not the interested attack attempts
can be derived needs to be known.

In the simulations, Prolog is used as the backward chaining language. By backtracking,
the inference engine provides Prolog with powerful reasoning capabilities [47]. A Prolog
program consists of a sequence of goals G, which are either atomic goals or negations of
atomic goals, the production rules R, and a set of predicate definitions P, which are either
alert’s frame structures or the ontology attack facts. The production rules are expressed as

conditional sentences in the form:

IF semantic roles match THEN semantic correlation.

For example, the attack facts and object correlation rule of alert FINGER requery can be

represented in Prolog as clauses:

—

. object("finger_requery", "finger_daemon").
2. method("user_account", "finger_requery").

3. idsEvent("finger 0_query", "finger_daemon", "finger_daemon", "empty",
"user_account", "empty", "empty", "finger with username. 0" ).

4. judge object(PAlert, SlotFiller, SAlert, Keyword, SlotName) :-

5. object(SlotFiller, Keyword).

3.5 First-order Logic Reasoning for Alert Correlation
In this section, FAR-FAR’s automatic alert correlation reasoning will be expounded in detail.
Here, reasoning refers to the manipulation of the attack facts stored in AKB to generate the
logic conclusion of the attack scenario. Given the PCTCG frames, the semantic operatoins
and the intrusion database containing the attack knowledge facts, whether or not the goals

of interested correlation can be automatically derived needs to be known.



31

The reasoning process has two steps: Conjunctive Normal Form (CNF) formalization,
and FOL resolution. In the CNF formalization, PCTCG frames and the attack knowledge
facts are all formatted into CNF clauses. In the reasoning process based on [46], And-Or
Resolution Tree is proposed to derive the alert correlations from CNF clauses automatically
using the substitution and the semantic fusion. Substitution is to replace an alert with its
subordinate keyword, whereas the semantic fusion is the process of fusing two clauses into

one.

Definition 3.5.1 CNF is a conjunctive of disjunctions of literals.
For example, a CNF has the following form:

(.’L‘] VJ?Q)/\ A (.’L‘n_l V.In)

where z;,1 < ¢ < n is a propositional logic clause.

Because alerts’ PCTCG streams are unit clauses in conjunction format, they are
already in CNF format. For example, CNF of alert 1 FINGER 0 query and alert 2 FINGER
redirection attempt are:

CNF{alert1, alert2)=
[has object(alertl, FINGER daemon)
A possible cause(alertl, User account)
Acause(alertly, FINGER command with username '0')
AS(alertl, Finger gquery)]
Alhas object(alert2, FINGER query)Apossible cause (alert2, gain info)
Acause (alert2,DDos & indirect connection)

AS:(alert2, Finger query & third party)].

In FAR-FAR, the intrusion database stores the attack knowledge facts, which are the
unit CNF clause describing a certain semantic role. For example, the facts related with the
alert FINGER requery are object(finger_requery, finger-daemon) and the method(user_account,
finger_requery). For the reasoning questions, for example, “if both z; and x4 exist, then must

y happen?” can be thought as z; A o = y and expressed as the CNF clause 1; A 2, A .
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Definition 3.5.2 For two literals, | and ', they are called the complement literals if ' = —l.

Definition 3.5.3 Consider two CNF clauses ¢; U {l} containing the literal I, and c; U {l'}
containing the complement of I, resolution is the process of inferring the clause {c;Ucy} based
on the complement literals | and I'. In this case, c; U {l} and c; U{l'} are resolvent. ¢, U {l}
and coU{l'} are parent clauses and {c;Uca} is the child clause. The literals | and 1’ are called
complete resolvent.

Definition 3.5.4 The alert correlation goal G consists of the subgoal list defined in the

attack OntOZOny G = {gobjechgspatialyginstrumentygpart—wholevgcause}- If one or more SUbgoals
are satisfied, the whole goal G is successful.

Definition 3.5.5 A substitution © is an element from a set of pairs {x1/t1, ..., T/t }, where
zi, 1 < i < n, is the subordinate keyword of alert t;, and x;/t; means that subordinate keyword
term x; is substituted by its alert t; throughout the resolution.

Definition 3.5.6 There ezist goal G = {gobjecta gspatialyginstrument)gpart—wholevgcause}; and a
set of clauses C = (cy,¢2,+,Ciy -+, Cm) where 1 < i < m. Assume there is a substitution
Gi SO that h,’ = HiCi. Let Cl = C’G, = (Cl, Coy- - ,Cj, s ,C.m)gi = {9,‘01, 9,‘62, s ,hi, s ,Hicm}.
Then C' is called the substitution step with input clause C' and 0;, and C' = 6;(C).

Definition 3.5.7 Suppose two clauses Ri(c;,c;j), and Ra(cj, cx) from a set of clauses C' =
(€1,€2,Ciy "+, Cjy ", Ck-+, C) where 1 < 4,5,k < myand © < j < k. Assume Ry(c;, c;) *
Ry(cj, cx) = Ry * Ra(ci, cx) = Rs(ci, ck) where x is the semantic operation, and Ry x Ry = R3
means that the semantic operation R, and Ry can be fused into Rs. Let C" = C f(r,«r,=Rs) =
(c1,¢2, 1 €j=1,Cj41, "+, Cm). Then C” is called the semantic fusion step with input clause C
and fr,sry=Rs), and C" = f(RiuRy=Ry)(C).

Definition 3.5.8 Suppose there exists C = {Alertl, Alert2, z1,z2} that Ry(21,z2), Ri(Alertl,
1), and S(Alert2,z3). And C has a semantic fusion step f(r,.r,=r,) and a substitution step
0; = (zo/Alert2), then

Ry(Alertl, z;) A S(Alert2, z,) = R3(Alertl, Alert2)

where = s called a FOL resolution step.

Definition 3.5.8 A FOL attack reasoning deriwation of goal G from a set of clause C is a
finite clause sequence: Cy,---,C, = G,1 < i < n such that each clause C; is the resolution
step of C;_1, which is written as C = G. A reasoning derivation is successful if there exists
¢ € C; where ¢ and the subgoal g’ € G is complete resolvent (that is, ¢ Ac = 0); it is
unsuccessful if the last resolution is non-empty, but no further resolution step is possible.

Definition 3.5.9 A successful resolution tree of C |= G is a labeled binary tree such that the
root is labeled O, the leaves are labeled with elements of C, and each nonleaf is labeled with
a resolvent of the labels of its immediate successors. The root is at the bottom. For a set of
clauses, there ezists at least one alert correlation if there exists a successful resolution tree.



33

To decide if the goal G = {gobject, Gsptiats Ginstruments Gpart—wholes Jeause} can be derived
from the clauses, FAR-FAR tries to completely resolve the left-most subgoal with the clause
which has the same predicate name. When the resolution is successful, FAR-FAR attempts
another resolution step. When the resolution fails, the process backtracks and tries another
inference step. The whole procedure constitutes the depth-first and left-to-right order. The
attack resolution derivation is commonly represented by a binary reasoning tree, drawn with
its root at the bottom. Resolution tree is a data structure used for building binary resolution
proofs in FOL. The main focus is finding efficient ways to extract the correlation between
alerts. All nodes are labeled by the literals which are still to be resolved (known as the
clause label), while internal nodes are labeled with the letter of the atom being resolved.
Consider an automated reasoning procedure that takes a set of clauses as input, and outputs
the correlations.

R *R, =R, R(Alert,,x)) R,(x,x,) 6 S(Alert, x,)

R *R,(Alert,, x,)

/

R3(Alertl, xz) 0=x2/Alert2

/

R;(Alert,, Alert,)

Figure 3.6 First-order attack reasoning tree.

Figure 3.6 shows the process of the resolution tree between alertl and alert2. Initially,
there are no connections between the case filler variables. When performing resolution, the
variables are renamed so that they have no variables in common. Afterwards, the resolution
tree tries to determine if the semantic roles R; and R, can be fused into Rs. Here, x is the
semantic role operator. If there exists a semantic operation R, x Ry = R3 and a semantic role
fact Ro(x1,xs), which means x; has a semantic role R, with case filler x5, the resolution of

Ry (Alertl,z,) and S(Alert2,xs) is defined as follow:

Rl(Alertl, .’L'l) A R2(.’L‘1, 172) l’—_ R3(Al67‘t1, Alert?)
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where R, x R, = R3; means that semantic roles R1 and R2 can be fused into R3,
S(Alert2, r;) means that Alert2 has subordinate keyword z2, and the substitution © is

instantiated with xo/Alert2.

3.6 Link Padding

Preventing networks from being attacked has become a critical issue for network administrators
and researchers. As a precursor to a network attack, attackers may perform traffic analysis
whereby the aim is to derive mission critical information based on an analysis of the traffic
over the network. One can defend against traffic analysis attacks with the encryption, such as
node encryption or link encryption. Although with encryption, the attacker will not be able
to decode the context of the packets. However, the network links between the nodes can still
be vulnerable to traffic analysis attacks. For instance, using the “packet counting” attack,
the attacker can count the number of packets entering and leaving one node, and determine
the next node which the packets will be sent. With the gained link information, the attacker
can launch DDoS on the nodes.

swap

token bucket m

padding traffic rote sequence ‘
1 21 .
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Figure 3.7 Link padding method in [2].

Another countermeasure against traffic analysis is to use link padding where the cover
traffic and the real traffic are mixed so that every link’s total traffic looks constant or similar
to the attackers. The clients can then transmit a payload independent stream of data on the
links to the servers. In [48], the variant interval link padding method was compared with
the constant interval link padding method. The results indicated that the constant interval
link padding may fail in preventing traffic analysis from determining the rate of real payload
traffic, while the variant interval link padding based countermeasures seem to be effective.

A method of constant interval link padding was described in [2], which is shown in Figure
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3.7. This method chose a value from a heavy tail distribution as the current traffic rate
and swap with a more suitable value if the current value does not meet the link traffic rate
requirement. However, it has several drawbacks: First, it requires all paths to generate the
cover traffic for every requesting path. Second, since the solution is constant link padding, the
densely incoming packets may subtly delay the timer’s interrupt routine which is in charge of
generating the cover traffic and the attacker can analyze the timer’s delayed time to obtain
the link information [48]. Furthermore, in the heavy tail distribution, the probabilities of the
larger values are much smaller than the smaller ones. Most traffic rate candidates are very
small that does not meet for the requirement of high speed link transmission.

Yan et al. [49] proposed the Variant Packet Sending-interval Link Padding method
(VPSLP) to defend against the traffic analysis attacks on the links between the IDS sensors
and FAR-FAR based on the Pareto distribution. The Pareto distribution is a simple heavy
tailed distribution with the probability mass function defined as: Plz] = ak®*z~>"! where
a,k >0, x > k. Figure 3.8 shows a simplified anonymity system including IDS sensors and
agents. Link encryption is not enough to protect the anonymity of the system. For example, if
the attacker needs to know which sensor A is communicating with agent A. The attacker can
eavesdrop the links before and after the ingress anonymizing node, and collects the number of
the packets transmitted or the packet inter-arrival time. After the comparisons, the attacker
can derive the route between sensor A and agent A, and launch attacks on the nodes. The
countermeasure against traffic analysis is to use link padding where the cover traffic and the

real traffic are mixed so that every link’s total traffic looks constant or similar to the attackers.

Sensor A — Agent A

Sensor B Agent B

Figure 3.8 Anonymous links in FAR-FAR.

As shown in Figure 3.9, consider the link between a client and a server. On the client
side, there exist two kinds of buffers: the traffic buffer and the constant length buffer. The

function of the traffic buffer is to store the incoming packets. Suppose the traffic buffer is



36

large enough so that it will not overflow (since the link transmission rate in the anonyminity
systems is not very high). The constant length buffer sends the packets exactly according
to the generated heavy tail distribution. Every value from the heavy tail distribution can
be treated as a timer. If the timer does not expire, the constant length buffer will hold the
packet, otherwise, the packet is sent right away. The swapping between the values of the
heavy tail distribution is not allowed. Let the constant length buffer’s length be [. If the
incoming packet’s length is bigger than [, the sending anonymizing node can split the packet
into several segments and the receiving anonymizing node can combine the segments. Note
that the smallest value in the heavy tail distribution is larger than the time to fill up the
constant length buffer, and the time to pad the whole constant length buffer can be ignored.
When the constant length buffer is filled up, it sends out the packet and fetches the next
value from the heavy tail distribution. The time to fetch the value from the distribution is
also considered negligible. The cover traffic is generated under two conditions. First, the sum
of the incoming packet size and the total size of the packets in the buffer is greater than [,
then the cover traffic is padded to fill up the constant length buffer. If the timer does not
expire, the buffer will hold until the timer expires. Otherwise, the buffer sends the packet
out immediately. Second, if the constant length buffer is not padded up and the timer has

already expired, the cover traffic is padded to fill up the buffer, and then the packet is sent

' Sending interval heavy tail distribution

) Traffic buffer Constant leneth buffer
Client

and || pmd s

Padding traffic

out.

Figure 3.9 Variant Sending-interval Link Padding.

VPSLP does not generate the cover traffic all the time, but based on the incoming
traffic and the generated heavy tail distribution. VPSLP is also better than the method which
inserts the cover traffic at random, because the randomness can often be removed by using
the statistical methods. Links with the same starting node are called the node’s link group.

Every link group uses the same value of a and k to generate the heavy-tail distribution. If
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Figure 3.11 Link padding simulation results.

We simulated three links: node A to node B, node A to node C, and node A to node
D, which were labeled as link0, linkl, and link2 respectively. Traffic datasets from [50] are
used. As seen in Figure 3.11, without link padding, the throughputs of all three links in 200
seconds are very much different due to the different input traffic traces. With link padding,

the traffic throughput patterns of all the links are statistically similar.
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Figure 3.12 HF'Vs of traffic after link padding.

|

histogram frequency

As shown in Table 3.8 and Figure 3.12, unlike the original traffic without link padding,
the descriptive statistics of link traffic with link padding and Histogram Feature Vector (HFV)
are statistically similar. Furthermore, the performance of the end-to-end delay of the real

traffic in one second does not degraded significantly as compared with the original traffic.
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Table 3.8 Descriptive Statistics of Link Traffic with Link Padding

[ Link | Mean | StDev | Q1 | Q3 | Entropy
before link padding
Link 0 | 492 295 | 300 | 650 -
Link 1| 379 243 | 200 | 550 -
Link 2 | 259 200 | 100 | 350 -
after link padding
Link 0 | 423 136 | 350 | 500 | 8.978
Link 1| 417 141 | 350 | 500 | 8.926
Link 2 | 375 132 | 300 | 450 | 8.802

This is because the generated heavy tail distribution fit well with the original traffic’s packet
inter-arrival time distribution.

To defend against the attacker’s abnormal traffic, the work in this dissertation takes
advantage of the histogram skewness distribution and uses the histogram feature vectors as
the input features to the Principle Component Analysis (PCA). On the anonymizing node,
the packet inter-arrival time series is divided into certain segments (for example, 400 values
every segment). Then, every segment is divided into &k bins and compute the histogram of
k equivalent time bins for each segment. The scope chosen for the histogram in each data
set is 1.0pu ~ 2.0p from the mean. In the simulation, k = 14 is chosen. The reasons to use
PCA are following: 1) In the network traffic, the bins are a set of correlated variables. PCA
can transform them into a smaller set of uncorrelated variables. 2) High dimension requires
high computation cost, so PCA is used to reduce the high dimension to two dimension. 3)
PCA can minimize the average projection errors [51]. The main use of PCA is to reduce
the dimensionality of a data set while retaining as much information as possible. PCA is a
multivariate procedure, in which a set of correlated variables are transformed into a set of
uncorrelated variables. PCA chooses orthogonal linear combinations of the predictor variables
that maximize the variance. PCA allows us to visualize and analyze the M observations
(initially described by the N variables) on a low dimensional map. PCA provides the optimal
view for a variability criterion, and builds a set of P uncorrelated factors (p < N) that can
be reused as input for other statistical methods [52].

The total number of anomaly trace segments is 359 traces, while the normal ones are

646 traces. The histogram trace generated is used as a feature vector. Then, PCA is applied
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Figure 3.14 PCA results before and after inserting abnormal traces.
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on the vector and projects it into the first two components. The histogram feature vectors

generated above are used as the input to PCA, which projects the results into the first two

components. Figure 3.13 shows the PCA results of the three incoming packet inter-arrival

time series of node B, node C, and node D. If the attacker inserts abnormal traffic to a node,

it can be detected by applying PCA and the node’s control unit will not adjust the heavy

tail distribution and [, thus defeating the attack. Figure 3.14 are the PCA results before and

after adding the abnormal traces. The abnormal traffic is mapped to the left corner.



CHAPTER 4

FIRST-ORDER REASONING

In this chapter, FAR-FAR'’s automatic alert correlation reasoning will be expounded in detail.
Given PCTCG frames, the semantic operations rules, and the intrusion database containing
the attack knowledge facts, the security administrator wants to know whether or not the

goals of interested correlation can be automatically derived.

4.1 And-Or Correlation Rule Tree
To extract the alert correlations, an And-Or Correlation Rule Tree (AOCRT) is proposed.
AOCRT includes the correlation rules, the attack facts (attack knowledge facts), and the
semantic operations. Using the PCTCG streams as inputs, AOCRT is traversed to produce
the attack scenarios as the outputs. As shown in Figure 4.1, AOCRT is divided in two parts:
the semantic matching and the resolution tree. In semantic matching, 2-AASN is used to
correlate two alerts; that is, the principal — subordinate correlation and subordinate —
principle correlation. Afterwards, the FOL resolution tree tries to determine if the semantic
matchings satisfy the following correlation rules: cause, location, instrument, object, part-
whole, and possible cause, by checking the semantic role facts stored in the attack database

and semantic operation facts.

4.1.1 2-Atom Alert Semantic Network

Semantic networks have been used in artificial intelligence for representing knowledge. It is
a directed graph used for representing objects and the relations among them. The objects,
shown as labeled circles, are referred to as nodes. The properties and relations of objects
are expressed as directed arrows connecting the nodes. In this dissertation, 2-AASN is
proposed as the semantic correlation representation between two alerts based on [53]. The
edges of 2-AASN represents PCTCG semantic attributes or the label subordinates, and the
nodes represent two atom alerts or their child nodes: case filler or the subordinate keyword.

The formal description of 2-AASN is based on the 2-tuple slot, < semantic attributes, case

41
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Figure 4.1 And-Or correlation rule tree.

filler >, or < subordinate, subordinate keyword >, which describes the semantic role or

subordinated keyword:

SN{nodel ,node2]={
nodel :< subordinate,nodel :: subordinate keyword>*),
node2:< semantic attributes, nodeZ:case filler>"),
node2::case filler<semantic attributes, nodel::subordinate keyword>%1)},

where nodel is subordinate alert, node2 is principle alert,and +) means>1.

The algorithm Gen2-AASN shown in Figure 4.2 is used to construct 2-AASN from
two atom alerts. It works under the Principal-subordinate relation. When one alert is in
the subordinate phase, if its subordinate keywords are in a specific relationship with the
principle alert, these two alerts are correlated. The process that the subordinate alert is
replaced with the subordinate keyword is called substitution. For example, consider Snort
alerts: FINGER 0 query and FINGER redirection attempt. The PCTCG format stream

of these two alerts are shown in Figure 4.3.
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Algorithm Gen2-AASN(alertl, alert2, SensorName);
Input: two alert messages and the IDS sensor name;
Output: 2-AASN of input alerts if a solution can be found.

1. nodel:=alertl;

2. node2 :=alert2;

3. PCTCG;jen; := alert] PCTCG format;

4. PCTCG, 2 := alert2 PCTCG format;

5. alert] phase := subordinate phase; nodel::child := keyword;
6. alert2 phase := principle phase; node2::child := case filler;
7. let MaxCasefiller = total number of case fillers;

8. let MaxKeyword = total number of keywords;

9. for i:=1 to MaxCasefiller do

10. forj:=1 to MaxKeyword do

11. if semantic matching (::keyword, ::casefiller));

12.  fill slot: case filler <semantic role, keyword>;

13. endif

14. end for (step 10)

15. end for (step9)

16. alert1 phase := principle phase; nodel::child := case filler;
17. alert2 phase = subordinate phase; node2::child:= keyword;
18. repeat (9-15)

19. return (2-AASN);

Figure 4.2 Gen2-AASN algorithm.
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Figure 4.3 Semantic matching between PCTCG alert formats.
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The edges of 2-AASN represents PCTCG semantic attribute or the label subordinate,
and the nodes represent two atom alerts or their child nodes: case filler or the subordinate
keyword. The format of 2-AASN is based on the 2-tuple slot: < semantic attributes, case
filler >, or < subordinate, subordinate keyword >. The algorithm Gen2-AASN [4] was
used to construct 2-AASN from two alerts. If there exists semantic attribute matching
between the case filler and subordinate keyword, 2-AASN fills the slots: nodel :: case filler
< semantic attribute, node2 :: subordinate keyword > or node2 :: case filler < semantic
attribute, nodel :: subordinate keyword >, and an arc between the case filler and subordinate

keyword is generated. Using this procedure, the 2-AASN format of the Snort alerts is
SN[nodel,node2]={
nodel :<subordinate,nodel ::username>,
nodel :<subordinate,nodel :: FINGER daemon>,
node2:< cause,indirect connection>,
node2<has object, FINGER query>,
node2::indirect connection<be object of ,nodel::username>,

node2::FINGER query<has object,nodel::FINGER daemon>.

FINGER 0 query and FINGER redirection attempt is also represented by the semantic weighed

network graph shown in Figure 4.4.

2 Indirect FINGER FINGER
be connection daemon has requery

A object of object Y
suborflinate subortinate has g t;ject
@

Node 1: FINGER 0 query
Node 2: FINGER redirection attempt

Figure 4.4 An example of 2-AASN.

username |




45

4.1.2 Resolution Tree

In order to extract the attack scenario from 2-AASN, the resolution tree in Section 3.5,
which works on CNF, was proposed. Initially, there are no connections between the case
filler variables. When performing resolution, the variables are renamed so that they have no
variables in common. Afterwards, the semantic roles R; and R, try to be fused into R3. Here,
* is the semantic role operator. Figure 4.5 illustrates an example of the resolution tree for
alerts FINGER 0 query and FINGER redirection attempt. From CC(Alert,, Indirect conn)
and OB(indirect connection, username), the resolvent EE(Alert,, username) can be derived.
(Note that the two semantic operations are fused into one.) Moreover, from EFE(Alerts,
username) and © = username/Alert;, EE(Alerty, Alert;) can be obtained, and ~EFE

(Alerty, Alert,) and EE(Alert,, Alert,) can be resolved into the empty clause.

Table 4.1 Semantic Role Fusion Operations

[ X XxC=C XxC=X XxC=EE | X+xC=EB
OH OH,LH,LB,MH,MB,PB,CB WM, WH PC,CC ]
OB OB,LH,LB,MH MB,PC,CC 0 [1] PB,CB
LH OH,LH,LB,MH,MB,WM,WH MB,WM,WH PC,CC [
LB LB,MH MH,WM,WH PC,CC PB,CB
MH LH,LB,MH,PC,CC LH,LB,WM,WH [ PB,BB
MB OB,LH,LB,MB,PB,BB LH,LB,WM,WH PC,CC [}
PC PC,CC OH,LHMH,WM,WH| OB,LBMB [}
PB PB,BB OH,OB,LB,PB,CB, [} LH,MH,MB
WM, WH
WM/WH | OH,0B,LH,LB,MH,MB,PC, [) 1) 0
CC,PB,CB,WM,WH
where OH: has object, OB: be object of, LH: has location, LB: be location of, MH: has
instrument, MB: by means of, PC: (possible) cause, PB: be (possible) caused of, CC: cause,
CB: be caused of, WM: meronymy, WH: Holonymy, EE:. Enable, EB: be enabled by.

CC+OB=EE CC(Alert,, indirect conn) OB(indirect conn, username) 6  S(Alert,, username)

OB*OB=0B OB(Alert,, finger request) OB( finger request, finger daemon) 6  S(Alert,, finger daemon)

CC*OB(Alert,, username)

EE(Alert,, username)

EE(Alert,, Alert))

OB+ OB(Alert,, finger daemon)

OB(Alert,, finger daemon)

Figure 4.5 Example of resolution tree.

OB(Alert,, Alert))

\/

0 = username/ Alert,

\/

8 = finger daemon/ Alert,
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4.2 Correlation Rules
In the resolution tree, the correlation rules are defined and applied to extract the alerts
correlations from 2-AASN. The semantic operator x is defined: principle alert :< semantic
attribute, principle alert :: case filler > *x principle alert :: case filler :< semantic attribute,
subordinate alert :: subordinate keyword >. Table 4.1 shows the semantic role fusion

operations. Some semantic roles cannot be fused and they are marked by .

Table 4.2 Correlation Rules

Correlation rule Match Phrase Match process

(Possible) cause | Primary = Secondary | A:filler matches (possible) cause to B::keyword

Primary < Secondary | B:filler matches (possible) cause to A::keyword

Enable Primary = Secondary A::filler matches enable to B::keyword
Primary <= Secondary B::filler matches be enaledby to A::keyword
Instrument Primary = Secondary | A::filler matches has instrument to B:keyword
Primary <= Secondary B::filler matches by means of to A::keyword
Object Primary = Secondary A::filler matches has object to B::keyword
Primary < Secondary B::filler matches be object of to A::keyword
Part-whole Primary = Secondary A::filler matches meronymy to B::keyword
Primary < Secondary B::filler matches holonymy to A::keyword
Spatial Primary = Secondary A:filler matches has location to B:keyword

Primary <= Secondary B::filler matches be location of to A::keyword

Consider the two parent nodes in 2-AASN: node A and node B. The case filler and
subordinate keyword of node A and B are denoted as A :: case filler, A :: keyword, B ::
case filler and B :: keyword, respectively. The (possible) cause, enable, instrument, object,
part-whole, and spatial rules are defined. The enable rule takes place when one entity
facilitates the other’s attack process. The spatial rule describes the situation where one entity
is surrounded by another entity but is not part of that entity. The (possible) cause, enable,
instrument, and object rules are concerned with attack action “time” domain whereas the
part-whole and spatial rules are related to “space” domain. Every correlation rule includes
two matching phrases: the active way (primary = secondary) and the passive way (primary

< secondary). Table 4.2 shows these correlation rules.

NODE 1 / enabie -

Node 1: FINGER 0 query
Node 2: FINGER redirection attempt

NODE 2

Figure 4.6 Semantic relation.
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When extracting the correlations, if the sum of the weights of the principle alert’s
semantic attribute and the filled slot is greater than the semantic weight threshold (set to
be 5), the x operation is performed. ‘For example, the correlation between the two alerts,
FINGER 0 query and FINGER redirection attempt, is shown in Figure 4.6. The attack
scenario classes can be generated from the alert correlations. The attack scenario class is a
directed graph where nodes are alert components, and arcs are semantic correlations. The

similarity degree between attack scenario classes, S; and S,, is defined as:

# of inserted or removed nodes) + 1 a Z:—-l w;
# of total nodes 2 M‘n{Zjesl wj, Zk632 w

) (4.1

1
Si =-(1-
mmny 2 2(

where w; is the weight of the common links between S; and Ss, w; is the link weight of S,
and wy, is the link weight of S,. For example, Figure 4.7 shows different Sim values with the

changes of attack semantic dependency networks.

Location_ Location__ Ena

CQO @ @6

Inetrumant Instmmsnl Cause

SIM=0.916
SIM=0. 62
Locabon Caus
|nstrument SIM-0746 Inshmmont

Figure 4.7 Attack scenario class similarity degree.

We also define the scenario stages, which are based on the sub-objective. The sub-
objective is based on the consequence tagging class: gather information (try to gather the
network information and application vulnerabilities), make enable (try to break into target

and get control on the target), and launching attacks.

4.3 Alert Context Window
Since the attack scenario classes include all possible combinations of attack strategies and the
attackers may only adopt a subset of the attack strategies to launch the attacks. To build the
attack scenario, the alert contexts need to be considered. Because of the high volume of the
alerts, it is not possible to consider correlation between the interested focus alert and all other

alerts. Therefore, the alert context window size needs to be determined, and we only consider
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the alerts within the context window and generate the attack scenarios from them. In NLP,
context is used to determine the pronunciation, words collocation and words unambiguity
[54, 55]. Here, the alerts context refers to the source and destination IP addresses, and
timestamps within a certain context window. The alert context window (ACW) size is an
important parameter of the alert context, which is the number of alerts before and after the
interested focus alert. If the ACW size is too small, the correlated alerts would be absent. On
the other hand, if the ACW size is too large, unnecessary computations and correlation noises
(unrelated alerts) will be added. To extract attack scenarios, ACW should provide enough
semantic information, and also restrains the correlation noises. However, there is no general
method to define the size of the context window in natural language processing. In [56], the
context window + five can provide 95 % context for the linguistic collocations. Reference
[57] also sets the window size to five to show the constraints between verbs and arguments.
However, a small window size can identify the fixed expressions and word collocations that
hold over a short range. Because of the interest in the semantic correlation between the alerts,
a larger alert window size which can cover the semantic knowledge is preferable. The mutual
information method [56] is used to determine the ACW size. Mutual information, which is a

measurement of the associative strength between a pair of events, is defined to be:

MI(A,C,d) = > > pla,c,d)(a,c,d) (4.2)
a€AceC
_ , placd
I(a, C, d) = lOQQW (43)

where a # ¢ and I(a, c,d) is the association ratio of two alerts a and ¢, and p(a) and p(c) are
the probabilities of a and ¢, and p(a, ¢, d) is the probability that a occurs before or after c at
the distance d. If there is an association between a and ¢, I(a,c,d) > 0.

From Figure 4.8, it is clear that as the alert context window size increases, the degree
of the mutual information decreases. At some distances, the associations are very small and
do not decrease significantly, at which there are almost no associations between them. Within
the ACW context range, the alerts and their semantic attributes build up the attack scenarios.
To determine ACW, the alerts’ mutual information along with the similarity degrees Sim are

used. 7 is set as the value of ACW where mutual information approaches 0.1. The mutual
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Figure 4.10 FAR-FAR simulation results.
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4.4 Alert Semantic Vector
In NLP, text categorization means the assignment of free text documents to one or more
predefined categories based on their contents. A number of statistical classification and
machine learning techniques have been applied to text categorization [60, 61]. In this section,

mutual information is used to determine the alert semantic context range.

Object

Figure 4.11 Abstraction of the “gain information” ontology.

Based on the attack ontology and alert contexts, alerts are represented as attack
semantic space vectors. A text categorization technique is then applied to categorize the
intrusion stages. The retrieval method is based on measuring the similarity between queries

and documents.
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connection

Failed exception

Figure 4.12 Abstraction of the “control” ontology.

compromise

degrade service

Figure 4.13 Abstraction of the “launching attacks” ontology.
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X Alert semantic vector
@ Intrusion category centroid

Figure 4.14 Vector space model.

The vector space model method in [60] is used for the alert categorization. First,
alerts are divided into segments by consecutive timeslots, and each segment is viewed as a
“document”. The alerts in each document is represented by the PCTCG frame subordinate
keywords, a features defined by the attack ontology. Figures 4.11, 4.12, and 4.13 show the
fragments of the FAR-FAR attack ontology, which is the extension from the previous research
works in [35, 36, 37]. Afterwards, the feature term frequency (¢f) in each document is counted,
and a feature weight is calculated using the tf and the inverse document frequency (idf)
method (TF-IDF) [62]. The raw tf of a feature term in a alert segment is multiplied by the

term'’s idf weight:

. N
Wia = tfrq - 1dfy, = tfra - log (5;> , (4.5)

where t fiq is the frequency with which feature k,1 < k < n, occurs in the alert segment d,
N is the total number of alert segments in the log corpus, and Dy is the number of segments

containing feature k. Afterwards, the vector is normalized:

Wi = ——otd (4.6)
V2 k=1 Wha
Finally, the similarity between an alert’s vector and an intrusion category’s centroid is
measured, as shown in Figure 4.14. The intrusion category’s centroid is calculated from the
training data. Three intrusion categories are defined: gain in formation (G), making enable
(M), and launching attacks (L).
In Figure 4.15, the feature’s tf values are stored in the ¢f hash table. Suppose there

exist three intrusion stages, each of which includes several sub-stages. Every sub-stage has a
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Figure 4.16 FAR-FAR simulation results.
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CHAPTER 5
SPREADING ACTIVATION AND SEMANTIC QUERY

The current IDS monitoring system can hardly provides precise answers for the attack scenario
related queries. In [64, 65], the conjunctive query approach for Semantic Web was presented
and will be the basis in defining the semantic attack knowledge query language. The following
are the definitions of the semantic queries.

Definition 5.0.1 (Valid query term for AKB) A term Q with the form: a : C or <
a,b >: R where C is the set of nodes in the attack scenario, and R is the set of correlation of

attack scenario, is called a valid query term for AKB if it is satisfied by Attack Interpretation
AT, denoted as Q¥ AKB.

Definition 5.0.2 (Valid conjunctive query for AKB) A conjunctive query statement
CQ=@Q1N---NQ, , where Q; , 1 <i<n is query term, is called a valid conjunctive query
for AKB if Q; ' AKXB, denoted as CQW AKB.

Definition 5.0.3 (Various conjunctive query statements) Four types of statements are
defined as follows:

Does alert node x which belongs to the set of nodes in the attack scenario? — x : FC

W hat is the associated alert node y of alert node x for the semantic relation R?
— V3rc(z) where Yapc(z) = Jy.R(z,y) A C(z)

Do correlation between x and y belongs to R? -< z,y > R

Derive the attack paths from the initial node x to the destination node y?
< T, > RIN< 2,20 > Ro A+ < 2,y > Rpyy
5.1 Spreading Activation

In the query model, the attack semantic query is used to enable the administrator to query
the intrusion states of the network. The semantic relationships can be queried and discovered
through traversing sequence of links among the entities of interests. Since the attack scenario
classes include all possible combinations of the attack actions, the attack scenario instances
are generated based on the alert context which describes the specific attack scenario. Using
the weight mapping technique, a weight is assigned to each relation instance to express the
associated strength between two nodes. In [65], the cluster weight mapping was introduced

and the formula used to calculate the weight is:

W(C,Cy) = Sk (5.1)
i=1 Tbij
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The value n;; denotes the concept Cj; is related to C;. The value n;j. denotes that both
concepts C; and C}, are related to C;.

The Spread Activation (SA) technique [65] is used in the semantic query model for
attack scenario knowledge retrieval. SA searches for the paths connecting the start nodes
and the destination nodes based on an evaluation criterion. For example, given the initial set
of nodes and their activation values, the activation flows through the network reaching other
concepts which are closely related to the initial concepts. If the current node passes certain
constraints and not all its neighbors are activated, it propagates its activation value to its
neighbors. The activation strength decreases in proportional to the distance in between. The
decay factor is defined to reduce the activation strength within the propagation process. The

activation input into a node can be represented by the following formula:

Ij = f:OzVVzg(l - (L) (52)

where I; is the total input of node j, O; is the output of node 7 connecting to node j, a is
the decay factor, and W;; is the weight associated to the link connecting node i to node j by

the weight mapping. The output activation of node O; is determined by:

I, I,>T
O; = fi(L;) where fi(I;) =

0 LT
(6.3)
where T is the threshold. The output value is fired to all nodes connected to the active
node. The spreading phase of the pulse consists of the flow of activation waves from one node
to all other nodes connected to it. This cycle goes on until the termination condition is met.
The end result of the SA process is the activation level of each node in the network at the

termination time.

For IDS, at the semantic query interface, the user can express the attack scenario
knowledge query in terms of the attack phrases. With the help of attack phrase synonym
knowledge base, the query model searches for all the nodes in the attack instance network
whose subordinate keywords match the attack phrases or the phrases’ synonyms. Those

matched nodes are supplied to SA as the initial nodes and their initial activation values
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are set to 1. The user can also define the terminal states (the default terminal states are the

attack launching nodes in the scenarios) to stop the SA process. The set of nodes obtained

at the end of the propagation are presented to the user as the result of the semantic search.

5.2 Semantic Query and Simulations
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Figure 5.1 Simulations of DARPA LLDOS 1.0 and 99 week 2 Wednesday datasets.

The datasets in the simulations are LLDOS 1.0 and 1999 week 2 Wednesday. For

LLDOS 1.0 dataset, two IDS sensors: Snort and RealSecure are used and the generated

alerts are fused. First, the tcpdump dataset is replayed and aggregated according to the

source IP address, target IP address, and the consecutive time slot. Afterwards, 2-AASN of

the alerts is built up, and the correlation between them is extracted by the semantic attribute

operation to form the attack scenario class (the semantic match weight threshold is set to

5). The simulation results showed that there were three attack scenario instances in LLDOS

(attacker 202.77.162.213 — victim 172.16.115.20, 202.77.162.213 — victim 172.16.112.10, and

202.77.162.213 — victim 172.16.112.50). As shown in Table 5.1, FAR-FAR can decrease the

false alarm sharply. For example, after aggregation, the alert number decreased to 0.32%, and

there are 0.13% alerts in the attack scenario instance. Furthermore, 0.042% aggregated alerts
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were in the gather information attack stage, 0.087% aggregated alerts in the making enable
stage, and 0.0074% aggregated alerts in the launching attack stage. The attack scenarios of
two datasets are shown in Figure 5.1. The scenario class of LLDOS 1.0 includes six focus alerts
(node 1, node 2, node 3, node 4, node 6 and node 9), and attack instance weight matrices are
also presented in Figure 5.1(a). The attack scenario class of 1999 week 2 Wednesday dataset

is shown in Figure 5.1(b).

Table 5.1 Simulation Results of Alerts Number in Two Alert Datasets (w=5)

Data Snort | Aggregated | Alerts in Gather Make | Launch

set alert alert instance | information | enable | attack
LLDOS 1.0 40288 0.32% 0.13% 0.042% 0.087% | 0.0074% |

99 week2 Wed. | 31601 8.38% 0.105% 0.035% 0.019% | 0.051%

Table 5.2 Simulation Results of Evaluation Parameters in Two Alert Datasets

Parameters LLDOS 1.0 99 week 2 Wednesday [}

w=4 | w=5 | w=6 | w=4 | w=5 w=6
attack class missing focus alert 0 0 0 2 2 2
attack class false focus alert 0 0 0 4 2 2
attack class missing attack links 0 0 1 2 2 2
attack class false attack links 6 3 2 7 5 4

node instance rate 0.86 | 0.86 | 1.00 | 0.69 | 0.82 0.75

link instance rate 0.44 0.77 1.00 | 0.50 | 0.56 0.50

Second, the datasets were simulated under different w values to evaluate the performance
of SIM. w is set as four, five and six, respectively. The simulation results are shown in Table
5.2. For example, when w = 5, the node instance ratio is 0.86, and the link instance ratio is
0.50, implying that the generated attack scenario class can describe the actual attack plan in
the LLDOS 1.0 dataset well without causing high false actions and false semantic relations.
Moreover, there is no attack class which misses the focus alert, no attack class which produces
false focus alerts, and no attack class which misses the attack step, implying that FAR-FAR
can "denoise” the unrelated alerts without missing attack steps.

Third, for the attack semantic query, two queries were simulated on the LLDOS 1.0
dataset. Suppose the network administrator knows certain hosts have the vulnerability of
sadmind service, and wants to know whether this vulnerability can be used to cause the
DDoS attacks. Thus, in query 1, he/she inputs the attack state “admin”, sets the DDoS
as the terminate state, and submits this query to the semantic search model. In query 2,

he/she wants to know what consequence the RPC Sadmind overflow event can produce.
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Table 5.3 Semantic Search Results of Query 1 and Query 2 (w=5)

[ Query | Semantic Search Path Node activation 1
202.77.162.213 — 172.16.115.20 :
Initial set:@D 1.0 — 0.9 — 0.69 — 0.52 — 1.16 — 0.52 — 0.47
Query 1 | Terminate set: @@ ©OG®O 202.77.162.213 — 172.16.112.10 :

O—-@—-3—-60—-3—@®—9 | 1.0 - 0.9 — 0.65 — 0.44 — 1.05 — 0.46 — 0.43
202.77.162.213 — 172.16.112.50 :

1.0 - 0.9 — 0.65 - 0.44 — 1.05 — 0.46 — 0.43
202.77.162.213 — 172.16.115.20 :

Initial set:@ 1.0 — 0.75, 1.0 — 0.46
Query 2 Terminate set: @® 202.77.162.213 — 172.16.115.20 :
®—0, @—@ 1.0 — 0.48 1.0 — 0.46

202.77.162.213 — 172.16.112.50 :
1.0 — 0.48 1.0 — 0.46

Table 6 shows the query results and its semantic search weights. For query 1, three attack
scenario instances have identical terminal set, and the attack steps from, discovering sadmind
vulnerability to launching attack (described in [50]) are as follows: Hosts running sadmind
service are probed, by using the "ping” option of the sadmind exploit program ((2); the
attacker tries to break into these hosts by remote buffer-overflow attack (®); to test whether
or not a break-in was successful, the attacker attempts several login commands via telnet ((6));
then, the attacker installs the ”.rhosts” file((®), and finally launches the DDos attacks((®).
The semantic search path in Table 5.3, and their activations can clearly inform the network
administrator about the above attack plan. For query 2, the consequence of the RPC Sadmind

overflow event is enabling the attack to install the ”.rhosts” file by telnet(®—(®), and @®—®)).

5.3 Comparison with Related Works
In this section, related correlation works are compared with FAR-FAR. First, the performance
of extracting attack scenario is evaluated. Two parameters are defined: the correct correlation
ratio and the number of alerts in the attack scenario. Then the parameter of the false alarm

rate is evaluated. The correct correlation ratio is defined as

# of correct correlated alerts

A4
total # of correlated alerts (54)

correct correlation ratio =

We compared the performance of extracting attack scenario between FAR-FAR and
the Apriori method [66]. Apriori is a method to extract the highest possible association rules.
Let I = {i1,12,---,%,} be a set of items, and let D be a set of the transactions where each
transaction T is a set of the items such that T C I. An association rule is defined as: X — Y,

where X € I,Y € I and X NY = (. The association rule X — Y has the confidence degree
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% if ¢% of transactions in D containing X also contain Y. The association rule X — Y
has the support degree s% if s% of the transactions in D contain X UY [66]. Given a set of
transactions D, the problem of mining association rules is to generate all the association rules
that have s and ¢ greater than the user-specified minimum support and minimum confidence

degrees, respectively.

Table 5.4 Correct Correlation Ratio Between TTIAA and FAR-FAR.

System [ LLDoS 1.0 | LLDoS 2.0 | 99 week2 Wednesday

TIAA 0.93 0.67 -
FAR-FAR 0.86 0.78 0.82

Table 5.5 False Alarm Rate Between TIAA and FAR-FAR.

System [LLDoS 1.0 ] LLDoS 2.0 | 98 week2 Wed. | 99 week2 Wed.

TIAA 5.26% 6.82% - -
FAR-FAR 0.31% 0.25% 4.17% 8.38%

However, in this dissertation, the Apriori method is not used for two reasons. First,
for those duplicated alerts indicating the DDoS attacks, the aggregation process usually
eliminates them causing very low support degree, which in terms causes those alerts missing
in the attack scenario. Second, for the very common alert, such as “telnet” or “scan” alerts,
since they can be associated with a number of alerts, the association rules containing them will
have very low “confidence” degree, which leads to high “missing focus alerts” and “missing
attack links”. In Figure 5.2, we compared the performance of extracting the attack scenario
between FAR-FAR and the Apriori method. It is clear that the Apriori method had much
higher “missing focus alerts” and “missing attack links” value. For the false attack links,
since Apriori extracted much less attack correlations than FAR-FAR, it produced a lower
value.

As shown in Table 5.4, for the three datasets, FAR-FAR has a stable correct correlation
ratio around 0.80, whereas the correlation toolkit TIAA in [20] has 0.93 and 0.67, respectively.
One of the reasons that TIAA has higher correct correlation ratio than FAR-FAR is that TIAA
has 44 correlated alerts whereas FAR-FAR has only 14 alerts. Figure 5.3 shows that these
14 alerts belong to three intrusion stages. In Table 5.5, the false alarm rate of FAR-FAR is

much less than that of TIAA, implying that based on the semantic processing, FAR-FAR can
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efficiently “denoise” unimportant alerts. In [67], CAIDS was used to test the same datasets
from [50], and its false alarm rate was around 5%. Therefore, FAR-FAR'’s reasoning capacity
for the attack scenario can compete well with current correlation tools. Furthermore, based on
the semantic attack ontology, FAR-FAR can also provide the functions of semantic reasoning

and alert categorization.



CHAPTER 6

ANOMALY DETECTION BY HISTOGRAM FEATURE VECTOR

A number of recent studies of real traffic from modern networks demonstrated that real traffic
exhibits statistical self-similarity and heavy-tail, and the traditional models such as Poisson
or Markovian, are basically not applicable to model self-similar traffic. In the heavy tail
distribution, most of the observations are small, but most of the contribution to the sample
mean or the variance comes from the few large observations [68]. On the other hand, the
dramatic expansion of networking applications makes network security a pressing issue. As
increasingly more network facilities are connected to the internet, their vulnerabilities make it
easy for an attacker to initiate attacks. For example, DDoS has caused a huge economic loss to
the victims. Therefore, the detection of traffic anomaly is important to the security of modern
networks. Since traffic anomalies do not have rigid rules, capturing them is fundamentally
essential to enhance the robustness and survivability of communication networks.

In this chapter, the work statistically analyzes the histograms of ordinary-behaving
bursty traffic traces, and apply the Multi-Time scaling Detection (MTD) to detect the bursty
traffic anomalies. Given a traffic trace including some bins, HFV is a vector composed
of the histogram frequency of every bin. Since the self-similar traffic traces follow the
heavy tail distribution, their HFVs contain left skewness, resulting from the bulk of the
values being small but with a few samples having large values. Research work in [69]
showed the simply aggregating self-similar traffic traces will not decrease the heavy tail
characteristic significantly. Therefore, the aggregated traffics on the edge network devices
of high speed network will present self-similarity if the incoming traffics are bursty, and
the high speed network traffic anomalies can be detected by large HFV anomaly deviation
of self-similar reference traffic trace. Furthermore, since every traffic bin contains different
burstiness characteristics, the burstiness compensation parameter v is introduced to smooth

the deviation error caused by those burstiness differences.
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6.1 Self-similarity Traffic Model
Ever since Internet has been developed, both the transmission speed and the service on the
wide-area internet remain a crucial problem. Recent works in traffic analysis have shown
that traflic streams traversing modern networks are self-similar over several time scales from
microseconds to minutes [68, 69, 70, 71, 72]. Self-Similarity describes the phenomenon where
a certain property of an object is preserved with respect to scaling in space or in time.
Scaling behaviors of the Internet traffic have a significant impact on network performance.
For example, self-similar traffic causes worse network performance than the Short Range

Dependence traffic does.

ll
20 4c
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Figure 6.1 Self-similarity in traffic measurement.

In Figure 6.1, the self-similar traffic shows the similar statistical patterns at different
time scales, and the ranges is from 100ms to the minutes, which means that the extended
bursts of activity and inactivity still exist regardless of whether we look at millisecond, second,
minute, or hour averages. This is in dramatic contrast to Poisson process which has the
exponential distribution such that over long time scales, Poisson process has a characteristic
burst length which tends to be smoothed by averaging over a long enough time scale.

For a stationary time series X (t),t € ® , where X (¢) is interpreted as the traffic
volume at time instance t. The aggregated X™ of X (¢) at aggregation level m is defined as

X™(k),k=0,1,2, ..., where
1 km
X™(k) = ~ Z X(t) (6.1)

i=km—(m-1)
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That is, X (t) is partitioned into non-overlapping blocks of size m, their values are averaged,
and k indexes these blocks. Denote Rxm(k) and Rx(k) as the auto-correlation functions of

X™ and X, respectively. X(t) is called self-similar with Hurst parameter H = 1—0.53 (0.5 <

H < 1),if
Var(X™) = vi;(;() (6.2)
Rxnm(k) = Rx(k) (6.3)

where 0 < 8 < 1. Self-similarity has two important features: heavy-tailed distribution and
the multi-time scaling nature. A statistical distribution is heavy-tailed, if P[X > z] ~ 27
where 0 < a < 2. In the heavy tail distribution, most of the observations are small, but most
of the contribution to the sample mean or the variance comes from the few large observations
[68]. The Pareto distribution is a simple heavy tailed distribution with probability mass

function defined as

p(x) = akz 1l l<a<2,k>0,z>k (6.4)

where « is the tail index, and k is the minimum value of x. Multi-time scaling nature
means that X(¢) and its time scaled version X(at) , after normalization, must follow the
same distribution. That is, if X(¢) is self-similar with Hurst parameter H, then for any
a>0,t>0,

X(at) =4 a¥ X (t) (6.5)

where =4 stands for equality of first and second order statistical distributions and a is called
the scale factor.

The variance-time plot and R/S plot are two of the commonly used methods to
calculate the Hurst parameter H. For a given set of observations X(t) = z;, where t =

0,1,2,---, the sample mean is:

1 N
T2 (6.6)

J=1

M(N) =
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and the sample variance is S. The rescaled adjusted range (R/S) statistic is given by

max) <j< v [Tkt (Xi = M(N))] = miny ;< n [Ty (X = M(N))]

R/S =
/ JE T, (X — M(N))?

(6.7)

R/S plot to calculate H is
R/S ~ (N/2)? (6.8)

6.2 Self-similar Traffic Aggregation
The overall traffic on Internet can be regarded as the aggregation of the traffic from individual
traffic sources. The research work in [73] showed that as the number of traffic sources
increases, the resulting traffic remain bursty. In [69], the simulation results also showed
that the aggregation or superimposition of internet traffics on optical switch does not result
in a smoother traffic pattern. Actual network traffic may be the aggregation of different traffic
streams having different characteristics. It was shown in [69] H of the aggregated traffic is
roughly equal to the maximum of the Hurst parameters of the individual self-similar sources.
Here the interest focuses on the aggregated bursty traffic on the edge devices of high speed
networks, such as edge routers and edge switches, for two reasons. First, as compared to the
traffic nearby the source node, the high-speed aggregated traffic at the edge network devices is
relatively more stable. Secondly, the aggregated traffic is easy to be extracted from the whole

network at those edge devices, without much influence on the whole network’s performance.
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Figure 6.2 Self-similar traffic aggregation.
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Figure 6.2 shows the functional architecture of an edge switch of an high speed network.
It includes a switch module, queue buffer pools, monitor module, and the inlet and outlet links.
The input traffic is aggregated at inlet links whereas the output aggregated traffic appears
at the output side of the switch module. Each outlet link has a queue buffer pool, which is
composed of several FIFO buffers. A buffer is assigned for each QoS class. Several incoming
packets with the identical source address, destination address and QoS class are buffered into
one burst. The monitoring module extracts the input aggregated traffic and split it into some
data sets. Meanwhile, the traffic anomaly detection model detects the traffic anomaly. The
monitoring module forwards the detection results to the alarm processor.

A burst assembly mechanism is reported in [69]. However, this method only assumes
a constant timeout value. The scheme adopts the dynamic timeout value. Suppose the
§*(5 = 1,---m) buffer pool is assigned for the j* outlet link of the switch module. Each
buffer pool is composed of n QoS buffers. The switch fabric in the device transfers every
incoming packet to the g; buffer of a certain outlet. If the buffer of the buffer pool is not
overflowed or timeout T;; has not expired, the incoming packet is buffered. Otherwise, the
buffered packet is sent out and 7} ; is reset. Two triggers for sending out the packet in the g;
buffer of every buffer pool are the buffer overflow and the timeout expiration. Timeout T; ;
is started whenever a packet arrives in the empty ¢; buffer of the j** buffer pool. Since the
network traffic is not stable, the number of timeout triggers and the number of the buffer
overflow triggers for the i** buffer in the j®* buffer pool are recorded as N jjimeout and
N, jybusfer overfiow- Let P jjuimeout be the percentage of the number of timeout triggers with

respect to the total triggers in every ** buffer in the j** buffer pool. Pl jytimeout 15 defined as:

N(z,])tzmeout (6_9)

P. i t =
(1,7)timeou N(i,j)timeo’uf— + N(i,j)buffer over flow

The value of timeout T;; can be determined based on P j)iimeout- For example, if
P jtimeowr = 0.6 > 0.5, which means that the traffic load is not high, the timeout value

should increase, and vice versa. Thus, let timeout

2 T, ,P,; Timeout, ifP;; Timeout > 0.5
Tin = (6.10)

sTi 4, otherwise
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For example, in the algorithm the buffer size b is 2560 bits, the packet data length is constant,
the initial timeout 7 is 0.001s, and the simulation time is four seconds. The destination
outlets are randomly chosen. In [72], six incoming traffic traces were generated, and these
traces were aggregated at the edge switch, as shown in Figure 6.3. After going through the
queuing FIFO buffers, shaped aggregated traffic was forwarded to the high speed network.
Table 6.1 shows the assumed Hurst parameters, and the measured Hurst parameters of these
traces and aggregated trace. Input aggregated traffic H is 0.8543, which approaches to the
maximum H value of the six input traces. The output aggregated traflic H is 0.8335, which
means that simply aggregating self-similar traffic traces at the edge devices will not decrease

burstiness. However, after going through the traffic shaping, H decreases to 0.771348.

Trace 2 Traffic

shapping
Shaped

> a . » Aggregation
traffic

Figure 6.3 Traffic aggregation at edge router.

Table 6.1 Six Input Traces for Simulations

Input traces | Assumed H | Variance-time H | R/S H ||
Trace 1 0.55 0.5323 0.5225
Trace 2 0.6 0.5881 0.5775
Trace 3 0.65 0.6038 0.6356
Trace 4 0.8 0.8073 0.8011
Trace 5 0.9 0.8728 0.8641
Trace 6 0.9 0.8623 0.8357

Input aggregated 0.9 0.8543 0.8295
Output aggregated 0.9 0.8335 0.8054
Shaped aggregated - 0.7713 0.7000

6.3 Histogram Feature Vector
In this section, HF'V of self-similar traffic is introduced based on two important features of
self-similarity: the multi-time scaling nature and heavy-tailed distribution. A heavy-tailed
distribution gives rise to large values with non-negligible probability so that sampling from

such a distribution results in the bulk of small values but with a few large values. As a result,
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HFV of bursty traffic presents the left skewness characteristic. Multi-time scaling nature
means that self-similar trace X (¢) and its aggregated traffic at time scale “at”, X(at), follow
the same first order and second order statistical distribution. Based on X (at), the reference

trace X,(t) can be generated:

X, (t) = a X (at) (6.11)

Afterwards, X (t) is divided into k£ bins, and HFVs of these bins and X, (t) are calculated.
The optimum bin number k£ has an important effect on HFV. If & is too small, it will make
the histogram over-smoothed, while an excessively large k& will not correctly reflect the traffic
changes. Sturges [10] used a binomial distribution to approximate the normal distribution.
When the bin number k is large, the normal density can be approximated by a binomial
distribution B(K — 1, 0.5), and the histogram frequency is [Z] Then, the total number of
data is

n= kf [k N 1} (6.12)

i=o L ¢

According to the Newton’s Binomial Formula:
n_ NPk
(@+y)" =3 [ }x y (6.13)

Let z = 1 and y = 1, then have
k=1[p _
n=>y [k . 1] = 2k-1 (6.14)

Therefore, the number of bins to choose when constructing a histogram is

k=1+log,n (6.15)

Doane [74] modified Sturges’ rule to allow for skewness. The number of the extra bins is:

Zznzl (Ii - N)a)

ke =1 1
OgQ( + (n . 1)0,3

(6.16)

However, because of the normal distribution assumption, Sturges’ rule and Doane still do

not always provide enough bins to reveal the shape of severely skewed distribution (i,e.,
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Based on 3;, the bursty compensation parameter ~; of the i,, data set is defined as

/Bmean
P = 6.19
Y. 5 (6.19)

and the compensation weight w; is:

oo (@ =2 (35— 2)° 6.20
i ;( Z Z ) (6.20)

where k is the total number of bins of the histogram, and Z; is the number of packets in the
4** bin of the histogram. Table 6.2 shows the HFV deviations error with compensation. w
smoothes the deviation error caused by the burstiness of the traffic within the well-behaved

data sets; it has little effect on that in the abnormal traffic.

Table 6.2 Smooth Deviations Error with Compensation

[ Bin # | 21 22 [ 23 [ 24 [ 25 [ 26 [ 27 [ 28 | 29 | 30 |
¢] 6.43 [ 561 ] 6.66 | 489 | 4.69 | 5.02 | 6.81 | 4.83 | 4.81 | 4.92
v 085 [097] 082 ] 116 | 1.16 | 1.09 | 0.81 | 1.13 [ 1.15 | 1.11
w |-205] 0 |-438| +5.28 | +2.52 | +16.5|-14.9 | +2.6 | +5.6 | -2.34

In this chapter, MTD analyzed the aggregated traffic to identify traffic anomalies. The
monitoring module generates the reference traffic model, and can detect traffic anomalies by

large anomaly deviation from ordinary-behaving traffic with the compensation weight.



CHAPTER 7

CONCLUSIONS

7.1 Summary
This dissertation presents an IDS framework for extracting the attack scenarios from log
data for attack reasoning and query. In addition, the current research goals for IDS have
been addressed. This dissertation expounds on the research efforts in applying NLP and
FOL based methods in implementing the FAR-FAR semantic scheme. The following aspects

have been addressed in this dissertation:

¢ In Section 2, inspired by the semantics of attack behaviors, the work in this dissertation
combined the NLP and FOL ideas in IDS. The layered attack knowledge representation

formalism and the functional architecture of the semantic scheme were also reported.

e The basic concepts of DL was introduced in Section 3. The modified case grammar,
PCTCG was used to transfer the heterogeneous alerts into machine-understandable
uniform streams. Furthermore, a robust Variant Packet Sending-interval Link Padding
algorithm (VPSLP) was proposed to prevent the links between the IDS sensors and the

FAR-FAR agents from traffic analysis attacks.

e In Section 4, the alert semantic network, 2-AASN, was used to generate the attack
scenarios to alert the security administrator. Then, the correlation operations and
rules were defined to extract the alerts correlations from 2-AASN. ACW was also
considered when extracting attack strategies to decrease the false alarm rate and real-

time processing.

e In Section 5, a conjunctive semantic query approach was presented to query the attack
status. This semantic attack knowledge query language was based on the technique of

Spreading Activation.

e In Section 6, the bursty traffic anomaly detection method, Multi-Time scaling Detection
(MTD), was proposed to statistically analyze the network traffic’s Histogram Feature

Vector to detect the traffic anomalies.

75



76

7.2 Future Research
The work addressed in this dissertation is not near to be conclusive. This dissertation focuses
on the requirements for IDS from the viewpoint of alert fusion and high-level reasoning. In
order for the framework to be as comprehensive as possible, more work need to be done. The

future research directions include:

o The action-centric ontology have developed. However, the design and enrichment of the

attack ontology or taxonomy requires further development.

e The attack prediction model should be implemented to detect early stages of an attack,

based on the categorization results of the alerts.

e Currently, the weights of the ontology relations are set manually according to the
security level of the attack actions. In order to meet the requirements of different

security administrators, a new algorithm is needed to calculate those weights dynamically.

e The techniques for enabling communication among IDS sensors and FAR-FAR needs

further study.
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