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ABSTRACT

SOME TOPICS ON DETERMINISTIC SCHEDULING PROBLEMS

by
Yumei Huo

Sequencing and scheduling problems are motivated by allocation of limited resources over

time. The goal is to find an optimal allocation where optimality is defined by some problem

specific objectives.

This dissertation considers the scheduling of a set of n tasks, with precedence constraints,

on m > 1 identical and parallel processors so as to minimize the makespan. Specifically,

it considers the situation where tasks, along with their precedence constraints, are released

at different times, and the scheduler has to make scheduling decisions without knowledge

of future releases. Both preemptive and nonpreemptive schedules are considered. This

dissertation shows that optimal online algorithms exist for some cases, while for others it

is impossible to have one. The results give a sharp boundary delineating the possible and

the impossible cases.

Then an 0(n log n)-time implementation is given for the algorithm which solves

P pi = 1, r outtree E cif and P pmtn, pi = 1, r , outtree E cj .
A fundamental problem in scheduling theory is that of scheduling a set of n unit-

execution-time (UET) tasks, with precedence constraints, on in > 1 parallel and identical

processors so as to minimize the mean flow time. For arbitrary precedence constraints, this

dissertation gives a 2-approximation algorithm. For intrees, a 1.5-approximation algorithm

is given.

Six dual criteria problems are also considered in this dissertation. Two open problems

are first solved. Both problems are single machine scheduling problems with the number

of tardy jobs as the primary criterion and with the total completion time and the total

tardiness as the secondary criterion, respectively. Both problems are shown to be NP-hard.

Then it focuses on bi-critena scheduling problems involving the number of tardy jobs, the



maximum weighted tardiness and the maximum tardiness. NP-hardness proofs are given

for the scheduling problems when the number of tardy jobs is the primary criterion and the

maximum weighted tardiness is the secondary criterion, or vice versa. It then considers

complexity relationships between the various problems, gives polynomial-time algorithms

for some special cases, and proposes fast heuristics for the general case.
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CHAPTER 1

INTRODUCTION

Sequencing and scheduling problems are motivated by allocation of limited resources over

time. The goal is to find an optimal allocation where optimality is defined by some problem

specific objective. In the majority of the models studied, the resources consist simply of

a set P = {P1 , . . . , Pm } of processors. Depending on the specific problem, they are

either identical, identical in functional capability but different in speed, or different in both

function and speed. The scheduling problems studied in this dissertation assume identical

processors. Activities are modeled by tasks which can be executed by the processors.

Most of the early work on scheduling, starting from early 1950's, was motivated by

production planning and manufacturing, and was primarily done in the operations research

and management science community. The advent of computers and their widespread use

had a considerable impact both on scheduling problems and solution strategies. A number

of new problems and variations have been motivated by application areas in computer

science such as parallel computing, databases, compilers, and time sharing. The advent

of computers also initiated the formal study of efficiency of computation that led to the

notion of NP-Completeness. Karp's seminal work [38] established the pervasive nature of

NP-Completeness by showing that decision versions of several naturally occuring problems

in combinatorial optimization are NP-Complete, and thus are unlikely to have efficient

polynomial-time algorithms. Bollowing Karp's work, many problems, including scheduling

problems, were shown to be NP-Complete. Garey and Johnson [22] gave 18 basic NP-

complete scheduling problems; since then many new variants were considered and shown

to be NP-complete. It is widely believed that P (the set of languages that can be recognized

by deterministic Turing machines in polynomial time) is a proper subset of NP (the set

of languages that can be recognized by non-deterministic Turing machines in polynomial

1
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time). Proving that P	 NP is the most outstanding problem in theoretical computer

science today.

After the NP-Completeness results, the focus has shifted to designing approximation

algorithms, often using quite non-trivial techniques and insights. Approximation algorithms

are heuristics that provide provably good guarantees on the quality of the solutions they

return. This approach is pioneered by the influential paper of Johnson [35] in which he

showed the existence of good approximation algorithms for several NP-Hard optimization

problems. He also remarked that the optimization problems that are all indistinguishable in

the theory of NP-Completeness behave very differently when it comes to approximability.

Remarkable work in the last couple of decades in both the design of approximation algorithms

and proving inapproximability results has validated Johnson's remarks. The methodology

of evaluating algorithms by the quality of their solutions is useful in comparing commonly

used heuristics, and often the analysis suggests new and improved heuristics. In this

dissertation two deterministic scheduling problems are considered. Bor each of these problems,

an approximation algorithm is proposed and the approximation ratio for the corresponding

algorithm is proved.

Over the past twenty years, online algorithms have received considerable research

interest. An online algorithm receives the input incrementally, one piece at a time. In

response to each input portion, the algorithm must generate output, not knowing future

input. Online problems had been investigated already in the seventies and eighties, but an

extensive, systematic study started only when Sleator and Tarjan [57] suggested comparing

an online algorithm to an optimal offline algorithm, and Karlin, Manasse, Rudolph and

Sleator [37] coined the term competitive analysis. In the late eighties and early nineties,

three basic online problems were studied extensively, namely paging, the k-server problem

[46] and metrical task systems [6]. During the past years, apart from the three basic

problems, many online problems were investigated in application areas such as data structures,

distributed data management, scheduling and load balancing, routing, robotics, financial
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games, graph theory, and a number of problems arising in computer systems. This dissertation

concentrates on some online scheduling problems. For each scheduling problem, either an

optimal online algorithm is given or a proof is given to show that it is impossible to have

an optimal online algorithm.

In the past, most of the research in scheduling has focussed on a single criterion.

Numerous effective algorithms and heuristics have been developed for these single criterion

problems; see Pinedo [54] and Brucker [7]. However, companies are usually faced with

the problem of satisfying several different groups of people. According to Panwalkar et

al. [53], managers actually develop schedules based on multiple criteria. Unfortunately,

schedules that are optimal for one criterion usually perform quite poorly for other criteria.

Thus, there is a need for further research in multi-criteria scheduling problems, and indeed,

these problems have received more attention in the last three decades; see [10, 11, 15, 20,

21, 26, 44, 56, 58, 59]. This dissertation is concerned with scheduling problems with two

criteria only.

The next section reviews relevant background in scheduling theory, approximation

theory, online scheduling theory and multi-criteria scheduling. Section 1.2 outlines the

contributions of the dissertation.

1.1 Background and Notation

1.1.1 Scheduling Theory

Scheduling theory encompasses a large and diverse set of models, algorithms, and results.

Even a succinct overview of the field would take many pages. Hence only those concepts

that are directly relevant to this dissertation are reviewed and the reader is referred to

many excellent books and surveys available [54] [1211431 The problems this dissertation

considers involve scheduling or allocating tasks to processors under various constraints.

Unless otherwise stated, n denotes the number of tasks and m denotes the number of

processors. Each task j is characterized by its processing time,release time, due date,
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and weight (or 'value') which are denoted by p3,r3,d3 and wj , respectively, and perhaps

other characteristics as required by each variant of scheduling problems. The scheduling

algorithm is asked to produce a schedule, which means that each task is assigned to one

or more processors and one or more time slots, according to the variant of scheduling

problems. Each processor is assigned to a single task at any time, and the processing of

a task always takes at least its processing time. The tasks have precedence constraints, -<,
in that i j signifies that task j cannot start until task i has finished. The tasks and the

precedence constraints are described by a directed acyclic graph G = (V, A), where V

is a set of vertices representing the tasks and A is a set of directed arcs representing

there is a directed arc from task i to task j if i j. Assume G has no transitive edges.

The tasks can be scheduled preemptively or nonpreemptively. In preemptive scheduling,

a task can be interrupted before it completes and later resumed on a possibly different

processor. Assume that there is no time loss in preemption. By contrast, in nonpreemptive

scheduling, a task once begun execution can not be interrupted until it completes. With

respect to a schedule S, the completion time of task i is denoted by C if , the makespan is

denoted by Amax = max{A i } , and the mean flow time is denoted b)

task j is defined to be tardy and T.] = C3 — d3 denote its tardiness. In addition, the variable

U3 is used as an indicator that task j is tardy; in this case Uj is set to 1. On the other hand,

task j is defined to be on time, and U3 = 0 and T3 = 0.

A task i is said to be an immediate predecessor of another task j if there is a directed

arc (i, j) in G; j is said to be an immediate successor of i. Task i is said to be a predecessor

of task j if there is a directed path from i to j; j is said to be a successor of i. Define G

to be intree if every vertex, except the root, has exactly one immediate successor. G is an

outtree if each vertex, except the root, has exactly one immediate predecessor. A chain is

an outree where each vertex has at most one immediate successor. prec is used to denote

an arbitrary directed acyclic graph.
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In the past, research in scheduling theory has concentrated on these four classes of

precedence constraints: prec, intree, outtree, and chains. A number of polynomial-time

optimal algorithms have been developed. Among these algorithms, the Coffman-Graham

algorithm [13] and Hu's algorithm [29] are two fundamental algorithms. The famous

Coffman-Graham algorithm is optimal for P2 p3 = 1, prec Amax , while the well-known

Hu's algorithm is optimal for P p3 = 1, Aintree C. and P I p3 = 1, outtree Cmax .

Since these two algorithms are used in both Chapter 2 and Chapter 4, the description of

these two algorithms will be first given in the following.

The Coffman-Graham algorithm works by first assigning a label to each task which

corresponds to the priority of the task; tasks with higher labels have higher priority. Once

the labels are assigned, tasks are scheduled as follows: Whenever a processor becomes

free, assign that task all of whose predecessors have already been executed and which has

the largest label among those tasks not yet assigned.

Before the labeling algorithm, the definition of a linear order on decreasing sequences

of positive integers is first described as follows.

Let n denote the number of tasks in prec. The labeling algorithm assigns to each

task i an integer label N(i) E {1, 2, . . . , n}. The mapping N is defined as follows. Let

S(i) denote the set of immediate successors of task i and let N(i) denote the decreasing

sequence of integers formed by ordering the set OW j E

1. An arbitrary task i with S(i) = 0 is chosen and a(i) is defined to be 1.
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2. Suppose for some k < n that the integers 1, 2, . . . , k — 1 have been assigned. Brom

the set of tasks for which a has been defined on all elements of their immediate

successors, choose the task j such that N(j) < N (i) for all such tasks i. Define a(j)

to be k.

3. Repeat the assignment in 2 until all tasks of prec have been assigned some integer.

Example: Big. 1.1 shows a set of tasks with their precedence constraints. The number

inside the circle represents the task's index and the number next to the circle represents the

label assigned to the task by the Coffman-Graham labeling algorithm. The schedule on two

processors is also shown in Big. 1.1.

Figure 1.1 Example illustrating the Coffman-Graham algorithm

Like the Coffman-Graham algorithm, Hu's algorithm first assigns a label to each

task which corresponds to the priority of the task; tasks with higher labels have higher

priority. Once the labels are assigned, tasks are scheduled as follows: Whenever a processor

becomes free, assign that task all of whose predecessors have already been executed and

which has the largest label among those tasks not yet assigned. In Hu's algorithm, the label

of a task is a function of the level of the task.
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Definition 1.1.2 The level of a task i with no immediate successor is its processing time

pi . The level of a task with immediate successor(s) is its processing time plus the maximum

level of its immediate successor(s).

Hu's labeling algorithm assigns higher labels to tasks at higher levels; ties are broken

in an arbitrary manner.

Example: Fig. 1.2 shows a set of tasks with outtree precedence constraint. The

number inside the circle is the task's index and the number next to the circle is the label

given by Hu's algorithm. A schedule on four processors produced by Hu's algorithm is

also shown.

Figure 1.2 Example illustrating Hu's algorithm

1.1.2 Online Algorithms

Bor online scheduling the most important classification of online problems is according to

which part of the problem is given. There are several very different possibilities [55].

Scheduling tasks one by one. In this paradigm the tasks are ordered in some list

(sequence) and are presented one by one according to this list. Each of them has to be

assigned to some processor(s) and time slot(s) before the next task is seen, consistent

with other restrictions given by the problem. As soon as the task is presented, all of its
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characteristics, including the processing time, are known. It is allowed to assign the

tasks to arbitrary time slots (i.e., they can be delayed); however, once the successive

tasks are seen, the assignment of the previous tasks cannot be changed.

Unknown processing time. Here the main online feature is the fact that the processing

time of a task is unknown until the task finishes; an online algorithm only knows

whether a task is still running or not. Unlike in the previous paradigm, at any time

all currently available tasks are at the disposal of the algorithm; any of them can be

started now on any processors) or delayed further. Also, if preemptions or restarts

are allowed, the algorithm can decide to preempt or stop any task which is currently

running. The tasks may become available over time according to their release time or

precedence constraints, but the situation when all tasks are available at the beginning

plays an important role in this paradigm, too. If there are other characteristics of a

task than its processing time, they are known when the task becomes available, which

has to be known to guarantee that the task is scheduled legally.

Tasks arrive over time. In this paradigm the algorithm has the same freedom as

in the previous one, and in addition, the processing time of each task is also known

when that task is available. Thus the only online feature is the lack of knowledge

of tasks arriving in the future. Algorithms that know the running time of a task as

soon as it arrives are called clairvoyant, in contrast to non-clairvoyant algorithms that

correspond to the previous paradigm of unknown processing time.

Interval scheduling. All the previous paradigms assume that a task may be delayed.

Contrary to that, the paradigm of interval scheduling assumes that each task has to

be executed in a precisely given time interval; if this is impossible it may be rejected.

The online problems studied in this dissertation belong to the third paradigm: tasks

arrive over time. At different release time, a group of tasks are released with their precedence

constraints.
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1.1.3 Approximation Algorithms

In this subsection, an NP-Hard optimization problem is defined and the notion of approximation

are explored [49]. The following is a formal definition of a maximization problem; a

minimization problem can be defined analogously.

Given an NP-Hard optimization problem FL it is impossible to find an algorithm

which is guaranteed to compute an optimal solution in polynomial time for all input instances,

unless P = NP. So it is necessary to relax the requirement of optimality and ask for an

approximation algorithm. This is defined as follows.

Definition 1.1.4 An approximation algorithm A, for an optimization problem fl, is a

polynomial-time algorithm such that given an input instance I for n, it will output some

a E 8(I). A(I) denotes the value f (a) of the solution obtained by A.

Note that this dissertation is only interested in polynomial-time algorithms and so

this is built into the definition of an approximation algorithm.

Some ways are needed to compare approximation algorithms and analyze the quality

of solutions produced by them. Moreover, the "measure of goodness" of an approximation
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algorithm must somehow relate the optimal solution to the solution produced by the algorithm.

Such measures are referred to as performance guarantees. There are several notions of

performance guarantees. Since the work of Graham [25] in 1966 on multiprocessor scheduling,

relative performance guarantee becomes the mostly used performance guarantee for problems

in scheduling. Some of these results can be found in the survey article by Lawler et al [43].

The following definition formalizes this notion.

1.1.4 Dual Criteria Scheduling

When faced with a choice of schedules, a manager should pick the "best" one. However,

defining "best" may be very difficult. Should it be the one that generates the most profit in

the short term, or the one that makes the most customers happy? Unfortunately, schedules

which perform well with respect to one measure often do poorly with respect to another.

To alleviate this problem, it is necessary to consider two measures simultaneously.

In the literature, there are three general dual criteria approaches that are applicable to

scheduling problems: secondary criterion, efficient set generation and weighting of criteria

[10].

The secondary criterion approach is to have one criterion designated as the primary

criterion and the other one designated as the secondary criterion. This approach seeks a

schedule that minimizes the primary criterion and chooses, from among all the schedules

that minimize the primary criterion, the one that also minimizes the secondary criterion.
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Extending the notation of Graham et al. [241, 1 II -yh I 'y' is used to denote the single

machine scheduling problem, where 7 1 is the primary criterion and 'Yh is the secondary

criterion. Bor example, 1 II E C, I Tmax denotes the problem where the primary criterion

is maximum tardiness and the secondary criterion is total completion time. As another

denotes the problem where the primary criterion is the number

of tardy jobs and the secondary criterion is the total tardiness.

Efficient set generation approach is to efficiently generate the Pareto curve which

enables the decision maker to make explicit trade-offs between these schedules. Extending

the notation of Graham et al. [24], this approach is denoted by 1 H 7h, where the

two criteria of interest are -yidand7h.111EC],Tmaxdenotes the problem to generate

all non-dominated schedules considering total completion time and maximum tardiness

simultaneously.

Weighting of criteria approach is to use a cost function which is a linear combination

of the two criteria. Here the decision maker expresses a tradeoff which, once specified,allows

the problem to be solved with a single criterion. A scheduling problem with two criteria,

say and 7h, and a given weighting function f is denoted by 1 I I f (71 , -yh ), where f is a

linear combination of yi and

This dissertation considers only the first approach. Although there are numerous

work done under the second and the third approaches, this dissertation will not dwell into

them.

1.2 Organization and Overview of Contribution

This section describes the problems and corresponding results considered in this dissertation.

1.2.1 Online Scheduling of Precedence Constrainted Tasks

Chapter 2 considers the problem of scheduling a set of tasks on m > 1 identical and parallel

processors so as to minimize Amax • In the three-field classification scheme introduced by
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Graham et al. [24], the problems considered in this dissertation are P prec I Cmax and P

pmtn, prec Amax . A number of polynomial-time optimal algorithms have been developed

for these problems. In nonpreemptive scheduling, the famous Coffman-Graham algorithm

while the well-known Hu's algorithm [28]

is optimal for P pi = 1, Aintree Cmax and P pi = 1, outtree Cmax . It is known

that P I pi = 1, prec I C. is strongly NP-hard [22], although the complexity is still

open for each fixed m > 3. If the tasks have arbitrary processing times, then the problem

becomes NP-hard in the ordinary sense even if there are two processors and the tasks are

-hard in the ordinary sense [22].

Bor preemptive scheduling, the Muntz-Coffman algorithm [50, 51] is optimal for

All of the algorithms mentioned above assume that all tasks are available for processing

at the beginning (i.e., at time t = 0).

This dissertation considers the situation where tasks, along with their precedence

constraints, are released at different times, and the scheduler has to make scheduling decision

without knowledge of future releases. In other words, the scheduler has to schedule tasks in

an online fashion. An online scheduling algorithm is said to be optimal if it always produces

a schedule with the minimum Amax, i.e., a schedule as good as any schedule produced by

any scheduling algorithm with full knowledge of future releases of tasks. Since an online

scheduling algorithm has to schedule tasks in an online fashion, it is not clear that an

optimal online scheduling algorithm necessarily exists. This dissertation shows that online

scheduling algorithms exist for some cases, while for others it is impossible to have one.

These results give a sharp boundary delineating the possible and the impossible cases.

The notation of Graham et al. [24] is extended to online scheduling problems in a

natural way. For example, P2 pi = 1, precis released at rib I Amax refers to the case where
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tasks with arbitrary precedence constraint, precis, are released at time rib. In this case, there

are two processors, each task has unit processing time, and preemption is not allowed. As

another example, P I pmtn, outtree released at ribGina, refers to the case where tasks

with outtree precedence constraint, outtree1, are released at time rib. In this case, there are

arbitrary number of processors, tasks have arbitrary processing times, and preemption is

allowed.

Hong and Leung [27] have given an optimal online scheduling algorithm for a set of

independent tasks on an arbitrary number of processors where preemption is allowed. The

idea of their algorithm is to schedule tasks using a modified McNaughton's wrap-around

rule. (It is known that McNaughton's wrap-around rule is optimal for P I pmtn Amax

[47].) Tasks will be executed according to the schedule until new tasks arrive, at which time

the algorithm will reschedule, by the same rule, the remaining portions of the unfinished

tasks along with the newly arrived tasks. This process is repeated until all tasks are finished

and no new tasks arrive.

Note that for nonpreemptive scheduling, it can be shown that it is impossible to have

an optimal online algorithm for a set of independent tasks with arbitrary processing times,

even if there are only two processors.

This dissertation shows that optimal online scheduling algorithms exist for:

Using an adversary argument, it can be shown that it is impossible to have optimal online

scheduling algorithms for:
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In this dissertation, all of the optimal online scheduling algorithms follow the same

format as the algorithm given in Hong and Leung [27]. Bor P2 I p3 = 1, precis released at rib

Cmax, the Coffman-Graham algorithm is used to schedule tasks until new tasks arrive, at

which time the remaining portions of the unfinished tasks along with the newly arrived

tasks will be rescheduled. Hu's algorithm is used for P p3 = 1, outtreei released at rib

Cmax, and the Muntz-Coffman algorithm for P2 pmtn, precis released at rib I Cma and

P I pmtn, outtreei released at r, Amax .

1.2.2 Minimizing Total Completion Time for UET Tasks with Release Time and

Outtree Precedence Constraints

Chaper 3 considers the problem of scheduling a set of n unit-processing-time tasks, with

release time and outtree precedence constraints, on m > 1 identical and parallel processors

so as to minimize the total completion time. The goal is to find a schedule such that

the release time and precedence constraints are observed and > cc  is minimized. In the

notation introduced by Graham et al. [24], the problems considered in this chapter are

implementation.

1.2.3 Minimizing Mean Flow Time for UET Tasks

Chapter 4 considers the problem of scheduling the set of n unit-execution-time(UET) tasks

on m > 1 identical and parallel processors so as to minimize the mean flow time. In the
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notation introduced by Graham et al. [24], the problem considered in this dissertation is

A number of polynomial-time algorithms and NP-hardness

results have been obtained for these problems. Bor example, P2 I pj = 1, prec

can be solved by the Coffman-Graham algorithm [13]; P pj = 1, outtree E Ci can be

solved by an algorithm due to Brucker et al. [9]; Pm pj = 1, intree > Ci can be solved

in polynomial time for each fixed m [5]. On the other hand, P pj = 1, prec E Cif is

NP-hard in the strong sense [22], although its complexity is still open for each fixed m > 3.

The complexity of P I pj = 1, intree E Cj has not yet been resolved.

If the tasks have arbitrary processing times, the problem becomes much more difficult.

Lawler [40] has shown that 1 prec Cj is NP-hard. 1 I intree Ci and

1 I outtree E Cj  can both be solved by an alogrithm due to Horn [28]. On the other

hand, Du et al. [19] have shown that Pm I chains > Cj  is NP-hard in the strong sense

for each fixed m > 2. When there are no precedence constraints, the well-known SPT

(shortest-processing-time first) rule solves the problem for any number of processors; i.e.,

P E can be solved by the SPT rule.

The complexity of the preemptive case is identical to that of the nonpreemptive case.

Since preemption cannot reduce > Cj on one processor, the complexity of preemptive

scheduling on one processor is identical to that of the nonpreemptive case; i.e., 1 I pmtn, prec

is NP-hard while 1 pmtn, intree E Cj and 1 pmtn, outtree E C3  are both

solvable in polynomial time. McNaughton [47] has shown that preemption cannot reduce

for a set of independent tasks. Thus, P pmtn I E Cj can also be solved by the SPAT

rule. Du et al. [19] have strengthened the result of McNaughton, showing that preemption

cannot reduce > Cj  for a set of chains. Thus, Pm pmtn, chains I > Cj is NP-hard in

the strong sense for each fixed m > 2.

This dissertation uses the Coffman-Graham algorithm as an approximation algorithm

and shows that the Coffman-Graham algorithm has a

worst-case bound of 2, which is also a tight bound. As noted above, the Coffman-Graham
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; it is optimal for the makespan objective

as well. Lam and Sethi [39] have considered using the Coffman-Graham algorithm as an

approximation algorithm for P pH 1, prec Cmax , and showed that it obeys a worst-case

bound of 2 — 2/m.

The algorithm for solving Pm pH = 1, intree E cif [5] has running time

0(nni), and hence it is impractical for large values of m. For this reason, this dissertation

considers using approximation algorithms for the problem. In a search for reasonably good

approximation algorithms for this problem, Hu's algorithm becomes a natural candidate

since it is optimal for the makespan objective [29]. This dissertation shows that Hu's

algorithm obeys a worst-case bound of 1.5, and that there are examples showing that the

ratio can approach 1.308999.

1.2.4 Dual Criteria Scheduling Problems

Most of the single criterion scheduling problems are concerned with minimizing the total

completion time, > cii; the number of tardy jobs, > ui; the maximum tardiness, Amax =

max{T3 }; as well as the total tardiness, E Bollowing the notation of Graham et al.

[24], the above scheduling problems are denoted by

, respectively.

It is well known that the SPT rule (shortest processing time first) gives a schedule

with minimum total completion time. The SPT rule schedules jobs in ascending order of

their processing times.

A schedule with minimum number of tardy jobs can be obtained by the Hodgson-

Moore algorithm [48], which schedules jobs in ascending order of due dates. In the course

of scheduling, if there is a job, say k, that completes after its due date, then the longest job

currently in the schedule (including job k) will be deleted from the schedule. The deleted

jobs will be scheduled after all the on-time jobs.
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Maximum tardiness can be minimized by the EDD (earliest due date first) rule, which

schedules jobs in ascending order of due dates. Maximum weighted tardiness can be solved

by an algorithm due to Lawler [41], which actually solves a more general problem. Suppose

each job j is subject to a nondecreasing penalty function fa  (Cc ) and the objective is to

minimize max{ fad(Cc)}. This problem can be solved as follows. For a single machine,

there must be a job that completes at time t = E p3 . Choose the job j* such that fj  (t) is the

smallest among all unscheduled jobs. Schedule job j* to complete at time t. This reduces

the problem to a set of n — 1 jobs to which the same rule applies. It can be shown that

the schedule obtained has the smallest max{ fa  (C2  )}. Returning to the maximum weighted

tardiness problem, define for each job j a penalty function fad (CO, where fad(Cab) is defined

as

is a nondecreasing function. Thus, Lawler's algorithm can be applied to

find a schedule with the minimum max{w 3 T3 }

While the above three problems are solvable in polynomial time, unfortunately, minimizing

total tardiness is binary NP-hard, as shown by Du and Leung [17].

So it is easy to see that the complexity of single criterion scheduling problems with

these criteria have been solved. But when it comes to dual criteria scheduling problems

with these criteria, which have more applications in the industrial areas, the complexity

results are still open for some of them, where this dissertation is focused on.

As noted before, in this dissertation dual criteria scheduling problems are studied

under the first approach, which is to have one criterion designated as the primary criterion

and the other one designated as the secondary criterion. Extending the notation of Graham

et al. [24], these problems can be expressed as 1 I 'Yh ry l , where aryl is the primary criterion

and '7h is the secondary criterion.
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As early as 1956, Smith [58] developed a polynomial-time algorithm for the problem

Heck and Roberts [26] extended the algorithm to solve 1 II E C., I
Amax, while Emmons [21] further extended it to solve

fj (Cc) is an arbitrary nondecreasing penalty function for job j.

Many more results about primary and secondary criteria scheduling problems can

be found in Chen and Bullion [10], Dileepan and Sen [15] and Lee and Vairaktarakis [44].

The survey paper by Lee and Vairaktarakis [44] gave the complexity of many primary and

secondary criteria scheduling problems. They noted that the complexity of the following

problems remained open:

This dissertation mainly deals with the six dual criteria scheduling problems defined

above.

Chapter 4 is concerned mainly with the dual criteria scheduling problems with the

following criteria: the number of tardy jobs E the total completion time > Ci  and the

total tardiness ETi, which are problems (5) and (6) defined above. This dissertation shows

that these two problems are NP-Hard.

Chapter 5 is concerned mainly with the dual criteria scheduling problems with the

following criteria: the number of tardy jobs > ui, the maximum tardiness Amax and the

maximum weighted tardiness max{w3T3 }, which are the problem (1)-(4) defined above.

This dissertation shows that problems (3) and (4) are NP-Hard even when the penalty
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function fi for each job j is simply the weighted tardiness of job j. Although much efforts

have been invested in problems (1) and (2), their complexity remain open. Therefore,

for problems (1) and (2), this dissertation considers complexity relationships between the

various problems, gives polynomial-time algorithms for some special cases, and proposes

fast heuristics for the general case. The effectiveness of the heuristics are measured by

empirical study. The results show that one heuristic performs extremely well compared to

optimal solutions.



CHAPTER 2

ONLINE ALGORITHMS

This chapter considers the problem of online scheduling a set of tasks on m > 1 identical

and parallel processors so as to minimize Cmax • In these problems, tasks, along with

their precedence constraints, are released at different times, and the scheduler has to make

scheduling decision without knowledge of future releases.

It can be shown that optimal online scheduling algorithms exist for:

Using an adversary argument, one can show that it is impossible to have optimal online

scheduling algorithms for:

These results give a sharp boundary delineating the possible and the impossible cases.

All of the optimal online scheduling algorithms follow the same format as the algorithm

given in Hong and Leung [27]. Bor P2 pi = 1,prec released at r ib I Amax , the

Coffman-Graham algorithm is used to schedule tasks until new tasks arrive, at which time

the remaining portions of the unfinished tasks, along with the newly arrived tasks, will

20
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be rescheduled. Hu's algorithm is used for P pj = 1, outtreei released at rib I Cmax ,

and the Muntz-Coffman algorithm for P2 pmtn, precis released at rho I Cma  and P

pmtn, outtree released at rib I C.x.

The organization of this chapter is as follows. In Section 2.1, nonpreemptive scheduling

is considered, while preemptive scheduling will be considered in Section 2.2. Finally, some

conclusions will be drawn in the last section.

2.1 Nonpreemptive Schedules

In this section only nonpreemptive scheduling are considered. It is first shown that it is

impossible to have optimal online algorithms for P3 pj = 1, intree2 released at rho I C.

and P2 I pj = p, chains released at ribAmax.Then an optimal online algorithm is given

for P2 I pj = 1, precis released at ribAmaxin Section 2.1.1 and an optimal online

algorithm for P pj = 1, outtreei released at ribC.in Section 2.1.2.

Theorem 2.1.1 It is impossible to have an optimal online algorithm for P3 I pj = 1, intree2

released at rho I Cmax .

Proof: Adversary argument will be used to prove the theorem. Consider the intrees

shown in Big. 2.1: The number of processors is three, intreei  is released at r 1 = 0 and

intreeh is released at rh = 4.

For intreei , the length of the longest path is nine, so the makespan can not be smaller

than nine. To obtain the minimum makespan, task 10 must finish by time t = 4, which

means that all its predecessors must be finished by time t = 3. Since task 10 has nine

predecessors and since there are only three processors, all of the predecessors of task

10 must be executed in the first three time units. This means that there must be an idle

processor in the time interval [3, 4]. Now, if intree h is released at time t = 4, then the

makespan must be larger than 10. As shown in Big. 2.2, the optimal makespan is 10. On
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Figure 2.1 Example showing impossibility for P3 1 pi = 1, intreeh released at rib 1
Amax •

the other hand, if task 10 is not completed by time t = 4, then the schedule is already not

optimal for intreel.

Figure 2.2 Schedule for the example in Big. 2.1.

Thus, the adversary first releases intreei at time t = 0. If the online algorithm did

not finish task 10 by time t = 4, then the schedule produced by the online algorithm is

already not optimal for intreei. On the other hand, if the online algorithm completes task

10 by time t = 4, then the adversary releases intreeh at time t = 4. The online algorithm

cannot finish both intrees by time t = 10, but the optimal makespan is 10. Again, the online

algorithm did not produce an optimal schedule. ■

released at rib I Cmax .
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Proof: Consider the chains shown in Big. 2.3: Two chains released at r 1 = 0, one

chain released at rh = 5, each task in the chains has two units of processing time, and the

number of processors is two. The minimum makespan for the first two chains (released at

time t = 0) is six, which can be attained only if both chains execute continuously from

time t = 0 until time t = 6. Now, if the second chain is released at time t = 5, then the

makespan will be 16. However, as shown in Big. 2.3, the optimal makespan is 15.

Thus, the adversary first releases the two chains at time t = 0. If the online algorithm

leaves a processor idle in the time interval [0, 5], then the schedule is already not optimal

for the two chains. On the other hand, if the online algorithm keeps both processors busy

during the interval [0, 5], then the adversary releases the second chain at time t = 5. The

online algorithm cannot finish all the chains by time t = 15, but the optimal makespan is

15. Again, the online algorithm did not produce an optimal schedule. ■

Figure 2.3 Example showing impossibility for P2 1 pj = chains released at rib I
Amax •
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2.1.1 UET Tasks, Arbitrary Precedence Constraint and Two Processors

The online algorithm utilizes the Coffman-Graham algorithm to schedule tasks. When new

tasks arrive, the new tasks along with the unexecuted portion of the unfinished tasks will

be rescheduled by the Coffman-Graham algorithm again.

Algorithm A

Whenever new tasks arrive, do {

t 	 the current time;

U 4-- the set of tasks active (i.e., not finished) at time t;

Call the Coffman-Graham algorithm to reschedule the tasks in U;

}

Example: Fig. 2.4 shows another set of tasks released at time r h = 2, after the tasks

in Fig. 1.1 were released at time r 1 = 0. Note that tasks 4, 5, 7, 8, and 9 from the first

release are unfinished at time t = 2. They are rescheduled, along with the new tasks from

the second release, by the Coffman-Graham algorithm. The final schedule obtained by

Algorithm A is also shown.

Figure 2.4 Example illustrating Algorithm A.

The next lemma, whose proof will be omitted, is instrumental in proving that Algorithm

A is optimal.
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Lemma 2.1.3 Let S be a schedule for a set of tasks with arbitrary precedence constraints,

where each task has unit processing time.

1. If S has the largest number of tasks completed at any time instant t, then S must be

optimal for Cmax .

2. If S has the minimum idle processor time at any time instant t, then S must be optimal

for Amax .

3. For two processors, the schedule S' produced by the Coffman-Graham algorithm has

the largest number of tasks completed at any time instant t.

Theorem 2.1.4 Algorithm A is optimal for P2 1 pH = 1, preci released at rib I Cmax .

Moreover, the schedule produced by Algorithm A has the largest number of tasks completed

at any time instant t.

Proof: The theorem is proved by induction on the number, i, of release times. The

basis case of i = 1 follows from Lemma 2.1.3. Assume the theorem is true for i = k — 1

release times, the following will show that the theorem is true for i = k release times.

Let Sk_1 denote the schedule obtained by Algorithm A after the first k — 1 releases.

By the induction hypothesis, Sk_1 is optimal for the tasks in the first k — 1 releases and it

has the largest number of tasks completed at any time instant t. The release time rk divides

the tasks into two groups: (1) r ib— tasks completed byTkinSk-1and (2) 7-h— tasks

completed after rk in Sk_1. Let Sk denote the schedule obtained by Algorithm A after the

kithrelease. By the nature of Algorithm A,Skis identical toSk_1from time 0 untilrk.

Thus, every task in Ti is completed by rk  in Sk as well.

Let Ski be an optimal schedule for k releases. The release time rk divides the tasks

into two groups: (1) iii — tasks completed by T k in Sk and (2) f-h — tasks completed after

rk in Ski. Let preck denote all the tasks in the kith release. It is clear that the tasks in 7-1 U 7h

are the same as the tasks in Ti U i'2 \ preck.
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Now construct another schedule Sk from Ski as follows: (1) Delete all the tasks in

TicUThfromSki;(2) Schedule all the tasks in Ti exactly as inSk_i.The schedule Sk is

identical to Sk-1 from time 0 until T k . After Tk, it has tasks in pTeck scheduled exactly as

in Ski and idle processor times due to the deletion of the tasks in T i U Th.

It will be shown that the tasks in 'Th can be scheduled into the idle processor times in

Skiin such a way that the number of tasks completed at each time instanttis not smaller

than that in Ski. By Lemma 2.1.3, Sk has the same makespan as Ski.

Let L be the list of tasks in '1h in ascending order of their completion times in Ski.

The tasks in Th are scheduled as follows. Whenever there is an idle processor time, scan

the list L and assign the first ready task encountered in the scan to the idle time.

Keep assigning tasks by the above method until a time t* is encountered such that

both processors are idle in the time interval [t*, t* + j is the only task from rh that can

be assigned in the interval, and the number of tasks completed by t* + 1 in Ski is smaller

than that completed at the same time in Ski. Since no tasks can be assigned in the interval,

the remaining unassigned tasks in Th must all be successors of task j. There are two cases

to consider.

such that both processors are executing some

. If there are several such times, let t' be the

largest.

Shown in Big. 2.5 (a) is an example of Case I. In this figure, xj denotes a task in

preck and yi denotes a task in 7h . The schedule is transformed to the one shown in Big. 2.5

(b). After the transformation, task j is completed by t* and an immediate successor of j

(task k shown in the figure) can now be scheduled in the time interval

that there is no precedence constraint violation in the transformed schedule.

executing some task in preck.



Figure 2.5 Example illustrating the proof of Case I.

In this case pull out all the tasks in preck that were scheduled in the time interval

[rk , t* + 1] and reschedule all the tasks in 'Th as in Sk_1. By the induction hypothesis, Sk_i

has the largest number of tasks completed at any time instant and hence it can complete

all the tasks by t*. The schedule will be rearranged so that in every time interval [t, t + 1],

at least one processor is executing a task in r h ; i.e., there is no time interval

that both processors are idle. Now schedule the tasks in preck into the idle

processor times and an immediate successor of j in the time interval [t*, t* + 1]. It is clear

that the schedule has no precedence constraint violation.

After the above operations are performed, the number of tasks completed by time

t* + 1 in Ski is identical to that in Sk. Continue this operation until all tasks in Th have been

scheduled. Thus, the number of tasks completed at each time instant t is not smaller than

that in A.
Observe that Sk is identical to Sk_i from time 0 until rk . Thus, it has the largest

number of tasks completed at each time instant t up until rk . After rk , the tasks are

scheduled by Coffman-Graham algorithm and hence Sk has the largest number of tasks

completed at each time instant t. ■
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2.1.2 UET Tasks, Outtrees and Arbitrary Number of Processors

The online algorithm utilizes Hu's algorithm to schedule tasks. When new tasks arrive, the

new tasks along with the unexecuted portion of the unfinished tasks will be rescheduled by

Hu's algorithm again.

Algorithm B

Whenever new tasks arrive, do {

t	 the current time;

U <— the set of tasks active (i.e., not finished) at time t;

Call Hu's algorithm to reschedule the tasks in U;

}

Example: Fig. 2.6 shows another outtree released at time rh = 3, after the outtree

shown in Fig. 1.2 was released at time r 1 = 0. The schedule produced by Algorithm B is

also shown.

Figure 2.6 Example illustrating Algorithm B.

Theorem 2.1.5 Algorithm B is optimal for

Moreover, the schedule produced by Algorithm B has the largest number of tasks completed

at any time instant t.
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Proof: Let S be the schedule produced by Algorithm B for an instance of the P 1

pj = 1, outtree h released at rib 1 Cma  problem and let S be an optimal schedule. It will

be shown, by contradiction, that the number of tasks completed in S at each time instant t

is not smaller than that in S. By Lemma 2.1.3, S is an optimal schedule. Suppose not. Let

t' be the first time instant such that the number of tasks completed in S is less than that in

S. Then there must be an idle processor in the time interval [t' — 1, t'] in S.

Consider the schedule S. Let k be the earliest completed task executed in S in the

time interval [0, t'] that is not executed in S, and let k be completed at time t* in S. Assume

that k is in outtree2 . It will be shown that k can be scheduled in the time interval [t' — 1, t']

in S as well. Suppose not. Then there must be a predecessor of k, say j, executing in the

time interval [t' — 1, t'] in S. Let t be the first time instant such that predecessors of k are

continuously executing from time t until t' in S, but that no predecessor of k is executing

in the time interval [t — 1, t]. There are two cases to consider.

In this case, it is clear that k must be completed after t' in any schedule whatsoever,

contradicting the assumption that k is completed by t' in S.

Let I be the predecessor of k executed in the time interval

Hu's algorithm, I was not executed in the time interval [t-1, t] because the tasks executed in

that time interval in S all have levels greater than or equal to that of 1 and that all processors

are busy in the time interval. Since outtrees are considered, every processor must be busy

from time t — 1 until t', contradicting the fact that there is an idle processor in the time

interval [t' — 1, t'].

Repeating the above argument, it can be shown that the number of tasks completed

by t' in S is not smaller than that in S.	 ■
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2.2 Preemptive Schedules

In this section only preemptive scheduling will be considered. It will first be shown that it is

impossible to have an optimal online algorithm for P3 pmtn, pj = 1, intreei released at r ib

Gmax. Then an optimal online algorithm for P2 pmtn, precis released at ribCm„ and

P pmtn, outtree released at ribAmaxwill be given.

Theorem 2.2.1 It is impossible to have an optimal online algorithm for P3 pmtn, pj =

1, intree released at rib I CCmax .

Proof: The proof given in Theorem 2.1.1 also proves this theorem since preemption

won't help.	 ■

The Muntz-Coffman algorithm is optimal for the problems P2 I pmtn, prec I Gmax ,

P I pmtn, intree I C., and P pmtn, outtree Gm.. It is essentially a highest-level-

first strategy; see Section 1.1.1 for the definition of level.

Muntz-Coffman algorithm: Assign one processor each to the tasks at the highest

level. If there is a tie among y tasks (because they are at the same level) for the last x

(x < y) processors, then assign 1-y processor to each of these y tasks. Whenever either

of the two events below occurs, reassign the processors to the unexecuted portion of the

unfinished tasks according to the above rule. These are

1. A task is completed.

2. A point is reached where, if the present assignment were to continue, some tasks at

a lower level would be executing at a faster rate than other tasks at a higher level.

The schedule produced by the Muntz-Coffman algorithm is a processor-sharing schedule.

It can be converted to a preemptive schedule by marking the time instants where processor

assignment change, and rescheduling the tasks executed between two adjacent time instants

by McNaughton's wrap-around rule.
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Example: Big. 2.7 shows a set of tasks with their precedence constraints. Inside each

circle is the name of the task and its processing time. The number next to each circle is

the level of the task. The processor-sharing schedule on two processors produced by the

Muntz-Coffman algorithm is shown. Binally, the preemptive schedule constructed from the

processor-sharing schedule is also shown.

Figure 2.7 Example illustrating the Muntz-Coffman algorithm.

The online algorithm utilizes the Muntz-Coffman algorithm to schedule tasks. When

new tasks arrive, the new tasks along with the unexecuted portion of the unfinished tasks

will be rescheduled by the Muntz-Coffman algorithm again.

Algorithm C

Whenever new tasks arrive, do {

t ÷— the current time;

U +- the set of tasks active (i.e., not finished) at time t;
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Call the Muntz-Coffman algorithm to reschedule the tasks in U;

}

Big. 2.8 shows another set of tasks released at time T h = 6, after the tasks in Big. 2.7

were released at time r 1 = 0. Algorithm C reschedules the unfinished portion of the

unfinished tasks along with the new tasks. The processor-sharing schedule and the preemptive

schedule are also shown.

Figure 2.8 Example illustrating Algorithm C.

Before the proofs that Algorithm C is optimal for P2 pmtn,preci released at rib

Amax and P pmtn,outtreei Teleased at Tic Amax are given, an optimal offline algorithm

for these two cases will be given.

Algorithm D: Assign one processor each to the tasks at the highest level. If there is a tie

among y tasks (because they are at the same level) for the last x (x < y) processors, then
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assign yprocessor to each of these y tasks. Whenever one of the three events below occurs,

reassign the processors to the unexecuted portion of the unfinished tasks according to the

above rule. These are

1. A task is completed.

2. A point is reached where, if the present assignment were to continue, some tasks at

a lower level would be executing at a faster rate than other tasks at a higher level.

3. New tasks arrive.

Algorithm D is essentially the Muntz-Coffman algorithm, except that another new

event — when new tasks arrive — is added. In Sections 2.2.1 and 2.2.2, it will be shown

processor-sharing schedule and the preemptive schedule constructed by Algorithm D for

the instance given in Big. 2.8.

Figure 2.9 Example illustrating Algorithm D.
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2.2.1 Arbitrary Precedence Constraint and Two Processors

Algorithm D will first be shown to be an optimal offline algorithm for P2 pmtn, prec is

released at r ibAmax,and then Algorithm C will be shown to be an optimal online

algorithm for the same case.

Lemma 2.2.2 Let S be the processor-sharing schedule produced by the Muntz-Coffman

algorithm for an instance of P2 pmtn, prec Gmax. Then, S has the minimum idle

processor time at any time instant t.

Proof: The lemma will be proved by contradiction. Let S be the processor-sharing

schedule produced by the Muntz-Coffman algorithm for an instance of P2 pmtn, prec

Amax, and let S be an optimal schedule for the same instance. Let t' be the first time instant

such that the idle processor time in S is larger than that in S. Then, there must be an idle

processor in the time interval [t', t' + e] in S, for some small positive number E. According

to the Muntz-Coffman algorithm, the reason that a processor is idle in [t', t' + e] is that

no task is ready in the interval other than those that are already executing in the interval.

Let k be the earliest task executed in S in the time interval [0, t' + e] but not in S, and

let k started its execution at time t* in S. It will be shown that k can be scheduled in the

time interval [t', t' e] in S as well. Suppose not. Then, there must be a predecessor of

k, say j, executing in the time interval [t', t' + e] in S. Let t be the first time instant such

that predecessors of k are continuously executing from time t until t' e in S, but that no

predecessor of k is executing in the time interval [t — 6, t] for some small positive number

S . There are two cases to consider.

Case I: t = 0.

If the predecessors of k are continuously executed either by one full processor or

without sharing any processors with jobs that are not predecessors of k from time t until

t' + E, then it is clear that k cannot be scheduled before t' e in any schedule whatsoever,

contradicting the assumption that k is scheduled by t' + c in S. On the other hand, if some
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predecessors of k are sharing processors with a set of other tasks, say U, then there must be

at least one ready task at time t' that is either a task in U or a successor of task(s) in U, and

hence there will be no idle processor in [t', t' E], contradicting the assumption that there

is at least one idle processor.

Let I be the predecessor of k executed at time t in S. According to the Muntz-

Coffman algorithm, I was not executed in the time interval [t — 6, t] because the tasks

executed in that interval all have levels greater than that of 1 and that all processors are busy

in the time interval. Since the tasks in the time interval [t — 6, t] are not predecessors of

k, there must be at least one job other than / that is ready at time t. But this means that

both processors are busy from time t until t' E, contradicting the fact that there is an idle

processor in the time interval [t', t' e].

Repeating the above argument, one can show that the idle processor time in S at each

time instant t is less than or equal to that in S. 	 ■

Using the same technique as in Theorem 2.1.4 and the property given in Lemma 2.2.2,

it can be shown that Algorithm D is an optimal offline algorithm for P2 pmtn,preci

released at ribCCmax. This is stated in the next theorem whose proof will be omitted.

Theorem 2.2.3 Algorithm D is an optimal offline algorithm for P2 pmtn,preci released

Theorem 2.2.4 Algorithm C is an optimal online algorithm for P2 pmtn,preci released

at rib Cmax.

Proof: Let S be the schedule produced by Algorithm C for an instance of P2

and let S be the schedule produced by Algorithm D

for the same instance. It will be shown, by induction on the number of release times, i,
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that S can be converted into S without increasing the makespan and without violating any

precedence constraints. Thus, S is an optimal schedule as well.

The basis case, i = 1, is obvious, since S and S are identical schedules. Assuming

that the hypothesis is true for all i < k — 1, it will be shown that the hypothesis is true for

be the time instants where Event 1 or Event 2 occurs in S.

Let r 1 and rh denote the first and second release times, respectively. There are two cases to

consider.

Brom time ribuntilrh,Sis identical to S. At timerh,the remaining portions of the

unfinished tasks in both schedules are identical. There are only k — 1 releases from rh

onwards. By the induction hypothesis, S can be converted into S without violating any

precedence constraints.

There are two cases to consider.

Case 11(a): Every task executing in the time interval [ti,ti+i] is executing on a full

processor.

The proof of this case is identical to that of Case I.

Case 11(b): Some tasks are sharing processor(s) in the time interval

Let x tasks be sharing y processor(s) (x > y) in the time inter)

i 1 , ih • • ,id be the tasks sharing the y processor(s). Since there are only two processors,

there must be at most one task, say j 1 , executing on a full processor. It is easy to see that

from time r 1 until tj , S and S are identical schedules, but from tj until rh , S and S may not

be the same.

The second release time, rh , divides each task i 1 , ih , . 	 ix , in S into two parts: those

that were executed before rh and those that were executed after rh . Let the level of a task,
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but the tasks i i , ih , . . . , ix may have different levels. Consider now the schedule S. then

Tote that j i may not exist if the tasks

, ix snare two processors.

The schedule S is now converted into one such that it is identical to S in the interval

[rib, rh ] and such that the makespan is not increased and no precedence constraints are

violated. Brom time rh onward, there are k — 1 releases. Thus, by the induction hypothesis,

S can be converted into S from time rh onward. Hence, S is an optimal schedule as well.

Brom time r i until to , S and S are identical schedules, but they may not be the same

in the time interval [tj , rh ]. It will be shown that S can be converted in the interval [tj , rh ]

to be identical to S in the same interval, without increasing the makespan and without

violating any precedence constraints. There are two cases to consider.

Case (i): Several tasks are sharing two processors in the time interval

Figure 2.10 Example illustrating Case (i).

An example of this case is shown in Big. 2.10: 5' is the schedule produced by

Algorithm C before tasks were released at rh , S is the schedule obtained by Algorithm

C after tasks were released at rh , and S is the schedule produced by Algorithm D. It will

be shown that the portions of the tasks scheduled in S' in the interval [
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rescheduled after time rh in S , without increasing the makespan of S and without violating

any precedence constraints.

Let tl < i h < . . . < ik be the time instants where Event 1, Event 2, or Event

3 occurs in S. Define Ii to be the time interval , ij+i ] in S for each 1 < i < k.

Consider how the tasks i 1 , ih and i 3 are scheduled after rh in S. There are three cases

to consider: (a) i 1 , ih and i 3 share one processor in the intervals Ii , /i2 , , Iip, but they

are not scheduled in any other intervals; (b) i 1 , ih and i 3 share two processors in the intervals

Ai„ /i2,q, but they are not scheduled in any other intervals; and (c) i1, ih and i3share

one processor in the intervals h„ h 2 , , hp , share two processors with other tasks in the

intervals Ij1,Ij2, . and they are not scheduled in any other intervals.

In Case (a), it is clear that the tasks can be scheduled in the interval [rh , ij±1 ] in S' into

the intervals 4, 122 , . . . , hp in S without increasing the makespan and without violating

any precedence constraints. In Case (b), the schedule can be divided in the interval [rh , io+1 ]

in S' into q subintervals so that each subinterval will be scheduled into one of the intervals

/ix , 1 < N < q, in S. Again, this will not increase the makespan or violate any precedence

constraints. In Case (c), let / 0 be the total length of all the intervals h 1 , h 2 , , hp , and let

lx , 1 < N < q, be the total execution time of the tasks i 1 , ih and i3 scheduled in /ix . The

tasks can be scheduled in the interval [7-h , rh + in S' into the intervals /ii , /i2 , ,

in S. Then the interval [rh + ij±1 ] in S' will be divided into q subintervals: the Nth

subinterval, 1 < N < q, has length Take the tasks executed in S' in the Nth subinterval

and schedule them in / x in S, along with the other tasks executed in the same interval. It is

easy to see that the tasks can be rescheduled without increasing the makespan or violating

any precedence constraints.

Using this approach, S in [ij , rh ] can always be converted to be identical to S in the

same interval, without increasing the makespan of S and without violating any precedence

constraints, no matter how many jobs are sharing the two processors in the time interval
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Case (ii): One task is executing on a full processor while other tasks are sharing one

processor in the time interval [tj , to+ •

An example of this case is shown in Big. 2.11: S' is the schedule constructed by

Algorithm C before new tasks were released at r2 , S is the schedule constructed by Algorithm

C after new tasks were released at rh , and S is the schedule produced by Algorithm D.

Again, it will be shown that the portions of the tasks scheduled in SIB in the interval [rh , tj+1 ]

can be rescheduled after time rh in S, without increasing the makespan of S and without

violating any precedence constraints.
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makespan of S and without violating any precedence constraints. In Case (b), let y =

ij+i — rh . Assume that in the time interval [rh , ij+i ], i i , ih , i3 have each executed z units

in S, 0 < z < 3. This means that y — 3z units of processor time are used by the newly

released tasks in the same interval. It is easy to see that in S, the remaining portions of

i1iih, i3at time ij+iare all 3— z. On the other hand, the lengths of the remaining portions

of i i , ih , i3 in S' in the interval [rh , ij+i ] are all different. Thus, after rh , when the tasks

i1iih, i3are scheduled into the intervals ij1, /i2, . . . , it is quite possible that overlaps be

created. It is clear that the total length of all the overlaps is no more than Y-:z .

Assume that both processors are used by a task, say i 3 , in the time interval [A i , A h ].

Brom Ai back to rh , the following method is used to eliminate the overlap: Bind the first

time interval [i*, i* + f] such that: (1) one processor is used by ii, ih, i3, ji9 or the successors

of jib, and the other processor, say the second processor, is used by other jobs, or (2) both

processors are not used by i i , i h , i3 , j i , or the successors of j i . If (1) holds, then interchange

the schedule on the second processor in [i*, i* +f] with the schedule on the second processor

in [Ah - E, Ah], so the overlap is reduced by E. (Note that if i 3 is executing in the interval

[i*, i* + €], the interchange does not reduce the overlap but it has the effect of pushing

backwards the time where overlap occurs.) If (2) holds, then interchange the schedule on

the second processor in [i*, i* + E] with the schedule on the second processor in [Ah - E, A h ],

and interchange the schedule on the first processor in [i*, i* + f] with the schedule on the

second processor in [Ah - 2* c, Ah - E]. Again, the overlap is reduced by E and no precedence

constraints are violated.

The above operation will be repeated until all of the overlaps are eliminated. Since

in the time interval [rh , ij+i ], one processor has y — 3z processor time used by the newly

released tasks, the overlap can always be eliminated. Thus, the schedule in [ij , rh ] in ,§ can

be converted to be identical to S in the same interval, without increasing the makespan of

S and without violating any precedence constraints.
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Using this approach, the schedule in [id, rh ] in S can always be converted to be

identical to S in the same interval, without increasing the makespan and without violating

any precedence constraints, no matter how many jobs are sharing one processor in the time

interval [id, id +1]. ■

2.2.2 Outtrees and Arbitrary Number of Processors

Algorithm D is first proved to be an optimal offline algorithm for P Amin, ouiiree i

released ai ri Ajax, and then Algorithm C is proved to be an optimal online algorithm

for the same case.

Theorem 2.2.5 Algorithm D is an optimal offline algorithm for P Amin, outtreei released

ai Tic I Ajar•

Proof: Let S be the schedule produced by Algorithm D for an instance of the P

Amin, outtreei released ai Tic Ajar problem and let S be an optimal schedule. It will be

shown, by contradiction, that the idle processor time in S at each time instant i is less than

or equal to that in S. Thus, S is also an optimal schedule. Suppose not. Let i' be the first

time instant such that the idle processor time in S is larger than that in S. Then there must

be an idle processor in the time interval [i', i' + E] in S, for some small positive number E.

According to Algorithm D, the reason that a processor is idle in [i', i' + E] is that no task is

ready in the interval other than those that are already executing in the interval.

Consider the schedule S. Let k be the task executed in S in the time interval [0, + E]

but not in S, and let k started its execution at time i* in S. Assume that k is in outtree. It

will be shown that k can be scheduled in the time interval [i', i' + f] in S as well. Suppose

not. Then there must be a predecessor of k, say j, executing in the time interval [i', i' + €]

in S. Let i be the first time instant such that predecessors of k are continuously executing

from time i until i' + E in S, but that no predecessor of k is executing in the time interval

[i — 6, i] for some small positive number 6. There are two cases to consider.



Let I be the predecessor of k executed at time i in S. According to Algorithm D, 1

was not executed in the time interval [i — 6,i] because the tasks executed in that interval all

have levels greater than that of 1 and that all processors are busy in the time interval. Since

outtrees are being considered, every processor must be busy from time i — 6 until i' + c,

contradicting the fact that there is an idle processor in the time interval [i', i' + c].

Repeating the above argument, one can show that the idle processor time in S at each

time instant i is less than or equal to that in S. Thus, S is also an optimal schedule. 	 ■

Theorem 2.2.6 Algorithm C is an optimal online algorithm for P pmtn, ouiiree 2 released

ai rib Cmax•

Proof: Let S be the schedule produced by Algorithm C for an instance of P

pmin, ouiiree 2 released ai rib Amax and let S be the schedule produced by Algorithm

D for the same instance. It will be shown, by induction on the number of release times,

i, that the idle processor time in S is less than or equal to that of S at each time instant i.

Thus, S is an optimal schedule as well.
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Let r i and rh denote the first and second release times, respectively. There are two cases to

consider.

Brom time r 1 until rh , S is identical to S. At time rh , the remaining portions of the

unfinished tasks in both schedules are identical. There are only k — 1 releases from rh

onwards. By the induction hypothesis, the idle processor time in S is less than or equal to

that of S at each time instant i after rh .

There are two cases to consider.

Case 11(a): Every task executing in the time interval ij,ij+i] is executing on a full

processor.

The proof of this case is identical to that of Case I.



Consider the schedule S' obtained from S by scheduling the remaining portions of

the unfinished tasks at r h by Algorithm D. Since there are only k — 1 release times (including

rh ), by the induction hypothesis, the idle processor time in S is less than or equal to that of

5' at each time instant i after rh . Thus, if one can show that the idle processor time in S"
is less than or equal to that of S at each time instant i after rh , then the theorem is proved.

This assertion will be proved by contradiction.

of the predecessors of i* after r h in S' must be identical to those in S. Since S schedules i*

by i* + E while S' did not, there must be a time interval [i', i' + 6] such that either: (1) in S'

the processors are all busy in the interval but none of the predecessors of i* are executing

in the interval, or (2) a predecessor of i* is assigned less processor in the interval in SIB'

than in S. In both cases there must be more than m tasks ready for execution in the interval

[e, i' + S] in Se . This means that the processors are all busy from i' until i* + 6, contradicting

the assumption that S' has some idle processors in the interval [i* , i* + f].
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In this case, the remaining portions of the predecessors of i* after r h in S' may not

be the same as those in S. If there is a time interval [i', i' + (5] such that either: (1) in S'

the processors are all busy in the interval but none of the predecessors of i* are executing

in the interval, or (2) a predecessor of i* is assigned less processor in the interval in S'

than in ,.', then one can resort to the same argument as in Case (i). Thus, one may assume

that at each time instant after 7-1, the predecessors of i* are assigned the same or more

processors in S' than in S. In this case the only reason that i* is executed in S but not

in S' is that the remaining portion of task Rh after rh is larger in 5' than in S. Let Rh be

finished at time i in S'. It is clear that every one of the tasks i i , R h , . . . , ix must also be

finished at I. Burthermore, the tasks j ib , A h , . . . , Az are either finished at i or still active at i,

since they have higher levels than R h. Thus, there are more active tasks than the number of

processors. But this means that the processors are all busy from i until i* + e, contradicting

our assumption that S' has some idle processors in the interval [i*, i* + e]. ■

2.3 Concluding Remarks

In this chapter optimal online algorithms are given for the problems:
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(3) P3 I Amin, pj = 1, intreei released at r ibAar•

Instead of the makespan objective, one wonders whether there are optimal online

algorithms for the mean flow time objective. In this regard, it can be shown that Algorithm

A is an optimal online algorithm for P2 Aj = 1, Arec i released at r ibEcj,while

Algorithm B is an optimal online algorithm for P pj = 1, outtreei released at rib

EV. The proof in Theorem 2.1.1 also shows that it is impossible to have optimal online

algorithms for P3 pj = 1 , intree  released at r ibEEAjand P3Amin, Aj=

1, intree released at r ibEA.Relatively little is known about preemptive scheduling.

Bor example, is it possible to have an optimal online algorithm for P2 Amin, Aj =

1, Areci released at r ibEA?Recently, Coffmanet al.[14] gave an algorithm that

simultaneously minimizes the makespan and the mean flow time for P2 Amine, pj =

1, preci released at r ibEV.Is it possible to adapt their algorithm to yield an optimal

online algorithm for this case?



CHAPTER 3

FAST IMPLEMENTATION OF ALGORITHM

In the next section the algorithm of Brucker, Hurink and Knust [9] will be described,

and 0(n log n)-time implementation will be given. In the last section some concluding

remarks will be drawn.

3.1 The Algorithm

The algorithm of Brucker et al. assumes that the release times ri are integers and compatible

with the outtree precedence constraints; i.e., rib+1 <rifor all iA.If the release times are

not compatible with the outtree precedence constraints, one can modify the release times,

without changing the problem, to satisfy the compatibility. This can be done in linear time

by walking over the vertices of the outtree in a systematic way.

Their algorithm considers two relaxations of the problem P Aj = 1, re , outtree

E Cj . In the first all precedence constraints are relaxed and a schedule S i is obtained for

this version of the problem. In other words, the tasks have only release time constraints and

the precedence constraints are ignored. The processor profile of S i is recorded in m(t); i.e.,

at each time instant t, m(t) records the number of processors used to schedule tasks at time

t. In the second relaxation the number of processors (m) is replaced by the number of tasks

(n) and a schedule 8h is obtained for this version of the problem. It is clear that in the

47
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second version every task can be executed as soon as it is released since there are always

enough processors at each time instant. The processor profile of Sh is recorded in m'(t);

i.e., at each time instant t, m'(t) records the number of processors used in 8h to schedule

tasks. The algorithm then converts 8h to fit the processor profile of S 1 (i.e., at each time

instant t, exactly m(t) processors will be used) in such a way that precedence constraints

are observed. Brucker et al. showed that this can always be done since each task in an

outtree has at most one immediate predecessor.

Let fib< 1-h< • • • <rxbe the distinct release times of the n tasks and let rx+l= coo.

Bor each 1 < k < N, let Sk denote the set of tasks with release time f.k. If one sort

the tasks in ascending order of the release times, one can compute Sic for all k in linear

time. Clearly, the schedule 5h will schedule all the tasks in Sic at the time instant t = f.k .

Therefore, mi(f-k) =1 Ski 1 for all 1 < k < N and m'(t) = 0 for all other t. The schedule S i

can be obtained by the following algorithm.

Algorithm E
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It is clear that Algorithm E runs in linear time, assuming that the sets ,.. s1, have already

Figure 3.2 Schedule S 1 for the instance in Big. 3.1.

The algorithm of Brucker et al. then transforms 8h by iteratively moving jobs from

left to right, using the processor profile of S 1 as a guide. The reader is referred to [9] for a

description of the transformation. The transformation takes 0 (nh ) time.
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Figure 3.4 Transformed schedule using Algorithm B for the instance in Big. 3.1.

The tasks will be scheduled backward, starting from Cy until t 1 . Maintain a data structure,

called HEAP, of available jobs (i.e., jobs that are ready to be scheduled).

A HEAP is a data structure that implements a priority queue efficiently. Let S be a

set of objects. Associated with each object is a KEY field that can be used for comparison

purpose. A HEAP of the set S is a binary tree in which every leaf is of depth d or d —1.

Burthermore, every interior node has its KEY greater than or equal to that of its immediate

successors. Thus, the root of the HEAP is the largest element. Bor a set S of n elements,

A HEAP(S) can be built in linear time. Burthermore, one can insert an element into a

HEAP and still maintain the properties of a HEAP in O (log n) time. One can also delete

the largest element from the HEAP and still maintain the HEAP property in O(log n)

time. Bor more details about HEAP, see [2].

A H E AP (S) of available jobs S will be maintained. The KEY field of every job is its

release time. Initially, S consists of all the jobs with SUCCNA equal to zero. Then delete

m(t) jobs from H E AP (S) and schedule them in the time unit Cy . For each deleted job A,
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the SUCCNA of its immediate predecessor k will be decremented. If the SUCCNA of k

becomes zero, insert k into HEAP(S). The algorithm then move to time t y_1 to schedule

jobs. This process is repeated until time t 1 . The full algorithm is described below.

Algorithm F

Now examine the running time of Algorithm B. Step (1) takes 0(n) time. Inside

the loop, each job gets inserted and deleted from the HEAP exactly once. Since it takes

0 (log n) time to insert or delete, the entire algorithm takes 0 (n log n) time. Big. 3.4 shows

the transformed schedule using algorithm B.

3.2 Concluding Remarks

The algorithm of Brucker, Haring and Knust gives a schedule that simultaneously minimizes

both the Cjar and the E ci; such a schedule will be called an ideal schedule. The

Coffman-Graham scheduling algorithm also yields an ideal schedule for two processors,
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unit-processing-time, and arbitrary precedence constraints; see [13]. However, for three

processors, unit-processing-time, and intree precedence constraints, there are instances

for which no ideal schedule could possibly exist; see [32]. Coffman, Sethuraman and

Timkovsky [14] recently gave an algorithm that produces ideal preemptive schedules for

two processors, unit-processing-time, and arbitrary precedence constraints. It would be

interesting to characterize the exact class that has ideal schedules.



CHAPTER 4

APPROXIMATION ALGORITHMS

In this chapter, the Coffman-Graham algorithm is used as an approximation algorithm for

It will be shown that the Coffman-Graham algorithm has a

worst-case bound of 2, which is also a tight bound. As noted above, the Coffman-Graham

algorithm is optimal for P2 Ai = 1, prec > cif; it is optimal for the makespan objective

as well. Lam and Sethi [39] have considered using the Coffman-Graham algorithm as an

approximation algorithm for P pi = 1, prec Cjar, and showed that it obeys a worst-case

bound of 2 — 2/m.

The algorithm for solving Pm Ai = 1, intree E [5] has running time 0(nm),

and hence it is impractical for large values of m. Bor this reason, approximation algorithms

are used for the problem. In a search for reasonably good approximation algorithms for this

problem, Hu's algorithm becomes a natural candidate since it is optimal for the makespan

objective. It will be shown that Hu's algorithm obeys a worst-case bound of 1.5, and that

there are examples showing that the ratio can approach 1.308999.

Recently, there have been some interests in schedules that simultaneously minimize

both the makespan and the mean flow time; such a schedule will be called an ideal schedule.

An interesting question is that for which type of precedence constraint and for which

number of processors can one have ideal schedules? It is known that for two processors and

arbitrary precedence constraints, the schedules produced by the Coffman-Graham algorithm

are ideal schedules. Bor outtrees and arbitrary number of processors, the schedules produced

by the algorithm of Brucker et al. [9] are also ideal schedules. On the other hand, the

example given in Section 4.1 shows that there are no ideal schedules for intrees and three

processors. All of the above assume that the tasks are unit-processing-time tasks. Bor

preemptive scheduling, Coffman et al. [14] recently showed that there are ideal schedules
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for two processors and arbitrary precedence constraints, assuming that the tasks are all

unit-processing-time tasks.

The organization of this chapter is as follows. In Section 4.1, intrees are considered

and Hu's algorithm is shown to have a worst-case bound no more than 1.5. In Section 4.2,

it will be shown that the Coffman-Graham algorithm has a worst-case bound no more than

2. Binally, some concluding remarks are drawn in the last section.

Bor convenience, the following notation will be used throughout this chapter. In any

schedule, a time unit is defined to be a column. A column during which all processors are

busy will be called a full column. Columns that are not full columns will be called partial

columns. If it is not clear from the context, > ci(S) is used to denote the mean flow time

of the schedule S.

4.1 Intree Precedence Constraints

In this section, Hu's algorithm is considered as an approximation algorithm for P Ai =

1, intree > cif. It will be shown that there are no ideal schedules for intree precedence

constraints and three processors. Then Hu's algorithm will be shown to produce schedules

with worst-case bound no more than 1.5, and examples are given showing that the ratio can

approach 1.308999.

Example: Big. 4.1 shows a set of tasks with intree precedence constraints. Shown in

Big. 4.2 is the schedule (S1) produced by Hu's algorithm on three processors. The mean

flow time of Si is 87. But the optimal mean flow time is 86, which is given by the schedule

S2 in Fig. 4.2. Brom this example, one can see that there are no ideal schedules for intrees

and three processors.

Although Hu's algorithm is not optimal for P pj = 1, intree > cob, it can still be

used as an approximation algorithm. It will be shown that it obeys a worst-case bound no

more than 1.5.
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Figure 4.2 Schedule for the example in Big. 1.2.

Bor any instance of P pj = 1, Aintree E 	 let S denote the schedule produced

by Hu's algorithm and let S* denote an optimal schedule. Let Cjar denote the makespan

of S. First, some obvious characterizations of S will be given.

Property 4.1.1 In S, the number of tasks scheduled in each time slot [t, t + 1] is non-

increasing in t.

Property 4.1.2 In S, if the first column [0, 1] is a partial column, then S is optimal.

columns are full columns, then S is optimal.

Suppose that the first t (t > 1) columns in S are all full columns but the

column is a partial column. Then, from property 4.1.1, all the columns after the

column are also partial columns. For any task in the time interval [t, t + 1], if it has no

predecessor in the first t columns, then it can be moved backward to the time interval [0, 1]
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and the moving distance of this task is t, which is the largest possible. Any task in the

) has at least one predecessor in the time interval

Ater its predecessors, so it can be moved backward

by at most t as well.

The improvement that can be made to S will be bounded in terms of the mean flow

time. Clearly, the only improvement that can be made to S is to move the tasks scheduled

in the (t+1)' column and thereafter to earlier columns. Bor each 1 < n < m, let no be the

number of tasks scheduled on the jth processor in S. Without loss of generality, assume

that for any processor, say the itch processor, the task scheduled in S in the time interval

[t + i, t + i + 1], 0 < i < nj — t — 2, is the predecessor of the task scheduled in the time

interval [t + i + 1, t + i + 2]. If the tasks scheduled in the time interval [t, n j ] on the nth

processor have no predecessors scheduled on any other processors, then these tasks can be

moved backward to the time interval [0, n3 — t]. There are two cases to consider.

If the tasks in the time interval [t,ni] were moved backward to the time interval

[0, nj — t], then t tasks scheduled in the first t columns must be moved out of the first t

columns to accommodate these tasks. The best place to which these t tasks are moved will

be the idle processors in the time interval [t,t+1]. The net effect of the move is that the last

t tasks on the itch processor are moved to the idle processors in the time interval [t, t +1].

Case II: t < nj < 2t.

If the tasks in the time interval [t, no ] were moved backward to the time interval

[0, nob—t],thennj—ttasks scheduled in the firsttcolumns must be moved out of the firstt

columns to accommodate these tasks. The best place to which these n3 — t tasks are moved

will be the idle processors in the time interval [t, t + 1]. The net effect of the move is that

the last nj — t — 1 tasks on the itch processor are moved to the idle processors in the time

interval [t, t + 1]. Note that in this case the number of tasks moved is less than t, since

n4 < 2t.
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In both cases, the net effect is that at most t tasks will be moved to the idle processors

in the time interval [t, t	 1].

Theorem 4.1.4 For any instance of P pi = 1, Aintree > Ci , let S denote the schedule

produced by Hu's algorithm and let S* denote an optimal schedule. Then

Moreover, there are instances such that

Proof: S will be converted into a new schedule S', which has smaller mean flow time

than S* but may violate some precedence constraints. If one can show that

then one immediately obtains

S' is obtained from S as follows. Tasks in S are moved column by column, starting

from the last column. Suppose the /the column is being considered. If the previous column

(i.e., the (1 — 1)' column) is full, then stop and S' is obtained already. Otherwise, for each

processor that has less than t tasks moved before, move the task scheduled on the processor

back to the first time instant s at which there is an idle processor. Iterate the above steps

with the column previous to the /the one; i.e., the (1 — 1)thcolumn.



58

It is easy to see that S' has smaller mean flow time than S*, but S' may violate some

precedence constraints. It will now be shown that

Bor each 1 < n < m, let nj be the number of tasks scheduled on the j jth processor

in S and let u3 be the number of tasks on the j th processor that were moved in forming

the schedule S'. It is clear that the new completion time of the task that was moved is

greater than or equal to t 1. Let 7; be the total moving distance of the tasks on the th

Consider the th  processor. Brom S to S', the total moving distance of the tasks on

this processor is

The total completion time of all the tasks on the j jth processor after the move is greater than

or equal to



an odd number) tasks. One task has

level one and this task will be called the "root". There are ( rri -1 )2k tasks divided into mh+1

chains with 2k tasks in each chain and the level of these tasks range from 2 to 2k + 1. The

root is the immediate successor of the tasks at level two in each chain. Call these ("1h+1 )2k

tasks the "chain tasks". Binally, there are (k — a)m tasks at level 2k + 2 which is the highest

level. These tasks are all immediate predecessor of the task at level 2k + 1 in the first chain.

Call these tasks the "head tasks". Big. 4.3 shows one such example with m = 17, a = 0,

and k ,----. 5.

The schedule produced by Hu's algorithm will have the "head tasks" scheduled in



An optimal schedule for this instance would be: Except the first chain, all other
\ th"chain tasks" are scheduled from the second processor to the ( mh+1 ) processor in the time

interval Iii 90 • the "heart tacks" are srheliiled nn the other nrncescnrs as fully as nossible
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Let Cj . denote the makespan of the optimal schedule. Comparing the schedule

produced by Hu's algorithm and the optimal schedule, it is easy to see that when m is

infinite, the ratio would approach 1.308999 when a = 3820 and k = 10000.
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4.2 Arbitrary Precedence Constraints

In this section, the Coffman-Graham algorithm is used as an approximation algorithm for

arbitrary precedence constraints. It will be shown that the Coffman-Graham algorithm

obeys a worst-case bound of 2 and that the bound is tight.

denote the schedule produced by

the Coffman-Graham algorithm and let S* denote an optimal schedule. Birst, some simple

characterizations of S will be given:

Property 4.2.1 If there is no full column in S, then S must be optimal.

Proof: It is easy to see that any task scheduled in the time slot [t, t + 1] (t > 1) has

a predecessor scheduled in [t — 1, t]. So no task can be moved backward, and hence S is

optimal. ■

Property 4.2.2 For any task k scheduled in the time slot [t, t+ 1], if there are f full columns

and p partial columns before t, then task k can be moved backward by at most f time units.

have a predecessor scheduled in the path partial column. Bor any task scheduled in the itch

(2 < i < p) partial column, it must have a predecessor scheduled in the (i — 1) th partial

column. So, there must be a chain of length at least p before k. The tasks in the first partial

column must be executed at or after time 0. So, task k must be executed at or after time

units. ■

The basic idea of proving the worst-case bound is identical to that in Section 4.1. The

schedule S is converted to a new schedule S', which has smaller mean flow time than S*

but may violate precedence constraints and/or processor constraints. Then the improvement

made to S' is bounded in terms of mean flow time. Binally, it will be shown that the mean

flow time of S' must be greater than or equal to the improvement made to Se. Thus,
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The new schedule S t is obtained from S as follows. Starting from the first column in

S, sequentially move the columns back some number of time units. Each column is moved

back by one of the two rules described below. Suppose the Ph column is being considered.

• If the Ph column is a partial column and there are f full columns before it, from

Property 4.2.2, the tasks in the Ph column can be moved backward by at most f time

units. Then move these tasks backward by exactly f time units, regardless whether

there are enough processors to execute these tasks.

• If the Ph column is a full column and there are f full columns before it, from

Property 4.2.2, the tasks in the Ph column can be moved backward by at most f time

units. Then move all the tasks in the P h column backward by exactly f time units,

regardless whether there are enough processors to execute these tasks. However,

if another full column has been moved to the (1 — n th column before, then move

forward from this point until a time unit is first encountered to which no previous full

column had been moved. This will be the final destination of the P h column. (Note

that in this case the moving distance of the /the column is less than f.)
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It is easy to see that the mean flow time of S' must be less than the mean flow time

of S*. Moreover, S' may violate some precedence constraints and/or processor constraint.

The next lemma gives a characterization of the moving distance of a full column.

Lemma 4.2.3 When S' was obtained from S, if there are A partial columns before the

(f + 1) th full column, then the (f + lath full column can be moved backward by at most

min(f,pa time units.

Proof: The lemma will be proved by induction on p. The basis case p = 0 is obvious.

There is no partial column before the (f + l)th full column. It is easy to see that none of the

full columns, up to and including the (f +la th full column, will be moved backward at all.

Now consider p = l. There is one partial column before the (f + 1)th full column. Assume

that the partial column appears immediately before the (f + la th full column. Since the

full columns that appear before the partial column will not be able to move backward at all,

the (f + la th full column must be moved to where the partial column was; i.e. its moving

distance is exactly one time unit. A full column immediately following the (f +lath column

can move to where the (f + Bath full column was; i.e., its moving distance is exactly one

time unit as well.

Assume that the lemma is true for all A < k, it will be proved that the lemma is true

full column has f full columns and A partial columns appearing

before it. If f < p, then from Property 4.2.2, the (k + Ba th full column can be moved

backward by at most f = min( f , pa time units.

Brom the above, assume that f > p. Assume that the column before the

full column is a partial column. Let there be p i partial columns before the Ph full column

and ph partial columns between the fah and the (f + la th columns. Clearly, .73 1 < k, Ah < k,

Hence f — B > p i . By the inductive

hypothesis, the fah full column can only be moved backward by at most min(f —l, A i ) = p i

time units. The only reason that it cannot be moved backward more (say by f — B time

units) is that some full columns had been previously moved to those time units; i.e., they



have been occupied by some previous full columns. Therefore, ti

can only be moved to the time unit immediately after the time u

column was moved. It is easy to see that the moving distance c

is exactly Al + 13h = A. If there were a full column immediately

column, it will be moved to the time unit immediately following the one to which the Ph

column was moved. Again, its moving distance is exactly A.

By mathematical induction, the lemma is true for all A.	 ■

feet S denote the schedule

produced by the Coffman-Graham algorithm and let S* denote an optimal schedule. Then,

Moreover, there are instances of P 1 A i = 1, prec 1 E ci  for which the ratio approaches 2

arbitrarily closely.

Proof: The schedule S will be converted into a new schedule S' by the method as

described above. If one can show that

then the theorem is proved.
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Case 1: Any two full columns are separated by one or more partial column(s). That

An example of this case is shown in Big. 4.6. Arrow line from column i to j means

that the tasks in column i will be moved to column j.

Figure 4.6 Example illustrating Case 1.

the columns between tj + 1 and tj±i are all partial columns

and the columns after tk + 1 are all partial columns as well. Before Cj + 1 there are j full

columns and at least j — 1 partial columns. By Lemma 4.2.3, any task in the time interval

[tj + 1, tj±i] can be moved backward by at most j time units. After moving backward,

their new completion times must be greater than or equal to j. On the other hand, any task

in the jth full column can be moved backward by at most j — 1 time units, and their new

completion times must be greater than or equal to j — 1. Thus,



Case 2: There are full columns that appear contiguously.

Bor any group of full columns that appear contiguously, let the last full column of

this group be the Ph full column in S and let there be p partial columns before this full

column. There are two cases to consider.

The tasks in the time interval

is and their new completion

times must be greater than or equal to A + 1. The tasks in the Ph full column can be moved

backward by at most f — 1 time units and their new completion times must be greater than

or equal to A + 1. Thus, one can resort to the same argument as in Case 1.

Figure 4.7 Example illustrating Case 2(i).

Assume the fth full column is the last full column in the first group of full columns

that appear contiguously in S such that f > A + 1. Let the Ph full column completes at

time t; i.e., the Ph full column is executed in the time interval [1

Brom time t onward, locate the first time instant t* such that
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the number of full columns before t* is exactly the number of partial columns before t*. If

t* cannot be found before Cjar , add some empty columns after C jar as partial columns to

get to t* . Define P to be that part of the schedule S that includes all the tasks in the time

interval [t, r] as well as all the tasks in the pth , (p + last h , . . . , (p + q \ t h) full columns. It will

be shown that the total new completion times of the tasks in P is greater than or equal to

the total moving distance of the tasks in P. Since the schedule after t* in S resorts to Case

1, Case 2(i), or Case 2(i), the theorem is proved.

Figure 4.8 Example illustrating Case 2(i).

The difference between the new completion time and the moving distance for partial

columns will be computed separately from the full columns. Bor partial columns, the

moving distance is larger than the new completion time, while the reverse is true for full

columns. An upper bound for the sum of the differences between the moving distance and

the new completion time for all the tasks in the partial columns in P will be computed, as

well as a lower bound for the sum of the differences between the new completion time and

the moving distance for all the tasks in the full columns in P. It will then be shown that the

lower bound is greater than or equal to the upper bound. Thus,
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partial columns between the (f + ia th full column and the (f + i + Bath full column, and UU

to be the group of partial columns after the (f + Na th full column in P. Let Ni (0 < i < N)

be the number of partial columns in U.

The computation of the difference between the moving distance and the new completion

time for all the tasks in the partial columns in P is shown as follows:
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Now consider the full columns. The computation of the difference between the new

completion time and the moving distance for all the tasks in the full columns in P is shown

as follows:
_	 ,	 „

Comparing the upper bound for the partial columns and the lower bound for the full

columns, one sees that the total new completion time for the tasks in P is greater than or

equal to the total moving distance for the tasks in P.
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Now, the bound will be shown to be tight. Lam and Sethi (Lam and Sethi [1977])

gave an example for P 1 pj = B, prec 1 Cjar , showing that the Coffman-Graham schedule

has makespan approaching 2 — 2/m times the optimal makespan. The same example also

shows that the Coffman-Graham schedule has mean flow time approaching two times the

optimal mean flow time.

Figure 4.10 Worst case example of Coffman-Graham algorithm.

In their example, there are k groups of tasks. In each group there are "i2- tasks: one

task at the lowest level, m +2 tasks at each of the next 2 —B levels, and the remaining tasks

at the highest level. Big. 4.10 shows such an example for m = 6. Tasks B1, Bh, ... , Big

form one group. It is easy to verify that one possible labeling for the tasks in Big. 4.10

in this

order. So, the Coffman-Graham schedule will be like: one time unit for each level with two

tasks, and two time units for each level with m + 2 tasks. An optimal schedule is shown in

Big. 4.10 as well.

Now, compute the mean flow time for the Coffman-Graham schedule and the optimal

schedule, respectively. Divide the Coffman-Graham schedule into k parts and each part has

m — B columns. Define TCi  to be the mean flow time of the its,  The mean flow time



the schedule produced by Coffman-Graham algorithm is:
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4.3 Concluding Remarks

In this chapter, Hu's algorithm has been proposed as an approximation algorithm for the

Graham algorithm as an approximation

[t has been shown that Hu's algorithm
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obeys a worst-case bound no more than 1.5, and there are examples showing that the ratio

can approach 1.308999. The Coffman-Graham algorithm is shown to have a worst-case

bound of 2 and that the bound is tight.

has been open for a long time and it

still remains open. Bor future research, it will be extremely rewarding to settle this issue.

The bound given for Hu's algorithm is not tight. It will be desirable to tighten the bound.

Ideal schedules are also interesting. Is it possible to characterize those instances that have

ideal schedules?



CHAPTER 5

COMPLEXITY OF TWO DUAL CRITERIA SCHEDULING PROBLEMS

In this chapter, dual criteria scheduling problems with the following criteria are considered:

the number of tardy jobs E Ui , the total completion time > cif and the total tardiness

E T.,. In the notation introduced by Graham et al. [24], the problems considered in this

branch-and-bound algorithm which in the worst case runs in exponential time. Complexity

question was not addressed in [20]. Later, Chen and Bulfin [B0] proved that the problem is

NP-hard with respect to id-encoding. In id-encoding, jobs with the same characteristics are

represented only once, and the number of jobs with the same characteristics is represented

by a binary number. Notice that id-encoding scheme has the effect of significantly reducing

the size of the input, making the problem harder to solve in polynomial time as a function

of the size of the input. The complexity of the problem under standard encoding schemes

remained open until now. In this chapter, the problem will be shown to be NP-Hard.

Vairaktarakis and Lee [59] studied the problem

polynomial-time algorithm when the set of tardy jobs is specified. As well, a branch-and-

bound algorithm was given for the general problem. Chen and Bulfin [10] mentioned that

the complexity of this problem is open. In this chapter, it will be shown that this problem

is also NP-Hard.

The NP-Hardness proofs are obtained by reductions from the Even-Odd Partition

problem, which is known to be NP-complete (see Garey and Johnson [22] and Garey et al.

[23]).
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Notice that since each pair of integers, ahi _ i and a2i, must be put into two different

sets, one can add a constant c if to each pair without changing the problem instance. By

carefully choosing cif, one may assume that the given instance of Even-Odd Partition satisfies

the following properties:

of this problem will be shown to be NP-Complete by reducing the Even-Odd Partition

problem to it. Given an instance of the Even-Odd Partition problem, al < ah < 	 < Cahn,

create an instance I of the scheduling problem as follows. There

are 2n P-jobs each of which corresponds to an integer in the Even-Odd Partition instance,

n small P-jobs and a large R-job. The processing times and due dates of these jobs are

shown in Table 5.1, where
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Figure 5.1 Illustration of the due dates of jobs in instance I.

Bigure 5.1 shows the due date pattern of the jobs. Call a schedule feasible if it has the

minimum number of tardy jobs. The decision problem asks: is there a feasible schedule

with total completion time less than or equal to B?

The basic idea of the reduction is to create a P-jobs for each integer ai , n small P-jobs

each of which has a due date between a pair of jobs, and a large R-job whose due date

is the largest among all the jobs. By properly choosing the processing times and due dates

of the jobs, one can show that in any feasible schedule: (a) Exactly one job from each pair
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{Phi_i ) Pei} must be tardy; (b) The Q-jobs must be on time; (c) The R-job must be on

time and is scheduled after all the other on-time jobs and before any tardy jobs; (d) The

total processing time of the on-time Q-jobs cannot exceed A. However, to minimize total

completion time, one needs to have more even Q-jobs to be on time. It can be shown that

every time a pair of even and odd Q-jobs is interchanged by making the even P-jobs tardy

and the odd P-jobs on time, the total completion time is increased by a quantity equal to

the difference between the processing times of the two jobs, which is exactly the quantity

reduced in the total processing time of the on-time Q-jobs. Thus, the optimal solution is

obtained when the total processing time of the on-time Q-jobs is exactly A. But this occurs

only when there is a solution to the instance of the Even-Odd Partition problem. Notice

that the first three terms in the formula for B represent the total completion time when all

even Q-jobs are on time (which does not yield a feasible schedule since the R-job will

be tardy). The last term is the minimum increase in total completion time when the total

processing time of the on-time Q-jobs is reduced to A (which yields a feasible schedule

since the R-job will then be on time).

The next three lemmas prove the assertions made above.

Lemma 5.1.1 In any feasible schedule for the instance I, (a) there are exactly n tardy jobs,

(b) the R-job is on time and is scheduled after all the other on-time jobs, and (c) at least

one job from each pair {Phi _ i , Pei} must be on time.

Proof: (a) is first proved, i.e., there must be n tardy jobs in any feasible schedule. As

mentioned in the Introduction, the Hodgson-Moore algorithm yields a schedule with the

minimum number of tardy jobs. Thus, it is sufficient to show that there are exactly n tardy

jobs when the Hodgson-Moore algorithm is applied to the instance I.

Recall that Hodgson-Moore algorithm schedules jobs in increasing order of their

due dates. In the course of scheduling, if a job misses its due date, then the job with the

largest processing time among all jobs that are currently in the schedule (including the job

that misses its due date), will be picked out as a tardy job and deleted from the schedule.



Since P2i misses its due date and it has the largest processing time among all the jobs

currently in the schedule, Phil will be chosen as a tardy job. Therefore, the Hodgson-Moore

algorithm will pick all the even jobs as tardy jobs. For the R-job, the completion time



so it is on time. Hence, the total number of tardy jobs is n. Thus, any feasible schedule for

the instance I must have exactly n tardy jobs.

Since the R-job has a large processing time, a job scheduled after the R-job must

miss its due date. Hence, all the other on-time jobs must be scheduled before the R-job.

Thus, (b) also holds.

.	 .	 . —	 „ , •

processing time among all jobs currently in the schedule, it will be chosen as a tardy job.

Using the same argument, one can show that all even jobs are tardy. By assumption,

Phi_i is also a tardy job. Thus, the total number of tardy jobs will be n B, contradicting

the assumption that S is a feasible schedule. ■

Proof: It will be shown by contradiction that one of Pei_ 1 and Pei must be tardy in

any optimal schedule. Suppose both are on time in an optimal schedule S. By the proof



on time, Ai must be tardy. Consider now interchanging A i with P2i_1 (i.e., make P2i_i

tardy and A i on time) to get a new schedule S'. By (5.1) and (5.3), N i < a2_1. On the

other hand, clQ > dp2i_i. So, A i meets its due date in S'. However, S' has a smaller total

completion time than S, contradicting the assumption that S is optimal. ■

Lemma 5.1.3 In any optimal schedule S, no tardy job can be scheduled before the R-job.

Thus, the R-job will miss its due date. By Lemma 5.1.1, S can not be a feasible schedule.

■

According to Lemmas 5.1.1 and 5.1.2, in any optimal schedule, all the on-time jobs

must be scheduled before any tardy jobs. One can easily show that the on-time jobs must be

scheduled in increasing order of their due dates in order to be on time. Bor the tardy jobs,



Figure 5.2 (a) A feasible schedule of jobs in instance I, (b) The schedule obtained from
(a) by interchanging Ph, with P2i_1.

it can be shown (by interchange argument) that in order to minimize the total completion

time, they must be scheduled in increasing order of their processing times, which is the

same order as the due dates of the P-jobs. There are only two possible configurations

for each triplet PL - hi _ 17Qi7 Phi}, see Bigure 5.2(a). Either Phi_i and Ai  are on time and

scheduled in this order, or A i and Phi are on time and scheduled in this order.

It is now shown that in order to minimize the total completion time, it is always better

to pick A i and Pe1 to be on time. Suppose there is a feasible schedule in which Phi_1 and

A i are on time and Phi is tardy. It will be shown that by changing the configuration to A i

and Phil on time (see Bigure 5.2(b)), the total completion time will be decreased by exactly

ahi — ahi _ i . Denote the original schedule as S, and the new schedule as S'. Use G i to

denote the jobs scheduled before Phi_1 in S, G2 to denote the jobs scheduled between A i

and Phi, and G3 to denote the jobs scheduled after Phi in S. It is easy to see that there are

2n — i jobs in Gh-

Note that for each job in G i and G3, its completion time in S' remains the same as in

S. Bor each job in Gh, the completion time will increase by ahi — ahi _ i . So the total increase

is (2n — ia(ahi — ahi _ i a. The completion time of Qi decreases by ahi _ i . The completion

time of Phi_1 in S' is the same as the completion time of Pei in S. The completion time of

Phi in 5' is larger than the completion time of P2_1 by N i (ahi — ahi _ i a. Thus, the total
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On the other hand, in order to ensure that the R-job is on time, one can not pick all

the even jobs to be on time. Suppose all the even jobs are picked to be on time. Then

the completion time of the R-job will be

Therefore, the R-job will miss its due date. So, one must choose some even jobs as

tardy jobs. Let B' be the total completion time when all the even jobs are on time. Then,

B = Ell=1(a2i — ahj_iaa. As has been shown above, each time Pei and Pei_ 1 are

interchanged, the total completion time will increase by a2 — a2_1. At the same time, the

completion time of the R-job will decrease by exactly a2i — a22_1. So, if one can schedule

the jobs such that the R-job completes at exactly its due date, then the the total completion

time has the minimum value B among all feasible schedules, and the total processing time

of all the on-time jobs is exactly A. This means that there is a solution to the instance

of the Even-Odd Partition problem if and only if there is a solution to the instance of the

scheduling problem.

Brom the above discussions, the following theorem follows.
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5.2 Minimizing Total Tardiness Subject to Minimum > U.;

In this section, it will be shown that the Even-Odd Partition problem can be reduced to the

decision version of the B E E (J.; problem. Given an instance of the Even-Odd

Partition problem, create an instance II of the scheduling problem as follows. There are

2n jobs and a R-job. The processing times and due dates of these jobs are shown in

Table 5.2, where L is an integer greater than A.

Table 5.2 The Processing Times and Due Dates of the Jobs in Instance II

The due date pattern of the jobs are shown in Bigure 5.3. Let the threshold for the

total tardiness be B, where

The decision problem asks: is there a schedule with the minimum number of tardy

jobs such that the total tardiness is less than or equal to B?

The basic idea of the reduction is similar to that in Section 5.1. For every pair of

even and odd jobs, one of them must be on time and the other must be tardy. The R-job
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must be on time. To minimize total tardiness, it will be more advantageous to schedule all

even jobs to be on time and all odd jobs to be tardy. But if all even P-jobs are on

time, then the R-job will miss its due date by A. To ensure that the R-job is on time, the

total processing time of all the on-time P-jobs cannot exceed A. The total tardiness will

attain its minimum, B, when the total processing time of all the on-time jobs is exactly

A. Thus, there is a solution to the instance of the Even-Odd Partition problem if and only

if there is a solution to the instance of the scheduling problem.

The next lemma proves the assertions made above.

Lemma 5.2.1 In any feasible schedule for the scheduling problem instance II, (a) there

are exactly n tardy jobs, (b) the R-job is on time and all the on-time jobs are scheduled

before the R-job, (c) exactly one job from each pair T. PL.- hi-1, Phi}, B < i < n, is tardy, (d)

all tardy jobs are scheduled after the R-job.



Since P22_i misses its due date and since Phil has the largest processing time among

all jobs in the current schedule, Ph2 will be chosen as a tardy job. Therefore, the Hodgson-

Moore algorithm will pick all the even jobs as tardy jobs. Bor the R-job, the completion

time will be

so it is on time. Hence the total number of tardy jobs is n, concluding the proof of (a).

Since the R-job has a large processing time, a job scheduled after the R-job must

miss its due date. Hence, all the other on-time jobs must be scheduled before the R-job.

This proves (b).

By (a) and (b), all tardy jobs are jobs. In order to prove (c), it is sufficient to

prove that at least one job from each pair I PL - hi_1 ) Ph2} must be on time. This will be proved

by contradiction. Suppose {Phi _ 1 , Phi } is the first pair such that both jobs are tardy in a

feasible schedule S. Consider now applying the Hodgson-Moore algorithm to the job set

consisting of all jobs except {Phi_1, Phi}, and the R-job. It is easy to see that all jobs



By plugging in (5.2) and (5.1), one can easily show that Phi_i will miss its due date. Since

P2i±h has the largest processing time among all jobs in the current schedule, it will be

chosen as a tardy job by the Hodgson-Moore algorithm. Using the same argument, it can

be shown that all even jobs are tardy. By assumption, Phi_i is also a tardy job. Hence,

the total number of tardy jobs will be n +B, contradicting the assumption that S is a feasible

schedule.

(d) will also be proved by contradiction. As has been shown, all the on-time jobs

must be scheduled before the R-job. The total processing time of these jobs is at least

Suppose Pm is a tardy job scheduled before the R-job, where

Then the completion time of the R-job would be

Thus, the R-job will miss its due date. By Lemma 5.2.1, S can not be a feasible

schedule.	 ■

By Lemma 5.2.1, in any feasible schedule, all the on-time jobs are scheduled

before the R-job and all the tardy jobs are scheduled after the R-job. It is easy to see that

all the on-time jobs must be scheduled in increasing order of their due dates; otherwise,



Figure 5.4 (a) A feasible schedule of the jobs in instance II, (b) The schedule obtained
from (a) by interchanging Phil with P2i_1.

some of them will miss their due dates. Bor the tardy jobs, one can show (by interchange

argument) that the total tardiness is minimized by scheduling them in increasing order of

their due dates, which is also the same order as their processing times. By Lemma 5.2.1,

there are only two possible choices for each pair 4 - P P2i}, either P2_1 is on time and

Philis tardy, orP2i_iis tardy andPeiis on time.

It is now shown that in order to minimize the total tardiness, it is always better to pick

P2i_i as a tardy job. Suppose a feasible schedule picks Phil as a tardy job. It will be proved

that by interchanging Pei with P22_1, the total tardiness will be decreased by a2 — a22_i

Denote the original schedule as S, and the new schedule as S'. Use G 1 to denote the jobs

scheduled before P2i_1 in S, Gh to denote the jobs scheduled between P2i_1 and Phil, and

G3 to denote the jobs scheduled after Phil in S; see Bigure 5.4. Since all jobs scheduled

before the R-job are on time, there are exactly (i — Ba tardy jobs in Gh.

On the other hand, in order to ensure that the R-job is on time, one can not pick all the

even jobs as on-time jobs. Suppose one picks all the even jobs. Then the completion



89

Thus, B = B' 	 E3",i(ahj —	 • As has been shown above, each time Phil and P2i_i

are interchanged, the total tardiness will increase by a2 — a2i_1. At the same time, the

completion time of the R-job will decrease by exactly a2i — a2i_i. So, if one can choose the

on-time jobs such that the R-job completes at exactly its due date, then the total tardiness

has the minimum value B among all feasible schedules, and the total processing time of

all the on-time jobs is exactly A. This means that there is a solution to the instance

of the Even-Odd Partition problem if and only if there is a solution to the instance of the

scheduling problem.

From the above discussions, the following theorem follows.

It is not known whether they are unary NP-Hard, or that they can be solved in pseudo-

polynomial time. These issues represent major challenges for future research.



CHAPTER 6

BI-CRITERIA SCHEDULING PROBLEMS: NUMBER OF TARDY JOBS AND

MAXIMUM WEIGHTED TARDINESS

In this chapter dual criteria scheduling problems with the following criteria will be considered:

the number of tardy jobs > ui , the maximum tardiness Ternary and the maximum weighted

tardiness max{wT3}. In the notation introduced by Graham et al. [24], the problems

There are a lot of applications related to these four scheduling problems in the industrial

areas. Woolsey [60] described a problem faced by the scheduler at a southwestern company

that needs to satisfy simultaneously the salespeople and the customers. In this company,

when the salespeople take customer orders, they promise the job will be ready on a specific

date. Salespeople are paid commissions based on the tardiness of the order; full commissions

are paid for on-time orders, but the commission decreases to a certain minimum value as the

tardiness increases. Clearly, the scheduler at this company is faced with unhappy customers

and salespeople if not all jobs can be on time. Brom the perspective of the salespeople,

minimizing maximum tardiness will be the fairest measure since the person penalized the

most is hurt as little as possible. However, such a schedule could have many tardy jobs,

which is not good from the customer's point of view. In this situation there are two criteria

in play: number of tardy jobs and maximum tardiness. There may be several schedules

which minimize maximum tardiness, so it seems reasonable to choose the one which has

the fewest number of tardy jobs. Such a schedule is fair to the sales force, while keeping as

many customers as possible happy. Since orders are released to the plant one-at-a-time, the

scheduler is faced with a single machine scheduling problem with minimizing maximum

90
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tardiness as the primary objective, and minimizing the number of tardy jobs as a secondary

objective.

Bollowing the applications, a lot of research have been done on these problems. The

has been studied by Shanthikumar [56], who gave a branch-

and-bound algorithm for the general problem. As well, a polynomial-time algorithm was

given when the set of tardy jobs is specified. Chen and Bulfin [11] studied the problem

and gave a branch-and-bound algorithm for the general problem. Burther

results about primary and secondary criteria scheduling problems can be found in Chen and

Bulfin [B0], Dileepan and Sen [15] and Lee and Vairaktarakis [44].

Lee and Vairaktarakis [44] further differentiate bi-criteria scheduling problems between

hierarchical problems and dual criteria problems. In a dual criteria problem, one merely

requires the primary criterion to satisfy the constraint that -y id< a, where a is an input

parameter. A hierarchical problem is a special case of dual criteria problem where a is

stipulated to be the minimum value of 'y id (and hence is not an input parameter). The

problems mentioned up to now are all hierarchical problems.

In this chapter both dual criteria and hierarchical problems are considered. A feasible

schedule for a problem B 11 2 12 1 'Al (be it a dual criteria problem or a hierarchical problem)

is a schedule in which the primary criterion is satisfied. An optimal schedule is a feasible

schedule that minimizes the secondary criterion. Bor a given set of jobs, let k* be the

minimum number of tardy jobs, T* be the minimum Tjar and 7Z be the minimum value of

. In this chapter the following problems are considered:
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Note that P 1 , P2, P5 and P6 are dual criteria problems, while P3, P4, P7 and P8 are

hierarchical problems.

P7, where the deadline of each job is set appropriately.

In this chapter the complexity relationships between the above eight problems will

first be considered. Then problems P7 and P8 are shown to be NP-Hard, which implies

that problems (3) and (4) in the list of open problems of Lee and Vairaktarakis [44] are

also NP-Hard. These results are given in Section 2. Optimal algorithms for three special

cases of problems P1 to P8 will then be developed, which will be presented in Section 3.

Binally, several heuristics for the general problem will be proposed and their effectiveness

are studied empirically. The experiment indicates that one heuristic performs extremely

well compared to optimal solutions. These results will be described in Section 4. The last

section concludes.

6.1 Complexity Results

The complexity relationships between the eight problems will first be studied. Given two

problems 11 1 and 112, Hi 	 1I2 denotes that a polynomial-time algorithm for Il i implies a



this instance is also an instance of P3, so the polynomial-time algorithm for P3 can be

used to solve I. Otherwise, I will be solved as follows.

Without loss of generality. one may assume that the fobs in I are indexed in ascending

obtained from S11 by deleting job n + B from S11 and compacting the schedule if possible.

Clearly, Si can be obtained in polynomial time. Si is now shown to be an optimal schedule

for I.

Let T* (IIa be the minimum Tjar for the jobs in II.  Birst, T* (IIa = T is shown. As

mentioned in Section 1, the schedule obtained by the EDD rule minimizes the maximum

tardiness. Since job n + B has the largest due date in II, it must be scheduled as the last

is discarded from this EDD schedule, the resulting schedule will still be a EDD schedule

for the jobs in I. By assumption, the maximum tardiness of the jobs in I is at most T.

Therefore, the maximum tardiness obtained in this EDD schedule is at most T. Thus,
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Since T* (IIa = T, in any feasible schedule for II, the completion time of any job i,

B < i < n, cannot be greater than d, T which is strictly less than wn+1 + T = En pj .

Thus, the only job that can be scheduled last is job n + B. In other words, all the jobs in I

must be scheduled before job n + B and have tardiness at most T. So Si is also a feasible

schedule for the instance I of problem PB. Thus, there is a one-to-one correspondence

between the feasible schedules for I and the feasible schedules for II. The number of

tardy jobs in a feasible schedule for I is exactly one less than that for II (since job n + B is

always the last one to complete and is always tardy). Therefore, the optimal schedule S11

for II must correspond to the optimal schedule Si for I.

Now, P7 P5 will be shown. Suppose I is an instance of P5 consisting of a set

of n jobs and a parameter Two, where Two > Tw. If Two = Tw, then this instance is also

an instance of P7, and hence I can be solved by the polynomial-time algorithm for P7.

Otherwise, I will be solved as follows.

Let the jobs in I be indexed in ascending order of due dates (i.e., d i < d2 < < an )

and let d* be the smallest weight among the n jobs in I. Construct an instance II of P7 as

follows: II consists of all the jobs in I plus an additional job n B, which has processing

time pn+l = 7-4,w + (B + do —Ein_i  p i a, due date dn+1 = B+dr  and weight dn+1 = d*. Using

the algorithm for P7, one can find an optimal schedule SHE for II in polynomial time. Let

Si be the schedule obtained from SHE by deleting job n + B from SHE and compacting the

schedule if possible. Si will be shown to be an optimal schedule for I.

Let Two (IIa be the minimum value of max{dj Tj } for the jobs in II. Birst Two (IIa =

Twowill be shown. If jobn Bis scheduled last inSHE,thenWn-f-iTn±i Two.On the other

hand, if any job i, B < i < n, is scheduled last in I I , then diTi > Two. Thus, job n + B

must be the last job scheduled in SII . By assumption, the minimum value of max{djTj }

for the jobs in I is at most Two. Thus, Tw  (//a = Two. So Si is also a feasible schedule for the

instance I of problem P5. Consequently, there is a one-to-one correspondence between the
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feasible schedules for I and the feasible schedules for II, and hence the optimal schedule

Si/ for II must correspond to the optimal schedule S i for I. 	 ■
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number of tardy fobs such that the schedule has maximum tardiness at most T for a given

Hodgson-Moore algorithm in 0(n log na time. Bor each value of k obtained in the binary

search, algorithm B is called to find the optimal Tmax. Then the upper half or the lower half

of the range will be searched, depending on whether the Tjax returned by algorithm B is

larger than or at most T. If binary search is used to find k0 , algorithm B is called at most

Flog n] times. So the overall running time is still polynomial if B is a polynomial-time

algorithm.

Next, the complexity of problems P7 and P8 will be considered.

Theorem 6.1.5 Problems P7 and P8 are both NP hard.

reduction from the partition problem; see also [1]. The proof is based on his reduction. Bor

completeness, his reduction will be sketched first.
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a feasible schedule with at most 2n tardy jobs.

The idea of the reduction is that, for each i = B, . . . , n, the jobs { i, 3n + 	 and

fn + i , 2n + form two pairs, one of which goes into the on-time set and the other one

goes into the tardy set. One can show that there is a schedule with exactly 2n tardy jobs

such that every job meets its deadline if and only if there is a solution to the partition

instance.

above. The problem is to decide whether there is a feasible schedule with at most 2n + B

tardy jobs such that max{w2T3 } is at most Two?

Because job 0 has due date 0, its weighted tardiness has to be at least wopo = Two in

any schedule. Thus, max{w2T3 } is at least Two. On the other hand, if job 0 is scheduled first

and then the remaining jobs are scheduled in an order corresponding to a feasible schedule



completes before di + Bo . Using almost the same argument, one can show that there is a
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Case 1 requires that deadlines are nondecreasing as a function of the due dates. This

condition always holds for PB, and for P5 it holds when di < dj implies di +

Case 1 also requires that processing times are nondecreasing as a function of due dates. Bor

Case 2 the condition "pi > pj implies sli < sly " can be satisfied by the condition "di < dj

implies pi > pj ". This special case corresponds to the situation where processing times are

nonincreasing as a function of due dates. Case 3 is a combination of Cases 1 and 2; i.e.,

there is an integer m such that the first m jobs satisfy the condition of Case 1, the last n— m

jobs satisfy the condition of Case 2, and the largest deadline in the first m jobs is less than

or equal to the smallest deadline in the last n — m jobs..

In each case the set of jobs is assumed to have a feasible schedule; i.e., there is a

schedule such that all jobs can meet their deadlines. A polynomial-time algorithm for each

case will be given and the algorithm is proved to be optimal. The three cases are given in

the next three subsections.
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complete at time t. Iterate this process with the remaining jobs starting at time t', where t'

is the starting time of the previously scheduled job.

It is easy to see that for any optimal schedule, there is another optimal schedule that

is tight. Thus, it is sufficient to concentrate on tight schedules only. The algorithm given

below solves Case 1.

Algorithm 1

Input: A set of n jobs

Output: A schedule S that minimizes E u, subject to the condition that every job meets

its deadline

1. Schedule the jobs in EDD order. If there is a tie, schedule the one with the smallest

processing time first. Let the schedule be S

2. Let TS = 0 be the initial tardy set

3. Repeat until every tardy job in S is contained in TS:
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By the algorithm, i t is the first tardy job in the EDD schedule. Hence, there must be

at least one tardy job from the jobs B, . . . , i t in any feasible schedule. By assumption,

has the largest due date. Thus, (1) and (2) are true for m = B.

where Chin, is the completion time of job imp in S. This is a contradiction, since imp is a tardy

job at the beginning of the m-th iteration. Thus, S' also has m tardy jobs. Since imp has the

largest due date among the jobs B, 2, 3, ..., i mp, (2) follows immediately. ■

Corollary 6.2.2 Under the condition stated in Theorem 6.2.1, problems PB to P8 can be

solved in polynomial time.
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6.2.2 Case 2

Algorithm 2

Input: A set of n jobs

Proof: Given two jobs i and A such that pi > pj , job i is said to be dominate job A if

slid<sly.Suppose there are two jobs i andAsuch that job i dominates jobA.If both jobs

become tardy when scheduled to complete at time t and one of them has to be scheduled

to complete at time t, then in order to minimize the number of tardy jobs, it is sufficient
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to schedule job i to complete at time t (see [11], [20]). In other words, the non-dominated

job should be chosen. Since at each time t, the algorithm either schedules an on-time job,

or a tardy job that dominates all other jobs whose deadlines are at least t, the optimality of

Algorithm 2 follows immediately. ■

Corollary 6.2.4 Under the condition stated in Theorem 6.2.3, problems PB to P8 can be

solved in polynomial time.

6.2.3 Case 3

Case 3 is a combination of Case 1 and Case 2; i.e., there is an integer m, B < m < n, such

that the first m jobs satisfy the condition of Case 1, the last n — m jobs satisfy the condition

of Case 2, and the largest deadline in the first m jobs is less than or equal to the smallest

deadline in the last n — m jobs.

Algorithm 3

Input: A set of n jobs satisfying the condition of Case 3.

Output: A schedule S with minimum E U2  such that every job meets its deadline

5. Repeat until each job in S is either on time or a tardy job in TS

(a) scan S backwards from t. let i be the first tardy job in S such that i V TS

(b) let Co be the completion time of job i in S

(c) pick a job N from those jobs scheduled in the interval (0, C o ] as follows:

let N i Al TS be the job in JS i with the largest processing time. if there is a tie,

choose the one with the largest due date
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let N 2 be the job in JS2 with the largest processing time such that dx2 > to . if

there is a tie, choose the one with the smallest due date

Else

let u E JS2 be the first job scheduled after N i in S such that 10u >

If there is at least one tardy job z E JSh scheduled between N i and u

(f) obtain a tight schedule S in the time interval (0, t] with respect to the tardy jobs

in TS that are scheduled before t

6. Output S

Proof: Let S be the schedule produced by Algorithm 3. S is proved to be optimal

by showing that there is an optimal schedule S* such that (1) TSi  C TS*, where TS* is

the set of tardy jobs in S* and TSB  is the tardy set obtained at step 2 of the algorithm; (2)

In the time interval (t,E ril=i pj ], where t is the time instant obtained at step (5e) in the last
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iteration of the repeat loop in the algorithm, S has the same set of jobs scheduled in the

same order as S*; i.e., S* and S are identical in this time interval.

If (1) and (2) could be proved, then S and S* have the same set of jobs scheduled in

the time interval (0, t]. All the tardy jobs in this interval in S are contained in TS1 . By (1),

they are also tardy jobs in S*. Thus, S must be optimal for the set of jobs scheduled in the

time interval (0, t]. Combining with (2), S is an optimal schedule for the n jobs.

First, (1) is proved. Let TS]. = {fil, ih, , Pik} and i3 < ij+i for B < j < k — B.

Suppose that	 , 	 are all in TS* but ij TS*. It will be shown that another optimal

schedule S' can be obtained from S* such that i3 is a tardy job.

As noted in subsection 3.1, S* may be assumed to be a tight schedule. By the proof

of Theorem 6.2.B, there are at least j tardy jobs from the jobs I, . . . , ij in S*. Since i3 is on

time in S*, there must be another tardy job that is not in TSB , has due date at most di, (and

hence processing time at most pi), and is scheduled after ij in S*. Let j' be such a tardy

job with the smallest due date. Let I 51 be the set of jobs scheduled before i 3 in 5*, I S2 be

the set of jobs scheduled between i j and j', and 153 be the set of jobs scheduled after j';

see Figure 6.1(a). Let the start time of i d in S* be t 1 and the completion time of j' be th ;

see Bigure 6.1(a).

A new schedule S' is obtained from S* as follows. Let TSI be the tardy jobs of S*

scheduled in the time interval (0, t i ]. In Se, the jobs in /S1 U {f} are scheduled first so that

it is tight with respect to TS, then the jobs in 152 in the same order as 5*, then the job i3 ,

and finally the jobs in I S3 in the same order as S*; see Figure 6.B(a). It is easy to see that

the jobs in 152 complete in S' no later than in 5* and the jobs in I S3 complete in S' at the

same time as in 5*. Since dj, < dig , < di,. Since job j' can meet its deadline in 5*, job

idscan also meet its deadline inS'.To show thatS'is optimal, it is sufficient to show that

all jobs in /S 1 U {f}, except those in T 5I, are on time.

By Theorem 6.2.1, the tight schedule Sig _ i of the jobs B, 2, . . . , ids — B with respect

to the tardy set {i 1 , i h , 	 , ij_ 1 1 has all jobs on time, except Pik, B < k < j — B. On
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if it is on time in S*, it must still be on time in S'.

In summary, S' has the same number of tardy jobs as 8*, but S' has ij as a tardy job.

By induction, one can show that there is an optimal schedule that contains all tardy jobs in

TS1 .

Figure 6.1 A new schedule S' obtained from the optimal schedule 5*.

Now, (2) is proved: S is identical to S* in the time interval (t,Erl=i pj ], where

t is the time instant obtained at step (5e) in the last iteration of the repeat loop in the

algorithm. This will be proved backwards. Suppose that S is identical to S* in the time

Case I: N is on time in S.

In this case dx > Co. One can take N out of S*, compact the schedule, and insert N

after y; see Figure6.1(b). In the new schedule S', N is still on time. Burthermore, all other

jobs complete in S' no later than in S*. Thus, S' is also optimal.

Case II: N is tardy in S and N E T S* .
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In this case dxi > Co . S' is formed exactly as in Case I; see Figure6.1(b). In S' all

jobs, except N, complete no later than in S*. Thus, S' has the same number of tardy jobs as

in S*, and hence S' is also optimal.

Case III: N is tardy in S and N T S* .

In this case job N is tardy in S but on time in S*. Let S" be the schedule at the

beginning of the repeat loop in the algorithm when N is picked as a tardy job, and let T S"

be the tardy set at that time. Note that T S" C T S*, and S" and S* are both tight schedules

in the time interval (0, Co]. Job y may be assumed to be tardy in 5*. For if y were on time

in S*, then both N and y could have to be on time in S*. Since S" and S* are both tight

schedules in the time interval (0, C o], S" would have y scheduled to complete at time C o as

well.

The proof in this case is quite involved. In the following three observations will be

given that will be used later in the proof. Let N 1 and N h be as defined in the algorithm.

Observation 1: Since N 1 has a smaller due date than any job in J52 , N 1 dominates any job

k E J52 if Lk < px1 . In particular, N 1 dominates z, where z is as defined in the algorithm.

Observation 2: Let k T8i be a job in JS1 such that dk < dxl . If in an optimal schedule

N 1 is on time while k completes later than dx1 (i.e., k is tardy), then there is another optimal

schedule in which N 1 is tardy while k is on time.

The correctness of Observation 2 follows from the fact that T5i is an optimal tardy

set of JS1 which is also a subset of TS*. Let IS be the set of jobs scheduled before k in

the optimal schedule. A new schedule can be obtained that starts with a tight schedule of

the jobs in the set IS \ {N i } U {k}, then the job N i , and finally the remaining jobs in the

same order as in the optimal schedule. Using similar arguments as (1) is proved, it will be

shown that k becomes on time in the new schedule and if any other job is on time in the

optimal schedule, it will still be on time in the new schedule. Thus, the new schedule is

also optimal.
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Observation 3: Since N h has the largest processing time among those jobs of JS2 that are

scheduled before C o and have deadlines at least Co , by assumption, N h dominates all these

jobs.

It is now shown how to obtain another optimal schedule S' from S* such that N

completes at C o in S'. Consider two cases of y: y E J51 and y E J52 . If y E J511,

then since Pxi > Ay and larger processing times imply larger due dates for jobs in J51,

dye< dxl.Also N1is on time inS*;otherwise, N1and y are both tardy inS*and N1would

have been scheduled to complete at time C o , rather than y (since S* is a tight schedule in

the time interval (0, Cop. Applying Observation 2 where y plays the role of k, y = N 1 may

be assumed. If y E JSh , by Observation 3, y = N 2 may be assumed. By the algorithm,

either N = N i or N = N h . Thus, there are two subcases to consider: (i) N = N 1 and y = Nh;

(ii) N = N 2 and y = N i .

Subcase (i): N = N 1 and y = N h .

In this case job N i is tardy in S but on time in S*. Also, N 2 is tardy in S*. If D, hi > Pxi

then N 1 dominates N h , by Observation 1. Thus, another optimal schedule S' can be obtained

such that N 1 completes at time C o and N h becomes on time in S'.

From the above discussion, D <hi , h i may be assumed. According to the algorithm,

there is a tardy job z E JS2 scheduled between N 1 and u, where u is as defined in the

algorithm. Note that z T S" . Since Pxi > pzi, N 1 dominates z. Now, if z is a tardy job in

8*, then another optimal schedule S' can be obtained with N 1 being tardy and completing

at time C o and z being on time. On the other hand, if z is on time in S*, then there must

be a tardy job N ob■%TS"such that Nobis scheduled afterzbut before Coin5*.This is

because S and S* are identical after C o , T S" C T S*, and S" has z as a tardy job but S*

has z as an on-time job. Moreover, dxl < dzi, since jobs with due date larger than z cannot

help make z on time in S*. There are two cases to consider. If Nob E J51 , then pro < Phi

(and hence dx0 < dh ,), since N 1 has the largest processing time by the algorithm. Applying

Observation 2 where Nob plays the role of k, another optimal schedule S' can be obtained
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such that x 1 becomes tardy and completes at time t o and N o becomes on time. On the other

hand, if N0 E JSh, then Nob must appear before z in S", since d5c < Az . Moreover, Nob

cannot appear before N 1 in S", since N 1 has smaller due date than Nob. Thus, Nob must appear

after N 1 but before z in S". By the algorithm, pxi > Pool and hence N 1 dominates Nob, by

Observation 1. Thus, another optimal schedule S' can be obtained such that N 1 becomes

tardy and completes at time t o and Nob becomes on time in S'.

Subcase (ii): N = N 2 and y = N 1 .

In this case job N 2 is tardy in S but on time in S*. Also, job N 1 is tardy in S*. Let u

be as defined in the algorithm. Since N 1 can complete at time to and since N 1 has deadline

no larger than that of u, u must also be able to complete at time to . By the algorithm, N 2

dominates u. If u is a tardy job in S*, another optimal schedule S' can be obtained from

S* such that N 2 is tardy and u is on time in S'. Thus, both u and N 2 may be assumed to be

on time in S*. In this case S' is obtained from 8* in two steps. Let IS be the set of jobs

scheduled before u, 182 be the set of jobs scheduled between u and N h , and /S3 be the set

of jobs scheduled between N 2 and N 1 , see Figure 6.1(d).

In the first step, a new schedule SIB" is obtained in the time interval (0, to ] that starts

with a tight schedule of the jobs in /S i U {N 1 }, followed by the jobs in /S h , followed by the

job N h , followed by the jobs in /S3 , and finally followed by the job u. Since pub > pxl , this

change can only affect the jobs in /S i (in terms of tardy job or on-time job). Let /S 1 , 1 be

the set of jobs scheduled before N 1 and /S 1 ,2 be the set of jobs scheduled after N 1 in S. It

can be shown that N 1 is on time in 5B*. Thus, only those jobs in /8 1 , 2 need to be considered

that were previously on time in S*. Note that these jobs must belong to JSh , since N 1 has

the largest due date among the jobs in J51 . By the algorithm, all the jobs between N 1 and

u that are in J52 are on time in S". Since AS" C AS*, these jobs must also be on time in

In the second step, S' can be obtained from SIB with N 2 being tardy and u being on

time, since N 2 dominates u; see Figure 6.1(d).
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In all three cases it has been shown that there is an optimal schedule with the same

job N completing at time C o . Therefore, (2) holds in the time interval (t o — phi, E r1=i pj ] as

well. ■

Corollary 6.2.6 Under the conditions stated in Theorem 6.2.5, problems PB to P8 can be

solved in polynomial time.

6.3 Heuristics and Experimental Results

Since problems P5 and P7 are NP-Hard, fast heuristics will be proposed for them. Again,

the problem B Aj E u•3 will be used as a substitute. Note that the heuristics are also

applicable to problems PB and P3. Although problems P6 and P8 are also NP-Hard, no

good heuristics have been devised for them.

The heuristics fall into three categories. Heuristics that belong to the first category

schedule jobs backwards, starting at time t = pj . The heuristics determine by some

rules a job to complete at time t. Then, t is decremented by the processing time of the

chosen job and the process is iterated to schedule the remaining jobs.

Heuristics that belong to the second category first construct an EDD schedule S, and

initialize the tardy set T S to be the empty set. It then repeats the following until every tardy

job in S is already in TS: (1) Locate the first tardy job i in S that is not in TS; (2) From

those jobs scheduled before and including i, pick a job according to some rule and put it

into TS; (3) Obtain a tight schedule S with respect to TS; (4) If a tardy job becomes on

time in S, delete the job from TS.

The third type of heuristics, called the hybrid-scheduling heuristic, schedules jobs in

the same manner as the second type, except that at each iteration the tardy set is updated

with respect to the jobs scheduled up to and including job i. This update process is done

by a backward scheduling algorithm.

In the next subsection the heuristics will be described in detail. In subsection 4.2, the

worst-case ratios of these heuristics will be discussed. All of these heuristics, except the
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hybrid-scheduling heuristic, have unbounded worst-case ratios. While a constant bound

cannot be proved for the hybrid-scheduling heuristic, it is not possible to come up with an

example with a worst-case ratio larger than two. Finally, in subsection 4.3, an empirical

study will be reported and the effectiveness between the various heuristics as well as relative

to optimal solutions will be compared. According to the result, the hybrid-scheduling

heuristic is the best among all heuristics and its average performance is within 1% more

than the optimal value. If all heuristics are run and the best solution is chosen, then the

composite heuristic has average performance within 0.7% more than the optimal value.

The result shows that extremely good solutions can be obtained within a reasonable amount

of time.

6.3.1 Heuristics

The first type of heuristics, backward-scheduling heuristic, schedules jobs backwards.

Depending on the implementation of step 3(a), there are two different heuristics. The first

heuristic, denoted by LPT-B (Largest Processing Time Backward), picks the job i with the

largest processing time. In case of a tie, choose the one with the smallest due date. The

rationale is that there may be many jobs scheduled after i (in the EDD schedule) that have

tardiness smaller than pi . By scheduling i to complete at time t, these jobs will become on

time.

The second heuristic, denoted by LS-B (Largest Score Backward), computes a score

for each job and picks the one with the highest score. The score of each job i reflects the

number of tardy jobs that can be made on time if i were scheduled to complete at time t,

and it is computed as follows. Let S' be the EDD schedule of all unscheduled jobs, starting

at time 0. If job i is tardy in S', then the score of i is defined to be the number of tardy jobs

j scheduled after i in S' such that Tj < L i ; otherwise, its score is this number less 1. Note

that the score of job i is the net decrease of tardy jobs if job i were scheduled to complete
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at time t. The rationale is that by scheduling the job with the highest score, more jobs can

be made on time.

There are two ways to break ties in the LS-B heuristic; i.e., when several jobs have

the same (highest) score. One way is to choose the one with the largest processing time,

denoted by LS-P. Another way is to choose the one with the smallest due date, denoted by

LS-D. Both heuristics are implemented in the experiment.

Backward-Scheduling Heuristic

Input: A set of n jobs

Output: A feasible schedule if one exists

3. Repeat until all jobs are scheduled or no job can be scheduled at t:

If there is a job i such that Ai > t

schedule i in (t — pi , t]

delete i from JS

Else

If every job in JS has deadline at least t

schedule all jobs in JS using the Hodgson-Moore algorithm

Else

(a) from among those jobs whose deadline is at least t, choose a non-

dominated job i according to some rule. schedule i in the time interval

(t — A i , t]

(b) delete i from JS

(c) t 	 t — pi
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The second type of heuristics, forward-scheduling heuristic, schedules jobs forward.

Depending on the implementation of step (3c), there are again two different heuristics. The

first heuristic, denoted by LPT-F (Largest Processing Time Forward), picks the job with

the largest processing time that can be scheduled after the current job i. In case of a tie,

pick the one with the largest deadline. The second heuristic, denoted by LDL-F (Largest

Deadline Forward), picks the job with the largest deadline that can be scheduled after the

current job i. In case of a tie, pick the one with the largest processing time.

Forward-Scheduling Heuristic

Input: A set of n jobs

Output: A feasible schedule if one exists

1. Let S initially be the EDD schedule

2. Let tardy set T S initially be empty

3. Repeat until every tardy job in S is in TS or no feasible schedule can be found:

(a) let i be the first tardy job in S such that i TS

(b) let job i completes at time t

(c) from among those jobs scheduled before and including i, pick a non-dominated

job j with deadline at least t according to some rules

(d) TS = TS U {j}

(e) obtain a tight schedule S with respect to T S

(f) if a job j E TS becomes on time in S, delete j from TS

The third type of heuristics, called hybrid-scheduling heuristic, schedules jobs forward,

but at each iteration the tardy set is updated by a backward scheduling algorithm.

Let JS be a set of n jobs, B, . . . , n. Let TS be a tardy set of JS such that if a tight

schedule of JS is formed with respect to TS, then the remaining jobs in JS will be on

time. Define an operation, update tardy set T S for job set JS, as shown below. The update
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operation has the effect of reducing the number of tardy jobs in TS without reducing the

possible number of on-time jobs in JS.

1. t 	 EiEJS Pi

2. Repeat until every job in JS is scheduled:

(a) let i be the job in JS with the largest due date

(b) If A i > t

schedule i to complete at time t

Else

let CS C TS be the set of unscheduled jobs whose deadline is at least t

If CS 1= I

schedule the job in CS to complete at time t

Else

let TS' be the unscheduled jobs of TS and TS" = TS' \ CS

let JS' be the unscheduled jobs (including those in TS')

obtain a tight schedule S' of JS' with respect to T S"

let N be the first tardy job in S'

pick the job y E CS scheduled before and including N with the largest

processing time

schedule y to complete at time t

(c) if there is a job in TS that becomes on time, delete the job from TS

(d) decrement t by the processing time of the job that was chosen to complete at

time t
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4. return TS

Note that y must exist, since N is either a job in TS or an on-time job when all jobs

in TS are tardied. The hybrid-scheduling heuristic is given as follows.

Hybrid-Scheduling Heuristic

Input: A set of n jobs

Output: A feasible schedule S if one exists

1. Let JS be the set of n jobs

2. Let S initially be the EDD schedule

3. Let tardy set TS initially be empty

4. Repeat until every tardy job in S is in TS or no feasible schedule can be found:

(a) let i be the first tardy job in S such that i c1 TS

(b) from among those jobs scheduled before and including i, pick a job j such that

Aj > t and such that it has the largest processing time

(e) obtain a tight schedule S of JS with respect to TS

One can easily show that at step (4b), if a job j i is picked, then i must become on

time in the schedule obtained in step (4e).

6.3.2 Worst-Case Bounds

Let /c0 be the number of tardy jobs in an optimal schedule. A trivial upper bound for

the performance ratio of any heuristic would be n/ko . The worst-case bounds of the

performance ratios of the above heuristics are sought. Unfortunately, all of the heuristics,

except the hybrid-scheduling heuristic, have performance ratios asymptotically not much

better than O(n/ko ), even if Aj = dj C, where C is a constant. This is shown by
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giving instances such that when certain heuristics are applied to them, a performance ratio

of O(n/koaa is obtained. All of these instances can be generalized to arbitrarily large n.

For the hybrid-scheduling heuristic, the largest ratio that has been found so far is 2. It is

conjectured that this is a tight bound.

Table 6.2 gives an instance where the performance ratios of LDL-B and LPT-B are

unbounded. Table 6.3 gives an instance for LPT-B, while Table 6.4 gives an instance for

LS-B. Both tables show that the performance ratios are unbounded. Note that Table 6.4 is

applicable to both LS-P and LS-D heuristics, since there are no ties when the LS-B heuristic

is applied to the instance. Table 6.5 gives an instance for the hybrid-scheduling heuristic

with a performance ratio of 2.

6.3.3 Experimental Results

An empirical study of the heuristics discussed in Section 6.3.1 is performed for the B

E Ui problem. While these heuristics have large or unbounded worst-case ratios, they

perform very well in practice, as shall be seen later.

Data Generation Instances are characterized by three parameters: number of jobs n,

due date range factor R and tardiness factor T . The factor R controls the range of the

due date distribution, while T provides an indication of the average tightness of the due

Two cases are investigated, depending on the difference between the due date and the

deadline: (1) the difference between Ai and Ai is a constant, which corresponds to the Tjar

criterion, and (2) the difference between Aj and Ai is a function of din, which corresponds to

the max{diTi } criterion. Instead of generating deadlines randomly, a weight for each job

is generated. In the first case every job has a weight 1. In the second case a weight din for

job j is generated from the uniform distribution [1, 10]. Then Lawler's algorithm [41] is

used to compute 7'; = max{diTi }. Finally, the deadline is computed as dj = di d-Tw* Id.
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The effect of processing times on the heuristics is also investigated. Two types of

instances are generated, one in which the processing time is drawn uniformly from [B, B0]

(which corresponds to the case where the largest and the smallest processing times do not

differ by much) and the other in which the processing time is drawn uniformly from [B, 50]

(which corresponds to the case where the largest and the smallest processing times differ a

lot).

Five instances are generated for each given 71, R, 7- , processing time range and weight

range. For each instance, the processing time of each job is first generated from the uniform

distribution of the given processing time range; i.e., either [1, 10] or [1,50]. Then an

integer due date A i for each job i is randomly generated from the uniform distribution

Since there are six values of n, five

values of R, five values of T, two processing time ranges and two weight ranges, a total

of 3,000 instances were generated.

Empirical Results and Analysis All of the algorithms are implemented in C++. The

running environment is based on the RedHat Linux 7.0 operating system. The PC used is

a Pentium II 400Mhz with 128MB RAM. To test the performance of the heuristics relative

to the optimal solution, an enumerative algorithm was developed to find the optimal value.

No attempt is made to optimize the running time of the enumerative algorithm, since the

objective is only to compare the performance of the heuristics with the optimal solution.

The time limit of running the enumerative algorithm is set to seven days. If the algorithm

does not terminate in seven days, the enumerative algorithm is deemed as not being able

to find an optimal solution. In this case the instance will be discarded and it will not be

included in the statistics. Out of the 3,000 instances generated, the enumerative algorithm

fails to find an optimal solution in only 38 instances.

The heuristics run very fast, in matters of seconds and minutes. The enumerative

algorithm takes hours and days to run in some instances. The heuristics are fast enough
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to be able to meet real-time environment, while the enumerative algorithm most likely can

not.

Bor each instance, the enumerative algorithm and all six heuristics are applied. The

results 2 are summarized in Tables 6.6-6.9. Tables 6.6 and 6.7 give the statistics for the

unweighted case with processing time ranges [B, B0] and [B, 50], respectively. Tables 6.8

and 6.9 give the statistics for the weighted case with processing time ranges [B, B0] and

[B, 50], respectively. In each of these tables, instances with n = B0, 20 and 50 are grouped

as small instances and instances with n = 100, 150 and 200 as large instances, and there

are 375 instances in each group. Statistics are generated for small instances separate from

large instances. Statistics for all instances are also generated.

In each of these tables, the first column "Opt" refers to the enumerative algorithm,

the next six columns refer to the six heuristics, and the last column "Comp" refers to the

composite algorithm of running all six heuristics and outputs the best solution. The row

"# of opt" gives the number of instances in which each algorithm generates an optimal

solution. The row "#/xxx" gives the fraction of instances in which each algorithm generates

an optimal solution. Note that "Opt" always gives a fraction of 1, since instances that

take longer than seven days to run are discarded. The row "avg ratio" gives the average

performance ratios of the heuristics versus the optimal value, while the row "worst ratio"

gives the worst-case ratios.

From the tables the following conclusions can be drawn:

• The composite algorithm has the best performance; its worst-case ratio is never more

than 1.25 and its average ratio is never more than 1.007. Since all six heuristics run

very fast, it is indeed viable to use the composite algorithm in practice.

• Bor a single heuristic, the hybrid-scheduling heuristic outperforms all other heuristics.

Its worst-case ratio is never more than 1.639 and its average ratio is never more than

2The raw data and results are available at "web.njitedui—leung/dual-criteria"
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1.01. The hybrid-scheduling heuristic outperforms just about every heuristic in every

category: number of optimal solution found, average ratio and worst-case ratio.

• While most of the heuristics have unbounded worst-case performance ratios, their

performance (both average ratio and worst-case ratio) are much better in practice.

• All heuristics perform better with small instances than large instances.

• All heuristics perform better with the unweighted case than the weighted case.

• Processing time range does not play an important role in the performance of the

heuristics.

• Geneally speaking, the backward-scheduling heuristics (LS-P, LS-D and LPT-B) are

more effective than the forward-scheduling heuristics (LPT-F and LDL-F).

• Between the two forward-scheduling heuristics, the LIYT-F heuristic performs better

than the LDL-F heuristic for the unweighted case, while the opposite is true for the

weighted case.

• Among the three backward-scheduling heuristics (LS-P, LS-D and LPT-F), both

LS-P and LPT-F outperforms LS-D most of the times, while LS-P and LPT-B are

comparable with each other.

6.4 Conclusions

In this chapter single-machine scheduling problems with two criteria are studied. The

focus is on the number of tardy jobs E uj, the maximum tardiness Tjar and the maximum

weighted tardiness max{w3T3 }. Both dual criteria and hierarchical problems are studied.

Altogether eight problems, PB to P8 have been considered. If the primary criterion is T jax

or max{w3T3 } and the secondary criterion is E Hui, the problems can be viewed as special

cases of B Ai 1 E
The complexity relationships between these eight problems was first established.

are shown to be both NP-Hard.

These two results answer the open questions posed by Lee and Vairaktarakis [44]: What is



will be worthwhile to settle this issue in the future.

Polynomial-time algorithms are given for three special cases of B Ai Dui , which

yield polynomial-time algorithms for problems PB to P8. For Case 1, if all but one job

satisfy the condition of Case 1, the problem can still be solved in polynomial time. This

is because the optimal solution either contains the special job or it doesn't. Both solutions

can be kept, one containing the special job and the other doesn't, and then the better of the

two solutions will be chosen. This idea can be generalized to any fixed number of special

jobs. Similar remarks can be made about Case 2. For future research, it will be interesting

to identify other special cases that can be solved in polynomial time.

Several fast heuristics have been proposed for the general problem. Among all the

heuristics proposed, all except one have unbounded performance ratio in the worst case.

The exception is the hybrid-scheduling heuristic for which only a ratio of 2 is found. It has

been conjectured that it has a tight worst-case bound of 2. It will be interesting to prove (or

disprove) the conjecture.

Empirical study was performed to get a feel for the effectiveness of the heuristics.

According to the result, the hybrid-scheduling heuristic gives extremely good solutions

within a reasonable amount of time. The average ratio of the hybrid-scheduling heuristic is

never more than 1.01, while the worst-case ratio is no more than 1.639. If time permits, all

six heuristics should be run and the best solution is chosen. The composite algorithm has

even better statistics: average ratio no more than 1.007 and worst-case ratio no more than

1.25.



Table 6.1 The Jobs in the Reduction
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Table 6.6 Empirical Results for Instances with Processing Time Range [B, B0] and Weight B



Table 6.7 Empirical Results for Instances with Processing Time Range [I, 50] and Weight B



Table 6.8 Empirical Results for Instances with Processing Time Range [B, B0] and Weight Range [B, B0]



Table 6.9 Empirical Results for Instances with Processing Time Range [B, 50] and Weight Range [B, B0]



CHAPTER 7

CONCLUSIONS

This chapter concludes the dissertation by summarizing its contributions and discussing

some possible avenues for future work.

7.1 Summary of Contributions

Online Scheduling. This dissertation considers the situation where tasks, along with their

precedence constraints, are released at different times, and the scheduler has to make

scheduling decisions without knowledge of future releases. Both preemptive and nonpreemptive

schedules are considered. This dissertation shows that optimal online algorithms exist for

some cases, while for others it is impossible to have one. The results give a sharp boundary

delineating the possible and the impossible cases [30].

Fast Implementation of Algorithm. This dissertation considers the problem of

scheduling a set of n unit-processing-time tasks, with release time and outtree precedence

constraints, on m > B identical and parallel processors so as to minimize the total completion

time. This dissertation shows an 0(n log na-time implementation [31] for the algorithm

given by Brucker, Hurink and Knust.

Approximation Algorithms. This dissertation considers the problem of scheduling

a set of n tasks, with precedence constraints, on m > B identical and parallel processors so

as to minimize the mean flow time. Approximation algorithms are presented for intree and

arbitrary precedence constraints, respectively [32].

Dual Criteria Scheduling Problems.

(1) This dissertation first considers dual criteria scheduling problems with the following

ILO
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been open for a long time. Both problems are shown to be NP-Hard in this dissertation

[33].

(2) This dissertation then considers dual criteria scheduling problems with the following

criteria: the number of tardy jobs D ui , the maximum tardiness Tmax and the maximum

weighted tardiness max

are shown to be NP-Hard even when the penalty function h for each job j is simply

the weighted tardiness of job j. This dissertation also considers B 11 Tmax D 3 and

Although the complexity result for these two problems are still open, this

dissertation shows the complexity relationships between these four dual criteria scheduling

problems and gives polynomial algorithms for several special cases of these four problems.

For the general case, this dissertation proposes several heuristics, gives the worst case

bound for each heuristic, and at last gives a heuristic which shows better performance than

others by experiment results [34].

7.2 Future Work

Scheduling issues are fundamental in many diverse applications and novel problems, variants

and models will continue to come up. A good understanding of the complexity and algorithms

of basic scheduling problems are both necessary and useful for future applications. For

example, the online algorithms for some problems in Chapter 2 and the approximation

algorithms for the problems in Chapter 4 are based on earlier ideas of Hu's algorithm and

Coffman-Graham algorithm. Scheduling theory has been an active area of research for the

last four decades and impressive progress has been made on several fundamental problems

despite the fact that many open problems and challenges remain. At the end of each chapter

specific open problems related to the topics addressed in that chapter have been pointed out.

Here are some broader directions for future research.

Dissertation Expansions. There are two interesting research topics left from this

dissertation. (1) Online Scheduling problems. For those scheduling problems for which
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it is impossible to find optimal online algorithms, it is necessary to study approximation

algorithms for them. The known result is that for any scheduling problems, if there is an

off-line p-approximation algorithm, a 2p-competitive on-line algorithm can be obtained

[55]. The goal is to find better approximation algorithms and get better competitive ratios.

(2)Multi-Criteria Scheduling Problems. Left from the dissertation, the complexity question

are still open. Except considering single machine

dual criteria scheduling problems, many more multiple machine dual criteria scheduling

problems are still open and need to be studied. Moreover, a lot of multi-criteria scheduling

problems which have a lot of applications in the industrial ares should also be considered.

Scheduling Problems with Processors Subject to Breakdown and Repair. A

broad class of challenging scheduling problems whose complexity is not well understood is

that of scheduling jobs on the processors which are identical and subject to breakdown and

repair. Working with processors that are subject to breakdowns is an important issue since a

breakdown has a direct impact on the number of available processors. Assume at time t the

number of processors equals to m(ta, preemptions are allowed, and job j have a due date

Ai . The complexity of Pm(taa I print I E Cif remains open and the worst-case bound of

the Preemptive SPT rule for this problem is still not known. The Preemptive SPT rule is an

online algorithm. What is the competitive ratio of the Preemptive SPT rule compared with

an optimal offline algorithm? What is the complexity of Pm(ta I print, intree 1 Cmah and

While the intree and outtree have the same complexity

when the number of processors is fixed, this may not be the case when the number of

available processors varies over time. Thus an important direction for future work is to find

answers for these questions.

Open Scheduling Problems. In their website, Dr. Peter Brucker and Dr. Sigrid

Knust[8] listed the complexity results for all classes. These results include the maximal

polynomially solvable problems, maximal pseudopolynomially solvable problems, minimal
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NP-hard problems, minimal open problems and maximal open problems. It will be interesting

to solve some of them.

New Topics in Algorithm and Computational Complexity. Many new topics

have emerged in algorithm and computational complexity area, for example, quantum

computing, the complexity of real number computations, zero-knowledge proof systems,

average complexity theory, trade-offs between computational resources, computational biology

etc. Not much results have been obtained in these new topics, so there are still lots of work

that can be done.
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