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ABSTRACT

DYNAMICS OF FILAMENTS, FLARES AND
CORONAL MASS EJECTIONS (CMEs)

by
Ju Jing

The objective of this dissertation is to investigate the connection between the dynamics

of solar surface phenomena such as filament eruptions, flares, the coronal mass ejections

(CMEs), the core of so-called solar activity, and the properties of the associated magnetic

field for the development of forecasts of solar activity and space weather. Both statistical

and case studies have been carried out.

The topics covered in this dissertation are: the statistical relationship among phe-

nomena of solar activity, in particular, filament eruptions, flares and coronal mass ejections

(CMEs); the correlation between magnetic reconnection rate and flux rope acceleration of

two-ribbon flares; the correlation between magnetic twist of linear-force-free active region

and solar eruptions; a case analysis of a quiet-sun flare associated with an erupting fila-

ment and a fast CME; a case analysis of the periodic motion along a filament initiated by a

subflare; and a case analysis of the evolution of the twist of an eruptive filament.

The findings and results confirm some of the theories and conjectures previously

proposed and put forth some new insights into the physics of phenomena of solar activ-

ity, briefly summarized as follows: (1) a statistical relationship is found among filament

eruptions, flares and CMEs; (2) the majority of filament eruptions is found to be associ-

ated with new magnetic flux emergence within or adjacent to the eruptive filament; (3) a

rapid increase in pitch angle of the twisted structure of an eruptive filament appears to be

a trigger of the solar eruption; (4) the hemispheric chirality preferences of quiescent fila-

ments is confirmed; (5) the geoeffectiveness of halo CMEs is found to be associated with

the orientation and the chirality of the magnetic fields associated with the eruptions; (6)

the temporal correlation between the magnetic reconnection rate and the flare nonthermal



emission is verified; (7) the coronal magnetic reconnection is found to be inhomogeneous

along the flare ribbons; (8) a positive and strong correlation is found between magnetic re-

connection rate and the acceleration of eruptive filaments which represents the early stages

of flux rope eruptions in the low corona; and (9) a special type of periodic mass motion in

a filaments is reported that remains a challenge to the classical and recent filament models

and may provide information on the existence of the filaments.
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CHAPTER 1

INTRODUCTION

The Sun has been producing radiant and thermal energy for billions of years. The outputs

of magnetized plasma and radiation from the Sun are the primary factors affecting the Earth

and its nearby space environment. Because of its closeness to the Earth, the Sun serves as

a unique laboratory to study the behavior of stars in general. The Sun may look like an

unchanging object in the sky, yet with modem observing techniques the Sun reveals the

amazing structure that changes dynamically in a rich variety of ways in its surface and

atmosphere.

1.1 Overview of Phenomena of Solar Activities

1.1.1 Prominences/Filaments

Filaments and/or prominences are located in the corona but possess temperatures a hun-

dred times lower and densities a hundred or a thousand times greater than coronal values

(Priest 1981). Filaments and prominences are identical structures physically, while their

dual name just reflects a different observed location (on the disk in absorption or above the

limb in emission). They will not be distinguished throughout the dissertation except for a

specific purpose. The "filament" is used throughout the rest of the dissertation. Filaments

have been classified in two basic types according to their dynamic nature: quiescent fil-

aments and eruptive filaments. Both types of filament are located at boundaries between

opposite-polarity, line-of-sight magnetic fields (Babcock & Babcock 1955; Howard 1959;

Avignon et al. 1964; Hermans & Martin 1986). Quiescent filaments are long-lived stable

structures that can last for several months, while eruptive filaments are usually associated

with flares and coronal mass ejections (CMEs). Another distinction is made regarding their

locations: active-region filaments form in polarity reversal regions of active region corn-

1
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plexes; quiescent filaments are found in quiet sun areas along polarity inversion lines be-

tween large-scale areas of opposite polarity; border filaments form on the outside borders

of active regions; and polar crown filaments form in the most poleward polarity reversal

region. Some physical properties of filaments are given in Table 1.1.

Fine Structure within Filaments

A clear feature of high-resolution observations of quiescent filaments is the presence of

fine-scale fibril structures. Because magnetic fields play a decisive role in defining the fine

structure and its dynamics, the shape, orientation and possibly the strength of the magnetic

field may be inferred from the observed structure (Engvold 2001).

Quiescent filaments often display a well-defined highest, horizontal axis which is

called "spine". It is composed of resolvable threads. The "barbs" (legs) connect to the

high spine and terminate in the chromosphere. These barbs typically curve downward

to the chromosphere and hence have a large vertical component. The fine structure is

strikingly dynamic. Doppler measurements in filaments show both upward and downward

mass motions which appear to be oscillatory. Such motions, both in the spine and in the

vertical bundles of threads in barbs, suggest that the plasma is flowing along the magnetic

field lines.

Filament Channel

Observations show that filaments are always formed in so-called filament channels, regions

where chromospheric fibrils are aligned with the polarity boundary. Because the fibrils are

field-aligned, it is concluded that filaments channels represent the condition of maximum

magnetic shear. The importance of the filament channel as a precondition for filament for-

mation has recently been stressed (Gaizauskas 1998). Ha channels are clearest at polarity

inversions embedded in strong magnetic fields. However, they are not so much visually in
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weak fields. Observations sensitive to coronal emission, such as HeI A 1083 nm, EUV and

radio (such as Nobeyama radio heligraph) remain a sensitive indicator of filament channels

even when magnetic fields are weak.

Chirality Patterns of Filaments

A handedness property known as "chirality" has been discovered for filaments channels

and filaments (Martin et al. 1994). If filaments are viewed from their positive polarity side,

two types are found: those that have right-bearing barbs and those with left bearing-barbs.

Right-bearing barbs extend from the filament spine to the chromosphere making an angle

to the right relative to vertical while left-bearing barbs extend to the left of vertical. It is

well established that the magnetic field direction along the axis of a filament with right-

bearing barbs is always to the right, or "dextral". Similarly a filament with left bearing

barbs has an axial magnetic field direction to the left and is called "sinistral" (Martin et al.

1994). Examples of a sinistral filament (top) and a dextral filament (bottom) are shown in

Figure 1.1.

To understand the physical meaning of chirality, Mackay et al. (1997) adopt linear

force-free field V x B = ah models to study development of a chromospheric filament

channel. They showed that the field with positive a will form a channel with sinistral

chirality, and field with a < 0 will result in a dextral channel. Aulanier & D'emoulin (1998)

employed a 2.5-D linear force-free field model to reproduce several important properties of

filament observations. Their model also showed that dextral (sinistral) chirality corresponds

to the magnetic field with negative (positive) a.

Martin, Bilimoria, & Tracadas (1994) were the first to establish the hemispheric

chirality preferences of quiescent filaments. In their data set of 47 quiescent filaments,

72% of filaments in the southern hemisphere had sinistral barb patterns, while all filaments

(100%) in the northern hemisphere had dextral barb patterns. Surprisingly, active-region

filaments did not show any hemispheric preference in their chirality, despite active-region



4

Figure 1.1 A sinistral filament (top) and a dextral filament (bottom). Images are recorded

at the Big Bear Solar Observatory.
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magnetic fields demonstrating the hemispheric helicity rule (Pevtsov, Canfield, & Metcalf

1995). Furthermore, there appears to be a one-to-one correlation between chirality of the

sign of the magnetic helicity (Rust & Martin 1994), i.e., dextral filaments have negative

magnetic helicity and sinistral filaments have positive helicity.

A number of models have been developed to explain the chirality of filaments, either

based on emergence of subphotospheric twisted fluxtubes (Rust & Kumar 1994), continu-

ous shearing and reconnection (Priest et al. 1996), or based on twisting by meridional flows

and other surface motions (Van Ballegooijen et al. 1998). All models also consider the ef-

fect of the differential rotation, but none of the models can explain all observed patterns

(see review by Zirker 2001).

Filament Oscillations

Solar filaments are continuously subject to oscillations in response to ambient atmosphere

perturbations. These vibrations can be either of global nature (for example when a large-

scale disturbance, carrying considerable energy, impinges on the broad side of the filament

body and shakes its whole structure), or of local nature (when the filament material is

perturbed by motions in the solar photosphere, chromosphere or corona; Oliver 2001).

Observations of filament oscillations are compiled in Table 1.2. There are three

major groups (see Engvold 2001): short periods with P ti 3 — 5 min, longer periods with

P 12 — 20 min, and very long periods with P 40 — 90 min, which respectively re-

flect the photospheric p-mode driven domain, the fast magneto-acoustic domain, and the

slow magneto-acoustic domain. In general, prominence oscillations have been observed in

Doppler shifts (e.g., v ti 2 — 13 km s -1 , Bocchialini et al. 2001) rather than in intensity, as

expected for kink-type oscillations, which are non-compressional transverse displacements.

However, there is some confusion in the interpretation of Doppler shift measurements, be-

cause there are also significant flows present along the filaments (Zirker et al. 1998) besides

the kink-type displacement motion. The exciter of a large-scale prominence oscillation is
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Table 1.1 Typical physical parameters of filaments inferred from SoHO measurements
(Patsourakos & Vial 2002), Ha (Engvold 2001a), and other sources.

Table 1.2 Periods of prominence oscillations and size scale (adapted from Oliver &
Ballester 2002)
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generally a flare (Ramsey & Smith 1966). Spatial observations allow us to distinguish

between large-amplitude oscillations, triggered by a wave front from a flare (winking fila-

ments), and small-amplitude oscillations that affect only parts (threads) of a prominence.

The longest periods seem to involve entire filaments, whereas periods shorter than 20 min

appear to be tied to thread-like small-scale structures (Engvold 2001). Recent reviews on

oscillations in prominences and filaments can be found in Oliver (2001), Engvold (2001),

and Oliver & Ballester (2002).

Formation and Evolution

The observations show that filaments always form in so-called filament channels, i.e., re-

gions where chromospheric fibrils (thread-like fine structures) are aligned with the neutral

line. For the question of how prominences acquire their mass there are three different sce-

narios: (1) cooling and condensation of plasma from the surrounding corona (Pneuman

1972), (2) injection by chromospheric upflows (Pikel'ner 1971), and (3) footpoint heat-

ing triggering condensation (Antiochos et al. 2000). Although filaments and prominences

appear to be static over longer time intervals, there is a lot of observational evidence that

the formation is a continuous process, where mass is continuously entering and exiting the

filament magnetic field throughout its lifetime. Moreover, the continuous process of mass

transport in filament spines and barbs has been found to consist of bi-directional streams

(Zirker et al. 1998).

Disappearance

At some stage a filament may become completely unstable and disappear. The lifetime of

a prominence is determined by the balance between heating and cooling. There exist two

categories of disappearance: dynamic and thermal (Mouradian et al.1995). The former pro-

cess consists of an expansion and ejection of filament plasma into the corona due to changes
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in underlying magnetic field structure. Generally, the process displays ascending velocities

on the order of a few kilometers per second and, through continuous acceleration, reaches

a velocity on the order of several hundred kilometers per second. This process ultimately

leads to the complete and final disappearance of the filament. In contrast, in the thermal

disappearance process the filament is seen to fade slowly while remaining stationary, with

the general shape unchanged. The disappearance is due to heating and full ionization, caus-

ing it to fade on Ha. The filament will often reappear once it cools down. An excellent

example of a flare-triggered thermal disappearance of a filament is recorded at the BBSO

in the time interval between 17:59 UT to 19:47 UT on 2001 October 22 and analyzed by Ji

et al. (2002). Although the heating mechanism that leads to thermal disappearances of qui-

escent filament is still not well understood, this simple event shows that the flare triggered

some kind of heating mechanism which continued for several hours.

The following precursors of dynamic filament disappearance have been identified:

gradual external reconnection (Gary & Moore 2004), a constant gradual acceleration of

the filament in height for up to 1 hour before eruption (Kundu et al. 2004), blue-shifted

upflows (DesJardins & Canfield 2003), and heating of the filament mass or ejection of

heated plasma (Ding et al. 2003).

1.1.2 Flares

The solar flare is a remarkable and beautiful eruptive phenomenon. It varies from being a

simple, localized brightening to a bewilderingly complex event. The flare process, driven

by stored nonpotential magnetic energy and triggered by an instability of the magnetic

configuration, is associated with a rapid energy release in the solar corona. The energy

released in a flare varies from 10 22 J in a subflare to 3 x 1025 J in the largest of events (Priest

1981). Such an energy release process results in acceleration of nonthermal particles and

in heating of coronal/chromospheric plasma. These processes emit radiation in almost all

wavelengths: radio, white light, EUV, soft X-rays, hard X-rays, and even y-rays during
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large flares.

Flares have been categorized in many different ways, but two particular types, the

compact flare and the two-ribbon flare, may be particularly significant. The former is small

and simply brightens and fades without moving or changing its shape. It may occur in a

large-scale unipolar region or near a simple sunspot. The two-ribbon flare, characterized

by two separating bright ribbons, tends to be larger, more energetic, and more likely to be

associated with a eruption.

Figure 1.2 is from Xu et al. (2004). It shows the temporal evolution of an X10

white-light two-ribbon flare in solar NOAA Active Region 10486 obtained with the Dunn

Solar Telescope (DST) at the National Solar Observatory/Sacramento Peak on 2003 Octo-

ber 29. This is the first report of a white-light flare observed at the opacity minimum.

Magnetic fields are monitored before, during and after the flares. The prelude to a

flare, e.g., magnetic shearing and sudden emergence of magnetic flux (Wang et al. 2004b;

Moon et al. 2004) have been observed. On the other side, permanent changes of the mag-

netic field, e.g., rapid penumbral decay (Wang et al 2004a) or the reversal of the magnetic

sign (Qiu & Gary 2003), have been observed after a flare. Statistically, it is found that

moving blueshifts events, which are indicators of upflows from chromospheric reconnec-

tion events, are 5 times more frequent before eruptive flares than in non-eruptive flares

(DesJardins & Canfield 2003). After the flare, downflows of 800-1000 kms -1 above flare

arcades have been observed (Innes et al. 2003), probably direct witnesses of the relaxation

of newly-reconnected magnetic field lines (Aschwanden 2004).

1.1.3 CMEs

Coronal mass ejections (CMEs) are huge bubbles of gas threaded with magnetic field lines

that are ejected from the Sun over the course of several hours. The phenomenon of a CME

occurs with a frequency of about one to three events per day, carrying a mass in the range

of mCME '''''' 10 15 — 10 16 g (Howard et al. 1985; Hundhausen 1999), which corresponds
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to an average mass loss rate of mcmE /(6,t • 47r/?) r-:,- 2 x 10 -14 — 2 x 10 -12 g cm-2 5-1

(Markus 2004). The transverse size of CMEs can cover from a fraction up to more than a

solar radius, and the ejection speed is in the range of V cmE ;za-, 10 — 103 km s -1 (Gosling et

al. 1976; Howard et al. 1985; St. Cyr et al. 1999, 2000).

The CME-Flare Connection

CMEs are often associated with solar flares and prominence eruptions but they can also

occur in the absence of either of these processes. It is expected that the larger the stored

energy in the relevant magnetic structure that drives the eruption the better the correlation

between the eruptive phenomena and CMEs (Lin 2004). Actually, the fastest and most

powerful CMEs are always associated with a particular kind of flare, the two-ribbon flare

in Ha in the chormosphere (Zhang & Golub 2003), or the long-duration events of soft

X-ray brightening in the corona (Hundhausen 1999). A temporal correlation has been also

found between the reconnection rate and the directly observed acceleration of the accompa-

nying CME (Qiu et al.2004). In addition, an empirical relationship has been found between

the initial speed of a CME and the potential magnetic field energy of the associated active

region, implying that the magnetic energy of the active region drives the CME (Vankatakr-

ishnan & Ravindra 2003).

The Eruptive Filament-CME Connection

In most flare models the eruption of a filament is the first step in a chain reaction that cul-

minates with a CME. However, filament eruptions that are not associated with CMEs are

also found. It is known that a filament eruption in an active region is either ejective or

confined (Machado et al., 1988; Moore, 1988). Ejective active-region eruptions produce

CMEs; confined active-region eruptions do not produce CMEs (Canfield et al., 1999; Fal-

coner et al., 2002). Choudhary and Moore (2003) examined 12 quiescent filament eruptions
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(9 were associated with CMEs and 3 were not), and found that, even though the two kinds

of eruption were indistinguishable in their magnetic setting and in the eruptive motion of

the filament in the Ha movies. Each of the CME-associated eruptions produced a two-

ribbon flare in Ha and a coronal arcade in Fe XII while each of the non-CME-associated

eruptions did not. From these results, they conclude that quiescent filament eruptions are

similar to active-region filament eruptions in having a similar dichotomy of confined and

ejective eruptions. This similarity suggests that quiescent filament eruptions, confined or

ejective, are unleashed in the same way as active-region filament eruptions.

Geometry of CMEs

Geometric characterizations of CMEs with large statistics have been obtained from SMM

Coronagraph/Polarimeter (C/P) observations, which include some 1300 CME events in

1980 and during 1984-1989. There is a large range of angular widths, with an average of

47°, launched at an average latitude of 35° (Hundhausen 1993). A typical characteristic of

most CMEs is the three-part structure, consisting of (1) a bright leading edge, (2) a dark

void, and (3) a bright core (Illing & Hundhausen 1985). It was suggested that CMEs have

a loop-like geometry in a 2D plane, based on close associations of CMEs with eruptive

prominences and disappearing filaments (Trottet & MacQueen 1980). Alternatively, 3D

geometric shpaes were suggested, such as a shape of a bubble, a helical flux rope (Amari et

al. 2003; Cheng et al. 2003), a semi-shell (Ciaravella et al. 2003) or a "ice-cone" (Xie et al.

2004). The observations are often sufficiently ambiguous so that these geometries concepts

cannot easily be discriminated in the data. While CMEs propagating close to the plane of

the sky have a relatively simple projected shape, other CMEs propagating in a direction

towards the observer have much more complex shapes, the so-called halo CMEs.

Geometric modelling of CMEs is still in its infancy. Based on the concept of mag-

netic flux ropes, which consist of helical field lines wound around a curved cylinder, the

evolution of a CME is conceived as a steady expansion of this flux rope into interplane-
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tart' space, with the legs connected to the footpoints on the Sun (Chen 1997a). Figure 1.3

displays the detailed fine structure in a CME, which appears to be composed of numerous

helical strands, revealed by edge-enhancing techniques (Wood et al. 1999).

Velocities and Acceleration of CMEs

The height, velocity, and acceleration of a well-defined CME feature, such as the bright

leading edge, are observables that can be measured as a function of time relatively easy,

in particular for limb events. The time phases of acceleration reveal the height range

where accelerating forces operate, and thus might provide crucial insights into the drivers

of CMEs. The coronagraphs of the Solar Maximum Mission (SMM) and the Solar and He-

licospheric Observatory (SOHO) show that the median CME velocity is about 450 kms -1

(Low 2001). Considering the sound speeds ti 100kms-1 at million-degree temperature and

coronal Alfven speeds r•- , 103 kms-1 , CMEs tend to be supersonic or sub-Alfvenic in the

corona, with implications for the hydromagnetic shocks driven ahead of the CMEs (Shee-

ley et al. 1985; Hundhausen et al. 1987; De Sterck et al. 1998).

Based on the observed characteristics of CME velocity v(t) and acceleration pro-

files a(t) observed with SoHO/LASCO over the distance range of r = 2 — 30 R® it was

proposed that there exist two distinct classes of CMEs (Sheeley et al. 1999): (1)gradual

CMEs, apparently formed when prominences rise up from below coronal streamers, typi-

cally attaining slow speeds (v ti 400 — 600 km s -1 ) with clear signs of gradual acceleration

(a = 3 — 40 m s -2 ) at distances R < 30R0 ; and (2)impulsive CMEs, often associated with

flares on the visible disk, with speeds in excess of v > 750 — 1000kms -1 , observed to have

a constant velocity or deceleration at distances R > 2R® when first seen in coronagraphs

(Sheeley et al. 1999).

The observations suggest that the acceleration profile a(t) can be approximated by
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either an exponentially increasing or decreasing function, (e.g., Sheeley et al. 1999),

a(t) = ao exp [— (t — to )/ta ]

The velocity profile v(t) follows then from integrating the acceleration profile a(t),

v(t) = vo +f a(t) dt
0

and the height-time profile h(t) from double integration of the acceleration profile a(t),

r fr
h(t) = ho +vo (t — to) + f	 a(t) dt dt

to to

The acceleration profile of CMEs cannot be observed at low heights (R < 2R® ) with coro-

nagraphs.

Recently, an anti-correlation between the acceleration and velocity has been found:

most of CMEs faster than 400 kms -1 decelerate (Vrsnak et al. 2004b) whereas slower

ones generally accelerate (Vrsnak et al. 2004a). This acceleration-velocity relationship is

interpreted as a consequence of the aerodynamic drag (Cargill 2004). Case studies also

showed close temporal correlations between the acceleration of the CME and the time

derivative of the soft X-ray flux, indicating that the CME acceleration is coupled to the

flare particle acceleration (Zhang et al. 2004).

Reviews on CMEs can be found in MacQueen (1980), Howard et al. (1985), Low

(1994, 1996, 2001), Hundhausen (1999), Forbes (2000).

1.2 Magnetic Fields

The solar magnetic field controls the dynamics and topology of all eruptive phenomena.

The magnetic field on the solar surface is very inhomogeneous. The strongest magnetic

field regions are in sunspots, reaching field strengths of B = 2000 — 3000 G. Active regions
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and their plages comprise a larger area around sunspots, with average photospheric fields

of B P.d., 100 — 300 G, containing small-scale pores with typical fields of B c-z-i 1100 G. The

background magnetic field in the quiet Sun and in coronal holes has a net field of B

0.1 — 0.5 G. Our knowledge of the solar magnetic field is mainly based on measurements

of Zeeman splitting in spectral lines, while the coronal magnetic field is often reconstructed

by extrapolation from magnetograms at the lower boundary, using a potential or force-

free field model. The extrapolation through the chromosphere and transition region is,

however, uncertain due to unknown currents and non-force-free conditions. The fact that

coronal loops exhibit generally much less expansion with height than potential-field models

underscores the inadequacy of potential-field extrapolations. Direct measurements of the

magnetic field in coronal heights are still not available.

1.2.1 Magnetic Flux Emergence

Sunspots and strong flares are believed to be associated with the emergence of magnetic

flux through the photosphere. During emergence, magnetic dipoles grow in size and their

rate of divergence is of order v ep:, 2.3 km s -1 , while magnetic flux increases with a rate of

cici dt 1.6 x 10 15 Mx s-1 (Hagenaar 2001). The emergence of growing new magnetic

flux structures necessarily forces topological changes in the magnetic field of the overlying

corona, which may involve magnetic reconnection processes. If the emerging field has

the same orientation as the overlying coronal field, an approximately current-free field

forms in the interaction region. If the emerging field is anti-parallel, however, a current

sheet forms which could initiate magnetic reconnection (Shibata et a1.1989). Feynman

& Martin (1995) found statistically that two thirds of the quiescent-filament-associated

CMEs occurred after substantial amounts of new magnetic flux emerged in the vicinity

of the filament. In addition, 17 of the 22 filaments that were associated with new flux

emergence erupted, and 26 of 31 filaments that were not associated with new flux did not

erupt. Although it is not sure whether the magnetic flux emergence does necessarily trigger
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flares or filament eruptions directly, it does increase the magnetic complexity locally, which

ultimately may escalate into a eruptive event. An example of flux emergence associated

with a eruptive filament is given in Figure 1.4.

1.2.2 Magnetic Flux Cancellation

The reverse process of magnetic flux emergence is magnetic flux cancellation, i.e., when

opposite polarities of magnetic field converge and meet, the magnetic field of those mag-

netic flux patches begins to disappear (Matin et al. 1985). Magnetic cancellation is found

along the polarity inversion of all filaments from the smallest to the largest (Martin 1990)

and may be the most direct form of energy dissipation. There is considerable theoretical and

observational evidence that chromospheric reconnection with magnetic flux cancellation is

a likely mechanism to explain chromospheric variability, e.g, flares (Livi et al. 1989), Ha

upflows (Chae et al.2003), spicules and short-lived brightenings observed in Ha (Qiu. et

al. 2000), and soft X-ray (Harvey 1996).

1.2.3 Magnetic Helicity

Magnetic helicity is a measure of the topological structure of the magnetic field, particularly

suited to characterize helically twisted, sheared, linked, and braided field lines. The concept

of magnetic helicity became a focus recently for the following reasons:

1. Helicity conservation: A helicity conservation law has been derived by Woltjer (1958)

under the assumptions of linear force-free field (with constant parameter a). A more

formal derivation can be seen in Sturrock (1994) or in Bellan (2002). The conserva-

tion of helicity is an important invariant during the evolution of coronal structures,

which can be applied to active region loops (e.g., Liu et al. 2002; Kusano et al. 2002),

flare loops (e.g., Pevtsov et al. 1996; Moon et al. 2002b), filaments (e.g., Chae 2000;

Pevtsov 2002), prominences (e.g., Shrivastava & Ambastha 1998; DeVore & Antio-
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chos 2000), magnetic fluxropes and interplanetary magnetic clouds (e.g., Kumar &

Rust 1996; Cid et al. 2001), etc.

2. Helicity and reconnection: Although helicity may be conserved on a global scale, it

may be redistributed locally through magnetic reconnection. Such redistribution of

helicity may play a significant role in the buildup of twist, and therefore the stabil-

ity of magnetic fields, e.g., reconnection of a highly twisted small scale loop and a

weakly twisted large loop may result in injection of twist into the larger structure. As

a consequence, the larger loop may became unstable and erupt (Rust 1994; Pevtsov

et al. 1996). It has been discovered that reconnection occurs preferentially between

active regions with the same sign of helicity at the photosphere (Canfield et al. 1996).

3. Helicity continuity: The signature of magnetic helicity has been observed in the so-

lar photosphere, chromosphere, corona, solar wind and interplanetary magnetic field

(Seehafer 1990; Rust 1994; Bieber & Rust 1995). The same hemispheric sign rule

has been found for all these different data. The origin of the helicity of coronal and in-

terplanetary fields is important for space weather forecasting. The geo-effectiveness

of magnetic clouds depends on the orientation of their magnetic field, including their

magnetic helicity. Knowledge of the magnetic helicity of a potentially geo-effective

event at the Sun may prove useful in predicting its impact on the magnetosphere.

Moreover, establishing magnetic helicity continuity between photospheric fields and

interplanetary magnetic fields will help in the prediction of such events days before

their arrival to Earth.

1.3 Theories and Models of Solar Eruptions

1.3.1 The Standard 2D Models

The most widely accepted standard model for flares is the 2D magnetic reconnection model

that developed by Kopp & Pneuman (1976). The initial driver of the flare process is a
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rising filament above the neutral line. Flare loops and ribbons could be understood as an

manifestation of the magnetic field lines stretched by the ejection of plasma. When the

plasma at the top of the loop is ejected, the magnetic field lines become highly extended

that was called "open", and then relax to form closed loops through a process known as

magnetic reconnection. The X-type reconnection region is assumed to be the location of

major magnetic energy dissipation, which heats the local coronal plasma and accelerates

thermal and nonthermal particles.

A prediction of the Kopp—Pneuman (1976) model is that the X-point progressively

rises with time, which implies that newly reconnected field lines should show a progres-

sively larger apex height and an increasing footpoint separation with time. Many observa-

tions in Ha, EUV and soft X-rays show that the ribbons essentially lie at the footpoints of

the loop system. Sakao et al. (1998) measured footpoint motion and found that about half

of the flares show an increasing footpoint separation with a nonthermal hard X-ray spec-

trum, which he interpreted in terms of the Kopp—Pneuman scenario, while the other half

exhibited a footpoint separation decrease as well as a hard X-ray spectrum with large pho-

ton index, which he interpreted, in terms of the emerging flux model (Sakao et al. 1998).

During the Bastille-Day flare 2000-Jul-14, a systematic increase of the separation of the

flare ribbons was clearly observed in EUV as well as in hard X-rays (Fletcher & Hudson

2001). A somewhat more complicated motion was observed in Ha footpoint kernels, but

with an overall trend of increasing footpoint separation (Qiu et al. 2002).

However, an important constraint, referred to as Aly-Sturrock constraint, was found

by Aly (1991) and Sturrock (1991). They numerically studied a process during which

a closed force-free arcade system transited to a completely open field and found that a

completely open field could contain more magnetic energy than a completely closed field.

Therefore, the transition from a closed configuration to an open field configuration would

appear to be energetically impossible.

There are several ways to bypass the Aly-Sturrock constraint, for example, a non-
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force-free initial state, or an ideal magnetohydrodynamic (MHD) eruption that only par-

tially opens the closed magnetic field lines, or a non-ideal MHD process, especially mag-

netic reconnection might make a difference(see Lin 2002).

1.3.2 The Emerging Flux Model

One of the most commonly accepted solar eruption models now assume that the continual

emergence of new flux from the convection zone and the footpoints of closed coronal field

lines causes stresses to build up and accumulate energy in the coronal magnetic field (Hey-

vaerts et al. 1977). Eventually, the configuration may become unstable when the stress

exceeds a threshold beyond which an equilibrium can no longer be maintained. As a result,

the coronal magnetic field erupts and most of the stored energy is released via magnetic

reconnection.

In this model, there are three phases: (1) a preflare heating phase where a new

magnetic flux emerges beneath the flare filament and continuously reconnects and heats

the current sheet between the old and new flux; (2) the impulsive phase starts when the

heated current sheet loses equilibrium at a critical height and turbulent electrical resistivity

causes the current sheet rapidly to expand, accelerating particles and triggering chromo-

spheric evaporation; and (3) the main phase where the current sheet reaches a new steady

state with reconnection. A requirement of this model is the pre-existence of a stable current

sheet (with very low resistivity) for periods of the order of a day or more. However, numer-

ical simulations indicate the current sheets reconnect almost as quickly as they are formed

(Forbes & Priest 1984; Shibata et al. 1990). It is therefore believed that the this model can

only apply to small flares (Priest & Forbes 2000).
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1.3.3 Break-out Model

In this model, the magnetic field configuration has a spherically symmetric quadrupolar

geometry rather than a dipolar geometry. A current is created by shearing the arcade strad-

dling the equator and magnetic reconnection occur on top of the sheared arcade. Recon-

nection removes the unsheared field above the low-lying, sheared core flux near the neutral

line, which then allows the field above the core flux to open up (Antiochos et al.1999).

Thus, this model addresses the energy problem: How very low-lying magnetic field lines

can open up (down to the photospheric level) into an open-field configuration during the

eruption. Moreover, the eruption is solely driven by free magnetic energy stored in a closed,

sheared arcade. It circumvents the Aly—Sturrock energy limit by allowing external, dis-

connected magnetic flux from a neighboring sheared arcade (which is not accounted for

in the "closed-topology" model of Aly and Sturrock) to assist in the opening-up process.

Thus, a key point of the magnetic breakout model is the interaction of a multi-flux system

(e.g., in a quadrupolar double arcade).

1.3.4 Flux-rope Catastrophic Model

This model demonstrates how the (force-free) evolution passes a critical point where the

system becomes unstable and triggers the rise of a filament, and has been developed by

Forbes & Priest (1995) in 2D. In this model, to support the filament and drive its eruption,

the flux-rope must carry a current. The background field is similar to that produced by a

biopolar arcade embedded in the photosphere. The mass flow in the photoshphere brings

the magnetic field from a distance to the origin, forces the magnetic field lines in opposite

direction to reconnect at the origin. The initial situation of the magnetic field is shown

in Fig. 1.5 (b). The two footpoints of the field lines that envelop the flux rope are then

driven closer together, while the system evolves through a series of equilibrium solutions.

The height h of the flux rope as a function of the separation half-distance 2 is shown in
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Fig. 1.5(a). Once the source separation passes the critical point at 2, = 1, the flux rope

enters a loss of equilibrium and jumps in height (from h = 1 to h 5), while forming a

current sheet beneath [Fig. 1.5(d)]. In ideal MHD, the rising flux rope would stop at a

higher equilibrium position, because the tension force associated with the current sheet is

always strong enough to prevent the fluxrope from escaping (Lin & Forbes 2000). If there

is some resistivity, magnetic reconnection is enabled, and even a fairly small reconnection

rate is sufficient to allow the flux rope to escape (Lin & Forbes 2000). This model is

formulated fully analytically and yields reasonable amounts of released energies, suitable

to explain flares and CMEs. Although this analytical model is restricted to 2D (with a

fluxrope that is not anchored at both ends), it demonstrates quantitatively how a loss of

magnetic equilibrium leads to a rapid energy release, which probably also takes place in

more complex 3D configurations.

1.4 Space Weather Forecasting

Solar activity is closely related to the near earth environment - summarized descriptively

as space weather. The solar wind carries the magnetic field of the Sun. This magnetic

field or the IMF (interplanetary magnetic field) has a particular orientation - southward or

northward. It has been found in numerous studies that changes in the strength and direction

of the IMF near the Earth's orbit are important factors in causing the geomagnetic activity

that can greatly perturb the magnetosphere and ionosphere. The coupled solar wind —

magnetosphere — ionosphere system is most highly energized when the IMF turns south,

i.e., anti-parallel to the direction of the Earth's magnetic field. In other words, southward

IMF causes magnetic reconnection, rapidly injecting magnetic and particle energy into the

Earth's magnetosphere and modifying the large-scale ring current systems, and therefore,

geomagnetic storms can be expected.

Geomagnetic storms can cause a variety of undesirable consequences, for example,

electrical current surges in power lines, interference in the broadcast of radio, television,
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and telephone signals, and problems with defense communications. One of the most dra-

matic effects on ground systems during geomagnetic storms is the disruption of power

systems. The enhanced particle density within the Earth magnetic fields during a geomag-

netic storm can also cause damage to satellites. Under some conditions, solar eruptions

can also accelerate charged particles to very high energies (protons and heavier particles,

such as helium). These highly energetic particles can penetrate into electronic components,

causing bit-flips in a chain of electronic signals that may result in spurious commands. In

addition one can experience erroneous data from the onboard instruments. These spurious

commands have caused major failures to satellite systems, even causing the craft to point

away from the earth direction. Energetic solar protons are also a radiation health hazard for

astronauts on manned space flights, in particular for long space missions outside the Earth

protective magnetosphere.

Therefore forecasting of major activity and geo-magnetic is vitally important. The

presence of two satellites, Solar and Heliospheric Observatory(SOHO) and Advanced

Composition Explorer(ACE), has definitely improved the accuracy of space weather fore-

casts. Two instruments on board SOHO have proved to be especially valuable for contin-

uous real-time monitoring of solar storms that affect space weather. One is the Large An-

gle Spectrometric Coronagraph (LASCO) that takes images of the solar corona by block-

ing the light coming directly from the Sun itself with an occult disk, creating an artifi-

cial eclipse within the instrument. The other is the Extreme ultraviolet Imaging Telescope

(EIT), providing images of the solar atmosphere at four wavelengths. It reveals flares and

other stormy events in the atmosphere, and can usually determine whether CMEs seen by

LASCO originated on the near or far side of the Sun, based on the presence or absence of

corresponding events on the near side.

Real-time, high-quality data and data processing would be a key element to forecast

space weather promptly and accurately. A innovative computation and information tech-

nologies (ITR) for real time space weather monitoring and forecasting is being established
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at BBSO.

There are three goals in the ITR project.

1. Combine state-of-art parallel computing techniques with phase diversity speckle imag-

ing techniques, to yield near real-time diffraction limited images with a cadence of

approximately 10 seconds.

2. Use the technologies of image processing and pattern recognition, such as Support

Vector Machines (SVMs), Neural Networks (NNs) and Image Segmentation to de-

tect and characterize three important solar activities in real-time: filament eruptions,

flares, and CMEs.

3. Develop web based software tools to post processed data, events and forecasting in

real time, and to be integrated with current solar activity and space weather prediction

web pages at Big Bear Solar Observatory (BBSO).

1.5 The Scientific Goals and the Structure of the Dissertation

As mentioned, filament eruptions, flares and coronal mass ejections (CMEs) are the most

important solar events as far as space weather effects are concerned. Because the solar

magnetic field are the ultimate causes of these solar activities, a deep understanding of the

properties and behavior of the solar magnetic field is also required. Therefore, comprehen-

sive study of the solar activities and the solar magnetic field is essential to space weather

program. Our goal is to explore the connection between solar surface phenomena such as

filament eruptions, two-ribbon flares, the CMEs' occurrence, and the properties of the as-

sociated magnetic field, e.g., magnetic reconnection rate, magnetic twist and helicity. Both

statistical and case studies have been carried out.

As a way of providing the context of the work, the dissertation is organized accord-

ing to the individual specific topic. Accordingly, the dissertation has seven Chapters as

follows:
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Chapter 1: Introduction.

It is a introductory chapter involving overview of phenomena of solar activities(section

1.1), magnetic field(section 1.2), theories and models of solar eruptions(section 1.3),and

space weather forecasting(section 1.4). Most of these topics are relevant to the detailed

studies presented in following chapters.

Chapter 2: Relationship Among Phenomena of Solar Activity.

In this chapter, a statistical study is presented on the relationship between filament

eruptions, flares and CMEs using 5 yr data. The main results have been published in Astro-

physical Journal, 2004, v. 614, p. 1054.

Chapter 3: Magnetic Reconnection Rate and Flux-Rope Acceleration.

In this chapter, a positive and strong correlation is found between the magnetic re-

connection rate and the acceleration of erupting filaments that represents the early stages

of flux-rope eruptions in the low corona. The main results have been published in Astro-

physical Journal, 2004, v. 620, p. 1085.

Chapter 4: Magnetic Reconnection Rate of a Two-ribbon Flare.

In this chapter, a detailed case study of a two-ribbon flare and its associated fila-

ment eruption and CME observed on 2000 September 12 is presented. The main results

have been published in Astrophysical Journal, 2004, v. 593, p. 564.

Chapter 5: Periodic Motion Along a Solar Filament.

In this chapter, a periodic mass motion in solar filaments, not previously reported,

is studied with high cadence Ha observations made at the Big Bear Solar Observatory

(BBSO). Various possibilities for explaining this mass motion are discussed to find a re-

markable similarity between the observations and the theories. The main results have been
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published in Astrophysical Journal Letter, 2003, v. 584L., p. 103.

Chapter 6: Evolution of the Twist of a Eruptive Filament.

In this chapter a case study of the evolution the twist in a eruptive filament is re-

ported. The primary observations are from Kanzelhohe Solar Observatory (KSO). Ha im-

ages of the filament reveal apparent twisted structure which correlates well with the twisted

flux rope model (Chen 1996).

Chapter 7: Twist Parameter of Active Regions and Solar Eruptions.

This chapter is targeted at investigating the statistical correlation between the mag-

netic twist and some properties of solar eruptions (e.g., acceleration of eruptive filament,

magnetic reconnection rate of corresponding two-ribbon flares).

Chapter 7: Summary.
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Figure 1.2 Color-encoded near-infrared (NIR) difference images showing the temporal
evolution of the flare ribbons from 20:40 to 20:47 UT. The background is an MDI line-of-
sight magnetogram. Figure is from Xu et al. 2004.
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Figure 1.3 LASCO C2 images of the CME of 1997-Apr-30, processed by average dif-
ference (top row) and edge-enhancing (bottom row). The leading edge is marked +, the
trailing edge X, the sides *, and the centroid 0. Helical lines (marked with arrows) are seen
below the rim that possibly trace the magnetic field (Figure from Wood et al. 1999).
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Figure 1.4 The new magnetic flux, as indicated by the square boxes, emerge on 2002 April
23 alongside an eruptive filament. The top two panels are Ha images obtained at BBSO.
The bottom two panels are MDI magnetograms.
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Figure 1.5 Flare dynamics in the model of Forbes & Priest (1995), inferred from the ideal
MHD evolution of a 2D arcade containing an unshielded fluxrope (a)—(c). The fluxrope
arcade jumps upwards when the two photospheric field sources are pushed too close to one
another. (d) The vertical current sheet is subject to magnetic reconnection if enhanced or
anomalous resistivity occurs (Figure from Forbes & Priest 1995).



CHAPTER 2

RELATIONSHIP AMONG PHENOMENA OF SOLAR ACTIVITY

2.1 Introduction

Filament eruptions, flares, and CMEs are the most important solar events as far as space

weather effects are concerned linking solar eruptions, major interplanetary disturbances and

geomagnetic storms (Gosling et al. 1991). A halo CME, which is usually associated with

activity near solar disk center, has great influence on space weather because an Earthward

halo CME is indicative of coronal mass and magnetic fields are moving out toward the

Earth and therefore, is likely to cause geoeffective disturbances (Cane et al. 2000; Webb

et al. 2000). The sign of magnetic helicity in active regions can be used to predict the

orientation of the magnetic field associated with a CME and furthermore, the probability

of a geomagnetic storm (Yurchyshyn et al. 2000).

In order to gain a better understanding of CMEs and to improve the reliability of

geomagnetic storm predictions and warnings, it is essential to observe early manifestations

of CMEs in the solar atmosphere. Thus, our goal is to find possible relationships between

solar surface phenomena such as filament eruptions and flares, the CMEs occurrence, and

the properties of the associated magnetic field. Once a relationship is found, it can serve as

an indicator for the occurrence of geomagnetic storms.

Filaments and prominences refer to the same physical structures on the Sun, either

projected onto the disk or extending above the limb. The majority of previous statistical

studies regarding the connection between filament (or prominence) eruptions and CMEs

have focused on prominences because they could easily be detected, observed, and mea-

sured against the dark sky background. Moreover, CMEs, associated with the prominences,

are not difficult to detect. Many prominence classifications have been proposed in the past.

For example, Gilbert et al. (2000) developed definitions of active prominences (APs) and

29
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eruptive prominences (EPs) and studied the relationship between APs, EPs, and CMEs for

54 events. They found that 94% of the EPs had an associated CME compared to only 46%

for APs. (Gopalswamy et al. 2003) defined a prominence as a radial or a transverse event.

Authors showed that the radial events have a strong correlation to the CMEs: 83% of the

radial events were associated with CMEs compared to 24% for transverse events. How-

ever, (Yang & Wang 2002) showed that the connection between filament disappearances

observed in Ha spectral line and CMEs is weak ranging from 10% to 30%.

Filament disappearance does not always imply filament eruptions. Depending on

their physical nature, disappearing filaments can reappear. Two processes have been pro-

posed by Mouradian et al. (1995): dynamic sudden disappearance (DSD) and thermal

disappearance (THD). DSD is due to restructuring of the magnetic field and it ultimately

leads to the disappearance of the filament through an eruption process, whereas THD is

due to heating of the plasma in the filament, which will reappear once it cools down. Since

THD is not related to magnetic field reorganization, it is excluded from this study.

A "filament eruption" is defined as a solar activity event with significant upward

motion and with at least 50% of the material vanishing during the course of a day. In

this sense, filament eruptions and the aforementioned DSDs, EPs, and radial events are

really all the same manifestations, but with slightly different definitions. It should also

note that this study includes both filament eruptions observed close to the solar limb with

a normalized distance from solar disk center larger than 0.6R ® and earth-directed filament

eruptions observed on the disk. Since the THD events have been eliminated from the

study, terms "disappearance" and "eruption" are used synonymously throughout the rest of

the chapter. Two BBSO Ha full disk images, about 24 hours apart, allows us to identify

filament disappearance on the disk. Then high cadence data of Ha and the Extra-Ultraviolet

Imaging Telescope (EIT) onboard the Solar and Heliospheric Observatory (SoHO) is used

to confirm these events are indeed erupting, even though their signatures in EIT images are

more difficult to identify. A filament was considered as erupting, if it displays ascending
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motion, in contrast to filaments that fade away as a whole, while their general shape remains

the same. The latter type of disappearing filaments has been discarded from our study.

Usually, ascending motion of filaments is determined by the line-of-sight velocity derived

from Doppler measurements. Unfortunately, such data are not available. The evolution of

the geometrical shape of the filament, for example whether it shows a loop like eruption,

provides us the clue to determine whether it is actually erupting.

In this chapter, a comprehensive five-year study of filament eruptions from 1999

January 1 to 2003 December 31 is presented. The study includes both close-to-limb events

(R > 0.6R0 ) and earth directed disk events. The data sets are described in Section 2, the

methods are outlined in Section 3, the statistical results are listed in Section 4, and finally,

the observational results are discussed and summarized in Section 5 and 6.

2.2 Data Sets

BBSO Ha full disk images are used as the primary data set to detect the filament erup-

tions. During the last few years, BBSO has developed a new generation of well calibrated,

photometric Ha full disk observations (Denker et al. 1999; Steinegger et al. 2000), which

include limb darkening correction to enhance features on the disk as well as above the limb.

The Ha full disk data were acquired with a large-format, 2k x 2k pixels, 14-bit Apogee

KX4 CCD camera. The time cadence is one image frame per minute during the entire

observing day and the image scale is approximately 1" pixel -1 .

In addition to the Ha observations, MDI magnetograms (Scherrer et al. 1995), EIT

images (Delaboudiniere et al. 1995), LASCO C2 coronagraphs (Brueckner et al. 1995),

GOES soft X-ray light-curves, and SGD solar event reports were examined to identify the

related phenomena of solar activity such as new flux emergence, flares, and CMEs.
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2.3 Methods

Unlike in some previous studies, which used CMEs as the starting point and traced them

back to their origin on the solar surface (Webb et al. 1987; Webb et al. 2000), this study

started from identifying a filament disappearance, eliminating those events that are not

indeed erupting, and then evaluated GOES soft X-ray light-curves, SGD solar event reports,

MDI magnetograms, and LASCO data to establish a relationship between the filament

eruption and other phenomena of solar activity.

2.3.1 Data Selection

A total of 3,620 filament disappearance events were detected by an automatic detection

program from 1999 January 1 to 2003 December 31, which uses IDL code in Linux system

and generated a "filament disappearance report"every day (Gao et al. 2002). The program

selects one Ha snapshot each day and compares it with another image from the previous

day in order to detect disappearing filaments. To simplify the data selection, I first selected

243 filament disappearances, with a surface area of at least 2,000 arc sec 2 . In order to be

included in our study list, observations, with the cadence of one image frame per minute,

have to be available during the entire progress of the filament disappearance. In the case

there was a data gap in the BBSO Ha full disk image sequence, Ha full disk images ob-

tained at the Kanzelhöhe Solar Observatory (KSO) in Austria and EIT images which have

a relatively lower temporal cadence, 12 minute, are resorted. During this process of selec-

tion, it was able to exclude some misidentifications made by the program, events which had

not been satisfactorily observed as well as some filament disappearances which could not

unambiguously be classified as filament eruptions. Since active region filaments appear to

be thinner in depth and width compared to quiescent filaments, 22 small events (< 2, 000

arc sec2 ), most of them were in active regions, were included in our study as supplementary

of filament eruptions in active regions. The final sample of filament eruptions included in
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this study was 106: 43 of them with complete Ha coverage, while the rest of events were

observed from the beginning to the end in EIT images.

2.3.2 Event Classification

1. Flares: Flares (optical and X-ray flares) were identified first as sudden brightenings

in Ha (flare ribbons) or EIT (flare loops) observations. In other words, flare associa-

tion is determined directly from the observation. Then GOES soft X-ray flux profiles

and SGD solar event reports, within a time period of 1 hour around the observed

onset time of flares, are examined for X-ray class, onset time and location.

2. New Flux Emergence: new flux emergences is determined from a time sequences of

MDI magnetograms with 790" x 590" field-of-view (FOV) obtained at least 12 hours

prior to the eruption. The FOV was centered on the eruptive filament to located the

magnetic field in the "vicinity of the filament" (see Feynman & Martin 1995, for the

definition of the "vicinity of the filament").

3. CME: I used LASCO C2 coronagraph images and the CME catalogue (Gopalswamy

et al. 2003) to determine, whether there was a CME associated with the filament

eruption. I require that the latitude of the CME is within ±30° of the latitude of

the eruptive filament and that the CME appears in LASCO C2 coronagraph images

within two hours after the eruption of the filament. I chose this particular time delay,

because it takes approximately two hours for a CME travelling at a relatively low

plane-of-sky speed of 200 km/s to cover a distance of two solar radii, i.e., to reach

the LASCO C2 FOV. Taking into account the projection effect and the acceleration

time of a CME, this two-hour time window seemed reasonable. For events, which

originate near disk center and are likely to result in halo or partial halo CMEs, the

above requirements have to be relaxed.
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2.4 Results of Filament Eruption Associations

Table 2.1 presents a list of 106 filament eruptions and summarizes their relation to emerging

flux regions, flares, and CMEs. The 1st and 2nd column of the table contain date and time

of the filament eruptions. Subsequent columns provide observed properties of the filament

eruptions (position, size, chirality) and relate them to occurrences of EFRs, flares, and

CMEs. In the following enumeration, I explain some of the terms used in Table 2.1.



Table 2.1 	 Properties of Filament Eruptions and their Associated Solar Activity

Date

Filaments EFRs Flares CMEs

Eruption
Time [UT]

Position Size
[arc sect ]

Type Chirality EFRa Class Timeb

[UT]
Location Time'

[UT]
Central PAd

[deg]
AWe
[deg]

1999/01/17 17:32 — 20:21 N38E16 2612 AR8440 • •	 • no data C2.5 18:29 N18E19 ••	 • -	 •	 • • •	 -
1999/03/10 02:00 — 03:00 S40W16 12080 QS dextral yes ••	 • - -	 • • •	 • 03:26 176 76
1999/03/20 21:12 — 23:24 N23W07 4260 QS •-	 • no -	 - - - -	 • • •	 • -	 •	 • • •	 • • •	 •
1999/03/23 03:00 — 06:00 Sl7E11 1984 QS sinistral yes ••	 - • •	 • • •	 • 04:54 152 48
1999/03/23 03:00 — 06:00 S36E24 1180 QS sinistral no ••	 - - -	 • • •	 • 04:54 152 48
1999/04/18 07:13 — 07:48 N39E07 3768 QS dextral yes B3.8 08:40 ••	 • 08:30 59 > 112
1999/05/22 06:12 — 11:12 Sl2E11 3708 QS sinistral yes -	 •	 - • •	 • •• - • •	 •
1999/06/08 10:02 — 11:48 S35E21 2088 QS sinistral yes -	 •	 - •- - •• - • •	 • • •	 • • •	 •
1999/06/24 12:48 — 13:36 N39W08 2808 AR8595 dextral yes C4.1 12:04 N29W13 13:31 partial halo • •	 •
1999/07/01 02:24 — 04:00 S31W18 2404 QS sinistral yes C5.4 01:41 Sl5W16 ••	 • • •	 • • •	 •
1999/08/20 13:13 — 16:36 N59W74 6888 QS • •	 • Limbf -	 •	 - •- - ••	 • 18:06 346 88
1999/09/09 18:45 — 21:36 N34W41 6800 QS dextral yes ••	 - • -	 • • •	 • 19:52 304 73
1999/09/12 00:24 — 01:25 S 16W52 4176 QS sinistral Limb • •	 • • •	 • 00:54 271 121
1999/09/16 15:48 — 16:36 N49W44 13744 QS dextral Limb ••	 • • -	 • • •	 • 16:54 partial halo	 6 147
1999/09/20 04:00 — 05:00 S21E01 5672 QS sinistral no C2.8 05:46 • •	 • 06:06 very faint halo 360
1999/10/13 08:12 — 09:36 N49E12 12992 QS dextral no optical ••	 • • •	 • 09:50 4 109
1999/10/25 13:36 — 14:12 S36W19 4368 QS sinistral no C1.2 14:40 • •	 • 14:26 partial halo 186 146
1999/11/09 14:35 — 15:31 N49E21 3280 QS dextral yes • •	 • • •	 • • •	 • no data • •	 • • •	 •



Table 2.1—Continued

Date

Filaments EFRs Flares CMEs

Eruption
Time [UT]

Position Size
[arc sect ]

Type Chirality EFRa Class Timeb
[UT]

Location Time'
[UT]

Central PM
[deg]

Air
[deg]

1999/11/26 17:08 — 19:13 S46W04 3596 QS sinistral yes C2.3 17:40 S 1 1W08 17:30 partial halo 228 145
1999/12/28 22:00 — 23:48 SO4E17 2368 QS sinistral yes ••	 • •• • • •	 • 23:54 170 96

2000/01/08 03:06 — Sl2E02 2004 QS sinistral yes -	 •	 • • •	 • ••	 • no data ••	 • • •	 •
2000/01/15 17:48 — 18:36 S43W58 6502 QS sinistral Limb ••	 • • •	 - • •	 • 19:31 228 75
2000/04/11 19:48 — 20:12 S32W44 2304 QS sinistral Limb ••	 - • •	 • • •	 • 20:30 210 45
2000/04/21 20:24 — 21:36 505W03 2684 QS sinistral yes - •	 • • •	 • • •	 • • • • • • • • •	 .
2000/04/29 12:00 — 12:48 N04E07 2204 QS dextral yes C3.0 11:23 Sl1W06 • •	 • • • • ...
2000/07/07 07:13 — 13:13dP N06W02 2340 QS sinistral yes C5.6 08:42 N17E10 10:26 halo 360
2000/07/23 04:24 — 05:12 512W06 2408 AR9091 sinistral yes optical ••	 • • •	 • 05:30 partial halo 161 > 181
2000/07/30 13:24 — 14:13 N18W17 2516 QS dextral no ••	 • • •	 • • •	 •
2000/09/05 18:00 — 20:36 S29E17 3136 QS sinistral yes C1.6 21:21 S19W04 ••	 • • .	 • • •	 •
2000/09/12 11:10 — 11:40 S27W06 5236 AR9160 sinistral yes M1.0 11:31 Sl2W18 11:54 halo 360
2000/09/18 11:24 — 12:00 N19W46 6404 QS dextral yes ••	 • • •	 • 12:26 282 35
2000/09/27 14:48 — 15:36 S02E45 2706 QS sinistral no ••	 • • •	 • • •	 • • •	 • • •	 • ...
2000/09/27 19:35 — 19:50 S31E17 2936 QS sinistral yes optical ••	 • 20:50 192 115
2000/09/28 06:12 — 07:13 N12E05 1320 QS dextral yes ••	 • • •	 • • •	 • • •
2000/10/07 21:13 — 22:00 N47E27 4384 QS dextral yes - - • • •	 • ••	 • • • • • •	 • ...
2000/10/15 15:12 — 17:12 N19W39 3124 QS dextral no •.. • •	 • 18:26 273 44



Table 2.1—Continued

Date

Filaments EFRs Flares CMEs

Eruption
Time [UT]

Position Size
[arc sect ]

Type Chirality EFRa Class Timers

[UT]
Location Time'

[UT]

Central PAd
[deg]

AWe

[deg]

2000/10/28 19:17 — 19:54 N18W62 2500 QS dextral yes • •	 • • •	 • • •	 • no data • •	 • • •	 •
2000/11/23 05:36 — 06:12 S15W49 3276 QS dextral yes C5.4 05:34 S26W40 06:06 halo 360
2000/11/25 06:00 — 07:13 N31W62 3520 QS dextral Limb • •	 • • -	 - • •	 - 07:31 305 44

2001/01/24 11:12 — 12:00 N27W07 2448 QS dextral no • •	 • • •	 • • •	 • • • • • •	 • • •	 •

2001/03/14 10:23 — 11:09 S28W34 2236 QS sinistral no • •	 • • •	 • • •	 • 12:26 213 26
2001/04/02 10:48 — 13:13 S22W48 2608 QS sinistral Limb • •	 • • •	 • • •	 • 11:26 270 80
2001/04/10 11:12 — 12:36 N19W29 2048 QS dextral yes -	 • • • •	 • • • • • •	 • • •	 •

2001/04/22 23:52 — 00:30" N37W34 4208 QS dextral yes • • - • •	 • • •	 - 00:42/23 325 69
2001/04/23 12:03 — 12:26 S09W28 564 AR9431 sinistral yes C2.8 12:06 S14W17 12:39 228 91
2001/04/23 13:27 — 14:10 S32W63 2256 QS • •	 • Limb • •	 • • •	 - -	 •	 • • •	 • • •	 • • •	 •

2001/07/20 03:36 — 04:12 N35W27 2076 AR9538 dextral yes B7.6 03:15 05:06 357 26
2001/07/26 08:48 — 10:14 N23W81 3044 QS sinistral Limb • •	 • • •	 • • •	 • -	 •	 • • •	 • • •	 •

2001/08/01 20:28 — 20:56 S29W14 1176 AR9557 sinistral no • •	 • • •	 • • •	 • no data ••	 • • •	 •
2001/08/02 19:49 — 23:48 N40E28 2144 QS dextral yes C2.1 18:53 N24E31 00:06/03 -	 -	 - • •	 •
2001/08/06 22:36 — 23:48 N28W94 2836 QS dextral Limb • •	 - -	 -	 • • •	 • • •	 • • •	 •

2001/09/15 09:48 — 10:28 N24W69 4718 QS dextral Limb • •	 • • •	 - • •	 • • •	 • • •	 • • •	 •

2001/10/09 10:48 — 12:24 S26E03 1424 AR9653 dextral no M1.4 lh 10:46 S28E08 11:30 halo 360
2001/10/16 07:13 — 07:36 N05W74 3644 QS sinistral Limb • -	 • • •	 • • •	 • • •	 • • •	 • • •	 •



Table 2.1—Continued

Date

Filaments EFRs Flares CMEs

Eruption
Time [UT]

Position Size
[arc sect ]

Type Chirality EFRa Class Timeb

[UT]

Location Time`

[UT]

Central PA"

[deg]

AWe

[deg]

2001/10/19 16:15 — 16:25 N18W40 1276 AR9661 sinistral yes X1.6 16:13 N15W29 16:50 halo 360
2001/12/05 15:48 — 16:24 N47W54 2060 QS dextral Limb • •	 • • •	 • • •	 • • •	 •

2002/01/06 10:36 — 11:52 S42W16 2036 QS -	 •	 • Limb • •	 • -	 •	 • • •	 - -	 -	 • • •	 - • •	 •

2002/01/14 22:14 — dP S21 W01 2572 QS sinistral no • •	 • -	 •	 • • •	 • no data ••	 • -	 -	 •
2002/01/23 16:27 — 17:13 N35E18 2092 QS • •	 • no -	 -	 - -	 -	 • • •	 • • •	 • -	 •	 • • •	 •

2002/01/28 10:00 — 11:00 S32E15 2458 QS sinistral yes C4.6 11:05 -	 •	 • 10:54 143 62

2002/02/19 23:00 — dP N53E15 5276 QS • •	 • Limb • •	 • • •	 • • •	 • 02:54/20 36 41
2002/03/05 18:30 — 19:15 SI1W26 5824 QS sinistral no -	 -	 - • •	 • • •	 • 21:30 215 65
2002/04/22 22:37 — 23:24 SlOW03 5380 QS sinistral yes • •	 • • •	 - -	 •	 • 00:38/23 213 57
2002/05/21 20:16 — 20:26 N20E40 737 AR9960 dextral yes M1.5 21:20 N17E38 21:50 59 117
2002/05/22 03:00 — 03:36 S 12W60 2140 QS dextral yes C5.0 2h 04:00 S22W53 03:50 halo 360
2002/05/24 20:26 — 20:36 N 1 8E14 218 AR9962 dextral no optical 20:40 N16E11 • •	 • • •	 • • •	 •

2002/06/04 17:47 — 17:57 N14W23 159 AR9974 dextral yes C1.0 18:06 N22W17 no data • •	 • • •	 •
2002/06/10 19:06 — 20:31 N33W19 3612 QS dextral no • •	 • • •	 • -	 •	 - • •	 • • •	 • • •	 •

2002/06/16 21:13 — 21:47 S25W45 262 AR9991 • •	 • yes C1.2 21:12 • •	 • • •	 • • •	 • • •	 -

2002/06/17 22:53 — 23:13 N20E40 475 AR10001 dextral no optical 22:40 N14E22 • •	 • • •	 • • •	 -

2002/06/19 20:05 — 20:20 N20W15 225 AR10000 • •	 • yes optical • •	 • -	 • • • •	 • • •	 • • •	 •

2002/07/01 20:32 — dP Sl8W09 320 AR10016 sinistral yes C1.0 21:08 • •	 • • •	 • • •	 • • •	 •



Table 2.1—Continued

Date

Filaments EFRs Flares CMEs

Eruption
Time [UT]

Position Size
[arc sect ]

Type Chirality EFRa Class Timeb

[UT]
Location Time'

[UT]
Central PAd

[deg]
AWe
[deg]

2002/07/04 16:09 — 16:19 S18E06 393 AR10019 - 	 - 	 • yes C3.4 16:21 S 19E06 18:54 180 45
2002/07/07 17:00 — 17:26 N08W49 4560 QS dextral yes optical •• 	 - • • 	 - 18:06 293 65
2002/07/13 10:28 — 11:12 S24E28 2488 QS sinistral yes •- 	 • •- 	 - • • 	 • 11:30 147 40
2002/07/21 16:11 — 16:31 S16E02 472 QS sinistral yes optical 15:47 S09W16 • • 	 • • • 	 • - 	 • 	 -
2002/07/23 14:30 — 18:20 N53W54 8148 QS dextral Limb •• • •• • •- 	 • 18:06 342 56
2002/07/26 15:37 — 15:48 N 1 OW24 1184 AR10046 sinistral yes optical •• • •• 	 • • • 	 • .. 	 • • ..

2002/07/29 07:13 — 10:29 N32W40 4108 QS dextral yes • • 	 • •- 	 • • • 	 • 11:06 360 150
2002/08/06 16:59 — 17:19 S31W35 9900 QS sinistral no •• 	 • • - 	 • 18:25 218 134
2002/08/14 19:34 — 20:28 N10E17 408 AR10067 dextral yes M1.4 18:04 N10E23 - 	 - 	 - • • 	 • • • 	 •
2002/08/18 18:18 — 18:37 S09W17 596 QS - 	 • 	 • yes C8.7 20:18 S07W20 21:54 203 140
2002/08/20 23:42 — 00:04" N55W10 3692 QS dextral Limb •• - •• 	 - •- 	 • • • 	 • • • 	 • • • 	 •
2002/09/15 19:52 — 20:17 N33E45 2140 QS dextral yes • • 	 • • • 	 • • • 	 • 21:30 59 41
2002/09/18 23:04 — 23:29 S22E03 2152 AR10119 sinistral no C1.0 21:48 •• 	 • • • 	 • •• 	 • • • 	 •
2002/09/21 20:11 — 20:36 Sl1W22 408 AR10123 sinistral yes C2.6 20:34 S 1 6W19 •• 	 • •• 	 • • • 	 •
2002/09/22 10:28 — 11:48 N26W54 6700 QS dextral Limb - 	 - 	 - - 	 • 	 - • • 	 • 11:30 287 43
2002/09/29 22:20 — 01:25" S26W00 2416 QS sinistral no •• 	 • • • 	 - • • • •• 	 • . 	 ..
2002/09/29 22:20 — 01:25" Sl3E21 2400 QS sinistral yes • • 	 • • • 	 • 23:54 146 22
2002/09/30 06:36 — 08:24 Sl2W87 1824 QS sinistral Limb • • 	 • • • 	 • • - 	 • • • 	 • • • 	 • • • 	 •
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1. Type: Active region filaments form in polarity reversal regions of active region com-

plexes, whereas quiescent filaments are usually found in quiet sun areas along polar-

ity inversion lines between large-scale areas of opposite polarity(Feynman & Martin

1995).

2. Chirality: Chirality describes the handedness of filaments and it contains impor-

tant information of the surrounding magnetic field. When viewed from the posi-

tive polarity side, the axial field of a dextral (sinistral) filament points to the right

(left), respectively. Dextral and sinistral filaments can be recognized even without

knowing the polarity on either side of filaments. Martin et al. (1993) discovered a

no-exception correlation between chirality of filament channels, filaments, and their

overlying coronal arcades: all dextral filaments are right-bearing and lying under

left-skewed arcades, while all sinistral filaments are left-bearing and lying under

right-skewed arcades (for a review, see Martin 1998). The chirality is determined

by examining high resolution BBSO Ha images. If the filament barbs bear off to the

right (left) of the filament's main axis then the filament is dextral (sinistral), respec-

tively. In some cases the chirality of a filament could not be determined due to an

obscure or complex Ha structure, which is indicated by the (• • • ) in the 6th column

of Table 2.1.

3. Emerging Flux Regions (EFRs): Since the sensitivity of longitudinal magnetograms

decreases near the limb, "Limb" is used when the normalized distance from solar disk

center is larger than 0.6R ® and new flux emergence could not clearly be established.

4. Flares: As mentioned in Section 3, Ha and EIT full disk observations, GOES soft

X-ray flux profiles, and SGD solar event reports are used to identify flares associated

with filament eruptions. Term "optical" refers to a flare visible in Hafull disk images,

which is either inconspicuous in soft X-rays flux profiles or it is of an insufficient

magnitude to be officially classified as a flare.



Table 2.1—Continued

Date

Filaments EFRs Flares CMEs

Eruption
Time [UT]

Position Size
[arc sect ]

Type Chirality EFRa Class Timeb

[UT]
Location Time

[UT]
Central PAd

[deg]
AWe
[deg]

2002/10/10 19:03 — 20:08 N29W01 812 QS dextral no -	 • 	 • -	 • 	 • •• 	 • no data •• 	 • •• 	 •
2002/10/29 23:28 — 01:13" Sl4W40 3584 QS •• 	 • yes -	 • 	 • -	 • 	 • •• 	 • •• 	 • •• 	 •
2002/11/19 21:00 — 00:00 S03W57 2800 QS sinistral Limb •• 	 - • • 	 • •• 	 • • • 	 • •• 	 • • • 	 •
2002/11/19 23:00 — 00:00 S47W63 2196 QS sinistral Limb •• 	 • • • 	 • • • 	 • • • 	 • •• 	 • •..
2002/12/29 01:13 — 02:36 S31W12 2584 QS sinistral yes - • 	 • • • 	 • •• 	 • • • 	 • •• 	 • ...

2003/01/20 15:12 — 18:24 N40W30 5000 QS dextral Limb optical •• 	 • •• 	 • 18:30 315 105
2003/01/20 12:48 — 13:13 S02W36 3656 QS sinistral no •• 	 • • • 	 • •• 	 • ...
2003/01/20 20:24 — 21:12 N25E55 6250 QS dextral yes optical •• 	 • •• 	 • 21:30 58 166
2003/01/30 08:12 — 09:33 N18W00 2480 QS dextral no optical •• 	 • • • 	 • 10:06 partial halo 238 149
2003/03/25
2003/04/26
2003/06/11

17:15 — dp

20:33 — 21:18
17:56 — 18:56

N37W13
N00E48
S42E08

4076
4160
5088

QS
QS
QS

•• 	 •
dextral
sinistral

Limb
Limb
no

•• 	 -
M1.8

•• 	 •
-	 • 	 •

17:27

•• 	 •
-	 • 	 •

Sl6E23

19:31
21:50

no data

0
48

•• 	 •

65
166
•• 	 -

2003/06/14 03:24 — 04:12 N24W36 4328 QS dextral yes optical •• 	 • • • 	 • -	 • 	 • •• 	 . ...
2003/08/05 17:54 — 18:34 N15W21 6084 QS dextral yes •• 	 • 19:31 336 57
2003/09/24 06:00 — 07:13 S20W27 5952 QS sinistral no •-	 • •• • •• 	 • • • 	 • ... ...
2003/10/26 00:36 — 01:13 S22W66 2188 QS sinistral Limb C3.2 00:45 •• 	 • 01:31 256 75

aEFR: Emerging Flux Region

bTime: Flare Onset Time (UT)

`Time: First C2 Appearance Time (UT)

dCentral PA: central position angle measured from Solar North in degrees (counter clockwise), provided by LASCO CME catalogue

eAW: angular width, provided by LASCO CME catalogue

fLimb: Near Limb

dPdp: data gap

"n: next day
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5. CMEs: The first time of appearance in the LASCO C2 FOV, the central position

angle (PA), and angular width are provided in the LASCO CME catalog. In the

1 1 th column of Table 2.1, (• • • ) is used to indicate that a CME associated with the

filament eruption could not be found and "no data" refers to the few occasions, where

no LASCO data were available.

2.5 Discussion

2.5.1 Chirality

Our statistics of filament chirality shows that filaments in the northern hemisphere are pre-

dominantly dextral, while filaments in the southern hemisphere are sinistral. This agrees

with the observations of Martin et al. (1993) who reports that both solar hemispheres have a

distinct chirality. This hemispheric pattern seems to suggest that differential rotation and/or

Coriolis force participate in twisting the magnetic structures (Priest et al. 1996).

A one-to-one correspondence between filament chirality and the sign of magnetic

helicity in interplanetary CMEs (ICME) has been reported in a number of studies: dex-

tral (sinistral) filaments contain left-handed (right-handed), negative (positive) magnetic

helicity (Bothmer & Schwenn 1994; Rust & Martin 1994; McAllister & Martin 2000;

Yurchyshyn et al. 2001), respectively. Also, Leamon et al. (2002) reported a 95 % corre-

spondence between the helicity of the magnetic clouds associated with eruption of filaments

and the heliosphere where those filaments were located. The sign of magnetic helicity in

an active region can be used to predict the orientation of the magnetic field associated with

a CME and, furthermore, the likelihood of a geomagnetic storm (Yurchyshyn et al. 2001).

2.5.2 New Flux Emergence

EFRs often occur in active regions and play a significant role in filament eruptions and

flare production (Liggett & Zirin 1985; Feynman & Martin 1995). The relation between
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filament eruptions and new flux emergence is shown in the 7th column of Table 2.1.

After excluding events located far away from disk center, where the detection of

new flux emergence was difficult, a sample of 80 eruptive filaments suitable to study the

magnetic field evolution is obtained. 54(68%) events were accompanied by new flux emer-

gence. The new flux usually appeared in the vicinity of an eruptive filament and within

15 hours prior to the filament eruption, suggesting that new flux emergence plays an im-

portant role in destabilizing filaments.

2.5.3 Flares and CMEs

Eight events without the corresponding LASCO data were listed in Table 2.1 but excluded

from Figure 2.1. The top panel of Figure 2.1 shows the heliographic latitude of flares and

CMEs that were associated with eruptive filaments. Asterisks are used to indicate filament

eruptions associated with neither flares nor CMEs. Diamonds denote the occurrence of a

flare and triangles show the occurrence of CMEs. Squares were used in cases, where both

flares and CMEs were detected. Out of 98 events, 55(56%) of the filament eruptions were

accompanied by CMEs.

The above number is considerably weaker than the 94% association reported for

EPs reported by Gilbert et al. (2000) and the 83% for radial events by Gopalswamy et al.

(2003), but much higher than the 10% to 30% range given by Yang and Wang (2002). This

apparent difference can be explained as follows: Gilbert et al. (2000) and Gopalswamy

et al. (2003) considered only prominence eruptions, i.e., limb events. In contrast to these

studies, the events listed in Table 2.1 are mainly disk events. It is likely for some disk

events that the associated CMEs are very faint and could not be detected by LASCO. The

low CME association reported by Yang & Wang (2002) was most probably due to the

fact that they did not distinguish between filament disappearances and eruptions, while

disappearances are explicitly excluded in this study. Moreover, the size criteria that they

employed were different from ours. They included all disappearance events, while this
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study mainly considered filaments with a size of at least 2,000 arc sec t . Thus, the results

of Yang & Wang (2002) provide a lower estimate, since smaller eruptive events might be

associated with fainter CMEs and therefore, are more likely to be missed in LASCO data.

The bottom panel of Figure 2.1 shows the distribution of eruptive filaments as a

function of distance from the solar disk center. The light gray bars represent the number of

filament events, while the dark bars are the number of associated CMEs. The fraction of

CMEs to filament eruptions is given in percent for each bar in the histogram. The highest

fraction of 70% occurs in the range of R = 0.4 to 0.6/20 .

Table 2.2 distinguishes between active region and quiescent filament eruptions and

relates them to flares and CMEs. Here, the term "flare" refers to both optical Ha and

GOES X-ray flares. Active region filament eruptions are more likely to be associated with

flares (95%) than quiescent filament eruptions (28%), since large-scale magnetic shear and

strong magnetic field in an active region can store plenty of magnetic energy to be released

in flares (Hagyard et al. 1984). Out of a total of 85 quiescent filament eruptions, 46

or 54% are accompanied by CMEs, while only 23 or 27% events produce flares. This

eminent relation between filament eruptions and CMEs suggests that filament eruptions in

a quiescent region or at the periphery of an active region will more likely be associated

with a CME that is not itself associated with a flare. The above flare association could,

quite possibly, be higher if we consider the fact that some flares during the eruption may

be too weak to be observed in either GOES soft X-rays or Ha.

Table 2.2 Active Region and Quiescent Filaments and Their Relation to Flares and CMEs

Filament Type Total with Flare w/o Flare with CME w/o CME No LASCO Data

Active Region Filaments 21 20 95% 1 5% 9 43% 10 48% 2 9%
Quiescent Filaments 85 23 27% 62 73% 46 54% 33 39% 6 7%
Total 106 43 41% 63 59% 55 52% 43 40% 8 8%
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2.5.4 Halo CMEs

Halo CMEs have received considerable attention, since they are responsible for major in-

terplanetary disturbances and geomagnetic storms (Burlaga et al. 1981; Wilson & Hildner

1984). Because the southwardly component Bz of the interplanetary magnetic field (IMF)

is responsible for magnetic reconnection between the IMF and Earth's magnetic field, it

plays an important role in determining the amount of particle energy that is injected into

the magnetosphere (Arnold 1971; Akasofu 1981). Usually, the presence of a strong and

prolonged southward directed IMF is associated with enhanced geomagnetic activity. For

ICMEs with their axial magnetic field oriented along the north-south line, the magnitude of

the southward component is largely determined by this axial field and the sign of magnetic

helicity plays a minor role. At the same time, for CMEs with east-west oriented axial fields,

both sign and magnitude of its southward component is largely determined by the magnetic

helicity of the CME (Yurchyshyn et al. 2001).

Table 2.3 summarizes results for seven eruptive filaments, taken from Table 2.1,

associated with halo CMEs and geomagnetic storms. The first four columns are the same

as in Table 2.1, while 5th column shows the orientation of CMEs, which is assumed to be

the same as the orientation of the axial magnetic field of the corresponding filaments. The

linear fit speed of the CMEs, which was taken from the SoHO/LASCO CME Catalog, is

listed in the 6th column. The last three columns present the transit time of the ICME and

the peak values of the Dst and Kp indices during the subsequent geomagnetic storms. Five

out of seven halo CMEs were associated with geomagnetic storms with the peak Dst values

ranging between —45 and —187 nT. The peak Kp values were found to be between 5 and

8 nT. All but one geomagnetic event could be predicted based on the chirality of the CME's

magnetic field. The exception is the CME on 2001 October 19. Considering its west-east

directed axial magnetic field and sinistral chirality of the associated filament, the leading

edge of the magnetic cloud should have had a northward directed component and thus this

event should be not associated with a significant geomagnetic activity. However, a strong
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storm occurred two days after the CME launched. Examination of Advanced Composition

Explorer (ACE) magnetometer data revealed that the magnetic field at the leading edge was

indeed northward and the storm was caused by a strong southward component in the shock

region preceding the interplanetary ejecta.

2.6 Summary

In summary, phenomena of solar activity associated with filament eruptions were studied.

A total of 106 major filament eruption events, identified from 1999 January 1 to 2003

December 31, were included in the sample for this study.

1. Excluding eight events without corresponding LASCO data, 55 (56%) out of 98

events were associated with CMEs. This CME association is lower than the 94%

fraction reported by Gilbert et al. (2000) and the 84% fraction by Gopalswamy et al.

(2003), but it is considerably higher than the 10% to 30% value association found by

Yang & Wang (2002).

2. Active region filament eruptions have a considerably higher flare association (95%)

compared to quiescent filament eruptions with only 27% association. On the other

hand, quiescent filament eruptions (85 events) are more likely to be accompanied by

CMEs than flares.

3. Out of 80 disk events, 54 or 68% events were associated with new flux emergence.

This suggests that new flux emergence plays an important role in destabilizing fila-

ments.

4. The chirality and the orientation of magnetic fields associated with seven halo CMEs

and their relationship to geomagnetic storms are determined. Our results seem to

support earlier reports that the geoeffectiveness of a halo CME can be predicted from

its orientation and the sign of magnetic helicity (Yurchyshyn et al. 2000).



Table 2.3 Filament Eruptions Associated with Halo CMEs, and their Geo-Effectiveness

Filaments Halo CMEs Geomagnetic Storms

Date Type Position Chirality Orientation Speed' Transit Timeb Peak Dstc Peak Kpd
[km/s] [days] [nT] [nT]

1999/09/20 QS S21E01 sinistral east-west 604 2.8 —173 8
2000/07/07 QS N06W02 sinistral south-north 453 •• 	 • •• 	 • •• 	 •
2000/09/12 AR S27W06 sinistral east- west 1550 1.4 —45 3
2000/11/23 QS S 1 5W49 dextral east-west 492 •• • •• 	 • ••
2001/10/09 AR S26E03 dextral west-east 973 2.4 —70 5
2001/10/19 AR N18W40 sinistral west-east 901 2.3 —187 7
2002/05/22 QS Sl2W60 dextral north-south 1494 1.6 —109 8

aLinear fit speed from SoHO/LASCO CME Catalog

bTransit time from solar onset to storm peak

cDst = —30: weak storm, Dst —50: moderate storm and Dst = —100: intense storm

d Kp = 5: moderate storm and Kp = 6: intense storm
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Figure 2.1 Top panel: Latitudinal distribution of eruptive filaments and their overall rela-
tion to flares and CMEs. Asterisks denote filament eruptions, which were associated with
neither flares nor CMEs. Diamonds refer to flares, triangles to CMEs, and squares to both
flares and CMEs, which were related to filament eruptions. Bottom panel: Frequency dis-
tribution of filament eruptions and associated CMEs as function of their distance from disk
center. The histogram in light gray corresponds to filament eruptions and the histogram in
dark gray represents the associated CMEs, where the fraction of CMEs to filament erup-
tions is given for each interval.



CHAPTER 3

MAGNETIC RECONNECTION RATE AND FLUX-ROPE ACCELERATION

3.1 Introduction

Filament eruptions, coronal mass eruptions and solar flares are spectacular manifestations

of solar eruptions. It is generally believed that they are initiated by the sudden release of

energy stored in the coronal magnetic field.

Numerous theoretical models for solar eruptions and the evolution of the recon-

necting current sheet (RCS) have been developed (e.g., Van Tend & Kuperus 1978; Kaastra

1985; Martens & Kuin 1989; Forbes & Priest 1995; Amari et al. 1996; Forbes & Lin

2000; and see Lin 2003 for review). These models can be arranged into four categories:

(1) non-force-free models, (2) ideal MHD models, (3) resistive MHD models and (4) ideal-

resistive hybrid models. Some of the most used eruption models are: the sheared arcade

model (Mikié et al. 1988; Linker & Mikié 1994), the break-out model (Antiochos et al.

1999) and the flux-rope catastrophic model (Van Tend & Kuperus 1978; Forbes & Isenberg

1991; Forbes & Priest 1995). The first two eruption models are of the resistive MHD model

type and, on the basis of numerical simulation, require magnetic reconnection to trigger the

eruption. The third eruption model, constructed via analytic solution of the ideal-resistive

hybrid model, indicates quantitatively that magnetic reconnection does not necessarily play

an essential role in triggering a catastrophe eruption. However, magnetic reconnection does

help a catastrophe develop into a plausible CME-like eruption, as well as giving rise to in-

tense heating that accounts for the associated flares (Lin 2001; Lin, Forbes & Isenberg

2001).

Observationally, solar eruptions can be manifested in the form of ejected X-ray

plasmas, erupting filaments or coronal mass ejections (CMEs) (Cheng et al. 2003). The

morphological evolution of two-ribbon flares, characterized by two bright separating rib-

49
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bons in the chromospheric, usually occurs during the solar eruptive phenomena (eruptive

filaments or CMEs) and is believed to be the lower-atmosphere manifestation of magnetic

reconnection at progressively higher levels and the subsequent energy release in the corona

(Choudhary & Gary 1999).

There is increasing observational evidence of a temporal correlation between flares

and eruptive phenomena (Gosling et al. 1976; MacQueen & Fisher 1983; Zhang et al 2001;

Qiu et al. 2002, 2004; Wang et al. 2003). This correlation leads us to believe that flares,

eruptive filaments, and CMEs are different manifestations of the same physical process

involving magnetic reconnection.

Because eruptive filaments and CMEs are both considered to be erupting flux ropes

in many theoretical models, I will not distinguish them except for a specific purpose. In-

stead, the term "flux-rope" is used throughout the rest of the chapter. However, we must

keep in mind that the occulting disk of coronagraphs block part of the lower corona. Conse-

quently, the initial stage of a flux-rope eruption usually cannot be observed by coronagraphs

such as the Large Angle Solar Coronagraph (LASCO; Brueckner et al. 1995).

The central interest in this work is to find statistical correlation between the mag-

netic reconnection rate and the acceleration of flux-ropes. From a sample of thirteen well-

observed two-ribbon flares that are associated with rising flux-ropes, there appears to be a

tendency that increasing reconnection rates are usually associated with increasing flux-rope

accelerations at the early stage. The temporal correlation between the magnetic reconnec-

tion rate and the flux-rope acceleration has also been verified.

In the next section formulas to determine the reconnection rate from observations

are introduced. The data sets and methods of analysis are described in sections 2 and 3,

respectively. In section 4, on the basis of a sample of 13 two-ribbon flares which are as-

sociated with eruptive flux-ropes, the correlation between magnetic reconnection rates and

flux-rope accelerations are quantified. Finally, our observational results are summarized

and briefly discussed in section 5.
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3.2 How to Determine the Reconnection Rate from Observations

As mentioned previously, the expansion of flare ribbons is the chromospheric signature of

the progressive magnetic reconnection in the corona in which new field lines reconnect

at higher and higher altitudes. Since the magnetic reconnection in the corona is hardly

observed directly, chromospheric observations provide indirect means to probe the physics

of the coronal magnetic reconnection (Schmieder et al. 1987; Falchi, Qiu & Cauzzi 1997).

In a simplified two-dimensional model, the release of energy during a flare occurs

in a RCS formed at an X-type neutral line (Forbes & Priest 1984, 1986). The rate at

which the magnetic flux is converted into the diffusion region, in terms of the electric field

Erec in the RCS, can be inferred by measuring the flare ribbon expansion speed V,. and

the normal component of the magnetic field Bn swept by the flare ribbons: Erec = VrB n

(Forbes & Priest 1984, 1986). It should be emphasized that this equation is derived based

on a few assumptions: First, the length of the current sheet is equal to the length of the

ribbons. Second, neither the length of the ribbons nor the normal magnetic changes with

time significantly. Finally, there is a translational symmetry along the ribbon, i.e., a two-

dimensional configuration.

More generally, Forbes and Lin (2000) considered the rate of photospheric magnetic

flux change (Prec instead of the electric field in the region of newly closed field lines. The

flux change rate can be evaluated by the following equation (Forbes & Lin 2000):

i d
(Prec = f Erec c It = —

at I 
Bnda , (3.1)

where dl is the length along the RCS and da is the newly brightened area swept by the flare

ribbons.

Erec and 0, rec provide a measure of the reconnection rate inside the current sheet,

and the measurement itself is not dependent on specific models. In this manner, we are par-

ticularly interested in the observational signatures of two-ribbon flares that are associated
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with flux-rope eruptions. The reconnection rate can be inferred and compared with the ris-

ing motion of flux-ropes. Essentially, the reconnection rate and the flux-rope acceleration

focus on important features of the flare- "flux-rope" models, therefore, provide a stringent

test of the scenarios in which the ejection of solar material and magnetic reconnection are

physically linked. Progress in this research area has been made recently by Lin & Forbes

(2000) and Qiu et al.(2004).

The central interest in this work is to find statistical correlation between the mag-

netic reconnection rate and the acceleration of flux-ropes. From a sample of thirteen well-

observed two-ribbon flares that are associated with rising flux-ropes, there appears to be a

tendency that increasing reconnection rates are usually associated with increasing flux-rope

accelerations at the early stage. The temporal correlation between the magnetic reconnec-

tion rate and the flux-rope acceleration has also been verified in this chapter.

3.3 The Data Sets

Big Bear Solar Observatory (BBSO) Ha full-disk images are used as the primary data

source to trace the flare ribbon expansion and the filament rising motion. BBSO Ha obser-

vations are suitable because of their high-cadence (one or more image frames per minute),

high-resolution (approximately 1" pixel -1 ) and superior detail and contrast (Martin 1989).

In the cases where there were data gaps in the BBSO observations, we resorted to Ha

full-disk images obtained at Kanzelhöhe Solar Observatory (KSO) in Austria, which is a

station in our global Ha network. In addition, an X10.0 white-light flare which occured

on 2003 October 29, obtained at the National Solar Observatory/Sacramento Peak, was

also added into our study list. Running difference images from Extra-Ultraviolet Imaging

Telescope (EIT), on board the Solar and Heliospheric Observatory (SOHO), were used to

supplement Ha data in identifying the height of the rising filament in the cases where the

filaments motion can not be determined unambiguously from Ha observations.

The CME height-time data is provided by the LASCO web site that has been corn-
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piled by Seiji Yashiro and Grzegorz Michalek under the guidance of Nat Gopalswamy

(http : I cdaw.gsfc.nasa.gov I CMEi ist). Michelson Doppler Imager (MDI) magnetograms

were used to measure the longitudinal component of the magnetic fields, which approxi-

mate the normal component of the magnetic field Bn because all of the flares in our study

occur near the disk center. Additionally, light-curves from the Geostationary Operational

Environmental Satellite (GOES) soft X-ray, Yohkoh and Reuven Ramaty High Energy So-

lar Spectroscopic Imager (RHESSI) hard X-ray and Owens Valley Solar Array (OVSA)

microwave data were also collected to study the evolution of flare emissions. If no hard

X-ray and microwave observations were found, which was the case for some of the events

that are under discussion, the time derivative of GOES soft X-ray light-curve are used to

indicate the evolution of flare nonthermal emission (Neupert 1968).

3.4 Data Analysis

3.4.1 Methods

As discussed in the introduction, the magnetic reconnection rate can be deduced by mea-

suring the expansion of flare ribbons across the magnetic field. I recently developed an

image segmentation technique, which applies "region growing" and "adaptive boundary-

base" methods (Jahne 1997, Gonzalez & Woods 2002), to derive the expansion speed of

two-ribbon flares Vr and the newly brightened areas swept by flare ribbons da, automati-

cally (for more details, see Qu et al. 2003 and 2004). An example (July 26, 2002) is shown

in Figure 1.1. This M8.7 flare, starting at 20:51 UT and lasting until 21:29 UT, occurred

in the active region NOAA 9960 and was associated with a CME. Figure 3.1 shows the se-

lected Ha images at BBSO from 21:00 to 21:21 (left column) and corresponding sketches

to illustrate the morphological evolution of flare region (middle column) and newly bright-

ened area (right coumn), which are obtained by our automatic program. A full description

of our methods has been given by Qu et al. (2004). Compared to the earlier studies, our
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recent method has the advantage of avoiding the difficulty in determining the velocities of

the ribbons, and therefore, being applicable to well-defined two-ribbon flares as well as

flares with irregular shape as well.

From Vr and da, one may derive two forms of the magnetic reconnection rate: the

electric field inside RCS, Erec = 17,B,, and the rate of magnetic flux participating in the

reconnection, eo= Bnda. Uncertainties in Erec and (Prec caused by the influence ofTrec 

background noise were estimated to be less than 40% at the time of the peak value (Qu et

al. 2004). Methods and uncertainties of these measurements are discussed in detailed by

Qiu et al (in preparation).

The velocity and acceleration of the filaments and CMEs are derived numerically

as the first and second derivative of corresponding height with respect to time. The uncer-

tainty of measuring the filament height is estimated to be less than 4 pixels in each image,

depending on the sharpness of the rising front. The typical rise phase of a filament lasts tens

of minutes, and our Ha observations have a regular cadence from 20 seconds to 1 minute.

With the sufficient number of Ha images and observational evidence (Wang 2004), fila-

ment trajectories can straightforwardly be assumed to follow a linear growth during this

period. In this case, the uncertainty in the values of filament velocity and filament acceler-

ation arise both from the uncertainty and the time interval in measuring the filament height;

the larger the uncertainty in the height and the shorter the time interval, the larger the un-

certainty of the estimated values. The uncertainty in CME heights and speeds are estimated

to be less than 5% and 10%, respectively. However, the cadence of LASCO observations

(around 30 minutes) limits our estimation of the propagation of the uncertainty to some

extent. In other word, a few of the measurements of CME heights, as well as a lack of

evidence that CMEs display a constant acceleration at the initial stage of eruption, yields a

very large uncertainty in the CME acceleration.
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Figure 3.1 The selected Ha images (left column) at BBSO from 21:00 to 21:21 UT and
corresponding sketches of morphological evolution of flare region (middle column) and
newly brightened area (right column). Top right panel: aligned MDI magnetogram.



56

3.4.2 The Correlation Coefficient

The correlation between two variables is the degree to which there is a "linear relationship"

between them. Correlation is usually expressed as a "coefficient" (C.C.) which quantifies

the strength of that linear relationship between the variables. C.C. ranges from -1 to +1.

Positive values of C.C. indicate that as one variable increases, the other increases. Negative

values of r indicate that as one variable increases, the other decreases. A value of +1 or

-1 indicates that the data fall on a straight line. In this study, the C.C. is calculated using

IDL CORRELATE function that computes the linear Pearson correlation coefficient of two

vectors.

The following general categories indicate a quick way of interpreting a calculated

C.C. value:

1. 0.0 to 0.2, Very weak to negligible correlation

2. 0.2 to 0.4, Weak,low correlation (not very significant)

3. 0.4 to 0.7, Moderate correlation

4. 0.7 to 0.9, Strong, high correlation

5. 0.9 to 1.0, Very strong correlation

3.5 Results

The events under study were selected on the basis of the following criteria: (1) disk events;

(2) continuous and complete observation of the flares and the associated flux-rope rising

motions; (3) exhibiting clear flare expansion and, if present, filament rising motion. Cri-

terion (1) follows from the fact that, for disk events, B, can be easily measured as the

longitudinal component provided in MDI magnetograms. Criteria (2) and (3) are required

because we need track the outer edge of flare ribbons and the rising fronts of eruptive

filaments to infer the magnetic reconnection rate and acceleration of the filaments.
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It is found thirteen two-ribbon flare events that satisfy all three criteria. They are

listed in Table 3.1. All but one event are well-observed by BBSO or KSO Ha images. The

exception is the X10.0 flare in NOAA Active Region 10486, which was observed in the

near-infrared (NIR) continuum at 1.56 pm (Xu et al. 2004). These events are classified into

three groups (2nd column) by their associated eruptive phenomena: Group A consists of

two-ribbon flares with both eruptive filaments and CMEs; Group B consists of two-ribbon

flares with rising, not eruptive, filaments and without CMEs; and Group C is composed of

two-ribbon flares with CMEs, but without apparent filament motion. Column (3) lists the

date of the events. The subsequent columns provide instances of flares (columns (4)—(9)),

filaments (column (10)) and CMEs (columns (11)—(12)).

Table 3.2 summarizes the results deduced from the observations, including the max-

imum ribbon expansion speed (Vr , column (3)), the maximum photospheric magnetic field

strength (13„, column (4)), the maximum electric field in RCS (E„, column (5)), the max-

imum magnetic flux change rate ((Prec, column (6)), the maximum filament acceleration

(Accel column (7)) and the maximum CME acceleration (Acce/cmE , column (8)). The

last three columns of Table 2 list the time intervals of the Erec, Accelfilament and Acce/cmE

after the hard X-ray spike. If they peak after the time of the hard X-ray spike, the value is

positive. Otherwise, the value is negative.

Our observational findings on the basis of sample events are described in detail

below:

Acceleration of erupting filaments is mainly in the range of 0.05 — 0.4kms -2 , up

to 3kms-2 . The maximum Erec and (prec mostly occur in the range of 0.2 — 5V cm -1 and

0.5 — 6 x 10 18Mxs-1 , respectively. In the case of the extremely dramatic flare on October

29, 2003, Erec reaches a magnitude of about 38V cm -1 . The electric field is found to be

generally comparable with most observational results (Poletto & Kopp 1986; Wang et al.

2003, 2004; Qiu et al., 2004) and simulation results (Martens & Kuin 1989; Lin 2002;

Cheng et al. 2003). The electric field strength found above implies strong heating and



Table 3.1 	 List of Events in this Study

Event Group* Date

yy/mm/dd

Flare Filament CME

Class NOAA* Begin Peak End Location Rising Time Time* Comment

1 A 00/09/12 M1.0 QS* 11:31 12:13 13:13 S12W18 10:30 — 12:00 11:54 Halo
2 A 00/09/27 optical* QS •• 	 • --- S31E17 19:30 — 19:50 20:50 Loop with loop-like core
3 A 01/04/23 C2.8 9431 12:06 12:23 12:36 Sl4W17 12:02 — 12:18 12:40 Loop front with cavity and core
4 A 01/10/19 X1.6 9661 16:13 16:30 16:43 N15W29 16:15 — 16:25 16:50 Halo
5 A 02/05/21 M1.5 9960 21:20 21:39 22:00 N17E38 20:16 — 20:26 21:50 Loop front with cavity and trailing material
6 A 03/05/27 X1.3 0365 22:56 23:07 23:13 S07W17 22:58 — 23:04 23:26 Halo
7 A 04/03/04 optical QS •• 	 • •• 	 • N20W10 19:50 — 21:00 22:30 Loop front
8 A 04/03/30 C2.0 0581 22:53 23:08 23:45 S05E02 22:30 — 22:46 no data* •• 	 -
9 B 00/02/17 M2.5 8869 18:41 18:52 19:05 S25W16 18:56 — 19:28 •• 	 -
10 B 02/08/26 optical 0087 •• 	 • •• 	 • •• 	 • S07E20 21:00 — 21:40 •- - •• 	 -
11 C 01/08/25 X5.3 9591 16:23 16:45 17:04 S17E34 •• 	 • 16:50 Halo
12 C 02/07/26 M8.7 0044 20:51 21:12 21:29 Sl9E26 •• 	 • 22:06 Halo, cavity and core follow
13 C 03/10/29 X10.0 0486 20:37 20:49 21:01 S15W02 •• 	 • 20:54 Halo

* Group A: two-ribbon flare with rising filament and eruption, and CME; Group B: two-ribbon flare with rising filament but no eruption, and without CME; Group C: two-ribbon
flare with CME, but without apparent filament motion.

*NOAA: Active Region Number

*Time: First C2 Appearance Time (UT)

*optical: a flare visible in Ha observations but is either inconspicuous in soft X-ray flux profiles or is of an insufficient magnitude to be officially classified as a flare.

*QS: quiescent area

*no data: no LASCO data



Table 3.2 	 Data Taken and Deduced for Events Listed in Table 1

Event Date

yy/mm/dd

Max. V,.

[kms -1 ]
Max. B„
[Gauss]

Max. Erec

[V cm -1 ]

Max. (DT rec
[ioismxs- i ]

Max. Accel pia.

[kms-2]
Max. AccelCME

[kms-2]
AT1 *
[min]

AT2 *

[min]

AT3 *

[min]

1 00/09/12 1 ' 2 25 200 1.0 2.0 0.3 0.4 -5 5 10
2 00/09/27 11.4 46.4 0.24 0.5 0.14 0.2 • •	 • • •	 • • •	 •
3 01/04/23 6.4 396.5 0.74 0.8 0.33 0.02 10 3 95
4 01/10/191 74.7 308.0 21.0 14.7 3.0 0 -1 -5
5 02/05/21 17.9 297.5 4.9 6.0 0.16 0.8 6 6 20
6 03/05/27 65.3 387.5 14.4 8.7 1.8 0.02 -3 -5 40
7 04/03/04 8.1 121.0 0.9 1.4 0.14 unavailable* • • • • •	 • ••	 •
8 04/03/30 30 200.0 2.5 0.7 0.12 no data* 8 -15 ••	 •
9 00/02/17 13.0 195.1 1.4 2.3 0.3 ••	 • 25 24 -	 -	 -
10 02/08/26 16 195.0 1.6 0.7 0.06 -	 •	 • • •	 • • •	 • • • •
11 01/08/25 25.8 461.5 8.9 4.9 ••	 • 0.4 -10 ••	 • 20
12 02/07/262 19.0 334.5 2.8 6.0 ••	 • -0.2 0 •• • 80
13 03/10/293 63.8 919.6 37.8 10.8 ••	 • 0.06 -1 •• • 12

*ATI : ATI = Time of max. Erec - Time of HXR at maximum. If no Hard X-ray observation was found, the time derivative of GOES
soft X-ray light curve is used.

*AT2: AT2 = Time of max. Accelfilament - Time of HXR at maximum

*AT3: AT3 = Time of max. Acce/cmE - Time of HXR at maximum

1 1: see Qiu et al. 2004 for detailed case study

2 2: see Wang et al. 2004 for detailed case study

3 3: see Xu et al. 2004 for detailed case study

*unavailable: CME height-time data of this event is not readily released at the SOHO LASCO web site.

*no data: no LASCO data
■,0
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particle acceleration which are responsible for the high energy emissions (Cheng et al.

2003; Qiu et al. 2002, 2004). A graphical description of the derived maximum Erec versus

the observed magnitude of flares is shown in Figure 3.2. As expected, the magnitude of the

flares increase as Erec increases with a high correlation coefficient (C.C.), 0.85.

In this study, erupting filaments are treated as proxies for the initial stages of rising

flux-ropes. The temporal correlation of the evolution of flare nonthermal emission, the

magnetic reconnection rate and the filament acceleration is examined and illustrated by

one example in which an X1.3 flare occurred in active region NOAA 10365 on May 27,

2003 and was accompanied by a filament eruption and a halo CME. In Ha, the filament has

a maximum acceleration of 1.8 km S-2 at 23:02 UT, and the bright flare ribbons appeared

at 22:40 UT and lasted until 23:30 UT. In the LASCO observations, the CME was first

apparent at 23:50 UT. Figure 3.3 displays the temporal evolution of the inferred Erec, mT rec ,

accelerations of corresponding erupting filament and CME, and the light-curves of GOES

soft X-rays and RHESSI hard X-rays. The maximum Erec , 14.4 V cm -1 , and the maximum

Trec 98.7 x 10 18Mxsec-1 , occur at 23:04 UT and 23:02 UT, respectively. The impulsive hard

X-ray emission in the 50 — 100keV energy band spikes at 23:03 and 23:07 UT. Apparently,

Erec, Trec9 filament acceleration and flare nonthermal emission reach their maximum values

at almost the same time. It is necessary to point out that good temporal correlation generally

exists for all events listed in Table 3.1, which confirms the findings of Qiu et al. (2004).

The above observations, which were in good quantitative agreement with some

theoretical simulation results (Martin & Kuin 1989; Cheng et al 2003), also indicate that

the inferred macroscopic electric field in the RCS plays an important role in accelerating

nonthermal particles to emit hard X-rays and microwaves (Qiu et al. 2004).

As mentioned in the introduction, the primary purpose of this work is to investigate

the correlation between the magnetic reconnection rate and the flux-rope acceleration. To

better illustrate our deduced results in Table 3.2, Figure 3.4 displays scatter diagrams of

the reconnection rate (namely, Erec and g9,) versus the acceleration of filaments in a loga-
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rithmic scale. Figure 3.5, for the purpose of comparison, plots the reconnection rate versus

the acceleration of the CMEs. Those events without the corresponding filament motion or

the CME are excluded from Figure 3.4 and Figure 3.5. All values refer to their maxima

that were found on each events. The Error bars that are attached to each sign indicate the

uncertainty of the measurement. Figure 3.4 shows that the increasing reconnection rate is

usually associated with an increasing filament acceleration. More specifically, the linear

C.C. between Erec and Accelfilament is about 0.97 and that between 9, and Acce/prnfilament is

about 0.94. Such high values distinctly indicate a very strong correlation and a dependable

relationship. The solid lines fit the paired data to linear models. The best-fit linear models

are as follows: Erec = —0.46 + 6.8 X Acce/pament , and rec. = 0.26 + 4.6 x Accelp.t .

By contrast, Figure 3.5 shows a loose and irregular distribution of data points. Low C.C.s,

—0.14 between corec and Acce/cmE and —0.18 between Erec and Acce/cmE , signify little,

if any, correlation. This may stem from the fact that the CME acceleration was measured

in LASCO C2 and C3 fields of view (2 — 30R0' 1 R0 = one solar radius) and hence did

not sample the heights in the low corona. The insufficient number of measurements also

implies a very large uncertainty in CME acceleration. As a result, the error bars for the

values of CME acceleration are not shown in Figure 3.5.

It is suggested by Gopalswamy and Thompson (2000) that the acceleration of CMEs

is strongly dependent on the altitudes at which the CMEs are observed. Specifically, Zhang

et al.(2001) investigated the kinematic evolution of four CMEs in the lower corona and

found that the acceleration of CMEs takes place from 1.3 to 4.6R® . Similar results were

also obtained by Shanmugaraju et al. (2003) who claimed that the peak in the acceleration

mostly occurs below 3R® . In this sense, the acceleration of most CMEs might decrease,

or even stop, before they appear in LASCO C2 coronagraph images. By which time the

velocity of the CMEs have obtained a nealy constant, or slightly decreasing, value. That is,

the maximum acceleration of CMEs derived from LASCO C2/C3 data is usually not really

informative.
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The velocity of CMEs at C2 might be useful because it is the cumulation of the

CME acceleration at its early stage (Ve1CME = f Acce/cmEdt) and, therefore, in some way

conveys information about the acceleration during that stage. Thus, the velocity of CMEs is

an alternate way for examining the correlation between the magnetic reconnection rate and

the evolution of CMEs. A graphical display of the CME velocity versus the reconnection

rate is presented in Figure 3.6. Inspection of this display immediately reveals that the

correlation improved markedly: the paired data Ve/cmE and Ere,. has a moderate C.C., 0.64,

while the C.C. for Ve/cmE and (Prec, 0.32, implys a low degree of correlation.

3.6 Summary and Discussion

Measurements of Ere,. and (Prec, which both indicate the magnetic reconnection rate in-

side the current sheet, together with the observational flux-rope acceleration, provide an

interesting approach to study the magnetic reconnection rate during the eruptive process.

Thirteen well-observed two-ribbon flares, with corresponding eruptive flux-ropes, were

studied to investigate and quantify the correlation between the magnetic reconnection rate

and flux-rope acceleration. The main results obtained from the sample are summarized as

follows:

1. The deduced electric field Ere,. and the flux change rate Trec mostly occur in

the range of 0.2 — 3V cm -1 and 0.5 — 2 x 10 18Mxs-1 , respectively. The magnitude of the

GOES X-ray flare (expressed in units of watts m -2 ) increases with Ere,. as shown in Figure

1.1. The electric field strength found above is enough to accelerate electrons to very high

energies which may account for the strong hard X-ray emissions (Cheng et al. 2003).

2. The magnetic reconnection rate is temporally correlated with the evolution of

flare hard X-ray emission and the acceleration of the accompanying erupting filaments. Our

results confirm the earlier finding of a good temporal correlation, which is indicative a phys-

ical link, between mass acceleration and the magnetic reconnection rate in flares/CMEs

(Qiu et al., 2004).
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3. The C.C. between Erec and Acce/filament is about 0.97 and that between (Drec.

and Accelfilament is about 0.94. Such high values indicate a very strong correlation and

a dependable relationship between the magnetic reconnection rate and the acceleration of

erupting filaments. The paired data are best fitted to the following linear models: Erec =

—0.46 + 6.8 x Accel filament , and cp, = 0.26 + 4.6 x Accel filament•

4. It appears, from our results, that there is no correlation between the magnetic

reconnection rate and the CME acceleration (C.C. is less than 0.2). This may be caused

by the temporal-spatial gap between the disk observations of the flares and filaments and

LASCO (C2-C3) observations of CME fronts. CMEs may cease, or even stop accelerat-

ing, before they appear in LASCO C2 coronagraph images. Hence, in general, it is less

meaningful to compare the magnetic reconnection rate and the CME acceleration.

5. The velocity of CMEs might be an alternate way to investigate the relationship

between CMEs and flares that involve magnetic reconnection. The correlation between

the velocity of CMEs and the magnetic reconnection rate improves somewhat (C.C.

0.32-0.64), but not enough to make me confident in the relationship between the velocity

of CMEs and the magnetic reconnection rate. The reason is that CME velocity in C2

somewhat conveys the information of the acceleration. The exact acceleration progress

below C2 still remains unknown. Another complementary way of looking at this is, in a

flare/CME loop/giant arch system, the separatrix bubble that surrounds the flux rope is the

product of magnetic reconnection. During the eruptive progress, the bubble swells much

faster than the flux ropes. Therefore, the "flux rope" observed by coronagraphs might

actually be the rapidly expanding separatrix bubble (Lin 2004).



Figure 3.2 Scatter diagram of derived maximum Erec with estimated error bars versus
observed flare magnitude. The solid line is a fit of the data points in the form of Flux =
—2.0 x 10-5 + 2.3 x 10-5 x Erec with the correlation coefficient of 0.85.
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Figure 3.3 Temporal evolution of Erec and (DT rec.
 derived for the X1.3 flare on 2003 May

27, compared with the evolution of the acceleration of corresponding erupting filament and
CME, soft X-ray and hard X-ray light curves. The top panel is the same as the bottom
panel, but is magnified for a selected time period.



Figure 3.4 Top: Scatter diagram of maximum (prec versus maximum filament acceleration
in a logarithmic scale. The solid line is a fit of data points of 0, rec. and Acce/fdament in the
form of (pre,. = 0.26 + 4.6 x Acce/pament with the correlation coefficient of 0.94; Bottom:
Scatter diagram of maximum Erec versus maximum filament acceleration in a logarithmic
scale. The solid line is a fit of data points of Erec and Acce/pament in the form of Erec =
—0.46 + 6.8 x Accelfilament with the correlation coefficient of 0.97; Error bars attached to
each sign indicate the uncertainty of the measurement.
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Figure 3.5 Scatter diagram of maximum (p„, with error bars versus maximum CME ac-
celeration in a logarithmic scale; Bottom: Scatter diagram of maximum E„, with error bars
versus maximum CME acceleration in a logarithmic scale. The correlation coefficients are
-0.14 and -0.18, respectively. The error bars for the values of CME acceleration are not
shown because they might be very large as a result of an insufficient number of measure-
ments during the acceleration phase of the CMEs.
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Figure 3.6 Scatter diagram of maximum corec versus CME velocity at C2 in a loga-
rithmic scale. The solid line is a fit of data points of 0, rec. and Ve/cmE in the form of
Trec = —1.0 + 0.004 x Ve/cmE with the correlation coefficient of 0.32; Bottom: Scatter di-
agram of maximum Erec versus CME velocity at C2 in a logarithmic scale. The solid line
is a fit of data points of Erec and Ve/cmE in the form of Erec = —7.3 + 0.02 x Ve/cmE with
the correlation coefficient of 0.64; Error bars attached to each sign indicate the uncertainty
of the measurement.



CHAPTER 4

MAGNETIC RECONNECTION RATE OF A TWO-RIBBON FLARE

4.1 Introduction

In the previous Chapter, a statistical correlation between the magnetic reconnection rate

and the acceleration of flux-ropes is found from a sample of thirteen well-observed two-

ribbon flares that are associated with rising flux-ropes. A positive and strong correlation is

found with a cross correlation coefficient of 0.93— 0.97 between the magnetic reconnec-

tion rate and the acceleration of erupting filaments. This Chapter presents the result on a

case analysis of a quiet-sun flare associated with an erupting filament and a fast CME on

2000 September 12. The flare exhibits a clear two-ribbon separation motion over several

hours, which can be used to infer the evolution of the coronal magnetic reconnection. The

Kanzelhohe Solar Observatory (KSO) and Solar and Heliospheric Observatory (SoHO)

observations also provide continuous observations of the filament activation and eruption,

which can be used to infer the dynamics of the CME at its take-off. Combinations of ribbon

separation and filament/CME height would give us a 3-D physical picture associated with

the eruptive flare. It is also possible to investigate the physical connection between the flare

dynamics, filament eruption and CME quantitatively.

4.2 Observations and Data Reduction

The primary data source used in the current study are from full disk Ha data, with 1 arcsec

pixel resolution and 1 minute cadence, obtained from KSO station on September 12, 2000.

KSO had complete coverage of the M1 flare and the associated filament eruption at about

12 UT. Figure 4.1 is the time sequence of KSO Ha images showing the evolution of the

event. It is a classical two-ribbon flare accompanied by the filament eruption.

The same event was covered by SOHO EIT, MDI and LASCO observations. It

69
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is clearly associated with a fast Halo CME. MDI data provides full disk magnetograms,

which are aligned with Ha data for the study of magnetic properties of moving ribbons.

Figure 4.2 compares Ha image and the corresponding MDI magnetogram.

4.3 Results

4.3.1 Temporal Evolution

The top panel of Figure 4.3 shows GOES soft X-ray light curve of 1 to 8 A and its deriva-

tive. The GOES soft X-ray light curve is used to represent the time profile of the flare

energy release. To investigate the electron acceleration in the impulsive phase of the flare,

the hard X-ray and microwave observations are essential. Unfortunately, there are not such

data. Therefore the time derivative of GOES soft X-ray light curve is used to represent the

hard X-ray time profile, assuming that the so-called Neupert effect is valid in this event.

The middle panel Figure 4.3 shows the average ribbon separation distance as a

function of time. The position of the ribbon was defined by the location of the moving

front. This flare exhibits a rather regular pattern of ribbon-separation motion, with both

ribbons moving away from and nearly perpendicular to the magnetic neutral line.

The lower two panels of Figure 4.3 show the height-time profiles of the filament

and CME front respectively. The solid line denotes the measurements of the filament height

in Ha images with 1-minute cadence, and the '+' symbols represent measurements from

EIT 195A images with a 12 minute cadence. The measurement was not easy, because

the contrast of the filament decreased rapidly as it moved up. The lateral displacement is

measured and projected to the vertical direction based on the disk position of the filament.

Of course, it is assumed that the filament moved up exactly vertically in the local solar

coordinate system. Given the uncertainties in the measurements, the figure shows that the

filament height profiles measured from the two kinds of images are consistent. The triangle

symbols in the bottom panel of Figure 4.3 indicate the heights of the associated halo CME
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Figure 4.1 A sequence of Ha images showing the evolution of the flare and the disappear-
ance of filament. The field of view is 512 by 512 arcsec.
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Figure 4.2 Comparison of a Ha image with corresponding magnetogram. Two bipoles
emerged alongside the eruptive filament. The top two panels are Ha images taken before
and after the eruption obtained at KSO and BBSO, respectively. The bottom two panels
are MDI magnetograms. The two bipoles, as indicated by a square box, emerged on the
positive polarity side of the filament.
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front measured by Dr. Seiji Yashiro (http: I I cdaw.gsfc.nasa.gov ICMEJist I). According

to his measurements, the CME was first seen in LASCO C2 field at 11:54 UT, and the front

speed measured from a linear fit is 1,500 km s -1 . Because of the limited FOVs of EIT

and LASCO, one cannot identify the filament and CME in the same image. However, EIT

and LASCO observations overlapped at around 12 UT when the filament and CME were

observed by the two instruments separately.

Then these distance/height profiles are fitted to hyperbolic functions of time. The

fits and the velocity profiles are shown in Figure 4.4. As shown in Figures 4.3 and 4.4, there

are two stages in the ribbon-separation motion: a fast separation stage in the first 20 minutes

of the event and a substantially slower stage afterwards. The filament started to rise about

30 minutes before the appearance of the flare ribbons, reaching a velocity of several tens

of km s -1 . However, after the flare onset (, 1120 UT), it was rapidly accelerated to over

200 km s -1 before becoming invisible in Ha (-1140 UT), and to at least 540 km s -1 when

it moved beyond the limb in the EIT field of view around 12 UT. The fast stage coincides

with the rising phase of the derivative of the soft X-ray light curve, i.e., the impulsive phase

of the flare energy release when most of the flare non-thermal electrons are accelerated. On

average, the speed of the ribbon separation during the impulsive phase of the flare is over

10 km s -1 , and the average speed in the later stage is about 1 km s -1 . Our observations

therefore indicate that the fast ribbon motion corresponds to a greater energy release rate.

With certain assumptions, the above observations also allow us to reasonably esti-

mate the acceleration rate of the CME at its takeoff in several ways. In the first way, the

filament eruption and CME may be treated as mass ejections driven by the same mechanism

in the same system at the early stage of the mass ejections. Estimated from the velocity

profiles in Figure 4.4b, from 11:00 to 12:00 UT, the average acceleration rate was 260 m

s -2 . The filament was not accelerated at a constant rate. From 11:40 to 12:00 UT, the

average acceleration rate reached 380 m s -2 . In the second way, the CME is regarded to

take off at 11 UT when the filament was observed to start rising in the EIT field of view.



Figure 4.3 Top panel: GOES X-ray flux as a function of time in the energy channel of
1 to 8 A. Second panel: mean flare ribbon separation as a function of time. Third panel:
filament height as a function of time. The solid lines are KSO Ha measurements and the
pluses are from SOHO EIT measurements. Bottom panel: EIT filament height and LASCO
CME Height.
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Figure 4.4 Left panel: time profiles of the flare ribbon separation, filament heights mea-
sured from KSO and EIT images, and CME heights measured by Dr. Yashiro (http :
I I cdaw.gs fc.nasa.gov ICMEJist I). The lines indicate the least-squares fits to hyperbolic
functions. Right: velocity profiles of the ribbon separation, filament, and CME derived
from the fits of the height profiles.
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Accordingly, to accelerate the CME to 12:70 km s -1 at around 12 UT requires an average

acceleration rate of 350 m s -2 . The acceleration rates estimated from these two methods

are basically consistent, with the CME acceleration rate possibly a little higher than the

filament due to the rapid expansion of the system. After 12 UT, the acceleration rate of the

CME was estimated to be 58 m s -2 using the hyperbolic fit of the CME velocity profile in

Figure 4.4b. Dr. Yashiro also estimated the CME acceleration rate to be 58 m S -2 from

a second order fit of the height-time profiles (http : I I cdaw.gsfc.nasa.gov ICMEJist1).

These estimates suggest that fast acceleration of the mass ejections occurred before 12 UT,

most likely during the impulsive phase of the flare. The rate of the fast acceleration is about

five times that of the slow acceleration. This result is consistent with Zhang et al. (2001),

yet our measurements are made with a better data coverage, under the assumption that the

erupting filament and CME can be regarded as being accelerated in the same framework.

4.3.2 Electric Field Along the Current Sheet

Our results in the last section show that the speed of the ribbon separation resembles the

rate of the flare energy release through magnetic reconnection. It is also of our interest to

explore the spatiality of the ribbon motion representative of the energy release rate from the

observational point of view. For this purpose, we track the separation speed at all locations

along the ribbon as a function of time. It is found that the speed of the separation was not

uniform along the flare ribbon, but at every point, the motion exhibits the same evolution

pattern as the averaged separation mode shown in Figures 4.3 and 4.4. Therefore, the

data are divided into two time bins: fast and slow separation stages. Figure 4.5 displays the

speeds of the ribbon motion (away from the magnetic neutral lines) as a function of position

along the ribbon. The positive and negative numbers represent the upper (north) and lower

(south) ribbons, respectively. The thick lines represent the fast moving stage corresponding

to the impulsive phase of the flare, and thin lines, the slow moving stage during the decay

phase of the flare. In the first stage, the maximum speed if, along the ribbon was over 10 km
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s-1 , while in the following stage the maximum Vt was about 1 km s -1 .

The electric field E, = ViB, is derived as a function of ribbon position and plotted

in the middle and bottom panels of Figure 4.5. The line-of-sight magnetic field B„ was

measured from MDI observations. First, the evolution of E, exhibits the same pattern

as the speed. During the early time bin, the flare has a much stronger electric field of

order 1 V cm -1 on average, while in the later time bin E, is around 0.1 V cm -1 . Since

E, is proportional to the magnetic reconnection rate at the reconnecting point, our results

confirm that the flare energy release is most efficient when the magnetic reconnection rate

is also big. While during the decay phase lasting for about 2 hrs, the magnetic reconnection

still continues at a slow rate. Second, Figure 4.5 shows that E, is inhomogeneous along the

ribbon, most likely indicating the inhomogeneity in the magnetic reconnection rate along

the ribbon. Such inhomogeneity should be determined by the magnetic configuration in the

corona.

4.4 Conclusions and Discussions

This Chapter presents the detailed study on the temporal and spatial properties of a quiet-

sun two-ribbon flare. This event exhibits a good example of a standard solar flare character-

ized by the long duration, filament eruption, two-ribbon separation, and its association with

a fast CME. Observations from various instruments provide an almost complete coverage

of the dynamic evolution of this event. The most important result is the differences in the

two evolution stages of the event, which is evident in several aspects and summarized in

Table 4.1.

The two evolution stages are distinguished by the sudden switch of the electric field

amplitude and mass acceleration rate. The rapid stage coincided with the impulsive phase

of the flare energy release, yielding clear evidence that the impulsive flare energy release is

governed by the fast magnetic reconnection in the corona.

The parameters derived in this study for the two-stage evolution of the dynamics and
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Figure 4.5 Top panel: the mean ribbon moving speeds along ribbons. Thick lines are for
the time period of 1125 to 1200UT (time bin 1), and thin lines are for the time period of
1200 to 1350UT (time bin 2). Middle and bottom panels are derived electric fields for the
lower and upper panels, respectively. Again the thick lines are for the time bin 1 and thin
lines are for the time bin 2. The electric fields are derived from the ribbon moving speed
and line-of-sight magnetic fields measured at the location of ribbons.
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magnetic reconnection should provide information for theoretic modelling. A few ques-

tions stemmed from this study and their answers may help reveal the underlying physics.

First, the two evolution stages are distinguished by the sudden switch of the electric field

amplitude and mass acceleration rate. What is the mechanism of such switch? Is it due to

a sudden change in the magnetic configuration, such as opening of the magnetic field lines,

at that particular time? What is the physics behind the apparent coincidence between the

magnetic reconnection rate and the dynamical evolution of the mass ejections? Second,

apart from the two-stage evolution, Figure 4.4b also shows that during the first stage, while

the velocity profile of the filament shows the filament being accelerated, the velocity pro-

file of the ribbon motion suggests a deceleration. From an observational point of view, the

sample of such studies should be enlarged to understand whether such anti-correlation can

be established or it is purely an accident due to uncertainties in data analysis. Theoretically,

shall we or shall we not expect such results?

Answers to these questions are important for understanding the physical mech-

anisms governing the dynamical evolution and magnetic reconnection in eruptive solar

events. Some CME models have been presented which do not involve magnetic reconnec-

tion (e. g., Low 1994), but in many other cases, CMEs and flares are associated though

in a way yet unclear to us. In the first place, even given the sharp contrast between the

spatial scales of CMEs and flares, the radiative energy in a typical eruptive flare, which is

released mainly through magnetic reconnection, is comparable to the kinetic energy car-

Table 4.1 Ribbon Separation, Electric Field, and Acceleration of Eruptive Filament in
the Two Evolution Stages.
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ried by ejected masses. More importantly, even though past studies have found it hard to

conceive a causal relationship between flares and CMEs, it remains intriguing what role

the magnetic reconnection plays in the framework of the large-scale eruption. The config-

urations invoked by both the flux rope and break-out models, if correctly depicting the real

situation, would naturally address the link between the rate of the magnetic reconnection

and the rate of mass acceleration at least during the early stage of the event, because the

laws of magnetic flux and mass conservation are to be observed. The direct relationship

between the two, such as the time profiles of magnetic reconnection and CME acceleration

may be calculated given a specific magnetic configuration.

A somewhat different but not unrelated issue raised in this study also deserves fur-

ther investigation in the future. In Figure 4.5, one can see that the amplitude of the electric

field, nominally representative of the magnetic reconnection rate, is not uniform along flare

ribbons, indicating a large inhomogeneity in the coronal magnetic reconnection. So far

theoretical models mentioned above only deal with 2.5-D configurations with a transla-

tional symmetry along the axis of the arcade. Our observations show that at least in the

case of the magnetic reconnection, such a translational symmetry may not exist. Taking

into consideration the real 3-D configuration may result in some different theoretical argu-

ments. Furthermore, very recently, Asai et al. (2002) found that hard X-ray sources only

concentrates in some parts of Ha radiation source, where the magnetic fields, and conse-

quently the magnetic reconnection rates, are strong. It is interesting to derive the electric

fields at these locations to compare with other locations along the ribbon. It is also worth-

while to compare with other events for which the photospheric magnetic fields are more

homogeneous, in order to understand what agent plays the role of controlling the magnetic

reconnection rate.



CHAPTER 5

PERIODIC MOTION ALONG A SOLAR FILAMENT

5.1 Introduction

Mass motion in and around filaments (prominences), which are often visible in Ha and

EUV, has attracted a great deal of attention from solar physicists, since such investigations

may provide important clues to magnetohydrodynamic instability in filaments and also

sheds light on the still not well understood filament formation process. Under the conven-

tional idea, a filament should have a concave upward magnetic structure called "magnetic

dip" that plays essential roles not only in providing the support of cool dense material

against gravity, but also as a material reservoir and protecting the material via thermal

insulation against hot corona surrounding the cool material. Specific magnetic field con-

figurations are proposed for the magnetic dip: Kippenhahn & Schluter (1957) proposed

the normal polarity dip model in which the magnetic dip field in the filament has the same

direction as the underlying magnetic field; Kuperus & Raadu (1974) proposed the inverse

polarity flux rope model in which the directions of the magnetic field in the filament and

the underlying magnetic field are opposite. In spite of these theoretical considerations,

however, such magnetic dip structures have never been directly observed (Martin & Echols

1994, Martin & McAllister 1997, Demoulin & Klein 2000).

There has been continuous efforts on observing filaments and prominences using

improved Ha camera system at Big Bear Solar Observatory (BBSO). Outstanding results

obtained in recent years include counter-streaming motion (Zirker et al., 1998) and periodic

mass motion in quiescent filaments (Yun et al., 2001), which are interpreted under two

different, confronting ideas regarding the nature of the filament.

Recently, a drift motion within filaments, in the form of counterstreaming flows, i.e.,

concurrent flows in opposite directions along the filament at speeds of 5-10 km s -1 , has

81
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been found using off-band Ha filtergram at the BBSO (Zirker, Engvold, & Martin 1998;

Martin 1998). This observation has been accepted as a crucial new result since, if cool

prominence material continually forms, flows, and disappears, then stable gravitational

support might not be necessary. Since mass exchange can occur through barbs (Martin et

al. 1994) between its top and lower solar atmosphere, the role of magnetic dip as a material

reservoir is not as essential as believed. A theoretical model for the counter-streaming flows

has followed in which heating localized near the footpoints of a coronal loop can yield

condensations suitable for explaining the drift motion along the magnetic loop (Antiochos

& Klimchuk 1991; Dahlburg, Antiochos, & Klimchuk 1998; Antiochos et al. 1999; Mok

et al. 1990). The basic cause of this dynamical process is imbalance of energy input

at the footpoints, i.e., "thermal non-equilibrium" drives an intrinsically dynamic cycle of

condensation formation, drift, and destruction, reproducing the observed flows (Antiochos,

MacNeice, & Spicer 2000).

The periodic mass motion across a filament was, on the contrary, presented as ev-

idence for the presence of a magnetic dip (Yun et al. 2001). In their interpretation that

oscillation was due to free fall motion of cool material trapped in a magnetic dip. The

observed width, tilt angle geometry are compared with a theoretical model (Choe & Lee

1992) to predict a period of oscillation under gravity, which agrees well with the observed

period 40 min). The magnetic field configuration that they inferred from the observation

agrees to the traditional models by Kippenhahn & Schluter (1957) or Kuperus & Raadu

(1974). It was however noticed that ascending and descending motions along the barbs,

when viewed as projections on the disk, can also look similar to the above phenomenon.

To resolve this ambiguity, Yun et al. (2001) construct a Dopplergram to find that the cool

material shows blueshift reaching the maximum displacement from the main body of the

prominence, whereby the hypothesis of material falling toward a barb is excluded.

On the other hand, the periodic mass motions in filaments have been known for a

long time. It appears that this type motion occurs in two types: large-amplitude (> 20 km
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s-1 ) and small-amplitude (<3 km s -1 ) oscillations (see, for review, Oliver 1999, Oliver

& Ballester 2002). Ramsey & Smith (1966) presented the first detailed study of the large-

amplitude oscillatory motions in 11 filaments by using three narrow filters: one at Ha

center line and two in the line wings, +0.5 A from the line center. In their observations,

an entire filament is hit, and shaken, by Moreton waves (Moreton 1960) which initiate the

oscillatory motion. The resultant velocity of filament oscillation is so large (> 20 km) that,

in the course of the oscillations, the Doppler motion can even cause the wavelength emitted

by the filament material to shift beyond the band pass of the filters. This effect has given

rise to the term "winking filament." Physical interpretations of this winking were provided

by Hyder (1966) and Kleczek & Kuperus (1969) in which a flare-produced disturbance

causes a filament to freely oscillate under magnetic tension.

Extensive studies of filament oscillations have then been conducted using spectro-

graphs to measure the temporal variation of Doppler signals, which yield, with subsequent

Fourier analysis, information on the periodicity of the mass motions at the location of the

filament along the slit (see, for review, Oliver & Ballester 2002). The line-of-sight veloci-

ties were found to be in the range of 1-3 km s -1 . The measured periods appeared in such a

wide range that they could be classified as short period (< 10 min) and long period (40-80

min) types (see, for a review, Tsubaki 1988, Schmieder 1989). A number of theoretical in-

vestigation of these small-amplitude oscillations are made employing slow, fast and Alfvén

mode and further subdivision into the internal, external, and hybrid modes (see Joarder,

Nakariakov, & Roberts 1997 and references therein), and also including a more compli-

cated fibril structure (Oliver & Ballester 2002). The small amplitudes of these oscillations

imply that they are locally generated by perturbations omnipresent in the photosphere and

chromosphere and not related to flare activity.

It remains a mystery as to why the large-amplitude oscillations have thus far seldom

been reported, since they were initially discovered almost a half century ago (see references

in Ramsey & Smith 1966, Hyder 1966). In this Chapter, I present an observation of a clear
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oscillatory motion persisting in a long filament as seen at the Ha line center with complete

temporal and spatial coverage, and analyze the time sequence of data to determine period,

velocity, and damping rate of the motion. The derived properties are then discussed in

comparison of the theoretical ideas to find whether any of the theoretical ideas can be

supported by observations.

5.2 The Periodic Motion

The filament discussed in this Letter appeared near the center of the solar disk on 2001

October 24 and was observed with BBSO full-disk Ha filtergrams with 1 minute cadence

and a pixel size of 1 arc sec.

The filament lies between the two active regions NOAA 9672 and 9673 which is

an ideal environment for the formation of long, extended and highly sheared field lines

(Karpen et al. 2001). The top panel in Figure 5.1 shows a large field of view around the

filament at 16:00 UT, which corresponds to south of the disk center (see the center of the

solar disk marked at the upper edge of the frame). Boxes 1 and 2 are defined for close-

up views displayed in the lower panels of Figure 5.1 and the upper panels of Figure 5.2,

respectively. Box 3, plotted as the dashed lines, shows the extent of the oscillatory motion

which occurred within the filament. The motion starts at the south-eastern footpoint and

travels north-westward. The motion then reverses direction upon reaching the approximate

midpoint of the filament.

The bottom three panels in Figure 5.1 are close-up views around the south-eastern

footpoint where the motion initiated. Chronologically from left to right, a mini-filament

can be seen in the preflare stage (17:37 UT), a subflare associated with the eruption of the

mini-filament (17:45 UT) and a small two-ribbon like phenomenon caused by the subflare

(17:49 UT). This is denoted a subflare because the event did cause an increase in the GOES

soft X ray lightcurve, but was of insufficient magnitude to be classified as an official flare

event by NOAA. Concerning the eruption and oscillation, I note the following properties.



85

(1) In these frames, the mass motion along the filament is not newly formed but already

existed near the footpoint of the large filament before the subflare. (2) The moving material

became darker, in Ha, after the eruption of the mini-filament, which is believed to be due

to the squeezing of the existing material rather than the injection of new material from the

mini-filament. (3) The mass motion associated with the mini-filament eruption could be

traced on sixteen consecutive frames, and its mean speed is estimated as -- ,32 km s -1 . This

speed of mass perturbation coming from the eruption is rather low compared with that of

Moreton waves, typically in order of 103 km s -1 . (4) The oscillatory motion along the large

filament starts on arrival of the mass perturbation from the mini-filament eruption, which

suggests that the oscillatory motion was triggered by this subflare.

The top three panels in Figure 5.2 trace out the mass motion, with arrows overlaid

on the Ha frames. The position of the mass, in each subsequent image in each cycle,

is determined by manually tracing the trajectory of the mass packet. The length of each

arrow represents the displacement during a 5 min period. In the first cycle of the oscillation

(the top-most panel) the mass moves up to the north-west and then back to the south upon

reaching its maximum displacement at r,-, 18:40 UT. As mentioned above, the maximum

displacement is about the mid-point of the entire filament. The second and third panels

show the motions in the next two cycles in which the maximum distance travelled by the

moving mass gradually decreases and, finally, stops at the midpoint of the filament. This

motion is, therefore, like a damped oscillation. It is also noted that final position of the

mass packet is displaced northward from its initial point, which could imply a change in

magnetic structure associated with this large-amplitude oscillation.

The bottom-most panel of Figure 5.2 shows the oscillatory motion as a function

of time. The cross symbols are the displacement of the moving condensation from the

reference point. The time t = 0 is 18:00 UT, at which time the acceleration began. Note

that the mass was already in motion, but at a lower speed, before the subflare (see the data

points at t < 0) and then amplified to an oscillation with a much larger amplitude at t > 0.
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Figure 5.1 Ha images of the 2001 October 24 filament obtained at BBSO. The top panel
shows a large FOV frame near the disk center at 16:01:49 UT. The solar disk center is
indicated by a symbol and an arrow. Box 1 is defined for the close-up images in the bottom
three panels in this figure, and Box 2 is used in the upper panels in Figure 2. Box 3 is drawn
to mark the maximum range of the oscillatory motion. The bottom three panels are frames
at selected times before the large amplitude oscillation began at 18:00 UT. A mini-filament,
its eruption and the triggering subflare with small two-ribbons are indicated with arrows.



Figure 5.2 The periodic motion along the filament. The upper three panels show the
motion of the moving condensation, in time intervals of 5 min, during three consecutive
cycles. The Ha images, used as backgrounds, are from the middle of each cycle and were
obtained at 18:00 UT, 20:08 UT and 21:34 UT, respectively. The bottom-most panel shows
the measured position (cross symbols) and velocity (diamond symbols).The solid lines are
fits to a damped simple harmonic oscillation. The best fit is made with an oscillation period
of 80 min and a damping timescale of 210 min. The maximum displacement is 1.4 x 104

km and the maximum velocity amplitude is 92 km s -1 . The scales for the velocity axis
is the same as that for the displacement axis, which is thus omitted.
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The solid line is a fit to the data points in a form of d(t) = do cos[27rt/T] exp[—th] plus

some bias motion. The bias motion is northward and has linear trend of ,,,3.25 km s -1 . The

best fit parameters are: amplitude do ,c:f, 7.0 x 104 km, oscillation period T ti 80 min and

damping timescale ti 210 min. The corresponding velocities are derived by numerically

differentiating the measured positions with respect to time, and are shown as diamond

symbols. The gray curve is a fit of the velocities to a sine function. The maximum velocity

is vo = 27rdo/T 92 km s-1 . The ratio of damping to oscillation period is r/T ',:12.6 while

Kleczek & Kuperus (1969) found this ratio in the range of 2-3 for the 1960 June 25 event

of large-amplitude oscillation.

5.3 Discussion

This periodic motion along the filament, which was discovered from the high resolution

Ha images of BBSO, is distinct from other motions ever reported of filament observa-

tions. With a velocity amplitude of N 92 km s -1 , this event should be classified as a

large-amplitude event as defined. However, the above-mentioned large-amplitude oscilla-

tion observed with the Dopplergram was across the filament, whereas the observed motion

is along the filament. These two types of oscillations could, therefore, be different in nature.

The obvious questions arising from this observation are: what mechanism can drive

such a high speed motion 92 km s -1 ) over a global scale (2d0 ti 1.4 x 105 km) and which

process causes the damping on the time scale of ,210 min.

As for the driving mechanism, it can generally consider the gravitational force,

pressure imbalance, and magnetic tension that are present in the solar atmosphere. For

the gravity to cause an oscillation of mass, there should be a concave upward magnetic

field (also called a magnetic 'dip') within the filament. Although I cannot directly tell the

presence of such a dip because of its location near disk center, I can estimate the depth of

the magnetic dip required to explain the observed maximum speed solely under gravity as

v6/2g ti 1.5 x 104 km, where g = 0.274 km s -1 is solar gravitational constant. Interpreting
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that the oscillatory motion shown in Figure 2 is exactly along the magnetic field lines, this

implies a geometry in which the field lines have a dip with depth about 10% of its whole

length. Such magnetic geometry seems plausible in view of numerous simulations made

so far for the magnetic dip (e.g., Mackay, Longbottom, & Priest 1999). Furthermore, the

fact that the oscillatory motion initiated at one end of the filament and came to a stop at the

mid point of the whole interval of oscillation seems to favor this hypothesis.

The second possibility is considered that the observed motion is due to a pressure-

driven motion, i.e., a siphon-like mechanism (Pikel'ner 1971). First of all, the observed

motion apparently looks like a longitudinal (field-aligned) drift when considering the dis-

placement of the oscillation is as large as 10 5 km. Furthermore the triggering event, the

subflare, is located near a footpoint of the filament. It is thus presumable that the pressure

imbalance caused by the subflare drives mass motions along field lines.

A similar picture has recently been presented in the models which successfully

explain the counter-streaming flow as a drift motion driven by the unbalanced heat flux

from two footpoints (Antiochos, MacNeice, & Spicer 2000, hereafter AMS). An analogy

is then that in this case, the subflare provides a strong heat flux from a footpoint so that the

observed drift motion can result in an extreme form of counter-streaming flow. The AMS

model also predicts a damped oscillation as the condensation moves around the equilibrium

point, under the restoring force perhaps provided by the pressure difference around the

condensation. In this case, the radiative damping time can also be long ti 104 s, which is

similar to the damping time found in the present observation. There is indeed a remarkable

similarity between the bottom panel of Figure 2 in this Chapter and Figures 2 and 3 in

AMS, both of which show damped oscillatory motion as a function of time. In spite of these

qualitative agreements, there are also obvious discrepancies. First, the observed oscillation

is over a large portion of the filament, about half of the entire length, whereas the oscillatory

motion shown in the AMS model is confined within a small section of the loop. Second,

in our observation, the slowly moving condensation already exists and is subsequently
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amplified by an external event, whereas the AMS model predicts the formation, drift and

damping of the condensation in one dynamic cycle. Third, the AMS model assumes steady

heating, while the heating is considered impulsive in our event. Therefore, a siphon-like

mechanism generally lacks a restoring force needed for explaining this large-amplitude

oscillatory motion as observed.

Finally the restoring force due to magnetic tension is considered. While this hypoth-

esis is obvious for large-amplitude oscillations initiated by Moreton waves which impact a

filament from the side (Ryder 1966, Kleczek & Kuperus 1969), it is dubious in this case

because both the observed motion and the filament are apparently along the local magnetic

field. As a possibility, consider that the field-aligned motion may occur when a large-scale

Alfvén wave packet containing condensed material squeezes the field line. This scenario

requires that the Alfvén wave packet should efficiently be reflected near the footpoints and

carry sufficient amount of energy to overcome the gravity. It should also be noted that the

filament could be composed of many unresolved, thin loops (prominence fibrils) stacked

horizontally with some finite angles to the filament axis, as sometimes observed through

high resolution observations (Engvold 2001). Each fibril is presumably composed of an

upper part filled with cool dense material and a lower part which is highly evacuated (e.g.

Yi & Engvold 1991). In this configuration, the disturbance propagating from the subflare

may excite a transversal oscillation of the nearest fibril, which subsequently activates the

next fibrils. Thus, the propagation of successive compression from one fibril to the next

may apparently look like a longitudinal motion of condensed material. To produce the ap-

parent motion, it should be fast mode waves propagating at a small angle with respect to

the magnetic field. With this scenario, however, it is difficult to explain why the velocity of

the mass motion takes the maximum near the prominence axis.

Another property which may deserve attention is the northward drift motion of the

mass in addition to the east-west oscillation. That the returning flow of the mass is dis-

placed away from the initial position might indicate that a modification of the magnetic
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structure has taken place. This modification could be merely due to change in mass dis-

tribution over different field lines caused by possible drainage and supply of mass through

the chromosphere. Alternatively, the impact of the perturbation might have caused recon-

nection between fibrils, which induces a partial magnetic restructuration. In this case, a

plasma element may go along one flux tube and come back along a different one finding

an equilibrium position at another place. This reconnection can generate a field line kink,

which may provide some restoring force.

As for the damping of filament oscillations, radiative damping has commonly been

considered (e.g., Terradas et al. 2001). If the oscillation is entirely local inside a chromosphere-

like medium, the radiative damping timescale should be as short as 1-2 min. A longer

radiative damping time, comparable to the value found in this case (r- 210 min) may result

in a case where the medium surrounding the filament material is of a coronal temperature

(cf. Antiochos et al. 2000). Kleczek & Kuperus (1969) considered that the transversal

oscillation of a filament radiates compressional waves into the surrounding corona, which

reacts on the filament to dissipate the power of the oscillations. Their theory predicts a

specific relationship between the period and the ratio of the damping to period in a way

that the damping per period increases with period and the proportionate constant between

this two quantities decreases with the length of filament (see their Figure 3). The presently

observed damping per period ,=--- 2.3 follows, together with their values found for another

event, this trend and lies in the range of their prediction.

As a comparison to the 'winking' filaments, an apparent difference lies in that the

present large-amplitude oscillation is triggered by a subflare at one end of the filament,

whereas the winking filaments are activated by Moreton waves impinging on their sides.

This geometrical difference may, however, be non-essential, provided that the yet uncon-

firmed complexity of the internal fibril structure is postulated. The perturbation from the

subflare is rather slow at -- ,32 km s -1 , and therefore of chromospheric origin, unlike More-

ton waves. A much higher speed of oscillation (--92 km s -1 ) is found in the present event
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than those reported for the 'winking' filaments by Ramsey & Smith (1966). It could be that

either this event was a stronger sample of the same type, or our spatial and time coverage

was so complete as to fully measure the entire extent of the motion.

5.4 More Events

Besides the event discussed above, three additional events of this type during 2001 and

2002 have been studied, which clearly showed large-amplitude periodic mass motions ob-

served by using high resolution (1 arc sec) and high cadence (1 min) full disk Ha system

at BBSO. They may be under the similar physical mechanism but not the same. Figure 5.3

is Ha image of the filament on the same day as the above mentioned event, 2001 October

24. The filament stemming from NOAA AR9672 shows an oscillatory motion which is

seemingly related to a C2.0 flare occured at 17:06 UT. Figure 5.4 shows a limb event that

is triggered by a C4.0 flare occurred in NOAA AR9866 at 18:08 UT, 2002 March 20. It

looks like the material is being ejected to a height greater than the the filament along the

visible filament. This event is perhaps surge rather than the oscillatory motions and could

well be explained in terms of a pressure imbalance mechanism. A rather turbulent, os-

cillatory motion is seen in the middle of the long filament in a quiescent region, shown in

Figure 5.5, which is seemingly influenced by the activity of the nearby filament (the shorter

one). There is no clear relationship with any flare around. Accordingly, Figure 5.6, 5.7,

and 5.8 plot the motions as a function of time. The top panel trace out the trajectory of the

moving mass. The plus symbols in the top panel are the measured positions of the moving

mass from a reference point adding on a arbitrary displacement. The symbols in the middle

and bottom panels are corresponding displacements and derived velocities with respect to

time. The solid lines are fits to the data points, respectively.

A summary of the properties of the periodic motion is presented in Table 5.1. These

four events have the following properties:
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Figure 5.3 Ha image of the filament on October 24 2001. The filament stemming from
NOAA AR9672 shows an oscillatory motion which is seemingly related to a C2.0 flare
occured at 17:06 UT.

Figure 5.4 Ha image of the filament on 2002 March 20. A limb event is triggered by a
C4.0 flare occurred in NOAA AR9866 at 18:08 UT
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Figure 5.5 Ha image of the filament on 2002 March 22. A rather turbulent, oscillatory
motion is seen in the middle of the long filament which is seemingly influenced by the
activity of the nearby filament (the shorter one). There is no clear relationship with any
flare/active regions around.

Table 5.1 Properties of Four Periodic Motion along Solar Filaments

Date
yy/mm/dd

NOAA* Period
[min]

Length
[km]

Velocity
[kms-1]

Damping
[min]

01/10/24 A 9672-9673 80 ±7 x 104 80 210
01/10/24 B 9672 160 ±9 x 104 60 950
02/03/20 9866 150 ±4 x 104 30
02/03/22 QS* 104 ±1 x 10 5 100 450

*NOAA: Active Region Number

*QS: Quiescent Area



Figure 5.6 Another periodic motion of 2001 October 24. The top panel: The periodic
motion over the whole cycle is shown as plus symbols, every 5 min, and arbitrary drift
along the y-axis is added in order to avoid overlap of oscillatory motion at each cycle. The
middle panel: the measured positions are fitted to a function of time. The bottom panel:
The derived velocities are fitted to a function of time.



Figure 5.7 Same as Figure 5.6, but for the periodic motion of 2002 March 20.



Figure 5.8 Same as Figur 5.6, but for the periodic motion of 2002 March 22.
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1. long period (80 to 160 min)

2. travelling over large distances (about 10 5 km )

3. high velocity amplitudes (30 to 100 km s -1 )

4. moderate damping (>210 min)

5. seemingly initiated by nearby flares or filament eruptions

With their speed and dimension, these large-amplitude motions represent not only

the most spectacular but also the most energetic oscillatory phenomenon above the solar

surface.

In summary, observations of the large-amplitude filament oscillations with im-

proved spatial and time coverage are presented, which brings up more issues than raised

with the previous observations (Ramsey & Smith 1966) and presents a new problem to be

discussed in relation to the filament dynamics. Answer to the restoring force is unlikely

to be found easily. At this stage, I could only discuss various possible mechanisms for

the driving and damping of the motion against our observation without final conclusion.

Since it appears that a proper interpretation of the restoring force and damping mechanism

strongly depends on the geometry of the filament and the magnetic field, it will be important

to study the 3-dimensional spatial structure of such filaments via continued high-resolution

observations to further advancing our understanding of the nature of filaments.



CHAPTER 6

EVOLUTION OF TWIST OF A ERUPTIVE FILAMENT

6.1 Introduction

There is an accumulation of observational evidence over the years that the different mani-

festations of solar activity in the corona — filament eruptions, flares, CME onsets, — all relate

into a coherent global physical process. The origin of this process must be traced to the

evolution of the magnetic fields. The observations of the emergence of twisted fields and

the helicity of a preferred sign in each hemisphere (Leroy 1989; Martin et al. 1993; Pevtsov

et al. 1994; Rust 1994) lead naturally to the idea that twisted magnetic field may form in

the corona and manifested itself in many features. The twisted, helical-like structure are

more frequent in active region prominences, but sometimes can be found also in quies-

cent prominences, especially clear when they erupt (Rompolt, 1975, 1988,1990; House &

Berger 1987; Vrsnak et al 1988, 1990;).

There has been continuous efforts on understanding the role of twisted flux rope

in the process of the eruptive events. Observationally, in particular, Vrsnak et al. (1991)

investigated internal structure of 28 prominences and found that eruptive prominences show

higher observed twist than quiet ones. More recently, Nindos & Andrews (2004) studied

133 active regions and found that coronal helicity of the active regions that produce CME-

associated flares is generally larger than those of active regions producing flares without

CMEs. On the other hand, theoretical models for the filament or CME have been developed

to take into account the effect of the twist. In these models, the filament is regarded as a

twisted magnetic flux tube for simplicity. The basic cause of the eruption is the imbalance

between the magnetic pressure gradient and the restoring magnetic tension. The maximum

amount of twist for a filament to be stable are imposed by the theory (Hood & Priest 1981;

Priest 1982) and confirmed by the observation (Vrsnak & Rompolt 1991).
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In this chapter I report a case study of a filament eruption observed using high

resolution (1 arcsec) and high cadence (1 min) Ha images obtained at KSO on July 23

2002. Ha observations of the filament reveal apparent twisted structure that correlates well

with the twisted flux rope model. The basic character of the eruption appears to be the

rising and expanding of the twisted structure. Particular attention is given to the evolution

of the pitch and the twist of the filament. In our estimation, a rapid increase in pitch angle

occurs at the pre-eruption phase whereas the twist stays constant during this course. With

the above results of the twist and the equation of motion for the twisted flux rope, the

filament acceleration can be evaluated and compared to the observation.

6.2 Observations

6.2.1 Ha observations

The filament discussed in this chapter appeared on the east limb on 2002 July 14,

travelled across the disk, and erupted on July 23. I use BBSO and KSO full-disk Ha

images, obtained over 9 days, to follow the evolution of the filament. The filament's disk-

crossing and eruption permit a comprehensive view of its shape from different perspectives.

Figure 6.1 shows its configuration and evolution from July 18 to July 23. The central part

of the filament extends over approximately 40° of the solar surface. A particularly good

data set was obtained on July 23 from 07:10 UT to 16:11 UT. The spatial and temporal

resolutions are approximately 1 " and 1 min, respectively. High-resolution Ha observations

of the filaments provide fine structure details. In this case, a bundle of fine structure threads

in the filament can be identified. It should be noted that these threads are seen in projection

on the disk plane and the observation of the fine structure is down to the limit of spatial and

temporal resolution.

The evolution process of the filament follows a scenario:

1. July 14 — July 18: During this period, the filament appears near the east limb. The fil-
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ament exhibits a clear shape that consists of a few, at least 4 on July 18, well-defined

arches which anchored with thick legs to lower chromosphere at some separate foot-

points that are almost aligned with the filament axis (see Figure 6.1a). The arches

have sharp edge and narrow width (the diameter of the arch tube) in proportion to

the length (the span of the arch). The threads forming at the spine of the arches are

predominantly longitudinal, i.e., threads are stretched along the filament axis. More-

over, Ha movies show that the material in the filament flows along the arches without

apparent transverse motion. If I treat the filament as a ideal cylinder flux tube, such a

sharp and slender configuration with negligible transverse dimension and the prevail-

ingly longitudinal mass motion lead us tend to believe that the flux rope is untwisted

or very weakly twisted at this stage.

2. July 19 — July 20, The filament comes over the east limb to the disk and to the higher

latitude. Meanwhile, the slender structure expands in transverse dimension. That

is, besides the longitudinal component manifested by the spine of the arches, the

filament exhibits apparent transverse fine structure threads suspending down from

the spine to the chromosphere (see Figure 6.1b). When viewed in projection on the

disk plane, these threads are orientated at some intermediate angle with respect to the

filament axis. Ha movies show the continuous bi-directional mass flows along the

observable longitudinal and transverse threads. It would be of interest to recall the

discovery of counterstreaming flow within filaments (Zirker et al. 1998). Overall, at

this stage, the filament appears to have a sheet-like geometry characterized by both

vertical and horizontal fine structure threads.

3. July 21— July 23, During the disk-crossing the filament shows a continuous expansion

of the width. Although I cannot state completely unambiguously due to the effect

of the projection, the whole structure appears to be in a form of three arches with

different height and width (see Figure 6.1c, 6.1d). One can easily perceive that the
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most conspicuous and the largest arch (on the west, or right) is built from the threads

packed around the filament body. The filament evolves to a more diffuse and intricate

structure in which the threads are curve themselves like a coil.

Eventually, the filament erupts on July 23. Detailed erupting process is illustrated

by KSO Ha images in Figure 6.2 and EIT 195A running difference images in Figure 6.3.

In the left column of Figure 6.2, two barbs are visible and the barbs are stable up

to 11 UT holding the filament. The main location of the filaments (outlined by the orange

lines) changes little. The major change in this period is the decrease in the interval between

the vertical patterns. If we assume that the vertical intermittent structure (highlighted by

the blue contours) represent the density contrast of the materials along the magnetic field,

we can interpret the changes in the interval between the vertical patterns as the changes of

pitch of the spiral magnetic field lines along the field axis.

In the right column of Figure 6.2, after 11 UT the filament starts to rise. Presumably

only the right part is visible, and as expands the pitch decreases in fact. This is due to either

coils are relaxed, or just expansion of the loop. Another noticeable change occurs in the

left part of the filament. The field lines stemming from the barb 'a' expands greatly. The

barb 'b' seems to be displaced, and also be lengthened and then vanishes by the time 14:27

UT. The third bard 'c' is seen until the last time and finally vanishes too when the filament

fully erupted. Our measurement of this rising motion is presented in another Figure 6.6,

which shows a continuous acceleration of the filament and the CME.

6.2.2 EIT Observations

Figure 6.3 gives the EIT running difference images which show the coronal emis-

sions associated with the filament eruption. Each image is obtained by subtracting it from

the previous image to enhance the faint features. As Figure 6.3b shows, at 10:13 UT, a dim-

ming region appears and the filament starts to rise. In the sequence of Figure 6.3c to 6.3f, a
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loop connecting the western footpoint of the filament and a nearby region is seen and grad-

ually ascending. This means that the filament is situated at the western portion of a larger

rising arcade and, furthermore, the ejective mass mainly originates from the western leg

of the large arcade. As Rompolt (1990) pointed out that the direction of motion during an

filament eruption depends on the location of the filament material within an erupting arch.

As a result of the balance of velocities involved in the process in such a geometry, a part of

eruptive filament material flows down, a part of material is transported to the nearby region

along the arch, as well as a part of the material ejects to the upper corona. In addition, from

the observation, the orientation of the erupting structure appears to change with time, from

being roughly parallel to the limb at the pre-eruption phase (Figure 6.3b) to being inclined

with some angle to it in the late phase of eruption (Figure 6.30. It is generally known that

filaments are located at the base of coronal arcades. The overlying arcades, such as the one

shown in Figure 2g, are stretched and distended, or even opened, by the erupting flux tube.

I also note that the observed overlying arcade is almost aligned with the erupting structure

at its later time. This may imply a process during which the erupting flux tube aligns itself

with the coronal loop.

6.2.3 LASCO C2 Observations

This filament eruption is accompanied by a CME that is first detected at 19:31 UT by

LASCO C2 coronagraph. Figure 6.4 displays two LASCO C2 images taken during the

CME (top two panels). The bottom-left panel shows the difference image. The bottom-

right panel is the same difference image processed by edge enhancement which was de-

scribed by Karovska, Blundell, & Habbal (1994). This technique computes second deriva-

tives of the intensity throughout the image in multiple directions and assigns to each pixel

the maximum of these derivatives. As a result, the locations of significant changes in the

gray-scale level are emphasized. The basic structure of the CME is a roughly circular rim

whose leading edge, trailing edge can be identified and are still connected with the Sun.
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6.3 Data Analysis and Discussions

6.3.1 Dynamics

Figure 6.5 shows the height-time diagram of the rising motion of the filament and

the associated CME. The filament heights are measured from Ha images. The height of

the filament axis is measured in projection against the disk plane and the zero-height is

taken at the top of the filament before the eruption. CME height-time data is provided

by the LASCO web site. The velocity are derived numerically as the first derivative of

corresponding height with respect to time. The filament has a initial ascending velocity of a

few kms -1 which remains constant during the pre-eruption stage and then slowly increases

to several tens of kms -1 with an maximum acceleration of 15 ms -2 during the observed

eruption process.

6.3.2 Twist

Since the basic character of this erupting filament is the expansion of the twisted

structure at the pre-eruption phase, it would be of physical interest to summarize the proper-

ties of the twisted structure here. On a cylindrically symmetric flux tube with longitudinal

component B1 and azimuthal component Baz of the magnetic field line, the pitch-length

As specifies the axial length of a twisted line that encircles the axis once. It is given by

= 2JrrB i /Baz , where r is the radius of the tube. Alternatively, the pitch-angle /3 specifies

the ratio of the azimuthal component of the magnetic field to the longitudinal component,

and can be quantified by tgi3 = Baz / B = 27rr/2,. Usually, a increase of the pitch-angle

suggests a "twisting" progress. More generally, according to Priest (1982), the amount by

which a field line is twisted in the tube (length/) is:

	Baz	 Baz	 lt
(13=fd(13=f z dl= 	 =—= Dr1/2,

	

0 rB 	 rB1	 r

That is, 4 specifies the angle through which each line has been turned.

(6.1)
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The twisted structure and measurements of the twist are schematically shown in

Figure 6.6a. The twist in the flux tube can be estimated from the observations. To analyze

the twist in the filament quantitatively, I choose a few images under the best seeing condi-

tion. As seen in the high resolution Ha images, the overall structure of the filament might

approximately fit into a cylindrical twisted flux tube and twisted lines in the tube could be

identified and measured(e.g., see Figure 6.6b). I perform the measurement at left, right and

central part of the filament, see Figure 6.6c, at several moments during the pre-eruption

stage. Table 6.3.2 summarizes the measurements and the deduced values, including the

length of the filament 1, the radius of the tube r, the pitch-length , the tangent of the

pitch-angle tg6, and the estimated twist (D. In this event, I see a general increase in r as

the filament rises whiles A, proceeds in different ways from right and left, i.e., A. increases

at the right, decreases at the central and nearly stays constant at the left. The changes in

pitch-lengths at different locations suggest such a redistribution of the twisted lines. As a

consequence, the evolution pitch-angle displays different behavior.

To better illustrate our deduced results in Table 6.3.2, Figure 6.7 displays the tempo-

ral variation of the pitch-angle and the twist. The uncertainty of measuring the parameters

r and A is estimated to be less than 5 pixels in each image, depending on the sharpness

of the fine structure while the uncertainty of measuring the length of the filament 1 is less

than 5%. In our estimation, I see a slight decrease at the right as a consequence of that

the pitch-length in this part increases faster than the radius. On the other hand, the angle

rapidly increases at the central and left at a timescale of 40 min and then it nearly remains

constant at the left and keeps increasing at the central. The twist shows very slight vari-

ation. Since the filament remains rooted in the chromosphere, the twist over the filament

should be constant that is roughly confirmed in Figure 6.7b.

Theoretically, it has been shown that when the twist exceeds a certain amount the

flux tube goes unstable and subject to the helical kink instability. The threshold of the twist

for the instability ranges from 27r (Kruskal-Shaftanov limit) to 3.3z (Hood & Priest 1981).



Table 6.1 The Measured and Deduced Data

Time
[UT]

Left Part Central Part Right Part

1
Mm

0:1)

[ir]
r

[Mm]
A

[Mm]
tgO
[r]

r
[Mm]

A
[Mm]

tgO
[ir]

r
[Mm]

A
[Mm]

tge
[r]

07:24 14.5 10.9 2.7 17.8 20.3 1.8 24.0 37.0 1.3 240 21.1
07:35 12.3 10.2 2.4 19.6 18.9 2.1 25.3 45.0 1.1 236 19.1
07;51 14.8 6.5 4.6 18.1 12.3 2.9 25.0 47.9 1.0 231 20.8
08:04 17.8 8.7 4.1 21.0 11.6 3.6 23.5 54.4 0.9 236 19.0
08:16 16.7 7.3 4.6 21.8 14.5 3.0 27.2 63.1 0.9 237 16.8
09:23 19.6 8.7 4.5 21.8 16.7 2.6 30.1 68.9 0.9 247 15.7
10:08 22.1 10.9 4.1 22.1 12.3 3.6 29.0 70.3 0.8 244 15.6
11:59 25.0 11.6 4.3 22.5 9.4 4.8 31.2 66.0 0.9 262 18.0
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Even if a flux tube is not subject to the kink instability, Parker (1974) points out that when

the flux rope is twisted sufficiently, it becomes unstable to buckling. The condition for

buckling is that the magnetic pressure due to Baz exceeds the magnetic tension due to B1 .

Observationally, Vrsnak & Rompolt (1991) establish empirical criteria for the onset of an

eruptive instability from a sample of 28 prominences. The results shows that the eruptive

promineces are characterized by a pitch-angle> 50°. In the present case, the amount of

twist preceding the eruption is rather large, i.e., one order of magnitude larger than the

theoretical limit and the pitch-angle is also larger than the empirical criteria. The filament

is certainly an extremity of this type of structure.

A question arises from the observation: what mechanism causes the formation of

such a highly twisted structure and the growth of the twist. A detailed analysis of the

magnetic field may help to answer this question. However, the magnetograms are not really

informative because the filament is located near the limb. I can only speculate that either

sheared transverse magnetic field or new flux emergence or magnetic flux cancellation may

cause some reconnection and, consequently, the formation of a huge, twisted erupting arch

(Rompolt 1990).

6.3.3 Comparison with the Twisted Loop Model

An order-of-magnitude model for a filament or CME as a twisted flux rope was presented

by Monschovias & Poland (1978). In their picture, the summit of the coronal loop has both

a longitudinal field component B1 and an azimuthal field component Baz . The difference

in magnetic pressure between the bottom and top of the loop due to Baz provides upward

force. In the case of the constant-velocity motion, the upward force is balanced by the

downward magnetic tension force and the gravity force. Under the neglect of the effect of

the background corona on the loop the MHD force equation reduces to a simple form:



Ba2z

uR, PRc
—	 pg = 0 	 (6.2)
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where R„ is the radius of curvature of the loop, p is the mass density in the loop and

g is the solar gravitational constant.

This model is applied to the present twisted filament structure and modified by the

presence of a filament acceleration a,

	B 2 	B2	az 	 pg = pa

I rewrite the above equation in the following form:

B2
[t cc,2 6 — 1J— pg = pa

pRc

Note that here the radio Baz/B1 is written in the tangent of the pitch angle tgi, which

can be obtained from the observation. The above equation can be used to estimate the

acceleration of the filament and make a quantitative comparison with the observation. The

quantities t and g are taken as 47r x 107Hm-1 and 274 ms -2 , respectively. The quantity Rc

can be estimated from the geometry of the filament. I take it to be 7 x 10 5km, comparable

to the solar radii, because the spine of the filament is rather flat and nearly parallel to the

solar surface. In addition, I take a typical value of the number density of the electron in the

filament, 10 18 m-3 , and assume the longitudinal field strength B1 in the erupting tube is 1G

(Athay & Illing 1985). With these values as well as the observed average tg13, I obtain an

estimate of the filament acceleration of 0.1 — 0.9 kms -2 , which is an order of magnitude

larger than the observed acceleration.

A primary reason for the difference between the expected acceleration and the ob-

served one is the ignorance of the effect of the background corona. The expression 6.4 is

derived under the assumption that the background corona plays a minor role on the coro-

iuR„
(6.3)

(6.4)
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nal loop as it rises for simplicity. However, in this case, the erupting filament is initially

oriented at some intermediate angle with respect to the overlying coronal arcades, as men-

tioned in the previous section, which might temporarily act to restrain the eruption and is

expected to exert a remarkable drag on the ascending mass. The flat spine of the filament

arch may be an evidence of the presence of the drag. Apparently, this simple model cannot

be expected to describe such a complicated process in quantitative detail. The effect of the

background corona should be included.

Based on MHD approach, Chen(1996) developed a theoretical model that can de-

scribe the essential physics of the initial eruption and the subsequent propagation. The

initial structure is assumed to be a twisted magnetic flux rope with toroidal Bt (same as

B1 mentioned previously) and poloidal Bp (same as Baz) components. The circular cavity

observed in many CMEs is interpreted to be the top of a broad flux rope viewed edge-on,

where the flux rope is still connected with the Sun. This model is significantly distinct from

the model of Mouschovias & Poland (1978) in that the eruptive filament and the CME are

treated as the trailing edge and leading edge of one flux rope respectively. Moreover, it in-

cludes a cold component in the initial flux rope, qualitatively corresponding to the filament

material, and the momentum coupling of the flux rope with the ambient gas, represented

by a drag term (Chen 1996). The simulation results are based on a range of initial values

in a number of parameters. Besides the similarity in appearance, I note that this event has

many features similar to those predicted by the model:

First, the simulation of the initial dynamics shows that the CME (leading edge) is

forced ahead and the filament (trailing edge) is dragged along by the flux rope, which seems

to be consistent with the observation. Second, in this model, the eruption is triggered by a

rapid increase in the poloidal magnetic flux(Chen 1996; Krall & Chen 2000). In response

to the increase, the overall behavior of the flux rope is to expand slowly as the apex rises,

which is also consistent with the observation. Another attractive point of the Chen's model

is that it does predict the temporal evolution of the field line twist at the apex and footpoints.
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In his picture, the pitch at the apex remains nearly constant during the eruption whereas the

the pitch near the footpoints increases for tens of minutes and then decreases. At any time

after the the initial eruption, the pitch at apex is larger than that at footpoints, implying the

field lines are more twisted near the apex. The overall tendency of the twist is a decrease.

To summarize, a highly twisted helical-like structure (-, 207r) is found in an qui-

escent filament and seems to be an extreme case of this type structure which has not been

discussed before. Because of its apparent similarity with the twisted loop model, it is of

particular interest to test whether the observed dynamics are explicable under the theoreti-

cal model. To follow the Monschovias & Poland model (1978), the rising motion is mostly

due to the unbalance of the upward magnetic pressure gradient and the downward restoring

tension. However, the quantitative comparison between theory and the observation shows

a large difference, i.e., the observed acceleration is 1 order of magnitudes less than the pre-

dicted one. This tells us that there is one important elements is missing such as the drag

force exerted by the overlying coronal arcades. The theoretical model of erupting magnetic

flux rope, presented by Chen(1996), is also considered. In this model, the flux ripe eruption

is driven by a increase in poloidal flux. The observed behaviors of the motion are in good

agreement with those predicted by Chen's model. Therefore, the variation of the pitch over

the filament might be a consequence of the flux injection.
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Figure 6.1 Sequence of Ha images showing the configuration and evolution of the filament
from 2002 July 18 to July 23. The upper images are obtained at BBSO while the lower
images are obtained at KSO. 1 pixel=1 arc sec.
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Figure 6.2 Sequence of Ha images showing the evolution of the filament prior to eruption
on 2002 July 23. The solar north-west limb is partly seen in the upper right corner. The
blue contours are drawn to highlight the dark materials within the filaments, and the dashed
orange lines outline the filament body at the starting time 08:04 UT taken as reference. The
three arrows indicate barbs observed around the filament. Images are obtained at KSO. 1
pixel=1 arc sec.



Figure 6.3 Sequence of EIT 19514 running difference images showing the filament erup-
tion. 1 pixel = 2.62 arc sec.
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Figure 6.4 Top two panels: LASCO C2 images of the CME of 2002 July 23; Bottom left
panel: difference image; Bottom right panel: processed by edge-enhancement techniques.



Figure 6.5 Measured height and deduced velocities of the filament and CME.
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Figure 6.6 (a) A schematic drawing of the twisted flux rope. The symbols are explained
in the text; (b) Ha image of the filament; (c) Curves are drawn overlaid on the Ha frame
to mark the identified twist structure at three parts.



117

Figure 6.7 Temporal variation of the filament height, tg'6 and 0.



CHAPTER 7

TWIST PARAMETER OF ACTIVE REGIONS AND SOLAR ERUPTIONS

7.1 Introduction

Magnetic helicity, generated by differential rotation and the convective flows, describes the

topological complexity of a magnetic field (Moffatt & Ricca 1992; Ricca & Berger 1996).

The study of helicity has attracted a great deal of attention from solar physicists since it is

relevant to both the solar interior and space weather and may improve the understanding

of some questions, e.g., how magnetic helicity is related to filament eruption, flares and

CMEs. Although the helicity may be conserved on a global scale, it could be redistributed

locally through magnetic reconnection. Such redistribution of helicity may play an im-

portant role in the build-up of the twist, the loss of the equilibrium of magnetic field, and

therefore the eruption of the flux tube. The helicity of a filament arises from the twist of

internal field lines about the filament axis (Berger & Field 1984). Due to its close relevance

to the helicity, the quantity twist may be important to the dynamics of helicity-carrying

magnetic flux tube.

Theoretical arguments concentrate on the causality between the magnetic twist and

the solar eruption. That is, whether twisted flux ropes are necessary for the initiation of a

CME (Low & Smith 1993; Low 1994; Amari et al. 2000,2003), or they occur as a con-

sequence of the solar eruption and the reconnection (Antiochos et al. 1999). To deal with

this question requires the consideration of whether the energy for the CME-flare process is

stored and supplied by the magnetic twist in the pre-eruption corona.

In the previous Chapter, the evolution of twist in an eruptive filament eruption is

studied and tried to reconcile with the twisted flux loop model. Although the simple model

cannot be expected to describe such a complicated process in quantitative detail, it does

outline the basic fundamental physical processes. This twisted model together with the
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estimates of the field in twist can also be used to empirically evaluate the energy decrease

during a solar eruption (Moore 1988). According to Moore(1988), the estimated decrease

in magnetic energy is of order of the total energy released in the flare and/or CME. This

suggests that the magnetic energy dumped in a filament-eruption flares comes from the

eruptions of twisted flux tube, and further, leads us conjecture that the eruptive filaments

with higher twist will show higher acceleration (see Equation 4.3 in the previous Chapter).

In order to test the theoretical idea from observations, we will attempt to relate the mag-

nitude of the magnetic twist to some deduced properties of the solar eruption, i.e, CME

acceleration and magnetic reconnection rate. We expect such study would shed light on the

still not well understood physical picture. This is the primary motivation in this study.

7.2 Measure of the Twist Parameter a

7.2.1 Linear Force-Free Field

The interpretation of the observed twist in the filament is based on the assumption of a

MHD frozen-in condition. Coronal magnetic field is not yet observationally accessible.

Therefore, in order to extrapolate the magnetic field in the chromosphere and the corona

using the measured photospheric magnetic field as boundary conditions, some assumptions

about the physical state of the coronal magnetic field have to be introduced.

The simplest assumption of the coronal magnetic field is that the magnetic field is

current-free (i.e., potential magnetic field):

In this case, magnetic field is the state of minimum magnetic energy for the given boundary

(Margenau & Murphy 1956) and its energy cannot be released to the solar atmosphere.

This approximation is not appropriate to the active regions and flares because a number of

studies suggested that the energy can be stored and librated in the magnetic configuration.
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Moreover, it is found that the sites of flare emissions are cospatial with the sites of the

vertical current(Hagyard et al. 1984b; Lin & Gaizauskas 1987; Wang et al. 1994; Zhang &

Bao 1999).

Therefore, we consider a more general case of the magnetic field, force-free mag-

netic. field•

In the chormosphere and lower corona, where the magnetic field is so strong that the forces

due to gravity and gas pressure are insignificant compared to the magnetic pressures, the

force-free assumption is reasonable. The choice of the function a(r) is not completely

arbitrary, because it must satisfy the divergence-free Maxwell equation V • B = 0, and the

vector identity V • (V x B) = 0. These two conditions yield

This condition is fulfilled if a (r) is constant and does not vary along a magnetic field

line, so that Va = 0. This means that a(r) is not a scalar function anymore, but a simple

constant, and Equation (7.2) becomes,

x B = aB (7.4)

This parameter ais commonly referred to as the "twist" parameter which is a mea-

sure of the helicity. Under the assumption of liner-force-field, a can in principle be de-

termined by measuring the line-of-sight component of the magnetic field as well as the

transverse field components. That is

(7.5)
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7.2.2 Force-Free Parameter a and Helical Twist

As mentioned in previous chapter that a filament may be characterized by a twisted cylin-

drical flux tube. In this case, a relation between the force-free parameter a and the helical

twist can be derived.

Considering a twisted cylindrical flux with the pitch-length A, and radius r. Recall

that the radio of the azimuthal component of the magnetic field to the longitudinal compo-

nent can be quantified by

Obviously, the magnetic components depend only on the radius r, but not on the length co-

ordinate 1 or azimuth angle 9. Consequently, the general expression of V x B in cylindrical

coordinates,

is simplified, yielding a force-free current density j of

Force-free field requires that the Lorentz force is zero, i.e., F= j x B = 0. Thus a

single differential equation for B1 and Bq, is obtained,

By substituting B9 = brB1 this simplifies to

A solution is found by making the expression inside the derivative a constant, which yields
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B1, and BT,

With the definition of the force-free a-parameter (Eq. 7.2) it can now verify that the a-

parameter for a uniformly twisted flux tube is,

Making use of the Eq. 7.6 leads to

(7.7)

For instance, for the twisted flux tubes studied in the previous Chapter with A. 2.5 x 10 9

cm and pitch angle tv3 ti 37r, a force-free parameter of a = 5.6 x 10 -11 cm-1 is obtained.

This way, the geometric pitch angle 3, which can observationally be measured from twisted

coronal loops, can be used to estimate the force-free a-parameter.

7.2.3 Reconstruction of the Magnetic Field

The constant a is commonly referred to as the "twist" parameter for magnetic fields. It

is a plausible helicity proxy to characterize the twist in active region magnetic fields. It

can be determined from either the vector magnetograms or the twisted fine thread structure

of coronal loops. However, in most cases, observation cannot provide much information

about the fine structure of the filament, and vector magnetograms observed only at a single

height are often inadequate in representing coronal structures. So, numerical methods for

linear force-free magnetic field extrapolation have been developed. For a given a, coronal

magnetic field can be extrapolated from the boundary (i.e., photospheric magnetic field) by

using either Fourier transform (Nakagawa & Raadu 1972; Alissandrakis 1981; D6moulin et

al.1997; Gary 1989), Green's function (Chiu & Hilton 1977; Seehafer 1978; Semel 1988)
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or a superposition of discrete flux sources (Lothian & Browning, 1995). The comparison of

theoretical field extrapolations with the illuminated field lines as it can be observed in EUV

can be performed. The best-fit value of a is chosen so that the computation best reproduce

the observation.

Here we adopt a method for the reconstruction of the linear force-free (LFFF) mag-

netic field in a bounded domain which was described in Abramenko and Yurchishin (1996).

If a is constant everywhere, for each field line in a given volume, the curl of the current

density (V x Bl.

On the other hand,

Comparing these two expressions and V • B = 0 lead to the Helmholtz equation,

The algorithm is based on the solution of the Dirichlet bounary value problem to the

Helmholtz equation.

7.3 Data Set

The line-of-sight photospheric magnetic field is provided by Michelson Doppler Imager

(MDI) magnetograms, with the spatial resolution of 2 arcsec. At the chromospheric level,

magnetic fields are revealed by the Ha chromospheric fibril patterns. At coronal level,

magnetic structure is conspicuously illuminated by a pattern of coronal loops that may be

observed by TRACE or YOHKOH images.

From the sample of flares studied in Chapter 2, those which originate from active

regions are selected. MDI magnetograms, taken 30 min prior to the flare onset, are used as
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the magnetic boundary value and progressively specify the value of a. The criteria of time

is required because the helicity change rate may vary impulsively around the flare peaking

time (Moon et al. 2002). For each value of a, the magnetic field on the basis of force-

free field assumption are deduced, and compared the computed magnetic field lines to the

observations. The best-fit value of a is selected to give the closest match to the pattern of

coronal loops observe by TRACE or SXT.

This is illustrated by one example in which an X5.3 flare occurred in active region

NOAA 9591 on 2001 August 25 and was accompanied by a halo CME. Figure 7.1 shows

the magnetogram and the characteristics of this active region at different atmospheric levels.

Specifically, the upper left panel shows the photospheric distribution of the line-of-sight

magnetic field obtained by MDI magnetogram at 16:03 UT. The upper right and lower

left panels show corresponding field of view BBSO Ha image at 16:04 UT and TRACE

image at 195 A at 15:35 UT. The lower right panel shows the deduced magnetic field lines,

calculated with a = +0.01, overlaid on the MDI image.

7.4 Data Analysis

Previously, we developed an image segmentation technique to derive the expansion speed

of two-ribbon flares Vr and the newly brightened areas swept by flare ribbons da, automat-

ically (for more details, see Qu et al. 2003 and 2004). From V,. and da, one may derive

two forms of the magnetic reconnection rate: the electric field inside RCS, Erec = VrBn,

and the rate of magnetic flux participating in the reconnection, (DT rec. f Bnda. Form a

sample of thirteen well observed two-ribbon flares that are associated with filament erup-

tions or CMEs, the magnetic reconnection rate were derived. In addition, the velocity and

acceleration of the erupted filaments and CMEs were also derived numerically as the first

and second derivative of corresponding height with respect to time. Methods and results

are discussed in detailed by Jing et al (2004).

On the other hand, we adopt a method for the reconstruction of the linear force-



Figure 7.1 The characteristics of AR 9591 at different atmospheric levels. Upper left
panel: The photospheric distribution of the line-of-sight magnetic field obtained by MDI
magnetogram at 16:03 UT; Upper right panel: BBSO Ha image at 16:04 UT; Lower left
panel: inversion of TRACE image at 195 A at 15:35 UT; and Lower right panel: the
deduced magnetic field lines, calculated with a = +0.01, overlaid on the MDI image.
The spatial resolution is 2" pixel -1 . The field-of-view is 360" x 260" .

free (LFFF) magnetic field in a bounded domain which was described in Abramenko and

Yurchishin (1996). This method allows us to specify boundary conditions not only on

the "photospheric" level but also on lateral parts of the volume. The method is based on

a Dirichlet boundary value problem for the Helmholtz equation with the B z component

specified at the S2 boundary. Chebyshev's iteration method with the optimal rearrangement

of the iteration parameters sequence was used. The solution is obtained for positive-definite

as well as non-sign-definite difference analogue of the differential operator V 2u + ag u. By

specifying two scalar functions 13 .,, and By at the intersection of the vertical boundaries of
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the n with one selected plane, z = const and by using B z inside the SI, we can calculate

13, and By inside the CI The algorithm was tested with the numerical procedure, which

produces an analytical solution B for a LFFF. The r.m.s. deviation of the analytical solution

B from the calculated B' does not exceed 1.0%.

7.5 Preliminary Results

Currently only four events have been studied. The results are listed in Table 7.1.

The correlation between the twist and some parameters of the solar eruption, e.g.,

magnetic reconnection rate and flux-rope acceleration, is of special interest in this study.

As twisted flux loop model suggests that the buildup of the twist may result in the loss of

the stability of magnetic fields, and therefore the eruption of the filament. If it is true, it is

natural to expect that the eruptive filaments with higher twist might show higher flux-rope

acceleration and magnetic reconnection rate. The first event consists of a M2.5 flare with

rising filament and without CME. The second and third events are composed of a X5.3

and a X5.7 flares respectively and halo CMEs but without apparent filament motion. The

forth event consists of a X1.3 flares with both eruptive filament and a halo CME. Figure 7.2

displays scatter diagrams of the reconnection rate (Ere, and (1)„,) versus the twist parameter

a. Based on our limited cases studied so far, there appears to be such a tendency that a flux-

rope with higher twist is more likely associated with a stronger magnetic reconnection rate.

Certainly, in order to provide a statistical support of this view, a large number of

events should be analyzed in the future.



Table 7.1 Data of Three Observed Eruptive Events for Best-Fit a and Solar Eruption
Correlation

Date Best-Fit a Max. lin Max. Ere,. Max. c°rec Max. Accelpia Max. Acce/cmE
yy/mm/dd [arcsec -1 ] [kms -1 ] [V cm -1 ] [10 18 Mxs -1 ] [kms-2] [kms-2]

00/02/17 +0.0075 13.0 1.4 2.3 0.3 •• 	 •
00/07/14 -0.019 40.1 51. 54 •• 	 • -0.096
01/08/25 +0.01 25.8 8.9 4.9 •• 	 • 0.4
03/05/27 +0.015 65.3 14.4 8.7 1.8 0.02
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Figure 7.2 Top: Scatter diagram of maximum Prec versus best-fit a in a logarithmic scale.
The solid line is a fit of data points of mT rec. and a in the linear form with the correlation
coefficient of 0.86; Bottom: Scatter diagram of maximum Erec versus best-fit a in a loga-
rithmic scale. The solid line is a fit of data points of Erec and a in the linear form with the
correlation coefficient of 0.91; Error bars attached to each sign indicate the uncertainty of
the measurements (see Chapter 2).



CHAPTER 8

SUMMARY

This dissertation puts together what we have learned about various phenomena of solar

activities, including, in particular, erupting filaments, flares and CMEs, to synthesize the

relationship linking acceleration of erupting flux rope, flare nonthermal emission, magnetic

reconnection rate and magnetic twist. There are three major advances, summarized below,

that are considered major breakthroughs in understanding solar eruptive events.

The first advance is the study of magnetic field change before and during the fila-

ment eruption. A filament eruption may be initiated by external events, for example the new

emergence of the magnetic flux nearby; or by the loss of equilibrium in the filament itself,

for example the helical instability inherent in the filament structure (Filippov 1998). We

find from study of 106 filament eruptions observed from 1999 to 2003 that the majority of

events are associated with new flux emergence within or adjacent to the eruptive filament.

On the other hand, the filament and CME can be considered as twisted flux rope. The

global magnetic helicity is expected to be conserved in the corona but the helicity locally

in a arcade can be transformed into the helicity of a twisted filament through reconnection.

The stability of a filament may be correlated with its helicity, or twist. In a case study,

we see a rapid increase in pitch angle of the filament structure at the pre-eruption phase

whereas the integral twist changes little during this course. In the statistical work we at-

tempt to relate the magnitude of the magnetic twist to some properties of the solar eruption,

i.e, CME acceleration and magnetic reconnection rate. Based on our limited cases studied

so far, there appears to be such a tendency that a flux-rope with higher twist tends to relate

to greater mass acceleration and magnetic reconnection rate.

The second advance is the flux rope eruption—magnetic reconnection relationship

in flares. Many authors have outlined a theoretical scenario in which flares, in particular,

129
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two-ribbon flares can be interpreted as the result of reconnection process. Erupting flux

rope (filament or CME) plays the role of opening up the initially closed magnetic field. In

general, the observations verify the temporal correlation between the filament acceleration

and the flare nonthermal emission. Moreover, increasing reconnection rate is usually as-

sociated with an increasing filament acceleration. The correlation can fit in a linear model

with high values of correlation coefficient, indicating a very strong correlation and depend-

able relationship between the magnetic reconnection rate and the acceleration of erupting

filament. This verifies that both phenomena should be different manifestations of a single

process involving magnetic reconnection.

The third advance is the relationship among magnetic structures in eruptive fila-

ments, CMEs and interplanetary magnetic flux rope. The sign of the magnetic helicity,

when combined with the one-to-one correspondence to the filament chirality, can be de-

termined by the chirality, or handedness, of filament shown in chromosphere Ha images.

Our statistics of filament chirality support earlier reports that both solar hemisphere has a

predominantly distinct chirality and, therefore, sign of magnetic helicity. The sign of mag-

netic helicity contains important information of the surrounding magnetic field. Rust and

Kumar (1994) further conjecture that the magnetic cloud field is simply the filament field

which is transported through space by the eruption with magnetic helicity being conserved.

If this view is correct, the helicity sign of the filament can be used to predict the orientation

of the magnetic field associated with a CME, and furthermore, the likelihood of a geomag-

netic storm (Yurchyshyn et al. 2000). Our investigations of the geoeffectiveness of seven

eruptive filaments confirm this view. This enable us to conclude the geomagnetic storm can

be forecasted on the basis of the orientation of the magnetic field of eruptive filaments and

sign of magnetic helicity.
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