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ABSTRACT

ORDER SCHEDULING IN DEDICATED
AND FLEXIBLE MACHINE ENVIRONMENTS

by
Haibing Li

Order scheduling models are relatively new in the field of scheduling. Consider a

facility with m parallel machines that can process k different products (job types).

Each machine can process a given subset of different product types. There are n orders

from n different clients. Each order requests specific quantities of the various different

products that can be produced concurrently on their given subsets of machines; it

may have a release date, a weight and a due date. Preemptions may be allowed. An

order can not be shipped until the processing of all the products for the order has

been completed. Thus, the finish time of an order is the time when the last job of

the order has been completed.

Even though the idea is somewhat new that order scheduling measures the

overall completion time of a set of jobs (i.e., an order requesting different product

types) instead of the individual completion time of each product type for any given

order, many applications require that decision-makers consider orders rather than the

individual product types in orders.

Research into order scheduling models is motivated by their various real-life

applications in manufacturing systems, equipment maintenance, computing systems,

and other industrial contexts, where the components of each order can be processed

concurrently on the parallel machines.

In this research, two cases of order scheduling models are studied, namely, the

fully dedicated environment in which each machine can produce one and only one

product type, and the fully flexible machine environment in which each machine can



produce all product types. With different side constraints and objective functions,

the two cases include a lot of problems that are of interest.

Special interest is focused on the minimization of the total weighted completion

time, the number of late orders, the maximum lateness, and so on. On the one hand,

polynomial time algorithms are proposed for some problems. One the other hand, for

problems that are NP-hard, complexity proofs are shown and heuristics with their

worst-case performance and empirical analyses are also presented.
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CHAPTER 1

INTRODUCTION

1.1 The Order Scheduling Models

Scheduling involves allocating scarce resources to tasks over time, with the goal of

optimizing one or more objectives. It plays an important role in helping decision-

makers to plan good schedules for manufacturing and production systems as well as

computer systems. In the last several decades, very much work has been dedicated

to the field of scheduling theory, which includes various set of models, complexity

results, and algorithms. For excellent books and surveys on scheduling, the reader is

referred to [5, 27, 39, 43, 57]. For general topics about data structures and algorithms,

the reader is referred to [12, 61]. The reader is also referred to [19, 56] for good

introduction to computational complexity. Finally, the reader is referred to [30, 64]

for various topics about approximation algorithms.

This dissertation focuses on a class of relatively new scheduling models, namely,

Order Scheduling. In what follows, the order scheduling models are formally

described.

Consider a facility with m parallel machines that can produce k different

product types. Assume there are n orders from n different clients. Each order

j = 1, 2, ... , n requests a quantity of product type (job) 1 = 1, 2, ... , k which requires

pig > 0 units of processing. If Ai = 0, it implies that order j does not request product

type 1. Each order j may also have a release date rj which denotes the time the order

arrives in, a due date dj which represents the committed shipping date, and a weight

wj which ranks the importance of order j. Note that the product types of order j are

allowed to be completed after its due date, but then a penalty is incurred. When a

due date must be met, it is referred to as a deadline and denoted by dj . In certain

1
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environments, there may exist precedence constraints that require one or more orders

be completed before another order is allowed to start its processing.

For any order j, each product type 1 = 1, 2, ... , k can be produced on a subset

of the m machines, namely M1 C {1, 2, ... , m}. The m machines can be identical,

uniform, or unrelated. In an identical machine environment, a product type 1 of order

j requires plij = pii units of processing time on any machine i E Ml if each machine is

assumed to have a speed of 1. In a uniform machine environment, each machine i has

a speed v i > 0, and thus a product type 1 of order j, if entirely processed on a machine

i E MI , would take plij = units of time to process. Finally, in an unrelated

machine environment, the machines have different capabilities and performance on

processing a product type 1. In other words, the speed of a machine i E M1 on product

type 1, vu , is dependent on both the machine and product type; product type 1 of

order j requires plij = plj/vli units of processing time on machine i.

The parallel machine environment can be either nonpreemptive or preemptive.

In a nonpreemptive environment, each product type of an order must be processed in

an uninterrupted fashion on a machine. In contrast, in some machine environments,

preemptions are allowed, that is, a product type of an order can be processed for a

period of time, interrupted and continued at a later point in time either on the same

machine or on another machine. In the order scheduling models, it is assumed that

preemptions disallow multiple machines to produce the same product for one order

at the same time.

Product of the same type 1 but of different orders can be processed on a

machine i E M1 in a batch, without setup time being incurred between orders.

However, prior to processing the whole batch of type 1, a setup time may incur.

When a batch of type 1 is immediately preceded by a different batch of type l',

the setup time on machine i is denoted by s ip / . If 1 is the first product type on

machine i, then the setup time is denoted by siw. If for each 1, s i1 , 1 = siot =
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then the setup times on machine i are sequence independent; otherwise, they are

sequence dependent. If for each machine i, situ = s1'1 for all l' and 1 including the

case l' = 0, then the setup times are machine independent; otherwise, they are

machine dependent. If the setup times are both sequence independent and machine

independent, then sip/ = siot = sit = s i for each machine i. Furthermore, if the setup

times are sequence independent, machine independent and product type independent,

then sip / = sot = sit = st = s for each machine i. When s = 0, no setup time is

considered.

The objectives to be optimized are always a function of the completion time

of the orders, which are dependent on the schedule. The completion time of the order

j, denoted by Ci , is the time when the latest product type of this order is finished on

one of the machines. Let C13 denote the individual completion time of product type

1 of order j on one machine, it is obvious that

The objectives may also be functions of the due dates. The lateness of order

j is defined as

Note that it is positive when order j is completed later than its due date and negative

when it is completed early. The tardiness of order j is defined as

Thus, tardiness is always non-negative. The unit penalty of order j is defined as



4

Several objectives are of interest, namely, the makespan Crna,,, ---=- maxi<j<„{Ci},

the maximum lateness Lmax ---- maxi<j<ii{Li}, the total weighted completion time

> wjCi , the total weighted tardiness E wjTi , and the total weighted number of late

orders E wiui .

The class of models described above are very rich. The two extreme cases that

are of interest are:

(i) The fully dedicated case: There are m machines and m product types; each
machine i = 1, 2, ... , m can produce only one type of the m product types. In
other words, there exists a one-to-one mapping between the machine set and
the product set. This implies that k = m; for each / = 1, 2, ... , k, M1  = 1 and
M1 0 M1, if 1 0 1 1 .

(ii) The fully flexible case: There are m machines and each machine is capable of
producing all k products, that is, for each product type / = 1, 2, ... , k, M1 =
{1, 2, ... , m}.

Of course, there are many models in between these two extreme cases. It should be

noted that, for the fully dedicated case, since each machine is dedicated to produce

only one product type, the machine environment types (identical, uniform, and

unrelated) do not make much sense. Therefore, for this case, machine environment

types are not differentiated.

1.2 Application Examples

The research into the classes of models is strongly motivated by their many practical

applications in various fields. Indeed, even though the idea of measuring the overall

completion time of a set of jobs (i.e., an order requesting different product types)

instead of the individual completion time of each product type for any given order

is somewhat new, in many contexts there are several reasons for decision-makers to

consider orders as a whole rather than the individual product types in orders. First,

shipping partial orders inevitably causes additional shipping costs. Second, it also

causes extra management effort. Finally, some customers may require suppliers to
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ship complete orders. Therefore, suppliers have to wait until all products of an order

are ready.

Any Make-To-Order environment at a production facility with a number of

resources in parallel gives rise to the order scheduling models. Julien and Magazine [34]

presented two interesting applications of the models described. The first example

involves a manufacturer of computer peripherals such as terminals, keyboards and

disk drives. Small businesses that purchase new computer systems order different

quantities of each of these peripherals, and often require their entire order to be

shipped together. From the manufacturer's point of view, it is advantageous to

aggregate the demand of each peripheral and produce large batches in order to

minimize the number of setups.

A second example that illustrates the models described is a pharmaceutical

company that can produce different types of pills. Each type of pill needs to be bottled

separately. However, for a given pill type, it is often necessary to have different bottle

sizes. The pills and the bottles may be produced based on forecasts. However, the

bottling and packaging stage is order driven. The customers, which may be drugstores

or hospitals, order certain quantities of each product type (a product type being a

bottle of a given size of a given pill type). The production setups are the switch-overs

in the bottling facility.

Yang [67] gave yet another example in the car repair shop. Suppose each car

has several broken parts that need to be fixed. Each broken part can only be fixed by

a certain set of mechanics in the shop. Several mechanics can work concurrently at

different parts of the same car. When a mechanic finishes his work on a car, he can

continue working on his assigned broken parts in another car. A car can not leave

the shop until every broken part is fixed.

In manufacturing systems involving two stages, different types of components

(or subassemblies) are produced first at its pre-assembly stage, and then assembled
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into final products (jobs) at its assembly stage. The pre-assembly stage consists of

parallel machines (called feeding machines), each of which produces its own subset

of components. Each assembly operation can not start its processing until all the

necessary components are fed in. As illustrated in [15, 40, 58], there are a lot of

application examples of such two-stage assembly systems. A good example arises in

parallel computing systems, in which several programs (or tasks) are independently

processed first at certain processors, and then gathered at a main processor for

final data-processing. The main processor can only start its processing after all the

programs feed in their results. As noted by Sung and Yoon [63], the order scheduling

models only deal with the pre-assembly stage in such two-stage systems.

1.3 Notation

For convenience of description in later chapters, the following notation is proposed

for the class of order scheduling problems that are of interest. The notation is an

extension of the a 1 /3 1 'y notation introduced by Graham, Lawler, Lenstra, and

Rinnooy Kan [27].

In the a field, the machine environment of the fully dedicated case is denoted

by PDm, where the m denotes the number of machines; when the m is omitted

it is assumed that the number of machines is arbitrary. For the fully flexible case,

the identical, uniform, and unrelated parallel machine environment are denoted by

PFm, QFm, and RFm, respectively; again, when the m is omitted it implies that

the number of machines is arbitrary.

In the /3 field, IIk is included to refer to the fact that there are k different

product types; the absence of the k indicates that the number of different product

types is arbitrary. In addition, an s, s i , or s ly may be included in the fi field to

indicate different types of setup times that have been defined previously. Note that

setup times do not make sense for the fully dedicated case, since each machine is
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dedicated to produce a unique product type. Other constraints that can be included

in the field are release dates ri , preemptions (prmp), precedence constraints (prec),

processing time properties, and so on.

The 7 field denotes the objective function to be optimized, for example, the

maximum lateness Limas and the total weighted number of late orders E wiui .
As an example of the notation, PDm ri > T ..7 refers to the case with m

fully dedicated machines in parallel, n different orders with order j having a release

date ri and a due date dj . The objective is the minimization of the total tardiness.

1 EAs another example, PF Ti, 1-1, prmp wiCi refers to a fully flexible environment

with an arbitrary number of identical machines in parallel. The number of different

product types is arbitrary. Order j has a release date ri , and preemptions are allowed.

The objective is the minimization of the total weighted completion time. Finally, the

notation QF6 prmp, s, I13, di = d Lmax refers to the fully flexible case with 6

uniform machines in parallel and 3 different product types. Each product type has

the same setup time s, order j has a common due date d, and preemptions are allowed.

The objective is the minimization of maximum lateness.

1.4 Literature Survey

For the order scheduling models, most of the past work has focused on the fully

dedicated case.

Sung and Yoon [63] considered a special case where m = 2 and all ri = 0,

namely, PD2 > wici . They showed that PD2 > wjci is strongly NP-hard. For

the special case with all identical weights, Wagneur and Sriskandarajah [65] tried to

prove that PD2 I E ci is strongly NP-hard. However, Leung et al. [49] recently

pointed out that their proof is not correct. Wang and Cheng [66] proposed three

greedy heuristics for PD > wjci . Two of the heuristics generalized the two greedy

heuristics designed for PD2 	 wig; by Sung and Yoon [63]. All these three
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heuristics have an approximation ratio of m. Note that a p-approximation algorithm is

a polynomial-time algorithm that produces a solution of objective cost at most p times

the optimal cost. Wang and Cheng [66] also proposed a 1-approximation algorithm

for PD E wiCi . The algorithm is based on a linear programming relaxation which

is formulated on the time intervals geometrically divided over the time horizon.

For due date related objectives, Wagneur and Sriskandarajah [65] showed that

PD2 1 E ui is NP-hard in the ordinary sense. Cheng and Wang [10] showed that

there exists a pseudo-polynomial time algorithm for every fixed m > 2. Ng, Cheng,

and Yuan [55] showed that when the number of machines is arbitrary the problem

becomes strongly NP-hard; they showed that the more restricted problem PD I pig E

{0, 1}, di = d > U.; is strongly NP-hard as well. For PD I pig E {0, 1}, dj = d 1 > u.i,
Ng, Cheng, and Yuan [55] proposed a d-approximation heuristic based on a linear

programming relaxation.

It seems that the fully flexible case is more complicated. However, there is

still some work done for it. When there is no setup time for each product type,

Yang [67] showed that the problem PF2 1 H 1 E Ci is NP-hard in the ordinary

sense even if each order requests only one or two product types. However, it is not

known whether or not there exists a pseudo-polynomial time algorithm for the above

ordinary NP-hard problem. When the number of machines is arbitrary, Blocher and

Chhajed [4] showed that the problem PF H E ci is NP-hard in the strong sense.

Blocher and Chhajed [4] also developed five heuristics for solving the problem and

reported some experimental results.

When preemptions are allowed, Leung et al. [44] showed that the problem

PF2 I prmp, II2 I E ci is NP-hard in the ordinary sense. They also developed

a (2 — 1/m)-approximation algorithm for a more general problem PF I prmp, H

E wici.
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Introducing setup times for the product types usually makes the problems

much harder, even for a single machine. Gerodimos et al. [20] studied PF1 s 1 , Ilk I 7

and PF1 I s 1 , II I 2'. They showed that PF1 I si, H 1 Lmax is NP-hard in the

ordinary sense, and it can be solved by dynamic programming in 0(Ignk ), which is

polynomial for fixed k. If it requires all operations for any product type be scheduled

contiguously, i.e., the operations for each product type must be scheduled in one

batch, such constraints are termed as group technology (GT) in [20, 54]. With group

technology, Gerodimos et al. [20] showed that PF1 s1, H, GT I Lmax can be solved

in O(nk + (n + k) lg(n + k)) time.

For the objective of minimizing the total weighted number of tardy orders,

Gerodimos et al. [20] showed that PF1 s, 112 EU.; is ordinary NP-hard, while

PF1 I s = 1, Rm .; E {0,1} I Eli.; is strongly NP-hard. They gave an 0 (nk 2 dkm±aD

time algorithm for the more general problem PF1 I s 1 , II 1 Ewjui , where dmax =

maxj {di }. Thus, the algorithm is pseudo-polynomial for PF1 1 s i , ilk E U'1'

Recently, Cheng, Ng, Yuan [9] showed a stronger result that even the very restricted

problem PF1 I s =1,II,di = d,pii E {0, 1},E, Ai = p I Eui is strongly NP-hard.

Interestingly, they noticed that PF1 s l , H, di = d,pii > 0 I EU.; can be solved by

the shortest processing time (SPT) rule.

For the objective of minimizing the total completion time, Gerodimos et al. [20]

showed that PF1 I st, II, GT,pii > 0 I > Cj can be solve in 0(kn lg n) time. Ng,

Cheng, and Yuan [54] showed that both PF1 I s, II, GT, p13 E OM 1 ECi and

PF1 I s, II, pij E {0,1} 1 > Ci are strongly NP-hard. Interestingly, Ng, Cheng, and

Yuan [54] posed that the complexity of PF1 I s i ,II,pii > 0 I > Cj remains an open

problem. Note that the first problem is not necessarily a special case of the latter one.

When k is fixed, the complexity of PF1 I s i ,IIk,GT E Cj and PF1 I s 1 , IIk, 1 E Cj

remains open (see Gerodimos et al. [20]).
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1.5 Organization and Overview of the Dissertation

In this dissertation, special attention is focused on two aspects: 0 to establish

computational complexity results for some problems; ii) to design algorithms for some

NP-hard problems, and analyze the algorithms both theoretically and empirically.

The dissertation is based on the results contained in [48, 46, 47, 45, 50]. In

what follows, the organization and overview of the dissertation will be described.

1.5.1 The Fully Dedicated Case — E ci

Chapter 2 presents some results obtained for the fully dedicated order scheduling

model, with the objective of minimizing the total (unweighted) completion time > ci .
First of all, some structural properties are shown for a class of problems. Then, the

problem PD3 I > ci is shown to be NP-hard in the strong sense. Thus, it is unlikely

that the problem can be solved by any polynomial-time algorithms unless P = Ar'P.

Due to this, two new heuristics together with their worst-case performance analyses

are presented. In addition, the chapter also presents an empirical analysis of these

two new heuristics together with the three other heuristics proposed by Sung and

Yoon [63] and by Wang and Cheng [66]. For the purpose of comparison, a Tabu

Search procedure is implemented to improve the best schedule generated by the five

heuristics. The results show that one of two heuristics proposed in this chapter

performs the best among all five algorithms.

1.5.2 The Fully Dedicated Case — Due Date Related Objectives

Chapter 3 focuses on the fully dedicated case with some due date related (unweighted)

objectives. It shows that the EDD (Earliest Due Date first) rule (see Jackson [32])

solves PD I Lmax ; the preemptive EDD rule solves the problem PD ri ,prmt I Lmax ;

and PD prec Lmax can be solved by dynamic programming. In addition, the

problem PD dj Lmax can be solved in polynomial time. For a special case with
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common due dates, namely PD I di = d Eui , the chapter gives a greedy heuristic

which has a worst-case performance ratio of

(

rn
pijmax { E

1<j<n	 Ci
i=1

where 7-1(k)	 Ek 1 27: is the harmonic series (see Cormen, Leiserson, Rivest, and

Stein [12]), and ci = GCD(,Pi pie, • • • , p in , d), for i = 1,2, ... , m. Furthermore, the

Hodgson-Moore algorithm (see Moore [51]) is generalized for solving PD E ui .

Based on the structural properties of the problem PD Eui , an exact algorithm,

which is based on constraint propagation, backtracking, and bounding techniques, is

designed. Finally, an empirical analysis is presented for the two algorithms that are

proposed for PD > ui .

1.5.3 The Fully Dedicated Case — > wici

Chapter 4 still focuses on the fully dedicated case. However, the objective of interest

is the minimization of the total weighted completion time E w3 C3 . Special interest

is focused on the design and analysis of some approximation algorithms for PD

E wiCj and PD ri E wiCi , both of which are NP-hard in the strong sense.

The algorithms considered are of two types: priority rules (either static or

dynamic) and LP-based algorithms. The priority rules, generalized from the heuristics

for PD E Cj in Chapter 2, are only applicable to PD > wjCi , i.e., when rj = 0

for all j. Even though the worst-case bounds of the priority rules indicate that they

could perform badly, some small constant bounds (2 or 3) can be obtained for the

rules when the processing times are subject to additional constraints.

The two LP-based algorithms are based on two different linear programming

relaxations. Analyses show that both algorithms have constant performance ratios

for solving PD ri EwiCi , thus PD Ewi Ci•
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The chapter also presents empirical comparisons of the various algorithms,

based on their results obtained for solving a large number of instances generated for

the problem PD wici. The conclusions from the empirical analyses provide

insights into the trade-offs with regard to solution quality, speed, memory space, and

implementation complexity.

1.5.4 The Fully Flexible Case with Identical Machines — E wici

Chapter 5 examines the fully flexible case with identical machines in parallel. The

objective of interest is the minimization of the total weighted completion time. According

to the notation defined previously, the problem is denoted by PF Ilk E WjCi when

k is fixed and as PF H E wig; when k is arbitrary.

Both PF I Ilk E wiCi and PF 1 11 I E wiCi are NP-hard in the strong

sense. The attention is focused on two classes of heuristics, which are referred to

as sequential two-phase heuristics and dynamic two-phase heuristics. The chapter

presents a worst-case analysis as well as an empirical analysis of nine heuristics. The

analyses enable one to rank these heuristics according to their effectiveness, taking

solution quality as well as running time into account.

1.5.5 The Fully Flexible Case with Uniform Machines — E wiCi

Chapter 6 investigates the fully flexible case with uniform machines in parallel.

Again, the objective of interest is minimizing the total weighted completion time.

Preemptions are allowed. According to the notation defined previously, when k

is fixed, the non-preemptive and preemptive cases of the problem are denoted by

QF ilk > wiqj and QF prmp, IIk E wiCi , respectively. When k is arbitrary,

they are denoted by QF 11ZIE wjCi and QF I prmp,HIEwi Ci , respectively.

Due to their NP-hardness, a heuristic is proposed for the non-preemptive case

and the preemptive case, respectively. For the heuristic that is proposed for the non-
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preemptive case, analysis shows that it has a worst-case bound of m. For the heuristic

proposed for the preemptive case, analysis shows that it has a worst-case bound of m

for the general case and of 2 when m = 3. The two heuristics are also implemented

to have an empirical analysis. The observations on the experimental results reveal

that the two heuristics can produce very near-optimal solutions in practice.



CHAPTER 2

THE FULLY DEDICATED CASE —

THE TOTAL COMPLETION TIME

2.1 Introduction

This chapter examines the fully dedicated order scheduling model. As described in

Chapter 1, in the fully dedicated case, there are m machines and m product types;

each machine can produce one and only one type. Thus, these is a one-to-one mapping

between the machine set and the set of product types. Without loss of generality, it

may be assumed that machine i is the only machine that can produce type i and type

i is the only type that can be produced on machine i. Due to this, the subscript i

refers to a machine as well as to a product type. In addition, the notation piij , which

denotes the time required to process product type i of order j on machine i, can be

shortened as pij .

It has been noted that Wagneur and Sriskandarajah [65] referred to the fully

dedicated order scheduling model as "Open shops with job overlaps", while Ng et

al. [55] called this model "Concurrent open shops" . This case is considerably easier

than the other cases because there is no freedom in the assignment of jobs to machines.

Each machine can start processing at time 0 and keeps on producing as long as there

is a demand. The main issue here is the assignment of finished products to customers.

For dedicated machines, the setup times do not play a role in scheduling, and can

therefore be dropped from consideration.

According to the notation defined in Chapter 1, the problem PD1 I 13 I 'y is

identical to the problem 1 1 [3 1 /) , . So PD1 11 ETi, PD1 I r i 1 Eq, PD1 II
Ewjui are all NP-hard (see Du and Leung [14] and Lenstra [41]). Therefore, the

research is focused on rrt > 2.

14
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1 E ciThe problem PD 1 E cf.; is of special interest. The notation PD

implies that each order j = 1, 2, ... , n is released at time zero, and all wi = 1. For

this problem, Wagneur and Sriskandarajah [65] considered the case of two machines,

i.e., PD2 11 E ci , and presented a proof claiming that the minimization of the

total completion time is strongly NP-hard. Unfortunately, their proof is not correct

(Leung et al., [43]). Independently, Sung and Yoon [63] showed that PD2 1 E W•C•.7.7 

is strongly NP-hard. One of the main results in this chapter is a proof that the

PDm 11 E C3 problem is strongly NP-hard for every m > 3.

Several heuristics have been proposed in the literature for the PD 1 E ci

problem. Wang and Cheng [66] analyzed three greedy heuristics whose worst-case

bounds are m. Two of these heuristics were generalizations of heuristics proposed

by Sung and Yoon [63] for two machines. In this chapter, two new heuristics for

PD 11 E C3 are introduced. For one of these two heuristics, it is shown to have a

worst-case bound of m. Experimental results show that one of the two new heuristics

outperforms the three heuristics that have appeared in the literature.

The results in this chapter have been published in Leung, Li, and Pinedo [48].

The chapter is organized as follows. Section 2.2 presents some preliminary results for

a fairly general class of objective functions that include the total completion time as

well as the total tardiness. Section 2.3 shows that PDm 11 E cj is NP-hard in the

strong sense for every fixed m > 3. Section 2.4 gives a description and an analysis of

two new heuristics. Section 2.5 presents an empirical analysis of various heuristics.

Finally, some concluding remarks are presented in Section 2.6.

2.2 Preliminary Results

In this section, some preliminary results are developed for the fully dedicated order

scheduling model. These results are helpful for understanding the problems and
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are very useful for designing algorithms for these problems. The following general

properties can be shown fairly easily.

Lemma 2.1 (Structural Properties)

(i) The makespan Cmax is independent of the schedule, provided that the machines
are always kept busy whenever there are orders available for processing (i.e.,
unforced idleness is not allowed).

(ii) If f; (C; ) is increasing in Ci for all j, then there exists an optimal schedule for the
objective function fmax as well as an optimal schedule for the objective function
E fi (Ci ) in which all machines process the orders in the same sequence.

(iii) If for some machine i there exists a machine k such that p ii < pki for j =
1, ... , n, then machine i does not play any role in determining the optimal
schedule and may be ignored.

Some remarks with regard to these properties are in order. The second

property does not hold for the more general problem in which the function fi (Ci ) is

not monotone (e.g., problems that are subject to earliness and tardiness penalties).

The third property is useful for reducing the problem size.

Consider the problem PD 1 fi 1 E fi (C,). Since this problem is strongly

NP-hard, it is advantageous to develop dominance conditions or elimination criteria.

Lemma 2.2 If in the problem P D1 II E f j (Ci ) there are two jobs j and k such that

Pi < Pk and

df .(t) > df k (t) 3  

dt — dt

then there exists an optimal schedule in which job j precedes job k.

Proof: The proof is by contradiction. Suppose job j is processed after job k

(see Figure 2.1). In between jobs k and j there are a number of jobs that are being

processed. Assume that in this original schedule the completion of job j is denoted by

Ci and the completion of job k is denoted by Ck. Consider the following interchange:
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Figure 2.1 Illustrating the proof of Lemma 2.2.

Put job j in the position of job k and vice versa. Let the completion time of job j

in this new schedule be denoted by and the completion of job k by C. In the

new schedule, all the jobs scheduled in between the two jobs are completed earlier,

since job j is shorter than job k. Since the cost functions are all monotonically

increasing, the contribution of these jobs to the overall objective goes down. It is

clear that Cj = C. It is also clear that C'j < Ck. So the move of job k increases the

objective function by an amount fk (C) — fk (Ck ), whereas the move of job j reduces

the objective function by an amount fj (Ci ) — fj (q). Since

and
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the savings incurred by processing job j earlier are larger than the cost incurred by

processing job k later.	 0

In a sense the result in Lemma 2.2 generalizes the well-known dominance result

of Emmons [16]. Intuitively, it means that the cost function of the shorter job j has

to be "steeper" than the cost function of the longer job k; the actual levels of the

costs are of no importance (see Figure 2.1). A dual of the result in Lemma 2.2 can be

established for the single machine problem in which the jobs are subject to earliness

penalties.

Lemma 2.2 can be generalized to a result for the problem PD H E Ji (C; ).

Lemma 2.3 If in the problem PD 11 > fi(Ci) there are two orders j and k such that

pig < pik for each i = 1, 2, ... , m, and

then there exists an optimal schedule in which order j precedes order k.

Consider now the special case in which pij = pi for all j. That is, the processing

time requirements for all n orders on machine i are identical to p i . For which type of

objective functions is it possible to reduce the problem size by not taking machine i

into consideration? It is clear that if the objective is Lmax machine i does not play

a role in determining the optimal sequence; the optimal sequence is EDD (which is

determined by just the due dates). However, even though in this case the optimal

sequence is not affected by machine i (or by any other machine for that matter),

deleting machine i may affect the value of the objective function. In the case of the

objective functions fmax and > tjj the problem cannot be reduced in size by deleting

machine i: the smaller problem without machine i may have a different optimal

sequence.
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2.3 Complexity Result

Wagneur and Sriskandarajah [65] tried to prove that PD2 E ci is NP-hard in the

strong sense. However, Leung et al. [49] recently pointed out that their proof is not

correct. In this section, the following complexity result is presented.

Theorem 2.4 The problem PD3 E ci is strongly NP-hard.

However, the complexity of PD2 I E ci remains an open problem. In what

follows, Theorem 2.4 will be proved by reducing the Numerical Matching with Target

Sums (NMTS) problem to the decision version of PD3 > Ci . The NMTS problem

is known to be strongly NP-hard (Garey and Johnson [19]) and can be stated as

follows:

Definition 2.1 (NMTS) : Let A =	 , an }, B = {b 1 ,... , bn }, and C =

,	 be three sets of natural numbers. Is it possible to find a partition of

AU B into n subsets {aim , bi(r) } such that c,. = ai(r) + bi (r) for r = 1, . . . ,n ?

Given any instance of NMTS, one can construct an instance of the decision

version of PD3 E Ci with orders Ja (Jb , Jc ) of type a (respectively, b, or c) that

have the following processing times on the 3 machines, j = 1, 2, ... , n:

Since it is necessary that E7=1 ci = E7=1 (ai + kJ ) for any instance of NMTS in

order to have a "Yes" answer, it is assumed that the given instance of NMTS satisfies

this condition. Otherwise, it can be mapped into a "No" instance of the scheduling

problem. The threshold for the decision version of PD3 E ci is given as:

where c 1 < c2 < • • • < cn•
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Lemma 2.5 If the given instance of NMTS has a solution, then there is a schedule

with E ci < D.

Proof: Let cr = ai (r) + bi(r ) for 1 < r < n. One can construct a schedule S with the

following sequence:

It is easy to show that S has E Ci exactly D.	 ❑

The following lemma is the key to the proof of Theorem 2.4.

Lemma 2.6 There is an optimal schedule in which the orders are scheduled in the

order (abc), repeated n times.

Proof: The proof is relegated to Appendix A. 	 ❑

Lemma 2.7 There is an optimal schedule in which all orders of type a finish on

machine 2, while all orders of type b finish on machine 1.

Proof: Let S be an optimal schedule. By Lemma 2.6, it can be assumed that the

orders are scheduled in the order (abc), repeated n times. Thus, an order of type a

is in position 3k + 1 and an order of type b is in position 3k + 2, 0 < k < n — 1.

Let C3k+1 and C3k+2 be the finish times of the orders in positions 3k + 1 and 3k + 2,

respectively. By reindexing the orders if necessary, it can be assumed that the orders

in positions 3k + 1 and 3k + 2 are Jak+l and Jb„ +„ respectively, 0 < k < n — 1. Then,
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(2.1) and (2.2) follow from the assumption that L > nX > 2n E 71=1 ci .

Thus, the order of type a in the (3k + 1)' position finishes on machine 2 and

the order of type b in the (3k + 2) nd position finishes on machine 1. 	 El

Lemma 2.8 If there is a schedule with E ci < D, then there is a solution to the

given instance of NMTS.

Proof: By the above two lemmas, the finish times in S can be computed as follows.

(For convenience, it is assumed that S is a1b1c1a2b2c2 • • • anbnen; otherwise, one can

reindex the orders.)
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implies that Si = 0 for each 1 < j < n.

This can be shown by contradiction. Suppose it is not the case; that is, one

or more (5j are strictly positive and one or more (5 j are strictly negative.

The claim is that it is impossible for a partial sum E 3k. =1 6i to be greater than

zero. If such a partial sum is positive, then the left-hand side (LHS) in (2.15) must

be greater than 0. If the RHS in (2.15) is negative, the contradiction is immediately

established; if the right-hand side (RHS) is positive, then the LHS is at least twice as

large because of the last term on the LHS and the contradiction is also established.

So a partial sum can never be strictly positive.

Consider the case where the partial sums E 3k. =1 Si are always either negative

or zero. If all the partial sums are negative or zero, then E rl=i (n + 1 — j) 6j must

be negative. This follows from the fact that for every 61 that is positive by a certain

amount, there is one or more (5 j that are negative by that amount with j < 1. From

the fact that the multiplier in the sum on the RHS is larger for j < 1, it follows that

the sum on the RHS is negative. With the LHS of the inequality being 0 and the

RHS negative, a contradiction is again established. ❑

The correctness of Theorem 2.4 follows from Lemma 2.5 and Lemma 2.8.

Because of the complexity of the problem, it appears to be of interest to study

heuristics that are based on simple priority rules. In the next section, some simple

heuristics are proposed to solve this problem.

2.4 Simple Heuristics and Their Worst-Case Analyses

For the one-machine case PD1 Ew•3 c•3) it has been shown that Smith's WSPT

(Weighted Shortest Processing Time first) rule (see [62]) is optimal. According to

this rule, the jobs are scheduled in nondecreasing order of pi lwi , where pi denotes

the processing requirement of job j. It follows that when wi = 1, it needs only to

sequence the jobs in nondecreasing order of pj . Usually, the unweighted version of
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the WSPT rule is named as SPT (Shortest Processing Time first). More or less by

borrowing the greedy idea of the SPT rule, various heuristics that appear attractive

in dealing with the total completion time objective have already been proposed in

the literature. Most of these heuristics are greedy heuristics and generate a sequence

of orders progressively one at a time.

Definition 2.2 The Shortest Total Processing Time first (STPT) heuristic generates

a sequence of orders one at a time, each time selecting as the next order the one with

the smallest total amount of processing over all m machines.

Definition 2.3 The Shortest Maximum Processing Time first (SMPT) heuristic gene-

rates a sequence of orders one at a time, each time selecting as the next order the one

with the smallest maximum amount of processing on any one of the m machines.

Definition 2.4 The Smallest Maximum Completion Time first (SMCT) heuristic

first sequences the orders in nondecreasing order of p ig on each machine i = 1, 2, . . . , m,

then computes the completion time for order j as C; = max inl i {Cji }, and finally

schedules the orders in nondecreasing order of C.

Definition 2.5 The Shortest Processing Time first applied to the machine with the

largest load (SPTL) is a heuristic that generates a sequence of orders one at a time,

each time selecting as the next order the one with the smallest processing time on the

machine that currently has the largest load.

Definition 2.6 The Earliest Completion Time first (ECT) heuristic generates a

sequence of orders one at a time; each time it selects as the next order the one that

would be completed the earliest.

The SMPT and the STPT heuristics have been analyzed by Sung and Yoon [63].

Besides the SMPT and the STPT heuristics, Wang and Cheng [66] also studied the
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SMCT heuristic. It seems that the SPTL heuristic and the ECT heuristic proposed

above are new.

That such greedy heuristics or priority rules may perform quite poorly is well-

known. The following examples illustrate instances in which three of the heuristics

described above do not perform well.

Example 2.1 Consider two machines and n orders that require 1 time unit on machine

1 and 0 on machine 2, n orders that require 1 time unit on machine 2 and 0 on

machine 1, and a x n orders that require 1-6 on machine 1 and 1-6 on machine 2.

The ratio

is increasing in n and when n	 oo it becomes

This ratio reaches its maximum of 0 when a = 0. The optimal schedule in this

case is to schedule the orders with the smallest total processing time first, i.e., the

schedule is generated according to the STPT rule.

It is clear how to generalize this counterexample to an arbitrary number of

machines m. The ECT rule will then perform even worse in comparison with the

optimal rule. A counterexample to the ECT rule can also be constructed when

all orders require the same total amount of processing. It should be noted that

Example 2.1 also applies to the SMCT heuristic.

A counterexample to the STPT rule can be constructed as follows.

Example 2.2 Consider 2 machines and n orders that require 1 unit on machine 2

and E on machine 1, and a x n orders that require 1 unit on machine 1 only. By

taking a = (1 + A/2, one can obtain a value of the ratio of 1.618.
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This counterexample can be generalized to an arbitrary number of machines

m. The STPT rule will then perform even worse in comparison with the optimal

rule. Sung and Yoon [63] proved that for two machines

Wang and Cheng [66] generalized the above result to m machines and the bound is

m. So, the worst-case ratio of the STPT rule for two machines is bounded above by

2 and Example 2.2 shows that the ratio can be as high as 1.618.

The performance of SPTL can be very bad. Consider the following example:

Example 2.3 Consider 2 machines and 1 order that requires 0 time on machine 1

and A units of time on machine 2; in addition, there are B orders that require 1 time

unit on both machines. If machine 1 is considered at t = 0, and let A> B, then the

ratio becomes (B + 1), which can be arbitrarily large. However, if at t = 0 machine 2

is considered, then the result is optimal.

Theorem 2.9 For PD I 	 C1 ,

Proof: Let pi = max i<i<n {pij }, let SECT denote the schedule generated by ECT

and let SopT denote an optimal schedule. Furthermore, without loss of generality, it

can be assumed that the orders are labeled in such a way that

< P2 < • • • < Pn-

First of all, it needs to be shown that

(2.16)
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Clearly, the first order scheduled in SECT must be the one with the shortest

maximum processing time. Thus,

Suppose that there exists a smallest position j*(1 < j* < n) of the orders

scheduled in SECT, such that

4*_i

but

Then,

So the maximum processing time of the (f) th order in SECT is larger than pj*. It

follows that there exists at least one order with a subscript 1(2 < l < j* and A < pi*)

that was scheduled after position j* in SECT. However, if order 1 is scheduled in

position j* in SECT, then Cj* (SECT) will be smaller. This leads to a contradiction,

since the ECT heuristic always chooses as the next order the one that would be

completed the earliest.

From (2.16), it follows that



Now, let [j] be the order position in SopT. Then,
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The last ">" is due to the SPT rule.

Hence, the result follows from (2.17) and (2.19). 	 ❑

2.5 Empirical Analysis

This section describes an empirical analysis of the heuristics for the PDm 11 > ci

problem. Due to the NP-hardness of the problem for m > 3 (m = 2 remains open),

it is not likely to produce optimal solutions for the problem within limited running

time by any exact algorithms. Thus, to evaluate the performance of these heuristics,

a Tabu Search routine (Glover [21, 22]) is applied to improve on the results obtained

by these heuristics; the Tabu Search routine basically serves as a tool for measuring

the effectiveness of the five heuristics that are being analyzed.

2.5.1 Schedule Generation by Heuristics

Each one of the five heuristics is applied to every instance being considered and

the five schedules generated are compared with one another. Implementing the five

heuristics is relatively easy. Through a sorting algorithm, both STPT and SMPT

can be implemented to run in 0(mn+ n lg n) time, and SMCT can be implemented

to run in 0(mnlg n) time. Both SPTL and ECT can be implemented in a natural
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way to run in 0(mn2 ) time. Each heuristic produces a schedule and the best one of

the five schedules generated is fed into the Tabu Search for postprocessing.

2.5.2 Postprocessing with Tabu Search

Tabu Structure In many applications of Tabu Search, reverse moves resulting in

recently visited solutions are prohibited. However, if a short-term tabu list is used, it

may be hard to avoid cycling. Surveys on the application of Tabu Search in intelligent

scheduling systems can be found in Zweben & Fox [69] and Barnes et al. [3].

In what follows, a tabu structure that uses long-term memory (Glover and

Laguna [23]) is proposed. The idea is to encode the solutions in an informative but

concise way so that the representations describe the solution accurately and can be

stored in a tabu list without taking too much memory. In addition, the representations

are kept throughout until the Tabu Search procedure stops.

To represent a solution in a concise way, a schedule is encoded by using a data

structure that consists of four data fields: 1) Cost of the schedule; 2) index of the

first order in the sequence; 3) index of the middle order in the sequence; 4) index of

the last order in the sequence.

It is possible that two different schedules have the same four data entries, but

the probability of this occurring is small. If the four data entries of two different

schedules are the same, then the two schedules are considered the same. Using such a

representation, cycling definitely will not occur, but there is a small probability that

some solutions will not be visited at all.

It should be noted that the above settings are somewhat similar to the tabu

cycle method (Glover and Laguna [23]) which is based on short-term memory. For

an implementation of the tabu cycle method, the reader is referred to Laguna [37].
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Neighborhood Generating Mechanism A neighborhood generating mechanism

defines a set of solutions that are to be explored by a local search procedure imbedded

in Tabu Search.

Given a schedule S as shown in Figure 2.2(a), a so-called Adjacent Subsequence

Interchange (ASI) as described in Figure 2.2 (b) generates a move from S to a

neighboring solution of S. A so-called Subsequence Reversal and Interchange (SRI)

also generates a move to a neighboring solution, see Figure 2.2 (c).

Each move is specified by three parameters: k 1 , k2 and k3 , where the positions

k 1 and k2 are the start and end positions of the segment that has to be transposed,

while position k 3 , which lies outside the segment [k 1 , k2], is the new position in front

of which the segment has to be moved to. Thus, these three position parameters

define a neighborhood with about 0(n3 ) distinct solutions for both ASI and SRI. To

make the neighborhood size smaller so that the tabu search will run faster, it may

be imposed that k2 — k1 < 6. Thus, the neighborhood size becomes 0(n2 ). For any

schedule S, the neighborhoods generated by ASI and SRI are denoted by NASI(S)

and N s RI (S) , respectively.

The dominance result described in Lemma 2.3 is incorporated in the generation

of NASI(S) and Nsiu(S) in order to prune the moves that result in solutions that

can never be optimal. Thus, the number of solutions in NASI(S) and Nsiu(S) to be

considered can be reduced.

Tabu Search Procedure The Tabu Search procedure operates as follows.

The Tabu Search Procedure

Step 1: {Initialization}

Select the best schedule S generated by STPT, SMPT, SMCT, SPTL, and ECT.
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Figure 2.2 Neighborhood generating operators.

Let Sb 4- S; Set tabu list F to be empty.

Step 2: {Tabu Search}

Explore all the solutions in NASI (S) and NSRI(S), and choose the best solution Sb

that is not in tabu list F.

If Sb is better than Sb, then let Sb <— S.

Add S into tabu list F; Let S 	 Sb .

Step 3: { Output}

If stop criterion is not met yet, goto Step 2. Otherwise, output Sb.

In the experiment, the stopping criterion is 1000 non-improving iterations in

Step 2. Aspiration criterion and intensification/diversification mechanisms are not

incorporated in the above tabu search procedure, since the purpose of using tabu

search here is just to evaluate the quality of the results produced by the heuristics.

Using these more intelligent mechanisms, the tabu search would perform better, but
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this is not the focus of this chapter. Readers who are interested in these techniques

are referred to Glover and Laguna [23].

The running time of the Tabu Search algorithm is dominated by Step 2,

each iteration of which examines 0(n 2 ) solutions in the neighborhoods NASI (S) and

NSRI (S). Since each exploration takes 0(mn) time to compute the objective cost of

a solution and 0(1) time to check if a solution is in the tabu list F, each iteration of

Step 2 takes 0(mn3 ) time.

2.5.3 Generation of Problem Instances

For each problem size with n = 20, 50, 100, 200 orders and m = 2, 5, 10, 20 machines,

30 instances are randomly generated using a factor called order diversity. The order

diversity i is used to characterize the number of product types each order requests.

The following three cases of order diversity are considered:

IC = 2: In problem instances 1 to 6 each order requests 2 different product types.

K = m: In problem instances 7 to 12 each order requests the maximum number of
different product types, namely m; m is the number of machines.

k = r: In problem instances 13 to 30 each order requests a random number (r) of
different product types; r is randomly generated from the uniform distribution
[1, m].

When the number of product types, / i , for each order j is determined, I i

machines are chosen randomly. For each machine i that is selected, an integer

processing time pii is generated from the uniform distribution [1, 100]. In total,

4 x 4 x 30 = 480 instances are generated.

2.5.4 Experimental Results and Analyses

The algorithms are implemented in C++ with STL (Standard Template Library).

The running environment is based on the RedHat Linux 7.0 operating system; the

PC used was a Pentium II 400Mhz with 128MB RAM.
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Table 2.1 The Percentage that Each Heuristic Performs the Best

Heuristic Percentage
STPT	 6.0
SMPT 0
SMCT 0
SPTL	 6.0
ECT	 88.0

For tables of detailed results produced by the algorithms for the generated

problem instances, the reader is referred to Leung, Li, and Pinedo [48] or the URL

http://web.njit.edu/ ,-ileung/pd-sumcjitables.pdf . In each one of the tables, the results

concerning the five heuristics appear in columns 3 to 7. The remaining columns are:

m: The number of machines.

Hmin : The name of the heuristic that yields the best result.

TS: The result obtained with Tabu Search.

Imp: The improvement obtained with Tabu Search (as a percentage).

Th (Sec): The total running time (in seconds) of the five heuristics.

Tts (Sec): The running time (in seconds) of Tabu Search.

Table 2.1 aggregates the results from the tables of detailed results. It shows

that ECT is the best heuristic. Both STPT and SPTL produce the best schedule for

some instances. However, neither SMPT nor SMCT produces the best schedule in

any instance.

The detailed results also show that all instances for which STPT performs the

best occur when m = 2, while the instances for which SPTL performs the best are

distributed over all values of m. When there are more than 2 machines, ECT tends

to be the best, and SPTL tends to be the second best. The differences between ECT
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and the other heuristics, especially the first three, can be quite substantial (often

more than 5 percent; especially when the number of machines is large).

The average costs in Table 2.2 to Table 2.4, respectively, show that for ic = 2,

the objective function decreases when m increases; for K = m, the objective function

increases when m increases; for lc = r, the change in the objective costs is not so

clear.

With regard to the average performance, Table 2.2 to Table 2.4 also show

that ECT performs better than all other heuristics. The improvement obtained by

the Tabu Search is not that much. The tables also reveal that SMPT is the worst

heuristic, while SMCT is slightly better than SMPT. STPT and SPTL are better

than SMPT and SMCT. Therefore, the average performance is also consistent with

Table 2.1.

Table 2.2 to Table 2.4 also show that, when ic = 2, the percentage improvement

obtained through Tabu Search over the best result from the five heuristics decreases

if m increases; when ic = m or ic = r, this percentage tends to increase when m

increases (even though for large n and m Tabu Search fails to provide much of an

improvement because of the large solution spaces). This is consistent with the fact

that the performance ratios of the heuristics become worse when m increases.

2.6 Concluding Remarks

This chapter focused on the fully dedicated order scheduling model with the objective

of minimizing the total (unweighted) completion time. One of the main results in this

chapter was the proof that PDm 1 E Cs; is strongly NP-hard for every m > 3. Due

to this, two new heuristics (ECT and SPTL) were proposed for solving the problem,

and their worst-case performance was analyzed. In addition, the chapter presented an

empirical analysis of the two heuristics together with other three heuristics (STPT,

SMPT, and SMCT) appeared in the literature. The experimental results showed that



Table 2.2 Comparison of Average Costs when ,c = 2

n m STPT SMPT SMCT SPTL ECT TS Imp

20
5
10
20

5140
3904
3246

5252
4082
3156

4795
3408
2543

4754
3622
2809

4539
3161
2411

4389
3118
2401

3.35
1.38
0.43

5 26962 28081 25002 24315 23193 22831 1.58
50 10 16684 17079 14291 15396 12913 12808 0.83

20 11455 11621 9356 10953 8447 8431 0.20
5 97028 99304 92602 89609 85675 84288 1.63

100 10 60583 62130 50860 54137 46273 46209 0.13
20 38073 38177 30852 35315 27197 27190 0.02
5 384440 398887 364984 350516 341139 334658 1.93

200 10 212608 215531 187304 190922 170692 170547 0.08
20 127751 127392 107108 119232 93620 93607 0.02

Table 2.3 Comparison of Average Costs when K = m

n m STPT SMPT SMCT SPTL ECT TS	 Imp

20

2
5
10
20

9719
12006
12934
13142

9814
12057
13114
13410

9662
11909
12515
13187

9525
11662
12418
12758

9283
11338
12031
12314

9193
11166
11808
12031

0.97
1.52
1.88
2.37

2 50672 51973 51382 51386 49689 48817 1.55
5 63865 66194 64880 61930 60249 59114 1.92

50 10 68298 72787 70292 67787 65094 63865 1.93
20 71325 73682 72242 70094 67394 66227 1.78
2 209003 217536 214953 209384 206885 202199 1.83
5 245043 253867 250694 241537 232949 228461 1.95

100 10 263542 274975 269076 258865 248448 245098 1.38
20 272267 280485 275442 265886 256651 253466 1.27
2 827466 848915 839999 829966 820013 799041 2.22
5 961302 1001502 987641 951628 917933 900094 1.97

200 10 1004000 1062621 1043997 998574 965789 952002 1.45
20 1038045 1092310 1071347 1026776 993572 985501 0.82

36
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Table 2.4 Comparison of Average Costs when lc = r

n m STPT SMPT SMCT SPTL ECT TS Imp

20

2
5
10
20

6341
6904
6661
7456

6500
6822
6914
8218

6203
6416
6522
7562

6262
6295
6064
6979

5996
6019
5811
6704

5887
5917
5684
6544

1.58
1.79
2.12
2.43

2 35224 36975 35722 35022 34217 33206 2.68
5 36075 38168 36148 33181 32493 31433 3.38

50 10 34765 38639 36155 32066 30864 30056 2.65
20 35194 39876 37354 33121 31951 30910 3.29
2 150013 155842 151452 148438 145675 141165 3.02
5 128211 138648 132673 120410 118702 114338 3.71

100 10 124160 136125 130186 114024 111213 107923 3.03
20 124063 141346 134570 115521 110666 108286 2.17
2 558391 583815 569089 561344 551590 531680 3.36
5 469938 520905 498128 443399 445451 425430 3.99

200 10 451059 511691 490323 422835 416597 405359 2.75
20 453159 520763 497481 425083 411549 404229 1.81

ECT is the best one among all the five heuristics. Thus, in practice, ECT would

be a good choice for solving real-life problem instances, with regard to its speed and

solution quality.

In the literature, the weighted version of STPT, SMPT, and SMCT have been

shown to have the same worst-case performance ratio as their unweighted version.

It would be interesting to investigate if ECT and SPTL can be generalized to solve

the weighted problem PD 1 > wjcj . In Chapter 4, it will be shown that the two

heuristics do have their generalized versions for the weighted problem. In addition,

with additional constraints on processing times, some interesting observations on the

weighted versions of the heuristics will also be explored in Chapter 4.

For the fully dedicated case, some other unweighted objectives ( e.g., the due

date related objectives) will be studied in Chapter 3.



CHAPTER 3

THE FULLY DEDICATED CASE —

DUE DATE RELATED OBJECTIVES

3.1 Introduction

This chapter still examines the fully dedicated case of order scheduling. However, the

objectives of interest are related to due dates.

With regard to the due date related objectives, most of the past work on the

fully dedicated case has focused on the minimization of the number of late orders.

Wagneur and Sriskandarajah [65] showed that PD2 Eui is NP-hard in the ordinary

sense. Cheng and Wang [10] showed that there exists a pseudo-polynomial time

algorithm for every fixed M. Ng, Cheng, and Yuan [55] showed that when the number

of machines is arbitrary the problem becomes strongly NP-hard; they showed that

the more restricted problem PD pig E {0, 1}, di = d 1 E is strongly NP-hard as

well.

In this chapter, the attention is focused on various due date related objectives

including the maximum lateness Lmax and the number of late orders >
This chapter contains the results published in Leung, Li, and Pinedo [46]. The

chapter is organized as follows. Section 3.2 considers some Min-Max objectives that

are related to due dates. Section 3.3 analyzes a greedy algorithm for minimizing the

total number of tardy orders with a common due date. It also describes a heuristic

and an exact algorithm for minimizing the total number of tardy orders with distinct

due dates. Section 3.4 presents an empirical analysis of the heuristic and the exact

algorithm. Finally, Section 3.5 contains some concluding remarks.

38
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3.2 Min-Max Objectives

The easiest objective to analyze is the maximum lateness objective. This objective

can be minimized by the EDD (Earliest Due Date first) rule (see Jackson [32]); i.e.,

the next finished product is assigned to the customer with the earliest due date. Using

an adjacent interchange argument, one can easily prove the following theorem.

Theorem 3.1 The Earliest Due Date rule solves the problem PD I L..

Suppose that, in a nonpreemptive environment, each order has a deadline di

that must be adhered to (instead of a due date di) and the goal is to determine if

there is a feasible schedule that meets all the deadlines. This problem can be solved

by the Earliest Deadline rule.

The optimality of the EDD rule and the Earliest Deadline rule are special

cases of a result for the more general problem PD I prec 1 fmax . In this more general

problem the processing of the orders are subject to precedence constraints and the

objective function is the more general fmax. Lawler [38] developed an algorithm based

on (backwards) dynamic programming that solves the single machine version of this

problem in polynomial time. Lawler's algorithm can be extended in such a way that

it generates optimal solutions for the more general PD machine environment.

Theorem 3.2 The problem PD I prec I fmax can be solved in 0(n2) time.

This problem with the fmax objective includes some interesting special cases.

For example, consider the problem in which order j has both a due date di and a

deadline di (di > di). Suppose the objective is to minimize L. under the condition

that each order must be completed before its deadline. This is equivalent to order j

being subject to the penalty function f (CA where
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Applying Lawler's algorithm with the cost functions described above solves the problem

1 di Lmax and this algorithm can be adapted in such a way that it can be applied

to PD di Lmax .

When the orders are not all available at time t = 0, the problem becomes

significantly more complex. The Earliest Due Date rule is not optimal when the

orders have different release dates. The NP-hardness of 1 Lmax implies the

NP-hardness of P D1 ri I Lmax .

However, if preemptions are allowed on all product types at any time, then

the PD	 prmp Lmax problem is easy.

Theorem 3.3 The preemptive Earliest Due Date rule solves the problem PD I r i ,prmp

Lmax •

If the orders have different release dates, then the preemptive Earliest Deadline

rule also determines if there is a schedule that meets all the deadlines.

3.3 Minimizing the Total Number of Late Orders > v.;

Consider now the same problem, but with the objective function E uj , i.e., the

problem PD	 E 	 As mentioned before, this problem is strongly NP-hard.

However, there are some special cases that are solvable in polynomial time.

First, P Dm Pik E {0,1} E (J.; can be solved by an O(nPm) algorithm

(Cheng and Wang [10]). Since P = max i<i<ni {E =1 pig }, the algorithm only takes

0(nm+ 1 ) time, which is polynomial for fixed m. Actually, if pig < c for all i and j,

where c is an integer, the problem is still polynomially solvable by the same algorithm.

However, for large values of c and m, the algorithm will take a very long time.

Second, consider the special case in which the processing times of the orders

satisfy the following "agreeability" conditions, which is equivalent to a form of order
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dominance. The orders can be ranked in such a way that

pit < Pi2 < • • • < Pin, i = 1, 2,... ,m.

So order 1 requires the least amount of time on each one of the m machines and order

n requires the most time on each one of the m machines. In this case an optimal

schedule can be generated by scheduling the orders according to EDD. If an order

is scheduled and its completion on any one of the m machines is after its due date

(i.e., if the maximum of its completion time over all m machines is larger than its due

date), then the order in the partial schedule that has the longest processing time on

each one of the machine is deleted. In what follows this algorithm is referred to as

the Revised Hodgson-Moore (RHM) algorithm. The following theorem is presented

without proof.

Theorem 3.4 The RHM Algorithm solves PD > U.; when pig are agreeable, i.e.,

Pi' < Pi2 < • - • < Pin for i = 1, . , m.

Actually, the agreeability conditions on the processing times described above

are relatively strong. Somewhat weaker conditions would already assure that the

RHM yields an optimal schedule for PD > (IF
Theorem 3.5 If in the application of RHM whenever an order has to be deleted,

there is an order that has the longest processing time on each one of the machines,

then RHM yields an optimal schedule.

Proof: The proof is an adaptation of the one given for the Hodgson-Moore algorithm

by Pinedo [57]. Assume without loss of generality that d 1 < d2 < < dn . Let Ok

be a subset of orders {1, 2, ... , k}, and it satisfies the following two conditions:

(1) Among all subsets of {1, 2, ... , k }, Ok has the maximum number of orders, say
Nk, completed by their due dates.
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(2) Among all subsets of {1, 2, ... , k} that have Nk orders delivered on time, the
orders in the subset Ok require the smallest total processing time on each
machine i = 1, 2, ... , m.

With the above two conditions, it is clear that On is the set of orders completed

by their due dates in an optimal schedule. The proof that the RHM algorithm leads to

On is by induction. For the base case k = 1, it is true that the RHM algorithm yields

Ok satisfying the two conditions. The inductive hypothesis is that the algorithm

constructs a set Ok satisfying the two conditions. Now it needs to be shown that,

starting out with Ok, the algorithm yields in the (k + 1)th iteration a set Ok+1 that

satisfies the two conditions for k + 1. There are two cases to be considered:

Case 1: Order k + 1 is added to Ok and it is completed by its due date. Now
Nk+1 = Nk + 1 and Ok+1 = Ok U {k + 1}. Clearly, the two conditions are
satisfied.

Case 2: Order k + 1 is added to Ok and it is tardy. By the inductive hypothesis, Nk is
the maximum number of orders to be completed by their due dates among orders
{1, 2, ... , k}. In addition, the orders in Ok have the smallest total processing
time on each machine i = 1, 2, . . . , m. It follows that Nk+1 = Nk. Thus, adding
order k +1 to set Ok does not increase the number of orders completed by their
due dates. Let j* be the order in Ok U {k + 1}, such that it has the longest
processing time on each one of the m machines. Clearly, among all Nk-order
subsets of {1, 2, . . . , k, k + 1}, the orders in Ok U fk +11\ {f} have the smallest
total processing time on each machine i = 1, 2, . . . , m. The two conditions hold.

From the above inductive proof, the result follows. 0

It is clear that PD I ri 1 E ui is strongly NP-hard due to the strong NP-

hardness of 1 1 ri 1 > v.; (See Garey and Johnson [19]). However, if it satisfies

ri < rk di < dk , the following result can be shown:

Theorem 3.6 For PD I ri < rk di < dk E ui , if in the application of RHM,

whenever an order has to be deleted, there is one order that has the longest processing

time on each one of the machines, then the RHM algorithm yields an optimal schedule.

Proof: Kise, Ibaraki, and Mine [35] presented a proof for the validity of applying

the Hodgson-Moore algorithm to solve 1 1 ri < rk 	di < dk 1 E Ui . Their proof
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can be adapted in a way similar to the proof of the previous theorem to show the

correctness of the result.	 El

The results presented with regard to machine dominance and order dominance

are useful in the implementation of heuristics. For example, if a one-pass heuristic is

used that is inserting orders in a forward manner, then order dominance as well as

machine dominance should be checked at every step. Whenever an order has to be

deleted from the partial schedule, it has to be checked whether or not any one order

dominates all others in the partial schedule. If one order dominates, then that order

has to be deleted. Each time an order has been deleted from the partial schedule,

machine dominance has to be checked with regard to that set of orders that includes

the remaining orders in the partial schedule plus the set of orders that still have to be

considered. When a machine is being dominated by another machine with regard to

this (smaller) set of orders, then that machine may be disregarded in the remaining

steps of the heuristic.

The results presented above may prove useful in the implementation of exact

algorithms as well. For example, suppose that when the RHM procedure indicates

that one order in the partial schedule should be deleted, and there are two orders

that dominate all others in the partial schedule, i.e., they have processing times that

are longer than any other order on each one of the m machines. However, one of

the two orders has on some of the machines the longest processing time and the

other order has on the remaining machines the longest processing time. An exact

procedure should now branch out and consider two partial schedules. In one of the

partial schedules one of the two orders is deleted, and in the other partial schedule

the other order is deleted.
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3.3.1 A Greedy Algorithm for the Common Due Date Case

Consider now the special case of PD II Eui in which all orders have the same due

date, that is, di = d. This problem is denoted by PD 1 di = d I E Ui . The greedy

heuristic presented in this section is based on the observation that there exists a close

connection between PD I di = d Eui and the Multiset Multicover Problem

(MSMC) which can be described as follows (see [60, 64]):

Definition 3.1 (The Multiset Multicover Problem) Let U = {e i , e21 ... , ern }

be a base set; C = {Si : j = 1, 2, ... , n}, where el E Si e1 E U. However, Si can be

a multiset so that any element e i E Si can appear more than once in Si . Let A r(ei, Si)

denote the number of times that element e l appears in S. Each element el E U needs

to be covered b i times. Each multiset Si can be selected at most once. The objective is

to pick a minimum number of multisets from C, such that each element e l is covered

at least b i times, for 1 = 1, 2, ... , m.

Clearly, the MSMC problem is strongly NP-hard, since the strongly NP-hard

Set Cover Problem (see Garey and Johnson [19]) is a special case.

In what follows it will be shown that, PD 1 di = d 1 E Uj can be converted

into an MSMC problem that is equivalent; this implies that any known algorithm for

the MSMC problem can be used for PDIdi =dI Eui as well.

Given any instance 'Pp of PD I di = d EU.; with m machines, n orders,

integer processing times, and integer due date d, one can construct an MSMC instance

Imm as follows:

1) Let the number of elements in the base set U be m.

2) For each order j E 0 = {1, 2, ... , n}, construct a multiset Si as follows: For
each i = 1, 2, ... , m, let A i(e i , Si) = pij be the number of times element e i

appears in Si . Let C = {Si : j = 1, 2, ... , ri}.

3) Let the coverage requirement bi be equal to E ie j pii — d for element ei, i =
1, 2, ... , Trt. Note that if bi < 0, it means that all the orders can be completed
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on machine i before d. Thus, machine i can be ignored. Due to this reason, it
is assumed that b i > 0 for any i = 1, 2, ... , m.

Clearly, the above transformation takes O(nm) time, which is polynomial. With this

transformation, the following result is claimed:

Lemma 3.7 If C* = {Sjl , Si, ' ... ,Siic . 1 } C C is a cover produced by an algorithm A

for the instance Imm of the MSMC problem, then there exists a schedule 7 for the

instance 1pp of PD di = d 1 Eui in which 0* = {j1, j2, - - • , j1 c .11 is the set of late

orders and 0 \ 0* is the set of early orders. In addition, C* = E T1=1 Ui (7).

Proof: Since C* = {Sil , Sh , ... , Siic . 1 } C C is a cover for the MSMC instance 1mm,

it follows that for each i = 1, 2, ... , m,

Thus, a schedule 71 can be constructed from C* for the PD 1 di=d1EU*3 instance

IpD, in which the orders in 0 \ 0* are completed by the common due date d, while

By Lemma 3.7, the following lemma can be shown:

Lemma 3.8 Any approximation algorithm for the MSMC Problem can be applied

to solve PD 1 di = d E Ui with integer processing times and integer d, with the

approximation ratio being preserved.

Proof: By Lemma 3.7, if A is an exact algorithm which solves Imm , then it can also

be used to generate an optimal solution for IpD. In addition, the optimal objective

costs of the two instances are equal. On the other hand, if A is an approximation

algorithm for Imm, it will also result in the same objective cost for IpD. It follows

that the approximation ratio is preserved. ❑
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Based on the above observation, it is of interest to apply known approximation

algorithms for the MSMC problem to the PD = d Eui problem. Rajagopalan

and Vazirani [60] presented a greedy algorithm for solving the weighted MSMC

problem, in which each multiset Si has a weight wj and the objective is to minimize

the total weight of the picked multisets. One can consider element e i as being "alive"

if it occurs fewer than bi times in the selected multisets. Let A denote the set of

elements that are still alive; let C' denote the set of multisets that have not been

selected yet. The greedy algorithm works as follows: In each iteration, the algorithm

picks, among C', a multiset Si. such that

where bi is the residual coverage requirement of ei ; it is initialized as b i and is

decremented by Ar(ei,S) each time a set S is selected. If any element e i is covered

by the selected multisets at least b i times, it is not "alive" any more. The algorithm

terminates when there are no more "alive" elements left. Rajagopalan and Vazirani [60]

showed that the approximation ratio of this greedy algorithm is

where Ii(k) E7_ 1

Let xi E {0, 1} be the decision variable to indicate that Si is "selected" if

xi = 1, otherwise "unselected". It is noticed that the coverage constraint for element

e; is:

Thus, let ci be the greatest common divisor (GCD) among
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then for any settings of x i , j = 1, 2, ... , n,

Therefore, with a preprocessing procedure to "condense" the constraint data, the

approximation ratio of the greedy algorithm can be rewritten as

Based on this, with a procedure of preprocessing the constraint data, Rajagopalan

and Vazirani's greedy algorithm can be adapted to solve PD I di = d E U. as an

equivalent unweighted MSMC. The algorithm is presented as follows:



Update bi = bi — pip for each machine i E M.

If any bi becomes less than or equal to 0, then remove i from M.

Repeat Step 2.

Step 3: {Algorithm Terminates}

Construct a schedule 'ir:

Let 71e = 0 be the set of early orders, and let 711 be the set of late orders.

48

Output schedule 71" and return 7/ as the number of late orders.

Note that the set M in the algorithm corresponds to the set A (the set of elements

that are still alive).

To evaluate the running time of the above algorithm, it is necessary to consider

how to compute ci = GCD( Pi2, • • • , pin , d). Even though Euclid's GCD algorithm

applies only to two arguments, ci can be calculated by

in a recursive way. Let a > b, Euclid's algorithm for GCD(a,b) runs in 0(1g b)

division steps (see [12]). If bit operations are not considered, then each division takes

a constant time. In addition, it is reasonable to assume that all pii < d. Therefore,

the 771 Ci S can be computed in 0(mnlgd) time, which dominates the running time of

Step 1. In each iteration of Step 2, it is clear that the running time is dominated by

choosing from 0 the order j* such that

which takes 0(nm) time. Step 2 runs at most n iterations. Thus, it takes 0(n2m)

time. In Step 3, the output takes 0(n) time. It follows that the entire algorithm runs

in 0 (n2 m + mn lg d).



49

For any instance of PD di = d 1 Euj , let Eui (H) be the objective cost

obtained by the above greedy heuristic, and let E ui (OPT) be the optimal objective

cost. From the above discussion, the following result follows:

Theorem 3.9 For PD di = d 1 Eui , if all pi.? 	d are integers, then

where ci = GCD(Tii,Pi2, • • • ,pin ,d) for i = 1, 2, . . . , m.

To see that the bound is attainable, it is easy to construct a scheduling example

by generalizing the Set Cover example from Johnson [33].

As pointed out previously, Rajagopalan and Vazirani's greedy algorithm was

designed for weighted MSMC. For the problem studied in this section, if each order

has a weight wi , it is easy to generalize the above greedy algorithm to solve PD

di = dlEwitii, if all pii and d are integers. The only modification to the algorithm

is that, the order to be chosen in each iteration is order j* such that

It is clear that the approximation ratio of the generalized greedy algorithm for PD

di = dlEwi tli remains unchanged. For PD I di = d 1 E wi Ui 1 
another observation

is that it is in fact the dual problem of the Multidimensional 0-1 Knapsack Problem

(MKP) with an arbitrary number of dimensions. Thus, the resolution methods for

MKP also shed light on solving PD 1 di = d I > wi Ui . For a very recent survey for

the MKP problem, the reader is referred to Freville [17].

For PD 1 pii E {0, 1}, di = dlEwi tIi , Ng, Cheng, and Yuan [55] presented

a (d + 1)-approximation LP-rounding algorithm. However, if the generalized greedy

algorithm is applied to solve this problem, its approximation ratio is at most 1i(m).

Thus, if m < ed , the approximation ratio of the greedy algorithm would be better than
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that of the LP-rounding heuristic. In fact, by the reduction shown previously, the

PD pig E 10, 11, di = d 1 E problem turns out to be a weighted Set Multicover

(SMC) Problem, since the elements in each constructed set are unique but each

element is required to be covered multiple times. Thus, any approximation algorithms

for weighted SMC can be applied to solve PD I pig E 10, 11, di = d I > wi t/i with

the approximation ratio being preserved. Hochbaum [29] presented three LP-based p-

approximation algorithms for weighted SMC, where p = maxi<j<n, piil. Clearly,

these p-approximation algorithms can be applied to solve PD pii E {0, 1}, di d

wiui . Since 1-1(p) < p for p > 2, it is easy to see that the approximation ratio

of the generalized greedy algorithm is still better. Of course, the above comparisons

remain effective for PD I pii E {0, 1}, di = d IEUi .

3.3.2 A Heuristic for PD I > Ui

Heuristics for the PD E ui problem with arbitrary processing times can be designed

based on the ideas of the Hodgson-Moore [51] algorithm for PD1 E v..; and

the machine dominance and order dominance concepts introduced in the previous

sections. Using the main idea behind the Hodgson-Moore algorithm the following

heuristic can be designed for PD E Ui . The orders are put in schedule gyre according

to EDD. Whenever an order j' that is put into the schedule is completed after its due

date, one of the orders that are currently part of the schedule has to be taken out.

Selecting the order to be taken out is done based on a priority ranking system.

In order to make sure that not more than one order has to be deleted from the

schedule, it pays to keep a set of candidate orders 0, with the property that the

removal of any one order in 0, from 71e ensures that the rest of the orders in 7, are

completed before their due dates.

First of all, the tardy order j' itself is already a candidate order, since all the

orders that precede ji in 71e can be completed before their due dates. For each order
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j E Ire , j j', if its removal from Ire enables order j' to be completed in time, then j

becomes a candidate in 0,; otherwise, j will not become a candidate. It is clear that

1 < 10,1 < 17rel.

Secondly, for each candidate order j E 0,, a weighted sum of all its processing

times pii on the m machines, denoted by W(0,)i , has to be computed. The weight

of machine i, denoted by w i , is a function of the current load on machine i, denoted

by CLi , and the future workload of machine i due to all the orders that still have to

be considered, denoted by FLi . A typical weight function can be

where w 1 and w2 are the weights for C L i and FLi , respectively, for any i = 1, 	 , m.

With Wi , the weighted sum of each candidate order j E 0, is computed as

Finally, the candidate order to be taken out is the one with the maximum weighted

sum, i.e., order j* such that

Without loss of generality it may be assumed that the orders are ranked in increasing

order of their due dates, i.e., d 1 < d2 < • • • < dm . The input of the heuristic is a

set of orders, and the output of the heuristic is a sequence in which the orders are

scheduled. Note that the sequence consists of two parts. The first part, namely 7r e ,

consists of those orders that are completed on time; these orders are ordered according

to EDD. The second part of the sequence, namely ir l , consists of the orders that are

not completed on time; it does not matter in which order this subset appears in the

sequence. The goal of the heuristic is to determine which orders have to be placed in

7re.
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The above ideas are implemented in the following heuristic, which is referred

to as the Generalized Hodgson-Moore heuristic or GHM heuristic.

The Generalized Hodgson-Moore Heuristic (GHM) for PD E

Step 1: {Initialization}

Sort the orders in ascending order of due dates; i.e., d 1 < d2 < • • • <

Let 71e = 0,	 = O.

CLi = 0 and FLi =E;1:=i pij for i = 1,	 , m.

Assign values to the weights w 1 and w2.

Let j = 1.

Step 2: { Generating a sequence}

Include order j in 71e and compute Cis for all i, i.e.,

For each machine i = 1, 2, ... , m, let CLi = CLi + pij ,FL i = FLi — pii .

If max(Cii ,	 ,	 < di , then go to Step 4;

Otherwise go to Step 3.

Step 3: {Delete order j* from Ire }

Create set Oc : for each order k e Ire , if its removal from Ir e results in all remaining

orders in Ir e being completed on time, then k is included in O.

Compute r:ai = col • CLi + w2 • FL i for 1 < i < m.

Compute W(0c)k =	 wi • Pik for all k in Oc.

Let j* be the order in Oc such that W(0c)i. > W(0c )k for all k in Oc.
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Update CL i = CLi — pip for 1 < i < m.

Delete j* from Ire , and add j* to 71.

Step 4: {Stopping Criterion}

If j = n, then STOP;

Otherwise increase j by 1 and go to Step 2.

Clearly, step 1 takes 0(n lg n + nm) for initialization. Each iteration of both

step 2 and step 3 takes O(nm) time. The algorithm runs at most n iterations of step

2 and step 3. Thus, the overall running time of the algorithm is 0(n 2m).

In implementation, the heuristic is run with 3 different pairs of w 1 and w2 : (i)

w l = 1 and w2 = 0; (ii) w1 = 0 and w 2 = 1; (iii) w 1 = 1 and w2 = 1. Each setting of

the weights generates a schedule and the best schedule is kept.

3.3.3 An Exact Algorithm for PD E U .

For convenience of description, the following notation is defined:

S: A partial schedule (j 1 , j2, , jk ), 1 < k < n, that has already been established
for the first k positions. It consists of a set of orders that are completed by their
due dates.

L: The set of late orders so far.

0': The set of orders already scheduled. Clearly, 0' = S U £.

0": The set of orders still to be scheduled.

E Uij (ri , 0"): The minimum > U obtained after scheduling the orders in 0" on
machine i; the minimum is obtained by considering machine i as a separate
single machine problem independent from the other machines and assuming it
is available from time r i on.

E (S, 0") : The minimum > U given the initial partial schedule S and assuming
that the schedule of the orders in 0" is optimized. In other words, > U; (S, 0")
is the best objective value of all possible schedules that start with S.
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To design an efficient exact algorithm for PD 31 elimination criteria

are important to make the algorithm run faster. For example, it is easy to see

that there exists an optimal schedule with all non-tardy orders scheduled first in

increasing order of their due dates, followed by all tardy orders in any sequence.

Thus, schedules violating this ordering can be eliminated. Also, order dominance

serves as an elimination criterion. Basically, these criteria help identify orders that

can be eliminated from further consideration, based on a partial schedule S. However,

more can be done. One can apply bounding techniques on S, to see if it is possible

to obtain better solutions starting out from S. If not, then all schedules starting out

from S can be discarded. The following lemma presents a lower bound on the number

of late orders based on S.

Lemma 3.10 (Lower Bound on Number of Late Orders) If S is the current

partial schedule, ,C the set of late orders so far, and 0" the set of orders still to be

scheduled, then

where Cijk is the finish time of the last non-tardy order j k on machine i.

Proof: Consider an optimal schedule Sb started with the 5, note that both Sb

and S consist of a sequence of non-tardy orders followed by a set of tardy orders in

any sequence. It is clear that S is a part of Sb. Let Se denote the sub-sequence of

non-tardy orders scheduled behind S for the orders in 0". Consider Se on machine

i (1 < i < m). Clearly, Se starts on machine i at time Cijk . It would never be better

than the optimal schedule of 0" on machine i starting at time Cijk, which is denoted

by > u:i (ciik , 0"). That is,
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Therefore,

The result follows. 11

Now, it is ready to present an exact algorithm that systematically searches for

an optimal schedule, by using the elimination criteria and the lower bound. The exact

algorithm combines the Check-Forward algorithm with bounding technique. The

Check-Forward algorithm, which is based on constraint propagation and backtracking,

has been widely applied to solve Constraint Satisfaction Problems in various fields like

Artificial Intelligence and Operations Research. For a survey of algorithms (including

the Check-Forward algorithm) for Constraint Satisfaction Problems, the reader is

referred to Kumar [36].

In the check-forward phase of the algorithm, it maintains a sequence of variables

01, 02, • . . , on to be instantiated one by one with candidate orders from the domains

of these variables. The initial domain for any position oe is the set of all orders to be

scheduled. For a partial schedule 0 1 , . . . , ok , the sets of candidate orders for each one

of the remaining positions o k+1 , . . . , on can be found through constraint propagation

starting out from the current partial schedule 0 1 , . . . , ok (in which a total of k orders

have already been fixed with all k orders completed by their due dates) and using

the elimination criteria mentioned before. While fixing more and more positions,

the domain sizes of the remaining positions become smaller and smaller. A terminal

schedule is reached at position k and a partial schedule 0 1 , . . . , ok is generated without

any late orders and the domain of position ok+1 is empty. Therefore, the number of

late orders in such a terminal schedule is (n — k). In order to search for an optimal

schedule with a minimum number of tardy orders, a backtracking procedure is needed

to try all other possible positions of orders.



56

To further accelerate the search procedure, a bounding strategy, which is an

essential part of the Branch and Bound algorithm, is used. It is clear that the initial

upper bound UB for the number of late orders can be generated by the GHM heuristic

presented previously. Lower bounds are established for a partial schedule oi, ok

in order to eliminate those schedules starting out from 0 1, , ok but with objective

values no less than UB. Let 3' denote the set of unscheduled orders after fixing ok •

In order to calculate a lower bound LB on the minimum number of late orders for

all schedules starting out with the partial schedule () I., , ok , the Hodgson-Moore

algorithm is applied to solve a 1 r j = Co k  > (J.; problem for the orders in 3'

on each of the m machines, where Ci , o, is the finish time of the order scheduled in

position ok on machine i. Let i be the number of late orders for scheduling the orders

in 3' on machine i. Then by Lemma 3.10,

where (n — — k) is the number of late orders already produced to get the partial

schedule or, . , ok. Clearly, if UB < LB, then no better solutions can be found with

the current partial schedule o i , , ok . Therefore, ok should be assigned a different

order from its domain of candidate orders. After all possible orders in the candidate

set of ok have been checked out, the procedure backtracks to position ok-1. The

procedure continues in this fashion until all orders in the candidate set of 0 1 are

exhausted. During the search procedure, UB is updated whenever a smaller number

of late orders is found.

The above idea is implemented as the following Exact Algorithm which combines

constraint propagation, backtracking, and bounding techniques. Without loss of

generality it is assumed that d 1 < d2 < • • • < dn.
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The Exact Algorithm

Step 1: {Initialization}

Let UB be the number of late orders obtained through the GHM heuristic.

Let Jot = {1, 2, ... , n} be the domain of candidate order for position 0 1 .

Let k = 1.

Let Q* [1..n] be a sequence to maintain the best schedule.

Step 2: {Constraint Propagation and Searching}

Choose the first order j from Jok . If no order exists, goto Step 5.

Otherwise, let ok = j and Jok = JOk \ {j}.
Resolve Jo, by dominance conditions.

Let Ci,„ be the finish time of order ok = j on machine i, i = 1, 2, -.. , m.

If order ok = j is completed after its due date, then repeat Step 2.

Step 3: {Adjustment of Upper Bound on the Number of Late Orders}

Otherwise, if 71 — k < UB then UB=n—k and a*[1..k] = o k , ... , ok .

If k = n goto Step 6.

Step 4: {Establishing Lower Bound on the Number of Late Orders}

Solve for each machine i = 1, 2, ... , m, a 1 r i = ci,„, Euj problem by applying

the Hodgson-Moore algorithm to the set of orders Jok. {Lemma 3.10}

Let the number of late orders on machine i be i i .

Let LB = (n-1J0,1— k) + maxi<i<m{/i}. 	{Bounding}

If UB > LB then Jok+ , = Jok , increase k by 1.	 {Expanding}

Go to Step 2.
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Step 5: {Standard Stopping Criterion}

If k = 1, then assign late orders {1, 2, ... , ri} \ { o- *[1..(n — UB)]} in arbitrary order

to On—UB+1, On—UB+2, - • - ) 0n, and return all..n] as an optimal solution with UB as

the number of late orders.

Otherwise, decrease k by 1, goto Step 2. {Backtracking}

Step 6: {Shortcut Stopping Criterion}

Return oll..n] as an optimal solution with 0 as the number of late orders.

Clearly, the exact algorithm takes an exponential amount of time in the worst

case. However, introducing constraint propagation and bounding techniques in the

algorithm is expected to reduce the running time to a large extent.

3.4 Empirical Analysis

To test the algorithms, problem instances of various sizes are generated. The sizes of

the problem instances are determined by the number of orders n and the number of

machines m, where n = 20,50,100,200 and m = 2,5,10,20. For each combination of

n and m, problem instances of varying hardness are generated according to different

characteristics of the due dates.

For each order j, 1 < j < n, the number of product types li is first randomly

generated from the uniform distribution [1, m], then the li machines are randomly

chosen from the machine set. For each machine i that is selected in this manner, an

integer processing time pig is generated from the uniform distribution [1,100].

Finally, the due dates of the orders are generated based on the setting of two

parameters A i and 02. For each order j, an integer due date di is randomly generated

from the uniform distribution
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Table 3.1 Optimality Percentage and Average CPU Time (in Seconds) vs. Each
Combination of n and m

n

m = 2 m = 5 m = 10 m = 20

% CPU avg % CPU avg % CPU avg % CPU avg

20 100 0.001 100 0.002 100 0.003 100 0.007

50 100 9 100 22 100 68 100 160

100 76 37 84 504 84 775 76 527

200 48 749 60 686 56 1299 56 99

avg(%)=84%

where

(In order to avoid negative due dates, it is assumed that di > 0, i.e., if di < 0, then

it is forced to be 0.) The rationale for generating the due dates in this manner is the

following: The P gives an indication of the average time each machine is occupied.

The value of Ai determines the range in which the due dates lie and the value of 02

is used for adjusting the tightness of the due dates.

The values of A i and A2 are chosen from the set {0.2, 0.4, 0.6, 0.8, 1.0}. For

each combination of A l and 02, an instance is generated for each pair of n and In.

In total, 400 instances are generated.

The algorithms are implemented in C++ with STL. The running environment

is the RedHat Linux 7.0 operating system running on a Pentium II (400Mhz) PC

with 128MB RAM. In the experiment, the time limit for the exact algorithm is set

to 7 days. For detailed experimental results produced by the algorithms, the reader

is referred to Leung, Li, and Pinedo [46]. In what follows, some findings are listed

based on the statistical data of the experimental results.
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Table 3.2 Optimality Percentage vs. Each Setting of A i and 02 for n = 100, 200

Al 	 AZ 

0.2 0.4 	 0.6 0.8 	 1.0 	 0.2 	 0.4 0.6 	 0.8 	 1.0

% solved 35 42.5 65 92.5 100 97.5 75 42.5 47.5 77.5

Table 3.1 shows the percentage of all instances that are solved to optimality

(%) by the exact algorithm together with the average CPU time in seconds (CPU

avg), for each combination of n and m. In average, 84% of the generated instances

can be solved to optimality. In particular, all instances of n = 20 and 50 are solved

to optimality very quickly.

Table 3.2 shows the percentage of instances solved to optimality (% solved)

versus each setting of A i and 02 for n = 100, 200. Note that instances for n = 20, 50

are not counted here, since all these instances are solved to optimality. The results

in this table reveals that smaller A i implies harder problem instances for the exact

algorithm. The table also shows that the exact algorithm performs well for 02 =

0.2, 0.4, 1.0, but not for 02 = 0.6, 0.8. Since A2 determines the tightness of the due

dates, it affects the expected number of late orders. For 02 = 0.6, 0.8, the expected

number of late orders would be about half of the number of orders. Thus, more

expanding and backtracking iterations are needed for such instances. However, for

A2 = 0.2, 0.4, 1.0, the bounding strategy might help much to reduce either expanding

or backtracking iterations. Thus, the algorithm performs better on these instances.

For those problem instances that are solved by the exact algorithm, Table 3.3

shows the percentage of these instances that are also returned optimal solutions by

the GHM heuristic. The heuristic achieves an optimal solution for about 60% of the

instances that can be solved with the exact algorithm.

Table 3.4 shows the average improvement per instance by the exact algorithm

for each combination of n and m. It reveals that the results obtained by the GHM
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Table 3.3 Optimality Percentage of the GHM Heuristic vs. Each Combination of
n and m

m
n 2 5 10 20

20 88% 88% 92% 28%
50 64% 64% 44% 48%
100 53% 48% 43% 47%
200 83% 53% 57% 64%

avg=60.25%

Table 3.4 Average Improvement per Instance Obtained by the Exact Algorithm
from GHM for Each Combination of n and m

M,

2 	 5 	 10 	 20

20 	 0.12 0.16 0.05 0.4

50 	 0.44 0.48 0.88 0.68
100 0.64 0.76 0.92 0.88
200 0.24 0.6 	 0.68 0.44

avg=0.52

n
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heuristic is actually very close to those obtained by the exact algorithm. In average,

the improvement achieved by the exact algorithm is about 0.52 per instance. This

implies that the GHM heuristic performs quite well in practice.

3.5 Concluding Remarks

In this chapter, the fully dedicated case with some due date related objectives was

investigated. Special interest was focused on the minimization of the maximum

lateness Lmax and the total number of late orders > ui. Only the most basic

scheduling problems have been considered. There are many more general scheduling

problems with due date related objectives that deserve attention.

For example, an interesting problem to study with the L. objective would be

PD 1 ri L.. It is clear that this problem is strongly NP-hard. However, the single

machine version already has received a fair amount of attention in the literature.

With regard to the E (J.; objective many more general problems appear to be of

interest. The heuristic presented in this chapter appears to work well for PD I E u-i .
It may be of interest to adapt this heuristic to the following more general problems:

It is clear that release dates can make a nonpreemptive problem considerably harder.

However, when with release dates preemptions are allowed, it still may be possible to

design very effective heuristics. These heuristics may be somewhat more complicated

than the one described in this chapter, but may be equally effective. The problem

without release dates and with weights may give rise to different types of heuristics.



63

Nonpreemptive problems with release dates and weights are, of course, very hard.

The hardest problem among those mentioned above most likely is PD 1 Ti (E w.U.J 3'



CHAPTER 4

THE FULLY DEDICATED CASE —

THE TOTAL WEIGHTED COMPLETION TIME

4.1 Introduction

In Chapter 2 and Chapter 3, some results were established for the fully dedicated

case with unweighted objectives. This chapter still examines the fully dedicated

case. However, the objectives to be optimized are now weighted functions. Special

attention is focused on the minimization of the total weighted completion time. The

two problems of interest are PD 1 E wici and PD ri E wiCi.

While PD1 11 E wici can be solved by the Smith's ratio rule (see [62]),

the problem PDm 11 > wig; has been shown to be strongly NP-hard for any fixed

number (> 2) of machines (see Sung and Yoon [63]). The more general problem

PDm 1 ri 1 E wici is strongly NP-hard even for m = 1 (see Lenstra et al. [42]).

Due to the NP-hardness of the problems, this chapter focuses on the performance

analyses of a number of priority rules and approximation algorithms for PD 11 E w3 C3

and PD 1 ri 1 E wiCi. The algorithms considered are of two types: priority

rules (either static or dynamic) and LP-based algorithms. The priority rules are

only applicable to PD 1 > wjCi , i.e., when ri = 0 for all j. An analysis of

the priority rules shows that they are sensitive to the characteristics of processing

times of the orders. It appears that the more sophisticated LP-based algorithms are

not so sensitive to the characteristics of the processing times. In order to obtain

some insights into the performance of these algorithms when applied to instances of

PD I > wici in practice, this chapter also presents an extensive comparative analysis

considering solution quality, speed, memory space, and implementation complexity.

64
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The observations from the empirical analysis may be very helpful for the selection of

an appropriate rule or algorithm in a real life situation.

The results in this chapter also appear in Leung, Li, and Pinedo [47] which

has been submitted for publication. The chapter is organized as follows. Section 4.2

presents five priority rules and analyzes their performance bounds. Section 4.3

studies the performance bounds of these rules assuming additional constraints on

the characteristics of the processing times of each order. Section 4.4 focuses on two

LP-based approximation algorithms and Section 4.5 presents an empirical analysis of

the rules and algorithms. Finally, Section 4.6 contains some concluding remarks.

4.2 Priority Rules for PD 1 E wiCi

Throughout this section it is assumed that r i = 0 for all j. In addition, preemptions

are not allowed and only permutation schedules are considered.

Let Q denote the set of unscheduled orders; let 7r denote a partial schedule.

Five greedy ways are considered for selecting the next order j* E Q to be added

to the partial schedule. The first two methods described below are basically static

priority rules, i.e., the entire sequence can be determined at time t = 0 based only

on information pertaining to the orders. The third method is a two-pass rule, which

schedules the orders in two passes (the schedule information obtained in the first

pass provides the data necessary for doing the second pass). The fourth and fifth

method are single pass dynamic priority rules. That is, the schedule can be developed

in a single pass; however, it cannot be done using only information pertaining to

the orders. In order to add an additional order to a partial schedule, information

pertaining to the existing partial schedule has to be taken into account as well. The

fifth method can also be enhanced with a limited postprocessing procedure.

Definition 4.1 The Weighted Shortest Total Processing Time first (W ST P) rule

schedules the orders in increasing order of E inz_ i pii I wi.
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Definition 4.2 The Weighted Shortest Maximum Processing Time first (WSMP)

rule schedules the orders in increasing order of maxi {pii }/wj .

Definition 4.3 The Weighted Smallest Maximum Completion Time first (W S MC )

rule first sequences the orders on each machine i = 1, 2, ... , m, in increasing order

of pii wi . (Note that the order sequences on the various machines may be different.)

The rule then computes the completion time for order j as = In its

second pass, the rule schedules the orders in increasing order of

Definition 4.4 The Weighted Shortest Processing Time first applied to the machine

with the largest load (VVSPL) functions as a dynamic priority rule that generates

a sequence of orders one at a time, each time selecting as the next order the order
 
}j* E Q such that j* = arg wi where i* is the machine with the largest

workload under the partial schedule 7.

Definition 4.5 The Weighted Earliest Completion Time first (WECT) rule selects

as the next order j* which satisfies j* = arg minjEf-2 {(Cj — Ck )I wi }, where Ck is the

finish time of the order scheduled immediately before order j* . Ties may be broken

arbitrarily. After an order j* has been selected by W ECT to be included in the partial

schedule, a postprocessing procedure that will be described shortly may be invoked.

The postprocessing procedure invoked by W ECT interchanges order j* with

order k in case Cj . < Ck in order to obtain a better (or at least not a worse) solution.

Note that the case Cj. < Ck occurs only when pi . j . = 0, where i* is the machine on

which order k has, over all machines, the largest finish time. Assume that after the

swap the order immediately before order j* is order 1. If Cj. < C1 , then it proceeds

with an interchange of order j* with order 1. This postprocessing procedure is repeated

until is larger than the completion time of the order that immediately precedes it.

Note that after each swap, the finish time of j* either decreases or remains unchanged,
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while the finish time of each order that is swapped with j* remains unchanged. This

is due to the fact that order j* has zero processing time on the machine on which the

swapped order has its largest finish time. Thus, the postprocessing, if any, produces

a solution that is no worse than the one without postprocessing.

Note that when applying the WECT rule, there may at times be ties. Since

ties may be broken arbitrarily, the WECT rule could lead to various different schedules

with different values of objective functions.

Through a sorting algorithm, both WSTP and WSMP can be implemented

to run in 0(mn + n lg n) time, and WSMC can be implemented to run in 0(mn lg n)

time. Both WSPT and WECT can be implemented in a rather straightforward

manner to run in 0(mn2 ) time.

Now consider the performance bounds of the five rules. When m = 2, Sung

and Yoon [63] showed that both WSTP and WSMC have an approximation ratio

of 2. Actually, Wang and Cheng [66] obtained the following result:

Theorem 4.1 WSTP, WSMP and WSMC are all m-approximation algorithms

for PD 11 E w .c 3••.1 '

As for WSPL, it has been shown in Chapter 2 that the algorithm is unbounded

even when all wj = 1. However, an empirical analysis showed that it performs very

well in practice for wj = 1. The WECT algorithm is a certain generalization of

the m-approximation ECT algorithm introduced in Chapter 2. If all wj = 1, then

WECT reduces to ECT. In what follows, it will be shown that WECT is also an

m-approximation algorithm for PD 1 E w c •3 3 '

Let pj = max(pij , ... ,pmj ), j = 1,2, ... , n. Let C3 (WECT) and Cj (OPT)

denote the completion time of order j in the WECT schedule and the optimal

schedule, respectively. Assume without loss of generality that the orders are labeled
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(4.1)

in such a way that

Furthermore, let [j] refer to the order put in position j of a schedule.

First, the following lemma is a key observation with regard to W ECT:

Lemma 4.2 For any schedule generated by the WELT rule without postprocessing,

Proof: The proof is by contradiction. According to the definition of WECT, the

order selected for the first position is order 1. Thus,

Suppose that there exists a smallest position j* (1 < j* < n) of the orders scheduled

according to WECT, such that

For any position j, it is easy to see that

Therefore, if the order scheduled in position j* is order j* itself, then it satisfies

The reason why the WELT rule did not put order j* in this position must be that

it had already been selected earlier. However, this immediately implies that there

exists at least one order ji (2 < ii < j* - 1) that has not yet been selected by the
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(4.3)

(4.4)

69

algorithm. Now, if order is put in position i*, then it satisfies

due to the assumption of the ordering in (4.1). This leads to a contradiction, since

W ECT always chooses as the next order the one with the smallest value of

The result follows.	 ❑

Based on Lemma 4.2, the following upper bound can be established for the

objective costs of schedules produced by WECT.

Lemma 4.3 For any schedule generated by the WELT rule without postprocessing,

Proof: Let ii[11 = pi, w[i] = w 1 and let

Note that, by Lemma 4.2,

It is clear that each p i[j] can be easily determined from the W ECT schedule. Based

on this notation,
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In order to prove the lemma, it suffices to show that

To prove (4.6), it would be helpful to consider an artificial instance of the

classical problem 1 E wici , with jobs whose processing times and weights are

given by the following pairs:

Here, each pair of pi and wi are exactly the same as those in (4.1). Clearly, if the

above jobs are sequenced according to the classical WSPT rule, then the objective

of the schedule is

due to the assumption of the ordering in (4.1). For convenience, this very first

sequence is referred to as

Si: < 1, 2, ... , n > . 	 (4.7)

Now change in S i the processing time of the job, whose label is the same as

that of the order scheduled in the second position of WECT. Note that this order is

labeled as [2] in WECT and it corresponds to one specific job scheduled in Si . For

convenience and consistency, the label of this job in S i is referred to as [2]. Since the

WECT algorithm always chooses order 1 as [1], it is clear that [2] E {2, 3, ... , n}.

With [2], Si can be rewritten as:
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Now, for job [2] in Si , let

According to (4.4), p [2] becomes equal to or smaller than its initial value, while 711[2]

remains unchanged. It follows that the objective cost of S i remains unchanged or

decreases after letting p[2] = p'[21 , i.e.,

Note that if [2] = 2, the above inequality still holds and this case is simple. Thus,

only the case [2] 2 needs to be focused on. After letting p[ 2] = /312] , from (4.1) and

(4.3) one can obtain a new ordering of pi lwi as follows:

L"J

Swapping in Si the position of job [2] with that of job [2] — 1 results in the following

new sequence:

S2 : < 1 , 2, . . . , [2] — 2, [2], [2] — 1, [2] + 1, . . . , n > .	 (4.10)

According to (4.9), since

it is easy to show via an adjacent interchange argument (Pinedo [57]) that

Repeatedly swap the position of job [2] with that of the job positioned immediately

before it until the following sequence is obtained:

(4.12)
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and

(4.13)

The above procedure is repeated for each job [3], [4], ... , [n] corresponding to

the labels of the orders in WELT, it finally produces the following sequence:

and

From (4.8),(4.11),(4.13) and (4.15), it is easy to see that

Note that in S4, for each j = 2, 3, ... , n

P [3] = P [3] -

It follows that
.......

From (4.5), (4.16) and (4.17), the result follows.

Theorem 4.4 For PD II E wici,
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For the optimal schedule,

Note that the last ">" in (4.19) is due to Smith's WSPT rule. Hence, from (4.18) and

(4.19), the performance ratio of WECT is at most m even without postprocessing.

Since the postprocessing could lead to a better solution, it helps to improve the

performance of WECT. Ell

4.3 Analyses of Priority Rules with Constraints on Processing Times

It would not be surprising that the priority rules may perform better when the

processing times of each order are subject to constraints that ensure some form of

regularity in the processing times. Sung and Yoon [63] showed that for m = 2 the

performance ratio of WSTP can be reduced to 3/2 when the processing times satisfy

the additional constraint (phj + p2i )/2 > Ip ig — p2j for each j = 1, 2, ... , n. In what

follows, tighter bounds will be shown for the rules when the processing times are

subject to additional constraints. In the remaining part of this section, the following

notation is used:

• For each j = 1, 2, ... , n let (Si = maxi<i<m{Pii } — mini<i<m{Pij}•

• Let min (ii i<m {ai l denote the k th smallest item among { a i , a2 , ... , am }.

• Let [j] denote the order scheduled in position j of a schedule.

4.3.1 Additional Constraints E im , pig /m > 6i

With the additional constraints E im_ i pig /m > 5i for each order j = 1, 2, ... , n, the

following result can be shown:
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Theorem 4.5 For PD 1 E wiCi , if

for each order j = 1, 2, .. . , n, then

Proof: Without loss of generality, it may be assumed that

where pi = E irn 1 pii , j = 1, 2, ... , n. According to such notation,

It is clear that

Again, the last ">" in (4.22) is due to Smith's WSPT rule.

Now consider the schedule generated by WSTP. Clearly, in this schedule, the

order scheduled in position j is order j itself (If there are ties, one can always relabel

the orders such that they satisfy the ordering in (4.20)). Suppose the latest finish

time of order j takes place on machine i*, and the earliest finish time of order j is on

machine i'. Now
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Therefore, for each i = 1, 2, ... , m the following relation holds:

Or, equivalently,

Thus,

Or, equivalently,

Therefore, by (4.21),

From (4.22) and (4.27), the result follows.

It is clear that the above bound is monotonically increasing with m. It is 1

when m = 1, and 3/2 when m = 2. When m becomes infinitely large, the bound is 2.

0

for each order j = 1, 2, .. . , n, then
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where 7-1(k) -- 1 + 2 + ... + 1 is the harmonic series.

Proof: Without loss of generality it may be assumed that

where pi = max i<i<m {pii }, j = 1, 2, ... , Ti.

In the schedule generated by WSMP, the order scheduled in position j is

order j itself (Again, if there are ties, one can always relabel the orders to guarantee

the ordering in (4.28)). It is easy to see that

Now consider the order scheduled in the i th position of an optimal solution.

Its completion time is

(4.30)

According to the assumption, for the order scheduled in the k th position

It follows that

(4.31)

More generally, for each i = 1, 2, ... , m
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Or, equivalently,

(4.33)

Therefore, by (4.30)

Thus,

By (4.29) and (4.35), the result follows. 	 ❑

Note that the bound increases with m. To see this, consider the bound for

m + 1 machines and m machines, respectively. For convenience, let

I' = (1 + I-1(m + 1) — 9-1(2m + 1))(1 +11(m) —11(2m — 1)).

The gar) between the two hounds for the resnective number of machines is

Clearly, when m = 1, the bound is 1; when m = 2, the bound becomes 3/2. Finally,
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Theorem 4.7 For PD 11 E wiCi , if

for each order j = 1, 2, . . . , n, then

Proof: The result immediately follows from Lemma 4.3 and (4.35). 	 ❑

4.3.2 Additional Constraints maxi<i<m{Pij} < 3mini<i<m{Pii }

Now change the characteristics of the processing times such that

Actually, the constraint is equivalent to

With this additional constraint, the following results are obtained:
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for each order j = 1, 2, ... , n, then

Proof: The result immediately follows from Lemma 4.3 and (4.44). 	 ❑

4.4 LP-Based Approximation Algorithms

In this section, orders are allowed to have different release dates. Preemptions are

not allowed. However, unforced idleness of the machines is allowed, i.e., a machine is

allowed to keep idle while an operation is waiting for processing. This section presents

two approximation algorithms based on different LP relaxations. For convenience of

description, the following notation is defined:
,....	 ...,
C1 , C2, ... , On: The completion times in the schedule produced by an LP-

based
algorithm.

ClI, q, ... , CZ: The completion times in an optimal schedule.

4.4.1 Algorithm Based on a Completion Time Formulation

Hall et al. [28] presented a 3-approximation LP-based algorithm for 1 1 ri E wiCi .

The algorithm was also considered by Chekuri and Khanna [8]. In this section, this

algorithm is extended to solve PD I ri 1 Ewi Cj . Thus, PD li E wiCj can also be

solved as a special case.

Let 0 = {1, 2, ... , n} denote the set of all orders. For any subset S C 0, let

E wiCi problem can be relaxed by the following linear program:The PD I ri
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subject to

Constraints (4.45) are trivial. However, constraints (4.46) need some justification.

Assume that S = {1, 2, ... ,181}. It follows that for j E 5,

The inequality is due to the fact that there may be some idle time in the schedule

because of the release dates. Thus,

Summing piiC over all j E S and simple algebra results in (4.46).

It is clear that (4.46) generates an exponential number of constraints. For the

one-machine case, Queyranne [59] has shown that such constraints can be separated

polynomially so that the above linear program can be solved in polynomial time by

the ellipsoid method. This is the key observation that the above linear program can

be used as a relaxation for approximation algorithms.

An important lemma regarding the linear programming formulation can be

stated as follows:



The result follows.

Now consider the following algorithm:

An LP-based Algorithm Using Completion Times (I/ Lp i )

Step 2: Schedule the orders in nondecreasing order of Cj . Ties are broken arbitrarily.
Insert idle time when rj is greater than the completion time of the (j — 1)th
order.

In what follows, the performance guarantee of IlLpi will be analyzed.

Theorem 4.12 IlLpi is a 2-approximation algorithm for PD I E w.c..7.7	 •

83
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Proof: Since ri = 0 for all j = 1, 2, ... , n, there is no idle time in the schedule

generated by ihpi. For S = {1, 2, • - • , j},

due to (4.47). Thus.

The result follows from (4.49) and (4.50). 	 ❑

Theorem 4.13 IILpi is a 3-approximation algorithm for PD I ri 1 E wig; .

Proof: Let S = {1, 2, ... , j}; let rmax (S) = maxi Es-tril. Clearly, there is no idle

time between r,,,,,x (S) and C. It is easy to see that,

By (4.45) and the assumption C 1 < C2 < ... < Cm , it is easy to see that rmax (S) <

C. Thus,

due to Lemma 4.11. Therefore, by (4.49) and (4.51),

The result follows. 	 ❑

4.4.2 Algorithm Based on a Time Interval Formulation

Inspired by the time interval indexed linear programming formulation for R ri

E wig; due to Hall et al. [28], Wang and Cheng [66] presented a I-approximation
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algorithm for PD H E wici . In what follows, an extension of Wang and Cheng's

algorithm is proposed for solving PD rj E w .c •.7 •

With a given A > 1, the time horizon of potential completion times is divided

into the following intervals:

where L is the smallest integer such that

For convenience, let

to = 1, and t / = A/-1 , / = 1,	 , L.

Thus, the 1'' interval runs from t1 _ 1 to t 1 , 1 = 1, 2, ... , L. Let the decision variable

xj/ be:

{ 1, if order j is scheduled to complete within the interval (t1_1, td;

Consider the following linear programming relaxation:

-	 --

subject to

xii =
0, otherwise.

xj/ > 0,	 j = 1, . . . , n, 1 = 1,... ,L.	 (4.55)
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Now consider the following algorithm:

An LP-based Algorithm Using Time Intervals (HLp2)

Step 1: Given A, solve LP2 and let the optimal solution be	 j = 1, . , n, 1 =
1,... ,L.

Step 2: Let Cj = EfL i. 	j = 1,	 , n.

Step 3: Schedule the orders in increasing order of C. Ties are broken arbitrarily.
Insert idle time when rj is greater than the completion time of the (j — 1) th

order.

Again, assume without loss of generality that C 1 < C2 <	 < Cr . In what

follows, the performance guarantee of HLP2 for solving PD ri .7 3Ew•c• will be

analyzed.

Lemma 4.14 The optimal value of LP2 is a lower bound for the minimum cost of

PD ri EwiCi . That is,

Proof: Consider an optimal schedule 7T * for PD ri E 'w.3 C•2 One can construct

a solution 7 to LP2 by setting x = 1 if order j completes within the /th interval.

Clearly, ii is feasible to LP2 , that is, constraints (4.52), (4.53), (4.54), and (4.55) are

all satisfied. Schedule it can never be better than the optimal solution to LP2 . On

the other hand, the objective cost of 7r* is larger than that of 7r, since the completion

time of order j is at least t1_ 1 . It follows that the objective cost of 7T * is no better

than the optimal cost of LP2.

Theorem 4.15 (Wang and Cheng [66]) Given A = 2, HLP2 is al-approximation

algorithm for PD I Ewici .
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Theorem 4.16 Given A = 2, HLP2 is a 3-approximation algorithm for PD

E wici .

Proof: Following the same argument as the one in Wang and Cheng [66], it can be

di num that

r •

Thus, by (4.56) and (4.59), the result follows.

For LP2 , it would be of interest to investigate if a smaller A leads to a better

performance. In the next section, an empirical analysis will be presented.

4.5 Empirical Analyses of the Algorithms

Since the priority rules have only been formulated for PD > wici , the experiments

are focused on the problem with all release dates equal to zero.

4.5.1 Generation of Problem Instances

For each problem size with n = 20, 50, 100, 200 orders and m = 2, 5, 10, 20 machines,

30 instances are randomly generated using a factor called order diversity. The order

diversity k is used to characterize the number of product types each order requests.

The following three cases of order diversity are considered:

= 2: In problem instances 1 to 6 each order requests 2 different product types. This
group is denoted by G1.
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lc = m: In problem instances 7 to 24 each order requests the maximum number of
different product types, namely m, i.e, the number of machines. However, these
18 instances are grouped into the following 3 subgroups:

For instances 7 to 12 in group G2, the processing times of each order have no
additional constraints.

For instances 13 to 18 in group G3, the processing times of each order j are
subject to the constraint

For instances 19 to 24 in group C4, the processing times of each order j are
subject to the constraints

lc = r: In problem instances 25 to 30 in group G5 each order requests a random
number (r) of different product types; r is randomly generated from the uniform
distribution [1, m].

When the number of product types, /i , for each order j is determined, li machines are

chosen randomly. For each machine i that is selected, an integer processing time pig

is generated from the uniform distribution [1, 100]. Note that for instances 13 to 24,

the processing times of each order are generated in such a way that they satisfy the

additional requirements. In addition to the generation of processing times, for each

order j, a weight is randomly generated from the the uniform distribution [1, 10]. In

total, 4 x 4 x 30 = 480 instances are generated.

4.5.2 Experimental Results and Analyses

The algorithms are implemented in C++ with STL. The GLPK 4.4 (Makhorin, 2004)

callable library is applied to solve the linear programs in the HLP2 algorithm. Since

no callable library could be found for the ellipsoid method, the IlLpi algorithm is

not implemented. The running environment is based on the Windows 2000 operating

system; the PC used was a notebook computer (Pentium III 900Mhz plus 384MB

RAM). It should be noted that the time-interval LP-based algorithm needs a significant
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amount of virtual memory. For example, for a problem instance with n = 200 and

771 = 20, when A = 2 1 /4 , the total memory usage for the time-interval LP-based

algorithm could reach 1GB. Due to this reason, for configuration of the virtual

memory, the total file paging size for the hard disk is set to 1,152 MB.

In what follows, the performance of the algorithms is analyzed in terms of two

aspects: the frequencies at which they are the best, and comparison of their average

costs and average running times.

Tables 4.1 to 4.5 show the frequencies of each algorithm producing the best

solution. In each table, the column labels are defined as follows:

LP1: The HLP2 algorithm with A = 21/4.

LPI: The HLP2 algorithm with A = V2.

LP': The HLP2 algorithm with A = 2.

The data in these columns are the number of instances (out of 6 for each

combination of n and m) for which the corresponding algorithms produce the best

solutions.

Table 4.1 shows that for the instances of group G 1 with k = 2, LP1 and WECT

have the best performance. A close study of Table 4.1 reveals that for instances with

small n and large m, WECT outperforms L./31. However, when n becomes larger,

L/31 becomes significantly better than all other algorithms.

Table 4.2 shows that for the instances of group G2, for which k = m but there

are no additional constraints on the properties of processing times, LP1 performs the

best, and WECT the second best. However, L.F1 becomes significantly better for

instances with large n.

Table 4.3 shows that WECT and L.F1 are the two best algorithms for G3.

However, when n is small, WSTP, WSMP, WSMC, and WSPL may occasionally

beat the other algorithms. For large Ti, the tendency is that WECT beats L./31.

Table 4.4 shows similar findings for G4. These results are consistent with the theoretical
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Table 4.1 The Frequency that Each Algorithm Performs the Best for Instances of
Group G1

n m WSTP WSMP WSMC WSPL WECT LPj- LP1 LP'
2 0 0 0 0 2 4 0 0
5 0 0 0 0 3 2 1 0

20 10 0 0 0 0 2 1 2 1
20 0 0 0 0 5 1 0 0
2 0 0 0 0 1 5 0 0
5 0 0 0 0 3 2 1 0

50 10 0 0 0 0 1 4 1 0
20 0 0 0 0 4 0 1 1
2 0 0 0 0 0 6 0 0
5 0 0 0 0 1 5 0 0

100 10 0 0 0 0 1 5 0 0
20 0 0 0 0 1 5 0 0
2 0 0 0 0 0 6 0 0
5 0 0 0 0 0 6 0 0

200 10 0 0 0 0 0 6 0 0
20 0 0 0 0 0 6 0 0

analysis that the priority rules exhibit a better performance with additional constraints

on the processing times.

Table 4.5 shows that for the instances of group G5, for which k = r, LP1

performs the best, and WECT the second best. The tendency is that L/31 becomes

significantly better with large n.

The comparison among LP1, LP1, and LP' shows that smaller A leads to

better performance of the HLP2 algorithm, even though there are some exceptions.

Now the performance of the algorithms is investigated in terms of comparisons

of average costs and average running times. Tables 4.6 to 4.10 show the positive ratios

of the algorithms that are higher than the average costs of the best algorithms. In

addition to the same field labels defined for Tables 4.1 to 4.5, four more fields are

introduced:

Ti.: The average running time (Seconds) per instance for all five priority rules
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Table 4.2 The Frequency that Each Algorithm Performs the Best for Instances of
Group G2

n m WSTP WSMP WSMC WSPL WECT 1,132 LI1 LI1
2 0 0 0 0 1 5 0 0
5 0 0 0 0 2 4 0 0

20 10 0 0 0 0 4 2 0 0
20 0 0 0 0 2 3 0 1
2 0 0 0 0 1 5 0 0
5 0 0 0 0 2 3 1 0

50 10 0 0 0 0 2 4 0 0
20 0 0 0 0 1 5 0 0
2 0 0 0 0 0 6 0 0
5 0 0 0 0 0 6 0 0

100 10 0 0 0 0 1 5 0 0
20 0 0 0 0 3 3 0 0
2 0 0 0 0 0 6 0 0
5 0 0 0 0 0 6 0 0

200 10 0 0 0 0 0 6 0 0
20 0 0 0 0 0 6 0 0

together.

T2: The average running time (Seconds) per instance for LP1.

T3: The average running time (Seconds) per instance for LP1.

T4: The average running time (Seconds) per instance for 1,11.

The entries in the columns of the above four fields are simply the average

running time in seconds per instance, as defined above. Now focus on the columns

corresponding to the algorithms. For these columns, a "-" indicates that an algorithm

produces the minimum average objective cost. Note that each row has one and only

one "-" for each combination of n and m. In each row, the entries other than "-" are

computed as:

The average cost of corresponding algorithm — The minimum average cost
	  x 100.

The minimum average cost
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Table 4.3 The Frequency that Each Algorithm Performs the Best for Instances of
Group G3

n m WSTP WSMP WSMC WSPL WECT LP2 LP1 L.11
2 0 1 1 0 0 4 0 0
5 0 1 0 1 2 2 0 0

20 10 0 0 0 0 4 2 0 0
20 1 0 0 0 3 0 1 1
2 0 0 0 0 4 2 0 0
5 0 0 0 0 1 5 0 0

50 10 0 0 0 0 4 2 0 0
20 0 0 0 0 1 5 0 0
2 0 0 0 0 6 0 0 0
5 0 0 0 0 2 4 0 0

100 10 0 0 0 0 3 3 0 0
20 0 0 0 0 3 3 0 0
2 0 0 0 0 6 0 0 0
5 0 0 0 0 4 2 0 0

200 10 0 0 0 0 4 2 0 0
20 0 0 0 0 5 1 0 0

In order to rank the performance of the algorithms, in what follows the

notation - is used to indicate that algorithm A is better than algorithm B if A - B.

Furthermore, if algorithm A almost ties with algorithm B, it is denoted by A , B.

First of all, Tables 4.6 to 4.10 show that, for each n, the percentage of

each priority rule (except for WECT) tends to increase when m increases. This is

consistent with the previous theoretical analysis that the performance of each priority

rule becomes worse when m becomes larger. In contrast, the HLP2 algorithm does

not have such a relationship between its performance with the value of m. Secondly,

these tables also show that a smaller A leads to a better performance of HLP2. This

is consistent with a previous finding from Tables 4.1 to 4.5.

Now consider the performance of the algorithms for each group of problem

instances. Table 4.6 shows that, for group G 1 , WECT can beat LTV when n <

50. However, when n > 100, LP1 is overwhelmingly better than other algorithms.
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Table 4.4 The Frequency that Each Algorithm Performs the Best for Instances of
Group G4

n m WSTP WSMP WSMC WSPL WECT LT1 LP1 LP'
2 0 1 1 0 2 1 0 1
5 0 0 0 0 3 2 1 0

20 10 0 0 0 0 5 1 0 0
20 0 0 0 0 5 0 1 0
2 0 0 0 0 4 2 0 0
5 0 0 0 0 4 2 0 0

50 10 0 0 0 0 4 2 0 0
20 0 0 0 0 4 2 0 0
2 0 0 0 0 3 3 0 0
5 0 0 0 0 1 5 0 0

100 10 0 0 0 0 5 1 0 0
20 0 0 0 0 5 1 0 0
2 0 0 0 0 5 1 0 0
5 0 0 0 0 6 0 0 0

200 10 0 0 0 0 3 3 0 0
20 0 0 0 0 5 1 0 0

Although it is hard to fix a ranking of performance when n is small, for large n it can

be seen that

LT1 -<LP1-<WECT ,-- LP: -, WSMC -<WSTP -<WSMP -<WSPL.

Table 4.7 shows that, for group G2, WECT can beat L/31 when n < 20.

However, when n > 50, LP2 is much better than all other algorithms. For large n it

can be seen that

1,13 -<WECT -- LP1 -< LI1 -<WSTP -WSMC -<WSMP -<WSPL.

Note that the difference between WECT and L./31 is almost less than 1%. Thus, the

performance of WECT is actually quite close to that of L./31. However, the table

shows that LIDj- requires hours of running time for large instances, while WECT
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Table 4.5 The Frequency that Each Algorithm Performs the Best for Instances of
Group G5

n m WSTP WSMP WSMC WSPL WECT .14 LP1 LII
2 0 0 0 0 1 4 1 0
5 0 0 0 0 1 3 2 0

20 10 0 0 0 0 2 3 0 1
20 0 0 0 0 4 2 0 0
2 0 0 0 0 0 6 0 0
5 0 0 0 0 1 3 2 0

50 10 0 0 0 0 0 5 1 0
20 0 0 0 0 1 4 0 1
2 0 0 0 0 0 6 0 0
5 0 0 0 0 0 6 0 0

100 10 0 0 0 0 0 6 0 0
20 0 0 0 0 0 6 0 0
2 0 0 0 0 0 6 0 0
5 0 0 0 0 0 6 0 0

200 10 0 0 0 0 0 6 0 0
20 0 0 0 0 0 6 0 0

requires only milliseconds. As stated before, the HL,p2 algorithm requires virtual

memory up to 1GB. By contrast, WECT only requires several kilobytes of memory.

Table 4.8 shows that, for group G3, WECT can beat L.F1 when n < 20.

However, when n > 50, LP1 is overwhelmingly better than other algorithms. For

large n it can be seen:

L1=1 -< WECT -- LP1 -<WSTP -<WSMC --<WSMP -< LP: - , WSPL.

Note that the difference between WECT and LPj- is less than 0.5%. Thus, the

performance of WECT is almost the same as that of LT1. However, to achieve such

performance, LI92 requires more computational resources than WECT. It is also

interesting to see that, WSTP,WSMC, and WSMP perform better than LTI.



Table 4.6 Comparison of Average Costs in Percentage and Average Running Times for Group G1

n m WSTP WSMP WSMC WSPL WELT LP21 Lin Ln T1 T2 T3 T4

2 5.40 6.06 3.28 5.39 0.39 - 0.30 2.62 0.00 1.34 0.23 0.04
5 7.80 10.05 4.45 21.64 - 2.02 1.87 2.30 0.01 4.05 0.86 0.18

20 10 5.53 5.96 1.20 13.96 - 0.73 0.80 0.82 0.07 7.38 1.29 0.23
20 16.12 14.52 12.47 22.79 - 10.09 10.09 10.15 0.07 20.77 2.63 0.46
2 4.30 5.39 3.37 7.11 0.64 - 0.96 1.96 0.06 9.20 1.88 0.61
5 12.17 14.69 8.54 30.68 - 4.59 4.91 7.64 0.06 28.71 5.33 1.26

50 10 5.88 7.51 2.57 24.75 7.36 - 0.29 1.13 0.09 58.01 10.02 2.03
20 10.35 12.73 7.59 21.41 - 5.17 5.04 5.71 0.07 124 20.69 3.64

2 3.11 4.79 3.94 8.73 1.35 - 1.04 4.81 0.11 48.77 11.20 3.78
5 6.59 8.09 4.35 26.66 3.68 - 0.92 4.49 0.20 121 24.50 6.73

100 10 8.28 11.80 4.55 30.03 4.44 - 0.68 3.11 0.25 251 45.23 10.39
20 7.41 9.43 3.08 24.18 4.43 - 0.19 0.95 0.26 578 98.50 17.89
2 2.82 4.18 3.15 8.50 0.92 - 1.14 3.85 0.24 354 87.01 32.75
5 6.31 8.12 3.86 26.62 4.89 - 1.11 4.69 0.28 687 145 42.41

200 10 6.87 8.91 4.03 28.01 6.30 - 1.00 3.99 0.30 1440 251 65.00
20 9.01 9.59 3.77 27.46 11.34 - 0.48 2.68 0.26 4368 482 94.72



Table 4.7 Comparison of Average Costs in Percentage and Average Running Times for Group G2

n m WSTP WSMP WSMC WSPL WECT LPj LP1 1,11 T1 T2 T3 T4

2 3.83 4.90 3.56 6.61 1.42 - 0.42 2.55 0.00 1.37 0.26 0.04
5 3.42 4.44 3.21 12.28 - 0.03 0.44 1.64 0.01 4.95 0.68 0.13

20 10 4.13 4.94 2.71 8.12 - 0.24 0.37 1.85 0.05 18.12 1.52 0.30
20 3.51 4.03 3.21 7.91 - 0.19 0.28 1.22 0.06 43.50 5.31 0.81

2 3.01 4.02 2.76 8.44 0.81 - 0.57 3.04 0.07 9.34 2.05 0.65
5 6.78 7.65 4.76 11.46 0.02 - 0.56 2.55 0.07 30.14 5.24 1.18

50 10 5.37 7.16 5.30 10.25 0.56 - 0.76 2.31 0.10 104 12.60 2.44
20 4.42 4.41 3.71 13.34 0.16 - 0.68 1.87 0.16 518 36.80 6.42
2 2.90 4.63 3.77 7.20 1.44 - 1.16 3.46 0.07 48.63 11.66 3.80
5 4.80 5.95 4.29 12.63 0.93 - 1.02 3.36 0.16 139 25.00 6.22

100 10 5.64 7.44 4.94 13.52 0.40 - 1.34 2.71 0.29 503 54.50 12.02
20 4.62 5.41 3.80 13.14 0.01 - 0.84 2.81 0.28 1994 167 26.94

2 1.87 3.44 2.74 7.66 0.93 - 0.98 3.67 0.28 313 84.99 30.63
5 4.34 6.62 5.30 13.71 0.96 - 1.36 3.67 0.27 855 161 47.75

200 10 5.17 6.76 5.29 13.89 0.71 - 1.18 3.13 0.25 3222 358 80.26
20 4.15 5.41 4.26 15.29 0.65 - 1.05 2.97 0.20 15865 1199 194



Table 4.8 Comparison of Average Costs in Percentage and Average Running Times for Group G3

n m WSTP WSMP WSMC WSPL WELT L.F1 LP1 L.11 T1 T2 T3 T4

2 2.01 1.92 1.48 2.64 0.44 - 0.30 1.48 0.00 1.50 0.13 0.03
5 1.98 1.66 1.55 3.57 0.05 - 0.25 1.01 0.00 3.70 0.30 0.05

20 10 2.08 2.50 1.26 3.34 - 0.26 0.53 1.23 0.01 10.39 0.69 0.14
20 1.57 1.80 1.38 4.09 - 0.20 0.33 1.34 0.01 24.42 1.43 0.30
2 1.32 1.94 1.46 3.06 0.20 - 0.44 3.76 0.01 8.51 1.12 0.38
5 2.71 3.29 2.30 3.72 0.07 - 0.37 3.61 0.01 25.81 2.67 0.69

50 10 2.57 2.90 2.19 3.62 0.13 - 0.62 2.26 0.01 60.32 3.79 0.95
20 1.86 1.86 1.54 4.32 0.07 - 0.47 3.57 0.01 183 7.23 1.67
2 1.10 1.87 1.44 2.45 0.31 - 0.94 3.89 0.01 46.52 7.89 2.44
5 2.21 2.71 2.13 3.80 0.21 - 0.95 4.04 0.02 101 14.73 3.69

100 10 2.59 3.05 2.32 4.30 0.10 - 0.85 4.05 0.03 196 21.27 5.66
20 1.98 2.27 1.85 4.03 0.03 - 0.79 4.04 0.04 783 53.20 7.96
2 0.90 1.59 1.26 2.38 0.12 - 0.91 3.83 0.05 284 84.13 26.02
5 1.74 2.58 2.10 3.92 0.18 - 1.02 3.85 0.06 663 133 40.65

200 10 2.04 2.68 2.18 4.13 0.15 - 0.93 3.42 0.08 2363 204 53.83
20 1.96 2.38 2.03 4.26 0.09 - 0.83 3.22 0.20 10941 674 101
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Table 4.9 shows that, for group G4, WECT is the best. The algorithms are

ranked as follows:

WECT -‹ LPj. --‹ 14 -- WSTP -<WSMC -<WSMP -‹ L.11 - , WSPL.

Again, WSTP , WSMC, and WSMP perform better than LII. LPj - could not

beat WECT even though it requires more computational resources.

Table 4.10 shows that, for group G5, LP1 is the best. The algorithms are

ranked as:

L P21 -‹ L.F1 --<WECT --‹ LP -<WSTP --<WSMC --<WSMP -<WSPL.

Again, the LP-based algorithm requires more computational resources than WECT.

To observe the cost-effective performance of the Hi,p2, Table 4.11 compares

for each group of instances the percentages that the average costs of Lipi and LP23

are larger than that of LP1. From this table, it can be seen that the gap between

the average cost of LP1 and that of 1,192 is actually very small. For most cases, it

is less than 1.0%; and the largest one is 1.3%. Therefore, the performance of LP1 is

actually very close to that of LP1. However, from Tables 4.6 to 4.10, the average

running time of LP1 is much more than that of LP? (for some cases, it is more than

10 times). In addition, in the experiments, it is noticed that the memory requirement

of L.Pj- is twice that of LP1. Thus, in practice, if the use of HLP2 is considered, it

is recommended to choose A = V2 in order to strike a balance between performance

and the use of computational resources.

From the above empirical analysis, WECT and HLP2 (A = /) would be good

choices of algorithms for solving practical problems. Especially, in an environment

which requires a solution to be generated quickly with limited memory spaces, WECT

is the most preferable. It is simple to implement, requires a small amount of memory,

runs fast, and produces good results.



Table 4.9 Comparison of Average Costs in Percentage and Average Running Times for Group G4

n in WSTP WSMP WSMC WSPL WELT .LP LII L11 T1 T2 T3 T4

2 1.54 1.15 0.93 1.80 - 0.02 0.15 0.36 0.00 1.39 0.17 0.03
5 1.79 1.92 1.83 1.69 0.05 - 0.23 1.80 0.00 3.62 0.39 0.07

20 10 1.61 1.97 1.45 4.28 - 0.20 0.40 2.85 0.00 15.43 1.15 0.21
20 2.02 1.48 1.42 6.64 - 0.27 0.68 1.10 0.01 27.90 2.05 0.36
2 1.04 1.53 1.22 1.80 - 0.07 0.66 3.58 0.01 9.24 1.61 0.50
5 1.99 2.56 2.26 3.33 - 0.02 0.59 2.96 0.01 23.65 3.17 0.80

50 10 1.98 2.29 1.75 4.37 - 0.00 0.51 3.57 0.01 72.96 7.64 1.62
20 1.59 2.20 1.89 6.25 - 0.12 0.73 3.00 0.02 231 15.41 3.09
2 0.75 1.26 1.11 1.22 - 0.01 0.96 4.63 0.01 43.95 8.76 3.66
5 2.23 2.26 1.93 3.34 0.18 - 0.96 3.76 0.02 126 19.06 5.29

100 10 2.07 2.41 2.11 3.41 - 0.10 0.82 3.75 0.03 339 31.20 7.92
20 1.15 2.28 2.05 4.27 - 0.12 0.74 3.32 0.04 1127 98.07 16.16
2 0.75 1.22 1.08 1.43 - 0.13 1.03 4.74 0.05 288 76.67 26.10
5 1.25 2.15 1.91 3.20 - 0.10 1.13 4.11 0.06 647 147 47.63

200 10 1.60 2.37 2.08 4.57 0.04 - 0.87 4.08 0.08 2752 315 77.53
20 1.29 2.26 2.05 4.84 - 0.03 0.91 3.91 0.22 13423 864 118



Table 4.10 Comparison of Average Costs in Percentage and Average Running Times for Group G5

n m WSTP WSMP WSMC WSPL WECT LPj. LP1 L.F1 T1 T2 T3 T4

2 4.97 3.95 2.36 12.82 0.03 - 0.21 1.26 0.00 1.05 0.22 0.04

5 5.92 9.42 4.52 9.33 2.49 - 0.29 1.78 0.00 3.97 0.64 0.12

20 10 5.39 7.54 5.04 16.19 0.39 - 0.23 1.71 0.07 9.93 1.52 0.31

20 5.38 9.15 5.64 12.45 - 0.41 0.86 2.00 0.08 40.58 5.47 0.84

2 4.03 5.59 3.71 12.09 2.32 - 0.61 4.14 0.06 8.56 1.76 0.57

5 7.05 9.78 7.47 15.84 2.49 - 0.49 2.81 0.07 27.17 4.59 1.08

50 10 7.68 11.53 8.63 13.37 2.65 - 0.68 2.89 0.06 96.88 17.93 2.91

20 9.03 15.40 9.31 18.17 1.86 - 0.65 2.63 0.26 324 47.02 7.04

2 3.01 5.02 3.39 15.01 2.12 - 1.09 5.14 0.10 44.18 10.59 3.56

5 7.40 10.04 7.38 17.12 2.18 - 1.00 4.62 0.06 125 23.05 6.61

100 10 7.99 13.35 10.72 15.86 2.40 - 0.73 3.46 0.28 373 65.16 12.25

20 6.07 17.11 13.97 16.16 1.63 - 0.65 2.93 0.19 2594 250 42.53

2 2.97 4.99 3.35 17.24 2.24 - 1.15 5.14 0.25 289 78.82 27.19

5 6.29 11.51 8.92 17.27 2.87 - 1.23 4.26 0.24 681 146 42.46

200 10 6.67 14.58 11.49 16.93 2.63 - 1.01 3.67 0.29 2806 336 77.67

20 6.64 16.54 13.84 18.71 1.76 - 1.11 3.68 0.27 16300 1229 207



Table 4.11 The Percentage that the Average Costs of LP2 and L.11 Are Larger Than That of LI32

n m
G1 G2 G3 G4 G5

LITI LP1 LP1 L11 LP1 LII L131 L11 LII L11

20

2
5
10
20

0.30
-0.15
0.07
0.00

2.62
0.27
0.09
0.05

0.37
0.26
0.12
0.08

2.57
1.24
1.33
0.88

0.35
0.24
0.17
0.09

2.24
1.13
1.17
0.95

0.29
0.24
0.18
0.20

1.75
1.37
1.65
0.91

0.28
0.25
0.19
0.25

1.69
1.44
1.62
1.07

50

2
5
10
20

0.96
0.31
0.29
-0.12

1.96
2.92
1.14
0.51

0.74
0.50
0.69
0.60

2.58
2.63
2.14
1.72

0.67
0.45
0.65
0.54

2.87
3.00
2.17
2.43

0.65
0.49
0.60
0.57

3.03
2.95
2.66
2.55

0.65
0.49
0.62
0.58

3.24
2.92
2.66
2.55

100

2
5
10
20

1.04
0.92
0.68
0.19

4.81
4.49
3.11
0.95

1.11
0.99
1.25
0.78

3.99
3.62
2.76
2.64

1.06
0.97
1.09
0.78

4.00
3.80
3.27
3.22

1.03
0.97
0.97
0.71

4.19
3.78
3.36
3.17

1.05
0.98
0.93
0.71

4.37
3.96
3.37
3.11

200

2
5
10
20

1.14
1.11
1.00
0.48

3.85
4.69
3.99
2.68

1.04
1.30
1.16
1.00

3.74
3.92
3.25
2.95

1.01
1.19
1.07
0.92

3.77
3.91
3.33
3.06

0.98
1.14
1.00
0.91

4.02
3.95
3.60
3.36

1.02
1.17
1.01
0.96

4.24
4.01
3.59
3.41
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4.6 Concluding Remarks

This chapter focused on several approximation algorithms for the fully dedicated order

scheduling problem with the minimization of the total weighted completion time as

objective. Special interest was focused on the design of approximation algorithms

for this problem. The procedures include several priority rules as well as two LP-

based algorithms. Although priority rules are easy to implement, the analysis showed

that their performance guarantees vary according to the distribution properties of

the processing times. In contrast, various linear programming relaxations uniformly

provide tight lower bounds for approximation algorithms. However, different linear

programming relaxations may result in approximation algorithm with very different

performance guarantees. Fortunately, both LP-based algorithms presented in this

chapter have a fixed ratio performance guarantee.

Both the problems PD E wiCi and PD ri E wiCi are strongly NP-hard.

It is not known if there exists any polynomial time approximation scheme (PTAS) for

these problems. Afrati et al. [1] presented a PTAS for the problem 1 r i E W It

would be interesting to examine if their results shed any light on solving the problems

studied in this chapter. On the other hand, it would also be challenging to prove that

the problems are APX-hard if such PTAS does not exist unless P = Arp.

With the presence of release dates, it would be interesting to investigate if the

online (3 + E)-approximation algorithm for 1 ri E wici due to Hall et al. [28] can

be extended to solve the online version of PD ri E wiCi •

There is another interesting issue that comes up when orders have different

release dates. In this chapter, it allowed unforced idleness, i.e., the decision-maker is

allowed to keep a machine idle in anticipation of an order with a high weight coming

in, even though another (old) order may be waiting for its products. Clearly, this

is a reasonable assumption in certain real world applications of the order scheduling

model, e.g., the equipment maintenance and repair application. However, in this
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chapter, it was assumed that a facility is not allowed to preproduce for an order

that has not come in yet. In the manufacturing world, if it is known what the total

quantity of product requested is (in current as well as in future orders), then the

machines may be kept running producing all the different product types for orders

that have not come in yet (i.e., unforced idleness is not allowed). In this case, when

an order is released at a certain time, there may already be a sufficient number of

the various different product types available that can be assigned to the new order,

allowing for an immediate shipment. In this way, the lead times of the orders may be

reduced considerably. For the LP-based algorithm using completion time formulation,

it is easy to modify the formulation in such a way that it meets this requirement. For

example, one only needs to change constraints (4.45) as follows:

Cj > max{rj , pij }, i = 1, ... , m, j = 1, . . . ,n,

but keep the other constraints unchanged. Step 2 of this algorithm has to be changed

slightly, so that it is not required to insert idle time. Simple analysis shows that,

under the new assumption, fhpi becomes a 2-approximation algorithm for PD I rj I
E wicj. However, for the LP-based algorithm using time interval formulation, it

turns out that it is not so easy to incorporate the new assumption into either the LP

formulation or the algorithm.

It is believed that these types of assumptions are interesting for manufacturing

and other settings. Thus, it would be of interest to consider such assumptions in future

research.



CHAPTER 5

THE FULLY FLEXIBLE CASE WITH IDENTICAL MACHINES —

THE TOTAL WEIGHTED COMPLETION TIME

5.1 Introduction

The previous chapters focused on the fully dedicated case of order scheduling. In this

chapter and the next chapter, the fully flexible case will be considered.

Clearly, it would be more difficult to handle the fully flexible case. The reason

is that, two issues have to be taken care of for this case: Besides sequencing the orders,

one needs also to assign the product types to the machines. Recall that for the fully

dedicated case, only the issue of sequencing the orders needs to be considered.

This chapter mainly focuses on the fully flexible case with identical machines in

parallel. The objective is to minimize the total weighted completion time of the orders.

According to the notation defined in Chapter 1, the problem of interest is denoted by

PF I IIk 1 > wiCi when k is fixed and as PF H 1 > wiCi when k is arbitrary. Even

when all wj = 1, the problem with an arbitrary k is ordinary NP-hard for any fixed

number (> 2) of machines and strongly NP-hard when the number of machines is

arbitrary (see Blocher and Chhajed [4]). On the other hand, when k = 1, the problem

PF I H1 EwiCi becomes the classical problem P ii EwjCj which is strongly

NP-hard (see [6]), and the problem PFm I H1 I E wi Ci becomes Pm 1 E wiCj

which is ordinary NP-hard for m = 2 (see [7]). Thus, both PF I Ilk I E w.3 C•3 and

PFm I IIk Ewici are also NP-hard. Because of this, the attention is focused on

the design and analysis of heuristics.

When all wj = 1, Blocher and Chhajed [4] presented six heuristics for this

problem and conducted an experimental study of their performance; however, they

104
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did not focus on worst-case performance bounds. One of the heuristics was also

studied in Yang [67, 68]; the author established a worst-case bound for m = 2.

The study of the weighted version of the problem is motivated by the fact

that some customers may place larger orders than other customers. Therefore,

certain decision policies may require that customers be treated differently according

to certain priorities or weights. This chapter presents nine approximation algorithms

and compares their performance through worst-case as well as empirical analyses.

The comparative study yields some interesting and counter-intuitive conclusions.

The results in this chapter also appear in Leung, Li, Pinedo [45] which has

been submitted for publication. The chapter is organized as follows. Section 5.2

presents some heuristics for PF II > wici . In Section 5.3, the performance

bounds of these heuristics are analyzed. Section 5.4 compares the performance of

these heuristics through an empirical analysis. Finally, some concluding remarks are

presented in Section 5.5.

5.2 Heuristics

Even though PF H 1 E is NP-hard, some easy cases can be solved polynomially.

For example, if each order consists of only one product type and w i = 1, then the

problem can be solved by the SPT rule. For another example, if there is only one

machine, then the problem can be solved by scheduling the orders according to the

increasing order of E i j = 1, 2, ... , n. However, for the general problem, it

would be of interest to design and analyze some effective heuristics.

Similar to the heuristics for PF 1111Ecii described in [4], it is possible to

design for PF H E wici heuristics that consist of two phases. The first phase

determines the sequence of the orders, while the second phase assigns the individual

jobs within each order to the specific machines. Based on this idea, two classes
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of heuristics are considered: sequential two-phase heuristics and dynamic two-phase

heuristics.

5.2.1 Sequential Two-Phase Heuristics

The first phase of the sequential two-phase heuristics sequences the orders; the second

phase assigns the individual jobs of each order to the specific machines. Rules for

sequencing the orders include:

• The Weighted Shortest Total Processing time first (WSTP) rule sequences the
orders in increasing order of E ik_ i pii lwi .

• The Weighted Shortest LPT Makespan first (WSLM) rule sequences the orders
in increasing order of C (2)„2,/wi , where C (2):7 is the makespan of the schedule
obtained by scheduling the jobs of order j on all m parallel machines according
to the longest processing time first (LPT) rule, assuming each machine is
available from time zero on.

• The Weighted Shortest MULTIFIT Makespan first (WSMM) rule sequences
the orders in increasing order of Ca/wi , where CVF is the makespan of the
schedule obtained by scheduling the jobs of order j on all m parallel machines
according to the MF assignment rule which is described below, assuming each
machine is available from time zero on.

After the sequence of the orders has been determined by one of the above rules,

the individual jobs for each order are assigned to the specific machines according to

one of the assignment rules listed below:

• The List Scheduling rule (LS) assigns in each iteration an unassigned (arbitrary)
job to a machine with the smallest workload, until all jobs are assigned.

• The Longest Processing Time first rule (LPT) assigns in each iteration an
unassigned job with the longest processing time to a machine with the smallest
workload, until all jobs are assigned.

• The Bin Packing rule (BIN) first determines a target completion time for
an order using the LPT assignment rule (just as a trial assignment). This
completion time is used as a target completion time (bin size). At each iteration,
the BIN rule assigns an unassigned job with the longest processing time to a
machine with the largest workload. If the workload of the machine exceeds
the target completion time after the assignment, then undo this assignment
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and try the assignment on the machine with the second largest workload.
This try-and-check procedure is repeated until the job can be assigned to a
machine without exceeding the target completion time. If assigning the job
to the machine with the smallest workload still exceeds the target completion
time, then assign it to this machine, and reset the target completion time as the
completion time of the job on this machine. The whole procedure is repeated
until all jobs are assigned to the machines.

• The MULTIFIT rule (MF) assigns the jobs of an order to the machines following
an idea that is similar to (but not exactly the same as) the MULTIFIT algorithm
for P 11 Cmax (see [11]). The original MULTIFIT algorithm uses the First Fit
Decreasing (FFD) rule for the bin packing problem. In contrast, the Best Fit
Decreasing (BFD) rule is used here. Let j be the order whose jobs are to
be assigned. In the BFD procedure, the machines are treated as bins that
are partially filled, and treat the jobs of order j as items whose sizes are
exactly equal to their processing times. The jobs of order j are pre-sorted
in nonincreasing order of their processing times. Given the partial schedule
generated for the orders scheduled before order j, and given a target completion
time t (bin size), the pre-sorted jobs of order j are assigned sequentially, each
going into the bin (machine) with the largest workload in which it still fits. If
all the jobs can be assigned to the machines without exceeding t, then BFD is
considered "successful" .

Given for t a lower bound CL(j) and an upper bound Cu(j), trying BFD
with different values of t in between CL (j) and Cu (j) would generate schedules of
different length. If the processing times are integers, a binary search procedure
would make the algorithm run faster. Using a binary search procedure, one
can initially try BFD with t = (Cu (j) + CL(j))/2; whenever BFD succeeds, let
Cu (j) = t; otherwise, let CL (j) = t. This procedure is repeated until t cannot
be updated any more, or until after a specified number of iterations, say I. The
schedule obtained by trying BFD with the latest CU (j) as t is chosen.

Now it is necessary to fix an initial setting for CL (j) and Cu (j). Before
the jobs of order j are assigned, let the smallest workload of the m machines be
Cmin . It is easy to see that, an initial lower bound CL (j) can be set as

since CL (j) is no larger than the completion time of an optimal assignment. As
for the initial upper bound Cu (j), it can be set as the completion time of order
j obtained by a trial assignment using the BIN rule. In case the BFD would
not be successful even with the initial upper bound as its target completion
time, the assignment by the BIN rule is accepted.
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The various ways of combining sequencing rules with assignment rules lead to twelve

different heuristics. However, the study is focused only on those algorithms that

appear the most promising:

• Four heuristics based on WSTP, namely, WSTP-LS, WSTP-LPT, WSTP-BIN,
WSTP-MF.

• One heuristic based on WSLM, namely, WSLM-LPT.

• One heuristic based on WSMM, namely, WSMM-MF.

The unweighted version of WSTP-LS has been studied in [67, 68]. The WSTP-LPT,

WSTP-BIN and WSLM-LPT rules are generalizations of their unweighted version

which are described in [4]. The WSTP-MF and WSMM-MF rules are new.

Since each heuristic consists of a sequencing rule and an assignment rule, the

time complexity of a heuristic would be determined by the two rules. The time

complexities of the two types of rules are considered separately. The sequencing rules

are considered first.

• WSTP needs to compute Ei 1 ply Iwi for all orders, which takes 0(kn) time.
Then, applying a sort procedure on E ik_ i mi lwi takes 0(n lg n) time. Thus,
WSTP runs in 0(kn+ n lg n) time.

• WSLM needs to compute the makespan of the jobs of each order according to
the LPT rule. Since applying LPT on the jobs in each order takes 0(k lg k +
klgm), n orders need 0(knlg km) time. In addition, after computing the
makespans of the LPT schedules for all orders, the orders have to be sorted in
terms of these makespans. The sorting procedure takes 0(n lg n) time. Thus,
the total running time of WSLM is 0(knigkm + n lg n).

• WSMM needs to compute the makespan of the jobs of each order by using the
MF rule. As it will be shown later, this takes O(kn lg k + Iknm) time. After
computing the makespans, sorting the orders in terms of their makespans takes
0(n lg n) time. Thus, in total, WSMM takes 0(kn lgk + Iknm + n lg n) time.

Now consider the assignment rules.

• For LS, a min-heap data structure can be used to maintain the machines with
different workloads, it costs 0(1g m) time to retrieve from the min-heap the
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machine with the smallest workload, and costs another 0(1g m) time to update
the workload of this machine in the heap after a job is assigned. Since LS
sequentially assigns the jobs of each order in arbitrary order, and there are
0(kn) jobs, it follows that LS takes 0(knlgm) time.

• For LPT, additional time is required to sort the jobs of each order nonincreasingly
in terms of their processing times. This takes 0(nk lg k) time. The subsequential
assignment procedure requires the same time as LS. Thus, LPT takes 0(nk lg k+
knlgm) = 0(kn lg km) time.

• BIN uses LPT to obtain a trial assignment, which already takes 0(kn lg km)
time. Note that in the worst case assigning a job needs to be tried on all m
machines from the largest-workload one to the smallest-workload one. This
worst-case takes 0(km) time to assign the jobs of each order. Therefore, n
orders need 0(knm) time. Thus, BIN takes 0(kn lg km + knm) = 0(kn lg k +
knm) time in total.

• MF first uses BIN to determine the upper bounds of target completion times
before assigning the jobs of the n orders. This takes 0(kn ig k + knm) time.
Then, for each order, MF uses BFD to assign its jobs. Note that in the worst
case the assignment of a job according to BFD also needs to try all m machines
from the one with the largest-workload to the one with the smallest-workload.
As BIN, BFD takes 0(knm) time, the number of runs of BFD for each order
is I. Thus, MF takes 0(kn lg k + Iknm) time in total. Note that I is usually
a small integer. For example, when I = 20, the gap between the upper bound
and the lower bound is 2 20 = 1048576, which is a very wide range for a binary
search procedure already.

The running time of each heuristic is presented in Table 5.1.

5.2.2 Dynamic Two-Phase Heuristics

The second class of heuristics are referred to as dynamic two-phase heuristics. In

these heuristics, the sequence of the orders is not fixed prior to the assignment of the

various product types to the machines, i.e., the sequence is determined dynamically.

The heuristics use the LPT rule, the BIN rule or the MF rule to assign the jobs

to the machines. However, to determine the next order to be sequenced, a greedy

approach is applied to make a trial assignment of the product types of all remaining

orders by using one of three rules, and the next selected order j* satisfies

j* = arg min { Ci — Cif } ,
Jest 	 tui



Table 5.1 The Time Complexities for the Sequential Two-Phase Heuristics

Heuristic	 Time Complexity
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WSTP-LS

WSTP-LPT

WSTP-BIN

WSTP-MF

WSLM-LPT

WSMM-MF

0(knlgm + nlgn)

0(knlgkm + nlgn)

0(knigk + nlgn + knm)

O(knlgk + nlgn  + Iknm)

0(knigkm + nlgn)

O(knlgk + nlgn  +Iknm)

where 1 is the set of unscheduled orders, and C3 ' is the finish time of the order that

was scheduled immediately before order j*. Ties may be broken arbitrarily. In case

Ci. < Cf, one can shift forward all those jobs of j* assigned to each machine, and

put them before all jobs of j' on that machine. Now after this shift operation, if

there exists another order j" such that Ci . < Cin, the same shift operation between

j* and j" is carried out. This procedure is repeated until such a case does not occur

any more. Clearly, with such a shift operation, the finish time of an order such as

j' remains unchanged, whereas the finish time of j* decreases. This postprocessing

procedure helps to reduce the objective cost of the schedule. The three heuristics

are referred to as weighted earliest completion time by LPT (WECT-LPT), weighted

earliest completion time by BIN (WECT-BIN) and weighted earliest completion time

by MF (WECT-MF), respectively. The first two heuristics are generalizations of the

unweighted versions in [4], while WECT-MF is new. Natural implementation of each

heuristic requires n2 runs of the respective assignment rule. Thus, the running times of

these three algorithms are O (kn2 lg km), O(kn 2 lg k+kn2m) and O(kn2 lg k+Ikn2 m),

respectively.
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5.3 Worst-Case Analyses of the Heuristics

Let wiCj (H) denote the weighted completion time of order j under heuristic H;

let wiCi (OPT) denote the weighted completion time of order j under the optimal

schedule; and let [j] denote the j th order completed in the schedule. For convenience,

it is also assumed without loss of generality that the orders are labeled such that

(5.1)

where pi =	 j = 1, 2, ... , n. In what follows, the worst-case performance

ratios of the above heuristics will be analyzed.

Lemma 5.1 For the problem PF II lEwiCi , the worst-case performance ratio of

algorithms that use LS and LPT cannot be less than 2 — ÷- and s — 3m , respectively.

Proof: Consider n = 1 and w 1 = 1. The problem PF HI E wi Ci becomes

P Cmax, for which the worst-case performance ratio of LS and LPT assignment

rule cannot be less than 2 — m (see [25]) and s — 3m (see [26]), respectively.

Theorem 5.2 For the problem PFIIIIEw•C•3.7 	 ,

Proof: According to the ordering assumption in (5.1), it is easy to see that WSTP

sequences the orders in order of 1, 2, ... , n (if not, one can always relabel the orders).

For any order j, let 1* be the product type that finishes last and determines

Cj ( WSTP-LS). Let the start time of 1* be sp. Clearly,
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Since the LS rule assigns a product type to a machine with the smallest workload,

all other machines must be busy when a machine starts to process l*. It follows that

Or equivalently,

CV - J. 	 444 - 4.

Therefore,

On the other hand, it is clear that

Thus,

„.	 •	 . .

the last inequality in (5.4) is due to Smith's WSPT rule (see [62]).
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From (5.2) and (5.4),

This completes the proof. 	 ❑

It should be noted that the above bound is tight for WSTP-LS. (If n = 1 and

wj = 1, the problem is equivalent to P Cmax .) Thus, the worst-case example of

List Scheduling for P 11 Cm. (see [25]) is also a worst-case example of WSTP-LS for

PF II I E wiCj . Interestingly, when w j = 1, it has been shown in [67, 68] that

the performance bound of the unweighted version of the heuristic is also 2 — 1/m.

Thus, from the analysis above it follows that the weights do not worsen the worst-case

performance of WSTP-LS.

Since WSTP-LPT is a special case of WSTP-LS, the following result can be

obtained immediately:

Theorem 5.3 For the problem PF H E

This bound is not expected to be tight because of the difference between the

worst case behaviors of LPT and LS. Actually, it has been shown in [67, 68] that

the performance bound of the unweighted version of WSTP-LPT is 6/5 when wj = 1

and m = 2, and this bound is tight.

Theorem 5.4 For the problem PF IHIEwiCiy
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Proof: Again, according to the ordering assumption in (5.1), it is easy to see that

WSTP schedules the orders in the sequence 1, 2, ... , n. For any order j, to determine

its completion time Cj ( WSTP-BIN), two cases are considered.

Case 1: During the assignment, the target completion time has not been

updated. In this case, the completion time of j is no later than the one obtained with

the trial assignment following LPT. Due to the property of the LPT assignment rule,

it is easy to show that the completion time of j obtained through LPT is no later

than

It follows that

Case 2: During the assignment, the target completion time has been updated

at least once. Consider the last time when the target completion time is updated.

Let 1* denote the product type that is assigned at this particular point. Furthermore,

let s i * denote the start time of 1*. Note that the completion time of 1* determines

Cj ( WSTP-BIN). According to the BIN rule, since the update of target completion

time always takes place on a machine with the smallest workload, it follows that all

other machines must be busy when 1* starts its processing. Thus,

It is clear that
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Or, equivalently,

From the above two cases, it follows that

From the above inequality, a similar argument for (5.5) completes the proof.	 ❑

Theorem 5.5 For the problem PF H >

Proof: Note that, for each order j, the initial setting of Cu (j) is the completion time

of order j obtained by the trial assignment using the BIN rule. From Theorem 5.4,

Therefore, the binary search behavior of the algorithm determines that

- L

It follows that

From the above inequality, a similar argument for (5.5) completes the proof. ❑

It turns out that the remaining five algorithms, namely, WSLM-LPT, WSMM-

MF, WECT-LPT, WECT-BIN and WECT-MF, can perform very badly. To see this,

consider the following example:
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• Let wj = 1, j = 1, 2, ... ,n.

• Let x = p • m, where 0 < p < 1; let € > O.

• Each order j = 1, 2, ... , x requests m product types, each of which requires 1
unit of processing.

• Each order j = x + 1, x + 2, ... , x + m(m — x) requests only 1 product type
requiring 1 + 6 units of processing.

Note that each heuristic H E { WSLM-LPT, WSMM-MF, WECT-LPT, WECT-BIN,

WECT-MF} produces the same schedule shown in Figure 5.1 (a), with the objective

value being

On the other hand, an optimal schedule for this instance is shown in Figure 5.1 (b),

with the objective value being

It can be determined that

Thus, when p is close to 1, the above ratio can be arbitrarily large. This implies that

the performance ratio of these heuristics is not bounded by any constant. Actually,

in what follows, it can be shown that the upper bound is m. However, it is not

clear whether this bound is tight or not. Note that the above example is not a tight

example.

To make it clearer, the following concrete example is considered:

• Let n = 96; m = 20; wj = 1, j = 1, 2, ... , 96.

• Each order j = 1, 2, ... , 16 requests 20 product types, each of which requires 1
unit of processing.
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1+E 1+E 1+E

1+6 1+6 1+6
1 1 1

1+6 1+6 1+E

(a) The schedule produced by the heuristic H

1+E 1+E 1+6

1+6 1+E 1+6
1 1 1

1+E 1+6 1+E

(b) An optimal schedule

Figure 5.1 A bad example for each heuristic H E { WSLM-LPT, WSMM-MF,
WECT-LPT, WECT-BIN, WECT-MF }.

• Each order j = 17, 18, ... , 96 requests only 1 product type requiring 1 +6 units
of processing, where 6 -4 0.

For the above instance, it can be computed that

wici (H)
= 4.04,E wig; (0 PT)

where H E { WSLM-LPT, WSMM-MF, WECT-LPT, WECT-BIN, WECT-MF}. In

contrast, the worst-case bounds of WSTP-LS, WSTP-LPT, WSTP-BIN and WSTP-

MF are never larger than 2. Thus, in a sense, the WSTP-based heuristics perform

better than all the remaining heuristics. For this particular instance, note that the

schedules produced by all WSTP-based heuristics are optimal.

To show the performance ratio of the WSLM-LPT algorithm, the following

lemmas need to be proved first:

2

m

1

2
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Lemma 5.6 Suppose there are two different profiles A and B on m identical machines.

If for each i = 1, 2, ... m, the ith smallest workload of profile A is no larger than that

of profile B, then after using LPT to assign the k product types of order j to the two

different profiles,

CAA) < C; (B),

where Ci (A) and CAB) are the completion times of order j after its product types

have been assigned to the two profiles, respectively.

Proof: The proof is relegated to Appendix B. 	 ❑

Lemma 5.7 For the problem PF I H 1 EwiCi,

i

Cm( WSLM-LPT) < E c(L[g, j = 1, 2, . .. , n.
x=1

Proof: The proof is by induction. Clearly, when j = 1,

Cp.] ( WSLM-LPT) = C1,[4.

Thus, the base case holds.

As the inductive hypothesis, it is assumed that for each j = 1, 2, ... , j* — 1

Cu]( WSLM-LPT) < E cl,[74.
x=i.

It certainly implies that

j*-1
max {Cm( WSLM-LPT)} < E ci[g.,<J<J*_,

x=1

Based on this, it has to be shown that

j*

Cul( WSLM-LPT) < E ci[g.

(5.6)

(5.7)
x= 1
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(a)

m

Profile A

1

2
3

m

Plul

P2&*]
P

3u1

PmU*]

(b)

Profile B 	 clu;;"

Figure 5.2 Illustrating the proof of Lemma 5.7.

Suppose that after the WSLM-LPT heuristic scheduled the first j* — 1 orders, it

produced a partial schedule of the j* — 1 orders, whose profile is shown as Profile

A in Figure 5.2 (a), in which max i<j<r _ i {Cuj WSLM-LPT)} denotes the largest

completion time of the j* —1 orders. In Figure 5.2 (b), Profile B shows an imaginary

profile in which the workload of each machine is max i<j<j *_ 1 {Cm( WSLM-LPT)}.

Based on profile B, one can assign the jobs of order [j*] to the m machines using the

LPT rule. Let Cu*] be the completion time of order [j*] after the assignment. An

obvious observation from Figure 5.2 (b) is that

*,C • — C (-u
T*1-) + max {Cui(WSLM-LPT)}.[3 — LP 	 1<j<j* -1

By Lemma 5.6, when the jobs of order j* are assigned to profile A,

(5.8)

Cul(WSLM-LPT) <



c([31)
LPT > 1'3

wu*i 	 wi*
(5.10)
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Therefore, by (5.8)

C[j .] ( WSLM-LPT) < C (L[jpP + max {Cm( WSLM-LPT)}.
i<j<j*-1

By (5.6)

j.-1
Cu*]( WSLM-LPT) < CVA,) + EE

.=1 	 x=1

Thus, (5.7) holds. The result immediately follows from the inductive proof. 	 ❑

Lemma 5.8 For the problem PF 11 lEwiCi,

cail)
LPT <

W [j] 	 Wi'

Proof: First of all, it should be noted for [j] that

C (NT < p[j].	 (5.9)

The proof of the lemma is by contradiction. Suppose that there exists a smallest

position j* (1 < j* < n) such that

j = 1,2, ... ,n.

When j* = 1, it is clear that

c(Ell)
LPT > 1' 1

W[i] 	 W1

would be impossible. Otherwise, by (5.9) it would have

' LPT	p 	C(1)LPT - 	 LPT 
W[1] 	 W1 — W1

Then, according to the WSLM rule, order 1 should be scheduled before order [1].

This leads to a contradiction. For the case j* = n,

c([nD
LPT >

W[n] 	 Wn
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would also be impossible. The reason is that pn lw,,, is the largest according to the

ordering in (5.1), so there would never exist an order j such that C [14/w[i] > Pn/wn.

Thus, in what follows, it is focused on 1 < j* < n. Due to (5.9), inequality (5.10)

implies that

(5.11)

Then, according to the ordering in (5.1),

In addition, from (5.11)

the WSLM rule must have put order j* in a position before position j*. Thus, there

must exist an order j' (1 < j' < j*) that has been put in a position after position j*.

Hence,

(5.12)

From (5.10) and (5.12),

This leads to a contradiction, since j` < j* implies

according to the ordering in (5.1). The result follows. 	 III

Lemma 5.9 Assume there is a sequence of n jobs scheduled on one machine, say

S: < [1], [2], ... , [n] >,
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if for each job [j] (j = 1, 2, ... , n), its weight ?Dm and processing time pm satisfy

w[j] e  ...w[j] E { 	 - - , wn}, w[i]	 w[ji] unless j = j', 	 (5.13)

(5.14)

and

(5.15)

where pi and wi are same as those in the ordering (5.1), then

Proof: To prove the above result, it is helpful to consider an artificial instance of

the classical problem 1 II Ewicj , with jobs whose processing times and weights are

given by the following pairs:

Clearly, if one sequences the above jobs according to Smith's WSPT rule, then the

total weighted completion time of the schedule is

due to the ordering in (5.1). For convenience, this very first sequence is referred to as

S1 : < 1, 2, . . . , n > .

Now change in Si. the processing time of the job whose label is that of the

job scheduled in the first position in S, i.e., [1]. For convenience and consistency, the
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label of this job in Si is referred to as [1]. It is clear that [1] e {1, 2, ... , n}. With

the label [1], Si can be rewritten as:

Si : < 1, 2, ... , [1] — 1, [1], [1] + 1, ... ,n > .

Now, for job [1] in S i , let

According to (5.14), p [i] becomes equal to or smaller than its initial value, while w[ i ]

remains unchanged. It follows that the total weighted completion time of S1 remains

unchanged or decreases after letting Dm = Vfil, i.e.,

(5.16)

Note that if [1] = 1, the above inequality still holds and this case is simple. Thus, it

needs to focus only on the case [1] 1. After letting p[ 1] = p [1] , from (5.1) and (5.15)

one can obtain a new ordering of pi /wi as follows:

(5.17)

Swapping in Si the position of job [1] with that of job [1] —1 results in a new sequence

S2 : < 1, 2, ... , [1] — 2, [1], [1] — 1, [1] + 1, ... ,n > .

According to (5.17), since

it is easy to show Aria an adjacent interchange argument (see Pinedo 157]) that

(5.18)
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Repeatedly swap the position of job [1] with that of the job positioned immediately

before it until the following sequence is obtained:

S3 : < [1], 1, 2, ... , [1] — 1, [1] + 1, ... ,n >,

and

(5.19)

The above procedure is repeated for each job [2], [3], ... , [n] corresponding to

the labels of the jobs in S, it finally produces the following sequence:

and

(5.20)

From (5.16),(5.18),(5.19) and (5.20),

(5.21)

Note that in SI, for each j = 1, 2, ... , n

It follows that

(5.22)

From (5.21) and (5.22), the result follows.	 0

Now it is well prepared to show the performance bound of WSLM-LPT.
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Theorem 5.10 For the problem PF H I E wicj ,

E wig; WSLM-LPT)
< m_ .

wiCi (OPT)

Proof: : By Lemma 5.7,

E TA( WSLM-LPT) < E w [i ,
i=i 	 x=i

By Lemma 5.8, for each j = 1, 2, ... , n

c(Lil)
	W [j] E {W1 1 W21 • - Wm} 	 < P[j] and 	 LPT <

w [j]

Under the above three conditions together with the ordering in (5.1), it follows from

Lemma 5.9 that

n 	 j 	 n 	 j
E E ci[g, < E
j=1 	 x=1 	 j=1 	 x=1

Therefore,

E wig; WSLM-LPT) < E rj--iw[i]Eix=i 0L[g,
E wici (OPT) — E wiCi (OPT) 5—

Eri=i 	 Px
w • Ej Px/3=1 3 x=1rn= 712.

The result follows. 	 ❑

Lemma 5.11 For the problem PF H EWiCj,

C[j] WSMM-MF) < E cf(Lxp , j = 1, 2, . . . , n.
x=i

Proof: The result follows from a similar inductive proof for Lemma 5.7. 	 111

Lemma 5.12 For the problem PF H E wjcj ,

CUD ,
MF <

W[j] 	 Wj j =1,2,...,n.
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Proof: The result follows from a similar argument for Lemma 5.8. 	 ❑

Theorem 5.13 For the problem PF 1 fl 1 E wici,
> wici ( WSMM-MF)

< m.E wjCi(OPT) —

Proof: The result follows from a similar argument for Theorem 5.10. 	 ❑

Theorem 5.14 For the problem PF LI 1 E wici ,
E wiCi (H) 

< mE wicj (oPT) — ,

where H E { WECT-LPT, WECT-BIN, WECT-MF} .

Proof: Note that for each of these heuristics there is a postprocessing procedure.

If it can be shown that the worst-case bounds of these heuristics are bounded by a

ratio of m without postprocessing. Then, the result follows immediately since the

postprocessing procedure helps improve the performance of each heuristic. Thus, in

the following proof, the postprocessing is ignored.

For convenience, let the schedule produced by H be

< [1], [2], ... , [n] > .

LetC([0])(H) = 0. It can be shown by contradiction that

C[A(H) — Cj_ i](H) < pi-.. 
W[i]	 wi

Suppose that there exists a smallest position j* (1 < j* < n) such that

C[i*](H) — Cu, ii(H)
> p

i *

nil . *W3

j= 1,2,...,n. 	 (5.23)

It is easy to check by contradiction that the above inequality is impossible for j* =

1 or n. Thus, it needs to focus only on 1 < j* < n. Note that if the order scheduled
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in position j* is order j* itself, then it does satisfy (5.23) where j = j*. The reason

why the algorithm did not put order j* in this position must be that it had already

been scheduled earlier. However, this immediately implies that there exists at least

one order j' (1 < j' < j*) that has not yet been scheduled by the algorithm. Now, if

order j' is put in position j*, then it satisfies

C[i.](H) — C[i ._ 1](H)	 Cf (H) —	 < 	

This leads to a contradiction, since WECT-LPT, WECT-BIN and WECT-MF always

choose as the next order the one that has the smallest

(H) —

Again, now for each j = 1, 2, ... , n

(H) — Cu_ ii(H) < pi
w[i] E fwil w2, 	 , wrj, 	 - 	 5_ p[i] and 	

tvi

Now under the above three conditions together with the ordering in (5.1), by Lemma 5.9

E W[j] E C[j](H) 5_ E E Px•
j=i 	 x=1 	 j=i 	 x=i

Therefore,

	wig; (H)wui E jx=, c[z] (H) < 	3-1 3 xw • Ei = 1 Px
Tn— .	E wici (oPT) = 	 E w3 03 (CPT) 	 Eri=1wiE3. =ipx im

The result follows.

5.4 Empirical Analyses of the Heuristics

The problem sizes are determined by n, m and k, where n E {20, 50, 100, 200},

m E {2, 5, 10, 20} and k E {2, 5, 10, 20, 50, 100}. For each combination of n, m and

k, 10 problem instances are randomly generated. These 10 problem instances have a
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similar structure and are treated as a group. To produce an instance for a combination

of ri, m and k, n orders are generated. For each order j, the number of product

types k3 is generated from the uniform distribution [1, k]. Then, for each product

type 1 = 1, 2, ... , kj , an integer processing time phi is generated from the uniform

distribution [1, 100]. In addition, a weight for order j is randomly generated from the

uniform distribution [1, 10]. In total, 4 x 4 x 6 x 10 = 960 instances are generated.

The algorithms are implemented in C++ with STL. The running environment

is based on the Windows 2000 operating system; the PC used was a notebook

computer (Pentium III 900Mhz plus 384MB RAM). In what follows, the performance

of the algorithms will be studied in terms of three aspects: the frequencies at which

they are the best, comparison of their average costs and comparison of their average

running times.

Tables 5.2 and 5.3 show the frequencies (Freq.) and the percentages (Perc.)

of each heuristic performing the best for each k E {2, 5, 10, 20, 50, 100}. Note that

for some problem instances, it is possible that more than one heuristic performs the

best. Thus, the sum of the frequencies may be larger than the number of problem

instances for each k, i.e., 160. The two tables show that WSTP-MF is the best. In

addition, the tendency is that a larger k leads to a higher percentage of WSTP-MF

that are the best. The same tendency also applies to the other two heuristics based

on the MF assignment rule, i.e., WSMM-MF and WECT-MF, even though they are

inferior to WSTP-MF. Thus, it would be advantageous to apply MF-based heuristics

to instances in which each order requests many different product types. When k is

small, WSMM-BIN is comparable to WSMM-MF. This enforces the observation that

MF does not have much of an advantage when each order has only a small number

of jobs. Even though the analysis in the previous section showed that the worst-case

performance bounds of the heuristics based on WSTP are much better than the other
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heuristics, no clear indication could be found from Tables 5.2 and 5.3. Thus, it is

necessary to compare the heuristics in terms of average costs in percentage.

Table 5.4 to 5.9 show the positive ratios of the algorithms that are higher

than the average costs of the best algorithms. Each table corresponds to a particular

value of k. To reduce the table size, the following table fields are defined to represent

the 9 heuristics:

Hl: WSTP-LS H2: WSTP-LPT H3: WSTP-BIN

H4: WSTP-MF H5: WSLM-LPT H6: WSMM-MF

H7: WECT-LPT H8: WECT-BIN H9: WECT-MF

The entries in the columns of the above fields are simply the average objective cost

per instance, over the 10 instances for each combination of k, n and m. For these

columns, a "—" in a certain entry indicates that an algorithm produces the minimum

average objective cost for the particular combination of k, n and m. Note that each

row might have more than one "—" for each combination of n and m, the reason is

that there might be more than one heuristics that produce the minimum average

objective cost. In each row, the entries other than "—" are computed as:

The average cost of corresponding algorithm — The minimum average cost
	  x 100.

The minimum average cost

From these six tables, one can observe the following:

• WSTP-MF performs the best, WSTP-BIN performs second best.

• The four heuristics based on WSTP are better than the others. This is in
agreement with the worst-case bounds obtained in the previous section.

• When k and n are fixed, the performances of the heuristics worsen as m increases.
This is also consistent with the corresponding worst-case bounds obtained in
the previous section.

• When n and m are fixed, the performances of the heuristics improve as k
increases. In addition, as k increases, the differences in the performances of
the various heuristics become smaller.
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• When m and k are fixed, the differences between the WSTP-based heuristics
become smaller as n increases. On the other hand, as k decreases, the differences
between those heuristics which are not based on WSTP and the WSTP-based
heuristics become larger.

• The performances of the heuristics are sensitive to k/m. When k/m is small,
the gaps between the heuristics that are not based on the WSTP rule and the
WSTP-based heuristics are large. When k/m is large, these gaps are small.

In order to rank the performance of the algorithms with regard to different value of

k, the notation -< is used to indicate that algorithm A is better than algorithm B if

A -< B. Furthermore, if the performance of algorithm A is somewhat comparable to

the performance of algorithm B, it is denoted by A N B.

• When k = 2 and 5, one can see from Table 5.4 and Table 5.5 that

H3 H4 -< H2 -< H1 -< H6 -< H5 -< H8 H9 -< H7.

• When k = 10, Table 5.6 shows that

H4 -< H3 -< H2 -< H1 -< H6 -< H5 H8 r•-, H9 -< H7.

• When k = 20, Table 5.7 reveals that

H4 -< H3 -< H2 -< H1 -< H8 H9 -< H6 -< 	 H5.

• When k = 50, it is hard to determine a fixed ranking from Table 5.8. However,
for small n and small m, it is clear that

H4 -< H3 -< H2 -< H9 H8 -< H7 -‹ H1 H6 H5.

On the other hand, for large n and large m, it can be seen that

H4 -< H3 -< H2 -< H1 -< H9 H8 -< H7 H6 NHS.

• When k = 100, it is also hard to determine a fixed ranking from Table 5.9.
However, for small n and small m, it is clear that

H4 -< H3 -< H2 -< H9 H8 -< H7 H6 H5 Hl.

On the other hand, for large n and large m, it can be seen that

H4 -< H3 -< H2 -< H1 -< H9 r•- , H8 -< H7 H6 -‹ H5.
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Table 5.2 The Frequency and Percentage that Each Heuristic Performs the Best:
k = 2, 5, 10

Heuristic
k = 2 k = 5 k = 10

Freq. 	 Perc. Freq. 	 Perc. Freq. 	 Perc.
WSTP-LS 0 0.00 0 0.00 0 0.00
WSTP-LPT 29 18.13 4 2.50 4 2.50
WSTP-BIN 121 75.63 85 53.13 47 29.38
WSTP-MF 116 72.50 120 75.00 125 78.13
WSLM-LPT 0 0.00 0 0.00 0 0.00
WSMM-MF 5 3.13 0 0.00 1 0.63
WECT-LPT 0 0.00 0 0.00 0 0.00
WECT-BIN 1 0.63 1 0.63 0 0.00
WECT-MF 1 0.63 0 0.00 0 0.00

Table 5.3 The Frequency and Percentage that Each Heuristic Performs the Best:
k = 20, 50, 100

Heuristic
k = 20 k = 50 k = 100

Freq. 	 Perc. Freq. 	 Perc. Freq. 	 Perc.
WSTP-LS 0 0.00 0 0.00 0 0.00
WSTP-LPT 2 1.25 1 0.63 1 0.63
WSTP-BIN 9 5.63 0 0.00 0 0.00
WSTP-MF 146 91.25 155 96.88 155 96.88
WSLM-LPT 0 0.00 1 0.63 1 0.63
WSMM-MF 1 0.63 8 5.00 22 13.75
WECT-LPT 0 0.00 1 0.63 1 0.63
WECT-BIN 0 0.00 0 0.00 0 0.00
WECT-MF 4 2.50 4 2.50 18 11.25
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Table 5.4 Comparison of Average Costs in Percentage: k = 2

n m H1 H2 H3 H.4 H5 H6 H7 H8 H9
2 0.99 0.03 - 0.03 2.74 2.83 2.69 2.69 3.63
5 2.17 1.00 - - 3.31 2.27 9.59 9.09 9.09

20 10 3.01 2.21 - - 4.19 1.22 12.61 8.48 8.48
20 3.50 3.16 - - 3.57 0.26 5.32 1.99 1.99
2 0.32 - 0.001 - 3.28 3.28 4.48 4.48 4.92
5 0.91 0.50 0.002 - 3.56 2.99 12.14 11.82 11.82

50 10 2.14 1.58 0.002 - 4.37 2.74 18.51 16.25 16.25
20 3.80 3.44 0.002 - 5.09 1.46 14.62 10.95 10.95
2 0.19 0.005 - 0.005 3.96 3.96 5.22 5.22 5.31
5 0.49 0.27 0.02 - 3.81 3.52 13.80 12.22 12.22

100 10 1.19 0.92 0.006 - 3.97 2.93 23.78 21.66 21.66
20 2.42 2.15 - 0.005 4.81 2.37 20.35 18.69 18.69
2 0.10 0.002 - 0.002 3.78 3.78 6.17 6.17 6.00
5 0.27 0.12 - 0.01 3.71 3.56 14.29 14.67 14.67

200 10 0.62 0.46 0.008 - 4.11 3.57 19.89 20.43 20.43
20 1.45 1.26 - 0.01 4.53 3.10 22.82 21.65 21.65

To compare the speeds of the heuristics, Table 5.10 lists the average running

times of the heuristics for n = 200, m = 20 and k = 50. The entries in the table

are average running times in seconds per instance, over the 10 problem instances of

n = 200, m = 20 and k = 50. From the table, it is easy to see that the WSTP-based

heuristics run faster than other heuristics.

From all of the above observations, one would choose either WSTP-MF or

WSTP-BIN to solve practical problems.

5.5 Concluding Remarks

This chapter focused on the design and analysis of nine heuristics for the scheduling

of orders in a flexible environment with identical machines in parallel. The heuristics

considered fall into two categories: sequential two-phase heuristics and dynamic

two-phase heuristics. A worst case as well as an empirical analysis of the nine
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Table 5.5 Comparison of Average Costs in Percentage: k = 5

n m H1 H2 H3 114 H5 H6 H7 H8 H9
2 1.52 0.24 0.03 - 1.72 1.50 1.07 0.94 1.12
5 3.74 0.95 0.03 - 6.77 5.75 8.65 7.35 7.34

20 10 5.78 3.13 - 0.08 8.73 5.09 14.61 9.87 9.87
20 7.92 6.11 - - 10.07 4.16 16.15 8.04 8.04
2 0.66 0.11 0.009 - 2.38 2.33 1.52 1.77 1.45
5 1.58 0.31 - 0.001 8.00 7.48 7.83 7.35 6.95

50 10 3.38 2.03 0.01 - 10.55 8.20 23.01 17.74 17.45
20 5.54 4.48 0.06 - 10.32 5.48 26.40 16.74 16.65
2 0.30 0.06 0.01 - 2.48 2.46 1.85 1.73 1.73
5 0.85 0.14 - 0.006 8.77 8.50 10.71 9.65 9.61

100 10 1.70 0.93 - 0.005 9.45 8.43 21.51 17.75 17.95
20 3.36 2.65 - 0.009 9.75 6.91 24.59 20.11 20.11
2 0.16 0.02 0.004 - 2.15 2.16 1.62 1.69 1.64
5 0.41 0.07 0.0007 - 9.58 9.43 12.84 11.10 10.90

200 10 0.86 0.49 0.0004 - 9.92 9.33 21.41 19.39 19.00
20 1.87 1.52 - 0.0005 10.39 8.74 27.10 25.58 25.71

heuristics was performed. The analyses reveal that the four WSTP-based heuristics

perform better than the five other heuristics, in spite of the fact that the four

WSTP-based heuristics are static whereas three of the other heuristics are dynamic.

This may, at first sight, appear to be an anomaly, since observations in classical

scheduling problems indicate that dynamic heuristics usually perform better than

static heuristics. One possible reason that the static WSTP-based heuristics perform

better than the dynamic heuristics may be the fact that the dynamic selection criteria

may put some orders with many jobs ahead of a large number of orders with few jobs;

the cumulative cost of these orders with few jobs becomes very large, just as in the

example which was given to show that the static WSTP-based heuristics are better

than the dynamic heuristics. The worst-case and empirical analyses also validate that

the static WSTP-based heuristics are better than the dynamic heuristics.
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Table 5.6 Comparison of Average Costs in Percentage: k = 10

n m H1 H2 H3 H4 H5 H6 H7 H8 H9
2 1.33 0.14 0.07 - 0.78 0.64 0.42 0.25 0.27
5 3.82 0.48 0.29 - 8.87 7.92 5.39 3.70 3.85

20 10 6.06 1.52 0.02 - 11.08 8.86 12.65 9.07 8.95
20 7.72 4.66 0.03 - 12.57 6.69 17.25 13.45 13.51
2 0.49 0.04 0.03 - 0.56 0.51 0.38 0.29 0.33
5 1.66 0.31 0.13 - 8.29 7.94 5.04 3.61 4.14

50 10 2.73 0.79 0.01 - 12.85 11.64 14.01 8.09 7.99
20 4.64 2.85 - 0.02 13.53 10.24 19.87 14.67 14.77
2 0.27 0.03 0.01 - 0.68 0.66 0.38 0.34 0.39
5 0.88 0.18 0.11 - 9.59 9.39 4.60 3.54 3.94

100 10 1.46 0.46 0.0002 - 13.25 12.61 14.29 11.05 10.85
20 2.84 1.87 0.04 - 13.22 11.10 21.04 17.98 18.17
2 0.13 0.02 0.008 - 0.65 0.65 0.35 0.30 0.30
5 0.46 0.08 0.04 - 9.36 9.24 5.21 3.88 3.94

200 10 0.78 0.25 0.003 - 13.60 13.26 16.79 11.57 11.75
20 1.55 1.03 - 0.0007 13.56 12.42 22.67 19.27 18.52

It was found that the performance of the heuristics depend on the klm ratio.

When kin/ is small, the performance gaps between heuristics that are not based on

WSTP and heuristics that are based on WSTP tend to be large; when k/m is large,

these gaps tend to be small.

Another interesting observation with regard to the performance bounds of

these heuristics is that when the orders have different weights their performance is not

worse than when the orders have equal weights. For example, Yang and Posner [68]

showed that the unweighted version of WSTP-LS has a tight bound of 2-1/m; it was

shown in this chapter that this tight bound also applies to WSTP-LS when the orders

have different weights. Actually, in the analyses of the worst-case bounds, it turned

out that the weights all cancelled out and the bounds were only a function of m. This

may be a reason why the inclusion of weights does not worsen the performance of the

heuristics.
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Table 5.7 Comparison of Average Costs in Percentage: k = 20

n m H1 H2 H3 114	 H5 H6 H7 H8 H9
2 0.66 0.04 0.04 - 	 0.21 0.17 0.08 0.06 0.06
5 3.22 0.34 0.43 - 	 3.03 2.64 1.55 0.88 0.60

20 10 5.84 0.79 0.43 - 	 13.21 12.35 7.17 3.98 3.69
20 7.67 2.27 0.13 - 	 15.72 11.93 16.84 9.08 9.20
2 0.33 0.02 0.02 - 	 0.13 0.10 0.09 0.07 0.07
5 1.48 0.21 0.17 - 	 3.13 3.06 1.37 1.06 0.87

50 10 2.54 0.56 0.20 - 	 13.63 12.93 5.68 4.09 4.51
20 3.95 1.38 0.06 - 	 14.17 12.36 13.74 8.56 8.38
2 0.16 0.01 0.007 - 	 0.16 0.14 0.09 0.07 0.08
5 0.74 0.10 0.08 - 	 3.04 3.07 1.15 0.64 0.67

100 10 1.36 0.27 0.11 - 	 13.16 12.73 6.55 2.99 3.82
20 2.20 0.86 0.02 - 	 16.45 15.28 16.95 9.96 10.19
2 0.09 0.007 0.004 - 	 0.17 0.16 0.08 0.09 0.07
5 0.37 0.05 0.04 - 	 3.09 3.17 1.27 0.76 0.86

200 10 0.69 0.13 0.05 - 	 14.46 14.20 7.72 3.41 3.60
20 1.11 0.43 0.01 - 	 16.57 15.93 16.21 10.08 9.98

The analyses are helpful to rank these heuristics according to their effectiveness,

taking solution quality as well as running time into account. The WSTP-based

heuristics clearly dominate.

A number of questions still remain open. It would be of interest to obtain

tighter bounds for the WSTP-based heuristics. The work of Yang and Posner [68]

may provide some insights in how to obtain tighter bounds. However, it should be

noted that their arguments become significantly more complicated when m > 2 and

wj 0 1. Nevertheless, it still may be possible to obtain a better bound like 4/3 for

WSTP-LPT, WSTP-BIN and WSTP-MF.

For the other heuristics that are not based on the WSTP rule, bounds may

exist that are a tighter function (sublinear, for example) of m. From the example

illustrated in Figure 5.1, it is easy to find instances with ratios of 2.7561 for m = 10,
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Table 5.8 Comparison of Average Costs in Percentage: k = 50

n m H.1 H2 H3 H4 H5 H6 H7 H8 H9
2 0.38 0.02 0.01 - 	 0.06 0.04 0.04 0.03 0.03
5 1.60 0.12 0.11 - 	 0.46 0.34 0.21 0.18 0.08

20 10 3.58 0.44 0.38 - 	 3.11 2.82 1.92 1.29 1.22
20 6.74 0.94 0.59 - 	 13.60 12.83 6.44 4.44 4.20
2 0.16 0.008 0.006 - 	 0.04 0.03 0.03 0.03 0.02
5 0.73 0.06 0.06 - 	 0.52 0.46 0.23 0.21 0.25

50 10 1.66 0.21 0.19 - 	 2.93 2.86 1.03 0.61 0.62
20 3.15 0.51 0.24 - 	 15.14 14.88 5.82 3.25 3.34
2 0.08 0.003 0.003 - 	 0.01 0.01 0.01 0.008 0.008
5 0.39 0.04 0.03 - 	 0.36 0.33 0.17 0.13 0.10

100 10 0.86 0.11 0.09 - 	 2.77 2.80 1.08 0.52 0.57
20 1.59 0.27 0.12 - 	 14.26 14.10 6.96 2.68 3.38
2 0.04 0.002 0.002 - 	 0.02 0.01 0.009 0.007 0.007
5 0.19 0.02 0.02 - 	 0.46 0.45 0.18 0.11 0.12

200 10 0.43 0.06 0.04 - 	 2.57 2.67 0.80 0.42 0.48
20 0.82 0.14 0.06 - 	 14.72 14.79 6.15 2.68 2.89

4.04 for m = 20, 6.6146 for m = 50, 9.5304 for m = 100, and 31.1294 for m = 1000,

respectively. Thus, the ratio goes up slowly when m increases.

It may be possible to design LP-based approximation algorithms for this

problem. However, since the WSTP-based heuristics already have worst-case bounds

that are less than 2, the extensive amount of computing time would discourage the use

of an LP-based approximation algorithm if its worst-case bound is not significantly

better than 2.

It would be interesting to consider more general machine environments, for

example, uniform machines and unrelated machines. It has been noticed that no one

has ever considered yet such machine environments for order scheduling. In the next

chapter, uniform machines will be considered.



Table 5.9 Comparison of Average Costs in Percentage: k = 100

n m H1 112 H3 H4 H5 H6 H7 H8 H9
2 0.20 0.007 0.005 - 	 0.007 - 0.007 0.006 0.0007
5 0.90 0.04 0.05 - 	 0.16 0.11 0.19 0.18 0.15

20 10 2.33 0.18 0.18 - 	 1.03 0.90 0.57 0.40 0.22
20 4.56 0.50 0.45 - 	 3.14 2.73 2.28 1.41 1.04
2 0.08 0.003 0.002 - 	 0.005 0.001 0.005 0.003 0.004
5 0.40 0.02 0.02 - 	 0.07 0.05 0.06 0.03 0.03

50 10 0.94 0.08 0.08 - 	 0.63 0.58 0.38 0.27 0.31
20 2.06 0.25 0.20 - 	 4.27 4.33 1.96 1.01 1.07
2 0.04 0.001 0.001 - 	 0.003 0.001 0.003 0.002 0.0009
5 0.21 0.01 0.01 - 	 0.07 0.06 0.03 0.02 0.02

100 10 0.49 0.04 0.04 - 	 0.60 0.58 0.28 0.14 0.15
20 1.03 0.14 0.11 - 	 3.72 3.84 1.57 0.68 0.96
2 0.02 0.0006 0.0005 - 	 0.002 0.001 0.002 0.0010 0.0008
5 0.11 0.006 0.006 - 	 0.07 0.06 0.02 0.02 0.02

200 10 0.26 0.02 0.02 - 	 0.70 0.70 0.23 0.12 0.13
20 0.54 0.07 0.05 - 	 4.52 4.75 1.55 0.62 0.75

Table 5.10 Comparison of Average Running Times over the 10 Problem Instances
of n = 200, m = 20 and k = 50

Heuristic H1 112 H3 H4 115 H6 117 H8 119

Avg time (Sec.) 0 0 0.008 0.018 0.002 0.020 0.157 0.537 2.255

137



138

Another interesting issue concerns setup times when a machine switches over

from one product type to another. This case occurs in many practical applications.

However, setup times inevitably make the problem harder.



CHAPTER 6

THE FULLY FLEXIBLE CASE WITH UNIFORM MACHINES —

THE TOTAL WEIGHTED COMPLETION TIME

6.1 Introduction

Chapter 5 investigated the fully flexible case with m identical machines in parallel.

This chapter considers the fully flexible case with m uniform machines in parallel.

The uniform machines are assumed to have different speeds. Let v i be the

speed of machine i = 1, 2, ... , m. Thus, in one unit of time machine i can carry out

vi units of processing. Without loss of generality, it is assumed that

v i > v2 > ... > vm .

Each order j = 1, 2, ... , n requests a certain quantity of product type 1 = 1, . . . ,k

and the units of processing required is phi > 0. For convenience, it may be assumed

that

Pii ? P2j ? • • - ? Pkj•

As mentioned in Chapter 1, in the fully flexible case, the items of type 1 can be

produced on any one of the m machines. If the items of type 1 is produced on

machine i, then the units of processing time on machine i is piii = mi lvi. The k

different jobs of order j may be processed concurrently. Preemptions are allowed. In

addition, it is assumed that each order j = 1, 2, ... , n is released at time zero and

has a weight wi .

The objective of interest is minimizing the total weighted completion time of

the n orders, namely Ewici . According to the notation defined in Chapter 1, for the

non-preemptive case, the problem with a fixed k is denoted by QFm 111k I > w3 C3

139
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when the number of machines m is fixed, and as QF 1 IIk I E wiCi when the number

of machines m is arbitrary. If k is arbitrary, then the k is dropped from the notation.

It is clear that when n = 1, QF H E Ci becomes Q 11 Cmax, which is known

to be NP-hard in the strong sense because of a reduction from the 3-Partition problem

(see Garey and Johnson [19]). It follows that QF III IEwC•3 3 is also NP-hard in

the strong sense. As discussed in Chapter 5, PF I IIk 1 E wicj is strongly NP-hard.

Therefore, QF ilk 1 E wici is also strongly NP-hard since it is a generalization of

PF 1 Ilk 1 E wiCi . Similarly, both QFm I II I > wiCi and QFm 1 IIk E w 3.C3• are

NP-hard due to the NP-hardness of PFm 11 1 > wig; and PFm Ilk 1 E wici .

Thus, it would be of interest to develop effective heuristics for the nonpreemptive case.

As just mentioned, when n = 1, the problem QF 1 II I > Ci is actually Q I I Cm .

For this special case, Gonzalez, Ibarra and Sahni [24] showed that the worst-case ratio

of the LPT rule is 2m/(m + 1). Dobson [13] showed that LPT has a tighter bound

that lies in between [1.512, 1.583], while Friesen [18] showed that the bound lies in

between [1.52, 1.67].

When all machines are identical, i.e., v 1 = v2 = ... = vm , Blocher and

Chhajed [4] presented six heuristics and conducted an experimental study of their

performance; however, they did not focus on worst-case performance bounds. One of

the heuristics was also analyzed by Yang [67] and Yang and Posner [68]; they obtained

a worst-case bound of 7/6 for m = 2. For the same problem with the additional

feature that each order has a weight, four (2 — 1/m)-approximation algorithms and

five m-approximation algorithms were presented in Chapter 5.

One can define two forms of preemptions for this problem. According to one

form of preemption multiple machines can work simultaneously on the same product

for a given order; a problem that allows this form of preemption is easy. The orders

are first sequenced in ascending order of their total weighted processing times. Then,
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for each job 1 of order j, assign Ai * vi / Erni 1 v, on machine i. Via this method an

optimal schedule is obtained.

A second form of preemptions does not allow multiple machines to process

simultaneously the same product for an order; however, it does allow the processing

of a product for a given order to be interrupted and resumed at a later point in time,

possibly on a different machine. Assuming this form of preemption, the problem is

NP-hard even with two identical machines, k = 2, and all wi = 1 (see Leung et

al. [44]). In what follows, only this second form of preemption will be considered.

According to the notation defined in Chapter 1, the problem with arbitrary number

of machines is referred to as QF 1 IIk, prmp 1 > wjci when k is fixed and as QF

fl, prmp 1 E wici when k is arbitrary. When m is fixed, QF is replaced with QFm

in the notation.

This chapter presents an approximation algorithm for solving the nonpreemptive

version and the preemptive version of this problem, respectively; the algorithm for

the nonpreemptive version is denoted by HNP and the algorithm for the preemptive

version is denoted by H. Both heuristics are shown to have a worst-case bound of m.

In addition, when m = 3, it is shown that Hp has a worst-case bound of 2. Finally,

an empirical analysis is performed for the two heuristics.

The following notation is adopted. Let Ci (H) denote the completion time of

order j under heuristic H, where H is either HNP or H. Let C; (OPT) denote the

completion time of order j under the optimal schedule, and let [j] denote the j th order

completed in the optimal schedule. It is also assumed without loss of generality that

the orders are labeled such that

W 1 ...., W2 ...._ ,, Wn
— ..-- — .....- .....- —

Pn
,

Pi — P2 — 	 — 	 .
(6.1)
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where pi = Ei i psi , j = 1, 2, ... , rt. Furthermore, the sum of the speeds of the m

uniform machines is denoted by

This chapter contains the results that appear in Leung et al. [50] which has

been submitted for publication. It is organized as follows. The next section presents

an approximation algorithm for QF 1 fl 1 E wig] as well as its worst-case analysis.

Section 6.3 presents an approximation algorithm for QF II, prmp 1 E w.3 C•3 as well

as its worst-case analysis. Section 6.4 performs an empirical analysis for the two

algorithms. Finally, Section 6.5 contains some concluding remarks.

6.2 Approximation Algorithm for the Nonpreemptive Case

It seems that no one has ever presented any algorithms for QF 1 fl (E w 3.C3• 
' 

This

section presents for this problem a heuristic that consists of two phases. The first

phase determines the sequence of the orders, while the second phase assigns the

individual jobs within each order to the specific machines. In the first phase, the

following rule is used to sequence the orders:

The Weighted Shortest Total Processing time first (WSTP) rule sequences
the orders in increasing order of (E ik_ i pii )lwi . Ties are broken arbitrarily.

After the sequence of orders has been determined by the rule above, the individual

jobs for each order are assigned to the specific machines according to the following

assignment rule:

The Longest Processing Time first rule (LPT) selects in each iteration
among the remaining jobs a job with the longest processing time and
assigns it to a machine on which it has the earliest finish time.

It is clear that the WSTP rule takes 0(kn+ n log n) time. On the other hand,

assignment of a job by the LPT rule takes 0(m) time. n orders have at most nk
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jobs. Thus, the LPT rule takes O(mnk) time. Therefore, the whole algorithm takes

0 (m,nk + n log n) time.

The two-phase algorithm is denoted by HNp. Now consider the worst-case

performance ratio of the algorithm. The following result from Horvath, Lam and

Sethi [31] is made use of:

Theorem 6.1 For a set of independent jobs with processing requirement pi > P2 >

• • • > Ai, the level algorithm due to Horvath, Lam and Sethi [31] constructs a minimal

length preemptive schedule on m uniform machines with speeds v 1 > v2 > ... > vm .

The makespan is given by

For the same set of independent jobs, it is clear that the makespan of an

optimal non-preemptive schedule will never be less than w. Thus, w is also a lower

bound of the makespan of any non-preemptive schedule.

Theorem 6.2 For the problem QFIHIEw•C•3	 ,

Proof: In the first phase of HNp, it can be assumed that the orders are sequenced

as

< 1, 2, . . . , n > .

If not, one can always relabel the orders. For any order j, let 1* be the product type

that finishes on machine i* and then determines Ci (HNp). Let Pi denote the total

amount of processing already assigned to machine i. So P i /vi is the finish time of

machine i (1 < i < m) before job 1* is assigned. The profile is shown in Figure 6.1.
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Figure 6.1 The profile after /* is assigned

Since /* determines Ci (HNp), it follows that

(6.2)

In addition, according to the LPT rule, it is assigned to the machine on which it has

the earliest completion time (ties may be broken arbitrarily). Thus, if assign /* to any

machine i it, then the finish time of /* would be at least (P i. +p i . j )Ivi.. Therefore,

(6.3)

From (6.2) and (6.3),
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On the other hand, let pi > p2 > . . . > pm,_, denote the processing requirements

of the longest m —1 jobs among the first j orders in the optimal schedule. According

to Lemma 6.1, it is clear that

The last inequality in (6.7) is due to the WSPT rule (see [62]) and the ordering in

(6.1). This completes the proof. 	 ❑

To see that HNP could perform badly, the following example is considered:

• Let n = 4 and wi = 1, j = 1, 2, 3, 4.

• let k = m2 + 1.

• There are m2 + 1 machines, with speeds: v 1 = m, v2 = v3 = ... = v ni 2 +1 = 1.

• The processing times of the 4 orders are:

Pll = m2 , P21 = P31 = • - - = Pkl = 0 ;

ply = 2m, P2i = p3i = ... = pki = 1, for each j = 2, 3, 4.
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Figure 6.2 The schedule produced by HNP.

When m is sufficiently large, it is clear that the schedule produced by HNP is the one

shown in Figure 6.2. Thus,

On the other hand, in the schedule shown in Figure 6.2, if put order 2, 3, and 4 before

order 1, then it results in an optimal schedule whose objective cost is:

Therefore, when m oo,

It is easy to generalize this example and generate a series of instances for which the

worst case ratio increases in OLVF-n).

6.3 Approximation Algorithm for the Preemptive Case

Again, heuristics for QF I II , prmp E wi Cj may consist of two phases. In the first

phase, one can use the WSTP rule to sequence the orders according to their total

weighted processing times. In the second phase, the jobs of an order are assigned

using the following algorithm which is based on the level algorithm (see Muntz

and Coffman [52, 53]) generalized by Horvath, Lam and Sethi [31] for preemptive

scheduling on uniform machines.
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For any order j, let Lt (/, j) denote the level of job 1 of order j at time point

t. Since the jobs are independent, the initial level for a job 1 of order j is set to be

Lt (/, j) = Ai before the jobs of order j are assigned.

The following procedure is used to construct a shared schedule in which the

machines are shared equally among jobs. The shared schedule is used to construct a

preemptive schedule in a later procedure.

PROCEDURE Shared-Schedule

INPUT: The set of jobs in order j.

OUTPUT: A shared schedule for the set of jobs in order j.

Step 1: Group the machines according to their finish times, so that the machines
in each group have the same finish time. Let the groups of machines be
M1, M27 . - . , MG, so that the finish time of the machines in M 1 is less than
or equal to that of the machines in .A42, and so on.

Step 2: Let s be the finish time of group M 1 . For each job 1 in order j, let L 3 (1, j) =
pii . Let t = 1.

Step 3: Reorder the machines in group M t in descending order of their speeds.

Step 4: {Assigning the jobs to the machines in M t }
Let rn, be the number of unassigned machines in group M t at time s.
Let nh be the number of jobs at the highest level at s.
If nh < m,,, assign the nh jobs to execute at the same rate on the fastest nh
machines.
Otherwise, assign the nh jobs to execute at the same rate on the m t machines.
If there are any machines left, then consider the jobs at the next highest level
and so on.
Continue such an assignment until a time t when one of the following events
occurs:

Event 1: Some jobs are completed.

Event 2: There are two jobs / 1 and /2 of order j such that

L 3 (4, j) > L s (/2, j) but Lt (i i , j) = Lt(i2,i)•

Event 3: The finish time of some machines (the other machines may become
idle due to some Type-1 Events occurred earlier) in M t becomes equal to
that of the machines in Mt+1.



148

Set s = t, goto Step 5.

Step 5: {Handling the events}
If Event 1 occurs, keep executing the assignment on other machines (note that
these machines are faster than those on which Event 1 occurs). If all jobs are
finished, then goto Step 6.
If Event 2 occurs, goto Step 4.
If Event 3 occurs, delete from A the machines on which the event occurs; add
them into Mt+1 ; let t = t + 1, goto Step 3.

Step 6: Stop the procedure.

It should be noted that the above procedure actually works the same as the

level algorithm due to Horvath, Lam and Sethi [31] if their algorithm is applied to

schedule a set of independent jobs.

After the above procedure determines a shared schedule for the jobs of order j,

the following procedure is used to construct a preemptive schedule from the portion

of the shared schedule:

PROCEDURE Interval-Preemptive-Schedule

INPUT: The portion of the shared schedule.

OUTPUT: A portion of preemptive schedule.

Step 1: Divide the interval of the shared schedule into Ti equal subintervals along
the m' shared machines, where 72 is the number of jobs that share the machines
in this interval.

Step 2: Assign the ri, jobs so that each job occurs in exactly one non-overlapped
subinterval on each machine.

An example of the assignment in Step 2 is shown in Figure 6.1 for it = 4 and

m' = 3.
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Figure 6.3 Illustrating the assignment in Step 2 of procedure Interval-Preemptive-
Schedule.

Now with the above two procedures, it is easy to present the whole algorithm

for scheduling the n orders.

ALGORITHM Preemptive-Schedule

INPUT: The complete set of orders to be scheduled.

OUTPUT: A complete preemptive schedule.

Step 1: Relabel the orders such that pi/wi < p 2 /w2 < • • • < Pn/w7i, where pi =

E ik_ i pti , j = 1, 2, . . . , n.

Step 2: For each order j = 1, 2, ... , n, run procedure Shared-Schedule on the set
of jobs of order j, to produce a shared schedule. For each portion of the
shared schedule, run procedure Interval-Preemptive-Schedule to construct the
corresponding preemptive schedule for this portion.

Now consider the time complexity of the algorithm. It is easy to see that

Step 1 takes 0(kn + n log n) time. In Step 2, for the set of jobs of each order,
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there is a run of procedure Shared-Schedule, incorporated with a series of runs of

procedure Interval-Preemptive-Schedule. For each order, Event 1 and Event 2 can

occur at most k times each, and Event 3 can occur at most m times. In a run of

Interval-Preemptive-Schedule, it is at most k and m' is at most m, therefore, writing

down the schedule takes O(km) time. Thus, each order takes at most O(km(k + m))

time. For all orders, the algorithm takes O(nkm(k + m)) time to construct the

preemptive schedule. Adding the time it takes in Step 1, the overall running time of

the whole algorithm is O(nkm(k + m) + n log n).

Now consider the worst-case performance ratio of the algorithm. For convenience,

the algorithm Preemptive-Schedule is denoted by Hp. Let Cj denote the makespan

obtained by applying the algorithm only to the set of jobs of each order j, assuming

that each machine is available from time zero on. As mentioned before, for a set of

independent jobs, Hp is essentially the same as the level algorithm due to Horvath,

Lam and Sethi [31]. Thus, according to Theorem 6.1,

(6.8)

With additional constraints on the processing times of the orders, the problem

may become easy. The following theorem shows that the algorithm Hp is optimal for

a special case.

Cj 7-- -- 121 .

V
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Thus, it is easy to see that, after each order is assigned, all machines have the same

finish time. It follows that

On the other hand, for an optimal schedule, it is easy to see that

Therefore, from (6.10) and (6.11)

The inequality in (6.12) is due to the WSPT rule and the ordering in (6.1). The upper

bound 1 in (6.12) implies that Hp has to be optimal under the additional condition

constrained by (6.9); otherwise, it leads to a contradiction. CI

When the number of machines m is arbitrary, it can be shown that the worst-

case ratio of Hp is m.

Proof: According to the algorithm, the sequence of orders must be

< 1, 2, . . . , n > .

Otherwise, one can always relabel the orders to make it so.

First consider the finish time of any order j = 1, 2, ... , n. In the worst case,

all the jobs of the first j orders are scheduled on machine 1 (the fastest machine), such

that order j completes at time E .7„..,:i px /v i . Clearly, due to the preemptive behavior
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of the algorithm, if any portion of a job belonging to the first j orders was previously

assigned to other machines, the completion time of order j would be less. Thus, it is

easy to see that

According to the assumption that

It follows that

On the other hand, it is easy to see that

Therefore,

The last "<" in the above inequality is due to the WSPT rule and the ordering in

(6.1). This completes the proof. 	 ❑

To see that Hp could perform badly, the following example is considered. Note

that the example is slightly modified from the one for the non-preemptive heuristic:

• Let n = 4 and wi = 1, j = 1, 2, 3, 4; let k =	 +1.

• There are m2 + 4 machines, with speeds: v 1 = m, v2 = v 3 = 	 = v,,2 +4 = 1.
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• The processing times of the 4 orders are:

P11 = m2 , P21 = P31 = • • • = Pkl = 0;

Plj = 2m, P2j = P3j = • • • = pki = 1, for each j = 2, 3, 4.

When m is sufficiently large, it is easy to see that the schedule produced by Hp is

the one shown in Figure 6.4. Thus,

On the other hand, if one sequences the orders as < 2, 3, 4, 1 >, it is easy to assign the

jobs of the orders to obtain an optimal schedule in which the orders are completed

on machine 1 with the following completion times:

Thus,

Therefore, when m —+ co,

Again, it is easy to generalize this example and generate a series of instances for which

the worst case ratio increases in 0(-0---n).

Even though Theorem 6.4 shows that, for the general case, the worst-case

performance bound of Hp is m for m machines, one might expect that the performance

bound could be smaller for a small number of machine, for example, when m = 3. In
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V =M1 m i M1M

V 2 =1 m
V 3 = 1
V 4 = 1
V 5 = 1 1 	 1	 1 	 1	 1 	 1

=1V m2+4 1	 1 	 1	 1 	 1 

Figure 6.4 The schedule produced by Hp.

what follows, it will be shown that the bound is 2 for m = 3. To show this result, the

following lemma is needed:

Lemma 6.5 Given a set of independent jobs, reducing the processing time of any job

will not increase the optimal schedule length.

Proof: According to Theorem 6.1, the makespan of an optimal schedule is

Thus, decreasing the processing time of any job results in that w decreases or remains

unchange.	 ❑

Theorem 6.6 For the problem QF3III,prmp 	 w,ci,

Proof: Again, according to the algorithm, the sequence of orders must be

< 1, 2, . . . , n > .

Otherwise, one can always relabel the orders to make it so.

First consider the finish time of any order j = 1, 2, ... , n. For each machine

i = 1, 2, 3, let Fi denote the finish time on machine i prior to the assignment of jobs
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of order j, and let F denote the finish time on machine i after the jobs of order j

are assigned. Clearly, F3 < F2 < F1 always holds since v 1 > v2 > v3 . Four cases are

considered.

CASP. 9: Pi = 	 Twn siihensps are cnnsidered.

since there is no idle time on the three machines between 0 and

Subcase 2: Fl > F1 , F2 > F1 and .q > F1 . Since all machines are filled up to

F1 = F2 , it is easy to see that

Since the unassigned portion of the jobs of order j will be assigned to the three

machines starting from time point F 1 , by Lemma 6.5,

Case 3: F1 > F2 > F3. Only the possible subcases are considered.

Subcase 1: F > F1 , F2 > F1 and .q > F1 , as shown in Figure 6.5 (a). It is

easy to see that
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MI F2 M1 F —

M2 M2

M3 FZ M3 F2

F3 F3 	 F; F
(a) 	 Case 3: Subcase 1 	 (b) 	 Case 3: Subcase 2

Fi (Ft ') ' 	 Ft (F,

M1 MIF2 F2' F2

M2 M2

M3 M3
F2.

F3 	F3 F3 	 F3 ' T
(c) 	 Case 3: Subcase 3 	 (d) 	 Case 3: Subcase 4

Figure 6.5 Some subcases in Case 3.

Subcase 2: P-'3 > F1 , P-' = F1 and F2 < P-1 < F1, as shown in Figure 6.5 (b).

In this subcase, consider a point F such that

(Fi — F) • (v i + v2 ) = (F — F3) • v3 .

Since v3 < v2 , it follows that

(Fi — F) • v i < (F — F3) • v2 .

Note that after F3, only one job could be left. Furthermore, this job must be the

longest one in order j. Thus,

(F — F3) • v2 +(Fl — Fi) • vi <

Therefore,

(F1 — F) + (F1 — F1 ) < -1=1-=
v1
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In addition, since machine 3 can be filled up to F by the portion of jobs between F

and F1 on machine 1 and machine 2, it follows that

Thus,

to see that

i
Ci(Hp) < Epx /v.

It follows that

Note that after PI only one job could be left. Furthermore, this job must be the

longest one in order j. Therefore,

Thus,

(1-1 — F) • v1 5_ Pip



Figure 6.6 The subcases in Case 4.

Again, since machine 3 can be filled up to F by the portion of jobs between F and

on machine 1 and machine 2, it follows that

Hence,

Subcase 5: Fl = F1, F2 = F2 and F4 < F2. This subcase is easy, so it is not

illustrated by a figure. As subcase 3, it is easy to see that

since there is no idle time on the three machines between 0 and F.

Case 4: F1 > F2 = F3. Again, only the possible subcases are considered.

Subcase 1: F1 > F1 , F2 > F1 and F4 > F1 . It is easy to see that



159

Subcase 2: Fi" > F1 , P-' = F1 and F2 < q  < F1. This is the same as Subcase

2 in Case 3. Thus,

Subcase 3: Fi = F1, F2 < P- = . F < F1. It is easy to see that

Subcase 4: Fl = F1, F2 < P1 < F1 and F2 < P- < 4 This is the same as

Subcase 4 in Case 3. Thus,

Therefore, in all cases, it satisfies

(6.13)

On the other hand, let the processing requirements of the two longest jobs

among the first j orders scheduled in the optimal schedule be -p-,_ and .7-52 . It is clear

that



From (6.13) and (6.14)
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The first part of the last inequality in (6.15) is due to the WSPT rule and the ordering

in (6.1). This completes the proof. 	 ❑

6.4 Empirical Analysis

To evaluate the two heuristics empirically, problem instances are generated with

various problem sizes that are determined by n, m and k, where n E {20, 50, 100, 200},

m e {2, 5, 10, 20} and k e {2, 5, 10, 20, 50, 100}. For each combination of n, m and

k, 10 problem instances are randomly generated. These 10 problem instances have a

similar structure and are treated as a group. To produce an instance for a combination

of n, m and k, the speeds of the m machines are first generated. Each machine speed

is generated from the uniform distribution [1, 50]. Then, n orders are generated.

For each order j, the number of product types ki is generated from the uniform

distribution [1, k]. Then, for each product type 1 = 1, 2, .. . , ki , an integer processing

time Ai is generated from the uniform distribution [I, 200]. In addition, a weight

for order j is randomly generated from the uniform distribution [1, 20]. In total,

4 x 4 x 6 x 10 = 960 instances are generated.

The algorithms are implemented in C++. The running environment is based

on the Windows 2000 operating system; the PC used was a notebook computer



161

(Pentium III 900Mhz plus 384MB RAM). From experimental observation, since the

time used by either heuristic to solve any problem instance costs only several milliseconds,

running times are not considered. It is focused on an analysis of the performance of

the algorithms. In particular, since it is unlikely that the optimal solution can be

obtained by an exact algorithm very quickly, the heuristic results are compared with

a lower bound of the optimal solution which can be computed easily.

From the analyses in previous sections, it is easy to see that a lower bound

for both the cost of the optimal non-preemptive schedule and that of the optimal

preemptive schedule is:

Thus, the ratio

where H E {HNP, Hp}. If r(H) is close to 1, it means that the heuristic result is close

to the lower bound. Hence, it would be even closer to the optimal cost. Therefore,

to some extent, the ratio r(H) indicates how good the heuristics are when they are

applied to solve the problem instances.

For each instance generated, both HNP and Hp are run on it to produce a

non-preemptive schedule and a preemptive schedule, respectively. In addition, the

value of LB is computed. With these, both r(HNp) and r(Hp) are computed for this

instance. As mentioned before, for each combination of n, m, and k, the 10 problem

instances that are randomly generated have a similar structure so that they can be

treated as a group. It would be more reasonable to study the average ratio of the two

heuristics for each group of the instances.
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Table 6.1 shows the average ratio for each group of the 10 instances for each

combination of n, m, and k. In the table, 7--(HNp) and T(Hp) denote the average ratio

for HNp and Hp, respectively. From Table 6.1, one can observe the following:

• The largest i(HNp) and f(Hp) are 2.113 and 1.866, respectively. This indicates
that for all of the problem instances generated, the worst-case heuristic results
are about 2 times the lower bound of the optimal costs. This worst case occurs
for n = 20, m = 20, and k = 2. However, this does not mean that the heuristics
perform badly for small n, k and large m. Instead, it is believed that the large
ratios are caused by the gap between LB and the actual optimal cost. It is
noticed that when k = 2, each order has at most two product types. Thus, LB
would be very small if one computes p i /v. In contrast, in the optimal schedules,
the assignment of the jobs of each order may involve only a few machines and its
finish time would have a closer relationship to max{p ti } than pi /v. Therefore,
computing LB may underestimate the optimal cost too much, which results in
large values of f(HNp) and r(Hp).

• For each combination of n and m, f(H) drops close to 1.0 when k grows from
2 to 100. This indicates that the schedules produced by HNp and Hp are very
close to the lower bound of the optimal schedules. Hence, they are even closer
to the optimal schedules. The reason may lie in that, when k is large, each
order may have a lot of different product types to produce so that the data of
the orders are more regular for the heuristics to obtain good schedules.

• For each combination of n and k, r(H) grows when m becomes large. This
indicates that the heuristics perform better when the number of machines is
smaller. The observation is consistent with the worst-case bounds that have
been shown for the two heuristics in previous sections.

• For each combination of m and k,r(H) drops when n becomes large. However,
it is not concluded that the heuristics may perform better for a large number of
orders than for a small number. Again, it is believed that this may be caused
by the gap between the lower bound and the optimal cost.

From the above observations, it is quite clear that the two heuristics can

produce very near-optimal solutions for the randomly generated instances with large

k and small m.
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Table 6.1 The Average Ratio of HNP and HP over the Instances Generated for
Each Combination of n, m, and k

n k

m =22 m = 5 m = 10 m = 20
- f (H N p) T (H p) 7r- (H N p) -7. (H p) '1. -- (H N p)	 -f. (H p) 'T- (H N p)	 T- VI p)

2 1.052 1.029 1.227 1.163 1.541 1.417 2.113 	 1.866
5 1.024 1.010 1.101 1.053 1.303 1.208 1.726 	 1.563
10 1.009 1.003 1.043 1.013 1.141 1.079 1.413 	 1.290

20 20 1.003 1.000 1.019 1.006 1.057 1.024 1.182 	 1.116
50 1.001 1.000 1.004 1.001 1.014 1.005 1.038 	 1.018
100 1.000 1.000 1.002 1.000 1.004 1.001 1.015 	 1.006
2 1.024 1.011 1.095 1.062 1.228 1.174 1.491 	 1.364
5 1.009 1.003 1.052 1.030 1.123 1.081 1.304 	 1.219
10 1.004 1.001 1.020 1.006 1.062 1.036 1.162 	 1.114

50 20 1.001 1.000 1.009 1.002 1.022 1.008 1.076 	 1.050
50 1.000 1.000 1.002 1.000 1.005 1.001 1.016 	 1.007
100 1.000 1.000 1.000 1.000 1.002 1.000 1.006 	 1.002
2 1.011 1.005 1.047 1.029 1.114 1.080 1.244 	 1.178
5 1.004 1.001 1.026 1.016 1.060 1.041 1.146 	 1.104
10 1.002 1.000 1.010 1.004 1.030 1.018 1.081 	 1.058

100 20 1.001 1.000 1.004 1.001 1.013 1.005 1.035 	 1.021
50 1.000 1.000 1.001 1.000 1.003 1.001 1.009 	 1.004
100 1.000 1.000 1.000 1.000 1.001 1.000 1.003 	 1.001
2 1.005 1.002 1.025 1.016 1.056 1.040 1.120 	 1.086
5 1.002 1.001 1.013 1.008 1.031 1.021 1.069 	 1.048
10 1.001 1.000 1.006 1.002 1.016 1.009 1.040 	 1.026

200 20 1.000 1.000 1.002 1.001 1.006 1.003 1.018 	 1.010
50 1.000 1.000 1.000 1.000 1.002 1.000 1.005 	 1.002
100 1.000 1.000 1.000 1.000 1.000 1.000 1.001 	 1.000
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6.5 Concluding Remarks

This chapter proposed two approximation algorithms for order scheduling on uniform

machines, one for non-preemptive scheduling (HNp) and the other for preemptive

scheduling (Hp). It was shown that the worst-case bound for both heuristics is m.

Most probably, the worst-case bounds for both HNp and Hp are not tight, even

though examples could be constructed to show that they perform badly. Since the

counterexamples show that the two heuristics are not bounded by any constant, it

would be of interest to investigate whether the heuristics are bounded by a sub-linear

function of m, for example, 0(-0--n).

The two heuristics were also implemented to have an empirical analysis. The

observations on the experimental results reveal that the two heuristics can produce in

practice solutions that are very close to optimal. Due to their solution qualities and

fast speeds, the two heuristics are recommended to solve large-sized real-life problem

instances.



CHAPTER 7

CONCLUSIONS

In this dissertation, a variety of problems that belong to order scheduling models were

studied. Attention was focused on some problems of the fully dedicated case and of

the fully flexible case. Complexity results were established for some of the problems

that are either polynomially solvable or NP-hard. For the NP-hard problems, various

simple heuristics were designed for each problem, and worst-case analyses as well as

empirical analyses were presented for these heuristics.

In the complexity aspect, Table 7.1 summarizes the complexity status of order

scheduling problems that were studied in the dissertation and in the literature. From

this table, it can be seen that a lot of problems remain open. For example, for

those problems that are ordinary NP-hard, are there any pseudo-polynomial time

algorithms for them, or are they NP-hard in the strong sense?

In the algorithm aspect, the algorithms that were studied in this dissertation

for the NP-hard order scheduling problems can be categorized into five groups:

Exact Algorithm: An algorithm of this group is expected to return an optimal
solution for an NP-hard problem. However, the exact algorithm usually takes
a very long time (possibly, millions of years) to return. It is not affordable to
wait for such a long time. Usually, elimination rules and constraint propagation
techniques can be used to make an exact algorithm run faster. Unfortunately,
even with such techniques, the running time of the exact algorithm is still
unpredictable. In Chapter 3, the exact algorithm for solving PD II > v.; belongs
to this category.

Constant Ratio Approximation Algorithm: An algorithm of this group returns
a quality-guaranteed solution for a problem in polynomial time. The objective
cost of the solution is at most a constant times the optimal cost. Examples
of such algorithms are the five WSTP-based heuristics in Chapter 5 for the
problem PF I H I Ewici , and the two LP-based approximation algorithms in
Chapter 4 for the problem PD 1 EWC•3 3'
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Problem Complexity Status

Table 7.1 The Complexity Status of the Order Scheduling Problems Studied in the Dissertation and in the Literature

PDm 1 I E Ci

PDm 1 I E wiCi

PD 1 prec I fmax

PD H Lmax
PD I rj , prmp I Lmax

PD di I Lmax

PD2 I E uj

PD 	 E 11, dj = d 	 uj

PF21H1Eci

PF 1 E
PF2 I 112, prmp I Eci

QF I Ilk I EwjCi

PF1 s i , III Lmax

PF1 s i , H, GT I Lmax

PF1 s i , IIk I E Uj

PF1 s =1,ll E
PF1 8,11,191j E {0,1} I E cj

PF1	 E {0,1} E cj

Strongly NP-hard for each m > 3 (Chapter 2); remains open for m = 2
Strongly NP-hard for each m > 2 [63]
Polynomially solvable (Chapter 3)
Polynomially solvable (Chapter 3)
Polynomially solvable (Chapter 3)
Polynomially solvable (Chapter 3)
Ordinary NP-hard [65]; pseudo-polynomial algorithm [10]
Strongly NP-hard [55]
Ordinary NP-hard [4, 67]; remains open for pseudo-polynomial algorithms
Strongly NP-hard [4]
Ordinary NP-hard [44]; remains open for pseudo-polynomial algorithms
Strongly NP-hard, generalization of Q II C.

Strongly NP-hard, generalization of P IIE wiCi
Ordinary NP-hard and pseudo-polynomial algorithm [20]
Polynomial algorithm [20]
Ordinary NP-hard and pseudo-polynomial algorithm [20]
Strongly NP-hard [20, 9]
Strongly NP-hard [54]; remains open for fixed k

Strongly NP-hard [54]; remains open for fixed k
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Table 7.2 m,-Approximation Algorithms in the Dissertation

Chapter Problem	 Heuristics

2	 PD II E cj 	STPT, SMPT, SMCT, ECT

4	 PD I > wici 	 WSTP, WSMP, WSMC, WECT

6	 QF 1 II 1 E wiCi 	HNP

6	 QF III, prmp I E WiCi Hp

Algorithm with a Worst-Case Ratio of Logarithmic Function: An algorithm
of this group also returns a quality-guaranteed solution for the problem in
polynomial time. However, the performance ratio is bounded by a logarithmic
function of the problem size. An example of such algorithms is the greedy
algorithm in Chapter 3 for the problem PD 1 di = d 1 E wiCi'

Algorithm with a Worst-Case Ratio of Linear Function: An algorithm of this
group still returns a quality-guaranteed solution for a problem in polynomial
time. However, the worst-case ratio is bounded by a linear function of the
problem size. Examples of such algorithms are listed in Table 7.2.

Unbounded Algorithm: An algorithm of this group returns a solution for a problem
in polynomial time, but the quality of the solution is not guaranteed by any
performance ratio. In other words, the worst-case ratio of such an algorithm
could be infinitely large. An example of such algorithms is the SPTL heuristic
in Chapter 2 for the problem PD 11 E Ci.

From the above discussion, one can see that the order scheduling models still

have a lot of open problems about complexity and approximation. Thus, as future

research, it would be interesting to work on the open problems. For those problems

that have approximation algorithms, it would be interesting to investigate if the

performance bounds of the algorithms can be tighter, or to investigate if the problems

have polynomial-time approximation schemes (PTAS), or to show that the problems

are APX-hard if such PTAS does not exist unless P = Ni'. Such approximability

topics were addressed in Arora [2] and Papadimitriou [56].
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In this dissertation, the issue of setup times was not considered. With setup

times, the scheduling problems usually become considerably harder, even for a single

machine. For example, some single-machine cases were studied in [20, 9, 54]. The

results in the literature showed that even the very restricted problems are strongly NP-

hard for certain objective functions such as E (J.; and E Ci . As shown in Table 7.1,

the complexity of some problems involving setup times still remains open. Therefore,

it would be of interest to study these open problems. For the NP-hard cases, it would

also be worthwhile to design some efficient heuristics.

The order scheduling problems that were studied in the dissertation are very

basic ones. With different machine environments, side constraints, and objectives,

the problems may become more complicated. These could become research interests

in the future. In addition, it would also be interesting to extend the order scheduling

models to online scheduling and stochastic scheduling.



APPENDIX A

PROOF OF LEMMA 2.6

This appendix presents the proof of Lemma 2.6 in Chapter 2.

For ease of presentation, the following notation is defined to be used throughout

the proof:

FCi) : The length on machine i(i = 1, 2, 3) after the j th order is scheduled.

CY ) : The finish time on machine i(i = 1, 2, 3) of the j th order.

Cj = maxi<i<3{Cj i) }: The finish time of the j th order in the schedule.

The above notation is defined in terms of the position of an order. In contrast,

the following notation is defined in terms of the order itself:

C (1 ) : The finish time on machine i(i = 1, 2, 3) of order
3

C = max i<i<3 {C (ji .) }: The finish time of order Ji in the schedule.
3

In addition, for convenience of describing a pattern of a schedule, the following

notation is defined:

(P)k: A pattern produced by repeating k times the subpattern P, which is a

sequence of a, b and c.

(Pi /P2 )!: A pattern produced by repeating k times the subpattern Pi or P2,

each of which is a sequence of a, b and c.

Furthermore, let Sop?' denoted an optimal schedule and let > C; (S) denote

the total completion time of schedule S.

Finally, for convenience, for each order constructed from aj (by , cy ), it is simply

called order aj (respectively, bi , ci). Also, it is assumed that the subscripts of the

orders in a schedule are labeled in such a way that,

aj (by , or cj ) (j = 1, 2, ... , n): means that there are (j — 1) orders of type a

scheduled before aj (respectively, bi , or cj ).
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Observation A.1 In SoPT:

i) The orders of type c must be scheduled by a sequence satisfying the SPT
rule;

ii) The first order in the schedule cannot be of type c;

iii) The last order in the schedule must be of type c.

Proof: i) It follows by an interchange argument.

ii) Suppose that SopT starts with an order of type c. From i), this order must

be c1 . Let the first type-a or type-b order be in position (k + 1) > 1 . Denote this

order as c*. Then, the first (k + 1) orders are scheduled as:

The finish time of order ci (j = 1, 2, ... , k) in c 1 c2 ... ck c* is:

If c* is scheduled before c 1 (i.e., c*cic2 • • . ck ), it can be shown that the finish

time of order cj (j = 1, 2, ... , k) remains the same as before. But the finish time

of c* in c*c i c2 ... ck is reduced by an amount of kL on machine 1 and an amount

of 2kL + 2 E ik_ i c1 on machine 2. Therefore, c*c 1 c2 ... ck has smaller E C3 than

c1 c2 ... ck c*, contradicting the fact that SopT is optimal.

iii) Suppose that SopT does not end with the last type-c order cn . If order cn

is moved to the end and push all orders scheduled after cn, forward, then the finish

time of cn in the new schedule is the same as the finish time of c n in the old schedule.

But the finish times of all orders that were pushed forward will decrease in the new

schedule. Thus, the new schedule has a smaller E Cj than SopT, contradicting the

fact that SOPT is optimal. ❑
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Observation A.1 reveals the fact that it would be advantageous to distribute

the remaining orders of type a and b within the n frames imposed by the orders of

type c.

Observation A.2 In SopT the first order must be of type a.

Proof: Let (k + 1) > 1 be the smallest position of a type-a order in SopT. Following

the convention, let al denote this type-a order. It will be shown that there is a

schedule S which has a 1 in a position less than (k + 1), such that

The first k orders are either of type-b or type-c. Let the number of type-b and type-c

orders be rib and nc , respectively. Clearly, nb + Tic = k. From Observation A.1, the

first order cannot be of type c. Thus, nb > 1. Now, it needs to be shown that n, > 1.

Suppose n, = 0. Consider the schedule S obtained from SopT by interchanging

a 1 with the order before it (which is bk ). Then,

contradicting the fact that SopT is optimal. Thus, n, > 1.

Since k = n b + nc , it follows that k > 2. If k = 2, then the first three jobs of

SopT must be biciai. Consider the schedule S obtained from SopT by swapping b1



with a l . It is clear that the finish time of c 1 in S remains unchanged. Thus,

Therefore, S is better than SopT, contradicting the fact that SopT is optimal.

From now on, it will be assumed that k > 3. First, it holds that
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Thus,

due to L > nX > 2n En: 1 3c• = 2n En: (a;. +b 3•) ' There are the following three cases:3= 	 3=1 

Case 1(a): n, = 1

Since k > 3 and n, = 1, it has to be that rib > 2. It can be shown that the

first k orders in SopT must be of the pattern

Any schedules that put c 1 in positions other than the above can be converted into

another one with smaller E Ci , contradicting the fact that SoPT is optimal.

Consider the first (k + 1) orders in SopT. If rib = 2, then

SOpT : b1b2c1 al .

Now consider

S : a1b2c1b1.



and
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Therefore,

Thus, S is better than SoPT-

If nb > 3, then

It can be shown that

is better than SopT by:



175

Therefore, for Case 1(a), one can always find a schedule better than SOPT.

Case 1(b): ne = 2

Since nb > 2nc — 1, it must have rib > 3. By the same argument as in Case

1(a), it can be shown that the first k orders in SopT must be scheduled in either

In the former case, the schedule for the first (k + 1) orders is:

It can be shown that

is better than Sr) pp by:

In the latter case, if nb > 4, the schedule for the first (k + 1) orders is:

It can be shown that



is better than SopT by:
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due to nb > 4.

On the other hand, if n b = 4, the schedule for the first (k + 1) orders is:

It can be shown that

is better than Sop?, by:

Therefore, for Case 1(b), one can always find a better schedule than SoPT •

Case 1(c): n, > 3

Since rib > 2n, — 1, it must have nb > 5. From (A.8) and (A.5),
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If the kth order is of type-b, i.e., the schedule for the first (k + 1) orders is:

then,

This implies that, in the sequence (b1c) k-l a i b,,,, a 1 will still finish on machine 1.

However, (b/c)k-i ct i bnb has a cost reduction by an amount of (2X + bflb — a i ) from

(b1c)'brib a i . Thus, this will result in a better schedule.

If the k th order is of type-c, let bflb be in the (k —1) th (1> 1) position, i.e., the

pattern is:

0/ ok-I-11, ( ,\1 ai.
(-inb k ,-)



It follows that,
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Therefore, before the swap, for any position (k — 1 + r) (r = 1, 2, ... , 1):

Fl! 1)14-7- — 	 Id-r > 2L + 4X.

This means that the type-c order in position (k — 1 + r) finishes on machine 1 if

This means that the type-c order in position (k — 1 + r) still finishes on machine 1 if

— Fe ) > 0; otherwise it finishes on machine 3. However, since F1(, 1)1+r was

reduced by an amount of (2X + b n b — a l ) after the swap, the finish time of the type-c

order in position (k — 1 + r) will either remain unchanged or be reduced.

The above argument shows that swapping a l with 1),,, will result in a better

schedule.

Case 2: Fe+)1 > Fi _+.1)1 and Fe+)1 > Fe+)1 .

From (A.2) and (A.1),

	

F' (1) < F (2) 	n < n

	

k+1 — k+1 	 b	 c• (A.14)
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From (A.2) and (A.3),

due to (A.14). Thus,

However, it has been proved the case k < 2 before. So this case needs not be

considered any further.

Case 3: Fe+)1 > FLE1)1 and Fi(c+3)1 > F;(,+2)1 .

In this case, the schedule must be of the pattern:

Consider the following pattern:

It is clear that the finish time of each order in (b) k-1-2a1 will be reduced by an amount

of L on machine 1 and an amount of (2L + 2c„ c ) on machine 2. The finish time of

order cric remains unchanged in its new position since it finishes on machine 3. Thus,

b1 (b/c) 1 (b) k--/-2a i cnc is better than b1(b/c)lene (b)k-t-2a1.

Summarizing the above cases, the correctness of the observation follows. ❑

Observation A.3 In SopT the second order must be of type b.

Proof: Let (k +1) > 2 be the smallest position of a type- b order in SopT. Following

the convention, let b 1 denote this type-b order. It will be shown that there is a schedule

S which has b 1 in a position less than (k + 1) but larger than 1, such that
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In SopT the first order must be of type a, and the remaining (k — 1) orders are

either of type a or type c. Let the number of type-a and type-c orders be na and nb,

respectively. Clearly, n a + n, = k.

If n, = 0, it means that all of the first k orders are of type a. Thus, if k = 2,

the schedule for the first (k + 1) orders is a1a2bi. Consider the subsequence of SOPT

before c 1 . This subsequence is denoted by:

where 1> 0. It can be shown that if SopT is changed to S:

then the > cj is lower. Thus, it may be assumed that k > 3. For k > 3, the schedule

for the first (k + 1) orders is:

It can be shown that

is better than SopT. Thus, it may be assumed that n, > 1.

It may also be assumed that n a > 2. Indeed, if n a = 1, the schedule for the

first (k + 1) order is:

It can be shown that

S : a i b i ci (c) k-2 .
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has smaller E ci than SOFT. Thus, it may be assumed that k = na + n, > 3.

For k = 3, there are only two possible schedules for the first (k + 1) orders:

a1 a2 c1 b 1 and a1c1a2b1. In the former case (aia2cibi), it can be shown that the schedule

a 1 b 1 c1 a2 is a better schedule. In the latter case (aicia2b1), it can be shown that the

schedule a1c1a2b1 is a better schedule.

Thus, from now on, it needs to focus only on the case k > 4.

First of all, for the first (k + 1) orders,

Since it is assumed that n, > 1 and k > 4, this leads to a contradiction.

It should be noted that, if n, = 1, then n a > 3, since it needs to focus only on

k = na + n, > 4.
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Clearly, under the condition of (A.20), F 1) < Fe ) always holds. There are the

following two cases:

Case 2(a): The order in the kth position is of type a.

In this case, the first (k + 1) orders of the schedule is:

a l (a/c) k-2ana

It can be shown that:

ai(a/c)"biana.

is a better schedule.

Case 2(b): The order in the k th position is of type c.

In this case, it can be proved by contradiction that the order in the (k — 1)'

position must be of type a. Suppose that ana is in the (k —1)th (2 < 1 < n) position,

then the first k orders in SOFT is:

It can be shown that S:
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is better than SoPT.

Thus, the (k — 1)' order must be of type a if the k th order is of type c. It

follows that the first (k + 1) orders are scheduled as:

It can be shown that

is better than SoPT

It can be shown that the following pattern S:

has a smaller > Cj than SoPT.

Summarizing the above cases, the correctness of the observation follows. ❑

Observation A.4 In SoPT the third order must be of type c.

Proof: Let (k +1) > 3 be the smallest position of a type- c order in SoPT. Following

the convention, let c 1 denote this type-c order. It will be shown that there is a schedule

S which has c 1 in a position less than (k + 1) but larger than 2, such that
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It is clear that the first k orders are either of type a or type b. Let the number of

type-a and type-b orders be na and nb , respectively. Clearly,

Therefore, c 1 must be finished on either machine 1 or machine 2.

For k = 3, there are two possible patterns for SopT: a1bia2c1 and a1bib 2 c1. In

the former case, it can be shown that aibicia2 is better than a1b1a2c1. In the latter

case, it can be shown that aibicib2 is better than aibib2ci.

From now on, it can be focused on k > 4 only. There are two cases to consider:

Case 1: na > 2.

The pattern of the first (k + 1) orders in SopT is

It can be shown that S:

is better than SoPT.

Case 2: na < 2.

na < 2 also means that na = 1, since the first order must be a type-a order.

Thus,

The pattern of the first (k + 1) orders in SopT is

It can be shown that S:

S : alb' (b) k-3cib,,,
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is better than SoPT-

Summarizing the above cases, the correctness of the observation follows. 0

Now it is ready to show that the orders are scheduled in SopT in the order

(abc), repeated n times. This can be shown by induction on k, where k is the number

of times that the (abc) pattern repeats. The previous observations have shown that

the lemma is true for k = 1. The inductive step can be shown by the same argument

as in the previous observations. This follows from the observations that (1) At the

beginning, all three machines start at time 0; (2) After scheduling the (abc) pattern

k times, the finish times of the three machines are 5L + 2X + a l , 5L + 2X + a 2 , and

5L + 2X + a3 , respectively, where a i (1 < i < 3) is a linear combination of the a i 's,

bi 's and ci 's. Since L and X are much larger than the ai 's, bi 's and ci 's, one can view

the finish times of the three machines as more or less equal. In other words, the ai 's,

bi 's and ci 's are inconsequential in the arguments.



APPENDIX B

PROOF OF LEMMA 5.6

This appendix presents the proof of Lemma 5.6 in Chapter 5.

Without loss of generality, it is assumed for order j that

P2j 	 • • 	 Pkj-

For the convenience of description, the following notation is defined:

• Let Wi(i) (/, j) denote the ith smallest workload before product type 1 of order j
is assigned by the LPT rule based on profile A.

• Let WP(/, j) denote the ith smallest workload before product type 1 of order j
is assigned by the LPT rule based on profile B.

• Let Cii (A) denote the finish time of product type 1 of order j assigned by the
LPT rule based on profile A.

• Let Cij (B) denote the finish time of product type 1 of order j assigned by the
LPT rule based on profile B.

It is clear that the LPT rule does not introduce idle time on the machines as

long as there are product types available for producing. Thus, if the LPT rule assigns

the product types of order j based on profile A and profile B, respectively, it will be

shown that, for each product type 1 = 1, 2, ... , k of order j, it satisfies:

1/17 i) (1, j) < 1/172) (1, j), i = 1, 2, ... , m;	 (B.1)

and

Clj (A) <	 (B).	 (B.2)

The proof is by induction. First consider the base case where 1 = 1. By the

assumption that for each i = 1, 2,	 m the i th smallest workload of profile A is
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not larger than that of profile B, it is easy to see that both (B.1) and (B.2) are

satisfied. As the inductive hypothesis, it is assumed that both (B.1) and (B.2) hold

for each product type 1 = 1, 2, ... , x. Now look at product type x + 1. Since (B.1)

holds before product type x is assigned based on the two profiles, respectively, the

two smallest workloads of the two profiles satisfy:

< 14 2 ') (x,i), i = 1 , 2 , 	 ,m. 	 (B.3)

Now after x is assigned to the machines with the smallest workload in the two profiles,

respectively, let

W1 = WP ) (x,./) + Pxj, and W2 = 	 (X, j) Pxj. 	 (B.4)

It is clear that (B.3) and (B.4) imply

W1 < W2. 	 (B.5)

As long as x is assigned, it needs to determine Wi t) (x + 1, j) and WP(x + 1, j),

i = 1, 2, ... , m. Clearly, there must exist some i 1 (1 < i 1 < m) and i2 (1 < i2 < m)

such that

1/17 i ' ) (x, j) < W1 < 1/17 21+1) (x, j), and WP ) (x, j) < W2 < wp+1)(x, j ) .

Three cases are considered.

Case 1: i 1 = i2 . Wi(:" ) (x +1, j) and '1/V i) (x + 1, j) are determined as follows:

(a) For each i = 1, 2, ... , i 1 — 1 let

1/17i) (x + 1, j) = Wi(2+1) (x, j), and WP (x + 1, j) = 1/17 i+1) (x, j).

(b) For i = i t = i2 , let

W](. il) (x + 1 ,i) = W1 , and WP ) (x + 1, i) = W2.
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(c) For each i = i 1 + 1, ... , m, let

After x has been assigned to the two profiles, it is clear that

and

From the above assignment, it is clear that (B.1) is still satisfied before x + 1 is

assigned.

(a) For each i = 1, 2, ... , i 2 — 1, let

(b) Let

(c) For each i = i 2 + 1, ... , i 1 — 1, let

(d) Let

(e) Finally, for each i = i 1 + 1, ... , m, let
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Clearly, according to (B.6), for each i = 1, 2, ... , i 2 — 1

For i = i2, - - - , ii, from (B.7), (B.8), and (B.9)

It certainly implies that

For each i = i i + 1, ... , m, (B.10) also implies that

W12) (x + 1, j) < W22) (x + 1, j).

Thus, in this case, (B.1) still holds before x +1 is assigned.

Case 3: i i < i2. W12) (x+ 1, j) and 144 i) (x + 1, j) are determined as follows:
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(e) Finally, for each i = i2 + 1, ... , m, let

According to (B.11), for each i = 1, 2, ... , i t — 1 it is easy to see

Finally, for each i = i2 + 1, ... , m, it is easy to see

Thus, in this case, (B.1) also holds before x + 1 is assigned.

It can be concluded from the above three cases that (B.1) holds before x +1 is

assigned. After product type x +1 is assigned based on the two profiles, respectively,

it is easy to see that

Thus, (B.2) also holds for / = x + 1.
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The above inductive proof shows that (B.2) holds for each 1 = 1, 2, ... , k. It

follows that

This completes the proof.
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