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ABSTRACT

A VERSATILE PROGRAMMING MODEL
FOR DYNAMIC TASK SCHEDULING ON CLUSTER COMPUTERS

by
Dejiang Jin

This dissertation studies the development of application programs for parallel and

distributed computer systems, especially PC clusters. A methodology is proposed

to increase the efficiency of code development, the productivity of programmers and

enhance performance of executing the developed programs on PC clusters while

facilitating improvement of scalability and code portability of these programs. A

new programming model, named the Super-Programming Model (SPM), is created.

Programs are developed assuming an instruction set architecture comprised of Super-

Instructions (SIs). SPM models the target system as a large Virtual Machine (VM);

VM contains functional units which are underlain with sub-computer systems and

SIs are implemented with codes. When these functional units execute SIs, their codes

will run on member computers to perform the corresponding operations.

This approach resembles the process of designing instruction sets for

microprocessors but the VM employs much coarser instructions and data structures.

SIs use Super-Data Blocks (SDBs) as their operands. Each SI is assigned to a

single member computer and is indivisible (i.e., its implementation is not interrupted

for I/O). SIs have predictable execution times because SDB sizes are limited

by predefined thresholds. These qualities of SIs help dynamic load balancing.

Employing software to implement instructions makes this approach more flexible.

The developed programs fit to architectures of cluster systems better. SPM provides

mechanisms, such as dynamic load balancing, to assure the efficient execution of

programs. The vast majority of current programming models lack such mechanisms



for distributed environments that suffer from long communication latencies. Since

SPM employs coarse-grain tasks, the overall management overhead is small. SDB

access can often overlap the execution of other SIs; a cache system further decreases

average memory latencies. Since all SDBs are virtual entities, with the runtime

system support, they can be accessed in parallel and efficiently minimizes additional

constraints to parallelism from underlying computer systems.

In this research, a reference implementation of VM has been developed. A

performance estimation model is developed that takes these features into account.

Finally, the definition of scalability for parallel/distributed processing is refined to

represent a multi-dimensional entity. Sample cases are analyzed.
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CHAPTER 1

INTRODUCTION

1.1 Research Motivations and Objectives

The main objective of this dissertation is to describe an innovative programming

model for developing parallel programs that can efficiently execute in parallel on

distributed computer systems, mainly cluster computer systems.

1.1.1 Problem Statement

In our world people increasingly rely on computers to achieve their daily activities.

Scientists often need powerful, scalable and easily accessible computer systems, Also

business people often need powerful computers to as processing engines of their

information systems in order to achieve management operations effectively or even

use such systems to make strategic decisions. The demands for high performance

and faster response drive the evolution of computer systems. Since sequential

computer systems can hardly provide the required performance, users and computer

system developers often focus on parallel and/or distributed computer systems [1, 2].

Their focus drives the evolution of various facets of software development. One of

the most important facets is programming models. Developing software comprises

multiple levels [3-6]. Each level adopts a programming model to achieve its tasks.

Programming models are designed based on system models described with abstract

machines; there are some assumptions associated with abstract machines [7, 8].

PC clusters are distributed systems used to run parallel programs. They have

major advantages in potentially large raw capability, scalability and reasonable cost.

However, abstract machines for existing programming models do not match well with

1



2

PC clusters. As a result performance degradation is common. PC clusters have long

communication latencies than SMP servers or supercomputers [9, 10]. Therefore,

the users cannot often obtain high performance by simply using existing parallel

programming models, A new programming model for such systems is needed [11].

The model should hide the long communication latency of these distributed systems

and should address the issue of load balancing very well for high performance. In

addition, it should be easy to learn and use, and should be as much compatible in

concepts as possible with current widely used programming models [12].

1.1.2 Motivations

The motivations of this research stem from the need to develop a new parallel

programming model for efficient development of programs that can be executed on

a wide class of parallel and distributed computer systems; this need is of paramount

importance for emerging PC cluster systems. The satisfaction of the users is, of

course, critical. For given hardware it can usually be measured for a piece of software

with the total cost of ownership (TCO). This cost can be divided into two parts: the

cost of obtaining the software, which ultimately depends on the development cost,

and the cost of using the software, which ultimately depends on its performance

and maintenance cost [12]. The general goal of any new parallel programming model

should be to minimize the TCO of software developed under the programming model.

One of the objectives should be to obtain high performance since it is the most

important factor in satisfying end users; it also affects directly users' cost in using

the software. Programming models have much larger effect on the performance

of programs executing in parallel compared to sequential programs. It stems

from balancing the distributed workload, accessing remote data and various other

overheads. Other motivations that can be addressed by an innovative programming
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model are: 1) support dynamic load balancing for programs executing in parallel; 2)

provide cache prefetching for large data sets so that the latency of communications

can be hidden; 3) pack data objects and tasks coarsely, as needed, to reduce

various overheads; and 4) support the portability of programs and the scalability of

program-system pairs to satisfy end users [13]. This way, end users are free to update

their cluster systems gradually on-demand without additional cost and constraints

for migrating application programs. Also, the number of potential users for each

program should often increase.

These research motivations are compatible with existing wide used models.

From the view of software engineering, such models are easy to learn and use which

are important factors in satisfying end users [14]. How easy it is to use a programming

model can affect the speed and efficiency of software development. How easy it is

to learn to apply the model can affect the availability of qualified developers. Both

ultimately can affect the cost of software development and increase TCO. Therefore,

we should be motivated to deploy a parallel programming model that is extremely

similar with widely accepted sequential programming models; thus, any programmer

with sequential programming experience could quickly learn to use it. As a result,

a large number of programmers might shift to parallel program development for

distributed systems.

1.1.3 Objectives

The main objective of this research is to develop an easy to use parallel programming

model that can facilitate the development of high performance programs targeting

parallel and/or distributed computer systems; the main focus is PC cluster systems.

To achieve this main objective, our new programming model needs to:

• Facilitate task partitioning for parallel computation.
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• Provide a runtime support system of the model to transparently distribute and

schedule the execution of computing tasks for good workload balancing among

the member computers in the cluster.

• Provide a standard interface to programmers to explicitly express, if desired,

specific requirements for parallel scheduling and task distribution (mapping).

The runtime support system should then be obliged to follow these explicit

policies of task scheduling and distribution instead of the default policies.

• Facilitate the partitioning of application data

• Provide a mechanism for data provisioning so that the programmers should

not consider data location. This requires that the long latency of remote data

accesses should be hidden.

• Minimize all overheads corresponding to communication, data distribution and

task management.

From the software engineering point of view, this model should:

• Be used to develop programs for parallel execution on both homogeneous and

heterogeneous systems. Re-engineering the underlying cluster systems should

not prevent from continuing using the application programs.

• Make the software development scalable. Programs should be able to run on

various cluster systems of different sizes.

• Be portable. Software developed with this model could be ported to various

cluster systems.

• Be very easy to learn. It should be a direct extension of widely accepted

programming models.
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1.2 Background in Programming Models and Computer Systems

1.2.1 Programming Models

Generally programming is the process of developing software to enforce a computer

system to implement a required function; that means, it is the process of

"customizing" computer systems for specific tasks. This is a complex process.

To make this process of programming efficient, correct and easy, developers need

appropriate system methodologies. Practice proves that layering the task into

multiple layers of development is the most efficient methodology [5, 15]. In history,

creating a new layer is a milestone in progress. For example, the appearance

of high-level programming languages is such a great progress [16]. It makes

programming more convenient and productive.

In this multilayered infrastructure, a computer system is viewed as multiple

virtual/abstract computer systems or machines. Each machine is built on top of

another. The abstract machine provides some abstract operations [5]. The most top

layer is our application system.

Generally a programming model is a set of schemes for program organization,

data and task decomposition, and execution arrangement. A programming model

exists in a layered context and is associated with a set of abstract entities, namely

a system model and an execution model. The underlying systems are modelled as

sets of abstract entities described with a set of interfaces and programming is solely

based on the behavior of the specified logical entities. Well-defined interfaces serve

as a contract for the behavior, requirements and responsibilities of each part. That

is where the programming model stands [17,18]. It is an instrument with guidelines

to build software in a layered context.

The system model is an abstract machine that provides an abstract description

of the underlying virtual computer system. A programming model usually employs
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the abstract machine to encapsulate the underlying support system and setup

program semantics [19-21]. So, the architecture of the underlying system is hidden.

The structure of software is simplified by expressing operations for the abstract

machine. This makes program development easy and the programs are easily

manageable. These abstract entities in programming models are used to describe

various facets of software, the requirements and constraints of their executions, and

the program's execution environment. These abstractions also specify the semantics

of the languages that are used to build a higher layer program by specifying the

requests for services of an underlying layer. They help developers to analyze the

correctness and many other properties of programs or even analyze and estimate the

performance of program execution. These abstractions may include data models and

various mechanisms for data storage, information exchange and data manipulation.

In some sense, any programming language corresponds to a model. To conclude,

developing software with a programming model corresponds to just applying these

abstractions to build software and to describe the desired logic of data manipulation.

The well-known von Neumann computer model represents computation on

those sequential machines. It sets up a contract between the low-level computer

hardware and the high level software. Even though technology and architectural

ideas evolve rapidly, hardware designers still target efficient von Neumann machines

without much concern for the programs that will be executed on them. On the other

hand, software developers focus on programs that can be executed efficiently on this

model, without explicit consideration of the hardware. The von Neumann model is

versatile to enable diverse programs to run efficiently on sequential machines [18].

An execution model is the scheme used to execute software on the corresponding

abstract machine. It specifies how operations in a program are executed. Combining

an abstract machine and its execution model provides an instrument to describe
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the process of state change in the corresponding computer system. Such a state

machine can clearly define program semantics. This provides the basis for analyzing

the correctness of programs. The execution model also can be used to estimate

program performance. Programmers and/or the compiler can use it to optimize

coded programs [22].

Since programming models provide an instrument to express operations of

application programs in a highly abstract manner, programmers can focus on

high-level application logic, but ignore the details of the computer system and its

execution steps, The programming with such abstract operations can offload major

work to lower layer system developers. So the employment of high-level programming

models can reduce the complexity of programming [14], This, in turn, can increase

the efficiency of program development and increase productivity.

1.2.2 Requirements of Programming Models

Abstraction in programming models is essential. Programming models must be based

on abstract machines, should completely encapsulate the underlying support systems

and should be independent of system architectures [18,23]. Programs developed with

such models will be easily ported. Developed software will be more stable and could

survive the evolution of computer system hardware. To adhere to abstraction, the

implementations of abstract entities in these models must be transparent to the users

of the programming models.

For programming models to be usable, programmers must be able to express

data structures and logical operations with the basic elements and constructors of

the model. Only if the programming model provides adequate expressiveness, will it

be possible to isolate high-level programming from low-level implementations of the

underlying computer system. Otherwise, encapsulation in the programming model



8

of the underlying system is broken. It is also important for the programming model

to get sufficient support from the underlying computer system. To be practically

usable, the architecture should provide good support to implement the model.

1.2.3 Evolution of Systems and Programming Models

For higher performance and better usability, computer system architectures have

been constantly evolving. One of the common trends in system evolution is the so

called parallelization [24]. In some sense, almost all contemporary computer systems

are parallel in nature. They have multiple functional units in a single processor

[25, 26], multiple processors on a board, multiple computers in a box [27-29] or even

multiple computer hosts in a network [9,30,31]. Another trend is distributed system.

This evolution is driven by both improved design techniques and increased social

needs. The appearance of the Internet, www services [32, 33] and grid computing

[34, 35] are all results of this trend. During the evolution of computer systems,

standardization plays a critical role. It gives developers of programs concise and

clear environments. Programs become portable for wider use. PC cluster systems

are a good example of using commercial the off-the-shelf (COTS) PCs as building

blocks for cost-effective parallel and distributed computer systems [24].

Because of the recent evolution in computer system architectures that has

broken away from those previous abstract machines for parallel computers and

supercomputers , old programming models cannot encapsulate the new emerging

features without loss in performance. In this case, both the system model and

programming models also have to evolve. Thus, the development of a unifying model

for parallel computation is required for general-purpose parallel and distributed

computing [18].
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1.3 Clustered Computer Systems

1.3.1 Cluster Technology and PC Clusters

Clustering of resources is a technique that groups identical or similar functional units

together to form a larger system. A clustering technique can be used at various levels

of a computer system for different components. The clustered components could be

multiple ALUs in a processor [36], multiple processors in a computer [29,37], multiple

disks in a storage system [38,39], multiple computers in a large web server or a large

computing facility [40-43].

The primary reasons of using a cluster technology are to build a large system

with improved capabilities, reliability and availability using COTS components [44].

Clustering also provides a mechanism to improve the scalability of a system [2, 45]

because users/administrators can expand the system easily by adding additional

COTS components; for at least a certain size range, the capabilities of a clustered

system can almost linearly increase by increasing the number of member components.

Clustering provides a mechanism to improve system availability [46,47] and reliability

[48-50]; member components can back each other up. Since member components are

often similar and standardized the cost of development is low.

Computer clusters contain computers as the building blocks. The member

computers, called nodes or hosts, could be SMP (Symmetric multiprocessors) servers,

minicomputers, workstations or PCs (personal computers) [29, 51]. PC cluster

systems (or PC clusters in short) employ common PCs normally running public

domain software [31]. They are also connected via standard network devices and

techniques.

The main reasons that have made PC clusters very popular are cost

affordability and accessibility.
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1.3.2 More Characteristics of PC Cluster Systems

A feature that differentiates PC clusters from other multi-computer systems is

their network. A super-computer has a customized inter-processor communication

network [15, 52, 53] and a customized data network that connects the processors to

mass memory devices. When increasing the number of processors, the complexity of

these networks increase super-linearly. However, a PC cluster has neither specialized

inter-processor communication network nor special memory access networks [54,55].

The communication between processors belonging to different member computers

must go through network interface cards and the general-purpose network. Current

practices have shown that simple and linearly scalable networks can be used to build

very large computer systems, thus, improving scalability. Compared to massively

parallel processor systems, PC clusters have very fat nodes. Each member node

is an individual single- or multi-processor computer containing several memory

modules and various storage disks. These PCs may possess locally installed

programming libraries, administration software and utility programs; there may also

exist many local system services on these member computers. These PCs even have

auxiliary processors dedicated to network access. Also, nodes in PC clusters are

fat autonomous systems where tasks are ultimately scheduled by the local operating

system.

1.4 Background in Programming PC Cluster Systems

1.4.1 Programming Model Requirements for PC Cluster Systems

Generally, programming models are required to have some basic functionality. They

should provide:

1) Instruments to decompose application data (to declare complex data)



11

2) Tools to define and delineate subtasks (statements) so that programmers can

develop large application conveniently

3) Mechanisms to specify order constraints in executing the subtasks in

application programs (for scheduling).

For distributed programming models, additional functionality is required

corresponding to:

1) Partitioning application data into multiple groups and distributing them among

the member computers

2) Providing a mechanism for data communication between distributed processes

(i.e. a facility to remotely access distributed data),

3) Mapping application tasks into multiple groups of member computers so that

all of these resources can be utilized.

4) Providing a mechanism to distribute tasks to member computers (either by

distributing the existing tasks or launching more threads).

For high performance, the runtime support system of a parallel programming model

should also provide:

1) Mechanisms to exploit the parallelism in programs while execution system can

keep the aforementioned order constraints.

2) Workload balancing among multiple processors.
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1.4.2 Existing Programming Models

Since the nature of PC clusters, which are both parallel and distributed,

currently programmers employ various existing parallel programming models and/or

distributed programming models to develop application programs. Most of these

models were initially developed for some other types of systems. Distributed system

programming models assume that processors and memories are spatially distributed

in multiple autonomous computers [56]. Processors can only access their local

memory. Programs consist of multiple pieces running on different computers. These

pieces have their own instruction streams and data stored in the local memory.

They co-operate with each other by communicating through a network. Most

distributed system programming models stem from the client-server model [57]. In

the client-server programming model, applications are split into client and server

parts distributed to many computers. Clients invoke methods of server programs

when they need to achieve pre-defined tasks; server programs execute predefined

procedures when receiving requests and they then send the results to clients. After

gotten a response, a client resumes its blocked thread. That is, the execution of

threads crosses the boundary between processes and computers. RPC (Remote

Procedure Call) is a typical client-server programming model. In distributed

programming models, partitioning and delineating tasks is embedded in declaring

and defining for remote accesses; remote procedure invocations provide mechanisms

for both data and task distribution. Each call of a remote procedure just delivers

a task to a server process. The passing of arguments and the return of results

for remote procedures achieve the functionality of distributing data. In principle,

distributed programming models emphasize the distribution of tasks. The roles of

client and server can be dynamically determined within the context of programs

progressing [58], CORBA is a widely used distributed programming model [59, 60].
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Logical threads in CORBA consist of executing methods on objects distributed to

multiple computers. Through invoking remote methods, multiple distributed threads

executing these methods are connected and they form these logical threads. DCOM

is another example of a distributed programming model in the Windows world [61].

RMI is the Java version of a distributed programming model [62-64].

In a strict sense, client-server programming models are not parallel

programming models, since an underlying program is blocked. Several distributed

programming models do develop some basic features to support parallel execution,

where clients also can invoke methods of servers asynchronously. Clients no longer

need to block local execution threads. Servers can send back their responses via

callback interfaces of the clients. The message-driven EJB in J2EE is such a good

example that use asynchronous communication. However, these models still lack a

sophisticated mechanism to schedule global tasks. For this reason, there are a number

of efforts to enhance the parallel features of distributed programming models [63].

Parallel programming models have been studied extensively [65-68]. In these

models application programs consist of multiple processes [15, 23, 56, 69] executing

the same or different program codes simultaneously on multiple processors. Parallel

programming models can roughly be classified into two types [56,70]. The first

one follows the SIMD (or SPMD) paradigm that exploits the data parallelism. The

second one follows the MIMD paradigm that exploits the task parallelism. Based

on the way of exchanging data between processes, parallel programming models

are basically classified into two groups [71]. The first group is message-passing

models where each process only has a local view of its own independent programming

space [23,72,74 It has no idea about the data structure used by peer processes.

The other group is shared-memory models where the processes use a shared logical

programming space [23,74-76]. These programming models are independent of
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the system architecture [23, 77], which can be encapsulated. The shared-memory

programming models can be used for both shared-memory and message-passing

architectures. Shared-memory models may need software distributed memory (SDM)

systems [74,78] to encapsulate distributed architectures. On the other hand, message-

passing programming models can also be used for shared-memory architectures by

using the sharing memory mechanisms to emulate with message-passing channels

[79]. These encapsulations usually introduce additional overheads [80].

Message-passing models are very common in parallel programming. In practice,

programs are written in a sequential programming language, such as C or Fortran,

and data exchanges employ calls to message-passing libraries. PVM (Parallel

Virtual Machine) is a message-passing programming system that combines a set

of computers to form a single, manageable virtual machine [81, 82]. PVM exploits

both data and task parallelism. It has been ported to many different systems. MPI

(Message Passing Interface) is another standard specification for message passing

[83]. Following MPI, many libraries such as MPICH [84] and LAM [85] have been

developed. The primary advantages that make MPI popular are its generality and

portability. Using MPI, programmers can express any conceivable data distribution

and be confident that the programs developed with MPI could run on any parallel

platform.

Bulk Synchronous Parallel (BSP) is a special kind of a message-passing

programming model [86]. In standard message-passing models, messages can be sent

at any time and may be received out of order. Messages coming from different senders

may interleave each other. Such a scheme makes programs prone to deadlocks and

analyzing and predicting the performance of programs may be impossible. Instead of

allowing this chaotic approach, BSP organizes the execution of application programs

in a sequence of supersteps [18, 87]. Each superstep consists of three segments:
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local computation, global communication and barrier synchronization. Only in

the global communication stage, the distributed processes are allowed to exchange

results generated in the previous computation and prepare the operands for the next

computation stage. Thus, no process is stalled to wait for data during execution [86].

In the communication stage, many messages may be merged into large packages that

make communications more efficient.

Shared-memory models also are widely used for their simplicity and easiness of

programming. Shared-memory models can adopt data or task partitioning to allocate

the workload. When applied to distributed systems, they usually employ an abstract

data layer to encapsulate the distributed memory in the underlying machines [88].

Global array languages use shared-memory models with the SIMD (SPMD) paradigm

to exploit data parallelism. ZPL [89], Co-Array Fortran [90], Unified Parallel C

[91, 92] and Titanium [93] are all in this style. OpenMP is another shared-memory

parallel programming model [94]. It defines a specification for a set of compiler

directives, library routines, and environment variables that can be used to specify

shared memory parallelism in Fortran and C/C++ programs. Programmers use

these directives to declare parallel constructs in sequential-like programs. OpenMP

uses the fork-join parallel execution model. When a parallel construct is encountered,

the executing thread creates a group of working threads and the creator becomes the

master of the group. Each thread in the group executes in parallel the same code

specified by the construct. At the end of the construct, all threads in the group

execute a barrier. Although this fork-join model can be useful in solving a variety of

problems, it is somewhat tailored for large array-based applications.

There are also many shared-memory parallel-programming languages that

adopt the MIMD style to exploit both data parallelism and task parallelism. Cilk is

a typical example in this category [95,96]. Programs consist of multiple computation
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tasks executed in individual threads in a shared common context. The programmer

concentrates on structuring the program and leaves the responsibility of scheduling

the computation to the runtime system [95, 97]. Cilk also uses the fork-join model

[98, 99]. Programmers can split a part of the computation into an independent

task that will execute in a separate thread. This achieves the functionality of task

mapping.

Object-oriented programming methodologies extend the concept of shared-

memory models to shared-object models [100,101] and combine parallel-programming

with distributed- programming models. Under this kind of models, objects are

programming entities. Programmers implement their programs in a global object

space instead of global address space. All application data are encapsulated in

objects and all computations are encapsulated in methods that can be applied to

the objects; methods are called to manipulate data stored in objects. The primary

responsibility of the programmers is to implement these methods and to specify when

and which objects are called. During execution, these objects are distributed among

multiple processes. They know each other by their name or ID rather than their

address. The execution of programs may produce calls that may cross the boundary

of processes by sending messages. The execution of programs is driven by events

that trigger calls to methods.

Charm++ is a good example of an object-oriented parallel-programming model

[102]. Charm++ uses a runtime library to let C++ objects communicate with

each other efficiently. A program consists of a number of charm++ objects named

chares, Chares send messages to each other by invoking these entry methods

asynchronously. One of the important differences of charm++ with other distributed

programming models is that objects float between processors; that means objects

may be migrated when the runtime system wants to balance the workload among
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the processors. Programmers are responsible in decomposing the computation into

entry methods of chares and specifying when to create new chares or send messages

to existing chares. The intelligent runtime system maps these chares to available

processors and schedules the execution of methods to respond to messages [103].

Conceptually, the system maintains a "work-pool" consisting of seeds for new chares

and messages for existing chares. The runtime system may pick up multiple items

non-deterministically from this pool and execute them. Charm++ uses one-side

asynchronous remote method invocation. Charm++ supports efficient dynamical

load balancing by using object migration for irregular and dynamic applications; it

can also deal with external factors that cause load imbalance.

1.4.3 Problems with Current Programming Models for PC Clusters

Most of current parallel programming models were initially developed for some

special computer systems and then ported to other types of parallel computing

platforms. So far no "native" programming model has been developed for PC

clusters. Even though all parallel programming models can be ported to PC clusters,

the cost of porting these models is usually a major sacrifice in overall performance

because the architecture of PC clusters does not match well initial prototypes for

these models. There are two fundamental features that prevent developers from

applying very well existing programming models to PC clusters. The first one

is the atomicity of nodes. Since local operating systems control the computing

resources, estimating the execution time of partitioned tasks becomes more difficult

and workload balancing becomes a bigger issue that impacts system performance.

Another feature is the long communication latency associated with interconnection

networks for PC clusters. Due to the lack of dedicated data networks, the latencies of

data communications may be more than 1000 CPU cycles. This is much longer than
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the latencies in systems with dedicated data exchange networks. With the improved

frequencies of CPUs for member computers, the effect of these latencies will become

even more preeminent.

The existing shared-memory programming models are too sensitive to data

access time. All of these models depend on sequential programming languages that

support ad hoc accesses of fine grain data. Instructions on individual processors are

in a sequential stream, so if accessing the memory takes too long time the instruction

using the data and all following instructions have to be stalled. Mature sequential

programming models address this issue by attempting to hide the latency of accessing

memory. But in PC clusters, the latencies are prohibitively high. Thus, it is difficult

to hide latencies. Another problem of applying existing shared-memory programming

models to PC clusters is related to the appropriate decomposition of tasks for load

balancing.

In global array languages, the work of mapping tasks is statically done through

code directives that partition the global arrays and map them to processors. The

effectiveness of this approach depends on predicting accurately the workloads of

processors. For PC clusters, the CPU time for individual tasks varies; many external

factors can affect the execution time of a task. Thus, the approach of statically

balancing the workload may not work very well. Other shared-memory programming

models that exploit task parallelism, such as Cilk, dynamically map tasks to the

processors. The runtime system can balance the workload dynamically by launching

threads for new tasks on light processors or migrating active ones. This is a very

attractive approach that is much better than static approaches. The problem of

applying this approach to PC clusters is the cost of migrating active threads.

Message-passing models for PC clusters can partially address the issue of long

latencies through multithreading and asynchronous communication techniques for
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latency hiding. However the primary disadvantage of these models is that they

require the programmers to manage all of the details for data distribution, parallel

computation and inter-processor communication for each process. This is tedious

and error-prone, and it often obscures logical computations. The tasks are statically

associated with the program(s) at the time of coding and are mapped to processors

at launching time. If the programmers do not include some adaptive logic in their

code, the distribution of the workloads can only be statically balanced; as mentioned

above, the statically approaches do not work very well for PC clusters. Adding some

adaptive logic in the programs may do much better [104, 105]. The drawback of

dynamically balancing the workload is that programmers must code the adaptive

logic and embed it into the application logic. The message-passing model and

corresponding runtime systems do not provide automatic mechanisms to do so.

Incorporating dynamically load balancing techniques at the application level involves

significant changes to the design and structure of applications. Actually, the logic of

load balancing is incorporated in the data distribution logic. This approach makes

communications even more complex and the process of developing large complex

software becomes even more tedious, more error-prone and less productive. In the

view of software engineering, mixing application logic with logic for load balancing

makes it more difficult to reuse the logic for load balancing. Thus, programmers

have to recodes the logic for load balancing for each application program.

The problems of applying object-oriented parallel programming models to

PC clusters are still load balancing and long latencies for communications. Load

balancing is bigger issue. It is a problem related to object distribution since

computation code is associated with specific objects; these objects may be pinned to

processors, may be duplicated among processors or may float among processors. For

many distributed programming models, such as CORBA and J2EE, administrators
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deploy these objects into some containers that reside on specific computers. These

approaches are equivalent to static load balancing. In some situations, some objects

may become hotspots. In the purpose of balancing the workload, floating these

objects is more attractive. This necessitates migrating objects from one process

context to another one when load is not balanced. But similarly to migrating

active threads, the cost of migrating objects will rise. In complex heterogeneous

environments, this cost may be prohibitively high. This may be the reason that most

distributed programming models currently choose a static model of deployment.

1.5 Research Methodology

In this research, the author tries to port the von-Neumann computer model to

the context of PC clusters. The proposed approach inherits all the advantages of

existing programming models and the most widely accepted concepts. The new

model is easy to comprehend and grasp and optimizes the spatial and temporal

localities in program execution for high performance. There are two characteristics

that support these changes. First, all program components are virtualized through

appropriate software implementation, Second, coarse-grain data and complex

domain dependent operations are employed. The former virtualization eliminates

the limitations imposed by hardware implementations and makes it possible to

change the size of these components in a very large scale. One of the most obvious

example is instructions. Traditionally, a processor instruction adheres to its hardware

implementation and can complete a simple logical or arithmetic operation. Also its

operands are limited in size (such as 32bits or 64 bits). In contract, our approach

for program development employs instruction that can deal with operands of various

sizes.

This modular approach inherits huge volume of valuable assets by exploiting

existing achievements. There are a lot of libraries to support various functions
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and a lot of tools have been developed. All of them can be used directly for

programming PC clusters without much effort to port them. Programming models

and methodologies for program development for PCs are very mature. They can

be employed directly for programming PC cluster. Also, the major of program

developers are familiar with these models and methodologies. Thus, it will be a

big advantage to exploit these successful achievements when developing code for PC

clusters. To conclude, our proposed program design methodology will be based on

sequential programming concepts through the development of appropriate instruction

sets for applications. In addition, a runtime support environment will be developed

for code porting, data sharing and exchanges and latency hiding

1.6 Outline of This Dissertation

Outline of Dissertation Following this introduction, Chapter 2 will give complete

description of the proposed programming model - Super-Programming Model.

In Chapter 3, a complete description of the runtime support system for our

programming model is given, and a reference implementation and a set of relevant

interfaces are presented. In Chapter 4, two examples from two different application

domains, namely the business intelligence and scientific/engineering computation

domains, are presented to illustrate how to develop programs targeting PC clusters

for distributed processing. In Chapter 5, based on the execution model of SPs

developed under SPM, the cost of execution is analyzed; various overheads are

quantitatively defined and the management overhead is discussed as well. In

Chapter 6, a mechanism for load balancing under SPM is discussed. Also, a model

to estimate the imbalance overhead is formalized. The real effect of the imbalance

overhead is evaluated with experiments. Our results are also compared with another

approach for programming PC clusters. In Chapter 7, the communication overheads

of SP execution are analyzed; the techniques that can be used to minimize factors
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that can reduce the execution performance are discussed. In Chapter 8, a distributed

data virtualization scheme that can benefit parallel program execution is presented.

In Chapter 9, a new definition of scalability is presented and the scalability properties

of various setups are analyzed. The chapter 10, summarize this research.



CHAPTER 2

SUPER-PROGRAMMING MODEL (SPM)

In sequential computation, the von Neumann unifying model sets up a standard for

hardware and high-level software designs. Software developers target programs that

can be executed efficiently under this model, without explicit consideration of the

underlying hardware. Parallel programming also needs such standard bridge models

[18,19]. In this chapter, a parallel programming model is proposed for distributed

computer systems.

2.1 Overview of the Super-Programming Model

In this dissertation the super-programming model (SPM) is proposed for developing

parallel programs for distributed systems, such as PC clusters. The proposed model

expends existing mature programming models for von-Neumann machines. The

system model is basically modeled as a von-Neumann machine with multiple ALUs

that can perform complex tasks. It replaces simple processor operations with much

coarser tasks.

Developing software under the SPM consists of four layers. The lowest

layer is development of the virtual machine (VM). It includes designing and

implementing various components of the VM. The second layer is development of

a super-instruction (SI) set architecture to customize the virtual machine. The third

layer is development of reusable parallel program units called super-functions (SFs)

that are implemented with super-instructions. The highest layer is development of

application programs with super-functions and super-instructions

23
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In SPM, targeted systems such as PC clusters are modeled as VMs with high-

level architecture similar to a PC [106]. The VM contains a super-processor consisting

of an instruction fetch/dispatch unit (IDU) and multiple instruction execution units

(IEUs) that form the ALUs of the VM. The important difference between the VM

and a PC is that the functional units (FUs) in the VM are much coarser and each

FU contains a complete "microcomputer system." These FUs are implemented as a

set of processes running on member nodes. Communication channels between these

processes carry out the functionality of "buses" in the VM. The main memory of

nodes can work as data and instruction caches. All these implementation processes

of the FUs make up the runtime support system.

The processors in the VM can execute some predefined abstract operations to

manipulate a set of "built-in" data types that may be specific to the application.

These data types are called as super-data blocks (SDBs) and are much coarser

than an integer or floating point number. These abstract operations are called

super-instructions (SIs). Programming in SPM ultimately is just coding application

programs using SDBs and SIs.

SDBs work as abstract operands for SIs. They input data and receive result

data. An SDB may be expressed in different local formats on different nodes. At

runtime these SDBs are incarnated and mapped onto data structures stored in

underlying nodes. Implementers are free to incarnate SDBs with any data structure.

As long as the SDB formats have been set up along with the SDB exchange protocols,

nodes with different architectures can freely exchange SDBs. This feature makes it

very easy to work with heterogeneous clusters.
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2.2 Super-Instruction Set Architecture

The instruction set architecture (ISA) is most important user interface of a computer.

It bridges hardware implementations with software systems. It is the basis of

programming. SPM also uses the concept of ISA. The super-instruction set (SIS)

architecture is the core of SPM that becomes the interface to high-level programming.

2.2.1 Super-Instructions and Their Features

SIs are abstract "built-in" operations of the VM. Since the FUs of the VM are

implemented with software programs, these SIs are mapped at runtime to ordinary

procedures and are executed in the context of IEUs. Since IEUs are supported by

complete PC nodes, they may be very powerful. But, SIs have the following features

similar to ISAs for ordinary processors:

1) SIs support atomic operations. Each SI can only be assigned to and be executed

on a single IEU. Also there is no communication logic embedded in the body

of an SI.

2) SIs are for abstract operations. Programs using SIs only care about the result

of the executed SIs. Thus, system developers are free to implement SIs in any

way and the runtime support system also is free to choose the most appropriate

procedure in executing them.

3) The workload of an SI is predictable. Each SI has a set of known operands with

a pre-defined size limitation. Thus, the workload of an SI has a quite accurate

upper bound.
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4) The data dependences are handled only at the beginning and end of an SI's

execution. Once all operands are locally available, an SI can be executed

without any interruption.

2.2.2 Functionality of Super-Instruction Sets

The chosen ISA in SPM is an instrument in customizing the clustered computer

system. For each application domain, domain experts can develop an effective SI set

architecture. Also, the SI set is expandable for each domain so that it matches the

application's requirements. The SI set should provide all required basic operations.

This is called completeness of the SI set. This makes it possible to express all

applications in the domain with these SIs. The SI set encapsulates the underlying

support system, This enhances portability and reusability of software components.

Application programs are modelled as super-programs (SPs) that can be ultimately

coded with SIs of the particular domain. Application programs just use SIs without

a need to take care about the implementation of SIs.

SIs also provide a good basis for program porting. Since SIs are implemented

with procedures, portability is enforced through standardizing SIs. As long as an

efficient implementation exists for each SI on the nodes, SP code portability is

guaranteed. The SIs also normalize operation workload. The workloads of SIs can be

designed to have a similar upper bound. Thus, SIs can have expectable workloads.

This provides a good basis for dynamically balancing the workload by appropriately

scheduling these SIs. The multiple IEUs in the VM can be easily balanced through

dynamically scheduling SIs to available processing units at run time. When the

degree of parallelism in an SP is much larger than the number of nodes in the

cluster, any node has little chance to be idle. Good load balancing becomes more

feasible by focusing on scheduling at this coarser SI level.
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2.3 Programming with SPM

Programming with SPM inherently is the process of developing programs with SIs

for a specified application domain. For completeness, a high-level programming

language and a corresponding compiler may be needed. However, for illustrative

purposes in this dissertation, this process is simplified and embedded in the code

used to implement the VM.

2.3.1 Super-Functions

To facilitate ease of developing applications, SPM adopts a structured programming

style. Higher-level reusable programming units called Super-Functions (SFs) are

developed. SFs are coded with SIs and/or other SFs. They may combine many SIs

to form higher level abstract operations. SFs are "binary" executables for the VM.

While executing SFs, the IDU fetches SIs in SFs and dispatches them to the IEUs to

execute, More than holding a set of SIs, SFs also include order constraints in issuing

SIs. By cooperating with the VM, SFs control how to issue the SIs in order and how

to exploit parallelism,

2.3.2 Functionality of Super-Functions

Super-functions play a critical role in SPM. First, they provide a high-level abstract

layer. It makes SPs to be more concise when expressed with SFs. These SFs

can also be reused in either the same SP or different SPs as library components.

Therefore, these SFs can be developed once and be used in many places. This can

increase productivity and reduce the development time. Thus, ultimately they can

reduce the cost of program development. Second, SFs play a critical role in the

parallelization of SPs. As mentioned above, SPM targets parallel and distributed
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systems and the VM provides the mechanism to execute multiple SIs simultaneously.

Thus super-instruction level parallelism (sILP) is supported, while SIs are sequential

procedures. This means that programmers and/or developing tools must deal with

the parallelization when coding SPs. To parallelize the execution of SPs, the VM

must extract parallelism among SIs when executing a SP. Since SFs include all SIs and

also hold information about dependences among the SIs, these SFs, can cooperatively

give the information that the VM need to schedule SIs, i.e., SFs are responsive of

helping the VM to make execution of SPs parallel.

From the programming point of view, SFs help in expressing the parallelism

in algorithms. SFs can co-operate with the runtime support system of the VM

to dynamically check for dependencies between SIs. This makes dynamic load

balancing a responsibility for the runtime system. In addition to implicitly expressing

dependencies in code, developer of SFs can add some logic to specify all kinds of

constraints for executions of SIs in parallel and/or explicitly express dependencies

between these SIs.

2.4 Execution of Super-Programs

Execution models are used to describe the behavior of programs during execution.

Here the execution model for SPs is described. While executing an SP, the IEUs of

the VM are the workhorses. When the computing resources in an IEU are available,

the IEU requires the IDU to allocate more SIs to it. For a new SI, the IEU selects an

implementation of the SI and loads its executable into the context of the IEU. In the

process of localization, the IEU also loads the operand SDBs for the SI and localizes

these SDBs by mapping them to local data structures in the IEU context. After the

localization process, the IEU executes the local version of the SI as an independent

working thread. After it finishes the execution of an SI, the IEU notifies the IDU
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to commit the SI and begins another cycle. If there is no available SI, the IDU will

deny the request of the IEU. In this case, the IEU will repeat its request later.

At runtime, the VM has a priority task queue that virtually holds all tasks

(SFs/SIs) that need to be executed. SFs in fact contain their own queues of SIs. SFs

feed their tasks to the IDU of the VM when the latter looks for more SIs to satisfy

the request of IEUs. If the fed task is an SI, the SI is assigned directly to the IEU

that requests an SI. If the fed task is another SF, the SF is incarnated and activated.

The activated SF is added to the task queue of the IDU to serve as a source of SIs.

Generally, an entire SP may be treated as a large SF. it is added into the task queue

of the VM when the system start to execute the SP.

In the execution model, the IDU controls all active SFs in its task queue; it can

be a priority structure based on the properties of SFs. When an IEU asks for more

SIs, the IDU turns to the active SFs in its queue to find an available SI to be issued.

The order of SFs to feed the IDU is based on the priority of the SFs. A low priority

SF can feed an SI to the IDU only if all higher priority SFs do not have an available

SI to issue. Once the IDU gets notice from an IEU to commit an SI, the IDU sends

a feedback to the corresponding SF. SFs can use this feedback information to adjust

their status. When the IDU requests an SF to feed more SIs, it also gives the SF

some information about the requester. SFs can use the information to optimize their

behavior of feeding SIs so that they can maximize parallelism and maximize resource

utilization. Activated SFs keep themselves active until all tasks they hold have been

executed and committed. After that, the IDU also commits the execution of the SF

similar to SIs.

Although an SF holds a set of SIs, the tasks that make up an SF are not

necessary static. It is not necessary to determine the number and type of SIs to be

actually executed at development time. It is even not necessary to determine when
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the SF is to be activated. Like the number of instruction that a loop structure fill

into instruction stream is determined at runtime. Some SIs/SFs can be created on

the fly and then they are added in task queue. This feature makes SFs more flexible

and powerful.



CHAPTER 3

THE RUNTIME SUPPORT SYSTEM AND A REFERENCE

IMPLEMENTATION

All programs developed under the SPM are executed on a virtual machine that

is built on the top of a distributed multi-computer system, such as a PC cluster

system. The virtual machine is implemented with software programs to perform

operations specified in application programs. The software programs include two

parts. The first part is the runtime support system of the virtual machine. It

is the core of the implementation of the virtual machine. The runtime support

system provides general mechanisms to support the execution of programs developed

in the SPM. It does not depend on any application domain. The other part is

the implementations of the super-instruction set that specifies the basic operations

the virtual machine can perform. It depends on application domains and then can

be used to customize the virtual machine. In this chapter, through describing a

reference runtime support system, the structure of runtime support system of SPM

is described. Some important interfaces are defined.

3.1 Structure of the Runtime Support System

The runtime support system (RTS) for SPM is a collection of programs that make

up the core part of the VM implementation. It provides a high-level environment to

execute SPs. The structure of RTS can be described in a high-level logical structure

and a low-level physical structure.

31
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Figure 3.1 Logical structure of the virtual machine

3.1.1 Logical Structure of the Runtime Support System

Similar to the architecture of a PC, the logical structure of the VM consists of system

memories, an instruction dispatch unit (IDU), instruction execution units (IEUs) and

a data cache subsystem. Fig. 3.1 illustrates this logical structure. At this level, the

IDU controls the execution of SPs. It fetches SIs from the task queue and distributes

them to IEUs. The IEUs select the most appropriate local implementation of the SI

to execute.



33

Figure 3.2 Physical structure of the reference runtime support system
(deployment of component processes)

3.1.2 Physical Structure of the Runtime Support System

Physically RTS consists of multiple processes executing asynchronously. They

cooperate with each other to support the execution of SPs. Each process runs on a

member node of the PC cluster. Figure 3.2 illustrates the overall physical structure

of a reference RTS.

These RTS processes can be classified into three types: management processes,

virtual nodes (VNs) and the virtual center. Management processes are used to boot

up the VM and set up communication channels. The VNs provide low-level runtime

environments that host multiple threads to perform functions on the virtual units
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Figure 3.3 The components of a virtual node

and hold all the resources allocated for these threads. This structure of threads is

shown in Figure 3.3. The virtual center is a special node process that holds a task

center and a data center.

The IDU is a virtual functional unit, which is a set of threads distributed

and embedded in the VNs. Its structure is shown in Fig. 3.4. The memory and

data caches also are virtual components. The memory of the VM represents all the

external storage. The data cache is a temporary storage of limited size, which is

faster than memory. Physically it may map to the distributed memory of nodes in

the VN. Part in a VN becomes the level-1 cache of an IEU and also the level-2 cache

of another IEU in the VM. This distributed structure is shown in Figure 3.5.
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Figure 3.4 The distributed structure of the IDU

Figure 3.5 The distributed structure of the data cache subsystem

3.2 Task Distribution System

The task distribution (sub)system is one of most important parts of the runtime

support system. For executing programs on a distributed computer system, task

partitioning and distribution are essential. For programs developed under SPM,

tasks are partitioned into standard units - SIs. Task distribution is achieved by

dispatching individual SIs in programs. This process is performed dynamically at

runtime. Therefore, the runtime support system includes a task distribution system.
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In the VM of SPM, the task distribution system is implemented with the SI

dispatch unit (IDU). The IDU dispatches SIs to available processors in correct time

order. Specifically, the functionalities of the IDU include:

1) Fetching SIs in SFs;

2) Checking data dependencies among issued SIs;

3) Dispatching each time the SI with the highest priority which is ready to be

issued;

4) Handling all issues related to SI issuing and commitment;

In the VM, the IDU is a passive unit. It is triggered to work only by

external actors. These triggering actors may be IEUs that request more SIs or

the commitment of an SI. They may also be users submitting super-programs with

request to add their initial SFs to the task pool in the IDU. The IDU is actually

implemented as a set of task agents being part of the runtime system processes

running on member computers. These agents include the task agent and the task

center.

3.2.1 Task Center

The task center in the core of the IDU controls the task distribution. It determines

where and when these tasks are to be distributed. Each SP is a special SF that holds

all SFs/SIs implementing the corresponding application program under the SPM.

When a new SP arrives the task center adds corresponding SF, to the task pool.

When an IEU asks for an additional SIs, the task center gets the SI with the highest

priority from the task pool after checking for SI dependency. If there exists such an

SI that is ready to be issued, the task center dispatches the SI to the requesting IEU
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for execution. When it gets message for the commitment of an SI, the task center

updates its status appropriately in order to deal with SI interdependencies.

3.2.2 Task Pool

The task pool is a queue structure that helps the task center to find a correct task

to issue. Logically, the task pool holds all SIs that must be executed but have not

yet been issued. It puts SIs in the queue based on the priority properties of SIs/SFs.

The priority of SIs in SFs/SPs is normally implied from data dependencies while

programmers may assign a relative priority to different SFs/SIs between which there

is not data dependency.

The task pool does not need to hold each all the available SIs. It only holds

the SIs that the system currently knows should be definitely executed. During the

execution of SPs, new SIs can be added to the task pool based on task activation.

This approach makes the task pool small and more efficient.

For higher efficiency, the task pool can also contain SFs. If the task with the

highest priority is an SF when a new SI must be issued, the IDU will ask the system

to provide an SI from the active SF. An SI from the SF's task pool can be chosen or

even can an SI can be created to respond the SI request.

Data dependencies are adhered. A low priority SF can be used to feed an SI

for scheduling only if all the SFs with higher priority cannot provide an SI due to

constraints from data dependencies. The system will keep all activated SFs are kept

active until all their tasks have committed their results. After that, the IDU also

commits the SFs as SIs.

SFs are programming units. Using them in the task pool creates a new

mechanism for interaction between the runtime system and programs. This makes



38

the runtime system more flexible. Actually when the IDU gets a notice to commit an

SI, the task center can "inform" the corresponding SF. This feedbacks information

can be used to adjust the SF status. When the IDU requests for an SF to forward

more SIs, it can also provide information that can be used in an effort to maximize

parallelism.

3.2.3 Task Agent

A task agent is the local representative of the IDU for the task distribution system.

Task agents are physically distributed among multiple computers but they reside in

virtual nodes. All task agents in the virtual machine cooperate each other to perform

the tasks of the IDUs Each virtual node process includes a task agent. SFs and all

other parts of the runtime system interact with the IDU through the local task agent.

3.2.4 Reference Implementation

The entire reference system is implemented in the Java programming language.

Therefore, when designing the reference runtime system, the components are

specified with java interfaces.

In the reference implementation, the task agents are specified with the interface

TaskAgent shown in Figure 3.6. It also serves as the main interface of the

IDU. Although it could be implemented in a distributed manner, in the reference

implementation the task center is not distributed. It resides in a special virtual node

- the virtual center node process. It is specified with two interfaces. The first one,

TaskCenter, provides the interface for all task agents to request SIs and commit

SIs. The second one, LocalTaskCenter, provides the interface to add SFs in the task

pool. It is only available to local components in the virtual center node. To check
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public interface TaskAgent extends TaskLocalizer{

public void addLocalTask(Task task);

void addTaskScheduler(TaskGroup task);

public IncarnatedTask getNextTask();

public void commit(IncarnatedTask task);

public void setTaskCenter(TaskCenter center);

}

Figure 3.6 The interface of the task agent

public interface TaskCenter {

Task getTask(TaskRequest request);

void commit(TaskID tasklD, TaskCommitMsg feedback);

}

public interface LocalTaskCenter extends TaskCenter{

void addScheduler(TaskGroup task);

}

public interface TaskIssueCtrl {

boolean canlssue(Task task);

void commit(Task task);

}

Figure 3.7 The interface of the task center

data dependencies in SFs before responding to the task center, the task center also

exposes another callback interface, TaskIssueCtrl. They are all shown in Figure 3.7.

The interactive processes to commit and issue an SI are illustrated in the

sequence diagrams of Figures 3.8 and 3.9, respectively.
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Figure 3.8 The sequence diagram for committing an SI

Figure 3.9 The sequence diagram for issuing an SI
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3.3 Task Execution System

Executing super-programs on a VM under SPM is performed through scheduling and

executing all SIs of the SPs. The task execution system in the VM is part of the

runtime system that executes SIs. The task execution system consists of all IEUs

in the VM. Although the entire task execution system is distributed, an IEU is not.

This property isolates the development of SIs from the parallelization of SPs. In this

context, the implementation of individual SIs can be completely sequential. The task

execution system is the work engine of the entire VM. It drives the VM to execute

super-programs by pulling SIs. When an IEU could load more tasks, it actively asks

the IDU of the VM for more SIs. Once it gets a new SI, the IEU will decode the SI

and load a local procedure to implement the SI. It also asks the data cache system

to provide localized data for operands and then executes the local procedure. After

finishing, it puts the results in the data system and notifies the IDU for committing

of the SI. It then repeats this procedure by asking more tasks

In the reference implementation of the runtime system, an IEU consists of a task

localizer, a controller (called "work engine" ) thread and multiple work threads. All

these components reside in the same virtual node process. The interaction sequence

among these components and the task agent is shown in Figure 3.10.
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Figure 3.10 The sequence diagram for executing an SI on an IEU
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3.4 Data Distribution System

The data distribution system is another part of the runtime support system. Data

partitioning and distribution for executing programs on a distributed computer

system are essential. For programs in SPM, data are partitioned into standard units

-SDBs. These SDBs are dynamically distributed among virtual nodes at runtime.

The data distribution system provides the required data to IEUs so that distributed

tasks can be executed. The basic functionality of the system is to efficiently deliver

data to requesting virtual nodes.

In the VM of SPM, the data distribution system is implemented with a virtual

data cache subsystem that achieves the task of distributing data by loading them

on demand. This subsystem includes two levels of cache. The first level is the local

cache. The second level is a distributed cache. The entire system is backed up by an

external mass storage system. All data that cannot be held in the cache are stored

in the external system. When an IEU need data, if it is cached locally the data is

immediately available; if it is not cached locally but is stored in the distributed cache

(i.e., it is cached on another virtual node), the data is loaded from the remote virtual

node; otherwise, the data is loaded from the external storage system. Physically the

data cache system consists of a data center and multiple data agents.

3.4.1 Data Center

The data center is the coordinator of the data distribution system for operations

involving multiple virtual nodes. It also helps distributed task agents to find where

they can get a particular SDB for local clients. The data center holds critical meta-

information for the data distribution subsystem and all SDBs. The meta-information

of an SDB includes the data-ID of the SDB, the location of clients which are currently
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using the SDB, the type of SDB usage (e.g., read, write), and so on. At any moment,

any other components of the data distribution system can turn to the data center to

find any their peers or the status of any specified SDB.

The data center is also a mediator for accessing data. It controls SDB access for

SIs. The task center of the virtual machine always cooperates with the data center.

Before the task center issues an SI, through the task issue controller, it consults the

data center. When the SI is issued, it notifies the data center to update the status

of corresponding SDBs. After the SI commits, the task center also notifies the data

center to update the status of the relevant SDBs.

3.4.2 Data Agent

In the data distribution system of the virtual machine, there are multiple data agents

which are distributed among multiple computers. Actually they reside in virtual

nodes where each virtual node hosts a data agent. The data agent is the local

representative of the data distribution system. The data agent is the local data

provider for a virtual node. All SIs executed on the local IEU delegate the task

of finding their operands to the data agent. With the help of the data center, the

data agent loads/updates the most recent version of the data (SDBs) into the local

memory from any possible locations. The data agent also translates data formats.

When it loads data for its local clients, it always translates the data into the most

appropriate local format.

All data agents in the virtual machine form a data cache system. The data

agent in a virtual node works as the local data cache level that holds the most

recently used SDBs. When a local client (SI) needs a particular SDB, if the most

recent version of the data is in the cache the data agent can respond to the client
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public interface DataCenter {

String getPersistRoot(EntitylD callerId);

Ref getMulticastChannelRef();

DataRef resolveData( njit.ece.spm.DataID did);

DataRef notifyHostFull( njit.ece.spm.EntityID callerId);

void synchronizeDistributedDone(DataID did);

void publish(DataID did, EntitylD host);

void destroy(DataID did);

}

Figure 3.11 The interface of the data center

quickly. All data agents in the virtual machine also cooperate to form the second

level, distributed cache. When a local client (SI) needs a particular SDB, if the data

is not cached locally or the cached data is outdated, but another data agent has an

updated copy of the SDB, the former data agent can load data from the latter data

agent remotely. When no data agent has cached the SDB, the local data agent will

load the data from the external storage system. When an SDB is kicked out of the

cache system, the last data agent that holds the SDB will update the SDB in the

external storage system.

3.4.3 Reference Implementation

In the reference implementation, the data agents and the data center are specified

with the interface DataCenter and DataAgent, respectively. They are shown in

Figure 3.11 and 3.12.
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public interface DataAgent {

int UNKNOWN = 0;

int HOST = 1;

int CACHE = 2;

int PERSIST = 3;

int LOCALWRITE = 4;

DataModel getData(DataID did);

void setData(DataModel data, DataID did);

DataModel getDataTemplate(DataID did) ;

DataModel getPartialData(DataID did);

void setPartialData(DataModel data, EntitylD nid);

void updatePartialData(DataModel data, EntitylD nid);

Object checkHost(DataID did, Notice notice);

void sendNotice(DataID did, Notice notice);

void destroy(DataID did);

void persist (DataRef ref) ;

int host (DataRef ref, DataRef persistRef);

void invalid(DataID did);

void synchronizeDistributed(DataID did, EntitylD[] peerlDs);

void grasp(DataID did);

DataModel graspWithModel(DataID did);

}

Figure 3.12 The interface of the data agent
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3.5 Runtime Management System

The runtime management system is an auxiliary part of the runtime support system.

The functionality of this system is to generally manage various components in the

virtual machine, The system should provide for:

1) A bootstrap mechanism for all distributed components in the virtual machine

to be able to locate each other.

2) Instruments to dynamically reconfigure the structure of the virtual machine by

mapping its resources to different parts of the underlying computers.

In the reference implementation, the runtime management system consists of a

set of node agent processes and control threads of virtual nodes. On each computer,

a system level service process named node agent is launched before any virtual

node process is launched. All node agents form a distributed service. Through a

multicasting mechanism they first find each other and setup other communication

channels for multicast or unicast communications among them. After that each agent

becomes the local representative of the service system. They back each other up by

exchanging information on demand.

One of the functionalities of a node agent is to manage all the virtual nodes

running on the same computer and help them find other virtual nodes running on

other remote computers. This requires that all virtual nodes at launch time register

their local node agent. They send some basic information to the node agent, such as

the name and end points of their primary communication channels. Then the node

agent assigns a unique ID to register the virtual node and publishes this information

to the world. A node agent achieves publishing by broadcasting this information to

all node agents.
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Another functionality of a node agent is to help the local virtual nodes to find

other virtual nodes running on other remote computers. A node agent holds all

the information of the local virtual nodes and also caches some information related

to remote virtual nodes, When a node needs to locate another virtual node by its

logical name, the local node agent first checks its cache. If it cannot resolve the

request, it can turn to other node agents. At least one node agent is guaranteed to

resolve the request. The node agent is also a local instrument to central management

tools (that is, not included in a virtual machine). It can perform commands such as

launch a new virtual node process or remove a virtual node process from the virtual

machine.



CHAPTER 4

EXAMPLES OF PROGRAM DEVELOPMENT UNDER SPM

In this chapter, the process of applying SPM to develop application programs for

PC clusters is described with two examples: mining association rules and matrix

multiplication.

4.1 Example 1: Mining Association Rules

Mining association rules is a computation intensive problem in business intelligence

[107,108]. Many parallel algorithms have been developed [109,110] on many parallel

computing platforms for that problem [111-113]. Thus, it is a good candidate for

SPM implementation [106] [114].

4.1.1 Basic Concepts in Mining Association Rules

Let I = {a 1 , a2 , a3 , • . . , am } be a set of items and DB = (T1, T2, T3, . . . Tn) be a

transactions database with items in I. A pattern is a set of items in I. The number

of items in a pattern is called the length of the pattern. Patterns of length k are

sometimes called k-item patterns. The support s(A) of a pattern A is defined as the

number of transactions in DB containing A. Thus, s(A) =|{T|T E DB, A

A pattern A is a frequent pattern (or a frequent set) if A's support is not less

than a predefined minimum support threshold smin.

A rule is an expression of the form R : X 	 => s(R),α(R) Y, where X and Y

are exclusive patterns of I 	 n Y = 0). X and Y are called the pre-pattern and

49
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post-pattern of R, respectively. s(R) and α(R) are the support and confidence of the

rule R, respectively. The support s(R) of rule R is defined as the support s(Z) of the

joint pattern Z = X U Y. The confidence α(R) of rule R is defined as s(Z)/s(X). An

association rule is a rule with support not less than a minimum threshold. Given a

transactions database, a minimum support threshold s min, and a minimum confidence

threshold amin , the problem of finding the complete set of association rules M ={ R:

X = >s(R)1(R) Y|s(R)≥Smin, andα(R)≥ αmin} is called theassociation rules mining

problem. Also, given a transactions database and a minimum support threshold smin,

the problem of finding the complete set of frequent patterns is called the frequent

patterns mining problem.

A number of relevant algorithms are frequent-pattern based [115, 116]. They

first solve the frequent patterns mining problem and then check the confidence of

all candidate association rules which are built with frequent sets and their subsets.

Since the supports of the pre-pattern X and post-pattern Y of a rule are not less than

the support of their joint pattern Z (X C Z, Y = Z — X), if Z is a frequent pattern

then X and Y also must be frequent patterns. A rule can only be found between a

frequent pattern Z and its subset (X).

4.1.2 The Super -Data Blocks for Mining Association Rules

To mine association rules, a set of SDBs and SIs are designed. The SDB types are

shown in Table 4.1.

4.1.3 The Super-Instruction Set for Mining Association Rules

The sample SI set developed to mine association rules is:
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Table 4.1 The SDBs for mining association rules

SDB types Description

BlockOfItems A list of sorted distinct items that cover a continuous,

exclusive partition

BlockOfTransaction A list of transaction data. Each transaction is a sorted

list of items

BlockOfJoinResult A list of sorted candidates of frequent patterns

BlockOfCandidates A list of sorted candidates of frequent patterns that have

passed screening

BlockOfFrequentSet A list of sorted frequent patterns and their support

BlockOfRules A limited number of association rules

1) LoadDataBlock ( in DS, in s, out rawId): gets a block of data outside of the

system. "DS" is the reference to the external data source; "s" is the maximum

size of the fetched data; "rawId" is the global ID of a BlockOfTransaction block

to hold incoming data.

2) CountItemSupport (in rawBlockId, in/out itemsId): extracts all distinct

items and counts the number of times each item appears in a block of raw

transactions (identified by "rawBlockId"); with the help of a global mapping

object (identified by "itemsId" ), it also merges results into respective global

data blocks.

3) ShrinkItemBlock (in/out itemsBlockId, int minSupport): This SI prunes

items in a BlockOfItems block (identified by "itemsBlockId" ) by removing all

items with counts less than the minimum support "minSupport."
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4) GetFrequentltemsBlock (in items, out fItemBlockId, out fSetBlockId,

in/out fMapld): collects all data contained in a list of pruned blocks of items,

creates an SDB (identified by "fItemBlockId") of frequent items and an SDB

(identified by "fSetBlockId" ) of 1-length frequent patterns, and then sends

appropriate information to the global mapping object (identified by "fMapId" ).

"items" is the list of global IDs of pruned blocks of items.

5) ShrinkTransactionBlock(in rawld, out itemsld): This SI shrinks a block

of transactions based on a block of frequent items. It removes all non-frequent

items from every transaction. The parameter "rawId" identifies an SDB of

transactions. The parameter "itemsId" identifies an SDB of frequent Items.

6) MergeTransactionBlock (in/out list): This SI merges a list of pruned SDBs

of transactions. The parameter "list" is a list of global IDs of pruned blocks

of transactions. The first ID in the list is also used as the ID of the generated

data block.

7) GenxxxCandidatesFamilyBlock (in itemSet, in frequentBlockld, in

frequentMapld, out candsBlockld): joins an n-length frequent pattern

with all n-length patterns that follow and have the same prefix in the SDB

identified by "frequentBlockId" it generates a "BlockOfJoinResult" type SDB

of (n+1)-length candidate patterns that is identified by "candsBlockId." This

SI has multiple versions. "xxx" may be "Large" , "Middle" or "Small" based

on the format of the first parameter "itemSet" that is the first set of n-length

patterns. The parameter "frequentMapld" is the ID of the global mapping

object that maps the partitions of n-length frequent patterns to IDs of SDBs.

8) FilterCandidates (in / out candsBlockld, in frequentBlockld, in

frequentMapId): screens candidate patterns in an SDB identified by
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"candsBlockId" with an SDB of n-length frequent patterns identified by

"frequentBlockId." The parameter "frequentMapId" is the ID of the global

mapping object that maps the partitions of n-length frequent patterns to IDs

of SDBs.

9) CountBlockCandidatesSupport

(in/out candsBlockId, in transBlockId): counts the partial support of the

candidate patterns in a candidate block identified by "candsBlockId" in an

SDB of transactions identified by "transBlockId" .

10) PruneCandidatesBlock(in/out candBlockId, in minSupport): prunes a

block of candidates identified by "candBlockld" by removing candidates with

support less than the threshold "minSupport" .

11) GetFrequentSetBlock (in list, out fid, in/out fMapId): merges a list of

pruned SDBs of candidate patterns, generates a permanent SDB of frequent

patterns, sends the range information to the global mapping object and

publishes the block in the global space. The parameter "list" is a list of IDs of

pruned SDBs. The parameter "fid" is the ID of a generated SDB of frequent

patterns. The parameter "fMapld" is the ID of a global mapping object that

maps a range of partitions of frequent patterns to an SDB of frequent patterns.

12) CheckConfidencelnBlock (in preFSetsBlockId, in postFSetsBlockId,

in / out rulesBlockId, in minConfidence): extracts association rules by

checking frequent patterns in an SDB with their sub-patterns in another SDB

against a threshold "minConfidence." The parameter "preFSetsBlockId" is the

ID of a data block that includes the (n-i)-length sub-patterns, where i is an

integer. The parameter "postFSetsBlockId" is the ID of the SDB that includes

n-length frequent patterns. The parameter "rulesBlockId" is the ID of an SDB

of rules.



54

13) StoreResult (in rulesId, out des): stores a list of generated rules in the

external storage. The parameter "rulesld" is the ID of an SDB of rules. The

parameter "des" is the reference to a destination in the external storage.

4.1.4 The Super-Program for Mining Association Rules

The overall algorithm of the SP adopts the Apriori algorithm described in [116]. The

SP is shown in Fig. 4.1. Initial, gen_frequentSet, and find_rules are separate SFs and

gen_candidate includes two sequentially issued SFs (join and filter):

P1 = 	 smin) //DS is the external data source ;

//if P1 is available and P1 0 continue

For (k = 2; Pk-1 ≠ ø ; k++) do begin

Ck = gen_candidate (Pk-1 ) //include join and filter .

//When Ck-1  is available : issue the next SF

Pk gen_frequentSet (Ck, smin )

//When Pk-1 is avaible : issue the next SF and

//simultaneously start the next iteration

Rk f ind_rules( Uj<k Pj Pk )

End

Answer = URk

Figure 4.1 The SP of mining association rules

4.1.5 The Super-Functions for Mining Association Rules

1. The "initial" SF
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"initial()" finds the value domain of the items, identifies all distinct items and

stores them in a sorted list of SDBs; it also counts them and prunes these blocks.

It then generates a list of data blocks of 1-length frequent patterns. In the SP, the

pseudo code of the implementation is:

while (there is more data){ LoadDataBlock (DS, s, rawBlockIdi );}

parallel do for all rawBlockIdi{

CountltemSupport(rawB/ockIdi, itemsld);

}

parallel do for all blocks in item list {ShrinkltemBlock(itemsBlocki , s);}

parallel do for all blocks listi{

GetFrequentltemsBlock (listi , fItemBlock i , fSetBlocki , fMap);

}

parallel do for all blocks in transactions list rawBlockIdi {

while (there are more itemsBlock i blocks that must be checked){

ShrinkTransactionBlock(rawBlockIdi , itemsBlocki );

}

2. The "gen_candidate" SF

The pseudo codes of the implementation of this SF are:

parallel do all data blocks of frequentBlocki {

parallel do all same and following data blocks frequentBlocki { I < j

if (can be joint) {

GenxxxCandidatesFamilyBlock (itemSet in frequentBlocki ,

frequentBlocki , frequentMapld, candsBlockm )

//version of the SI used is determined at runtime based on data

while (candsBlockm, still need check by frequentBlockp ) {
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FilterCandidates (candsBlockm , frequentBlockp , frequentMapld)

}}}}

3. The "gen_frequentSet" SF

The pseudo codes of the implementation of this SF are:

parallel do for all data blocks of k-length candidate patterns candsBlockm {

parallel do for all blocks in transactions list transBlockIdi {

CountBlockCandidatesSupport (candsBlockm , transBlockIdi )

}

PruneCandidatesBlock(candsBlock m , Smin )

}

parallel do for all partition list,: {

GetFrequentSetBlock (listi , fidi , fMapld);

}

4. The "find_rules" SF

The implementation is:

parallel do for each data model of k-length frequent patterns

block frequentBlockp {

parallel do for each SDB of frequent patterns block frequentBlockm {

if (there are more SDBs that include sub-patterns needed

to be checked){

CheckConfidencelnBlock (frequentBlockm , frequentBlockp ,

rulesBlocki , minConfidence)

}
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4.2 Example 2: Matrix Multiplication (MM)

Matrix multiplication (MM) is a widely used operation in scientific and engineering

computing [117, 118]. In this section, our approach of MM in SPM is presented

[119, 120].

4.2.1 The Super-Instruction Set and Super-Data Blocks for MM

Following the requirements of SPM, a set of SDBs is defined for MM that includes

only one SDB corresponding to a sub-matrix block. The sub-matrix block is an n x m

matrix, where both m and n are not larger than a predefined parameter k. This

kind of SDB encapsulates all types of matrices. They can be dense or sparse. The

sub-matrix block not only includes the original values of the contained elements, but

also the matrix features, such as the sparsity of the block, in the form of metadata.

Arbitrary large matrices in applications can be partitioned and expressed as matrices

with SDBs as elements. The sparsity and type of SDB elements may vary.

To support MM, a set of SIs is defined. Besides load and store SIs, it includes

only one extra SI namely Multiply (A, B, C), where A, B and C are sub-matrix blocks.

This SI performs C = C + A x B. SIs include all operand references including the

data ID and meta-data of the SDBs. Thus, the IEU executing the SI always knows

the type of sub-matrix block and can select an appropriate implementation to deal

with this kind of matrices to achieve high performance. Therefore, at the SI level

one SI may be sufficient to handle all kind of matrices.

4.2.2 The Super-Function for Matrix Multiplication

To support the multiplication of arbitrarily large matrices, an SF of MM is defined

that performs C = A x B, where A, B and C are arbitrarily large. For the sake of
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simplicity, we assume A, B, and C are evenly partitioned into N x N matrices (i.e.,

X={Xi,j }, for X = A, B or C and i, j = 1, , N, where the elements Xi j are

sub-matrix blocks). All SIs updating the same sub-matrix block are grouped into a

task group (SIi ,j , k , for k = 1, 2, , N form group G i ,j ).

The SF adopting the classical MM algorithm is illustrated in Fig. 4.2. It

invokes the multiply SI N 3 times. Each SI instance SIi ,j , k performs the following

operation: Ci,j = Ai,k . Bkj , for all i, j, k = 1, 2, , N. The all-in-one

algorithm fits all kinds of matrices without heavy performance penalty because the

VM works in the asynchronous mode issuing and executing SIs. An MM SI with an

{0} can finish its execution when it finds an operand is a zero block. The check can

even be performed at SI issue stage on IDU. And when an IEU quickly finishes its

current SI, it can request another task to exploit it resource without need to wait for

finishing of those slow IEUs.

= {0} // for any i and j ;

While (not done) {

SIi,j,k = selectNextSI ( IEU information) ;

// issue Sli ,j,k to perform 	 Ai,k x Bkj

}

Figure 4.2 The super-function for matrix multiplication

4.2.3 Scheduling Policies and Parallelization of the SF

Under the SPM model, parallelization of SPs is achieved through the cooperation of

the IDU and SFs in issuing SIs. For MM, the following policies were designed for
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scheduling. Except for the synchronous policy, all other policies are asynchronous.

The effect of them is discussed later.

1) Synchronous Policy (syn)

This policy imitates parallel computation on a VM with N 2 nodes in the style

of BSP, Under this policy, SIs are issued in the synchronous mode. Each IEU in

each superstep gets just one SI. More specifically in the k-th superstep the SI i,j,k is

assigned to the (i x N j)-th IEU for each i and j. No more SIs are issued until all

IEUs finish their work and the next superstep begins.

2) Static Scheduling Policy (S)

In this scheme, task groups are statically associated with IEUs. Determining

the task group for each IEU uses the optimal algorithm described in [121]. When an

IEU requests an SI, the SF feed it with an SI from the task group associated with

it. If all its task groups are done, no SI will be issued to the IEU.

3) Random (Dynamic) Scheduling Policy (R)

Under this policy, the task groups are dynamically allocated. Each IEU is

associated with a current task group. When an IEU requests an SI, the SF feeds it

with an SI from its current task group; if its current task group is empty and there

exist unassociated task groups, the SF randomly picks up such a task group and

associates it to the IEU and issues an SI from the group. This process continues

until all task groups have been associated with IEUs. After that, the static policy

(5) is applied.

4) Smart Scheduling Policy with Random Seed (SR)

This scheduling policy is basically similar to the Random Scheduling Policy.

The difference is that only the first task group associated with an IEU is randomly
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selected, and the following tasks are selected following this rule: the new task group

should reuse sub-matrix block operands of previous SIs as more as possible.

5) Smart Scheduling Policy with Static Seed (SS)

This policy is very similar to the above SR policy except that the first task

group assigned to IEUs is statically selected as in the static scheduling policy.



CHAPTER 5

PARALLEL EXECUTION OF SUPER-PROGRAMS AND

RELEVANT OVERHEADS

The execution of programs developed under high level programming models may

suffer from some runtime overheads, In this chapter, the overheads of executing SPs

are analyzed and one of the overheads, management overhead, is estimated.

5.1 Overview of Overheads

Generally, overheads are any additional costs not directly related to the application

that are the result of used to developing or executing programs. Although there are

many different meanings of cost, herein all overheads are related to actual execution

overhead.

5.1.1 Overheads in Program Execution

Overheads can involve various system resources. Since the execution time of

programs has closer relationship to the utilization of processors, in most situations

overheads correspond to additional CPU times. Overheads are the price we pay in

applying programming models to develop software. Although these models make

software development more efficient, the corresponding runtime support systems

consume system resources and introduce overheads. Every layer in the layered

infrastructure of software development may introduce overheads. For example, when

developing applications in Java for multi-user computers, Java VM and the local

operating system may introduce overheads. For this reason, in evaluating new

61
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programming models we need to study the overhead introduced by them and separate

them from overheads imposed by the underlying system.

5.1.2 Quantitative Definition of Overheads in Parallel Executing

Programs

Let us first give quantitative definitions of some important concepts. The ideal

(inherent) performance Pideal of a computer is expressed in MIPS or MFLOPS. For

a non-parallel system, its ideal performance can be measured directly by executing

an optimized program sequentially on the computer. For a cluster system, the ideal

performance can be reasonable defined as the sum of the performance of all member

computers; i.e.,

where Pi is the ideal performance of the i-th node in the cluster system.

Since the computing capacity R of a computer system depends on time and its

performance,

where Ri is the computing capacity of the i-th member computer in the system, The

workload W of a task is now defined as

W R PidealT 	(5.3)

where T is its ideal execution time.
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For a specified task, its workload may vary for different computers. Its inherent

workload Wideal is the minimum workload of the task. In practice, it may be measures

as the workload of the optimized program executing on a sequential computer. For

this reason, Wideal is accumulative. I.e., The Widealideal of a task is equal to the sum

of inherent workload of all sub-tasks. And the Wideal can be defined reasonably

as produce of the ideal performance of a reference sequential computer with the

execution time of an optimized program. I.e.,

Wideal = Pideal-ref X Ts—ref (5.4)

The workload W of a program that execute on a parallel computer system, usually, is

definitely larger than the inherent workload Wideal of the task. The difference between

W and Wideal is the so called overhead of the program. For parallel computer system

programs, generally, overheads of execution of programs mainly come from 3 factors:

data communication, nodes idle and management. Thus, the total workload should

be:

W = Wideal Widle Wcomm Wman (5,5)

where Widleidle is wasted computing resource; Wcomm and Wman are overhead

of communication and managing sub tasks, called as absolute imbalance,

communication, and management overheads of the problem respectively. For easy to

compare, overheads are express in term of relative amount of computation resource

consumed in each parts against the total workload of the program. I.e.,
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where W idle 1 W comm , and wman, are (relative) imbalance, communication, and

management overheads respectively. The efficiency of execution of a program on a

computer can be defined as the ratio of its inherent workload vs the actual workload.

I.e,, the efficiency is

5.2 Overheads of the Runtime System of SPM's VM

In SPM, the VM is underlain with the PC cluster. All processors are encapsulated

in virtual FUs such as IDU, and IEUs. Super-programs run on the system through

IDU scheduling and distributing SIs to IEUs and IEU executing these SIs. The total

consummation of computing resource is the sum of CPU time to execute the runtime

processes held all these virtual functional units. So we can count the processor

consummation of execution of IEUs and IDU.

As mentioned in Section 2.4, during executing an SP, the IDU in the VM

continually fetch SIs from SFs and assign these SIs to IEUs, and then IEUs perform

these tasks (SIs) assigned to them, Since the IDU only perform controlling task

required by SPM, execution of the IDU is management overhead completely. Before

an IEU begin to execute the SIs assigned to it, the operands of the SIs must be local

available. Since the SIs are distributed dynamically, all the SIs and the operands have

to be distributed at runtime. I.e., IEUs may need remotely load these data. Therefore

they suffer communication overhead. Besides these overheads, SPs executing on PC

clusters may also suffer from the problem of load imbalance. When programs are

lack of parallelism, IDU cannot always satisfy requests of IEUs for SIs. In this

case, some IEU will be idle and its computing resource may be wasted. This has

exactly same effect as others overhead that makes the execution time of programs
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increase. Therefore it is treated as another overhead universally—imbalance overhead.

Summarily, the total overheads F is

F=M+C+I 	 (5.8)

where M, C and I represent the management overhead, communication overhead and

imbalance overhead, respectively when executing SPs.

5.3 Management Overhead

5.3.1 Source of Management Overhead in SPM Runtime Environment

Management overhead is CPU consummation to conduct the management activities

that are the execution of the IDU and the interaction between the IDU and SFs.

It includes activating SFs, maintaining tasks pools, scheduling SIs and notifying

relevant parts for commit of SIs.

The absolute management overhead M directly depends on the number of SIs to

be managed that in turn depends on the size of problems and these grain parameters

of SIs. i.e:

M = M(nsi )	 (5.9)

where nSI  is the number of SIs to be executed to solve a specified problem. For a

specified SP, larger the application problem is, more SIs are managed and heavier

the overhead. For a particular problem, finer the grains of SIs are defined, more

SIs are managed and heavier the overhead is. For generally evaluating, the relative

(management) overhead may be more important. In practice, it can express in the

fraction of management workload vs the total workload of SPs. Using to represent
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the relative overhead, it is

where, instead of ideal workload of the problem, R is the actual total workload. If

temporary ignore others kinds of overheads in this analysis, R will be

R ti M+ Wideal ti M nSItSIP 	(5.11)

where nsi is the number of SIs in a SP, tsI is the execution time of an SI on a member

computer, and P is the inherent performance of a member computer. Since both M

and R depend on 7 -151 , the ratio //would have weaker dependency on the number of

SIs nsI . It means the relative overhead would have weaker dependency on problem

size. Thus, the relative management overhead is better in use to evaluate the SPM

and compare it with other programming. Equation (5.8) and (5.10)) show that M

does not explicitly depend on the average time to execute an SI while R linearly

increase with the average execution time ts1 of an SI. This implies that the relative

management overhead reduces while the grains of SIs increase. Thus, in the view of

point of reducing overheads, SPM is better to be applied to computer systems with

coarse clustering components such as PC cluster than to systems with fine parallel

components.

5.3.2 Experiment Measure of Management Overhead

To verify the management overhead of the runtime system is affordable, an

experiment was setup, In the experiment, two groups of programs are developed.

One group is the SPs for the MM described in chapter 4; the other is programs

that simulate these SPs and the RTS. Both of them implement management system

in same way. And each pair of the SP and corresponding simulation program
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implements exactly same scheduling policies. For this reason, two programs should

suffer same management overhead. Since the overhead of the simulation program

should be less than its total workload, the latter should be upper bound of absolute

management overhead of the experimental SPs and the ratio of execution time of

the simulation program vs execution time of the SP should be an upper bound of

relative management overhead, The experimental results are shown in Fig. 5.1, Most

executions of the simulation program for selected data sets take about 60-200ms. And

the execution time of the SP for corresponding data set take about 150-300 seconds

while the net execution time of an SI is about a few ms for multiplication of a pair

of 256 x 256 sparse matrices with 5% non-zero elements. The relative management

overhead is less than 1% of the total execution time. Figure 5.1 shows the upper

bound on the relative management overhead, which is expressed as the ratio of the

execution times between simulations and experiments. This result implies that for

such coarse-grained system the management overhead is affordable.
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Figure 5.1 Relative management overhead in execution of the MM SP.



CHAPTER 6

LOAD BALANCING

Load balancing focus on the efficient utilization of resources. In this chapter, the

load balance mechanism under SPM is discussed. In SPM, we pay special attention

to minimizing the associated overhead.

6.1 Overview of Load Balancing

Load balancing is the effort to execute a program in parallel so that the computation

work of the entire program is fairly distributed among all system resources, especially

processors. Then, the resources are utilized efficiently and higher performance can

be achieved.

6.1.1 Requirement for Load Balancing

Load balancing is fundamental in parallelizing programs for a high performance

[41, 105]. During the execution of a program in parallel, the computation tasks (no

matter with what kind of granularity level) must be partitioned and distributed

among the processors of the computer system. If the distribution of these tasks is

imbalanced, the overloaded processor must execute more computation tasks. This

means they have to take longer time to perform the task assigned to them. Then

the execution of the entire program will be extended because the execution of the

program finishes only after all of its partitioned tasks have finished. Well balancing

the distribution of tasks can help to improve performance of executing the program

in parallel. Most programs executed on parallel computer system do real care about

69
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execution performance, although some programs, especially some human-computer

interactive programs, do not care execution time very much. Therefore Load

balancing is essential to execute programs on parallel computer systems,

Load balancing is just technologies that work in the context for parallelization

of programs. The executing programs in parallel just exploit the parallelism of the

programs and the parallelism of programs may exist in multiple levels. There are the

finest instruction level parallelism, the procedure level parallelism and the coarsest

job level parallelism and so on. In general, the execution of a program may involve

a combination of multiple levels. But most programming models involve only one

or two level of these parallelisms. Different programming models work at different

grain level to exploit different level parallelism by distributing tasks at the specified

grain level. Load balancing for programs under these programming model try to

balance the distribution of these tasks at the particular level. The tasks at different

levels have different characteristics about their execution and communication. The

strategies of load balancing for these programming models, therefore, should base on

the features of task at the particular grain levels of the programming models.

For PC cluster systems, programs usually exploit procedure level or job level

parallelisms, the workload of programs are partitioned into coarse-grained functional-

oriented tasks instead of fine-grained native operation of processors. These tasks

are far more irregular than the basic instructions of the hardware processors. And

these tasks usually do not occupy entire computer resource completely but the local

operating system schedules them to use the resource on the computers. For such

systems, well balancing the workloads means that the member computers in clusters

are neither overloaded nor underloaded. During execution of the entire programs,

they have a little chance to be idle while others are busy.
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6.1.2 The Types of Strategies for Load Balancing

General load balance strategies can be classified into two categories, The first

one is the static load balance strategies. The other one is the dynamic load

balance strategies. Static load balance strategies are applied before the execution of

programs. They try to optimize the task partition at compile time so that processors

get even computation tasks but they do not adjust the task distribution at runtime.

In the other hand, dynamic approaches perform some load balancing operation at

runtime. I.e., at runtime, the loads of processors are adjusted continuously based on

the execution condition of distributed processors.

Static strategies are based on predicting the workload and been used in many

scientific computing program [118]. Strategies of statically load balancing work well

for predictable environments such as the cases that the application problems have

regular sub-tasks and the parallel platforms targeting these programs have dedicated

resource so that the workload of each (sub)task are predictable. (SIMD computers

are a good example of such environment). In the case, the basic tasks distributed

are some very simple operations that are executed with dedicated hardware. The

entire processes of execution of the tasks are predictable. Therefore the compilers

can create correct task distribution for targeted processing elements. Static load

balancing may not introduce any other runtime overhead.

Strategies of dynamically load balancing fit to non-predictable environments

better. In these situations, sine the execution time of each distributed tasks that

executes on specified computing resource is not predictable, compilers lose their base

to optimize the task distribution. The distribution of statically partitioned task may

be imbalanced. Then static load balancing cannot work very well. It may increase the

execution time of entire programs and reduce the performance. Thus, dynamically

balancing load at execution time is high desirable.
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PC cluster systems are typical environment of non-predictable computation

platforms. For PC clusters, programs are usually parallelized at the procedure level.

The workloads of programs are partitioned into coarse-grain function-oriented tasks

that are usually scheduled by the local operating system. The execution times of

these tasks are far more irregular than the basic instructions. The one reason of

generating the derivation of execution time is that subtasks themselves may have

irregular workload. Workloads may not be proportional to the data and the data

distribution may be skewed. The other reason is that the availability and performance

of computing resources. That could happen when these computing resources are not

dedicated, which are shared among many programs. All of these factors can make a

static estimation inaccurate [122]. In this situation, static load balancing does not

work well. Therefore, for PC clusters, dynamically balancing workload is essential.

Dynamically load balancing can be implemented in two different ways. One

is by re-distributing tasks. The other is using task queues. The first approach

partition all tasks to all member processors. And then adjust task distribution by

migrating tasks between the distributed nodes when loads are imbalanced. Adopting

the second approach, the system only distributes a few workloads to each nodes and

keeps remained tasks in task pools; it delays to make the decision of assigning tasks

to particular nodes until it get more real time information of execution conditions

on each node. Once a task is assigned to a processor, the task may not be migrated

again. From the view of point of developer, there are two kinds of approaches to

implement the logics of dynamically balancing workload. One is embedding logics in

application programs. The other is employing high-level runtime system to provide

some load balance mechanism. Adopting the first approach, application programmers

implement some adapting algorithms so that the tasks of the application program can

be repartitioned and immigrated among computers in periods or based on demands.
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Adopting the second approach, system developers implement the mechanism of

load balancing; application programmers just exploit the mechanism. They follow

requirements of runtime system to fill all tasks of the parallelized programs into the

task queue. In this case, the most efforts involve a one-time job and are included

in the system development of runtime support systems for specified programming

models.

6.2 Load Balancing for SPM

SPM adopts the dynamic load balance approach. It requires the runtime support

systems of the virtual machines provide a system level mechanism for load

balancing automatically. It balances workload with a task queue at SI level. All

application programs developed under the programming model can exploit the

system mechanism to achieve load balancing. The workloads of all application

programs developed under the programming model can be balanced without

additional effort in development, as long as SPs are well parallelized, (i.e., the degrees

of parallelism in SFs/SPs are high enough).

SPM adopts the dynamic load balance approach. It provides a system level

mechanism for load balancing.

6.2.1 Mechanism of Automatically Load Balancing in SPM

SPM adopts a dynamic load balancing approach without task migration. It achieves

the goal of balancing workload well through providing system level mechanism.

This mechanism for load balancing is embedded in the mechanism of mapping and

scheduling tasks. Instead of pre-allocating all tasks to member computers based

on the any kind of estimation of workload of partitioned tasks and performance of

member processors in the multi-computer system, the runtime system continuously
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distribute SIs to multiple IEUs that run on the distributed computers based on the

availability of free computation resource.

The mechanism of automatic load balancing is based on a protocol between

the IDU and IEUs. This protocol specifies that:

1) The task distribution is a successive process during the execution of SPs. The

IDU continuously controls the flow of tasks distributed to IEUs;

2) Each task assigned to IEU is an SI, which always has a limited workload,

3) The IDU assigns an SI to an IEU only when the IEU request more tasks.

4) All IEUs are general-purpose. They can execute any assigned SI. The IDU only

considers availability of IEUs, availability of SIs, and dependences between SIs.

5) An IEU requests more tasks immediately when the computation resource is

available to execute one more SI. All IEUs work in an asynchronous mode.

6) An IEU requests more tasks only if it has enough resources to execute additional

SIs and promises to complete the SI in a predetermined time.

7) If possible, the IDU always satisfies the task requests of the IEUs. This means

that if there is any SI in task pools that are ready to issue (i.e., it does not

depend on all currently executing SIs), the IDU always dispatches an SI to the

IEU that requests more tasks.

With this contract between the IDU and IEUs, the workload can be well

balanced among all member nodes in clusters. Under SPM, SIs are well designed task

units. They have predetermined upper bound of workload. IEUs know how many

computing resource is needed to execute an SI. The item 1), dynamically distributing

tasks at SI level, assures the flexibility of the mechanism, And combination of the
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item 2), 3) and 6) guarantees no nodes to be overloaded. The combination of the

item 5) and 7) make nodes less possible to be starved. The member nodes that can

execute SIs assigned to them more quickly than others will be assigned more work,

i,e., the faster nodes obtain more SIs, The system can be unbalanced only if SPs do

not have enough parallelism. For a good program, such a situation usually appears

when the last SI before a synchronization operation has been assigned. However, SIs

have limited workload. So, this situation does not last long time. Therefore, if SPs

are well parallelized, good load balancing is achieved automatically.

To facilitate simplicity and efficiency in practice, SIs are not required to have

restrict identical workloads. A small to medium diversity should be allowed among

the workloads of SIs. The asynchronous work-mode assures the diversity not increase

the chance that IEUs are idle. A scheduling policy using a producer-consumer

protocol will balance the workload well for an application with abundant parallelism.

6.2.2 A Model of Estimating the Imbalance Overhead for SPM

The purpose of load balance is preventing some clustering computers from being

under-loaded while others are overloaded. Since the workloads are relative. The

under-loaded member computers ultimately always become idle while the overloaded

member computers are busy. Thus the performance of a load balance strategy can

be measured with the chance that the member processors /computers are idle. The

model of the load balance should be based on task partition structure. In SPM

super-programs have the layered structures, At high level, SPs that are developed

by application programs who focus on application logics and pay less attention on

parallelization and load balance are compose in SFs. And at middle level, these SFs

are compose in SIs and developed by domain experts and system developers who focus

on parallelization of these SFs and load balance so that the parallelism of underlain
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hardware resource can be exploited efficiently. At the low level SIs as atomic tasks

are implemented as normal sequential procedures. For this structure, when develop

a basic model to describe the behavior of the mechanism to automatically balance

workloads, we can assume that SFs, which themselves are executed on VM in parallel,

are executed one by one in sequences but these SFs in an SP always are ended with

synchronization operations.

Assume that the number of IEUs, i,e. the parallelism of underlain resource

is np , the average number of SIs in an SF is n i that are much greater than np. in

the model, the diversity of workload of SIs and the diversity of available capacity of

underlying processors resource are considered together. Both are represented with a

single measurement — the execution time of SIs. Also assume the average resource

that is consumed to execute an SI is I that include the management overhead to

issue and commit the SI and the communication overhead to handle communication.

Then for an SP with n SF super function, there is total n periods that during them

system is lack of parallelism and workload are distributed imbalance, (i.e., some IEU

have to be idle). Each of them is corresponding to an end of an SF. After the last

SI of an SF, an IEU no long can get any more SI when it finish its current task

until entire SF has done. During such an imbalance period, np — 1 IEUs can become

idle. The average idle time of an IEU can roughly be estimated as half time of the

execution of thee last SI of the SF. Therefore the wasted computation resource is

D = (np — 1) . c . I (6.1)

where c is a constant (0 < c < 1). The value of c depends on profile of performance

distribution of IEUs in the system. While the net accumulated time the SF consume



77

to execute its SIs (include overhead other than imbalance overheads) is

A = ni . I 	 (6.2)

And the total consumed computation resource - IEU time is

R = A ± D =[n i + c . (np — 1)] I 	 (6.3)

Therefore the percentage of wasted processor time, the chance of an IEU being idle

is

This means the effect of load balance directly relevant to parallelism of SFs.

Although application developers who use SFs as high level task components

may pay less attention on parallelization and load balance, it is not means the

multiple SFs in an SP absolutely must be executed sequence. In the case, the

parallelism is determined by runtime system of the VM. If the VM find there is no

dependency between successive SFs, it can also issue the both SFs in the sequence

in the SP. It can execute all SIs in these issued SFs in parallel but the SFs issued

later have lower priority to issue its SIs. When the SF with higher priority are

lack of parallelism, the SIs in the low priority SFs can satisfy the request of IEUs

and then the chance that an IEU become idle is reduced. The exist of parallelism

among SFs equivalent to increase the average number ni of SIs in an SF. Therefore

exploiting parallelism at SFs level still is important. It is especially critical for
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non-scientific/engineering applications that have not so large number of parallelism

in every SF.

6.3 Evaluation of the Load Balance Mechanism

To examine the effect of our load balancing strategy employed in SPM, a couple

of experiments were conducted, which include running the sample SPs described in

Chapter 4 on PC clusters and simulating the executions of these SPs. During the

execution, the utilization of IEUs is monitored and the actual idle time of the IEUs

is measured.

6.3.1 Simulation of Automatically Load Balancing

The first evaluation of the effect of the proposed automatic mechanism on load

balance was simulation of the execution of super-programs. It was performed with

a simulation program for the MM problem. In the simulations, the number of PCs

in the cluster is chosen as 1, 2, 4, 8, 16, 32 and 64. The input/output matrices

contain 32 x 32 blocks. Based on the results of our pilot experiments, we assume

that the workload of SIs is distributed uniformly and is between 0 and 20000μs.

Both the sender and receiver take 250μs to load a sub-matrix block remotely. In

a heterogeneous environment, the relative peak performance of nodes with an odd

index or even index is 3 and 1, respectively. All simulations were repeated 16 times

for different data sets. Except for the "syn" policy that was used only with multicast

operations in a homogeneous environment, all combinations of scheduling policies and

environments were used. Simulation results of the imbalance overheads are shown in

the Fig. 6.1.



Figure 6.1 Simulation results of imbalance overhead of the MM SP
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From Fig. 6.1(b), we can see that the synchronous policy introduces

significantly higher imbalance overhead. This is because SIs, unlike instructions in

microprocessors, have very irregular execution times. Thus, for high performance it is

more favorable for PC clusters to issue SIs asynchronously. Also, dynamic scheduling

algorithms with multicasting have less imbalance overhead than static scheduling

algorithms independent of unicasting or multicasting for data communications in

homogeneous [(a) and (b)] or heterogeneous environments [(c) and (d)], The

difference in the imbalance overhead among different (dynamic) scheduling strategies,

however, is very small. The difference in the imbalance overhead between the static

and dynamic schedules depends on the average number of tasks executed on a node.

The experiments give similar results (Fig. 6.5). More tasks a node executes (i.e.

fewer nodes in the cluster), the larger the difference. Thus, for sparse MM, in the case

where there exists diverse workload between updating different sub-matrix blocks,

especially for a large sparse MM, the asynchronous programming models are more

appropriate than synchronous programming models. For large problems, dynamic

strategies have an advantage in reducing the imbalance overhead.

Comparing the results [(a) and (b)] in a homogeneous environment with their

counterparts [(c) and (d)] in a heterogeneous environment in Fig. 6.1, we can see that

the imbalance overhead increases for the latter. This is because in a heterogeneous

environment the nodes have different peak performance. If two nodes begin to

execute a new SI at same time, the slower one will finish its execution later. Therefore

slower nodes in a cluster have better chance to run the last completed SI of an SF.

Other nodes with higher peak performance may be idle at the same time, thus

wasting more computing capability. The increase in dynamic scheduling policies is

larger. This makes the advantage of dynamic scheduling policies to diminish.



Table 6.1 Name and properties of synthetic databases used.

Name of

Database

The number of

transactions

The average

number of items

The average length of

the maximal pattern

T25.I10.D3K 3,000 25 10

T25.I10.D10K 10,000 25 10

T25.I10,D30K 30,000 25 10

T25.I10.D100K 100,000 25 10

T25.I10.D500K 500,000 25 10

6.3.2 Experiment of Mining Association Rule

The second evaluation of the effect of the proposed automatic mechanism on load

balance was experiment of executing the SPs for mining association rules. All the

experiments were performed on a PC cluster with six nodes. Each node contains two

AMD Athlon processors running at 1.2 GHz. Each node has 1GB of main memory,

a 64K Level-1 cache and a 256K Level-2 cache. All the nodes are connected via an

Ethernet switch. Each link has 100Mbps bandwidth. All the PCs run Red Hat 7.3.

All nodes have the same view of the file system by sharing files via an NFS file server.

The input data for the experiment was a set of synthetic databases generated

using the program provided in [123] with sizes from 2MB to 400MB. These generated

databases and some parameters are listed in Table 6.1. These database are named as

T25.110.D3K, T25.110.D1OK, T25.110.D30K, T25.110.D100K, and T25.110.D500K.

The number following the letter "T" , "I" or "D," is the average number of items

per transaction, the average length of the maximal pattern, and the number of

transactions, respectively. The number of distinct items N is 1000; the number

of patterns is 10000.

81



82

Table 6.2 Design parameters of SDBs and VM's runtime for mining association
rules

Parameter Name Value

Maximum size of block of items 1000

Maximum size of block of transactions 1000

Maximum size of block of candidate patterns 1000

Maximum size of block of rules 1000

Maximum number of hosted data blocks 10000

Maximum number of cached data blocks 10000

A few special functions were added in the code that implements the runtime

environment; they collect information at runtime about the utilization of individual

PC nodes. When no SI is executed on a node, the node is considered to be idle. The

information includes the total time elapsed, the time for the execution of sequential

code, the total time for the execution of SIs in parallel and the total idle time. During

the experiments, each member computer launches a runtime environment process.

The VM caches SDBs as much as possible by processes run on the host. The runtime

environment also caches recently used SDBs. When an IEU needs some data that are

not cached locally, it first tries to find them in its peers. The values of the relevant

parameters of VM and SDBs are listed in Table 6.2. Number of records stored in

each SDB is up to 1000. The size of the data cache on each virtual node is 10000.

Each database is stored in a single file. Thus, loading them is a sequential process.



Table 6.3 Summary of execution and idle time of VM for executing the SP for mining association rules. (In milliseconds)

Number of nodes 1 2 3 4 5 6

T25.I10.D3K

MinSupport = 0.6%

Average idle time 191 3556 5101 7612.75 8881 10572

Idle time in computing* 191 1266.3 3799 6126 6441 7837

Total time 71170 63209 53217 54884 53295 51285

Computing time 68757 59901 50775 52406 49483 47183

T25.I10.D10K

MinSupport = 0.6%

Average idle time 440 5478 8178 9030 11049 11196

Idle time in computing* 440 2716 3864 4334 5400 5737

Total time 146062 103904 97505 85210 88830 86648

Computing time 139947 96999 89417 77384 80003 78460

T25.I10.D30K

MinSupport = 0.6%

Average idle time 217 9340 14090 14580 18544 17745

Idle time in computing* 217 2617 4397 3977 5714 4820

Total time 376079 231358 211133 158794 162268 157674

Computing time 361751 214551 192959 141123 142221 138286

* excluding the sequential data load stage



Table 6.3 Summary of execution and idle time of VM for executing the SP for mining association rules. (Continue)

Number of nodes 1 2 3 4 5 6

T25.I10.D100K

MinSupport = 0.6%

Average idle time 306 19484 32092 37448 37305 49967

Idle time in computing* 306 2696 8016 3438 8070 13158

Total time 1234613 701748 515564 547617 377532 431875

Computing time 1189756 656980 467411 487153 328808 372980

T25.I10.D500K

MinSupport = 0.6%

Average idle time 1912 85293 134191 144945 182876 196851

Idle time in computing* 1912 53622 78463 32467 90942 91268

Total time 6883521 4825186 3081771 3263902 2325782 2585250

Computing time 6652822 4571818 2747404 2664023 1866108 2078452

* excluding the sequential data load stage
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Figure 6.2 Percentage of average node idle time as a function of the total
number of nodes (in execution of the SP of mining association rules)

Table 6.3 presents a summary of the total program running time, actual

computation time, total idle time of nodes during actual computation and average

idle time of nodes for each mining problem in our experiments. The times of

computation (in parallel) were presented because the initial part of the super-

program loads data sequentially. The average percentage of the idle time of IEUs

during the execution of the entire SP and the parallel computing stage are shown in

the Fig. 6.2 and 6.3, respectively.

Experimental results show that the percentage of idle time is not more than

8% if the problem size is large enough. We have also examined the effect of the

SDB size on the SP for various SDB sizes. The results show that SDBs of size 1000

are a good choice for small- to medium-sized datasets. For very large data sets,

the best SDB size may be larger but the improvement in performance is less than

10%. For the sake of comparing the effectiveness of load balancing, another SP was

developed that implemented the HPA (Hash Partitioned Apriori) algorithm of [109].



86

Figure 6.3 Percentage of average node idle time as a function of the total
number of nodes (in the computing stage of the SP of mining association rules)

The results shown in Fig. 6.4 indicate that the load balancing mechanism employed

in SPM is very competitive.

6.3.3 Experiment of Sparse Matrix Multiplication

The second evaluation of the effect of the proposed automatic mechanism on load

balance was experiment of executing the SPs for mining association rules. All the

experiments were performed on a PC cluster with eight dual-processor nodes. The

random/dynamic scheduling approach was followed. Each node is equipped with two

Athlon processors running at 1.2 GHz, 1GB of main memory, a 64K Level-1 cache

and a 256K Level-2 cache. All the nodes are connected through a switch that forms

an Ethernet LAN. Each link has 100Mbps bandwidth. All the PCs run Red Hat 9.0

and share the same view of the file system for files via an NFS file server.
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Figure 6.4 Comparison of the relative idle time for SPM and HPA.

A set of synthetic sparse matrices of size 8192 x 8192 were used; they are

completely irregular with 5% non-zero elements, These matrices were partitioned into

32 x 32 sub-matrices of size 256 x 256, The super-program was developed manually

using the SF described in Section 4.2. We implemented a runtime environment to

support our SPM. In our runtime environment, there is a virtual IEU on each PC

node. Recently used SDBs are cached in nodes. The runtime environment and the

SIs are implemented in the Java language. To hide the long latency of loading data

remotely, an IEU receives multiple SIs. They are executed in separate threads and

are scheduled by the local operating system when their operands are locally available,

Experimental results of the imbalance overhead are shown in Fig. 6,5.
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Figure 6.5 Relative idle time of IEUs in execution of the MM SP (experiment)



CHAPTER 7

COMMUNICATION OVERHEAD

Communication overhead is another part of overheads of programs developed in

SPM. It is hidden in the services of the runtime system of SPM. In this chapter

the communication overhead introduced by the runtime system are studied. The

primary reasons of introducing the communication overheads are analyzed and the

technologies to decrease the communication overhead are discussed and evaluated.

7.1 Communication Overheads for the SPM Runtime System

Communications on PC clusters are expensive and have few differences from

communications for other types of parallel systems. The member nodes are fat

PCs that contain many resources rather than simple processors. Besides the CPU,

each node also has one or more network interface cards (NICs) containing auxiliary

processors dedicated to communications among member computers. Therefore, the

CPUs on these computers communicate with each other indirectly and many low

level communication operations can be offloaded to the NICs,

Because of these existing auxiliary resources and the differences in the

communication mechanism, the communication overheads on PC cluster systems

are rather large. Since application programs execute on CPUs, not on NICs, the

execution time of application programs depends heavily on the utilization of CPUs.

Therefore, only the time consumed by CPUs is counted as overhead. Although the

processors on NICs cannot be utilized to perform computations, they do help to

reduce the communication overheads. They perform many low level communication

operations simultaneously, while the CPUs perform computations dictated by the

89
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application programs. In this situation, the communication time does not count as

overhead. For PC clusters, the real communication overhead involves the CPU two

cases: 1) consumed CPU time to support communication and 2) CPU waste time

waiting for communications to complete. The first kind of communication overhead

is instinct to communications. It includes CPU interaction with NICs and data

formatting. The second kind of communication overhead comes from a mismatch

of the data provisioning capacity with the computation capacity of the processor.

When an SI is assigned to an IEU, if during the operand loading for the SI the IEU

has no other task, then the CPU has to wait.

7.2 Technologies to Reduce Communication Overhead

7.2.1 Techniques to Reduce Type I Communication Overhead

The first type of communication overhead depends on the amount of communication

operations that, in turn, depends on the application problems themselves,

the algorithms adopted to develop application programs, the task distribution

techniques, and the data access techniques. In SPM, RTS cannot change the first two

factors; it cannot eliminate these overheads. The techniques used to reduce this kind

of overhead need to decrease the demand for network communications. Because the

communication patterns depend on the distribution of tasks and data, by controlling

the ways of distributing tasks and data, the RTS may change the types and amounts

of communication.

The primary instrument to reduce the first type of overheads is to translate

some network communications to intra-process communications. Through a

cooperation of the IDU and SFs, we can provide "communication-friendly" SIs.

Assigning SIs that use the same data to the same IEU (if possible) makes

communications between these SIs local, thus eliminating these overheads.
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7.2.2 Techniques to Reduce Type II Communication Overhead

The second type of communication overhead is due to communication latencies.

Before an SI is executed, its operands must be loaded into the local process. The

corresponding member computer has to wait. A technique that can used to reduce

this type of overhead is multithreading. Since an IEU has lots of resources, it

can request multiple SIs that form a virtual pipeline and overlap the process of

loading operands remotely for an SI with the execution of SIs having their operands

available. The local operating system may schedule the execution of these SIs without

a restricted order. Since no all SIs need to load data remotely, the operating system

makes this arrangement more efficient. In this scheme, matching the time of loading

data with the execution time of SIs is critical. Actually this criticality gave us the

initial motivation to develop SPM with coarse grain operands. Cache techniques also

help to reduce this type of communication overhead. Besides reducing the demand

for communication, they also increase the ratio of ready SIs vs. SIs waiting for

operands and make the overlapping of data loads with SI execution easier.

7.3 Model to Estimate the Communication Overhead of the SPM

Runtime System

In this section, a theoretical model is developed to estimate the communication

overhead of SPs. In this model, the execution of an SI consists of loading operand

data and running a local routine. Assume that with probability pr the operands of

an SI need to be loaded remotely; it actually depends on the data distribution among

the nodes. Otherwise, the operand data are loaded locally.
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7.3.1 System Condition and a Statistical Estimation of the

Communication Overhead

We first build a simple statistical model that estimates the communication overhead

based on the description above. This model assumes that the net CPU time of

running the local procedure implementation of an SI is T0 . If the SI loads its operands

locally, the runtime system consumes no time in preparing the operands of the SI.

But if it loads operands remotely, the SI needs to wait to acquire the communication

channel, to use the network resources to transfer data, and to use the CPU to control

the communication and handle the transferred data. During the time waiting for

the channel, it does not consume any resources. Usually the SIs running on different

nodes compete for network resources to access remote data. The operations of loading

data remotely affect each other. However, in this model, we assume that these SIs

are executed independently. All the effects on each other are simply modeled as a

waiting period. This is a system constant. The wait time depends on the number of

nodes and it weakly depends on the average communication load when the system

is not congested. Assume that the wait time of the SI that needs to load operands

remotely is Tdelay, the time using the network resources for the SI is T oad  and the

time using the CPU to handle the communication is Tload-cpu. The average span

time to execute an SI is

TSI = T0 +Pr (Tx (Tdelay + Tload + Tload-cpu) = TSI-cpu +TSI-comm +TSI-wait (7.1)

where T0 is the actual time to execute the SI without overheads, TSI- cpu = T0 +p, x

Tload-cpu, TSI-comm = Pr x Toad and TSI- wait = Pr x— Tdelay

For a simple schedule, assume that each time only a single SI is assigned to a

node. The efficiency of executing SIs is then E0 = T0/TSI . Since the execution of



93

SIs breaks into three stages and each of them uses different resources, it is possible

to assign more than one SI to a node and arrange their execution in a pipelined

manner. This can increase the utilization of the communication resources and the

CPU. Assume that at any moment there are nT, SIs on a node (nT  > 2) and that they

are in an (nT )-stage pseudo pipeline. In the first Thy — 2 s tages, the SIs just wait.

The execution time of each stage is Ts/ I-wait = TSI-wait/ (nT —2). In the second to the

last stage, the SIs take time TSI-comm to use the communication resources to load

data. In the last stage, the SIs take time TSI-cpu to run their local procedures. In

this pipeline, the average time of executing an SI is the execution time of the longest

stage, assuming that all stages are used all the time. It means that the effective

execution time of each SI is

The stage which determines the effective execution time of an SI depends on the

system condition. If TSI-cpu > TSI-comm and TSI- cpu > Ts' I-wait, then T'SI = TSI-cpu.

The execution time of the SI is determined by the CPU activities, which is in the

CPU bound condition. If TSI- comm > TSI-cpu and TSI-comm > T'SI-wait , then VSI

TSI-comm. Then the execution time of the SI is determined by the consumption of

communication resources. The system is in the communication bound condition. If

TS I-wait > TSI-cpu and T 'SI-wait it > TSI-comm, then T'sI = T'SI-wait. The execution

time of the SI is determined by the wait time. The system is in the delay bound

condition. In the delay bound condition, neither recourses for computation nor

recourses for communication can be utilized efficiently. This situation, however, can

be avoided because Ts/ TSI-wait = TSI-waitl(nSI 2) and TSI-wait only weakly depends

on the average communication load. Thus designers could always prevent the system
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from executing SIs in the delay bound condition by appropriately increasing nSI . So,

the delay bound condition is no longer discussed here.

Under the CPU bound condition, the effective execution time is T'si- =

TSI-comm• The efficiency of executing SIs is

And the relative communication overhead (under the CPU bound condition) is

In the communication bound condition, the effective execution time is T'SI =

TSI-comm• The efficiency is

And the relative communication overhead (under the communication bound

condition)

It is obvious that in the communication bound condition T SI- comm >

Ts I -cpu the communication overhead is heavier, and the CPU resources cannot be

utilized efficiently. Under the CPU bound condition, the system has the lightest

communication overhead. Thus, we should always tune the design parameters so

that the system works under this condition. In the following sections, if no explicitly

stated, we assume system working under this condition.



95

The criterion of running in the CPU bound condition is T 0 + pr . Tload-cpu >

TSI-comm• If T0 > TSI-comm, then a super-program always works under the CPU

bound condition no matter how low pr is. We call this case the absolute CPU

bound condition. Similarly, if T0 + Tload-cpu < TSI-comm, a super-program always

works under the communication bound condition. This is called the absolute

communication bound condition. A CPU(communication) bound condition that is

not absolute is called a statistical CPU (communication) bound condition.

7.3.2 The Effect of Loading Remote Data in the Burst Access Mode

In the previous model, we have always used the statistical average data as the

property of each SI. It implies that the SIs that need to load data remotely are

uniformly distributed. This may not be the case. To study the effect of the

distribution of SIs that need to load data remotely, this section studies an extended

model. In this model, the series of SIs executed on a node are form several groups,

Each group includes two parts. In the first part, all SIs need to load data remotely;

all SIs in the second part never need this. We assume that the number of SIs in each

group is NSI and prNSI is their number in the first part.

If prNSI > n8I , then at a particular moment all SIs on a node need to load data

remotely. This is called a burst condition (of remote loading data). Otherwise, the

node always has some SIs that do not need to load data remotely. If all SIs present

in a node at the same time have no inter-dependencies, then these SIs could always

fill the time period during which others wait for data, This case is called a stable

condition (of remote loading data). In this stable condition, using statistical average

data to represent each SI is valid.
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Let us now discuss the burst case. Under the absolutely CPU bound condition,

the total execution time is

The effective execution time of each SI is

The efficiency is

It is the same as that for the statistical description in Equation 7.3.

If TSI-cpu T0 + Tload-cpu < TSI-comm, then the total execution time is T =

PrNSI Toad + ( 1 — pr )NSIT0 . The effective execution time of each SI is

The efficiency is

Thus, under the burst condition, the statistical description is valid for the

absolute CPU bound condition, But in all the cases of the statistical CPU

(communication) bound condition and absolute communication bound condition,

the efficiency is lower than the expected value described in Equation 7.5 and the

communication overhead is heavier.
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7.3.3 The Effect of the Local Cache

Now, the factor of the data cache is added in the model. From Equation (7.4), we

know that the communication overhead depends on the probability pr that SIs load

operands remotely. If remotely loaded data are cached locally, they can be reused

by many SIs. The capacity of the local cache for nodes can directly affect pr. Thus,

it has a strong effect on the communication overhead.

Let us assume that the number of nodes in the cluster is n and the distribution

of the original location of data is not correlated with the distribution of nodes on

which the SIs are run. Then, the probability of referring to data that originally reside

in a remote node is pr. = (n — 1)1n. Assume that due to the local cache, the average

times reusing the data loaded remotely is r. This is called the data reuse rate. Then,

the probability with which SIs load operands remotely is

Thus, the relative communication overhead is

Let us now distinguish among three cases.

Case 1: Without the local cache, any SI that refers to data in a remote node

has to load the operands remotely. The data reuse rate is r = 1 for any scheduling

policy. Thus, the relative communication overhead is
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Case 2: Now we assume that every node can fully cache all the data it needs.

Each node then loads any remote data only once and it can be held indefinitely. For

the synchronous and static scheduling strategies of the matrix multiplication SPs,

following the assumptions described in Section 4.2 each node needs to refer to q rows

of distinct sub-matrix blocks of A and q columns of distinct sub-matrix blocks of B

(q = N/p and n = p 2 ). There is N blocks in each row/column. The total number

of SIs executed by a node is n SI = N • q . q = N3 /n, The number of block pairs is

N•q. The data reuse rate is r = q. The probability of loading data remotely is

Tload-cpu is the CPU time consumed for an SI that loads a pair of sub-matrix blocks.

Then, the relative communication overhead is

For the dynamic scheduling strategies, the sub-matrix blocks of the result C

are dynamically assigned to nodes. The blocks assigned to a node are not longer

located in a single rectangle but are dispersed. The data reuse rate r will then drop.

Assume that the expected number of distinct rows/columns in them is q'. Then,

reload = ( 1 — 1/n) . N.q' and
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For a random dynamic scheduling policy, when n << N then q' converges to a

constant N. When N < n < N2 , then q' converges to N2 /n. Thus,

For the smart dynamic scheduling policies, the system tries to align the sub-

matrix blocks in the same row or column, if possible. Thus, the expected number of

relevant rows/columns should be lower than that for the random dynamic scheduling

policy. So there is a lower pr and wcomm  This is the reason for proposing the strategy.

Case 3: When the system provides some local cache but it cannot use a full

cache to hold all the remote data, then the data reuse rate will drop from the above

expected value. The value will depend on the cache policy and the implementation

details of scheduling.

7.3.4 The Effect of Multicasting on the Communication Overhead

In the above discussion we have assumed that data exchanges in a unicast manner.

Remote data are loaded on demand. This is a simple imitation of operand fetching

in CPUs. As the member nodes in clusters (PCs) have more powerful high-level

communication mechanisms, they can also broadcast and multicast. This section

discusses the effect of using these channels for data communication.

The main benefit of broadcast/multicast to many nodes comes from merging

multiple unicast communication operations into a single multicast operation. When

multiple SIs almost simultaneously need to load remote data, a multicast of the

data may reduce the communication cost and decrease the overall communication

overhead.
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Now let us modify the above model to analyze the effect of data multicast. In

the above model the effective cost of a unicast load is 7;load-cpu• Actually, it includes

two parts. One is the CPU time of the sender Tsend-cpu and the other is the CPU

time of the receiver Treceive-cpu. A broadcast/multicast has more than one receiver.

Thus, its cost will be greater than that of a unicast operation. Assume a multicast

is performed for a group of nm nodes. A broadcast is a special multicast where the

group includes all nodes in the system. The total cost of a multicast is

We assume that when the first member node needs the remote data, the data

will be multicast to a group. All member nodes will receive the data. If we consider

a combination of the multicast and the local cache, we can further assume that the

data are cached and aged based on the local cache policy. For a node i in the group

(i = 1 to nm), the data reuse rate is r i . The total data reuse rate of the system is

r = Σri . Then, the effective communication cost of an SI that refers to remote data

is Cmutti  = Cmuiti/r.The relative communication overhead is

It is clear that most receiver nodes receive data not based on their own demands,

except for the node that requests the multicast. Thus, this approach may reduce the

reuse rate of data for these nodes. The communication overhead will depend on the

synchronous characteristics of the consumed data. Let us now distinguish between

two cases.
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Case 1: If there is no cache, then r i = 0 or 1. If nu nodes in the group consume

the data synchronously and others do not, then r = n u and

Comparing Equation (7.21) and (7.13), we have

if and only if

For the synchronous strategy of the matrix multiplication SPs described in

Section 4.2, nu = nm = p = nl/ 2 . Also,

and

Thus, the relative communication overhead drops to Tsend-cpu/T0 . 	 For the

asynchronous strategy of the same SPs, n u = 1 and nm = p = n112 . Also,

Thus, multicasting increases the relative communication overhead by about nm .

Treceive-cpu /T0 . This may be prohibitively high so that multicasting can not be used

in practice.
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Case 2: With a cache, once the received data can be used in the future no

matter who requested the data. The longer received data is cached, the higher the

benefit. Receiving data before it is needed is equivalent to data pre-fetching. The key

in reducing the communication overhead is to choose a group for the multicast. For

a static scheduling strategy, it is easy. For the synchronous strategy described above,

the nodes which process the blocks of C on the same rows form groups to multicast

sub-matrix blocks of A; the nodes which process the blocks of C on the same columns

form groups to multicast sub-matrix blocks of B. The effect is n u = p = n 1 / 2

and r i = q = N/p for i = 1 to n m .

These results show that the choice of the communication mechanism is not

completely orthogonal with other design factors. For the efficient use of multicast, a

synchronous strategy and a cache should complement each other. If nodes provide the

capacity to fully cache all data, the designer can choose any one of them arbitrarily.

In another case, if nodes do not provide the capability to cache data, the broadcasted

data have to be consumed in a synchronous fashion. All SIs which use the same

broadcast/multicast data should be issued at the same time to different nodes, This

adds a strong limitation to scheduling and sacrifices valuable independency of SIs,

so the design space of scheduling polices is shrunk. Under this condition, only

the synchronous policy among the above five scheduling strategies of our matrix

multiplication example can be used, Since both synchronization and the cache

scheme have external cost, synchronization may increase the imbalance overhead.

The cache increases the system cost. The requirement of reducing these costs

form constraints in the design. These constraints make the design space become

3-dimensional and non-orthogonal,
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It should be indicated that besides directly affecting the consumed CPU time

for handling data communication, multicasting data also has an indirect effect on

the overall performance of the executed programs. Multicast, similar to cache,

may increase the data reuse rate because it may decrease the number of remotely

loaded data which further reduces the total demand for network communication.

Although under the CPU bound condition reducing the communication load may

not affect the system performance, it may decrease TSI-comm and T/ I-wait. The

system may work better under the CPU bound condition compared to snitching to

the communication bound condition. When the load of an Ethernet LAN is close

to its saturation capacity, the efficiency of the communication network is sensitive

to the communication load. In this case, reducing the communication load is really

beneficial.

7.4 Evaluation of Communication Overheads in SPM

The effect of using the above techniques to reduce the communication overheads was

evaluated by running a set of simulation programs that simulates the execution of

MM SPs described in Chapter 4. During the simulation, the "simulator" performs

the task of the IDU for scheduling SIs and keeps running until all SIs have been

executed and all nodes are idle. The system maintains an abstract time progress and

various overheads are counted based on the SIs assigned to IEUs. The workload of

tasks and the static schedule were created manually in advance. Table 7.1 shows an

example of static schedule for tasks on a heterogeneous PC cluster with 64 nodes.

The numbers in the left column and top row are the indices of sub-matrix blocks to

be calculated. The other numbers are the indices of the nodes that tasks are assigned

to. For the SS strategy, the initial task assigned to each node is chosen to be the

same as that for the static strategy.
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Table 7.1 	 A static task schedule for a heterogeneous PC cluster with 64 nodes

0-5 	 6-7 	 8-13 	 14-15 	 16-21 	 22-23 	 24-29 	 30-31

0-3 0 1 16 17 32 33 48 49

4-7 2 3 18 19 34 35 50 51

8-11 4 5 20 21 36 37 52 53

12-15 6 7 22 23 38 39 54 55

16-19 8 9 24 25 40 41 56 57

20-23 10 11 26 27 42 43 58 59

24-27 12 13 28 29 44 45 60 61

28-32 14 15 30 31 46 47 62 63

Both unicast and multicast communications were simulated. For multicasts,

the membership of nodes in the multicast group is determined statically as follows

for all strategies. In our simulation, the sub-matrix blocks of A and B are cached

separately. The unit of cached data is a row of A and a column of B. The size of

the local cache is the number of rows of A and columns of B cached. The size of the

cache is chosen to be 1 to 32. The size of 32 means that every node can fully cache

all data it needs.

Simulations to count the communication overhead of MM SPs executing on

homogeneous and heterogeneous clusters with a full cache are shown in Fig. 7.1

and 7.2, respectively. The comparison of the communication overheads for different

communication schemes and cache sizes are shown in Fig. 7.3 and 7.4 respectively.

In these figures, Syn, S, R, SS and SR represent the synchronous policy, the static

scheduling policy, the random scheduling policy, the smart scheduling policy with

a static initial assignment and the smart scheduling policy with a random initial

assignment, respectively. HU/HM represents the case of using unicast/multicast
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communication in a homogeneous environment; RU/RM represents the case of using

unicast/multicast communication in a heterogeneous environment. The relative

communication overhead x is expressed in the percentage of CPU time used in

communications,

From the figure 7.1 it is observed that Syn always has the lowest communication

overhead. S using multicasts has almost the same level of communication

overhead in most cases, except for a cluster with only two nodes. However, in a

heterogeneous cluster multicasting loses its advantage. S using unicasts has the

lowest communication overhead while SS using unicasts has a little higher. When

the number of nodes is more than 16, the overhead for SS using unicasts is even less

than that for the static strategy using multicasts. This means that in heterogeneous

environments, unicast communications reduce the communication overhead. The

significant difference in communication overheads between SS and R indicates that

for dynamic scheduling strategies appropriate optimization is necessary.

From Fig. 7.4 we can find that the communication overhead decreases when

increasing the cache size, especially when the cache size is small so that an IEU cannot

cache all SDBs needed. In the non-full cache cases, the results show that unlike the

full cache case, both the S and SS strategies using unicasts have lower communication

overhead than the corresponding strategies using multicasts. This indicates that,

even in a homogeneous environment unicasts are better than multicasts. SS using

unicast communication has the lowest communication overhead. The other obvious

feature is that when increasing the cache size, the changes in the communication

overhead of SS are more significant than those for the S strategy. No matter if using

unicasts or multicasts, the communication overhead for the SS strategy drops faster

when increasing the cache size. This indicates that SS is more flexible. It can utilize

the cache space very well. Compared with the result in Fig. 7.1, in this case, SS
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is a better choice. For large embedded MM problems, in the general case there is

no-sufficient cache space available. Combining the advantages of SS and uncasts is

the best choice.

To Summary, since the SS is the best choice in many cases, utilizing an IDU-SF

cooperation really helps to reduce the communication overheads. Also, the utilization

of cache techniques is really useful in reducing communication overheads even further.
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Figure 7.1 Simulation results of communication overhead in a homogeneous
environment
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Figure 7.2 Simulation results of communication overhead in a heterogeneous
environment



Figure 7.3 Comparison of communication overheads under different strategies.
Number of Nodes is (a) 4 (b) 16 (c) 32 (d) 64



Figure 7.4 Communication overheads under different strategies in a homogeneous environment
for different cache size. Number of Nodes is (a) 4 (b) 16 (c) 32 (d) 64



CHAPTER 8

PARALLEL DATA VIRTUALIZATION AND DATA ACCESSES

The parallelism in programs can benefit from support for parallel data accesses.

In this chapter, the means for data representation in SPM are described and their

impact on parallel data accesses is discussed.

8.1 Parallel Data Accesses for the Parallelization of Programs

Data dependences are one of the most important factors that affect performance.

Some data dependences are associated with intrinsic properties of the problem and

the algorithm used to solve the problem (i.e., they are true dependences). Others are

fake data dependences introduced by the programming model or the implementation

of the underlying computer system. WAW (write after write) and WAR (write after

read) in stream pipelining of executing instructions are two well known examples of

such restrictions [15]; they stall subsequent instructions and may destroy temporal

parallelism. Alleviating these restrictions in data is the main responsibility of the

designers of programming models and the developers of computer systems.

For parallel programs, this problem appears in multithreading when accessing

shared data. Data sharing among multiple processes/threads is essential in parallel

programs [70]. For most of the parallel programs, multiple threads may need to

access the same data at the same or different times. If multiple threads need to

access the same data simultaneously but the underlying system storing the data does

not support such concurrent accesses, some threads must be stalled [124]; i.e., the

way of representing data in the system may restrict the parallelization of programs

111
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8.2 Data Virtualization and Parallel Data Accesses

SPM addresses this issue through the virtualization of application data [125]. In

SPM, SDBs are only data entities used by the programmers of SPs. They are pure

logical entities. They exist in a global logical space for each application and are

managed by RTS. At runtime, RTS provides local data representations of SDBs

for executing SIs. The representations of an SDB may be a set of incarnated data

objects and/or external data files stored in external storage instead of one incarnated

object. These incarnated data objects are distributed among IEUs. Accessing an

SDB is achieved through interfaces of its incarnated data objects either locally or

remotely. Therefore, concurrent accesses can be supported easily.

For data coherence, data accesses are controlled by the runtime support system.

We define a set of data states. RTS maintains the states of all SDBs and grants access

privileges for particular data based on its current state. A state diagram for data

is shown in Fig. 8.1. The change of state is triggered by various events, such as an

SI's issue or commitment. The difference between updates and distributed-updates

is that the system guarantees the latter access a local incarnated object. In SPM,

besides reads and writes, SDBs can be accessed simultaneously for remote -update and

distributed -update operations. Programmers can easily develop parallel programs.

8.3 Evaluation of SPM in Accessing Parallel Data

To demonstrate the effect of our approach, a set of experiments were set up. The

MM SPs described in Chapter 4 were chosen. To study the effect of distributed

data representation and parallel data accesses on the performance, several versions

of the SP were created. The difference among them lies only in the way that

SIs update blocks in the result. In the version "SimpleUpdate," SIs only use

"write" to access resulting SDBs. In the version "RemoteUpdate," SIs only use
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Figure 8.1 State diagram for logical data entities

"update" to access resulting SDBs. In the version "DistributeUpdate," SIs only use

"distributed_update" to access resulting SDBs. In the version "Mixture," SIs use

"write" until the last SDB in the resulting matrix begins to be computed; then the

reminding SIs use "distributed_update." Two scheduling policies R and SS, described

in Chapter 4, were used for distributing SIs. R was used for all SPs; SS was used

only for "SimpleUpdate" and "Mixture."

In the experiments, a set of synthetic sparse matrices with 12.5% non-zero

elements were used. The properties of the matrixes are listed in Table 8.1. The

SP versions and the parameters of the input matrices are listed in Table 8.2.

In Table 8.2 S, R, D and M represent the "SimpleUpdate," "RemoteUpdate,"



Table 8.1 Properties of the data matrices

Matrix name Sizes Number of block SDB size

M11 4096 x 4096 32 x 32 128 x 128

M12 1024 x 16384 8 x 128 128 x 128

M13 16384 x 1024 128 x 8 128 x 128

M22 4096 x 4096 16 x 16 256 x 256

M23 1024 x 16384 4 x 64 256 x 256

M24 16384 x 1024 64 x 4 256 x 256

M25 2048 x 32768 8 x 128 256 x 256

M26 32768 x 2048 128 x 8 256 x 256

Table 8.2 Experimental configurations and data

Case Name Operands Threads limit SP version

256r1 M25 x M26 1, 4, 6, 8 S, R, D, M, G, N

256r2 M23 x M24 6 S, R, D

128r M12 x M13 6 S, R, D

256s M22 x M22 6 S, R, D

128s M11 x M11 6 S, R, D

"DistributedUpdate" and "Mixture" SPs using the basic policy (R), respectively.

G and N represent "SimpleUpdate" and "Mixture" SPs using the SS policy,

respectively. The operands refer to the matrices listed in Table 8.1.

The performance of SPs relative to "SimpleUpdate" is shown in Fig. 8.2. The

average number of threads is shown in Fig. 8.3. It represents the degree of parallelism

in the SPs.
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Figure 8.2 Relative performances of the three SPs using different data writing methods



Figure 8.3 The effect of the data access methods on the degree of parallelism



Figure 8.4 The local cache-miss ratio of data access
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Figure 8.5 The effect of multithreading on the execution time of the SPs for
256r1
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Figure 8.6 The effect of the limit of threads per node on the actual degree of
parallelism for 256r1
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Figure 8.7 Average time for synchronization of a sub-matrix block (a) 256 x 256
blocks (b) 128 x 128 blocks
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The local cache-miss ratios during the execution of SPs are shown in Fig. 8.4.

In the experiments, 1, 2, 4, 6 or 8 nodes were employed. The maximum number

of SIs assigned simultaneously to an IEU is six with an exception for the case of 256r1

that changes the limit from one to eight to confirm that this choice is reasonable. The

average net CPU time to execute an SI that multiplies a pair of SDBs was measured

with a separate pilot program; it is 1.0ms and 18.5ms for SDBs of size 128 x 128 and

256 x 256 (with 12.5% non-zero elements), respectively.

For the case of 256r1, the number of threads is changed from one to eight. The

execution time of these SPs is shown in Fig. 8.5 and the actual degree of parallelism is

shown in Fig. 8.6. The average time for synchronization with an SDB under various

conditions is shown in Fig. 8.7.

8.4 Performance Analysis

From Fig. 8.2 and Fig. 8.3, we can see that there is correlation among the data

access method, the degree of parallelism and the performance of SPs. The long

communication latency has an adverse effect on the performance in PC clusters.

SPM uses multithreading to hide this latency and employs coarse-grain tasks (i.e.,

SIs) to decrease its effect [106, 119]. Since efficient multithreading requires enough

parallelism, we must investigate the factors that affect it. Although assigning six SIs

concurrently is allowed, the actual number of concurrent threads, shown in Fig. 8.3,

is significantly lower. In the 128s and 128r cases, it is less than 3. One reason is

distributing an SI needs some time. Another reason relates to the way that SPs

exploit the intrinsic parallelism in the problem. In block-wise matrix multiplication,

there are two types of parallelism. The first is inter-block parallelism ( P(P external)

appearing when all SDBs in the resulting matrix are computed in parallel. The

second is intra-block parallelism (P(Pinternal) involving the multiplication of pairs of



Table 8.3 Intrinsic degree of parallelism in the experimental SP

Experiments Inter-block parallelism Intra-block parallelism

256r1 16 64

256r2 64 128

128r 64 128

256s 256 16

128s 1024 32

sub-matrix blocks for a resulting SDB. For n x k and k x m SDBs, these degrees

of parallelism are equal to n . m and k, respectively. The P- external and Pinternalinternal

parallelism in each experiment are shown in Table 8.3.

Because of its exclusive writes, "SimpleUpdate" can only exploit inter-block

parallelism while "RemoteUpdate" and "DistributedUpdate" can exploit both types

of parallelism since SIs separate their computations from updating the SDBs. In the

256s and 128s cases, the total Pexternalexternal is 256 and 1024, respectively. For 8 nodes,

the theoretical limit on Pexternalexternal per node is 32 and 128, respectively; these numbers

are much larger than 5 (the upper bound on the actual parallelism, is shown in

Fig. 8.3). The actual parallelism drops because of the overhead in delivering SIs.

This explains the small difference in actual parallelism among SPs. In contrast, in

the 256r2 case the theoretical Pexternalexternal is only 16. When the number of nodes equals

4, 6 and 8, the Pexternalexternal per node is only 4, 2.66 and 2, respectively. However, by

combining Pexternalexternal with Pinternal, in the D SP, the parallelism increases substantially

(see Fig. 8.3). This also explains why the actual parallelism drops significantly in S

while decreases slightly in D with increases in the number of nodes.
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We can now investigate the effect of parallelism on performance. SPM allows

data communications only at the beginning and at the end of an SI's execution [119].

Multithreading overlaps the pre-fetching of remote operands with the execution of

previous SIs, and also result storing/updating with the execution of new SIs. Assume

that the latency to get a remote SDB is tr ; the probability to need a remote access is r;

the average number of input operands per SI is n 0 ; and the net CPU time to execute

an SI is te . If the actual degree of parallelism is larger than pc = (r x n0 x tr )/te ,

then the communication latency can probably be hidden.

Based on experiments with SDBs of size 128 x 128, the value of pc is 1.41,

5.46, 9.86 and 12.97 with 2, 4, 6 and 8 nodes, respectively. Thus, these SDBs have

fine granularity and the long communication latency cannot be hidden well. The

system works under the delay bound condition [119]. For SDBs of size 256 x 256,

the value of pc is 0.57, 1.58, 2,18 and 2.60 with 2, 4, 6 and 8 nodes, respectively,

In these cases the communication latency can be completely hidden. The system

works under the CPU bound condition [119]. For this reason, the cases of 256s

and 256r2 yield better performance than 128s and 128r, respectively. For matrix

multiplication with same sized matrices, the former take less than half the time (case

256s versus 128s and case 256r2 versus 128r). In the case of 256r2 the difference in

the actual degree of parallelism between the SPs is significant. The actual parallelism

in "DistributedUpdate" is greater than 4 (see Fig. 8.3) and greater than or close to

the critical value pc . The actual parallelism in "SimpleUpdate" is lower; in fact, it

is lower than pc for 6 or 8 nodes. This explains the result in Fig. 8.2.

Based on this analysis, increasing the actual parallelism can improve

performance up to a point under the delay bound condition. Further increasing

parallelism would increase the number of SIs competing for the local CPUs and

would extend the lifespan of SIs. This behavior is verified in Fig. 8.5 and 8.6. From
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Fig. 8.6, we can see that the actual degree of parallelism increases by increasing the

maximum number of threads per node. The execution time of the SPs, however,

decreases significantly only when the maximum number of threads increases from

1 to 4. Further increasing the maximum number of threads results in insignificant

execution time decreases.

Although "distributed_updates" increase paralleli, they require synchronization

operations. Their overhead is insignificant compared to the gains. The available

parallelism may vary during execution. In our experiments, the intrinsic P- external

decreases gradually as execution progresses. The inter-block parallelism is not

enough only close to the end of the execution. Thus, expensive "distributed update"

operations are only needed during the latter part of the SP's execution. We could

then combine "write" with "distributed update" operations to get the benefit of

the latter with a reduced overhead. Fig. 8.5 testifies to this effect. To conclude,

good performance is obtained by combining multithreading with the distributed

representation of application data.



CHAPTER 9

SCALABILITY

Scalability has become an attribute of paramount importance for computer systems

used in business, scientific and engineering applications. Although scalability has

been widely discussed, especially for pure parallel computer systems, there is not

really a widely-accepted definition of scalability. In fact, the term "scalable" is so

much abused that it has become a marketing tool for computer vendors independent

of the system's technical qualifications. Since the primary technical purpose of

scalability is to show users how well the system can work for larger problems with

increases in its size, we define, a refined multi-dimensional definition of scalability

quantitatively [126]. We also apply this definition to PC clusters, a rather difficult

subject due to their long communication latencies. Since scalability does not solely

depend on the system architecture but also on the application programs and their

actual management by the run-time environment, for the sake of illustration we

evaluate scalability for programs developed under the super-programming model

(SPM) [106,119,125].

9.1 Scalability and its Analysis

9.1.1 Demand on Scalability

Generally scalability relates to the possibility to build larger systems to address

larger problems without significant performance degradation due to communication

increased and other latencies in the parallel or distributed environment. Scalability

has become a critical attribute of computer systems and/or software solutions in

various application domains for economical and technical reasons. Different users

125
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may have different expectations from computer systems, such as their computing

capability. The particular user's requirements may also be subject to change with

time. For example, a business user may initially need a small computer system

to satisfy basic requirements and then may demand a more powerful system for

larger business tasks. Actually many servers increase their user base daily and

their application datasets become ever larger. In practice, it is neither possible to

design and build a computer system for each user, nor to replace computer systems

very often. Therefore, the solution to address demand diversity is to make systems

adaptable and scalable. That is, keeping the basic features of the computer systems,

more resources could be added easily to satisfy higher demands. This way, a computer

system could satisfy many users or applications for relative long period of time.

The primary objective of scalability is to characterize computer systems in

a way that can convince users that they can still work well with larger workloads.

Intuitively, scalability is also an attribute of a scheme, design, architecture or solution

for a device or system as it pertains to solve large problems. When the users have

an overall solution (e.g., a pair of a computer system and an algorithm) to solve a

particular problem or provide a particular service for a certain problem size, they

usually want to know how well 1) the solution works for larger problems (i.e., if the

results are produced quickly enough or an acceptable service level is possible). If the

predicted results cannot reach the desired goal (in execution time or service quality),

they may also want to know 2) if they can keep the software solution but increase

the system resources to reach another desired performance level. In the latter case,

they may even want to know 3) how many resources must be added to achieve this

goal and the associated cost. To answer these questions, scalability studies should

produce quantitative metrics to describe their solution. If the answer to question 2

is yes, the solution can be still called "scalable." When comparing different solutions
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that solve the same enlarged problem, the solution that requests fewer resources has

better scalability.

In general, scalability measures the capability of a solution to maintain or

increase the performance when the problem size increases and/or the size of the

computer system increases. For this reason, relationships between the performance

and the problem size, and/or the system size [127-129]. Researchers have used

various performance metrics and techniques in their definition of scalability expressed

in the form of a single index [130-134]. Most often, scalability is associated with

parallel computer systems. None of the aforementioned definitions can be appropriate

for all computer architectures because of narrow focus on a few parameters and their

limited search space. We strongly believe that scalability is a comprehensive attribute

that can hardly be expressed by a single index.

9.1.2 Scalability as a Comprehensive Entity

As mentioned earlier, scalability is an attribute of a particular problem solution

in association with a computer system. Neither the properties of the architecture

nor the properties of the algorithm can exclusively determine scalability. Solutions

adopting the same application algorithm may have different scalabilities. It is

possible that the implementation of the algorithm on one system is scalable but

another implementation of the same algorithm on another system with different

architecture is not scalable. Claiming that an algorithm is scalable may only mean

that there is an architecture on which the solution of this algorithm is scalable.

In theory, the architecture may be an ideal computer model, such as the PRAM

[135]. Similarly, we cannot consider only a computer system or architecture without

mentioning an algorithm or a problem. Sometimes the system can be expanded rather

easily to potentially accommodate larger problems. There is a working window where
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the implementation of some algorithms on an expandable architecture often improves

performance [136, 137]. This is also true for PC clusters.

From the quantitative analysis point of view, scalability depends on many

factors that characterize both the architecture and the algorithm. For example,

to determine the scalability of matrix multiplication, one may need the size of the

matrices, their type and their sparsity; for a distributed multi-computer system,

one may need the number of processors, the size of the memories attached to the

processors, and the number and type of communication channels interconnecting

these processors along with their bandwidth. Current practices in scalability analysis

do not provide a direct way to take into account large numbers of parameters

reflecting the detailed features of the application algorithm and the target computer

system.

9.1.3 Existing Scalability Definitions

The various definitions of scalability come from similar motivations [13]. A widely

used definition employs the asymptotic speedup metric S(p, n), where p is the number

of processors and n is the problem size [132]. Speedup is defined as the ratio of the

serial run time T, (n) of the best algorithm that solves the given problem of size n to

the time T(p, n) taken by the selected parallel algorithm for the same problem with

p processors. Formally,

for a problem of fixed size, However, this definition may ignore significant

non-primary terms related to overhead; this asymptotic behavior study may not

be practical then in real program runs. The definition should actually use the exact

order 8 notation. The simplest definition of scalability uses the system efficiency [69]
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which is

The authors then introduce the iso-efficiency concept, for an algorithm-system

pair. It states that the efficiency should be fixed in scalable problem-system pairs

independent of their sizes. For a fixed SC > 0, we can then approximate the execution

time when the system size increases:

Since all overheads are reflected into the parallel execution time T(p, n), we could

find how many processors should be added into the system to decrease the execution

time to a desirable level:

This definition has the problem that users do not always know in advance the optimal

efficiency for a given pair.

Another definition of scalability for a given architecture-algorithm pair uses the

ratio of the asymptotic speedup of the algorithm on this architecture to its asymptotic

speedup SI (p,n) on an ideal machine (such as the PRAM) with the same number of

processors [1321:

This definition tries to decouple the architecture from the algorithm in order to

compare with the best possible performance. Thus, it uses the time complexity of

the algorithm on the selected ideal machine as a reference point. This approach is

not practical for a given system that has to be "modified" appropriately to get the
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best performance. In fact, end users cannot even estimate the number of required

processors for good scalability based on the reference data. References [129, 135]

focus exclusively on problems that are scalable in nature primarily because of

data parallelism. Such problems appear in scientific applications (such as weather

prediction) where the size of the input data set can be increased "indefinitely" to

produce higher accuracy in the solution. Business and many other applications,

however, do not often follow this pattern or sometimes users are interested in finding

out how performance being improved with limited resource improvements that focus

on specific aspects of the computer system.

9.1.4 More on Limitations of Current Approaches

Scalability analysis relies on a chosen theoretical methodology to analyze

performance for various problem and system sizes. However, current methods of

scalability analysis have major limitations because there are inadequacies in their

definition of scalability as well as the analysis approaches taken by them. A major

disadvantage comes from adopting asymptotic terms in the definition of scalability.

Two problems show up. The first one is practical since the users are forced to care

about the behavior when the system size varies in a tremendous range. However,

most of architectures work well for given problems only when the system size changes

are of limited range. An asymptotic analysis of scalability may miss too much

important information in practical cases. Performance behavior due to changes in

the system size within a specific practical range may be very different from that of

asymptotic changes. The second problem stems from the fact that such definition

may be meaningless since system performance normally deteriorates rapidly due to

intolerable latencies in humongous systems.
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The second disadvantage is that these definitions measure the system size based

exclusively on the number of processors. They assume that the performance of

programs depends primarily on the number of processors and less on other resources

in the system. Under this assumption, several scalability analyses only account

for the overhead of communication [138]. However, this is not sufficient. As

discussed earlier, the performance depends on both the problem and system sizes.

To completely represent the system size may require multiple parameters rather than

just the number of processors. Besides processors, a system may be increased in size

by installing several additional resources (e.g., memory) to improve its performance.

Increasing the amount of available memory can help to improve the scalability of

memory-bound problems such as sorting of very large data sets. Ignoring these other

types of resources may have adverse effect in performance estimation. Although

scalability analysis exclusively for memory-bound problem has been pursued, an

integrated approach that incorporates many choices for system changes has not been

attempted. In general, these approaches are incomplete.

To make scalability analysis practical, one usually builds an execution model

depending on some assumptions. A widely accepted implicit assumption is that the

execution time of all basic processor operations is constant and does not depend on

the overall system size. Based on this assumption, the sequential execution time

of a program can be estimated by its total number of basic operations. It is often

called the workload Wideal (n) of the problem. The cost of solving a problem on

a p-processor system can be defined as p x Tp (n), it is the maximum number of

operations in the parallel execution time, which is expressed in time units for basic

operations. During execution, the p processors perform useful operations to solve

the problem and operations resulting in overhead. If Woverhead (P) n) represents all
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the operates corresponding to overhead, including the idle time of processors, then

p x Tp (n) = (W 	 1 Wideal ,n, 	 - overhead(p,n) ) x t0 	(9.6)

where t0 is the execution time of a basic operation. If 1/1/- 'overhead (P, n) can be estimated,

then the execution time Tp (n) can be approximated and the system size can be

derived to solve a problem of given size in a specified amount of time. Most scalability

analyses focus on the overhead function W— overhead(P) n), only estimating the amount

of additional operations due to communications. A drawback is that this estimation

does not count idle times. Also, it is difficult to estimate this function when the

system size changes in a wide range and/or non-processor resources in the system

also increase.

9.2 New Quantitative Analysis of Scalability

9.2.1 Mathematical Definition of Scalability

An application problem in this study can be characterized by two sets of attributes.

One relates to the methodology (i.e., the chosen algorithm). The other is a set of

parameters that relates to the characteristics of the input (such as the dimensionality

and sparsity of matrices in matrix multiplication). The latter parameters are imply

collectively referred to as the size of the problem; they can be denoted with a vector

P(pi , p2, , pj , . . .) in the problem space ,9`. Each point in this space represents a

particular size for the problem.

A computer system also can be described with two sets of attributes. The first

set of qualitative attributes identifies the system's specific architecture. For example,

a PC cluster consists of a set of autonomous PCs which are connected to each other

via a standard local network. The type/class of nodes and the type of network should
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be included in this set. The other is a set of quantitative attributes a which specify

the system's detailed characteristics. For example, a PC cluster can be characterized

by its number of processors, the total amount of memory per node and the bandwidth

of the network. Each member value quantifies the system in a specific aspect. The

specific system condition can be identified with a vector R(r 1 , r2 , , r2 , ...) in the

multi-dimensional system space M. Among the set of quantitative attributes there

is a sub-set of attributes which are associated actually with the system's size (e.g.,

number of nodes). Therefore, the size of the system can be projected as a vector

r2 , . , ri , .) into a sub-space of M. Each point in this space represents a

particular instance of the computer architecture which can be quantified.

Using the cross-product space <Al of M and (or, equivalently, the cross-

product space ✓g of a and c9 ) for our values domain, we can study scalability. The

vector N(r i , r2 , . , Ti ,. . . ; Pi, P27 . . . ,Pj,. .)in space N denotes an implementation

case of running the program of specific size on the specified system with specific

quantitative attributes. For each such implementation case, there is an associated

performance metric.

U = U(R, P) (9.7)

This function should completely profile the performance of the algorithm on the

given instance of the computer architecture. The metric U could be defined as any

quantitative index that can measure the degree of user satisfaction. For example, the

chosen metric could be throughput for service programs. For most computational

programs, the metric could be the execution "speed" defined as 1/T, where T =

T(R, P) is the execution time of the program.

The scalability Sc at a particular point (R, P) can now be defined as the

directional derivative of the considered metric along a particular directly in the new
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space 4 7 . That is:

where 6 is a small scalar, ΔN = δV and V is the unit vector in the specified direction

along which the system resources R increases while the problem sizes P is constant

or increase simultaneously in the space 'V. Of course, N represents the pair (R, P).

When SC(V, R, P) > 0, we can say that the system-problem pair (R, P)

is locally scalable in the direction +AN of the chosen dimension. Based on this

definition of scalability, it is easy to conclude that the result does not depend on the

selection of any reference case.

9.2.2 Directionality of Scalability

This definition of scalability is generic for a single dimension. Besides the chosen

computer architecture and algorithm pair, the scalability also depends on the way

selected to increase the system size and/or problem size; i.e., scalability is directional.

Different analysts may have different considerations and may get different conclusions

regarding the scalability of a solution. Scalability analysis in all directions is needed

to completely characterize a solution. Scalability analysis in a particular dimension

will give a solution under a set of specific constraints. Under some constraints,

scalability analysis may be reduced to existing analyses discussed earlier. By selecting

1/T as the metric of user satisfaction and normalizing to a reference case that solves

the problem on an optimized sequential computer, we get
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which is simply the speedup; Ts (P) and Tp (R, P) represent the sequential and

parallel execution time, respectively. Under the constraints that the system increases

its size by exclusively adding more processors (a practical example is a multiprocessor

computer with centrally shared memory) while the problem size stays fixed, the

obtained scalability corresponds to the first definition. Similarly, if the problem size

increases linearly with the number of processors and all other system parameters

are kept constant, we study the scalability according to the definition of scaled

speedup [135].

Since PC cluster systems normally increase in size by adding more member

computers, the numbers of many and diverse system resources (including processors,

memory, NICs, etc.) increase simultaneously. Therefore, it is more reasonable to

analyze the scalability along the direction in which the relevant parameters of the

associated resources increase simultaneously and linearly.

9.2.3 Studying the Cost for Optimal Scale Up

As mentioned above, the primary purpose of scalability analysis is to ultimately help

users to decide if a system can be scaled up graciously to solve a larger problem.

Quantitative analysis can help to decide how exactly to scale up a system to improve

a measure, such as performance. However users usually have a comprehensive cost

metric for system updates as well. Some updates may be scalable but their cost may

be prohibitively high. The cost of an update can be represented by

where Vp = (Price r , Price2 , . . . , Price i , . . .) is a vector of prices for the considered

resources and Vu = ΔR = (Δn 1 , Δr2 , ... , Δri , ...) is a vector of resource changes
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(in arbitrary units); Δri = (ri — 0. We can assume, for the sake of simplicity,

that if ri expresses the resource amount in linear scale, then Price gives the regular

price of the i-th type of resource; if r i expresses the resource amount in logarithmic

scale, then Price i gives the price when doubling the i-th type of resource. An

optimization problem is to update various types of resources for maximum scalability

benefits under a given total cost increase. The users may conveniently define the

efficiency of updates for system-problem pairs as

where R°(r°1, 	 r°2, . . .r°i) is a reference system configuration, P°(p°1, p°2 , ... 	 p°j, ...)

is a reference problem size, R(r 1 , r2 , 	 , ri , . . .) is the size of a scaled up system

and P(p1 , p2 , , pj , . ..) is the size of the problem under study. In this case, the

optimality problem is to find the direction in which the efficiency of the update is

maximal, i.e., find the direction corresponding to the largest possible value of U for

a given update cost.

Based on field theory, in a range enclosing a reference system configuration R°

the increase in U achieved by moving the system state from R° to R along the vector

Vu will be

where grad(U) is the gradient of U [139]. Thus, the scalability in the i-th dimension
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Based on Equation (9.11), the efficiency of the system update is

We can prove that if (Sck ,Δp/Price k ) > (Sci,Δp/Pricei ) for all i k, then increasing

the resources in the k-th dimension yields the most efficient solution. We can also

prove that if there are two or more dimensions that maximize Sci , Δp/Price i , then a

combination of resource updates in a subspace could yield the same efficiency.

Proof: The proof is included in the Appendix. ❑

9.3 Scaling up PC Clusters and Scalability Study under SPM

9.3.1 Techniques for Scaling up PC Clusters

Scaling up a system is the basis for users to improve performance so that they can

solve a larger problem and/or solve the same problem more quickly. PC clusters can

be scaled up in multiple ways that can be roughly classified into two categories. One

is increasing the number of computer nodes in the cluster. The other is scaling up

the member nodes by improving their capabilities.

The first technique is straightforward and essential in scaling up PC clusters,

as long as the new nodes can work seamlessly in the cluster. This way, multiple types

of resources in a PC cluster can be increased simultaneously. Besides increasing the

number of processors, the total memory in the cluster also increases. The number of

nodes in the cluster may still be a good parameter to describe the size of the system.

However, newly installed PCs do not need to be identical to previous PCs. They may

have more processors, more memory, may be equipped with more powerful processors

or faster memory, etc. This approach may result in a heterogeneous cluster. Then,

the number of nodes may not be a good parameter to denote the system size.
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The second category of techniques scales up a PC cluster by increasing the

amount of resources in its member nodes or improving their capabilities. These

techniques may be applied in many different directions. One can increase the

number of processors in individual nodes, the memory in the nodes individually

or simultaneously, etc. Such approaches can improve a PC cluster to help end users

to solve larger problems in the requested time. The idea of scaling up clusters by

modifying member nodes can have a larger meaning. People may treat each member

computer in the PC cluster as a logic subsystem. They can then scale up subsystems

by replacing member computers with entire PC clusters. This way, a PC cluster will

become a hierarchical structure of many levels providing many opportunities.

Denoting the size of a hierarchical computer cluster via multiple parameters is

reasonable and makes scalability analysis easier to handle, For example, the size of

a homogeneous PC cluster with a k-level hierarchical structure may be denoted with

the data vector R{r1 , r2 , , rj , , rk , rc , rm }; r1 is a parameter for the number n 1

of nodes at the top most (first) level, r2 is a parameter for the number n 2 of nodes in

a subcluster that serves as a node in the first level structure; similarly, r j (1 < j k)

is a parameter for the number nj of nodes in a subcluster that serves as a node in the

(j-1)-th level structure. We select a logarithmic expression for these parameters, i.e.,

rj = log nj . For each k-level system, the k-th level subclusters consist of atomic PCs

(i.e., the member nodes of these k-th level subclusters are individual PCs). r, is a

parameter for the number of processors in the PC and the T.m is a parameter for the

memory size in each PC. There may be more parameters needed to characterize the

size of last-level atomic computers; we ignore them here for the sake of simplicity.

This hierarchical approach provides significant flexibility in building PC

clusters, thus improving their scalability features. For example, assuming a uniform
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cluster with four levels and 32 nodes per subsystem (i.e., r 1 = r2 = r3 = r4 = 5) the

resulting system is huge consisting of about one million or 2 20 PCs.

9.3.2 Scaling Up Programs Developed under SPM

Scaling up a PC cluster is just an instrument to help users solve larger problems,

However, they should care about the performance of their software solution on the

scaled up system as well. The factors that affect the scalability of a program

under a given programming model constitute two groups. One group is related

to the scalability of the program on the given architecture; the other is related to

the scalability of the implementation in terms of basic operations. The following

example illustrates the difference between these two groups. Assume the problem of

multiplying two dense matrices of size M x M on p "processors." If these processors

can collectively perform multiplication and addition of two dense matrices of size

m2 x m2 directly ( i.e., in constant time), where m 2 M and, then the complexity

of the program is W(m i ) ee- d, const x m31, where m 1 = M/m2. Considering the

overhead in terms of additional basic operations W0(p,m1 ), the execution time of

the program running on this computer system will be

where f is a performance metric of the processors (e.g., the MIPS rate) and t(f, m2 )

is the average time to perform a basic operation on these processors. When users

need to multiply larger matrices (i.e., with larger M) but keep the total execution

time at the same level, they can either increase the number p of processors to

decrease the first factor C(p, m i ) or increase the computation performance f of the

processors to decrease t(f, m2 ). The effect of these techniques depends on the real

values of m l , m2, f and p. C(p, m i ) characterizes the scalability of the program itself
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while t(f, m2 ), on the other hand, characterizes the scalability of basic computer

operations.

Few of the existing programming models mention the effect of implementing

of basic operations on the overall scalability of the solution. The primary reason

is that most of these programming models do not provide a mechanism to scale up

the set of supported basic operations. They use directly the instruction set of the

processor to derive their basic operations. However, the problem size that can be

solved directly with the instruction set of a processor is usually fixed. For example,

COTS (commercial off-the-shelf) processors for PCs only support the multiplication

of a pair of scalar variables (i.e., in terms of dimensions they often implement only

directly the multiplication of matrices of size 1 x 1). Besides this, processors are

normally impossible to scale up since their resources cannot be increased after they

have been manufactured.

Our super-programming model (SPM), however, can fully exploit the scalability

of basic operations [106, 119, 125]. This is because the basic operations under

SPM are coarse-level super-instructions. SPM integrates both message passing and

shared memory. Under SPM an effective instruction-set architecture (ISA) is to be

developed for each application domain [119]. Frequently used operations in that

domain should belong to this ISA. The Super-Instructions (SIs) in the ISA are to

be developed efficiently in the form of program functions for individual PCs in the

cluster. The operand sizes (i.e., function parameter sizes) for SIs are limited by

predefined thresholds. Application programs are modeled as Super-Programs (SPs)

coded with SIs. Under SPM the parallel system is modeled as a virtual machine (VM)

which is composed of a single super-processor that includes an SI fetch/dispatch

unit (IDU) and multiple SI execution units (IEUs). For PC clusters, an IEU is a

process running on a member node that provides a context to execute SIs. SIs are
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dynamically assigned to IEUs based on a producer-consumer protocol, The IDU

assigns SIs, from a list of SIs ready to execute, to IEUs as soon as the latter become

available. The super-processor can handle a set of "build-in" data types that form

opprands for SIs; they are called Super-Data Blocks (SDBs). All application data

are stored in SDBs which can be accessed via appropriate interfaces. The runtime

support system provides local data representation for SDBs. Each SDB can be

incarnated into a set of objects distributed throughout the cluster. The SPM runtime

support system controls the incarnated objects during their lifecycle based on their

usage [125]. Thus, the logic of scheduling and distributing tasks can be decoupled

from the actual data distribution and the impact of the latter on workload balancing

is reduced dramatically. The aforementioned set of incarnated objects represents

a coherent data entity. They cooperate with each other with the mediation of the

runtime system. Such multiple distributed representations can serve efficiently the

demand for data of multiple SIs. Our approach increases the number of SIs executing

in parallel by minimizing thread stalling. The reader is encouraged to read [119,125]

for more details.

The size of the problem solved by an SI depends heavily on its SDB operands

that have configurable size. Also, SIs execute on the IEU virtual functional

unit which can be implemented with scalable hardware/software systems such as

symmetric multiprocessors or even PC clusters. In this situation, exploiting the

scalability of basic operations may make the programs more scalable. Let us review

the previous example of matrix multiplication. When the size M of the input matrices

doubles while m 2 is kept fixed, the complexity W(m1 ) of the program will increase

eight times and the overhead 1470 (p, m 1 ) may increase more. In this case, increasing

the resource- processors by a factor of eight cannot keep the total execution time

unchanged. In our pilot experiment with sparse matrix multiplication, the increase
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in the overhead is typically greater than 20%, However, keeping ml (i,e., the number

of the blocks the matrix is divided into) and the number of IEUs fixed will not

necessarily change the complexity of the super-program and the overhead. This

increase in the problem size can be handled without a time penalty at this level by

increasing the problem size for a basic operation (i.e., m 2 ) and scaling up the system

by increasing the resources in each IEU by a factor of eight. If t(f, m2 ) increases by

less than 20% when m2 doubles and the individual node performance f increases eight

times, this approach will be better than the previous one. This example shows that

scaling up the SI provides a powerful instrument to improve the overall scalability.

9.3.3 Scalability of SPs for Hierarchical PC Clusters

SPM matches very well the architecture of PC clusters with multi-level structure.

SIs are all implemented with procedures executing on member nodes in the cluster.

When a member node itself is comprised of another lower-level cluster, these SIs can

be implemented under SPM; i.e. they are similar to super-functions (SFs) that can

be coded with lower-level SIs. Such a hierarchical structure can be extended until

the lowest level is an atomic PC, as discussed earlier.

Finding the optimal parameters for SIs at various levels of the hierarchical

cluster involves multiple solution subspaces. Each subspace involves problem and

resource sizes; for the sake of simplicity, we assume here a homogeneous cluster where

the latter is simply the number of member nodes. Based on our earlier discussion,

the total execution time is
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where ri is the parameter for the resource size of the i-th level cluster, p 1 is the

problem size in terms of operands for first-level SIs, C 1(r1 , p1 ) is the complexity of

the problem including all associated overheads in number of first-level SIs, p i (for i =

2, ... , k) is the problem size for SIs in (i-1)-th level clusters, Ci (ri , pi ) (for i = 2, ... ,

k) is the average complexity including all associated overheads of (i-1)-th level SIs in

number of i-th level SIs, pk+1  is the problem size for k-th level SIs and t(pk+1 ) is the

average execution time of k-th level SIs on atomic PCs. ri may be expressed as log2 ni ,

where n i is the number of member nodes in an i-th level cluster. The total number of

atomic PCs in the cluster is n = 2r, where r r2 T. The overall problem

size in the number of basic instructions for atomic PCs is p = p 1 x p2 x x pk x pk+1 .

Increasing the total number of atomic PCs m times can be achieved by increasing

the number of nodes m times at any level. Similarly, increasing the problem size pi

at the i-th level q times also increases the overall problem size q times. If we adopt

U (R, P) = log(1/T(R, P)) as the performance metric (all logarithms here have the

base 2) and r = log n as the resource metric, then according to Equation (9.13) the

scalability of the (i-1)-th level SIs is represented by

It only depends on the algorithm adopted for the i-th level.

From the results in Section 9.2.3 we know that the dimension with

the maximum value for SciΔP/Pricei is the most efficient to update. (see

Equation (9.14)). This will be referred to as the edge-scalability of the solution.
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9.3.4 Scalability of an Optimally Configured Solution for a PC Cluster

Now let us discuss some important properties of scalability for a well configured

solution. For the sake of simplicity, we assume that the overall problem size is

constant and the performance metric is the logarithm of the speedup. For Δr i = 1,

which means that log ni — log n° = 1, we have n i = 2n`f and

Therefore, the scalability can be expressed with logarithmic execution time decreases

when the resources double.

A multi-level PC cluster can be easily reconfigured and the programs developed

under SPM can also fit the reconfigured system by adjusting the parameters for SIs.

The basic reason is that scaling up levels requires the same "raw materials"-PCs.

An optimal configuration provides maximum performance under a given amount of

resources. The first property of an optimally configured cluster is that the scalabilities

of all its non-leaf levels are identical. The fundamental reason is liquidity of resources.

Reconfiguring the system then simply requires reducing the resources in one level to

scale up another level. This is proved as follows. If Sci , Δp > SCJ ,Δp (for i, j < k),

we can always reduce the number of nodes in each j-th level cluster while increasing

the number of nodes in each i-th level cluster. For this adjustment

where Δri = —Ord > 0; therefore, ΔU (Sci ,Δp — Scj , Δp)Δri > 0, It means

that the current configuration is not optimal if the scalabilities of non-leaf levels are

not same. The resources at the lowest level are not interchangeable with resources

at other levels since leaf nodes are atomic PCs. Normally we can neither break
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single PCs to build two or more PCs nor merge the resources of multiple PCs into

a more powerful PC, However, since a PC usually has many resources, the problem

size for SIs executing on a PC can vary in a wide range. Users can reconfigure

the task grains between atomic PCs and upper level clusters to pursue maximum

performance. Therefore, the lowest level should have the same scalability with upper

levels; it can be obtained through appropriate tasks assignment. This means that a

well configured PC cluster should have the same scalability at all the levels; it should

be close to the edge-scalability of the cluster (as defined earlier).

Another property of an optimally configured cluster is that its edge-scalability

should not be less than the scalability Sc0 of the initial cluster when a PC is replaced

with a two-node cluster; that is,

where Sc0 = log Sp0 and Sp0 is the speedup of a two-node cluster.

Equation (9.20) should hold for all r° = 0, 1, 2, ,.. , r i- 1 , if Sci is to decrease

monotonically. Then,

and , therefore log(  ' Pi ) ) > r.Sc0 . Then, based on Equation (9.15) the overall

speedup of the solution is
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where r = Σki=1 ri = log n , n is the total number of PCs and Sp0 is the average

speedup of a two-node cluster for the SIs. The efficiency of the solution is then

9.4 Case Studies

To showcase our proposed scalability analysis approach, let us take a look at a few

cases for matrix multiplication. We assume a two-level cluster system represented

with the pair of parameters (r i , r2 ) that denote size, as previously. Also, the

input matrices are assumed partitioned into primary submatrices (i.e., level-1 SDBs)

which are partitioned further into basic (i..e, level-2) SDBs. Multiplying a pair of

matrices is implemented with primary or level-1 SIs. Each primary SI performs

multiplications/additions of a pair of level-1 SDBs on a level-1 node in the cluster;

these SDBs are produced by the multiplication of submatrices at level-2 of size

m2 x m2 . A level-1 node is itself a cluster (i.e., a level-2 cluster) that consists of

many atomic PCs. Each primary SI is implemented with level-2 SIs. Multiplying a

single pair of level-2 SDBs can be performed by a single level-2 SI on an atomic PC.

We assume that the size of these SDBs is constant and the workload of each level-2

SI is constant. Also, the average execution time of level-2 SIs is T2.

The primary super-program and level-1 SIs at both levels can be developed

under SPM. Therefore, the SI execution times can be estimated. Assume that the

workload of a primary SI is expressed in number w 2 of level-2 SIs. The average

execution time of a primary SI is then
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where W02 represents the overhead, The total execution time of the super-programs

for matrix multiplication is

where w 1 is the workload of the program expressed in number of primary level-1 SIs

and Wol is the overhead at this level. Under SPM, the most important overhead is

due to workload imbalance since the primary objective is to minimize the idle time

of cluster nodes through multithreading. This overhead can be expressed simply as

where ci = b i — ai ; bi is the maximum number of SIs assigned simultaneously by

IDU to a node to execute with multithreading and ai is the average number of SIs

per node that are executing on the other ni — 1 nodes when the last set of SIs are

assigned to a node. c iTi is the expected average idle time of the other n i — 1 nodes.

Five case studies are presented in the following subsections.

9.4.1 Case 1

Assume that the workload of the program in number of level-1 SIs is constant (i.e., m 1

and w 1 are constant) and the workload of primary (i.e., level-1) SIs is also constant

(i.e., m2 and w2 are constant) when the system is scaled up. The result of scalability

for matrix multiplication solutions is shown in Figure 9.1. In all of our simulations,

the number n 1 = 2'' (level-1 nodes) and the number n 2 = 2T2 (level-2 nodes in each

subcluster) vary independently from 1 to 512; also c 1 = 0.9, c2 = 0.7. And in this

simulation case, w 1 = 512 and w2 = 512.
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Figure 9.1 Scalability of a two-level cluster for matrix multiplication with fixed
workload for the program and level-1 SIs
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In Fig. 9.1, the pair (r 1 , r2 ) represents the system configuration and

log2 (speedup) represents the performance metric. The arrows in Fig. 9.1a show

dominant scalability increases in the system as a function of (r1 , r2 ). In Fig. 9.1b, the

solid curves are contour lines of performance (i.e., all system configurations located

on the same curve have the same performance). The dashed lines (where r 1 r2 is

constant) indicate configurations settings producing the same system size; the point

of contact between a dashed line and a contour curve of performance is the optimal

configuration for this system size. The arrows at these points show the gradient of

the speedup. Fig. 9.1c shows the direction of system change for each configuration

that improves performance most effectively when doubling the system size. The path

in red indicates the optimal path to scale up this system while the size of the arrows

reflects the amount of scalability. The overall direction of the path is the same as

that of the arrows in Fig. 9.1b.

9.4.2 Case 2

Assume that the overall problem size (i.e., m 1 m2 ) is still constant when the system is

scaled up. The result of the simulation for the scalability of the solution is shown in

fig. 9.2. In this simulation, c 1 = 0.9, c2 = 0.7, w 1 = 2 18 /n2 5 and w2 = 8 x4 5 (i.e., the

workload of level-1 SIs increases with the number of PCs in the subcluster). Fig. 9.2

has several differences from Fig. 9.1. The obvious difference is that in Fig. 9.2a the

speedup surface turns down for large values of r 1 and r2 . This shows that the solution

is not longer scalable at these points. Fig. 9.2b indicates that the optimal direction

corresponds to downsizing when r1 is 9 and r2 is greater than 7. The reason is that

in these locations the number of level-1 SIs is less than the number of level-1 nodes,



150

Figure 9.2 Scalability of a two-level cluster for matrix multiplication with fixed
overall workload but the workload of level-1 SIs increases with increases in the size

of level-1 nodes



151

9.4.3 Cases 3 and 4

Assume that the workload wl of the program in number of level-1 SIs is constant

when the system is scaled up; also, the workload w 2 of primary (level-1) SIs increases

in such a way that the increase in the total space demands for level-1 SDBs matches

the size increase of the subcluster as a level-1 node (i.e., the number of PCs in the

subcluster). Then, the overall problem size m 1 x m2 may increase. The result of our

simulation for the scalability of the solution is shown in Fig. 9.3. In this simulation,

ci = 0.9, c2 = 0.7, w 1 = 512 and w2 = 8 x 4 5 .

Conversely, assume that the workload w 2 of a level-1 SIs is constant, and w1

and the overall workload increase with the number of subcluster nodes in such way

that w2 = 512 and w1 = 8 x n1 .5 . The corresponding result for the scalability of the

solution is shown in Fig. 9.4.

From Fig. 9.3 and Fig. 9.4, we can see that unlike the earlier cases, the optimal

directions do not form a path to help us find the global optimal configuration. In

fig. 9.3, among all the systems with r = r2 = 3, the optimal configuration

is at (r1 , r2 ) = (3, 0) and the local scalability vector is close to (1, 1); the most

effective direction to scale up a single dimension is (1, 0). However, the global

optimal configuration for the immediately next size (i.e., r = r 1 r2 = 4) is at (0,

4). The same jump is also observed in Fig. 9.4. This indicates that even if the

starting point is optimal, we cannot find a global optimal scaled up configuration by

analyzing local scalability. The task of scaling up multi-dimensional cluster systems

for optimal solution is not then simple.
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Figure 9.3 Scalability of a two-level cluster for matrix multiplication in which the
workload of level-1 SIs increases with the size of level-1 nodes and w 1 is constant
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Figure 9.4 Scalability of a two-level cluster for matrix multiplication where the
w 1 increases with the number of subcluster nodes and w 2 is constant
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9.4.4 Case 5

Assume that the workload w 2 of primary (level-1) SIs increases in such a way

that increases in the total space demand for level-1 SDBs matches increases in

the subcluster size. Also, the workload w 1 of the program in number of level-1

SIs increases similarly (i.e., the overall problem size ml * m2 may increase) when

the system is scaled up. The result of our simulation for the scalability of the

solution is shown in Fig. 9.5. In this simulation, c 1 = 0.9, c2 = 0.7; w 1 = 8 x n1 .5

and w2 = 8 x re. Since the workloads at different levels increase independently

without any constraint among different dimensions and the workloads are always

large enough, the systems always have an optimal configuration. The performance

measures are almost identical between different configurations with the same overall

system size.
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Figure 9.5 Scalability of a two-level cluster for matrix multiplication where w 1

and w2 increase with the number of level-1 nodes and level-2 nodes, respectively



CHAPTER 10

CONCLUSIONS

In my research, an innovative parallel programming model named SPM was proposed

for computations on PC clusters. This model uses standardized coarse-grain tasks

named super-instructions (SIs) as the basic components for programming application

software, distributing tasks on distributed computer systems and scheduling tasks in

parallel at runtime.

The SPM model supports efficient load balancing at run time. The predictable

characteristics of SIs make load balancing feasible. Super-programs (SPs) based on

this model can efficiently execute on PC clusters. Following this model, a system

can efficiently schedule tasks, balance the workload and fully utilize the computing

capacity of each computer node. When the super-program has enough parallelism,

the member nodes have a little chance to be idle. A couple of application programs,

matrix multiplication in the scientific computing domain and mining association rules

in the business intelligence computing domain, were developed to illustrate SPM. In

all the experimental executions of these super-programs, the workloads were well

balanced among the nodes. The scalable behavior of the approach was observed in

our experiments.

In SPM, the parallelization of programs is separated from workload balancing.

By asynchronously and dynamically issuing SIs to IEUs, VM can achieve load

balancing efficiently. By adopting dynamic scheduling policies for SFs, SPM transfers

the overhead of optimizing the execution into a management overhead of VM for

scheduling, issuing and committing SIs. I will carry out experiments to show that

the latter is kept low for coarse grained SIs. This removes the demand of load
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balancing from parallel programs, thus making the development of parallel programs

much easier, especially in heterogeneous PC cluster environments.

The SPM model supports also code portability. Since application programs are

coded with the SIs for corresponding domains, as long as an efficient implementation

exists for each SI on given computing platforms, code portability is guaranteed.

The sample SPs were ported successfully on two different PC cluster systems. This

process did not involve any modification of these SP codes except for installing and

configuring the underlying PC clusters.

Thus, SPM can reuse many achievements in algorithm research and developed

codes. All SIs are implemented by sequential procedures. Thus, all libraries can

be directly used to develop SIs and SPs. This makes developing parallel programs

easier and more efficient. SPM adopts a similar concept with sequential programming

models, so it further decreases the effort of creating programs.

In SPM, all data are virtual entities. Each item can be represented with a set of

distributed incarnated objects. SPM alleviates various restrictions on accessing data

in parallel and eventually increases the effective parallelism in application programs.

This reduces the chance of a node being idle while waiting for requested data and

eventually improves the overall performance of parallel programs.

Scalability is an attribute of the applied hardware-software solution. It does

not solely depend on either the target computer architecture or the algorithm used

to solve the problem. It depends on many dimensions that cannot be expressed by

a single scalar value. They include the configuration of the computer system and

the features of the problem at hand. Currently, definitions of scalability can only

characterize partial features of a solution when the system and/or problem are scaled

up. A comprehensive scalability expression needs to use a vector as input. Each
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value in the vector relates to a single feature change (i.e., a single dimension study).

When mentioning the efficiency of scaled up solutions to improve the performance,

we must give the direction (i.e., resource) of the change. For an optimally configured

multi-level cluster, the scalabilities at all levels should be identical. However, a

good solution may not work well with the optimal configuration, especially if such

a cluster is built as general purpose, This is because the internal resources of PCs

are not exchangeable. We cannot increase the amount of a particular resource by

decreasing another type of resource. A type of resource may be over-equipped for a

solution but be under-equipped for another solution. Therefore, no PC configuration

in these dimensions fits all solutions and the scalabilities in these dimensions may not

be the same. Programs developed under SPM match well configurable features of

hierarchical PC clusters. The scalabilities of levels can be matched by reconfiguring

the hierarchical structure. This approach guarantees that the efficiency obtained by

scaling up the resource is higher than a log-linear lower bound.



APPENDIX

A PROOF OF THE OPTIMAL DIMENSION

Theorem: Assume an n-dimensional vector space 23 where for any vector v E 23 we

have v = Σni=1 i (vi • ei ); for i = 1, 2, ... , n, vi is a non-negative real number and at

least one of them is non-zero, and e i form orthogonal normalized bases for this space.

Also, assume a function E : 23 that maps a vector v in 23 to a real value in

the real numbers domain with E(v) = (v • u)/(v . w); u and w are two constant

vectors in 23 (i.e., u = Σni=1i(uiei) and w = Σn in_ i(wiei)). Finally, x i = u i /wi .

1) If xk is the maximum value in the set {x i i = 1, 2, 	 , n}, then for the vector

y = xk ek the function E(y) yields the maximum value; i.e., E(y) E(v) for

b'v E 23.

2) Assume that there exist multiple values x i in the set {x i = 1, 2, ... , n} that

are all equal to the maximum value in this set (i.e., x„ = x„ =	 = x„ >

xs(k+1) 	x, and the indices {si|i = 1, 2, ... , n} are a permutation of

{1, 2, ... , n}), then, there is a subspace Zi k that can be constructed with the

corresponding base {esi I 1 i k} (i.e., the arbitrary vector v8 in 23k can be

expressed as vs = Σki= 1 (v: i esi )) so that in the entire subspace vs the function

E(y) is maximized.

Proof: Without loss of generality, assume that x 1 ?, x 2	xi	 xn,

and also, vk = Σn ik i (v ii ei ), where 	 0 for i = 1, 2, .,. , k and k < n, and at least

one of v2 is greater than zero while v = 0 for k < j n.
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For the arbitrary vector v = Σni=1 (viej):

E(v) 	 E(v 1 ), so at v 1 function E(v) reaches its maximum value. The first

clause is true.

2) If x 1 = x2 = 	 = xk > xk+1 	xn, then for the arbitrary vector v k in

subspace J IV which is constructed with {ei |1 ≤ i ≤ k}, i.e., vk = Σki=1

Thus, function E(v) maps all vectors vk  in subspace Tk to the maximum value.

Therefore, the second clause is true as well. ❑
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