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ABSTRACT

VIRTUAL TRANSSHIPMENTS AND REVENUE-SHARING
CONTRACTS IN SUPPLY CHAIN MANAGEMENT

by
Zhaoqiong Qin

This dissertation presents the use of virtual transshipments and revenue-sharing

contracts for inventory control in a small scale supply chain. The main objective

is to maximize the total profit in a centralized supply chain or maximize the supply

chain's profit while keeping the individual components' incentives in a decentralized

supply chain.

First, a centralized supply chain with two capacitated manufacturing plants

situated in two distinct geographical regions is considered. Normally, demand in each

region is mostly satisfied by the local plant. However, if the local plant is overstocks

while the remote one is terstocked, some of the newly generated demand can be

assigned to be served by the more remote plant. The sources of the above virtual

lateral transshipments, unlike the ones involved in real lateral transshipments, do

not need to have nonnegative inventory levels throughout the transshipment process.

Besides the theoretical analysis for this centralized supply chain, a computational

study is conducted in detail to illustrate the ability of virtual lateral transshipments

to reduce the total cost. The impacts of the parameters (unit holding cost, production

cost, goodwill cost, etc.) on the cost savings that can be achieved by using the

transshipment option are also assessed.

Then, a supply chain with one supplier and one retailer is considered where

a revenue-sharing contract is adopted. In this revenue-sharing contract, the retailer

may obtain the product from the supplier at a less-than-production-cost price, but in

exchange, the retailer must share the revenue with the supplier at a pre-set revenge-

Charing rate. The objective is to maximize the overall supply chain's total profit while



upholding the individual components' incentives. A two-stage Stackelberg game is

used for the analysis. In this game, one player is the leader and the other one is the

follower. The analysis reveals that the party who keeps more than half of the revenue

should also be the leader of the Stackelberg game.

Furthermore, the adoption of a revenue-sharing contract in a supply chain

with two suppliers and one retailer over a limited amount of available fovs is

analyzed. Using the revenue-sharing contract, the retailer pays a transfer cost rate of

the production cost per unit when he obtains the items from the suppliers, and shares

the revenue with the suppliers at a pre-set revenue-sharing rate. The two suppliers

have different transfer cost rates and revenue-sharing rates. The retailer will earn

more profit per unit with a higher transfer cost rate. How the retailer orders items

from the two suppliers to maximize his expected profit under limited available fovs

is analyzed next. Conditions are shown over which the optimal way the retailer

orders items from the two suppliers exists.
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CHAPTER 1

INTRODUCTION

The importance of supply chain management has been receiving increasing recognition

in the recent past. The rapid growth of supply chain consultants and software

companies indicates that businesses emphasize the efficient management of supply

chains. At the same time, research in this area has been growing as a key focus of

the academic community in operations management.

A supply chain can be thought of as a network of facilities and distribution

nodes that perform the functions of procurement of materials, transformation of

these materials into intermediate and finished products, and the distribution of these

finished products to consumers.

A supply chain includes the marketing, distributing, planning, manufacturing,

and purchasing functions of an organization. These entities traditionally operate

independently. They have their own objectives and these objectives are sometimes

conflicting. Marketingas objective of good customer service and maximum sales dollars

may conflict with manufacturing and distributionas goals. Manufacturing operations

are designed to maximize throughput and lower costs with little consideration for

the impact on inventory levels and distribution capabilities. Purchasing contracts are

often negotiated with little information beyond historical buying patterns. A supply

chain also has to be tactically balanced and operationally streamlined to cope with a

number of uncertainties and variabilities arising from sources such as supplier delivery

performance and lead times, manufacturing process times and yields, transit times,

and demand. Clearly, there is a need for a mechanism or method through which these

different objectives or functions can be integrated together by managing the supply

chain. This dissertation aims to take a step in this direction.

1
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There are four major decision areas in supply chain management: 1) location,

2) production, 3) inventory, and 4) transportation. There are both strategic and

operational elements in each of these decision areas. As the term implies, strategic

decisions are made typically ter a longer time horizon. These are closely linked to

the corporate strategy, and guide a supply chainas policies from a design perspective.

On the other hand, operational decisions are short-term, and focus on activities on a

day-to-day basis.

Location decisions of production facilities, stocking points, and sourcing points

are the natural first step in creating a supply chain and involve a commitment

of resources to long-term planning. These decisions are of great significance since

they represent the basic strategy for accessing customer markets, and will have a

considerable impact on revenues, costs, and levels of service. Production decisions

include what products to produce, which plants to produce them in, allocation of

suppliers to plants, plants to distribution centers, and distribution centers to customer

markets. As before, these decisions have a big impact on the revenues, costs and

customer service levels of the firm. These decisions assume the existence of the

facilities, and determine the exact paths through which a product flows to and

from these facilities. Inventory decisions refer to means by which inventories are

managed. Inventories of either raw materials, semi-finished or finished goods exist

at various points of a supply chain. Since inventories of raw material, semi-finished

or finished goods incur costs, their efficient management is critical in supply chain

operations. Inventory management has a strategic component since top management

sets goals. However, most researchers have approached the management of inventory

from an operational perspective that includes the determination of the optimal levels

of order quantities and reorder points, and setting safety stock levels at each stocking

location. Transportation decisions focus on delivery means, delivery frequencies,

delivery dependency and costs (Ganeshan and Harrison [24]).
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Inventories are necessary in a supply chain because they:

1) improve customer service and actually increase sales;

2) reduce production setup costs by allowing longer production runs;

3) reduce purchasing and transportation costs because of economies of scale

or forward buying;

4) prtide protection and continuity of operations in case of labor strikes,

natural disasters, jammed transportation and surges in demand.

However, inventories also incur carrying costs arising from opportunity, obsole-

scence, space needs, terhead, insurance, etc..

There are tradeoffs in inventory management. For example, in a supply chain

with stochastic demand, the major tradeoff is as follows: Too high a level of inventory

leads to inefficient capital investment, expensive markdowns and needless handling

costs, while too low a level leads to lost sales and loss of goodwill. Reasonable

inventory levels lead to an efficient level of service, and minimized costs. One of the

main objectives of this dissertation is to minimize the total cost or maximize the

channel profit by using mechanisms and methods that control inventories for specific

supply chains.

The inventory control problem is complicated by the fact that demand is

uncertain, and this uncertainty can cause lockouts and the inability to fill orders. To

minimize supply and demand imbalances in a supply chain, vendors utilize various

methods of inventory management. As an example, consider a supply chain with

two retailers located across the country and one supplier located outside the country.

The two retailers must plan their replenishment strategy from the supplier, according

to their own demand distributions for the product. When actual demand occurs at

each store, it may be beneficial for the two retailers to make transshipments among

themselves, as their reaction time is considerably shorter than that of the supplier.
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In this context, an appropriate transshipment strategy can result in substantial cost

savings as well as service imprtements.

Contracts provide a mechanism to manage inventory in supply chains. These

contracts include wholesale-price contracts, buy-back contracts, quantity-flexibility

contracts, sales-rebate contracts, price-discount contracts, etc.. These contracts are

used in a supply chain for specific objectives. For example, wholesale-price contracts

are the simplest, but they can not achieve coordination, i.e., they can not induce

the retailer to order the optimal amount from the total channel point of view. As

an incentive for the retailer to order more and mte towards channel coordination,

buy-back contracts are offered in a supply chain. As auctions between suppliers and

retailers have become a more important and complex part of supply chains, there is

increasing demand for the contract design.

In recent years, revenue-sharing contracts are popular in supply chains with

short-life-cycle products such as videocassettes where the peak popularity of a rental

title lasts only a few weeks but the cost of a tape has traditionally been high relative

to the price of a rental. In a conventional sales agreement, the retailer purchases

each tape from his supplier for about $65 and collects about $3 per rental. Hence,

a tape earns a profit only after 22 rentals. However, because the demand for a

tape typically starts high and tapers quickly, a retailer cannot justify purchasing

enough tapes to cover the initial peak demand entirely. Blockbuster Inc., a large

video retailer had poor availability of newly released videos indicated by customer

complains (McCollum [57] and Shapiro [70]). Seeking a solution to this problem, in

1998 Blockbuster entered into a revenue-sharing contract, agreeing to pay its suppliers

a portion (probably in the range of 30-45%) of its rental income in exchange for a

reduction in the initial price per tape from $65 to $8. The break-even point for a

tape dropped to approximate six rentals, thereby allowing Blockbuster to purchase

many more tapes. The adoption of revenue-sharing coincided with a significant
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imprtement in performance at Blockbuster: Warren and Peers [88] reported that

Blockbusteras market share of video rentals increased from 24% in 1997 to 40% in

2002.

A consignment contract with revenue-sharing is another case. Amazon.comas

has an online "marketplace" where anyone can list for sale new, used, or refurbished

items (books, CDs, electronics, tools and hardware, kitchen and housewares, etc.).

With a few minor restrictions, sellers decide on how many units to list and the itemsa

selling price. The listing itself is free. Amazon.comas charges sellers according to the

following policy, which is essentially a consignment contract with revenue-sharing:

Amazon.comas collects a fee only when an item is sold. At that time, Amazon.comas

collects the sales price from the buyer, deducts a commission of $0.99 plus 15% of the

sales price (10% for Electronics and Camera & Photo items), and deposits the rest

in the selleras account. If the selleras item is not sold within 60 days, the listing is

closed and the seller pays nothing. (For more details on Amazon.comas marketplace,

go to: http://www.amazon.com.) A consignment arrangement with revenue-sharing

naturally favors the retailer. Since no payment to the supplier is made until the item

is sold, the retailer has no money tied up in inventory and bears no risk associated

with demand uncertainty.

It is necessary to establish appropriate performance measures in order to

manage a supply chain. A performance measure, or a set of performance measures,

is used to determine the efficiency and/or effectiveness of an existing mechanism or

method, or to compare competing alternative mechanisms or methods. The measures

evaluating a mechanism or methodas effectiveness and/or efficiency in supply chain

management can be categorized as either qualitative or quantitative. Qualitative

performance measures are those for which there is no single direct numerical measure-

ment, although some aspects of them may be quantified. They include customer

satisfaction ( the degree to which customers are satisfied with the product and/or
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service received), flexibility (the degree to which the supply chain can respond to

random fluctuations in the demand pattern), information and material flow integration

(the extent to which all functions within a supply chain communicate information and

transport materials), effective risk management (the degree to which the effects of the

risks contained in all the relationships within a supply chain are minimized), supplier

performance (with what consistency suppliers deliver raw materials to production

facilities on time and in good condition), etc.. Quantitative performance measures

are those that may be directly described numerically. They may be categorized by

1) objectives that are based directly on costs or profits (cost minimization, sales

maximization, inventory investment minimization and return on investment maximiz-

ation); and 2) objectives that are based on some measures of customer responsiveness

(fill rate maximization, product lateness minimization, customer response time minim-

ization, lead time minimization and function minimization which is to minimize the

number of business functions that are prtided by more than one business entity).

As mentioned abte, an important element in a supply chainas modeling is the

establishment of appropriate performance measures. The performance measures are

expressed as functions of one or more decision variables. These decision variables are

then chosen in such a way as to optimize one or more performance measures (Beacon

[8]).

What follows in this dissertation includes a literature review of supply chain

management is presented in Chapter 2. A study of how the parameters (unit holding

cost, production cost, goodwill cost, etc.) affect cost savings in a supply chain with

two capacitated manufacturing plants using virtual lateral transshipment compared

with no lateral transshipment is presented in Chapter 3. Chapter 4 considers how

the revenue-sharing contract is adopted in a supply chain with one supplier and

one retailer to maximize the channel profit. Chapter 5 analyzes the adoption of a

revenue-sharing contract in a supply chain with two different suppliers and one retailer
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over a limited amount of available funds. Chapter 6 summarizes this dissertation,

including its contributions and possible future extensions.



CHAPTER 2

LITERATURE SURVEY

Research in inventory control is mainly concerned with deciding the ordering quantity

or production quantity so as to minimize the total ordering, production, holding and

stockist costs. The newsvendor problem is a classic and typical inventory control

problem involving one single period (see Wang and Gerchak [86] and Hoenig and

Gerchak [35]) . Ouyang and Chang [60] analyzed the newsboy problem under more

realistic circumstances with defective items, which have different salvage values from

that of the perfect items left ter at the end of the planning horizon. They presented

models that maximize the expected profit over fixed and random defective rates and

showed that the optimal order quantity exists. Furthermore, to avoid the difficulty of

estimating the goodwill cost of shortage, they used the service level (the percentage

of demand to be served directly from stock) as a constraint for the objective function.

They also developed a solution to the optimal order quantity to maximize the expected

profit. Numerical examples prted that the models perform well.

Khouja [48] made a review of some 90 publications about the extensions to

the newsvendor problem and classified them into eleven categories based on the

types of extensions. These extensions focus on the problems involving multiple

periods, multiple locations with transshipment, contract adoptions, and capacitated

constraints.

Production/inventory control with lateral transshipments has also received

quite some attention. Here, transshipments are "real" in the sense that items are

transferred from one locationas inventory to that of another location. All studies were

conducted in the non-capacitated context. Allen [2], Dabs [18], Gross [30], Hadley

and Heyman [38], Karmarkar [43], Karmarkar and Patel [46], Krishnan and Rao

8
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[49] studied structural properties of the optimal policies for single-period problems.

Karmarkar [44], Robinson [66], and Showers [72] studied the structures of optimal

policies for multi-period problems. Karmarkar [44] actually treated the following

problem: When being confined to the transshipment setting, his model assumed that

transshipment decisions are made before demand arrivals, and on the other hand did

not insist on the nonnegative-level requirement. Karmarkar [45] also extended the

"newsboy" problem into a multiplication, multi-period system with transshipments

being possible between different locations. He showed the upper- and lower-bounds for

the general multi-period problem and gave the computational methods to the optimal

solution. Robinson [66] assumed that transshipment decisions are made upon demand

arrivals. Indeed, Robinson did not make hard constraints out of the nonnegative-

level requirement. But he limited problem parameters into ranges that ensure the

validity of the real transshipment interpretation of his results. Showers [72] allowed

ordering only at regular intervals, with transshipments occurring in the intervening

periods. Hearer and Tour [36][37j treated a transshipment problem in a multi-period

deterministic-demand setting. Audi, Kaput and Dyke [69] studied a locations

inventory system with transshipment and presented models for inter-firm and antra-

firma transshipments. They showed that the optimal inventory orders increase with

the transshipment prices and concluded that in general, the optimal inventory order

choice that maximizes each location's own profit does not maximize the joint profit.

A capacitated supply system is common in practice and has received quite some

attention. Federgruen and Lipkin [22] [23] first dealt with the capacitated inventory

control problem. When a firm is constrained by a fixed capacity, they found the

optimal policy to be of the modified base stock type whereas the firm should produce

as much as what is allowed by the capacity to reach as close as possible the base

stock point. Other studies in this vein included Wasserman [26], GlWasserman and

Tayur [27] [28], Kapuscinski and Tayur [42], and Tayur [77]. Cigarillo, Akella, and
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Morton [14] considered random capacity. They found the optimal policy to be still of

the base stock type. Glilili [32] proposed to use a G/G/1 queue analogy to compute

such a base stock level. Hoenig and Gerchak [35] and Wang and Gerchak [86] derived

structural results of the optimal policies in the presence of random production yields.

Vericourt, Karaesmen and Gallery [84] analyzed a capacitated supply system

with multi-classes of customers for a single item with backorder and no lost sales.

Because of limited resources, it was necessary to ration the items among the customers

in different classes. They modeled the supply system as a multi-customer make-

to-stock queue for a certain number of customer classes. They showed an optimal

stock allocation policy that minimizes average inventory holding and backorder costs.

Furthermore, they gave an exact algorithm to compute the optimal parameters.

Giillii, Ono and Erkip [33] considered a single-item periodic-review inventory

system ter a finite planning horizon under an uncertain supply. To model supply

uncertainty, a three-point (completely available, partially available, or completely

unavailable) probability mass function is used and a model to minimize expected

holding and backorder costs ter the planning horizon is developed. The authors

demonstrated the optimality of a non-stationary order-up-to policy, prtided computa-

tional results and observed that the optimal order-up-to levels decrease as the unit cost

ratio h/b increases and increase as the probability of partial availability ( for a fixed

unavailability probability) increases. Specifically they prtided a simple newsboy-

like formula for computing the optimal order-up-to levels for the case of two-point

stationary supply availability (completely available or completely unavailable).

Lau and Lau [52] considered a system with a vendor stocking several items

under a set of resource constraints. Using a Lagrangian relaxation approach, they

developed a solution and presented case studies.

For capacitated inventory control, some authors concentrated on optimizing

parameters for given policy shapes and deriving heuristics under the continuous-
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review and mostly Poisson demand settings. Among those who considered the problem

are Alfredsson and Verrijdt [1], Aster [6][7j, Cohen, Kleindorfer, and Lee [15],

Gada [16], Grahovac and Chakravarty [29], Lee [53], Sherbrooke [71], and Slay [73].

Archibald, Lassen, and Thomas [4] characterized the optimal policy for a two-location

continuous-review problem. Tiaras and Cohen [74] compared different rules for

lateral transshipments by simulation.

Supply chain contracts have grown more prominent in their roles in supply

chain management during the past few years. Supply contracts such as buy-back

(Pasternack [62]), quantity flexibility (QF)(see Tay [82]) and penalty scheme (see

Lariviere [50]) have been well analyzed when the demand is stochastic with a given

retail price. The research based on the returns contract included retailer competitions

(Padmanabhan and DEng [61]), two echelon inventory systems (Cachou and Zipkin

[11]), and risk-free returns to the supplier (Webster and Weng [89]). There are many

other forms of contracts with a given retail price such as wholesale-price contracts

(Lariviere and Porters [51]) and revenue-sharing contracts (Wang, Li and Shen [87]).

Taylor [79] studied a retaileras profit over linear rebates and target rebates.

He showed that a linear rebate can not achieve coordination (maximization of the

channel profit) in an implementable way, and if the retailer sales effort does not

influence demand, a properly designed target rebate can achieve coordination. But,

if the retailer sales effort influences demand, such contracts as linear rebate or target

rebate alone can not achieve coordination in an implementable way. Coordination

must be achieved by a properly designed target rebate and linear rebate contract

together. This paper presented the view that the provision of rebate strengthens

incentives for a retailer sales effort, which is contrary to the view expressed by

Emmons and Gilbert [20].

Wang, Li and Shen [87] studied supply chain management under a consignment

contract with revenue-sharing. In their paper, the supplier decides on the retail price
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and delivery quantity to the retailer and the retailer decides the percentage from the

selling price to keep for himself and remitts the balance to the supplier. Gemand for

the product is uncertain and price-sensitive during a single selling period or season.

They presented models for centralized and decentralized supply chain systems. They

showed that the optimal quantity and price are critically dependent on the price

elasticity in the centralized system, while the optimal quantity in the decentralized

system is the same as that in the centralized one and the optimal price depends on

the retaileras revenue share, the channelas cost and the retaileras cost share in addition

to the price elasticity. They also found that the retaileras optimal revenue share is

increase with the retaileras cost share.

Gana and Spier [17] studied a revenue-share contract in a perfectly (head

to head) competitive market faced by downstream retailers. In their paper, they

considered an upstream firm who decides the transfer cost per unit and the revenue-

sharing rate on a one-unit sale to the downstream retailer, while the downstream

retailer decides the optimal quantity to be ordered from this supplier. They closely

adopted Geneckere and Peck [19]as version of Carlton [13]as model, but assumed

"perfect" rather than imperfect competition. They obtained the relationship of the

optimal quantity with the transfer cost per unit and the revenue-share rate on

one unit sale. The paper showed that the supplier must simultaneously lower the

transfer price below production cost and raise the revenue-share rate above zero to

keep vertical-integration control, i.e., to maintain the incentives for the competitive

downstream market to hold the same capacity as that in the terall channel. This

conclusion is in accordance with that of Wang, Li and Shen [87] — retaileras optimal

revenue-share increases with the retaileras cost share.

Cachou and Lariviere [10] presented a model to analyze the case that a single

retailer chooses the optimal price and quantity to maximize the expected profit.

They demonstrated that using a revenue-sharing contract, a supplier can coordinate
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a single retailer channel. That is to say, when the revenue-sharing contract is over

the condition that the transfer cost is equal to the revenue-sharing rate times the

production cost, arbitrarily allocating the revenue-sharing rate can maintain the

same optimal quantity as that in the overall channel. However, this contract does

not coordinate a supply chain with demand that depends on costly retail effort.

Neither buy-back, nor quantity flexibility nor sales rebate is able to do so in the

price-setting supply chain. Furthermore, the authors explained why most contracts

fail to coordinate the supply chain in the price-setting system. They also showed that

revenue-sharing and buy-back contracts are equivalent in the strongest sense: for any

buy-back contract there exists a revenue-sharing contract that generates the same

cash flows for any demand realization.

Lariviere [50] analyzed supply chain contracting and coordination in stochastic

demand. While he determined the best the manufacturer and the retailer can do for

themselves, respectively, the author found out that it will not be the best outcome

for the supply chain as a whole.

Numerous papers considered supply chain contracts over short horizons (see

Khouja [47] and Tayur, Ganeshan and Magazine [78]). These papers are generally

based on the newsvendor model. Pasternack [62] investigated a model with a single

supplier and a single retailer and showed that the retailer tends to purchase too little

inventory with a simple wholesale-price contract. With similar models, Lariviere and

Porters [51] analyzed the performance of a wholesale-price contract and Tay [82]

studied the performance of a quantity flexibility contract. Cachou [9] considered a

model based primarily on a wholesale-price contract.

In supply chain contracting, some papers considered the impacts of the ways of

the parameter-settings on supply chain management (Playback and Zanies [65] and

Caldentey and Wein [12]). Anupindi and Basso [3] considered a supply chain where

a supplier sets a wholesale price using an approximation of the normal distribution.
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Van Mieghem [83] analyzed how an exogenously-set transfer price can influence the

capacity decisions of a manufacturer and an upstream supplier. Considering different

supplier pricing policies, Jucker and Rosenblatt [40] and Lin and Kroll [55] focused

on quantity discounts while Kaiak and Weinberg [41] focused on multiple suppliers.

In this dissertation, "virtual transshipment" is used to solve the finite- and

infinite-horizon inventory control problem for two capacitated plants in a stochastic-

demand setting. The literature survey showed that this problem was not studied

before in this vein.

A revenue-sharing contract is also studied here for a supply chain where the

supplier and retailer try to maximize their own expected profit with an exogenously-

set revenue-sharing rate. The objective is to show how the exogenously-set revenue-

sharing rate influences the decision about who should be the leader of the game to

maximize the supply chainas expected profit. In the literature, the revenue-sharing

rate is a decision variable.

The optimal order structure policy of a retailer with a limited amount of

available funds, when there are two suppliers with different revenue-sharing contracts,

is also analyzed.



CHAPTER 3

A COMPUTATIONAL STUDY ON LATERAL TRANSSHIPMENTS

3.1 Background

Many factors constrain a manufacturing plantas capacity. These factors include

the number of machines and their capabilities, the number of workers, the arrival

rates of raw materials, the supply of power, water, and other essentials, etc.. It is

obvious that a less-than-needed capacity will lead to a waste of capital investment,

overhead costs and processing fee (holding costs) while a less-than-needed capacity

will imply lost revenue and unhappy customers (goodwill costs). Fortunately, recourse

opportunities like outsourcing, lateral transshipments, and product substitutions exist

that can help a plant to mitigate the complications caused by the limited capacities.

When the plantas paternal firm owns several plants in different geographical regions

at the same time, products may be transshipped among these plants in times of

uneven demand. It is also possible that demand emerging in one region may be

designated to be served by a more remote plant. We call both of these practices lateral

transshipments, the former real and the latter virtual. Though lateral transshipments

incur positive costs, using them cleverly can lead to cost savings.

In this chapter, virtual lateral transshipments between two capacitated plants

within one firm are studied. The two plants are located in two distinct regions, and

demand emerging from each region is normally served by the local plant. However,

demand emerging from one region can always be designated to the other remote

plant upon its arrival. The assignment of one order generated in region 2 to plant 1

is considered as (virtually) transshipping one item from plant 1 to plant 2. Unlike

the real transshipment setting, the above is doable even when plant 1 has a negative

inventory level, though its desirability should be decided by cost considerations. Once

15
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made, it is assumed that the transshipment decisions can not be altered later. In

the current setting, the unit transshipment cost from plant 1 to plant 2 stands for

the difference in the average unit delivery costs from the two plants to a random

order from region 2, rather than the unit delivery cost from plant 1 to plant 2.

The corresponding problem involving real transshipments is most likely significantly

harder for the obvious requirement that plants at the giving ends of the transshipment

process maintain nonnegative inventory levels.

The problem to be studied here can also be used to model the situation

in which differences between product designs, rather than geographical distances

between production facilities, prevent the firm from fully utilizing its total production

capacity. In such a situation, product substitution can be modeled as transshipments,

where the transshipment cost merely represents the compensation paid to a customer

who is persuaded to accept a different product than he/she initially desired.

3.2 Formulation

Yang and Qin [91] formulated the optimal control of a two-plant version of the

aforementioned problem as a stochastic dynamic programming problem. The symbols

used in the formulation are as follows:

Li : plant ias production leadtime which can be either 0 or 1;

it: plant ias nonnegative capacity in period t;

Pt= plant ias nonnegative unit production cost in period t;

hid ut : nonnegative unit transshipment cost from plant i to plant j in period t

(it is not necessary that ‚ = quit);

Ιit (Ι): plant ias nonnegative convex per-period inventory handling cost in

period t which assumes its minimum at Bit (0) = 0;

a: the discount factor per period;

Diet: random demand level that arises in region i in period t—demand levels
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across different periods are assumed to be independent, while the levels across different

regions need not be so;

Bit: plant is inventory position at the beginning of period t;

wit : production level at plant i in period t;

υi3 t : transshipment level from plant i to plant j in period t.

The details of the model formulation in the paper were as follows:

The convention of numbere periods t in the backward fashion, with the

terminal period being denoted period 0 is adopted. The model was based on the

assumption that results after period 0 were inconsequential. For i = i, 2, t = 0, i, 2, ...,

It is assumed that Mt < +ooh for every t and Ε[Dιt ] < +ooh and Ε[D2t ] < +ooh. These

assumptions make the definitions of cost functions feasible.

In each period t, first, for each plant, items whose production is initiated in

period t + i arrive to the plant, if its production leadtime is i. Then, after observing

the starting inventory positions Bat and 12t at the two plants, the firm decides the

production levels Sit E [0, cat ] and 52t Ε [0, c2Ι] at the two plants. For each plant,

the items being produced are immediately available, if its production leadtime is  Ο.

Then, demand levels D1  and D21 are realized at the two plants, so that the inventory

positions at the two plants would become respectively I 1t+χ1t—D1t and B2t+χ2t — D2t ,

if nothing else were to be done. Now the firm decides the virtual transshipment levels:

υΙ2t Ε [0, D2 ] for the relief of plant-1 demand and υ21t Ε [0, D11] for the relief of

plant-i demand, so that the firmas starting inventory positions at the two plants in
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Plant i will mingle together its own undiverted demand and demand being

virtually assigned to it from region j, and use if in a first-come-first-served fashion,

with unnerved demand being backlogged. Items demanded by region j and retrieved

from plant ias inventory will travel a certain nonnegative leadtimes 1 z, to reach their

common destination.

Let gt (ΙΙ , /2 ) be the least possible total discounted expected cost that the firm

has to face if at the beginning of period t, its inventory status is at (ΙΙ , I2 ). Then,

the following recursive relationship when L 1 = L2 = 0 can be obtained:

which reflects values of the end-of-horizon inventory holdings.

While future derivations hinge upon the assumption that production leadtimes

are 0 or 1, the two transshipment leadtimes need not be so, nor do they even have

to be integral or equal to each other, since they do not explicitly enter the above

formulation. Note that at any moment, items that are being transshipped between

the two regions are related to already-executed decisions and hence are out of the

modelas sight. On the other hand, the transshipment costs should implicitly take into

account not only the physical transportation costs between the regions, but also the

backlogging costs felt by the receiving ends over the transshipment leadtimes. For
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instance, when costs are stationary, and the t-subscripts can be dropped, the discount

factor is almost i, and region i's backlogging cost rate is bj , it is expected that qij

is larger than ltj • 6j so that their difference can still represent the positive cost of

transporting an item from region i to region j.

9t(Il, 12) can be viewed as the present-value cost of having starting inventory levels

1l and 12 at the beginning of period t and including the inventory build-up cost;

yidandy2are the post-production inventory levels at the two plants, ν12is the total

absolute virtual transshipment level between the two plants; and Q12 is the net virtual

transshipment level from plant i to plant 2.

Now the following equations can be obtained:

Because of the nonnegativity of q12t and q21t, obviously ν 12 = 1 ω12 1 is always a

solution for (3.3). In other words, the transshipment activity between plants 1 and 2

needs to occur only in one direction; and therefore one variable ω 12 denotes the entire

transshipment activity: a ω 12 quantity is being transshipped from plant i to plant

2 when ω 12 > Ο and a —ω 12 quantity is being transshipped from plant 2 to plant i



3.3 Theoretical Results

Let function f (Al , A 2 ) be an arbitrary real function defined on R2 . The following

definitions concerning supermodularity, diagonal dominance, convexity, mild monoto-

nicity, etc. will be used in Theorems i, 2, 3, 4 and 5.

Definition 3 For any subset S of {i, 2, ..., n}, we say function f(x), defined on  R,

is CV[S] when it is jointly convex over the Χ 2 's for i E S.
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Definition 5 Function y(x) is mildly shifting while increasing its ith element at the

Let w21(y1 y2, d1, d2 ) be the optimal solution for the right-hand side of ( 3.7),

and ylt (Ba , /2) and y2t (Ba ,12) a pair of optimal solutions for the right-hand side

of (3.5). Structural properties for the optimal production and transshipment policies

are established as shown in Theorem i.

From Theorem i, it is clear that the actions are all mildly monotone in

the inventory and demand levels that they are contingent upon; and the optimal

production policy for each plant is of the modified base stock type in observance of

its own capacity level, while the base level mildly decreases in the other plantas starting

inventory level. In addition, the optimal transshipment policy can be implemented

in an item-by-item fashion when demand is discrete.
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All the results of Theorem i can be extended to the stationary infinite-horizon

discounted-cost case. Theorems 2, 3, 4 and 5 give the details of the optimal structural

policy for the stationary infinite-horizon discounted-cost case.

Theorem 2 For any fixed BΙ and 12 , there exists some 900(11,12) to which gt(yi, 12)

converges as t tends to +ooh. The convergence is also uniform in any 6ounyed region

of the (Ba ,12 )-space. In particular, there are Act) and Act) with limt,+00 Act) =

limt,+00 Β(t) = 0 such that

the convergence is uniform in any 6ounded cy1 , Y2, y 1 , y2)-region; gtcyl, y2) converges

to gφΡc ya , y2), any the convergence is uniform in any 6ounded ccyl, y2 )-region. Also,

g^cBι ,12 ) is equal to the right-hand side of (3.5) with gtcyl , y2) 6eing replaced by

9^ cya, !12) .

According to Theorem 3, it is easy to show that
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Let w12^(y1 , 1/2 i y 1 , y2 ) be an optimal solution for the right-hand side of (3.i0), and

yl^(B1 , /2 ) and y2φ (Ba , /2 ) a pair of optimal solutions for the right-hand side of (3.8).

Theorem 4 shows that the preservation result for Ft (yl ,12 ) through a (3.3)-like operator

as stated in Theorem i applies to ρ (11 ,12) as well and thus the results for the

finite-horizon optimal policies are similar to those for the infinite-horizon policies.

Theorem 4 F^(Ιι ,12 ) is SP[1, 2], DD[1], and DD[1]. Consequently, the optimal

policies for the finite-horizon pro6lem can be selected so that the following are true.

The optimal transshipment level

MS[1, —2], and MSr-3 , 4]; Also, there are MJ[-lj functions Υ(A) and Υ (z); the

curves 1/2 = Y2,(y ι) and yi = Υ(y2) intersect at (Al',  ); and the optimal

produce-up-to level yiφΡ (Ιι , 12) indicates that plant 1 should follow a modified base

stock policy in o6servance of the capacity level cc , while the 6ase level is

Theorem 5 shows that the finite-horizon optimal policies can be obtained

by taking limits of the infinite-horizon optimal policies equally as well as obtaining

the finite-horizon cost function first and then finding the optimal solutions for the

right-hand side of (3.3) with this cost function replacing its infinite-horizon counterpart.
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The detailed proofs can be found in Yang and Qin [91]. The abte model

and structural properties of the optimal policies will serve as the starting point and

guidelines of the computational study that follows.

3.4 Computational Settings

A computational study is conducted that illustrates the benefit of virtual lateral

transshipment. The study is based on the theoretical results obtained by Yang and

Qin [91], and determines the impacts of the parameters on the cost savings that can

be achieved by using virtual lateral transshipment.

For the cases that are studied here, demand is discrete and the parameters

are stationary. Hence, the t signs will be suppressed whenever possible. Symmetry

is also assumed, that is to say, the values of all the parameters at the two plants are

equal. Therefore, the subscripts used for plant identification are also suppressed. In

addition, a V-shaped inventory handling cost is assumed: H(I) = h.+ + 6.1- . As a

default, the discount factor α = 0.99, the capacity level c = 7, the unit production

cost p = 30.0, the holding cost rate h = 1.0, and the backlogging cost rate 6 = 4.0.

Each discrete demand distribution used can be described by three parameters:

the minimum demand level 'ii, the maximum demand level v , and a parameter β which

indicates the correlation between the demand levels in the two regions. Suppose D 1

and D2 represent the stochastic demand in the two regions, respectively. Then for



where, as a normalizing factor,

The correlation between the two demand levels increases with β. When β > 1, the

two levels are positively correlated; when 0 < q < 1, the two levels are negatively

correlated; while when β = 1, the two levels are independent of each other. As a

default, let ú = 0, t = 12, and β = 1. A representation of the demand distribution is

shown in (3.13).

All the cases that are studied are variants of the default case where all parameters are

set at the default values. For every specific case, brute-force dynamic programming

is used to find the optimal total expected discounted operational cost.

A quadratic extrapolation of the cost function is used to get around the

problem of having an infinite number of states. Let Ι ί and 12 stand for the inventory

positions at the two plants, respectively. In the computation, a constant Í is fixed

and let the range of each Ι be from -Ι to +1 although in theory, the range of the

statesa values is from —οο to +ooh. Let Fa (Ιl , 12) stand for the initial value of the cost
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function at the state of (I i , /2 ). In each iteration of computation, only the values of

the cost function at the state of (Ii , 12 ) where both B and 12 Ε [-Ι, Ϊ] can be gotten.

When it is no longer the case that both  Ι and 12 E [-Ϊ, Ϊ], the following rules are

adopted to get the values of Fa  (Al  , /2 ) (see Figure 3.1) .
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In the course of the computation, let the constant I = 25. The computational

results verify that the previous theoretical results are all correct.

At a specific unit transshipment cost q , suppose the minimal cost at the state

(0, 0) is c(4). Then the term η% = (c(+oo) — c(qj ))/c(+οο) is defined as the percent

cost saving that can be achieved by transshipment at a unit cost 40 , since the case

with q = +00 is effectively the one where transshipment is not allowed.

3.5 Computational Results

The computational results are presented in three tables. Table 3.1 contains the

percent cost saving (η) results for cases with varying ú , v , and q values, while all other

parameters are set at their default values; Table 3.2 contains the percent cost saving
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results for cases with varying hip, b/p, and q/ρ values, while all other parameters

are set at their default values; and Table 3.3 contains the percent cost saving results

for cases with varying Las and q's, while all other parameters are set at their default

values.

As expected, it is obvious from the tables that the percent cost saving η

decreases to 0 as the unit transshipment cost q increases to +ooh. When all parameters

are at their default values, it is reasonable for q = 5. In this case, it is shown that

with transshipment the firm can achieve a saving of 2.04%, a substantial one in a

competitive environment.
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It can be seen in Table 3.1 that, at the same average demand level, the use of

transshipment can result in larger cost savings when demand deviations are larger.

It can also be observed that, when the total plant utilization level is close to 1, that

is, when the sum of the average demand levels in the two regions is very close to the

total capacity level at the two plants, the option of transshipment becomes extremely

valuable. A way of explaining the above is that, when demand levels fluctuate very

wildly or when the system is running close to its total capacity, there will be many

opportunities for the two plants to help out each other.

It can be seen in Table 3.2 that, inventory handling costs that are larger in

comparison to the production cost lead to larger savings from transshipment. This

is because relatively larger inventory handling costs widen the relative gap in costs

resulting from adopting different production/transshipment decisions.

The results of Table 3.3 indicate that, the more negatively correlated the

demand levels at the two plants are, the larger the cost savings that transshipment

can achieve. This is because there are more occasions for it to be profitable for the

two plants to help out each other when they face more negatively correlated demand

levels. It should be speculated that this trend will be more prominent when there

are positive auto-correlations between demand levels in different periods at any single

location, since then the pattern of the capacity utilization level at one plant being

abte while that at the other being below the average level will be sustained for even

longer periods of time.

3.6 Comparison between Virtual and Real Transshipments

Real transshipment, the transportation of items between inventories, can also be used

to help out the plants when some plants are overstocked and others are overstocked.

In real transshipment, there are two cases:

1) Transshipment is made before demand happens;
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For both cases, the corresponding equations (3.5) and (3.6) are the same as

the ones in virtual transshipment.

To compare virtual and real transshipments, it is assumed that real and

virtual transshipments use the same transshipment costs of 412t and q211• The ratios

of l00(minimal cost)/(minimal cost without transshipment) at the state (0,0) are

computed for each case over the same environment, based on the corresponding

equations. The results are presented in Tables 3.4 to 3.9, where Dv , D 1,. and DB,. stand

for the rates over virtual transshipment, real transshipment made before demand

happens and real transshipment made after demand happens, respectively.

Table 3.4 shows the percent ratios under varying Labs with all other parameters

being set at their default values; Table 3.5 shows the percent ratios over varying Labs

and úas with all other parameters being set at their default values; Table 3.6 shows

the percent ratios under varying b's and as with all other parameters being set at

their default values; Table 3.7 shows the percent ratios over varying s and α's with

all other parameters being set at their default values; Table 3.8 shows the percent

ratios under varying s and hags with all other parameters being set at their default
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values; and Table 3.9 shows the percent ratios under varying Q's and q's with all other

parameters being set at their default values.
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The tables suggest the following results:

1) All ratios are increasing with Q and q, and decreasing in h. This is expected

and in accordance with the results in Tables 3.1 to 3.3. The ratios are also decreasing

in α.

2) All ratios are decreasing with '2 and v when the demands of the two plants

are negatively correlated and the average demand is below capacity. However, they are

increasing with 'L and v when the demands of the two plants are positively correlated

and the average demand is abte capacity. An explanation of this is that there are

more opportunities for the two plants to help out each other when their demands are

negatively correlated and the average demand is below capacity while transshipment

is not useful when the demands are positively correlated and the average demand is

above capacity.

3) All ratios are almost equal. This shows that virtual transshipment can

absolutely supplant real transshipment, from the viewpoint of costs.
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3.7 Conclusions

In this chapter, the goal is to find the benefit of virtual lateral transshipment,

analyze the effects of the parameters such as unit holding cost, production cost,

etc. on the cost savings over virtual lateral transshipment compared with that of

no transshipment, and compare virtual transshipment with real transshipment.

A computational methodology is adopted, the expected percent cost savings

are computed and compared with the transshipment case under the same system.

The effects of different parameters on the expected percent cost savings is showed.

These parameters include unit transshipment cost q, the minimum demand level t^, the

maximum demand level v, holding cost rate h, backlogging cost rate b, and correlation

coefficient Q. The computational results confirm the intuition: The percent cost

saving η decreases to 0 as the unit transshipment cost q increases to +ooh; the use

of transshipment can result in larger cost savings when demand deviations are larger

and the total plant utilization is closer to 1; the larger ratio of holding cost rate or

backlogging cost rate to the production cost results in larger percent cost savings

from transshipment; and the larger correlated coefficient leads to a smaller percent

cost savings.

Based on the same computational methodology, the expected costs are comput-

ed and compared with the transshipment case under the same system and with

real transshipments. The computational results show that virtual transshipment is

preferred over real transshipment from the viewpoint of costs.

The computation is based on a system where there are two plants and the two

capacitated plants are symmetric. Therefore a multi-plant non-symmetric system still

remains unstudied. Future research will try to study these systems.



CHAPTER 4

STUDY OF A REVENUE-SHARING CONTRACT IN SUPPLY

CHAINS

4.1 Background

Supply chain management involves matching supply with demand. If demand for a

product in a supply chain is uncertain, the supply task is complex, because either

supply may be in excess of demand, leading to overstock or supply may be short of

demand, leading to lost sales. In the former case excessive inventory is referred to as

inventory risk while in the latter case insufficient supply is referred to as supply

risk. Although the firms in a supply chain may bear supply risk, supply chain

management can let some firms have inventory risk, some others not have it, and

thus lead to different total costs and profits. So, it is very important for a supply

chain to distribute inventory risk to appropriate firms reasonably.

Consider a supply chain with one supplier and one retailer, and suppose the

supply chain is involved with new products such as new films, videos or new style

clothing with a short life cycle. At the beginning of these products' life cycle, they

meet a tremendous demand, while after a short period the demand drops dramatically.

In this case, if the wholesale-price contract is adopted in a supply chain, (the retailer

obtains the product at a wholesale price larger than the production cost of the

product) the retailer must have enough money to buy enough items of the product

to meet the demand at the begining of its life cycle. If the retailer does not have

enough money to buy such a large quantity, he will lose market share for this product

and furthermore lower the supply chain's profit and level of service. In such a supply

chain, the supplier and the retailer can opt to trade with a revenue-sharing contract.
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In a revenue-sharing contract, the retailer needs to pay a portion of the

production cost (transfer fee) per unit to the supplier when he obtains the product

from the supplier. After the retailer sells the product, he must share the revenue

with the supplier. Transfer cost rate α (0 < α < 1)) is defined as the portion

of the production cost per unit that the retailer needs to pay to the supplier and

revenue-share rate r is defined as the portion of the revenue per unit kept by the

retailer. Such a revenue-share contract has been widely adopted by the largest

chains in industry since 1998 and has made great contribution to the increase of

market share and total profit (Warren and Peers [88] and Mortimer [59]).

In this chapter the adoption of a revenue-sharing contract by a supply chain

with one supplier and one retailer is presented and analyzed. The demand for the

product is stochastic. The revenue-share rate r is fixed. At the end of the selling

season, the unsold items will be sold at a salvage price s per unit, under two possible

scenarios: salvage revenue not shared (ERNS) and salvage revenue shared (SRS). A

two-stage Stackelberg game is used where one player is the game's leader and the

other one is the game's follower. When the supplier is the Stackelberg game's leader

(supplier's Stackelberg game), she decides on the transfer cost rate α first and then the

retailer decides on the quantity q to be ordered from the supplier based on the transfer

cost rate. When the retailer is the Stackelberg game's leader (retailer's Stackelberg

game), he decides on the transfer cost rate α first and then the supplier decides on

the quantity q to be provided to the retailer.

This chapter also contributes to the literature of the newsvendor model. In

a standard newsvendor problem, the retailer decides on the optimal quantity to be

ordered from the supplier. However, in this model the supplier also can decide on the

optimal quantity to be provided to the retailer in the revenue-share contract based

on the specific conditions.
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Therefore, the contribution of this chapter is twofold. First, the adoption

of the combination of the Stackelberg game with the revenue-share contract to

the newsvendor problem has been proposed. Secondly, the model for the newsvendor

problem is presented where the supplier decides on the optimal quantity to be provided

to the retailer in the revenue-sharing contract.

The chapter is organized as follows. Section 4.2 elaborates on supply chain

modeling and analyzes the adoption of the combination of the Stackelberg game with

the revenue-share contract to the newsvendor problem. A computational analysis

has been done in Section 4.3. Section 4.4 concludes the chapter.

4.2 Model

For ease of reference, the nomenclature used in this chapter is presented first.

Χ : Gemand variable;

F(x) : Cumulative distribution function;

f (x) : Probability density function;

p: The per unit retail price;

C : The per unit production cost;

s: The per unit salvage price;

✓: The per unit revenue share rate;

α : The per unit transfer rate of production cost;

q : The quantity of the product provided by the supply chain to the customers;

qó : The optimal quantity of the product prtided by the centralized supply

chain;

qv : The optimal quantity of the product provided by the decentralized supply

chain when the supplier is the leader of the Stackelberg game and the salvage revenue

is not shared;

qv : The optimal quantity of the product prtided by the decentralized supply
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chain when the retailer is the leader of the Stachelberg game and the salvage revenue

is not shared;

Bs : The optimal quantity of the product provided by the decentralized supply

chain when the supplier is the leader of the Stachelberg game and the salvage revenue

is shared;

BRA : The optimal quantity of the product provided by the decentralized supply

chain when the retailer is the leader of the Stachelberg game and the salvage revenue

is shared;

cep : The optimal transfer cost rate when the supplier is the leader of the

Stachelberg game and the salvage revenue is not shared;

as : The optimal transfer cost rate when the retailer is the leader of the Stachelberg

game and the salvage revenue is not shared;

cep : The optimal transfer cost rate when the supplier is the leader of the

Stachelberg game and the salvage revenue is shared;

: The optimal transfer cost rate when the retailer is the leader of the

Stachelberg game and the salvage revenue is shared;

S: Supplier;

R: Retailer;

F(x) : The generalized failure rate;

A: The expected supply chain profit obtained by the centralized channel.

In the setting, g(x) = x f (χ)/(1— Fax)) and its support is [a, b). F(x) is termed

the generalized failure rate which gives (roughly) the percentage decrease in the

probability of a stock out from increasing the stocking quantity by 1%. Α distribution

has an increasing generalized failure rate (IGFR) if g g(x) is weakly increasing for all

x such that Fax) <1 (Lariviere and Porters [51]). Suppose

y = max{q  Ι gg(q) = 1 and q Ε [a, b)}.
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Because F(q) is weakly increasing in q, g(q) > 1 when q > y .

The following assumptions are used in the model.

1) The demand for the product is uncertain and has a distribution with an

increasing generalized failure rate (IGFR);

2) the retail price p dollars/unit is fixed;

3) the revenue sharing r per unit is fixed;

4) the production cost is c dollars/unit;

5) the salvage is s dollars/unit;

6) rp>s and(1- r)p>s;

7) ρ-c<rp—s and p/c< (1 -r)p-s;

8) the shortage cost is Ο dollars/unit.

4.2.1 The Centralized Channel

In this chapter, first the centralized channel is analyzed where the supplier and the

retailer belong to the same firm. Let B be the expected channel profit, which is a

function of q.

Let qó denote the optimal quantity in the centralized channel for the function in (4.1) .

It follows after some algebra that

4.2.2 The Decentralized Channel

Normally the supplier and the retailer do not belong to the same partner and thus

they always maximize their own profits, respectively.

1. Salvage Revenue not Shared—SRNS
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In ERNS, a supply chain where the supplier and the retailer share the normal

sales revenue but do not share the salvage revenue when there are leftover items is

analyzed. In this case, the salvage revenue is kept i its entirety by the supplier or the

retailer who decides the inventory quantity in the supply chain.

1.1 Supplier is the Leader of the Stackelberg Game

When the supplier is the leader of the Stackelberg game, she dictates the

transfer cost rate per unit α to the retailer to optimize her own benefit given the

retailer's best response. The retailer decides the optimal order quantity q to maximize

his own expected benefit.

At the end of the sales season, the retailer sells the leftover items of the product

at the salvage price s dollars/unit. Let O R and O s denote the retailer and supplier's

expected profits, respectively.

Given α, the optimal quantity q(α) the retailer chooses to maximize O R satisfies the

following equation:



the retailer's expected profit is nondecreasing in B.

Given α and B, the supplier's expected profit OS (α, B) can be expressed as

Therefore, suppose that the supplier has chosen α _ F(q) that induces the retailer

to respond with a particular B, the expected profit OS (q) = Θs (αp(q), B) that she can

get can be determined by

The first- and second-order derivatives of the function F(q) in B can be gotten as

The following Lemma 1 shows that the Bs that maximizes the supplier's profit FHB)

can be foov by solving the first-order optimality condition.

Lemma 1 The supplier's profit OS (B) is Buαsi-concαve in B.

Proof: From Assumption 1) and the definition of IGFR, it is clear that F(B) is

nondecreasing for all B. Hence, y can be defined as follows:
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The following proposition summarizes what has just been derived.

Proposition 1 When the supplier is the leader of the Stackelberg game, she would

choose a transfer cost rate B), and the retailer would respond with Bs = BR(ap(Bs

))•

1.2. Retailer is the Leader of the Stackelberg Game
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When the retailer is the Stackelberg game's leader, he announces the transfer

rate per unit α to the supplier with the purpose of optimizing his own expected profit

given the supplier's best response. The supplier decides the optimal quantity B to

maximize her own expected profit. At the end of the sales season, the supplier sells

the leftover items at the unit salvage value s.

Given α and B, the supplier's expected profit 8s (α, B) can be expressed as

Hence, given α, the optimal quantity B(ι) that the supplier would provide to maximize

her own profit θS (α, B) satisfies

From (4.14), the inverse function of B(α) can be obtained:

Combining (4.15) with (4.13), the expression θ (B) = θΆ (mss (q), B) can be obtained:

Just because

8s (B) is a nondecreasing function in B, and thus the supplier's expected profit is

nondecreasing in B.

Given α and B, the retailer's expected profit θR (α, B) can be expressed as
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Therefore, suppose that the retailer chooses α = Bs (q) that induces the supplier to

respond with a particular q, the expected profit θ(B) = Θιι (ήs(B), q) he can get can

be determined by

The first- and second-order derivatives of the function θ(B) in q can be obtained as

The following Lemma 2 shows that the Be that maximize the retailer's profit θ(B)

can be foov by solving the first-order optimality condition yθv(Bv)/yB = Ο.

Lemma 2 The retailer's profit θ(B) is quasi-concave in q.

Proof: As in the proof of Lemma 1, y is defined in
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That is, θ(q) is nonincreasing in [y , 6). Combining the above two facts, it is seen

that θ(q) is quasi-concave in [a, b) . ❑

By (4.20), it is seen that q*R satisfies the following equation:

The following proposition summarizes what has just been derived.

Proposition 2 When the retailer is the leader of the Stackelberg game, the retailer

would choose the transfer cost rate Bs(q*R), and the supplier would respond with qR =

qs(as(qR

1.3. Comparison between the Two Stackelberg Games

The supply chain's total profit is the sum of the supplier's and retailer's profits.

When the supplier is the leader of the Stackelberg game, the supply chain's total profit

is the sum of (4.3) and (4.8), while when the retailer is the leader of the Stackelberg

game, the supply chain's total profit is the sum of (4.13) and (4.18). But since the

profits earned from internal transactions offset each other, the total profit should

be completely earned from the end customers, and hence is a function of only the

quantity q of delivery from the supplier to the retailer: the total profit B(q) as

expressed in (4.1) for the centralized case. The first- and second-order derivatives of
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A(q) ter B are as follows:

By Assumption 6) (hence p > s), it is known that B(q) is concave in B. As described

in (4.2), the optimal quantity qó satisfying F(q) = (p — c)/(p — s) maximizes the

supply chain's total profit. Gue to the concavity of B(q), when q < qó, the supply

chain's total profit increases with the quantity of delivery q.

Recall that, when the supplier is the leader of the Stackelberg game, the

optimal delivery quantity Bs is determined by (4.12), i.e.,

So by Assumption 6), it is obvious that qs < Bó. When the retailer is the leader of

the Stackelberg game, the optimal delivery quantity BRA is determined by (4.22), i.e.,

Again by Assumption 6), it is true that qR < q. So the optimal delivery quantity

for each decentralized case is not larger than the optimal delivery quantity for the

centralized case.

Based on the abte analysis, the larger the optimal delivery quantity, the more

profit the overall decentralized supply chain will gain. The following proposition gives

the criterion of judging whether one of the two alternatives for the decentralized chain

is better than the other from the prospective of the total supply chain's profit.

Proposition 3 The delivery quantity B in the supply chain is greater when the supplier

is the leader of the Stackelberg game than when the retailer is the leader of the

Stackelberg game if r < 1/2. Otherwise, it is greater when the retailer is the leader
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of the Stackelbery game. Therefore, for the supply chain to gain more profit, the

party who keeps more than half of the revenue should also serve as the leader of the

Stackelbery game.

So the left-hand side of the above equation is greater than Ο if and only if r < 1/2.

'1, _ .2X --

2. Salvage Revenue Shared—SRS

In SRS, a supply chain where the supplier and the retailer share not only the

normal sales revenue but also the salvage revenue when the leftover stock is sold at

the salvage price s dollors/unit is studied.

2.1. Supplier is the Leader of the Stackelberg Game

First, the case where the supplier is the leader of the Stackelbery game is

discussed. When the supplier dominates the supply chain, she first dictates the

transfer cost rate per unit α to the retailer. The retailer then orders the optimal

quantity of items from the supplier to maximize his own expected profit. At the end

of the sales season, the retailer sells the leftter inventory at the salvage price, but

still shares it with the supplier at the same revenue-sharing rate r.

Based on the abte description, the supplier decides the optimal transfer cost

rate per unit α and the retailer decides the optimal quantity B of the items to be

ordered from the supplier.
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Let BR and Bs denote the retailer and supplier's expected profits, respectively.

Then, the following expressions can be obtained.

From (4.25), the following equation relating to the optimal quantity BRA to maximize

BR (B, α) can be gotten.

Based on (4.26), it is known that α is the function of q as follows.

Now the supplier's expected profit is denoted by the following equation:

Using some algebra, the first-order and second-order derivatives of BΆ (q) in B can be

derived:
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Lemma 3 The supplier's profit Ls(q) is quasi-concave in q.

The proof is the same as that for Lemma 1. Lemma 3 shows that the optimal quantity

Proposition 4 In the case where the salvage revenue is shared and the supplier is

the leader of the Stackelberg game, the supplier wouly choose the transfer cost rate

BR(Bs), and the retailer would respony with qs = qR(a4(qs))-

2.2. Retailer is the Leader of the Stackelberg Game

When the retailer leads the supply chain, he claims the transfer cost rate per

unit α he would offer to the supplier. The supplier decides the optimal quantity q of

the items based on the claimed transfer cost rate to optimize her own expected profit.

Let iR and is denote the retailer and supplier's expected profits, respectively.

Their expressions using α and B can be gotten as follows.

From (4.33), the following expression of the optimal quantity B(ι) to maximize

Bs (q, α) can be obtained:

Therefore it is easy to get the following expression for the inverse function as (q) .
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It is easy to show the expression of the retailer's expected profit 1R (q) = 1R (q, ήs(q))

as follows:

From the abte, the first-order and second-order derivatives of l 1R(q) can be shown as

follows after some algebra:

Lemma 4 The retailer's profit l1R(q) is quasi-concave in q.

The proof is the same as that for Lemma 2. From Lemma 4), it is clear that if qv

is the optimal quantity to maximize 1R (q), then qR exists and satifles the following

equation.

Proposition 5 In the case where the salvage revenue is shared and the retailer is the

leader of the Stackelberg game, the retailer would choose the transfer cost rate 4(q),
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2.3. Comparison between the Two Stackelberg Games

When salvage revenue is shared between the two partners, it is still necessary

to decide which Stackelberg game is preferred. Proposition 6 gives the answer.

Proposition 6 When salvage revenue is shared, the inventory quantity q in the

supply chain is greater when the supplier is the leader of the Stackelberg game than

when the retailer is the leader of the Stackelberg game if r < 1/2. Otherwise, it

is greater when the retailer is the leayer of the Stackelberg game. Therefore, when

r < 1/2, the supply chain will gain more profit if we choose the supplier to be the

leader of the Stackelberg game while otherwise it will gain more if we choose the

retailer to be the leayer.

When r < 1/2, (4.41) > 0, therefore the optimal results Bs > qv. When r > 1/2,

the optimal results qv <q. Proposition (6) is proved. ❑

3. Comparison between SRNS and SRS Cases

In the revenue-sharing contract, salvage revenue is part of the total revenue.

Especially when the demand is stochastic, salvage revenue could be substantial.

Whether it is shared between the supplier and the retailer will affect their own

decisions and further affect the total profit of the supply chain.

Proposition 7 For any r E [0, 1], the optimal order quantity is Freater in ERNS

than in SRS. That is to say, the supply chain profit is greater in ERNS than in SRS.

Proof.

y8s(q)/yq — yLs(q)/yq = qs( 1 — ref (q). (4.42)
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It is clear that both (4.42a and (4.43a are larger than 0 for any B Ε [0, 1]. Therefore,

Proposition 7 is prted. ❑

The cases where the follower of the game keeps all the salvage revenue and

where the follower keeps only the same B portion of the salvage and the regular sales

revenue have been tackled. The analysis arrives at the same conclusion as presented

in Propositions 3 and 6 that the whole supply chain will be better off if the party that

retains more than half of the revenue is also the leader of the Stackelberg game. It

can also be proved that, over the same revenue sharing rate Τ, the delivery quantity

in this case of SRS will be smaller, and hence the supply chain's profit will be less,

than in the case of SRNS, regardless of the choice of the party to be designated as

the Stackelberg game's leader. So, from the perspective of the total supply chain's

profit, SRS is not as attractive as SRNS in supply chain management.

4.3 Computation

A computational study is presented, which helps to further prte the earlier propositi-

ons by computation, and to show the impacts of the parameters.

4.3.1 Settings for the Computational Study

For the example, the demand distribution is assumed to be uniform U[0.0, l0000.0].

As a default, let p = 12.0, s = 2.8, c = l0.0. To pick a value of the revenue-sharing

rate Τ, check all of the values of the parameters and guarantee to meet the assumptions

rpm > s, (1 — rap > s, p — c < Τρ — s and p — c < (1 — Bap — s. Based on the above

settings and description, Τ should be in [0.4, 0.6].
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4.3.2 Computational Results

First, the impact of the revenue-share rate r on the total profit in a supply chain

is investigated. The results are showed in Table 4.1, and they indicate that when

r < 1/2, the total profit of the supply chain is greater if the supplier is the leader of

the stackelberg game than if the retailer is the leader of the Stackelberg game, while

when Τ > 1/2, the result is reversed. Also the total profit in the supply chain is greater

when the salvage revenue is not shared than when it is shared in the same stackelberg

game. The results of the computation are in accordance with Propositions 3, 6 and

7.

Table 4.1 The Impact of the revenue-share rate r on the Total Profit in a
suτrulv Chain

secondly, the impact of the revenue-sharing rate r on the transfer cost rate in

a supply chain is investigated. The results are showed in Table 4.2, and they indicate

that the transfer cost rate α is increasing with the revenue-share rate r in all games.
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When the retailer shares more revenue, he needs to pay a greater transfer cost rate α

to make the two-stage game completed successfully. This result is also in accordance

with that of Wang, Li and Shen [87] who demonstrated that the retailer's optimal

revenue-sharing rate was increasing with the retailer's cost rate.

Table 4.2 The Impact of the Revenue-Sharing Rate r on the Optimal Transfer Cost
Rate

4.4 Conclusions

A supply chain under a revenue-sharing contract has been analyzed. A mild restriction

assures that the leader's expected profit is bimodal. That means the optimal results

can be derived using first-order conditions.

It has been shown that the parameter r is very important for the supply chain's

overall profit. When Τ is less than one half, the case where the supplier is the leader

is preferred, while when Τ is larger than one half, the case where the retailer is the
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leader is preferred. In addition, whatever the value of Τ is, not sharing the salvage

revenue is preferred because the supply chain can gain more profit.

The model neglects a number of factors such as supplier competition, retailer

competition and the retailing price's change. Future research can consider extensions

of what was presented in this chapter.



CHAPTER 5

ADOPTION OF REVENUE-SHARING UNDER LIMITED FUNDS

5.1 Background

In today's highly competitive environment, retailers are faced with many challenges

especially when they have a limited amount of available funds. A revenue-sharing

contract offers an efficient way to buy enough items using the limited amount of

available fovs to meet the demand and thus increase the expected profit.

The purpose of this chapter is to show the structure of the optimal strategy for

the retailer over a revenue-sharing contract. Especially it is desired to present how

the limited amount of available funds affects the retailer's decisions to order items

from two suppliers.

This chapter is organized as follows. First the model is presented to analyze

the considered situation. After analyzing the formulation for the model and providing

the structure of the optimal strategy, some managerial insights are provided.

5.2 Model

There are two suppliers offere different transfer and revenue-sharing rates. It is

assumed that the higher the transfer rate (what the retailer pays per unita, the higher

profit the retailer can gain per unit. If there is no constraint on available fovs, it is

clear that the retailer would rather choose the supplier who has the higher transfer

rate. However because of the shortage of fovs the retailer would take items from

different suppliers to optimize his own expected profit. The goal is to show over

which conditions the retailer just needs to take the items from the supplier with higher

transfer rate per unit, and under which conditions he only needs to take them from

the supplier with the lower transfer rate, or take them from both suppliers.

60
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5.2.1 Model Formulation

Because the retailer will gain higher profit per unit for items he obtains from the

supplier with a higher transfer rate, it is assumed that the retailer will sell the items

from the supplier with a higher transfer rate first and only sell items from teh supplier

with a lower transfer rate after all the items having a higher transfer rate have been

sold. Let supplier 1 denote the one with a higher transfer rate while supplier 2 the

one with a lower transfer rate.

The notation used is as follows:

αί : the transfer rate per unit from supplier 1;

Τ2 : the transfer rate per unit from supplier 2;

c: production cost per unit;

rl : revenue-sharing rate per unit from supplier 1;

r2 : revenue-sharing rate per unit from supplier 2;

p: the price per unit the vendor sells the items;

Q 1 : the number of items the retailer obtains from supplier 1;

Q2 : the number of items the retailer obtains from supplier 2;

Ε(Q1i Q2a : the retailer's expected profit if he gets Q 1 and Q2 items from

supplier 1 and 2, respectively;

T : the total amount of fovs the retailer has available to pay for transfer costs

to obtain the items;

Q1 : the optimal number of items the retailer obtains from supplier 1;

Q;: the optimal number of items the retailer obtains from supplier 2;

f (xa : the probability density function of demand for the item;

F(xaa : the cumulative density function of demand for the item.

Following the above notation, it is known that if the retailer obtains the item

from supplier 1, he can gain a profit of (Οί • p — Τί • ca for each unit he sold. However,
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if the retailer obtains the item from supplier 2, he can gain a profit of (τ 2 • p — Τ2 • ca

for each unit sold.

From the abte description, the following assumptions can be made:

In other words, the retailer gets more profit per unit from the items he sells from

supplier 1 than from supplier 2.

The retailer will sell the unsold items at the salvage price s dollars/unit.

Rαseλ nn the above notation and assumptions. the following can be obtained:

After some algebra the partial derivatives of Ε(Q 1 , Q2 a are as follows:
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The retailer needs to decide the optimal quantity Qi and Q2 of items to be

obtained from suppliers 1 and 2, respectively, under the available fund constraint.

Therefore, the following formulation is appropriate:

subject to:

5.2.2 The Structure of the Optimal Policy

Although it is difficult to get the closed forms of the optimal quantities (Qi, QZa

based on the above model, some structures of the optimal policy can still be foov.

Assuming that the limited fund T is fully expended, the following conditions that
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make the retailer obtain the items only from supplier 1, only from supplier 2 or from

both of them, respectively can be found out.

impossible for the retailer to obtain items from supplier 1 while not obtaining anything

from supplier 2. In other words, it is impossible for Ai > 0 and A2 = 0.

Proof:

If it is proved that when A1 > 0 and A2 = 0, Qί /Τ2 < (Al p — sa/ (rep — sa, then

Theorem 6 has been proven.

, from the Kuhn-Tucker

From Kuhn-Tucker condition 4a the following equation can be obtained:

Equating (5.10a and (5.11a for F(A1aa, the following result can be obtained:
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and furthermore, Ζ3 < 0. By now Theorem 6 has been proven. O

Theorem 6 shows that if the ratio of the transfer rates ο ι to α2 is high enough,

the structure of the optimal policy is that the retailer would never just obtain the

items from supplier 1.

is

impossible for the retailer to obtain items from supplier 2 and not obtain anything

from supplier 1. In other words, it is impossible for Qi = 0 and Q2 > 0.

Proof:
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and furthermore Ζ2 < 0 which contradicts the condition Ζ2 > 0 for Q1 = 0 and

Q2 > 0. Theorem 7 is proved. Ο

Theorem 7 can be explained by intuition. If the profit margin per unit from

supplier 1 is higher than the cost margin, then the retailer would never just get items

from supplier 2.



Proof:

First part aa is proved: If it can be shown that when

satisfy the Kuhn-Tucker conditions, then part aa will be proved.

67

Therefore part aa is proved.
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it is also impossible that A1 = 0 and A2 > 0. Therefore Ai > 0 and A2 > 0 is the

only option that can satisfy the given conditions. From the Kuhn-Tucker conditions,

the two expressions can be gotten as follows:

where Ζι > Ο. Part ba is prted.

Theorem 8 is proved. ❑

5.3 Conclusion

This chapter has studied the optimal procurement strategy structure of a retailer

over a limited amount of available funds. The conditions over which the retailer

would never obtain the items only from the supplier with a higher transfer cost rate

and the conditions over which the retailer would never obtain the items only from

the supplier with a lower transfer cost rate have been obtained. Also the conditions

over which the retailer would obtain the items just from the supplier with a higher

transfer cost rate and the conditions over which the retailer would obtain the items

from both suppliers have been given.

While the focus of this chapter has been on the retailer, further study of the

effects on the channel and the supplier from a revenue-sharing contract are worth

studying when the retailer faces a limitation of available fovs.



CHAPTER 6

SUMMARY AND SUGGESTIONS FOR FUTURE RESEARCH

This dissertation investigated the impact of virtual transshipments and revenue-

sharing contracts on the operations and profitability of a limited supply chain.

6.1 Summary

In Chapter 3, results from a computational study confirm the benefits of employing

virtual lateral transshipment in a system with two capacitated manufacturing plants.

Managerial insights on how to amplify such benefits are also explored.

The revenue-share contract is one popular mechanism in supply chain manag-

ement. It was shown in Chapter 4 that the parameter r (the revenue-sharing ratea

in the revenue-sharing contract is very important for the supply chain's outcome.

The partner who keeps more than half of the revenue should be the leader of the

stackelberg game from the viewpoint of the supply chain's profit. In addition,

whatever the value of r is, the supply chain will generate more profit when the salvage

revenue is not shared between the two partners.

In Chapter 5, a revenue-share contract is adopted and the optimal order

structure is analyzed when the retailer faces competition from the suppliers and

available foving constraints. Managerial insights for the procurement methods were

presented.

6.2 Suggestions for Future Research

Future research in the subjects covered in this dissertation can take several directions

by increasing the complexity of the problems or relaxing some of the assumptions

used here.
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Virtual transshipments were investigated using one retailer and two symmetric

capacitated plants. A multi-plant, non-symmetric system would be an interesting and

more realistic extension of this problem.

Revenue-sharing contracts were investigated using the retailer as the focus.

Interesting extensions of this problem over limited availability of retailer fovs,

would be the study of the impacts a renew-sharing contract has on the supplier and

the entire channel. The problem can become even more complicated and realistic by

introducing supplier competition, retailer competition, and removing the assumption

that the retailer's selling price of the product does not change.
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