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ABSTRACT

PATTERN DISCOVERY IN STRUCTURAL DATABASES WITH
APPLICATIONS TO BIOINFORMATICS

by
Sen Zhang

Frequent structure mining (FSM) aims to discover and extract patterns frequently

occurring in structural data such as trees and graphs. FSM finds many applications

in bioinformatics, XML processing, Web log analysis, and so on. In this thesis, two

new FSM techniques are proposed for finding patterns in unordered labeled trees.

Such trees can be used to model evolutionary histories of different species, among

others.

The first FSM technique finds cousin pairs in the trees. A cousin pair is a pair of

nodes sharing the same parent, the same grandparent, or the same great-grandparent,

etc. Given a tree T, our algorithm finds all interesting cousin pairs of T in 0(171 2 )

time where IT is the number of nodes in T. Experimental results on synthetic data

and phylogenies show the scalability and effectiveness of the proposed technique. This

technique has been applied to locating co-occurring patterns in multiple evolutionary

trees, evaluating the consensus of equally parsimonious trees, and finding kernel trees

of groups of phylogenies. The technique is also extended to undirected acyclic graphs

(or free trees).

The second FSM technique extends traditional MAST (maximum agreement

subtree) algorithms by employing the Apriori data mining technique to find frequent

agreement subtrees in multiple phylogenies. The correctness and completeness of

the new mining algorithm are presented. The method is also extended to unrooted

phylogenetic trees.

Both FSM techniques studied in the thesis have been implemented into a toolkit,

which is fully operational and accessible on the World Wide Web.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Frequent structure mining aims to discover and extract patterns frequently occurring

in structural data such as trees and graphs. It finds applications in many scientific

database domains such as XML data, semi-structured data, Web log analysis,

linguistic and bioinformatics. Significant developments of various frequent pattern

discovery algorithms have been witnessed during the past two decades. Each of

them differs from the others in how to answer the following questions: what kind

of domain knowledges can be carried by a certain pattern? how to efficiently mine

those patterns? are the interesting patterns embedded or induced substructures?

and whether the interesting patterns will be discovered exactly or approximately?

This work studies how to find frequent patterns from unordered trees and

investigates the usefulness of discovered patterns in phylogenetic tree applications

- an important bioinformatics research field.

A rooted unordered labeled tree is a tree in which there is a root for the tree, each

node may have a label, and the left-to-right order among siblings is unimportant.'

A rooted unordered tree can be used by biologists to model the evolutionary history

of a set of Taxa (organisms or species) that have a common ancestor. Such trees

are also known as phylogenetic trees (phylogenies) or evolutionary trees. To be more

specific, a phylogenetic tree is a leaf-labeled tree structure depicting the evolutionary

history of a set of organisms. The internal nodes within a particular tree represent

older organisms from which their child nodes descend, and the children represent

divergences in the evolution of the genetic composition in the parent organism. Since

'Rooted unordered labeled trees shall be simply referred as trees when the context is clear.

1



2

a phylogenetic tree conveys to biologists evolutionary history of different Taxa mainly

through its hierarchical divergences, which makes the order of siblings immaterial in

such a tree, a phylogeny is deemed an unordered tree.

For a variety of reasons, biologists usually deal with many different trees

concerning with the same set of Taxa. First, for the same input data, different

theories about the evolutionary history of the same set of species often result in

different evolutionary trees. Second, some tree reconstruction algorithms such as

Most Parsimonious method can produce many equally parsimonious trees for the

same input data. Third, different biological sequence data of the same set of Taxa

usually result in different trees, even being processed by the same tree reconstruction

method. As a consequence, biologists need to conduct further analysis on these trees

in order to extract more useful information.

Traditionally, biologists analyze these trees through pairwise comparisons.

For this purpose, various tree measures such as partition metric, quartet distance,

triplet distance and nearest neighbor interchange distance have long been researched.

However, numerical values of such distance measures are usually too abstract to be

informative, especially when the number of data trees under investigation is large.

Furthermore, with more and more phylogenetic trees being produced by supertree

algorithms, the above tree distance measures are not applicable to such trees any

more. This is because that all these classical measures are established for trees built

upon the exactly same set of Taxa, while trees generated by supertree algorithms are

allowed to share partially overlapped leaf label sets.

Thus, there is a clear need for advanced pattern discovery algorithms that can

assist biologists to find more useful information from multiple phylogenetic trees

generated by diverse resources.

The main goal of this dissertation is to develop novel frequent structure mining

algorithms for phylogenetic tree analysis. To be specific, cousin pair mining algorithm
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and frequent agreement subtree mining algorithm will be discussed. Cousin pair

mining algorithm aims to discover patterns formed by two nodes measured by varying

cousin distances. This work first formalizes cousin pair mining problem under a

generic unordered tree model, then the solution to the problem is shown to be useful

in a variety of phylogenetic tree applications.

In contrast to cousin mining problem, frequent agreement subtree mining

algorithm will find interesting patterns with varying tree sizes. It is a data

mining alternative to the traditional maximum agreement subtree problem. Since

phylogenetic trees are unordered, a canonical form for phylogenetic trees is proposed

to solve unordered tree isomorphism problem. Furthermore, an agreement subtree

could be embedded in a data tree, and this kind of embedding subtree mining

problem has not been fully researched in literature. This work proposes a novel

candidate subtree generation method, which has also considered various optimization

techniques.

Depending on if biologists have sufficient evidences to suggest a distinct root 2

for the tree, a phylogenetic tree can be reconstructed as either a rooted tree or an

unrooted tree. To meet this challenge, both algorithms have also been extended to

unrooted tree scope.

Finally, both cousin mining algorithm and frequent agreement tree mining

algorithm have been successfully implemented and further integrated into an online

mining engine toolkit.

1.2 Thesis Organization

The subsequent chapters are outlined as following. Chapter 2 presents cousin pair

mining algorithm. In this chapter, the cousin pair mining problem in rooted tree scope

will be presented first, then the algorithm is extended to unrooted tree. Chapter 3

2A distinct root indicates a clear common ancestor of all Taxa under investigation.
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focuses on the frequent agreement subtree mining problem and a novel solution to

attack the problem. In this chapter, the canonical form of rooted phylogenetic trees

will be introduced first, then a unique pattern expansion scheme will be presented to

solve the problem. The solution also successfully extends to uprooted trees. Chapter

4 describes two online mining engines built upon the proposed mining algorithms.

Chapter 5 concludes the thesis and points out future work.



CHAPTER 2

COUSIN PATTERN MINING

2.1 Introduction

This chapter presents a new FSM technique - cousin pair algorithm for finding

patterns in rooted unordered labeled trees. Section 2.1 discusses the motivation and

background of the work. Section 2.2 introduces notation and terminology. Section

2.3 presents algorithms for finding frequent cousin pairs in trees. Section 2.4 reports

experimental results on both synthetic data and phylogenies, showing the scalability

and effectiveness of the proposed approach. Section 2.5 discusses applications of this

new approach to locating co-occurring patterns in multiple phylogenies, evaluating

the consensus of equally parsimonious trees, and finding kernel trees from groups of

phylogenies. Section 2.6 describes extensions of the algorithms for undirected acyclic

graphs. Section 2.7 summarizes the chapter.

The patterns this chapter wants to find from these trees contain "cousin pairs."

For example, consider the three trees in Figure 2.1. In the figure, a and y are cousins

with distance 0 in T1 ; e and f are cousins with distance 0.5 in T2; b and f are cousins

with distance 1 in all the three trees.

The measure "distance" represents kinship of two nodes. Cousins with distance

0 are siblings, sharing the same parent node. Cousins of distance 1 share the

same grandparent. Cousins of distance 0.5 represent aunt-niece relationships. the

algorithms described in this chapter can find cousins of varying distances in a single

tree or multiple trees.

Finding the cousin pairs helps to better understand the evolutionary history of

the species, because cousin pairs in these trees represent evolutionary relationships

between species that share a common ancestor.

5



The cousins (patterns) discovered from trees can be used in several ways. As

shown later, they can be used to evaluate the quality of a consensus tree [45] obtained

from multiple phylogenies or can be used to compute the distance between two

phylogenies. The last part of this chapter also discusses extensions of the techniques

for undirected acyclic graphs (or free trees).

In the past, much work on frequent structure mining was conducted with

applications to XML data, documentation and semi-structured data processing [5,

40, 41, 59, 60, 61]. The major difference between these works lies in the different

patterns they discover, which range from XML DTD, tags, schemas, to structural

associations in documents. More recently Zaki [69] developed algorithms capable of

finding frequent embedded tree patterns in a forest where he models a document by

an ordered labeled tree. Chen et al. [9] studied techniques for selectivity estimation in

the context of XML querying. Other related work on general tree matching, inclusion

and isomorphism detection can be found in [11, 30, 50].

There has also been work in graph mining. For example, the authors of [28, 32]

extended the Apriori technique [2], originally designed for association rule mining,
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to find frequent subgraphs in graph data. Yan and Han [65] found closed frequent

subgraphs in graph data. Dehaspe et al. [14] applied inductive logic programming

to find frequent substructures (subgraphs) describing the carcinogenesis of chemical

compounds. Cook and Holder [12] found repeated patterns in graphs using the

minimum description length principle. Yoshida and Motoda [67] used beam search

for mining subgraphs. Wang et al. [62] applied geometric hashing techniques to find

frequent substructures in 3-D graphs and used the substructures to classify proteins

and chemical compounds.

Th cousin-based distance measure presented in this chapter joins the many

others already developed [24, 39, 46, 51]. This work differs from the above approaches

in three ways. First, in contrast to the other tree mining methods (e.g. [56, 69]), which

focused on trees where the order of siblings matters, the cousin mining algorithms

concern with unordered trees, which are appropriate for the phylogenetic application.

Second, this algorithm finds cousin pairs with varying distances from the trees. These

frequent cousin pairs differ from the patterns found in all the previous work, entailing

new methods in the discovery process. When applied to phylogeny, the proposed

cousin-based distance measure can be used to compare evolutionary trees for which

existing methods are not suitable. Third, in contrast to the other graph mining

methods (e.g. [12, 67]) which are based on heuristic search and hence may miss some

interesting patterns, this algorithm performs a complete search without missing any

patterns satisfying the user-specified requirement.

2.2 Preliminaries

Let E be a finite set of labels. A rooted unordered labeled tree of size k > 0 on E is

a quadruple T = (V, N, L, E), where

• V is the set of nodes of T in which a node r(T) E V is designated as the root

of T and IV = k.
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is a numbering function that assigns a unique identification

number N(v) to each node v E V.

is a labeling function that assigns a label L(v) to each

node v E V'; the nodes in V — V' do not have labels. Obviously, this labeling

function allows multiple nodes to have the same label.

• E C N(V) x N(V) contains all parent-child pairs in T .

For example, refer to the trees in Figure 1. The node numbered 6 in T1 does

not have a label. The nodes numbered 2, 3 in T3 have the same label d and the nodes

numbered 5, 6 in T3 have the same label c. The following paragraphs introduce a

series of definitions that will be used in the new algorithms.

Cousin distance. Given two labeled nodes n, v of tree T where neither node

is the parent of the other, the least common ancestor w of u and v is denoted as

lca(u, v), and the heights of u, v in the subtree rooted at w are represented as

H (n, w), H (v , w) respectively. The definition of cousin distance of n and v, denoted

as c_dist(u, v), is shown in Figure 2.2. The cousin distance c_dist(n, v) is undefined

Figure 2.2 Definition of the cousin distance between two nodes u and
v.

is greater than 1, or one of the nodes u, v is unlabeled. (The

cutoff of 1 is a heuristic choice that works well for phylogeny. In general there could

be no cutoff or the cutoff could be much greater.)
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The cousin distance definition is inspired by genealogy. Node u is a first cousin

of v, or cdist(u, v) = 1, if u and v share the same grandparent. In other words, v is

a child of n's aunts or vice versa. Node u is a second cousin of v, or c_dist(u, v) = 2,

if n and v have the same great-grandparent, but not the same grandparent. For two

nodes u, v that are siblings, i.e. they share the same parent, c_dist(u, v) = 0.

The number "0.5" is used to represent the "once removed" relationship. When

the word "removed" is used to describe a relationship between two nodes, it indicates

that the two nodes are from different generations. The words "once removed" mean

that there is a one-generation difference. For any two labeled nodes n and v, if n is

v's parent's first cousin, then u is v's first cousin, once removed and c_dist(u, v) =

1.5. "Twice removed" means that there is a two-generation difference. The cousin

distance definition requires IH(u, w) — H(v, w)I < 1 and excludes the twice removed

relationship. As mentioned above, this is a heuristic rather than a fundamental

restriction.

For example, consider again T1 in Figure 1. There is a one-generation difference

between the aunt-niece pair y, x and c_dist(u) = 0.5. Node b is node u's first cousin

and cdist(b, u) = 1. Node d is node g's first cousin, once removed, and cdist(d, g)

second cousin, once removed, and c_dist(u, , p) = 2.5.

Notice that parent-child relationships are not included in this work because the

internal nodes of phylogenetic trees usually have no labels. So, parent-child pairs

are not considered at all. This heuristic works well in phylogenetic applications,

but could be generalized. One such generalization proposed by Wang et abuses the

UpDown distance [55]. Another approach, suggested by a reviewer, is to use one

upper limit parameter for inter-generational (vertical) distance and another upper

limit parameter for horizontal distance.
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Cousin pair item. Let u, v be cousins in tree T. A cousin pair item of T is

a quadruple (L(n), L(v), c_dist(u, v), occur(u, v)), where L(n) and L(v) are labels of

u, v, respectively, c_dist(u, v) is the cousin distance of u, v and occnr(u, v) > 0 is

the number of occurrences of the cousin pair in T with the specified cousin distance.

Table 2.1 lists all the cousin pair items of tree T3 in Figure 1. Consider, for example,

the cousin pair item (d, c, 0.5, 2) in the second row of Table 1. Node 2 and node 6,

node 3 and node 5 respectively, is an aunt-niece pair with cousin distance 0.5. When

taking into account labels of these nodes, it is clear that the cousin pair (d, c) with

distance 0.5 occurs 2 times totally in tree T3, and hence (d, c, 0.5, 2) is a valid cousin

pair item in T3.

A cousin pair item may also consider the total number of occurrences of the

cousins n and v regardless of their distance, for which case A replaces c_dist(u, v)

in the cousin pair item. For example, in Table 1, T3 has (b, c, 0, 1) and (b, c, 1, 1),

and hence the cousin pair item (b, c, A, 2) can be obtained. Here, the cousin pair (b,

c) occurs once with distance 0 and occurs once with distance 1. Therefore, when

ignoring the distance, the total number of occurrences of (b, c) is 2. Likewise it

can ignore the number of occurrences of a cousin pair (u, v) by using A in place of

occnr(u, v) in the cousin pair item. For example, in Table 1, T3 has (b, c, 0, A) and

(b, c, 1, A). Furthermore, both the cousin distance and the number of occurrences

could be ignored and the cousin labels are the only concerns. For example, T3 has

(b, c, A, A), which simply indicates that b, c are cousins in T3.



be a given distance value. Let (5„,,, i be 1 if Ti has the cousin pair item (L(u), L(v), d,

occur(u, v)), occur(u, v) > 0; otherwise (5u ,,,,,i is 0. The support of the cousin pair (u, v)

1<i<nOu,v,i•—with respect to the distance value d is defined as r
represents the number of trees in the set S that contain at least one occurrence of

the cousin pair (u, v) having the specified distance value d. A cousin pair is urequent

if its support value is greater than or equal to a user-specified threshold, minsup.

For example, consider Figure 1 again. Ti. has the cousin pair item

has the cousin pair item (c, u , 0.5, 1) and T3 has the cousin pair item (c

(c, u, 0, 1). The support of (c, u) w.r.t. distance 1 is 2 because both Ti. and T3 have

this cousin pair with the specified distance. Cousin distances can also be ignored

when finding frequent cousin pairs. For example, the support of (c, u) is 3 when the

cousin distances are ignored.

Given a set S of trees, this approach offers the user several alternative kinds

of frequent cousin pairs in these trees. For example, the algorithm can find, in a

tree T of 8, all cousin pairs in T whose distances are less than or equal to maxdist

and whose occurrence numbers are greater than or equal to minoccur, where maxdist

and minoccur are user-specified parameters. The algorithm can also find all frequent

cousin pairs in S whose distance values are at most maxdist and whose support

values are at least minsup for a user-specified minsup value. The following section

will describe the techniques used in finding these frequent cousin pairs in a single tree

or multiple trees.

2.3 Tree Mining Algorithms

Given a tree T and a node u of T, let childrenset(u) contain all children of u.

the algorithm preprocesses T to obtain childrenset(u) for every node u in T. The

Thus the support value
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algorithm also preprocesses T to be able to locate a list of all ancestors of any node

u in 0(1) time using a conventional hash table.

Now, given a user-specified value maxdist, all valid distance values 0, 0.5, 1,

1.5, ... , maxdist are considered. For each valid distance value d, myievel(d) and

mycousinievel(d) are defined as follows:

Let m = my _leveled) and n = mycousin_level(d). Intuitively, given a node n

and the distance value d, beginning with u, the algorithm can go m levels up to reach

an ancestor w of n. Then, from w, the algorithm can go n levels down to reach a

descendant v of w. Referring to the cousin distance definition in Figure 2, c_dist(u, v)

must be equal to the distance value d. Furthermore, all the siblings of u must also be

cousins of the siblings of v with the same distance value d. These nodes are identified

by their unique identification numbers. To obtain cousin pair items having the form

(L(n), L(v), c_dist(u, v), occur (u, v)), the node labels of n and v are checked and add

up the occurrence numbers for cousin pairs whose corresponding node labels are the

same and whose cousin distances are the same. Figure 2.3 summarizes the algorithm.

Notice that within the loop (line 3 - line 10) of the algorithm in Figure 3, it finds

cousin pairs with cousin distance d where d is incremented from 0 to maxdist. In

line 8 where a cousin pair with the current distance value d is formed, the algorithm

checks, through node identification numbers, to make sure this cousin pair is not

identical to any cousin pair with less distance found in a previous iteration in the

loop. This guarantees that only cousin pairs with exact distance d are formed in the
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Procedure: Single_Tree_Mining

Input: A tree T and a maximum degree value allowed, maxdeg, and a minimum

occurrence number allowed, minoccur.

Output: All cousin pair items of T where the cousin pairs have a degree less than

or equal to maxdeg and an occurrence number greater than or equal to

minoccur.

for each node p where childrenset(p) $ 0 do

begin

for each valid degree value d < maxdeg do

begin

let u be a node in childrenset(p);

calculate m = myievel(d) and n = mycousinievel(d) as defined

in Eq.(2.3.2.1), (2.3.2.2);

beginning with u, go m levels up to reach an ancestor w and

then from w, go n levels down to reach a descendant v of w;

combine all siblings of u and all siblings of v to form cousin pairs

with the degree value d;

if a specific pair of nodes with the degree d has been found

previously, don't double-count them;

end;

end;

add up the occurrence numbers of cousin pairs whose corresponding node

labels are the same and whose cousin degrees are the same to get

qualified cousin pair items of T.

Figure 2.3 Algorithm for finding frequent cousin pair items in a single tree.
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current iteration in the loop.

Lemma 1. Algorithm Single_Tree_Mining correctly finds all cousin pair items of

T where the cousin pairs have a distance less than or equal to maxdist and an

occurrence number greater than or equal to minoccur.

Proof. The correctness of the algorithm follows directly from two observations: (i)

every cousin pair with distance d where 0 < d < maxdist is found by the algorithm;

(ii) because of Step 9 that eliminates duplicate cousin pairs from consideration, no

cousin pair with the same identification numbers is counted twice.

Lemma 2. The time complexity of algorithm Single_Tree_Mining is O(T2 I 2 ).

Proof. The algorithm visits each children set of T. For each visited node, it

takes at most Oar) time to go up and down to locate its cousins. Thus, the time

spent in finding all cousin pairs identified by their unique identification numbers is

0(1T1 2 ). There are at most 0(171 2 ) such cousin pairs. Through the table lookup,

this algorithm gets their node labels and adds up the occurrence numbers of cousin

pairs whose distances and corresponding node labels are the same in 0(1T1 2) time.

To find all frequent cousin pairs in a set of trees {T1 , . , Tk } whose distance is at

most maxdist and whose support is at least minsup for a user-specified minsup value,

first all cousin pair items in each of the trees that satisfy the distance requirement

are found. Then all frequent cousin pairs can be located by counting the number of

trees in which a qualified cousin pair item occurs. This procedure will be referred

to as Multiple_Tree_Mining and its time complexity is clearly 0(kn2) where n =
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2.4 Experiments and Results

A series of experiments was conducted to evaluate the performance of the proposed

tree mining algorithms, on both synthetic data and phylogenies, run under the Solaris

operating system on a SUN Ultra 60 workstation. The tree mining algorithms were

implemented using the K programming language (www kx corn). The synthetic data

was produced by a C++ program based on the algorithm developed in [26]. This

program is able to generate a large number of random trees from the whole tree space.

The phylogenies were obtained from TreeBASE, available at www .treebase.org [48].

Table 2.2 summarizes the parameters of these algorithms and their default values

used in the experiments. The value of 2 was used for minimum support because the

phylogenies in TreeBASE substantially differ from each other and using this support

value allowed users to find interesting patterns in the trees. Table 2.3 lists the

parameters and their default values related to the synthetic trees. The u anout of

a tree is the number of children of each node in the tree. The alphabet_size is the

total number of distinct node labels these synthetic trees have.

Figure 2.4 shows how changing the u anout of synthetic trees affects the running

time of the algorithm Single_Tree_Mining. 1000 trees were tested and the average was

plotted. The other parameter values are as shown in Table 2.2 and Table 2.3. Given
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a fixed tree_size value, a large fanout value will result in a small number of children

sets, which will consequently reduce the times of executing the outer for-loop of the

algorithm, c.f. Step 1 in Figure 3. Therefore, one may expect that the running time of

Single_Tree_Mining drops as u anout increases. Surprisingly enough, however, Figure

2.4 shows that the running time of Single_Tree_Mining increases as a tree becomes

bushy, i.e. its u anout becomes large. This happens mainly because for bushy trees,

each node has many siblings and hence more qualified cousin pairs could be generated,

cf. Step 8 in Figure 3. As a result, it takes more time in the post-processing stage to

aggregate those cousin pairs, cf. Step 12 in Figure 3.
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Figure 2.5 shows the running times of Single_Tree_Mining with different maxdist

values for varying node numbers of trees. 1000 synthetic trees were tested and the

average was plotted. The other parameter values are as shown in Table 2.2 and

Table 2.3. It can be seen from the figure that as maxdist increases, the running time

becomes large, because more time will be spent in the inner for-loop of the algorithm

for generating cousin pairs, cf. Steps 3 - 10 in Figure 3. It is also observed that a lot

of time needs to be spent in aggregating qualified cousin pairs in the post-processing

stage of the algorithm, cf. Step 12 in Figure 3. This extra time, though not explicitly

described by the asymptotic time complexity 0(1T1 2 ) in Lemma 2, is reflected by the

graphs in Figure 2.5.

Figure 2.5 Effect of maxdist and tree_size.

Figures 2.6 and 2.7 show the running times of Multiple_Tree_Mining when

applied to 1 million synthetic trees and 1,500 phylogenies obtained from TreeBASE,

respectively. Each phylogeny has between 50 and 200 nodes and each node has

between 2 and 9 children (most internal nodes have 2 children). The size of the node

label alphabet is 18,870. The other parameter values are as shown in Table 2.2 and

Table 2.3. Figure 2.7 shows that Multiple_Tree_Mining can find all frequent cousin
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pair items in the 1,500 phylogenetic trees in less than 150 seconds. The algorithm

scales up well—its running time increases linearly with increasing number of trees

(Figure 2.6).
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2.5 Applications

This section describes several applications of our techniques, showing how they can

be used (0 to discover co-occurring patterns in multiple phylogenies; (ii) to evaluate

the quality of a consensus tree obtained from equally parsimonious trees with the

same Taxa (leaf nodes); and (iii) to find kernel trees from groups of phylogenies with

different Taxa.

2.5.1 Discovering Co-occurring Patterns in Multiple Phylogenies

Multiple_Tree_Mining is applied to the phylogenies associated with each study in

TreeBASE to discover co-occurring patterns in these phylogenies. The parameter

values used in the algorithm are as shown in Table 2.2. Figure 2.8 shows some

results for the phylogenies reported in the study [15] maintained in TreeBASE.



19

Figure 2.7 Effect of databasesize for phylogenies.

These phylogenies were constructed for 8 seed plants (Taxa): Cycadales, Ginkgoales,

Coniferales, Ephedra, Welwitschia, Gnetum, Angiosperms and Outgroup_Seed_Plants.

There are several interesting cousin pairs in Figure 2.8. For example, (Ginkgoales,

Ephedra) is a frequent cousin pair with distance 1.5, which is highlighted by an

underscore and occurs in the two trees in the two right windows in the figure.

(Gnetum, Welwitschia) is another frequent cousin pair with distance 0, which is

highlighted by bullets and occurs in all four trees in the figure. These frequent cousin

pairs show evolutionary associations between the Taxa studied in [15].

2.5.2 Evaluating the Quality of Consensus Trees

One important subject in phylogeny is to automatically reconstruct phylogenetic

trees from a set of molecular sequences or species. The most commonly used method

is based on the maximum parsimony principle [22]. This method often generates

multiple trees rather than a single tree for the input sequences or species. When the

number of equally parsimonious trees is too large to suggest an informative evolution

hypothesis, a consensus tree is sought to summarize the set of parsimonious trees.



Figure 2.8 Discovering co-occurring patterns in multiple phylogenies.

Sometimes the set is divided into several clusters and for each cluster a consensus

tree is derived. [54]

There are five most popular methods for generating consensus trees: Adams

[1], strict [13], majority [38], semi-strict [8], and Nelson [42]. Here, the quality of

the consensus tree generated by each of the above five methods are evaluated. The

quality is measured by considering the cousin pairs shared between the consensus tree

and the original parsimonious trees from which the consensus tree is generated.

Specifically, let C be a consensus tree and let T be an original parsimonious

tree. the similarity score between C and T, denoted 6(C, T), is defined as

where 1.1 is the absolute value of the indicated number. Each cp2, 1 < i < k, is a

cousin pair whose node labels occur in both C and T; Ic_distc(cpi) — Ic_distc(cpi is

the difference of the cousin distances of the bpi shared by C and T. Thus, if the shared
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cousin pair cpi has the same distance in C and T, it will contribute 1 to 5(C, T). If

its distance is different in C and T, the value it contributes to 6(C, T) will be less

than 1.

Let S be the set of original parsimonious trees from which the consensus tree

C is generated. The average similarity score of the consensus tree C with respect to

the set S is

where 151 is the total number of trees in the set S. The higher the average similarity

score C has, the better consensus tree C is.

Figure 2.9 compares average similarity scores of the consensus trees generated

by the five methods mentioned above for varying number of equally parsimonious

trees. The parameter values used by the algorithm for finding the cousin pairs are

as shown in Table 2.2. The parsimonious trees were generated by the PHYL IP tool

[20] using the first 500 nucleotides extracted from six genes representing paternally,

maternally, and biparentally inherited regions of the genome among 16 species of Mus

[36]. It can be seen from Figure 2.9 that the majority consensus method is the best,

yielding consensus trees with the highest scores.

2.5.3 Finding Kernel Trees from Groups of Phylogenies

Existing phylogenetic distance measures, such as those implemented in the widely

used COMPONENT tool [44], are designed for comparing evolutionary trees with the

same Taxa (leaf nodes). However, some applications in phylogeny, such as supertree

construction, are concerned with assembling information from smaller phylogenies

that share some but not necessarily all Taxa in common. The COMPONENT tool

doesn't work for these phylogenies.



Figure 2.9 Comparing the quality of consensus trees using frequent
cousin pairs.

A distance measure is proposed for comparing phylogenetic trees based on the

frequent cousin pairs found in the trees. Specifically, let T 1 and T2 be two trees. Let

bpi(Ti ) contain all the cousin pair items of T1 and let bpi(T2) contain all the cousin

pair items generated from T2. The tree distanbe of T1 and T2, denoted t_dist(Ti, T2),

is defined as

Depending on whether the cousin distance and the number of occurrences of a cousin

pair in a tree are considered, there are four different types of cousin pair items in

the tree. Consequently four different tree distance measures are obtained. These

measurements are represented by t_distnuu(T1,T2) (considering neither the cousin

distance nor the occurrence number in each tree), t_dist,dist (Ti , T2 ) (considering the

cousin distance only in each tree), t_dist„,(Ti ,T2) (considering the occurrence number

only in each tree), and t_distocc_cdist(T1,T2) (considering both the cousin distance and

the occurrence number in each tree), respectively.



Using the proposed tree distance measure, kernel trees from groups of phylogenies

can be found. Specifically, considering k, 2 < k < 5, groups of phylogenies, referred

to as jsetl ,... , jset, where the phylogenies were generated by PHYLIP [20] using

the LSU rDNA sequences representing 32 ascomycetes [35]. Data in the same group

are parsimonious trees for the same Taxa while different groups share some but not

all Taxa in common. The method finds the kernel trees bests ,... , bestk such that

the average pairwise distance between the kernel trees is minimized and bestir comes

from jset2. The distance measure used is the tree distance t_dist,e_cd2st described

above and the parameter values are as shown in Table 2.2. Figure 2.10 shows the

time spent in finding the kernel trees as a function of the group number k. The found

kernel trees could constitute a good starting point in building a supertree for the

phylogenies in the k groups.

2.6 Extensions to Graphs

Some phylogenetic tree reconstruction methods such as MP [22] and ML [19] may

produce unrooted unordered labeled trees. These trees are also known as free trees

or undirected acyclic graphs (UAGs) [58, 70]. This section discusses an extension of

our single tree mining algorithm to find frequent cousin pairs in one such graph.

In UAGs, the cousin distance between two nodes u, v is modified as follows:
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Figure 2.10 Time spent in finding kernel trees.

where n is the number of edges between u and v. Thus, given a cousin distance value

d, the number of edges, n, between u and v can be calculated as follows:

Given an undirected acyclic graph G, together with the maximum distance

allowed (maxdist) and the minimum occurrence number allowed (minobcur), frequent

cousin pairs can be found in G by arbitrarily choosing an edge e in G and putting

an artificially created node r on e so that G becomes a rooted tree Tr with r being

the root (see Figure 2.11). This tree consists of two subtrees, one being on the left

side of r, denoted 71, and the other being on the right side of r, denoted T. The

Single_Tree_Mining algorithm in Figure 3 can be modified and applied to Tr as follows.

Consider each valid distance value d < maxdist. Let u be a node in a children

set of Tr . The algorithm goes m levels up to reach an ancestor w, and then from w,

it goes n levels down to get a cousin v of u where



number of edges between u and v. Thus, instead of only considering myievel(d and

mycousinievel(d) as defined in Eq. (2), (3), all combinations of m, n satisfying Eq.

(2.9) are considered. For example, suppose d is 2. Possible combinations of (m, n)

include (1, 5), (2, 4), (3, 3), (4, 2), and (5, 1). The above calculation is correct when

both u and v are in 71, or both u and v are in T. Otherwise the additional edge

created due to the insertion of the root r has to be considered. Specifically, suppose u

is in 717.1 and v is in 71,!. . Then the m, n used in traversing the tree should be modified

as follows:

, to take into account the additional edge inserted in Tr .

Clearly the time complexity of this algorithm is 0((G1 2 ). One can easily extend this

algorithm to find frequent cousin pairs in multiple graphs.
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2.7 Summarization

This chapter presented new algorithms for finding and extracting frequent cousin

pairs with varying distances from a single tree or multiple trees. The software for

these algorithms can be downloaded from http: //Bs .nyu. edu/Bs/faBulty/shasha/

paper/Bousins . k. The algorithm for the single tree mining method, described in

Section 3, is a quadratic-time algorithm. It is suspected that the best-case time

complexity for finding all frequent cousin pairs in a tree is also quadratic. In the

future, alternative approaches (e.g. dynamic programming) will be investigated to

find these patterns in phylogenetic trees.

Notice that this approach differs from the work on computing least common

ancestors of two nodes in a tree (e.g. [7, 25]) in that the definition of cousin distance

is used to guide the search and mining process. Specifically given a cousin distance

value d, beginning with a node u, the algorithm moves up to find an ancestor anb of

u, and then from anb the algorithm moves down to reach a cousin v of u. The number

of steps to move up and down is completely determined by the given distance value

d. Thus, this method can systematically enumerate the cousins rather than taking

random pairs of nodes and finding out what kind of cousins they are.

A similarity measure based on frequent cousin pairs is also introduced and used

to compare five popular methods for consensus tree generation. This is the first

attempt to evaluate the quality of consensus trees through a quantitative measure.

Other possible measures could be based on the various distances for phylogenetic

trees as described in [44].



CHAPTER 3

FREQUENT AGREEMENT SUBTREE MINING

3.1 Introduction

This chapter presents a new frequent substructure mining technique for finding

frequent agreement subtrees from multiple phylogenetic trees. The agreement

between a pattern p and a data tree t is measured by subtree isomorphism. The

pattern p is said to be an agreement subtree of t, intrinsically if p is isomorphic to a

subtree st of t (The concept of "agreement subtree" will be formally introduced in

Section 3.2). In the context of data mining research, it is also said that p is supported

by t, if p is an agreement subtree of t.

Agreement subtrees are traditionally regarded as significant patterns in

phylogeny research. Different theories about the evolutionary history of the same set

of species often result in different evolutionary trees, thus a fundamental problem

challenging biologists is to determine how much the two theories have in common. To

a certain extent, this problem can be answered by computing a maximum agreement

subtree (MAST) of two given evolutionary trees[21]. When multiple evolutionary

trees are of concern, finding out a MAST has the same importance; however, finding

frequent agreement subtrees from multiple trees is expected to be a more flexible

and more feasible alternative to finding only a MAST.

Consider a set of uive phylogenetic trees built on six Hamamelis-related species

and their subtrees obtained from the Study S497 [34] in TreeBASE [47]. The uive

trees and three subtrees are shown in Figure 3.1, and the six species are shown in

Table 3.1. In the figure, the top row shows uive phylogenetic trees, with each of

them depicting a hypothesis about the evolutionary history of the six species. The

bottom row shows three subtree patterns: stir, st2 and st3 . Obviously, if MASTs are

27
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Figure 3.1 Five data trees and their subtrees.

the only interesting patterns in phylogenetic tree analysis, then the targeted patterns

will include stirand st2, but excludingst3.This is simply because that stiandst2

are supported by all uive data trees; while st3 is supported only by three trees - t i ,

t3 and t5 . However, still being supported by the majority of the data set, st3 could

be even more interesting than both st irandst2,because the number of leaves ofst3

is prominently larger than the leaf numbers of the other two subtrees. In this sense,

it is highly desirable that a new method can discover all such interesting patterns,
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including not only sti and st2, but also st3 in this case, as long as they are supported

by a significant portion of the data trees.

Informally, the problem addressed by this chapter can be described as follows.

Given a database of phylogenetic trees and a user specified minsup value, the goal

of the proposed problem is to discover all frequent agreement subtrees which find

supports higher than minsup. Although various tree mining algorithms have been

developed for discovering different tree patterns in the scope of generic tree structured

data, none of these algorithms is immediately effective in finding frequent agreement

subtrees in a database of leaf-labeled trees. To the best of the author's knowledge,

Phylominer, which will be introduced in this chapter, is the first mining algorithm in

this field.

3.1.1 Related Work

This work focuses on algorithmic issues. The nature of the problem, however,

inevitably puts this work at a fusing point of the traditional phylogenetic tree

research and the state of the art of tree mining techniques.

Related Work in Agreement Subtree. As mentioned previously, the maximum

agreement subtree approach is an important consensus method in phylogeny research.

It can be used to reconcile different evolutionary trees for the same set of species,

or it can be used to infer species trees by observing congruence in gene trees from

multiple (unlinked )loci. Moreover, agreement tree distance [21] can be naturally

defined between two trees by calculating the number of leaves of both trees not in

their MAST.

Finden and Gordon [21] introduced a heuristic algorithm for the MAST problem

on two binary rooted trees which has an 0(n5 ) running time and does not guarantee

an optimal solution. Kubicka et ab developed an 0(n0.5+e) 1°971 ) algorithm for the

same problem [31]. Steel and Warnow provided a polynomial time algorithm that
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takes about the 0(n2 ) time complexity for finding a maximum agreement subtree

of two trees [53]. In a more general sense, Kao reported an O(nlog2n) algorithm to

compute MAST for trees with constant degrees (opposed to binary trees), and Farach

et ab proposed an 0(n1.5logn) algorithm [18] to calculate MAST between two rooted

trees with unbounded degrees. When MAST problem is generalized from two trees

to a set of multiple trees, the problem has been shown polynomial time solvable

for trees with bounded degrees[4, 17, 18]. Both rooted and unrooted agreement tree

problems have been well studied in articles[29, 33].

Amir et ab [4] proved that finding a MAST from an instance of multiple trees

of unbounded degrees is NP-complete. In addition to this result, it has long been

noticed that a maximum agreement subtree could usually be of small size, when

a large number of data trees are concerned [23]. Unfortunately, it turns out in

reality that one is usually presented with more than two trees, sometimes as many

as thousands of trees [4]. In such case, a small MAST could be uninformative. For

good measure, being able to find out only one single maximum agreement subtree

will suffice to qualify most MAST algorithms, even for those datasets having more

than one maximum agreement subtree. All these unfavorable aspects of the MAST

problem motivate computer scientists to seek for a frequent agreement subtree mining

solution - a more feasible alternative to MAST.

Related Work in Structure Mining. Graph mining and tree mining are two

interrelated subfields in structural data mining research. In the recent years,

various tree mining algorithms have been zealously researched. Asai et ab [5]

proposed a rightmost expansion scheme to mine all subtrees in rooted ordered trees.

Independently, Zaki [69] developed algorithms capable of finding frequent embedded

tree patterns in a forest where he models documents by ordered rooted trees. Yang

et ab [66] applied a customized rightmost expansion scheme to solving a frequent
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XML query pattern discovery problem. More recently, the interests in tree mining

algorithms have shifted to unordered tree mining area. Shasha et ab [57] developed

a cousin mining algorithm to find patterns in unordered trees for both rooted and

unrooted versions. Xiao et ab [64] proposed an efficient maximal frequent subtree

mining solution through path joining operation. Asai et ab [6] and Nijssen et ab

[43] independently discussed an essentially identical unordered tree enumeration

technique which was for the first time introduced to tree mining problems. Shortly

afterwards, Chi et ab [10] reported their unordered unrooted tree mining work by

transforming an unrooted tree a rooted tree. Other related work on general tree

matching, inclusion and isomorphism detection can be found in several literatures

[11, 30, 50].

In parallel with tree mining, graph mining has also been deeply researched. Yan

and Han [65] proposed a novel canonical graph form to find closed frequent subgraphs

in graph data. Huan et ab. devised a different canonical form to efficiently discover

frequent subgraphs in the presence of isomorphism [27]. For the readers who are

interested in the state of the art of graph mining, they will be referred to a survey

paper [63] by Washio and Motoda.

Different from previous researches, the Phylominer algorithm can efficiently and

completely find exact agreement subtrees which are embedded in a given set of

phylogenetic trees, it thus joins the many others already developed [24, 39, 46, 51].

3.1.2 Novel Contribution of Phylominer

The main contributions of this work can be highlighted as follows:

• Proposes and formalizes a unique frequent agreement subtree mining problem

in rooted phylogenetic tree field.
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• Adopts an effective phylogeny-aware canonical form, which is for the first time

to be used in phylogenetic tree mining problems to mitigate the chore of dealing

with isomorphism problem.

• Introduces a phylogeny-aware subtree pattern expansion scheme.

• Designs a novel tree mining algorithm, Phylominer, which is immediately useful

for phylogeny research.

• Proves the correctness and analyzes the algorithmic complexity of Phylominer.

• Extends the mining algorithm to unrooted trees.

In addition to the above analytical contributions, the algorithm has also been

fully implemented and the correctness of the implementation has been strictly verified.

In the implementation, partition metric is used to verify the agreement of a subtree

in a data tree. The Phylominer algorithm is experimentally evaluated on a large

number of synthetic trees, and the algorithm has also been applied to the real datasets

obtained from COMPONENT [44] package and TreeBASE website [47] to produce

informative mining results.

The rest of this chapter is organized as follows. Section 3.2 introduces relevant

terminologies of the problem. Section 3.3 presents Phylominer algorithm for finding

frequent agreement subtrees from multiple trees. Section 3.4 analyzes the correctness

and time complexity of the algorithm. Section 3.5 extends the Phylominer algorithm to

unrooted labeled trees. Section 3.6 reports the experimental results of the algorithm

on both synthetic data and real phylogenetic trees, showing the scalability and

effectiveness of the proposed approach. Section 3.7 reports an online engine. Finally,

section 3.8 summarizes the chapter and points out some future work.
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3.2 Preliminaries

This work considers tree mining problems for both rooted trees and unrooted trees;

however, a solid solution for the rooted tree problem will be studied first, then it will

be shown that the uprooted tree mining problem can be similarly solved through a

sandwiched URRU transformation.

Let L denote a set of labels, corresponding to a set of Taxa that could be

species, proteins or genes under investigation. Let cardinality of L, denoted as LI, to

be k. Without loss of generosity, L can be instantiated as a set of k natural numbers

{n i , n2 , ... ,nk _ i ,nk }, where n 2 E N.

Phylogenetic tree. A phylogenetic tree t on L is a rooted tree where all

leaves are labeled bijectively from the label set L; all internal nodes have no labels;

and a special node, denoted as r(t), is distinguished as the root. Furthermore, the

fanout of each internal node is at least two. The size of a phylogeny t is measured

by the cardinality of L, i.e. the number of leaves of t.

Despite the insignificance of the left-to-right order among sibling nodes of its

every internal node, an unordered tree is always represented in one specific order or

another. As a matter of fact, by arbitrarily exchanging positions of sibling nodes, one

particular unordered tree can be represented by an exponential number of different

ordered trees. Obviously, any two such ordered tree representations are isomorphic )

to each other. The isomorphism between two trees t and t' is denoted as t t'.

To prune a leaf. When a leaf 1 is removed from a tree t, it is said that the

leaf 1 is pruned. In case that 1 has only one sibling, denoted as ).sibling, the parent

of 1, denoted as ).parent, will be suppressed as well. As a result, 1.parent.parent
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will connect to 1.sibling directly. Formally such operation is called a forced edge

errAntnem4-7..a.-.44rtri

Remark 1. When a leaf 1 has only one sibling l.sibling, and 1.parent is already

the root of a tree, the above definition of edge contraction can not explain the case

literally when 1 is pruned. This is because the node l.parent, being the root of the

tree, can not have another node as its parent. To make the above definition of edge

contraction applicable to such a special case, an existence of a virtual node, denoted

as Ayr, can be imaged to be the dangling parent of the root, such that, yr can be used

as the 1.parent.parent. This way, when / is pruned, the edge contraction can still

apply as connecting l.sibling to 1.parent.parent, i.e. the yr. After that, the yr should

be trimmed off, since the purpose of its imaginary existence is purely to make the

edge contraction logically consistent with the above definition. Figure 3.2 shows

one example of such situation. When leaf 4 is deleted, the edge connecting the root

and the sibling of 4 is also contracted.

Observation 1. Pruning a leaf 1 from a phylogenetic tree t may trigger at

most one edge contraction, which, if happens, consequently eliminates the internal

node which is immediately adjacent to it, i.e. the parent of l.
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Observation 2. Adding a new leaf to a phylogenetic tree may create a new

internal node. This is because adding a new leaf to a tree t is the reversed operation

of pruning a leaf from t.

Subtree. A tree st on SL is a subtree of t on L, if SL C L and st is obtainable by

restricting t to the leaf set SL through pruning all leaves l E L — SL. This subtree

relationship is denoted as st

For example, in Figure 3.3, t is a data tree reconstructed on a species set L =

{1, 2, 3, 4, 5, 6}, and tree st2 is a tree on a set SL = {1, 2, 4, 5}. st2 can be obtained

from t by pruning both the leaf 6 and the leaf 3. Therefore, st2 is a subtree of t. The

subtree is also called a restricted subtree, because it is obtained by restricting a data

tree to a subset of the leaf set of the data tree.

Apparently, due to possible edge contractions, a subtree is not necessarily an

induced subtree of a data tree, where connectivities have to be strictly preserved.
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Figure 3.3 shows two different cases: (i) stir happens to be an induced subtree of t;

(ii) st2 is not an induced subtree of t. In fact, by establishing a mapping relationship

between all nodes of a subtree and the corresponding nodes of a data tree, it is clear

that st2 is mathematically embedded in the data tree t.

Formally, consider a tree t and a subtree st of the tree t, and let Nth and Nest be

the sets of their nodes respectively. The subtree mapping is subject to the following

injective function u: Nth, if for all nodes u, y E Nest

• u preserves labels, i.e. label( u (u)) = label(u),

• u preserves ancestors, i.e. u (u) E desb(u (y)) if and only if u E desc(y) and,

• u preserves least common ancestors

It will be shown in the next section that a proper consideration of this embedding

feature between a subtree and a data tree is instrumental in developing a correct tree

expansion scheme.



Maximum agreement subtree. If in addition, st has the maximum number

of leaves among all agreement subtrees for DT, st is a maximum agreement subtree

In Figure 3.4, sti, st2 and st3 are all agreement subtrees of 3 data trees; while

only st3 is also a MAST.

{ti, t2 , 	 , t3 } denote a profile of

trees on L where each t E DT is a leaf-labeled tree. For a given pattern p, p is said

to be supported by a t if p is a subtree of t. Formally, support is defined to be 1

if ti supports p; otherwise suppose is 0. The support of the pattern p with respect

to DT is defined as E i<i<rn support. Thus the support value represents the number

of trees in the profile of DT that support subtree p. A subtree is frequent if its

support is more than or equal to a user-specified minimum support (minsup) value.

It is typical that the minsup is given as a percentage of the total number of trees in

DT . Given a user specified minsup value, the goal of the frequent agreement subtree

mining algorithm is to efficiently discover all frequent agreement subtrees in a given

DT . The frequent agreement subtree mining problem is considered as a data mining

extension of the traditional MAST problem. Given a minsup of 50%, Figure 3.1 can

be formally reinterpreted as follows, st3 is a frequent subtree with a support value

of 60%, because the subtree st3 finds agreement from three out the uiye data trees;

on the other hand, with support values of 100%, stirandst2are frequent subtrees

having only 3 leaves though.
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3.3 Frequent Agreement Subtree Discovery

Figure 3.5 shows a relatively more complicated example of 10 data trees and their

25 frequent subtrees meeting a minsup value of 30%. All the frequent subtrees,

if correctly discovered, are listed in the figure according to the order of their leaf

numbers. The first row shows all 2-leaf subtrees; the second row lists eight 3-

leaf subtrees; the third row lists three 4-leaf subtrees; and no subtrees of 5 leaves

or subtrees of larger sizes are frequent. In the figure, the support value of each

subtree is also shown inside the square box under the subtree. In addition to these



Figure 3.5 A running example of Phylominer on 10 data trees
of uiye leaves under the minsup value of 30%.

information, supporting tree identifier lists for subtrees are also important and can be

easily obtained through pattern-against-data verification. This section will present

a novel algorithm which can discover all these information efficiently, correctly and

completely.

Table 3.2 shows the notation that will be used in the rest of this chapter. For

convenience, a tree t with k leaves is denoted as a k-leaf tree or simply a k tree,

regardless how many internal nodes the tree t may have. The algorithm developed

in this work is named Phylominer, which adopts the progressive Apriori approach to

discover all subtrees level by level [3, 32, 69]. The high level pseudo code of the

algorithm is shown in Figure 3.6.

Phylominer initially enumerates all I LI*IL-1I 2-leaf subtrees, which are obtained

by combinatorially assigning 2 different labels from L to a 2-leaf tree skeleton. All

these 2-leaf trees are automatically frequent, because each of them appears in all

data trees that are built on the same set of Taxa. Starting from this initial set, in the
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Figure 3.6 Algorithm for finding frequent subtrees in a database of trees.
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subsequent passes, Phylominer iterates through the main computational loop. During

each iteration, the algorithm will call the subroutine Grow_Frequent_Subtrees

(Line 8 in Figure 3.6) to find frequent subtrees whose sizes are greater than the

previous frequent ones by one leaf. Leaves in the algorithm correspond to items in

traditional frequent itemset discovery. Namely, as these algorithms increase the size

of frequent itemsets by adding a single item at a time; Phylominer algorithm increases

the size of frequent subtrees by adding a leaf node once a time, regardless whether a

new internal node will also be introduced or not. Obviously, the high level framework

is typically an Apriori algorithm; however, what remains challenging is how the basic

Apriori framework is going to be materialized in Phylominer algorithm.

Subsection 3.3.1 briefly introduces the tree format used in the algorithm.

Subsection 3.3.2 focuses on a canonical form of phylogenetic trees. Subsection 3.3.3

discusses the usage of the canonical form in indexing subtrees. Subsection 3.3.4

formalizes the concept of equivalence class. Subsection 3.3.5 dedicates to a novel tree

expansion method, which is the core of the algorithm. Subsection 3.3.6 discusses

subtree verification using partition metric algorithm.

3.3.1 Tree Input Representation

The Phylominer algorithm uses Newick2 notation to express input trees, intermediate

candidate trees and final output trees. Newick notation represents a tree by a

compact parenthesized string form, where a pair of parenthesis, i.e. `C and `Y,

delimits the sibling relationship of the nodes immediately enclosed inside them, a

comma `,' separates two sibling nodes, and a `;' terminates the string. For example,

5));" and
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Obviously, Newick string notation for phylogenetic trees is equivalent to, but

more succinct than, the in-memory link list based general tree structure. Moreover, it

requires only 0(N) time to convert an in-memory phylogenetic tree structure into its

Newick string, and vice versa. Therefore, most tree manipulating operations used in

this algorithm will be performed directly on Newick string notation of trees to achieve

high efficiency. The only operation requiring the in-memory link-list-based general

tree structure is to obtain a restricted subtree from a data tree; however, it happens

only once for each verification of the presence of a candidate subtree in a potential

data tree. Another operation which may require the in-memory link-list-based tree

structure is the canonical labeling scheme described in Subsection 3.3.2. However,

such operations are actually never performed, because the canonical form of any

candidate subtree is automatically observed throughout the joining procedure(c.f.

Lemma 7 in Section 3.4), which also greatly contributes to the efficiency of the mining

algorithm. Finally, whenever appropriate, the Newick notation is used in this work

to illustrate the details of joining operations.

3.3.2 Canonical Form of Phylogenetic Trees

Isomorphism is an important problem to solve in any unordered structural data

mining task such as subgraph mining and generic unordered subtree mining, so is

it in phylogenetic tree mining. The importance lies in that lack of consideration of

isomorphism in candidate generation stage will produce a huge set of candidates with

uncontrollable redundancy.

In this work, a canonical form of phylogenetic trees is formalized to solve tree

isomorphism problem, such that each phylogenetic tree has only one valid form to

distinctly represent it. The foundation of the canonical form is a total ordering among

leaf labels in L, which simply conforms to the integer comparison property, i.e. the

ordering of L is 1 < 2 < < n < n + 1 < . . .. Based on this leaf label ordering
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scheme, originally unlabeled internal nodes of the t can be assigned to virtual labels

as following.

Label assignments of internal nodes. Each internal node will be assigned

to a virtual label, which is exactly the label with the lowest rank among all the labels

of its immediate children.

Here shows a bottom-up procedure to assign labels to all internal nodes

including the root. The procedure is essentially a depth first traversal (DFT)

process, which is going to be materialized with the following operation. When DFT

backtracks to an internal node, the label of the lowest rank among all its children

is picked to be the label of the internal node. This operation is performed at every

internal node following the bottom up backtracking, until the root of the whole tree

is reached. Finally, every internal node will be assigned to proper labels.

Hereafter, /(y) is used to denote the label of a node y, regardless that y is an

internal node with a virtual label or a leaf node with an original label. Then the

canonical form of a phylogenetic tree can be defined as following.

Canonical form. Every unordered leaf-labeled tree can be uniquely represented by

a canonical form, in which all nodes (including both leaf nodes and internal nodes)

follow a normalized order, such that for every sibling pair (y, u), node y always

appears before node u in the depth first traversal order if /(y) < /(u).

The procedure to obtain a canonical form of a given tree is called the

normalization procedure, which can be done by further enriching the above

mentioned label assignment procedure with a sorting operation and a reordering

operation at each internal node backtracking. To be concrete, when DFT backtracks

to an internal node, the key operation to be performed is to sort the children nodes

according to the total ascending order of their labels. Based on this order, all



Figure 3.7 A running example to normalize a phylogenetic
tree.

Figure 3.8 Examples of three rooted views of the same
unrooted tree and the virtual labels assigned to their internal
nodes.
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children of the current internal node are then reordered from left to right to observe

the canonical ordering among them. At meantime, the label with the lowest rank

among its children is still picked to be the virtual label of the internal node. By

performing these operations bottom-up starting from leaves of the tree, the subtree

rooted at each internal node will be normalized recursively, and finally the whole

tree rooted at the root will be normalized. Figure 3.7 shows a running example to

normalize a tree.

Lemma 1. The above normalization procedure has time complexity 0(N), where

N is the number of leaf nodes of the tree t.

Proof. Assuming there are I internal nodes in the tree t, and each i E I has u (i)

children nodes. To normalize a subtree at each internal node y requires sorting

all its u (i) children nodes, which can be done in 0(1(i)) times by using the count

sort algorithm. To normalize the t, the above sorting operation will be conducted

at all I nodes, thus the total time complexity for normalizing the whole tree is

Thus the lemma is proved.

As mentioned above, the canonical form is the most straightforward way to

detect the isomorphism between two trees. Figure 3.8 shows an example of 3 different

ordered representations of one same unordered tree. It can be seen that t 3 is in its

canonical form; while ti and t2 are not. However, once t i and t2 are normalized to

their canonical forms, the isomorphism of all these three trees is apparent.

Very naturally, the Newick string of a tree in its canonical form is called the

Canonical Newick String of the tree. For example, the Canonical Newick String

phylogenetic tree, where N is the number of leaf nodes the tree has.



46

Proof. As previously shown, it takes 0(N) time to normalize a tree to its canonical

form, and it takes also 0(N) time to get the Newick string from a canonical form.

Therefore the total time to get a Canonical Newick String of a phylogenetic tree is

Property 1. A direct pruning of the last leaf of a canonical form tree will

result in a subtree still in its canonical form.

Property 2. A direct pruning of the last second leaf of a canonical form tree

will result in a subtree still in its canonical form.

Remark 2. A direct pruning means that a simple pruning of a leaf without

further normalizing the tree. In Section 3.3.4, it will be shown that these two direct

pruning properties suggest a joining scheme, which emphasizes how to arrange the

last leaves of both k-subtrees in getting a (k + 1)-subtrees.

It should be noted that this canonical form is specifically defined for phylogenetic

tree applications, which makes the discussed canonical form intrinsically different

from other canonical forms proposed by [6, 10] for unordered tree mining and other

canonical forms proposed by [32, 65, 27] for graph mining. This method, however,

shares with the above mentioned canonical forms the same tenet in that they can

systematically solve isomorphism problems posed by unordered relationship, thus

alleviate the redundant candidates generation problem.

3.3.3 Indexing Phylogenetic Trees using Canonical Newick String

As previously shown, a phylogenetic tree can be represented by a unique Canonical

Newick String. Thus two trees can be compared by directly comparing their

string representations. As a consequence, the total ordering among trees' string

representations can be used to index multiple trees. In developing the Phylominer

algorithms, traditional database index methods such as hash table and B-trees etc.
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have been applied to canonical tree strings to facilitate database related operations.

For example, hashing technique is utilized to register a frequent tree to a proper

equivalence class; B-tree structure is used to index all subtrees inside a particular

equivalence class; finally, when it is time to retrieve a subtree from a set of frequent

subtrees for the downward closure checking purpose, both hashing and B-tree

algorithms will be used again.

3.3.4 Equivalence Class

Weight Scheme. Once all internal nodes have been labeled, every leaf i E n can be

associated with a weight, denoted as w(i), by concatenating the label from the root

to the leaf.

Heaviest leaf. The heaviest leaf, denoted as 1h , is the leaf with the heaviest

weight among all the leaves.

Observation 3. If t is in its canonical form, the heaviest leaf /h of a t is the

last leaf of t according to the DFT order, i.e. the right most leaf of t. In fact, weights

of all leaves in a normalized phylogenetic tree should be in ascending order from left

to right.

Given a k-leaf tree t on a leaf set L, if any leaf l E L is pruned from t, a

(k — k-leaf subtree can always be obtained. Among these k (k —k-leaf subtrees, the

(k — 1)-leaf subtree resulted from the pruning of /h is called (k — prefix subtree of

t, denoted as bap . For example, in Figure 3.9, the leaf of label 4 is the heaviest leaf



Figure 3.9 A tree can be separated into a heaviest subtree
and its complementary subtree.

of t, and the rest part of t is thip .

Equivalence class. Suppose both t and t' are in their canonical forms, t and

t' are said to be in the same equivalence class if their (k — prefix trees are

isomorphic to each other, i.e. bap eta , and the shared equivalence class is identified

as the Canonical Newick String of their (k — 1)-prefix tree.

Figure 3.10 Tree 1 and tree 2 are in the same equivalence
class; while tree 3 and tree 4 are in a different equivalence class.
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The relation "having the same prefix tree as each other" for a set of subtrees

is an equivalence relation, because the relation on these trees is reflective, symmetric

and transitive. The equivalence relation partitions the set of k-subtrees into disjoint

subsets called equivalence classes. Consider trees in Figure 3.10, t 1 and t2 are in an

equivalence class, because they share the same prefix tree core r ; while t3 and t4 are

in another equivalence class, since they share the same prefix tree core2.

Figure 3.11 An example of equivalence class based expansion
lattice.

The heaviest local subtree. Given a tree t, the heaviest local subtree, denoted as

stir, is defined as the subtree rooted at the parent of the heaviest leaf. Correspondingly,

the rest part of the tree t after stir is taken off is called the complementary tree,

denoted as COhl.. For example, in Figure 3.9, leaf 4 is the /h in t, and the stir is the

heaviest local subtree of t while cthj is the complementary tree of the heaviest local

subtree stir.
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Figure 3.12 Algorithm for finding all frequent (k+k-trees based on k-trees.
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3.3.5 Candidate Generation

In the candidate generation phase, candidate subtrees of size k +1 are generated from

pairwisely joining trees over frequent k-subtrees. In order for two frequent k-subtrees

to be eligible for further join, the two subtrees must be in the same equivalence class.

This means except that the heaviest leaves of the both trees are different, the rest parts

of the two trees are isomorphic to each other. The Figure 3.11 shows how joinings are

performed without producing redundant candidate trees. This figure shows a total

of 26 subtrees, with the largest one decomposable down to the smallest ones level by

level. In this figure, a k-leaf subtree can be obtained through joining two (k — k-leaf

subtrees only when they are in the same equivalence class. In this case, solid lines

have been drawn from them pointing to the expanded target trees. Otherwise, dashed

lines have been drawn from (k —1)-leaf subtrees to proper k-trees. These dashed lines

indicate that the involved (k — k-leaf trees are subtrees of those k-trees; however,

they are not eligible to participate any joining operations. For example, a 4-leaf

subtree st23 actually has u our 3-leaf subtrees, which are st12,st13, sti6\ and st19. Here,

if simply taking a combinatorial joining point of view, st23 should be obtainable from

any of the six different pairwise joinings from the 4 trees. However, all these joinings,

if conducted, will duplicate exactly same candidates. This redundancy is obviously

undesirable and turns out to be avoidable by wisely joining only subtrees in the same

equivalence class. To be specific, only st i2 and st13 are in an equivalence class and

thus will join to form st23i, any other pairwise subtrees won't be joined because they

are not in the same equivalence class.

The nature of the equivalence class suggests to expand patterns through

a rightmost joining (reminiscent of the rightmost extension schemes in [5, 69]).

Following this inspiration, the focus of joining is thus on how to form a new (k+k-tree

by correctly gluing the 2 heaviest leaves of the two k-subtrees to the isomorphic part

of both k-subtrees, while this isomorphic part itself is a (k — k-leaf prefix tree.
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Furthermore, if two trees are in the same equivalence class, the differences of the

two trees will happen only within their heaviest subtrees respectively; at mean

time, the complementary trees are either the same or one is the subtree of the

other. Therefore, the essence of of the joining operation is actually how to perform

the joining operation on the two heaviest subtrees to get the expanded heaviest

candidate subtrees. Once the joining can be performed systematically on the two

heaviest subtrees, each expanded heaviest candidate subtree will be glued back to

the smaller complementary tree to form the final candidate subtree.

Based on the above analysis, the problem of joining two k-leaf subtrees has been

transformed to how to join their heaviest subtree; however, these heaviest subtrees

are not necessarily in either the same size or in the same topology. Depending on

what topologies the two trees or the two heaviest subtrees have, the joining operations

can be formally classified into the following two cases, and in each case, at most 4

different candidate trees can be generated from joining the two trees.

• Case 1. When two trees are of same topology.

— Case 1.1. When both the heaviest subtrees are binary trees, four

potential candidates can be generated. Suppose (it, hl1) and (it, h12)

are the heaviest subtrees of t 2 and t2 respectively, where h/2 and h/2 are

heaviest leaves in t 2 and t2 respectively, and itsdenotes the left subtree in

both heaviest trees since the left subtrees must be the same. Obviously,

in the expanded candidate tree, hl 2 and h/2 could be sibling, so two

candidates are denoted as j[2 = (it, lower (hl, h12 ), hig her (hl1, h12)) and

j[2] = (it, (lower (hl, h12), higher (hl, h12))) respectively. Examples of i[i]

and j[2] are illustrated by 4-leaf subtrees of j4-2 and j4-2 respectively in

Figure 3.13. Another way to understand the joining operation on two

k-leaf trees is to take one tree as the skeleton, and then to expand the

skeleton by adding the heaviest leaf from the other tree to get a k + 1 size
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tree. Recall the observation 2 in Section 3.2, it is known adding a new leaf

to a tree may also create a new internal node. Therefore, two additional

candidates should also be considered and they are j[3] = ((/t, h/2 ), h/2 ) and

j[4] = ((/t, h/2 ), h/i ). In this sense, j [2] actually introduces a new internal

node also. Examples of j[3] and j[4] are illustrated by 4-leaf subtrees of

j4_ 3 and j4_4 respectively in Figure 3.13

Figure 3.13 An example for case 1.1 expansion.

• Case 2. When the two heaviest subtrees are of different topologies, only one

candidate (k + k-leaf subtree can be generated. Since the two heaviest subtrees

are different from each other, one of them can be further identified as the larger

tree, and the other one the smaller tree.



Figure 3.14 An example for case 1.2 expansion.

Formally, let h(t) and s(t) denote the height and the size of a tree t respectively.

Given two trees t i and t2 , t i is identified to be larger than t 2 , if either of the

following rules holds.

It means the nesting level of t 1 is larger than that

This case may happen when h(t1) = h(t2). In this

case, the fanout of the root of t 2 must be 2, and the fanout of the root of

ti must be 3. Otherwise rule 1 will apply.

respectively. When

t i is larger than t2 , h/ i must be the heaviest leaf in the expanded subtree, and

there must exist a subtree 1st in tihip which is isomorphic to t2hlp. Let 1st to be

replaced by t2 , then get the (gimp ED h12, h/i) as the final expanded tree, where ED

denotes the gluing operation. This joining operation can be easily understood

if the larger tree is taken as an umbrella under which is a part of the larger tree
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replaced by the whole smaller tree. Figure 3.15 and Figure 3.16 show examples

for rule1 and rule 2 respectively.

The overall algorithm for discovering all frequent (k + k-subtrees from all k-subtrees

is shown in Figure 3.12. For each pair of k-leaf frequent subtrees that are in the same

equivalence class, the procedure Phylo_Join is called at line 6 to generate all possible

candidate subtrees of size k + 1. For each jjk+i produced by the above presented joining

procedure to be a candidate cck+i, it has to be verified to be frequent by downward

closure checking3 . If the jjk+1 passes the downward closure checking, Phylo_Join

then appends it to Ck+1 , otherwise the ik+1 can be safely discarded. There is no need

to check whether a cck+i is already in Ck+1  or not, since each particular k+1  can only

be generated once due to the fact that all subtrees so generated are always in their

canonical forms.

Please note that the downward closure checking is done by hashing on the leaf sets of those
k-leaf subtrees.



Figure 3.16 An example for rule 2 of case 2 expansion.

Compared with other tree expansion algorithms achieved through joining or

enumeration, the joining scheme described here is remarkably unique, since it has

been carefully designed to take the intrinsic features of phylogenetic trees into

consideration. To be specific, on one side, the joining procedure is able to produce

all agreement subtree candidates which are mathematically embedded in some data

trees; on the other side, the self joining operation which should be considered in most

other tree mining algorithms is never performed in this problem. This is so because

all leaves of any phylogenetic tree are uniquely labeled. For the same reason, the

algorithm never considers joining two subtrees with different topologies but sharing

exactly same all k leaves.

Lemma 3. The joining can be done in 0(k) time, where k is the number of

leaves of the two data trees.

Proof. The joining operation is performed on the newick strings of two data trees,

each of which has the length of 0(k), where k is the size of leaf label set of both

trees. The only operations used in the joining procedure are string parsing, string
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replacement and string concatenation, which can all be done within 0(k). The

lemma is thus proved.

Lemma 4. The separating operation and back-gluing operation can be done in

0(k) time.

Proof. To separate the heaviest subtree from a tree t needs 0(N) time, because

the essential operation is a consecutive string extraction action, which can be done

within 0(N) time. At the end of the expansion, an expanded heaviest subtree needs

to be glued back to a complementary tree, which will also need 0(N) time, because

it can be accomplished by a substring replacement operation.

3.3.6 Frequency Counting

Once all candidate subtrees are generated from the current joining iteration,

Phylominer will compute the support for each candidate by checking its number

of occurrences in the given data trees. Given a candidate tree p on SL and data tree

t on L, tin can be obtained by pruning all leaves 1 E L — SL from t. Obviously,

the p is an agreement subtree of t if and only if tI si, will be isomorphic to p. The

isomorphism between two trees is verified by calculating their partition metric. Two

trees are isomorphic with each other, if and only if the partition metric of the two

trees is Zero. The most efficient algorithm to calculate partition metric has a the

time complexity of 0(N)[13]. The basic idea of this most efficient algorithm is to

represent each leaf with a binary number, so that a partition can be uniquely decided

by summarizing all binary bits of those leaves in that partition. Once all partitions

are represented by numbers, the partition metric can be efficiently obtained by simply

comparing those numbers.

To further optimize the algorithm, supporting tree ID (STID) list [16, 68] is

maintained to narrow down the searching scope for verifying the presence of a subtree

in data trees. Being associated with each subtree, STID is actually a simple data
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structure which memorizes a list of identifiers of those data trees that support the

subtree. Before the frequency of a Ck+1 is to be computed, the intersection set of

the STID lists of its frequent k-leaf subtrees will be computed first. If the size of

the intersection list is already below the support, the Ck+1 will be safely pruned.

Otherwise, one-against-one agreement verification can be limited to the relatively

shorter intersection STID list only. Actually, this optimization technique is performed

immediately before the expansion stage, so that there is no need to perform further

expansion for two auk subtrees, if the cardinality of their interaction STIDs is already

too small(c.f. line 5 in Figure 3.12).

3.4 Correctness and Complexity Analysis

Lemma 5. (Correctness) Any discovered subtree is a positive agreement frequent

subtree.

Proof. In order to be identified as a frequent subtree, a candidate has to pass

frequency counting step. Therefore, the correctness of Phylominer algorithm lies in

the correctness of the frequency counting step. While the frequency counting step

is actually to count the number of those data trees which support the candidate,

the correctness of frequency counting again lies behind the loyalty the agreement

verification achieved by the partition metric. Since the correctness of the partition

metric is obvious, the lemma is thus proved.

Lemma 6. (Completeness) It is sufficient to consider only trees in the same

equivalence class for joining operations, even then one still enumerates all possible

candidate subtrees. In other words, the joining is complete without missing any

frequent subtree.

Proof. The lemma is proved by using the mathematical induction method. It is

sufficient to show that any (k + k-leaf frequent subtree can always be generated from
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two k-leaf frequent subtrees.

Base step:

Check it is true for k = 2. Clearly, all frequent 2-leaf subtrees will be successfully

discovered, because the frequent 2-leaf subtrees are obtained through a brute force

enumeration. Thus the statement holds for k = 2.

Hypothesis step:

Now it is safe to assume the lemma holds when k = n, i.e. all n-leaf frequent

subtrees are already identified to be frequent, then it will be shown that the lemma

_ ,„ ,	 all potential (n + k-leaf subtree candidates will be

generated.

Induction step:

Suppose a nt of n + 1 leaves is a frequent subtree in its canonical form (A tree

t can always be normalized to nt), it will be shown that nt cannot be missed by the

candidate generation step.

Given a nt, it is known that nthip and nthip can be obtained by taking off

the heaviest leaf and the second heaviest leaf from nt, respectively. Obviously, both

nthip and nthip  are in their canonical forms (Recall properties 1 and 2 in Section

3.3.2). From the downward closure theory, it is known, if nt is frequent, nthip and

ntsiap must be frequent, thus must be in Fa; moreover, they must be in the same

equivalence class. Therefore nth1p and nthip will be joined by PhyloJoin procedure.

Since the joining procedure has exhaustively considered all possible expansions, nt

must be in the candidates set from joining on nth hip and ntshtp .

By induction, it can be concluded that the lemma holds for all subtrees of

varying number of leaves, i.e. all frequent subtrees will be generated. The Lemma is

thus proved.

Theorem 1. Phylominer will correctly find all frequent agreement subtrees.
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Proof. Since Phylominer is based on a candidate generation-and-verification scheme,

the theorem is immediately true given lemma 5 and lemma 6 have been previously

proved.

Corollary 1. (Non-Redundancy Candidate Generation) Each candidate

is generated once at most.

Proof. Obviously, thlp and tship are unique, and the results of different joinings are

disjoint. Therefore, no tree will be generated more than once. Thus, the corollary is

proved.

Lemma 7. (Automatic Canonicalization) The joining operation will generate

candidate trees automatically in their canonical forms.

Proof. Please notice that, as the initial set, all frequent 2-leaf subtrees can be

normalized directly by arranging the smaller leaf at the left branch, and the larger

right on a binary tree. After that, in the subsequent joining iterations, the ways in all

joining cases to arrange the two heaviest leaves in the subtree expansion scheme will

guarantee that each expanded subtree will also be in its canonical form. Therefore,

all discovered frequent subtrees are in their canonical forms. The lemma is thus

proved.

This automatic normalization is a main factor contributing to the efficiency of

the algorithm.

Theorem 2. The time complexity of Phylominer is 0(111 2m/V), where Ill is

the cardinality of the frequent subtree set, m is the number of data trees, and N is

the size of the label set.

Proof. Inside each pair of joining, it requires 0(k) time to generate up-to u our (a

constant) candidates, and each candidate-against-data tree verification costs 0(N)
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time. Since there are a total of m data trees to be verified against each candidate, the

total time complexity of each pair of joining is 0 (k + N m) = 0 (N + N m) = 0 (N m)

Considering that there are at most 111 1 2 valid pairs of joinings, the total time

complexity is 0(11112mN). Thus, the theorem is proved.

Remark 3. This is a very pessimistic upper bound, because with pattern size

growing, the number of data trees which need to be verified against patterns drops

quickly, therefore the real number of data trees involved in verification step is far less

than m. Another reason is that the pairwise joining operation happens only in the

same equivalence class, therefore 111 2 is a very loose upper bound for the number

of iterations. As a matter of fact, this upper bound can never be reached when the

algorithm is applied to most real world datasets.

Remark 4. This is a pseudo polynomial time algorithm, since IF 1 is not an input

parameter.

Figure 3.18 An uprooted tree and its rooted canonical form
version.

3.5 Extension to Unrooted Tree Mining Problem

As mentioned in previous chapters, a few phylogeny reconstruction algorithms

such as Most Parsimonious and Maximum Likelihood will produce unrooted trees.

An unrooted tree has more freedom in its Newick representations. For example
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Figure 3.19 An example of case 1.1 unrooted tree joining
under transformation.



the same unrooted tree. For this reason, it is generally believed that to mine

frequent agreement subtrees in unrooted trees is more difficult than in their rooted

counterparts. Surprisingly, a slightly modified version of Phylominer can be devised

to efficiently solve the tree mining problem in unrooted trees. The modification is

essentially a sandwiched URRU transformation, which stands for a transformation

starting from k size [Unroofed trees] to [Rooted trees], after that, pairwise rooted

trees joining are conducted to get (k + k size [Rooted trees], which are finally

transformed back to [Unrooted trees] again.

Figure 3.20 An example of case 1.2 unrooted tree joining
under transformation.

Given an unrooted tree ut, a root can be inserted at the dangling edge which

connects to the leaf of the smallest label of the tree to form a rooted tree ut of

ut. Figure 3.18 shows an unrooted tree and the corresponding rooted tree in its

canonical form. This transformation allows an unrooted tree to be treated as a

rooted tree, therefore, two unrooted trees, after being rooted, can be processed using

the joining procedure of rooted trees to produce ut rk+ 1 candidate trees from two su tra

trees. Once a candidate utr+1 is in hand, it will be reversed back to an unrooted

tree Uta+i by suppressing the root which is the node of valence 2. Figure 3.19 and

Figure 3.20 show examples of joining two unrooted trees under the two sub-cases
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of case 1 joining respectively. Figure 3.21 and Figure 3.22 illustrate how to join

two uprooted trees under rule 1 and rule 2 of case 2 respectively. In tandem with

this modified candidate generation method, the partition metric is still employed to

perform agreement subtree verification. This algorithm is called UPhylominer, namely

for unrooted phylogenetic tree mining algorithm.

While in the rooted tree scenario, the initial set of frequent subtrees is composed

of all 2-leaf subtrees, which are obtained through combinatorial enumeration instead

of going through candidate generation-and-verification process; in unrooted tree

scenario, the initial frequent subtree set consists of all 3-leaf subtrees. This is because

a 3-leaf unrooted tree is a star tree, which is the only possible topology for any

3-leaf unrooted tree; thus, all 3-leaf trees can also be obtained through combinatorial

enumeration without going through candidate generation-and-verification process.

After all 3-leaf subtrees are rooted and normalized properly, UPhylominer will iterate

mining loops progressively to get all frequent unrooted subtrees as Phylominer will

do. At the final stage, all discovered trees will be converted back to unrooted trees.

Figure 3.23 shows a running example of unordered subtree mining on the same set of

trees used in Fig 3.5, but viewed as uprooted trees here.

The correctness of the UPhylominer can be similarly proved as that of Phylominer

has been, and the time complexity remains the same.

Figure 3.21 Examples of rule 1 of case 2 unrooted tree joining
under transformation.



Figure 3.22 Examples of rule 2 of case 2 unrooted tree joining
under transformation.
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Figure 3.23 A running example of UPylominer on unrooted
leaf-labeled trees.
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3.6 Experiments

3.6.1 Synthetic Datasets

For correctness verification and performance evaluation purposes, a tree generator

is implemented in C++ to generate synthetic datasets subject to user specified

parameters. The basic idea behind the data generator is similar to, but more powerful

than, the one used in COMPONENT. COMPONENT can generate binary trees only,

while the generator developed in this work can generate trees of various degrees

by generalizing the algorithm described in Holmes distance{26]. Table 3.3 lists the

parameters and their default values, where u anout of a node is the number of children

of a node.

3.6.2 Correctness of Implementation

The described algorithm has been fully implemented in C++. Although the

correctness of the algorithm has been previously proved, it remains to be challenging

to verify the correctness of the implementation of the algorithm. Given a particular

input dataset, a successful implementation of the algorithm should discover correct

number of frequent subtrees, correct support values for each individual subtree and

correct supporting list of data trees containing the frequent subtree. To verify this

implementation, the following test strategy is carefully designed. First, a tree t of n

leaves is randomly generated by the tree generator. Then the tree t is duplicated for
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in times to get the input dataset DT. The advantage of such test dataset is that the

total number of frequent subtrees in the dataset can be easily calculated in advance

even without conducting the real mining operation on the dataset. The reason is

that every subtree of tree t will be a frequent subtree of DT and its support value

will be 100% due to the fact that all data trees are the same. In fact, the total

number of frequent subtrees is T(n) = Ei<i<n Can. For example, suppose the tree t is

dataset of multiple trees, the t is duplicated for 100 times. The minsup can be set to

an arbitrary value. After running on this dataset, the algorithm actually finds all 255

subtrees in their canonical forms, and also finds the support values of those subtrees

to be exactly 100%. This mining result clearly confirms that the implementation is

correct and the algorithm design is correct, because the results are consistent with the

values obtained from the prior analysis, and these correct results can be obtained only

when all underlying techniques are implemented correctly. A total of 187 different

datasets have been tested to verify the correctness of the implementation, and all

results obtained showed that the algorithm has been successfully implemented. It

has also been conducted to manually check test result on those weakly controlled

datasets. A weakly controlled dataset means that the exact mining results can not be

calculated in advance solely based on theoretical analysis. In such case, each reported

frequent subtree can be rigorously verified only by manually checking its presence in

each data tree based on subtree isomorphism theory. When the accumulated support

value for that subtree is obtained, the subtree can be easily detected to be frequent or

not. Such kind of test is conducted on 231 different datasets, and all testing results

are verified to be correct. Therefore, the implementation is robust and correct.
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3.6.3 Performance Analysis

A series of experiments have been conducted to evaluate the performance of the

proposed tree mining algorithm on synthetic data, run under the Solaris operating

system on a SUN Ultra 60 workstation.

Figure 3.25 The size of dataset via Number of patterns.

Figure 3.24 shows how changing the database size of synthetic datasets affects

the overall running time of the algorithm Phylominer. The eight datasets generated

for this experiment contain different numbers of trees ranging from 100 to 800, while



Figure 3.26 minsup vs. the number of discovered frequent
agreement subtrees.

each tree has the same number of leaves of 15. The minsup value is set to 30%.

Other parameters are default values shown in Table 3.3. As the figure shows, the

total running time scales up linearly with respect to the sizes of datasets. This is

because, the more trees a dataset contains, the more times the agreement verification

will be conducted against the dataset. Another measurement indicated by the dashed

line in the figure shows that the time spent on the initialization stage scales up

with the growing of the dataset size as well. This is because the initialization step

essentially comprises the following two operations. One is pattern enumeration, where

the number of patterns is related to the tree size only, regardless how many trees a

dataset contains as long as the Taxa set is the same. However, the more trees a

dataset contains, the more time will be spent on preparing the supporting tree ID

lists, and this is the exact reason why the initialization time still scales up linearly

with the sizes of datasets.

Corresponding to the above overall running time performance, the numbers of

patterns obtained from the same set of experiments are shown in Figure 3.25. The

figure shows that, with the increasing numbers of trees of datasets on the same leaf
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label set, the numbers of patterns will decrease to a stable value. The reason is

that, in general, the more randomly generated trees a dataset has, the less consensus

information will be embodied in the dataset. This explains why the number of

patterns declines with the increasing of dataset size. One the other hand, although

the number of larger size frequent subtrees could drop dramatically to zero due to the

increasing of minsup value; the initialization set will guarantee that the final mining

result contains at least all 2-leaf subtrees, and the number of which is a fixed value.

Figure 3.27 minsup vs. running time.

Figure 3.26 shows how changing of minsup affects the number of patterns

discovered by the algorithm. The data used in this experiment contains 200 synthetic

trees, with each tree having 15 leaves. The values of other parameters are shown in

Table 3.3. It can be seen from the figure that as minsup increases, the number of

qualified patterns drops quickly. This experimental result is well consistent with the

following analysis. When minsup goes up, the number of qualified patterns at k > 3

level certainly drops. Consequently, the number of patterns in k + 1 size will drop

in a non-linearly way. This effect will be cascadingly transferred from lower levels to
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higher levels. Finally, the total number of the qualified patterns will certainly drop.

It can also be observed that once the minsup reaches a certain point, 0.8 in this case,

the numbers of patterns reach a stable value. This is because the numbers of 2-leaf

subtrees embedded in these data trees are always the same. As already mentioned,

forming the initial set of the mining algorithm, these 2-leaf subtrees will appear in

all mining results regardless what the minsup values will be, because their support

values are always 100%.

Figure 3.27 shows how changing of minsup affects the running time of

Phylominer on the same dataset as the previous experiment. This performance

figure shows that as minsup increases, the running time of Phylominer drops quickly.

This can be explained by the fact that the number of discovered patterns actually

decreases with the increasing of minsup. Consequently, less valid pairwise joinings

in each equivalence classes will be conducted. As a mutual result of the above two

factors, the overall running time drops quickly.

Figure 3.28 shows the distribution of numbers of patterns of two datasets

under the minsup values of 5% and 25% respectively. The first dataset used in this

experiment contains 100 randomly generated trees on 13 leaves. When the minsup is

set to 5%, there are a total of 7261 patterns to be discovered, among them, there are

78 2-leaf subtrees, 1144 3-leaf subtrees, 5939 4-leaf subtrees and 100 5-leaf subtrees.

When the minsup is raised to 25%, the total number of patterns will quickly drop

to 782, among them are only 78 2-leaf subtrees and 604 3-leaf subtrees. The second

dataset is a special testing dataset composed of 100 copies of a same 13-leaf tree, which

is also one of the datasets used in the verification experiment for the correctness of

the implementation. The distribution of the mining result is shown by the dashed

line with triangle markers in the figure. The number of patterns with respect to

all different sizes of subtrees gradually increases first and then gradually drops to

a small value again. Obviously, the distribution strictly follows the combinatorial
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mathematical calculation on the power subsets of a set. Adding up all these numbers,

a total of 6634 patterns are obtained. Another interesting observation is that the

mining result on the second dataset is invariant to different minsup values. Therefore

only the result under the minsup value of 25% is reported here, given the same result

will be obtained for all the other valid minsup values.

Figure 3.28 The number of frequent subtrees vs. tree size.

Table 3.4 compares the mining results of the same dataset when being viewed

as rooted trees against being viewed as unrooted trees. The dataset is composed

of 30 trees of 15 leaves, and the tests are conducted for minsup values of 30% and

50% respectively. The comparison shown in this table is interesting. Theoretically

speaking, for the same set of k labels, there are approximately k — 1 more times rooted

trees than uprooted trees. Therefore, there seems to exist a higher chance for more

candidate trees to be frequent when data trees are deemed rooted than are deemed

unrooted. This intuition is clearly supported by the numbers of 3-leaf patterns under

the minsup of 30%. It is, however, generally not supported by the overall comparison.

The surprising fact is that in most cases, less frequent subtrees will be discovered

when data trees are viewed as rooted trees than are viewed as unrooted trees. This is

because when the total number of data trees is fixed, the more possible candidate trees
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there are, the lower possibility there is for each candidate tree to be frequent. This can

be seen from 3 leaves trees. Given any 3-leaf unrooted tree, the only topology is a star

tree; but if deemed as a rooted tree, there could exist 4 possible topologies, diluting

the chance for each possible topology to be frequent. That is why the numbers of

unrooted frequent subtrees are larger than those of rooted subtrees in general.

3.6.4 Datasets from TreeBASE and COMPONENT

The Phylominer algorithm has been applied to several datasets shipped together with

COMPONENT. Experiment results on "epi216.nex" and "peg.nex" are reported here.

File "epi2l6.nex" is a simple dataset consisting of three 10-leaf trees. Table 3.5 shows

the experimental mining results under two different minsup settings, 60% and 100%,
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respectively. When minsup is set to 100%, a total of 380 frequent subtrees will be

discovered. Among the discovered subtrees, there are three largest subtrees, and

each of them has 7 leaves. Obviously, they are exactly the MASTS in the classical

agreement subtree analysis problem. When minsup is set to 70%, there are a total

of 796 subtrees frequently occurring in the dataset. Out of these subtrees, there are

eight largest frequent subtrees, and the size of the largest frequent subtrees is also

eight.

File "peg.nex" is a dataset consisting of 9 different trees for 11 species, the

species '1' is deleted in this experiment, because position of leaf '1' is invariant

to other leaves in these 9 trees. Thus the actual dataset contains nine trees for

10 species instead. Nine trees are identified as from t i to t9 . Different support

values have been used to get a series of experiment results, which are reported in

Table 3.6. Particularly when minsup is set to 33%, Phylonniner found a total of

480 frequent subtrees, among them the u our largest subtrees with eight leaves are

"(((2,3),(5)),(6,((7,9),8)))", "(((2,3),(5)),(6,((7,10),8)))", "(((2,3),(5)),(6,(8,(9,10))))"
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Among these 4 largest frequent subtrees, the first

three all appear in three data trees of t i , t2 and t5 , while the last one appears in

six trees of t i , t2 , t3 , t4 , t6 and t7 out of nine data trees. As a contrast, when

support goes to 100%, a total of 251 subtrees will be discovered, among them three
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Finally, the algorithm is applied to the dataset shown in Figure 3.1. The result

is shown in Table 3.7. From this table, it can be seen that with the minsup decreasing,

the running time goes up, and the total number of interesting patterns goes up as

well. The largest frequent subtrees have 3 leaves only when minsup is set to 100%,

while the largest frequent subtrees have 5 leaves when minsup decreases to 50%. The

distribution of frequent subtrees are shown in Figure 3.29. In the figure, distributions

associated with minsup values of 100% and 80% are completey overlapped, this is

because out of uiye data trees, t 1 and t5 are exactly the same. The overall distributions

associated with the three different minsup values are consistent with experiment

result reflected in Figure 3.28.

Experiments on these real datasets exhibit that the algorithm can systematically

discover all interesting patterns in data trees. These frequent agreement trees help

users to explore more consensus information that could not have been discovered by

the traditional MAST algorithms. Furthermore, the algorithm can find all support

values of those patterns and which data trees contain those subtrees.

3.6.5 Discussion

The Phylonniner has been designed with the least restrictions. In addition to the

minsup parameter, a scutou u parameter specifies a maximum size of frequent

subtrees, which will stop the execution of the program when the discovered patterns

in the last iteration reach the given size; users can also set a maxpn parameter

which will stop the program when the number of discovered pattern reaches the given

maximum pattern number. Furthermore, the algorithm has no bounding restriction

on degree values of tree nodes.

Interesting enough, when the input parameters are restricted to some special

settings, the results of Phylonniner conform to that of some traditional methods. For

example, when the minsup value is set to 100%, the subtrees of the largest size will
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be all MAST trees. Thus this setting allows the algorithm to be used to verify the

correctness of any other MAST algorithms' implementations. When the sbutou u is

set to 4 in unrooted tree mining, the result will be all frequent quartets. When the

scutou u value is set to 3 in rooted tree mining, the result will be all frequent triplets.

The traditional MAST problem considers a profile of trees which are built upon

exactly the same label set. For example, if the label set is {1, 2, 3, 4}, the size of every

tree in the profile has to be of uour, and the leaves of those trees must be labeled

as '1', '2', '3' and '4' respectively. This restriction can actually be removed in the

(U)Phylonniner algorithms. In the rooted version of the algorithm described above,

the initial set of 2-leaf frequent subtrees is enumerated by a brute force manner, since

all trees share the leaf label set; while when the trees in a dataset do not share exactly

the same leaf label set, the brute force manner can be replaced by finding out both all

1-leaf subtrees and all 2-leaf subtrees through an inverted list technique. Similar logic

applies to unrooted tree version. In the original unrooted version, all data trees share

exactly the same set of labels, thus, all 3-leaf star trees are automatically enumerated

to compose the initial set; while in a set of trees which have only overlapped leaf

labels, a 3-leaf star tree is not necessarily to be frequent. However, all frequent

1-leaf subtrees, 2-leaf subtrees and 3-leaf subtrees can be easily obtained through an

inverted list intersection technique. Therefore, the method discussed in this work can

process a profile of trees which have more freedom in their leaf label set formations.

This extension is envisioned to be useful in those emerging super-tree applications.

3.7 An Online Mining Engine

An online mining engine has been developed, which allows remote users to interact

with the core mining algorithm via Internet. Figure 3.30 shows the engine architecture.

The system is composed of four components: Web-based Interface, Input Processor,



Figure 3.30 The architecture of the mining engine.

Miner and Exhibitor. Web-based Interface, implemented using HTML, allows users

to input data, to set up mining parameters, and to submit the mining requests to

the server. On the server side, Input Processor, a module implemented in Pearl CGI

script, will upload input data together with mining parameters to the web server,

and then activate the core Miner module. Miner module is a C++ implementation

of Phylonniner algorithm, which conducts the real mining operation and outputs the

mining results in XML files. Once the Miner completes its output serialization, it

surrenders the control to Exhibitor module by providing an XML link and a HTML

page via XSL transformation. Through the Exhibition module, users are able to

browse XML formatted result using XML-aware browsers or simply to examine the

HTML page transformed from XML using any traditional HTML browser.

Figure 3.31 illustrates the system's working interface. The top frame shows the

main menu of the system; the lower left frame shows an user input dataset with a
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clicking on any subtree link in the right frame, the user will be redirected to a separate

window where the subtree is shown in a Java applet (the upper window of Figure

3.32). When the user click on the link associated with a data tree which supports a

subtree, she or he will be shown the data tree within which the leaves of the subtree

are highlighted in red color and decorated by red bullets (the lower window of Figure

3.32). If the user is interested in XML data, he or she can click on the XML output

link to get all mining result in a well organized nested format (the Figure 3.33). The

meanings of the tags and data in the XML are much self-explanatory.

3.8 Summarization

In this chapter, a novel tree mining algorithm, Phylominer, has been presented, to

efficiently discover frequently occurring agreement subtrees in a given phylogeny

dataset. Phylominer algorithm is immediately useful for scientists in phylogenetic

research discipline, and it can also be used by linguistics researchers and other domain



Figure 3.32 A screenshot showing a pattern tree and its
presence in a data tree.

practitioners as long as the interested data in their domains can be modeled as

leaf-labeled trees.

The details of the algorithm have been discussed, and the time complexity and

correctness of the algorithm have been analyzed. At this stage, a rudimentary version

of the algorithm has been implemented. Based on this version, Phylominer algorithm

is evaluated on both synthetic datasets and real world phylogenetic trees. The

experiments show that Phylominer can scale well to large amount of simulated data

profile, and the mining results in the real world data are interesting and informative.

In the future, several relevant algorithms such as vertical mining algorithm,

parallel algorithm and approximation algorithm will be deeply researched. The tree

expansion proposed in this work is based on joining operation; however, the author

realized that tree expansion through righmost growing enumeration could be another
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Figure 3.33 A piece of XML showing the mining result.

viable approach that needs further exploration. It would also be interesting to build

upon this work further researches such as performing pattern based classification{37]

and developing super-tree reconstruction algorithms{49].



CHAPTER 4

IMPLEMENTATION

This chapter reports two online mining engines wrapping the two algorithms

presented in the previous chapters - Cousin Miner, which works on a set of sample

4.1 Cousin Miner

4.1.1 Introduction

Finding cousin pairs with various distances from a set of unordered trees is a novel

approach to phylogenetic data mining. This project is conducted at New Jersey

Institute of Technology, New York University and University of Western Ontario,

Canada. The project aims to produce algorithms, data structures, and tools that

allow approximate search and mining across general trees (with applications to

phylogeny). The underlying algorithms are based on Cousins.k. A system has been

built to allow you to find interesting cousin pairs in phylogenies obtained from

TreeBASE. Click on the "Mining" button in the menu to try the system. Click on

the "Instruction" button for guidelines of using the system.

4.1.2 Instruction

This is a prototype system, run on a Solaris Sun workstation, that performs

phylogenetic data mining on a set of 26 sample trees obtained from TreeBASE.

Due to resource limitations, this online demo allows a user to work on at most eight

trees each time and the system will find interesting cousin pairs from these input trees.

83
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The user can also download the software from "http://www.cs.nyu.edu/cs/faculty/

shasha/papers/cousins.html" and perform data mining locally on a larger dataset.

Input.

Two types of interfaces have been designed for users to input data trees.

Figure 4.1 The main interface of cousin pattern mining engine.

Interface 1 (main interface).

In the main interface shown in Figure 4.1, you can submit a request in three steps:

• Type in tree IDs as described in TreeBASE in the text window (these trees

must be from the 26 sample trees).

• Provide appropriate parameter values Maxdist and Minsup, and indicate

whether "Distance" and "Occurrence" will be considered in the execution.

• Press the "Submit" button.
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Interface 2.

Users can also input data trees through the page of sample trees by clicking on

"Sample trees" button in the main menu or click "Please choose different input tree

sets" hyperlink in the previous interface 1. Figure 4.2 is a screenshot of interface 2.

Figure 4.2 A screenshot of sample TreeBASE trees.

Click {Newick format] to view the parenthesized tree format of a phylogenetic

tree. Figure 4.3 is a screenshot of the Newick format of tree876. Click {TreeBASE

format] to view the corresponding graphic representation of the tree, shown in Figure

4.4.

You are allowed to select at most eight trees as input trees, which will appear in

the main interface once selected. If the number of selected trees is 0, then the default

tree IDs in the main interface will be the input trees. If the number of selected trees

is larger than 8, then only the first 8 trees are taken as input trees.



Figure 4.4 A screenshot of TreeBASE graphic representation of
tree876.
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View the tree mining result.

The result consists of all cousin pairs satisfying the user-specified parameter values.

Each cousin pair is followed by a number, which is the total number of input trees

containing the cousin pair, and the IDs of these trees are also displayed.

When clicking on a tree id, the user will see the graphic representation of the

tree. The cousin pair will be highlighted in red color, with red bullets. Figure 4.5

Figure 4.5 A screenshot of a list of mining result.

is a screenshot of a list of mining result. Figure 4.6 is a screenshot showing how a

cousin pair is highlighted in a data tree.



Figure 4.6 A screenshot showing a highlighted cousin pair in a tree.

4.2 Agreement Subtree Miner

4.2.1 Introduction

Discovering frequent agreement subtrees of various sizes from a set of phylogentics

trees is a novel approach to mine phylogenetic data. This project is conducted at

New Jersey Institute of Technology, New York University and University of Western

Ontario, Canada. The project aims to produce algorithms, data structures, and tools

that allow data mining across multiple phylogenetic trees.

A system has been built to allow you to find interesting agreement subtrees in

phylogenies obtained from TreeBASE and elsewhere. Click on the "Mining" button

in the menu to try the system. Click on the "Instruction" button for guidelines of

using the system.

Internet Explore 6.0 or above are recommended to browse mining results,

because XSL functions used in this website are not supported by earlier versions of

Internet Explore.
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4.2.2 Instruction

This is a prototype system running on a Solaris Sun workstation, which performs

phylogenetic data mining to find interesting frequent agreement subtrees from input

trees. The system accepts two types of inputs. The first type of input data uses

a subset of tree IDs from a pool of 17 sample trees obtained from TreeBASE, and

users familiar with this database can test the system using this input method. Due

to resource limitations, this TreeBASE online demo allows a user to work on at most

eight trees each time. The second type of input data consists of trees with the same

taxa in the newick format. The second type of input data is designed for general

users. Again due to resource limitations, the maximum number of trees that can be

tested is 500, and the size of trees has to be less than 12.

Input data format.

Our system accepts trees in newick format, which is a standard format for representing

phylogenetic trees. Both string newick format and numeric newick format are

acceptable.

1. String newick format.

A simple data in string newick format is shown below.

2. Numeric newick format.

A simple tree in numeric newick format is shown below, where taxa are represented

Output data format.

The output consists of an array of frequent subtrees in newick format, with each of
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them associated with its support value and a list of supporting tree IDs. To facilitate

the post-processing of the mining result, the output data is wrapped in XML format,

which can be further transformed to HTML or other formats using XSTL language.

In fact, the system provides both XML data and HTML data transferred from the

XML data via an XSL template. The output will be further described in the following

interface section.

Mining Engine Interface Illustration.

In this section, how the mining engine works is shown through a series of screenshots.

Being mentioned earlier, frequent agreement subtree (FAST) mining engine

provides two types of user interfaces: one is for TreeBASE users and the other is

for general users. However, only the first group of interfaces will be introduced in the

following paragraph, because the second group of interfaces differ first the first one

only in different input data formats.

Figure 4.7 A screenshot showing the interface for TreeBASE users.
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Interface 1: Mining frequent subtrees for TreeBASE user.

This is the primary interface designed for TreeBASE users. Here you can submit a

request in 3 steps:

• Type in tree IDs as described in TreeBASE in the text window (these trees

must be from the 17 sample trees).

For example, suppose the input is the following set of TreeBASE IDs,

Internally, the online engine will preprocess the input to collect the real

phylogenetic trees, shown below, corresponding to these tree IDs.

• Provide appropriate parameter values for Maximum and Minsup. For example,

the maximum size being 5 means the system will discover frequent subtrees

with at most 5 leaves. The minimum support of being 0.3 means a subtree is

frequent only if it occurs in at least 30 percent of input data trees.

• Click the " Submit" button.



Figure 4.8 A screenshot showing a batch of sample TreeBASE trees.

Figure 4.7 is a screenshot of interface 1.

Interface 2: a database of TreeBase trees identified by TreeBASE IDs.

Users can also input data trees through the page of sample trees by clicking on

"Sample TreeBASE trees" button in the main menu or click "Please choose different

input tree sets" hyperlink in previous interface 1.

Users are allowed to select at most 8 trees as input trees, which will appear in

the main interface once selected. If the number of selected trees is 0, then the default

tree IDs in the main interface will be the input trees. If the number of selected trees

is larger than 8, then only the first 8 trees are taken as input trees. To select, check

the boxes of interesting trees.

Click [Newick format] to view the parenthesized tree format (newick format) of

a phylogenetic tree. Figure 4.9 shows the Newick format of tree1517.



Figure 4.9 A screenshot showing the Newick format of tree1517.

Click {TreeBASE format] to view the corresponding graphic representation of

the tree, as shown in Figure 4.10.

Mining result.

The result consists of all frequent subtrees satisfying the user-specified parameter

values as well as the relevant informations pertaining to each subtree. The relevant

informations refer to the total number of input trees containing the subtree and the

IDs of these trees. The mining result is then wrapped in XML format and transformed

to HTML through XSL.

Figure 4.11 shows the raw XML data of mining result. Figure 4.12 is

a screenshot showing a list of mining results. Figure 4.13 shows the graphic

representation of the subtree in a java applet when user clicks the any subtree

link.

When clicking on a supporting tree ID under a subtree, the user will see the

graphic representation of the data tree, where the subtree is highlighted by the labels



Figure 4.11 A piece of XML file expressing the mining result of
Phylominer algorithm.
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Figure 4.13 A subtree is shown in a Java applet.
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Figure 4.14 A subtree is highlighted in a data tree.

of the subtree being rendered red color and with bullets. An example is shown in

Figure 4.14.

The interfaces for general users are omitted here, because they are similar to

those for TreeBASE users. Interested readers are pointed to the FAST website

"http://aria.njit.edu/mediadb/fast " for the rest of the instruction.



CHAPTER 5

CONCLUSIONS

This dissertation has presented two frequent structural pattern discovery techniques,

which can be applied to phylogeny research as well as other application domains, as

long as the data of those applications can be modeled as unordered trees. In cousin

mining problem, a novel concept of cousin pair is formally defined. Based on this

concept, an unordered tree can be deemed as a set of cousin pair patterns of various

kinship distances. Given the cousin pair representations of m multiple unordered

trees, then the mining activities can be performed on those cousin pair patterns.

An efficient algorithm with a mIT1 2 running time complexity has been developed to

discover frequent cousin pair patterns from multiple trees. This algorithm is also

extended to the unrooted tree scope. The algorithm is implemented in K language

and an online mining engine has been setup for the Internet users. The algorithm is

experimented on both synthetic data and real phylogeny to achieve good performance.

Cousin pair mining has been experimented in several phylogenetic tree applications

including consensus tree comparison, co-evolution discovery and supertree analysis.

The frequent agreement subtree mining problem is an extension of the

traditional maximum agreement subtree problem. The algorithm proposed in

this work adopts an Apriori framework. The foundation of the algorithm is a

phylogeny-aware canonical form for leaf labeled trees. Based on this canonical

form, a unique tree expansion scheme is devised to grow candidate subtree patterns

through joining two lower level subtrees. This technique is also extended to unrooted

trees. The algorithm has been implemented in C++ and integrated into an online

mining engine. The intensive test has been conducted to verify the correctness and

97
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completeness of the algorithm. The experiment of the algorithm on real phylogenetic

trees achieved informative results.

The research of this work in structural database mining is continuing {52].

Related work in previous stage concentrated on tree comparisons such as XML

query by example [72] and Pathway-involved gene tree distance {71] development.

In the near future, the tree mining algorithm will be extended to more complicated

phylogenetic tree models, where both tree topology and edge length information are

equally important.

The long term goal of this research is to develop a rich set of data mining

techniques for a broad range of biological data that can be modeled as tree structure

or graph structure. For instance, how to mine frequent embedded tree structures

from RNA trees has been drawing the author's research attention for a long time and

is going to be attacked in the near future.

Another important research direction is to identify more domain-specific

applications which can take advantage of the discovered patterns produced by

various structural mining algorithms. In particular, the future work will consider

how to utilize those frequent structures to develop novel applications such as outliers

detection, classification, clustering and supertree analysis algorithms.
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/******************************************************************/

/* */

/* Main funBtion */

/* */
/******************************************************************/
int main(int argB, Bhar ** argv)

atreearray * atreearray;
FrequentSubtreearray * afsa;
Expander *anexpander;
Shareatester *asharetester;
DeteBtor *adeteBtor;
int i, j,k,1;
int treenumber;
int leafnumber;
int expandtreenumber;
Bhar tempstring[STRLENJ],
Bhar treestring[2][SatRLEN];

int ksizenumber;
int frequentnum;
double frequentnumf;
int Burrentlevel;
int previouslevel;
int testtreenumber;
int Bandidatenum;
int maximumsize;

if (argB!=5)
{

Bout<<"Usage: fsd filename threshhold fileresult"<<endl;
Bout<<" filename is datafile"<<endl;
Bouts<<" threshold, usually larger than 0.5"<<endl;
Bout<<" maximum leaf size, integer, 0 for no limit "<<endi;
Bout<<" fileresult is the filename for output"<<endl;

return -1;
}

// retrieve information from data file.
afsa=new FrequentSubtreeArray();
atreearray=new atreearray();
anexpander=new Expander();
asharetester=new Shareatesterr();
adeteBtor=new DeteBtor();
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for (k=0;k<expandtreenumber,k++)
{

// only one of 4 Bandiates Ban be frequent
// a But off is also implemented here.
Bandidatenum=0;
for (1=0;1<testtreenumber;l++)
{

adeteBtor->setdatatree(atreearray->getsubtree(afsa->gettreeid(1) - 1));
adeteBtor->setsubtree(anexpander->getsubtree(k));
adeteBtor->setleafarray(Burrentlevel,afsa->getnewleavesarray());

adetector->parsetree();

if (adetector->confirmO4)
{

treearray[Bandidatenum]=afsa->gettreeid(1);
candidatenum++;
}

}

if (Bandidatenum>=frequentnum)
{

// prepare leaf list, ready in newleaf array

if(afsa->addsubtree(anexpander->getsubtree(k),Burrentlevel,
afsa->getnewleavesarray() ,Bandidatenum, treearray)==-1)
{

goto finish;
}

}
}
}
}

ksizenumber=afsa->getpreviouslevelnumber(Burrentlevel);

if (ksizenumber==0)
afsa->setBurrentlevel(Burrentlevel-1,0);
1;

finish:
time_t Burr_end=time(0);
time_t elapsed_time;
elapsed_time=Burr_end-curr_start;
writetoxml(atreearray, afsa, argv[4], frequentnumf,
maximumsize, elapsed_time);
delete afsa;
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APPENDIX C

PHYLOMINER MINING RESULT IN XML FORMAT

C.1 Schema for XML Output Format of Mining Result

/********************************************************************/
/* */

/* (c) Copyright 2002-2004 */

/* all rights reserved */

/* Programs written by Sen Zhang */

/* (the New Jersey Institute of atechnology) */

/* Ra in the group of Jason at. L. Wang (New Jersey Institute */

/* of atechnology) and Dennis Shasha (New York University) */

/* */

/* athis is the main excerpt of XML related code for */

/* displaying Frequent agreement subtree Mining Result. */
/* Permission to use, copy, modify, and distribute this */

/* software and its documentation for any purpose and without */

/* fee is hereby granted, provided that this copyright */

/* notice appears in all copies. 	 Programmer(s) makes no */

/* representations about the suitability of this */

/* software for any purpose. 	 It is provided "as is" without */

/* express or implied warranty. */
/* */
/********************************************************************/

<?xml version="1.0"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema "
targetNamespace="http://aria.njit.edu/meidadb/fast "
xmlns="http://aria.njit.edu/mediadb/fast "
elementFormDefault="qualified"›

<xs:element name="Frequent-agreement-Subtree">
<xs:complexatype>
<xs:sequence>
<xs:element name="Input">
<xs:complexatype>
<xs:sequence>
<xs:element name="atree">
<xs:complexatype>
<xs:element name="atree" maxOccurs="unbounded">
<xs:complexatype>
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<hr/>
<H2>Result:</H2>
<H3>athe total number of frequent agreement subtree is:
<xsl:value-of select="Frequent-agreement-Subtree/Result/@atotal"/>
</H3>
<H3>athe total time used:
<xsl:value-of
select="Frequent-agreement-Subtree/Result/@Elapsed-atime-in-Secs"/>

</H3>
<xsl:for-each select="Frequent-agreement-Subtree/Result/Subtree -Set">
Size: <xsl:value-of select="./@size"/>
Number: <xsl:value-of select="./Onumber"/>
<br/>
<xsl:f or-each select="./aSubtree"›
<xsl:variable name="treestring" select="./atreestring"/>
<a target="_blank" href="ashowappletPdatatree={$treestring}81amp;
root=l8camp; underscoretospace=1">
<xsl:value-of select="$treestring"/>
</a>
:<xs1:value-of select="./Support"/>
<bri/>
<xsl:for-each select="./Support-atree"›
<xsl:variable name="treeid" select="."/>
<a href="{$cgiprogram}?treeid=f$treeidl&amp;subtree={$treestring}">
<xsl:value-of select="$treeid"/></a>

<bri/>
</xs1:for-each>
<br/>
</xsl:for-each>
</xsl:for-each>
</body>
</html>
<!-- close the xsl:template element -->
</xsl:template>
</xsl:stylesheet>



REFERENCES

[1] E. N. Adams. Consensus techniques and the comparison of taxonomic trees.
Systematic Zoology, 21:390-397, 1972.

[2] R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A. I. Verkamo. Fast discovery
of association rules. In U.M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and
R. Uthurusamy, editors, Adyances in Knowledge Discoyery and Data Mining,
pages 307-328. AAAI Press, 1996.

[3] R. Agrawal and R. Srikant. Mining sequential patterns. In 11th International
Conuerence on Data Engineering, March 1995.

[4] A. Amir. Maximum agreement subtree in a set of evolutionary trees: metrics and
efficient algorithms. SIAM Journal on Computing, 26(6):1656-1669, 1996.

T. Asai, K. Abe, S. Kawasoe, H. Sakamoto, H. Arimura, and S. Arikawa. Efficiently
mining frequent substructures from semi-structured data. In The Proceedings ou
International Workshop on Inuormations & Electrical Engineering, pages 59-64,
Suwon, Korea, May 2002.

[6] T. Asai, H. Arimura, T. Uno, and S. Nakano. Discovering frequent substructures in
large unordered trees. In The 6th International Conuerence on Discoyery Science,
2003.

[7] M. A. Bender and M. Farach-Colton. The LCA problem revisited. In Latin American
Theoretical INuormatics, pages 88-94, 2000.

[8] K. Bremer. Combinable component consensus. Cladistics, 6:369-372, 1990.

[9] Z. Chen, H.V. Jagadish, F. Korn, N. Koudas, and D. Srivastava R. Ng
S. Muthukrishnan. Counting twig matches in a tree. In 17th International
Conuerence on Data Engineering, Heidelberg, Germany, April 2001.

[10] Y. Chi, Y. Yang, and R. R. Muntz. Indexing and mining free trees. In IEEE
International Conuerence on Data Mining, 2003.

[11] R. Cole, R. Hariharan, and P. Indyk. Tree pattern matching and subset matching in
deterministic o(nlog3m) time. In Proceedings ou the Tenth Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 245-254, 1999.

[12] D. J. Cook and L. B. Holder. Substructure discovery using minimum description
length and background knowledge. Journal ou Artificial Intelligence Research,
1:231-255, 1994.

[13] W. H. E. Day. Optimal algorithms for comparing trees with labeled leaves. Journal
ou Classification, 1:7-28, 1985.

{ 5]

140



141

[14] L. Dehaspe, H. Toivonen, and R. D. King. Finding frequent substructures in chemical
compounds. In R. Agrawal, P. Stolorz, and G. Piatetsky-Shapiro, editors, 4th
International Conference on Knowledge Discovery and Data Mining, pages 30-
36. AAAI Press., 1998.

[15] J. A. Doyle and M. J. Donoghue. Fossils and seed plant phylogeny reanalyzed.
Brittonia, 33:89-106, 1992.

[16] B. Dunkel and N. Soparkar. Data organization and access for efficient data mining.
In 20th International Conference on Data Engineering, pages 522-529, 1999.

[17] M. Farach, T. Przytycka, and M. Thorup. Maximum agreement subtree in a set
of evolutionary trees: metrics and efficient algorithms. Inuormation Processing
Letters, 55:297-301, 1995.

[18] M. Farach and M. Thorup. Optimal evolutionary tree comparison by sparse dynamic
programming (extended abstract). In Proceedings ou the 35th Annual IEEE
Symposium on Foundations of Computer Science, pages 770-779, 1994.

[19] J. Felsenstein. Evolutionary trees from DNA sequences: A maximum likelihood
approach. Journal of Molecular Evolutionary, 17(6):368-376, 1981.

[20] J. Felsenstein. PHYLIP — phylogeny inference package (version 3.2). Cladistics, 5:164
— 166, 1989.

[21] C. R. Finder and A. D. Gordon. Obtaining common pruned trees. Journal of
Classification, 2:255-276, 1985.

[22] W. Fitch. Toward the defining the course of evolution: minimum change for a specific
tree topology. Systematic Zoology, 20, 1971.

[23] G. Ganeshkumar and T. Warnow. Finding a maximum compatible tree for a
bounded number of trees with bounded degree is solvable in polynomial time.
In 0. Gascuel and B.M.E. Moret, editors, First International Workshop on
Algorithms in Bioinformatics (WABI 2001), pages 156-163, 2001.

[24] M. Garofalakis and A. Kumar. Correlating xml data streams using tree-edit distance
embeddings. In Proceedings of the 22nd ACM SIGMOD-SIGACT-SIGART
Symposium on Principles ou Database Systems, 2003.

[25] D. Harel and R. E. Tarjan. Fast algorithms for finding nearest common ancestors.
SIAM Journal on Computing, 13(2):338-355, 1984.

[26] S. Holmes and P. Diaconis. Random walks on trees and matchings. Electronic Journal
of Probability, 7, 2002.

[27] J. Huan, W. Wang, and J. Prins. Efficient mining of frequent subgraph in the presence
of isomorphism. 2003.



142

[28] A. Inokuchi, T. Washio, and H. Motoda. An apriori-based algorithm for mining
frequent substructures from graph data. In Practice of Knowledge Discovery in
Databases, pages 13-23, 2000.

[29] M. Y. Kao, T. W. Lam, T. M. Przytycka, W. K. Sung, and H. F. Ting. General
techniques for comparing unrooted evolutionary trees. In Proceedings of the
twenty-ninth annual ACM symposium on Theory of computing, pages 54-65, El
Paso, Texas, United States, 1997. ACM Press.

[30] P. Kilpelainen and H. Mannila. Ordered and unordered tree inclusion. SIAM Journal
on Computing, 24(2):340-356, 1995.

[31] E. Kubicka, G. Kubicka, and F. R. McMorris. An algorithm to find agreement
subtrees. Journal of Classification, pages 91-99.

[32] M. Kuramochi and G. Karypis. Frequent subgraph discovery. In 1st IEEE
International Conference on Data Mining, pages 313-320, 2001.

[33] T. W. Lam, W. K. Sung, and H. F. Ting. Computing the uprooted maximum
agreement subtree in sub-quadratic time. Nordic journal of Computing, 3(4):295-
322, 1996.

[34] J. Li, A. L. Bogle, A. S. Klein, and M. J. Donoghue. Phylogeny and biogeography
of hamamelis(hamamelidaceae). Harvard Papers in Botany, 5:171-178, August
2000.

[35] H.T. Lumbsch, R. Lindemuth, and I. Schmitt. Evolution of filamentous ascomycetes
inferred from LSU rDNA sequence data. Plant Biology, 2:525-529, 2000.

[36] B. L. Lundrigan, S. Jansa, and P. K. Tucker. Phylogenetic relationships in the genus
mus, based on paternally, maternally, and biparentally inherited characters.
Systematic Biology, 51:23-53, 2002.

[37] M. Kuramochi M. Deshpande and G. Karypis. Frequent sub-structure-based
approaches for classifying chemical compounds. In 3rd IEEE International
Conference on Data Mining, pages 35-42, 2003.

[38] T. Margush and F. R. McMorris. Consensus n-trees. Bulb Math. Biol., 43:239-244,
1981.

[39] S. Melnik, H. Garcia-Molina, and E. Rahm. Similarity flooding: A versatile graph
matching algorithm. In Proceedings of the International Conference on Data
Engineering, 2002.

{40] C. Moh, E. Lim, and W. Ng. DTD-miner: A tool for mining DTD from xml
documents. In Second International Workshop on Advance Issues of E-Commerce
and Web-Based Information Systems, Milpitas, California, June 2000.



143

[41] R. Nayak, R. Witt, and A. Toney. Data mining and XML documents. In International
Conference on Internet Computing, Nevada, USA, 2002.

[42] G. Nelson. Cladistic analysis and synthesis: Principles and definitions, with a
historical note on adanson's famille des plantes (1763-1764). Systematic Zoology,
28:1-21, 1979.

[43] S. Nijssen and J. N. Kok. Efficient discovery of frequent unordered trees: Proofs.
Technical Report, Leiden Institute of Advanced Computer Science, Netherlands,
Jan. 2003.

[44] R. D. M. Page. COMPONENT User's Manual(Release 1.5), 1989. University of
Auckland, Auckland.

[45] R. D. M. Page and E. C. Holmes. Molecular Evolution: A Phylogenetic Approach.
Blackwell Science, 1998.

[46] C. R. Palmer, P. B. Gibbons, and C. Faloutsos. Anf: A fast and scalable tool for data
mining in massive graphs. In Proceedings ou the 8th ACM SIGKDD International
Conference on Knowledge Discoyery and Data Mining, pages 81-90, July 2002.

[47] W. H. Piel, M. J. Donoghue, and M. J. Sanderson. Treebase: A database of
phylogenetic information. In Proceedings of the 2nd International Workshop of
Species 2000, 2000.

[48] M. J. Sanderson, M. J. Donoghue, W. H. Piel, and T. Erikson. Treebase:a prototype
database of phylogenetic analyses and an interactive tool for browsing the
phylogeny of life. American Journal of Botany, 81(6):183, 1994.

[49] C. Semple and M. Steel. A supertree method for rooted trees. Discrete Applied
Mathematics, 105:147-158, 2000.

[50] R. Shamir and D. Tsur. Faster subtree isomorphism. Journal of Algorithms,
33(2):267-280, 1999.

[51] D. Shasha, J. T. L. Wang, and R. Giugno. Algorithmic and applications of tree
and graph searching. In Proceedings of the ACM SIGACT-SIGMOD-SIGART
symposium on Principles of Database Systems, pages 39-52, 2002.

[52] D. Shasha, J. T. L. Wang, and S. Zhang. Unordered tree mining with applications
to phylogeny. In IEEE International Conference of Data Engineering, Boston,
U.S., April 2004.

[53] M. Steel and D. Penny. Distributions of tree comparison metrics-some new results.
Systematic biology, 42(2):126-141, 1993.

[54] C. Stockham, L. Wang, and T. Warnow. Statistically based postprocessing of
phylogenetic analysis by clustering. In Proceedings of 10th Int'l Conference on
Intelligent Systems for Molecular Biology, pages 285-293, Edmonton, Canada,
August 2002.



144

[55] J. T. L. Wang, H. Shan, D. Shasha, and W. H. Piel. TreeRank: A similarity
measure for nearest neighbor searching in phylogenetic databases. In Proceedings
of the 15th International Conuerence on Scientific and Statistical Database
Management, Cambridge, Massachusetts, July 2003.

[56] J. T. L. Wang, B. A. Shapiro, D. Shasha, K. Zhang, and C. Y. Chang.
Automated discovery of active motifs in multiple RNA secondary structures.
In Proceedings of the 2nd International Conference on Knowledge Discoyery and
Data Mining,Portland, Oregon, pages 70-75, August 1996.

[57] J. T. L. Wang, D. Shasha, and S. Zhang. Unordered tree mining with applications
to phylogeny. In IEEE International Conference on Data Engineering, 2004.

[58] J. T. L. Wang, K. Zhang, G. Chang, and D. Shasha. Finding approximate patterns
in undirected acyclic graphs. Pattern Recognition, 35(2):473-483, 2002.

[59] K. Wang and H. Liu. Discovering typical structures of documents: A road map
approach. In 21st Annual International ACM SIGIR Conference on Research
and Deyelopment in Information Retrieyal, pages 146-154, 1998.

[60] K. Wang and H. Liu. Discovering structural association of semistructured data. IEEE
Transactions on Knowledge and Data Engineering, 12(2):353-371, 2000.

[61] Q. Y. Wang, J. X. Yu, and K. Wong. Approximate graph schema extraction
for semi-structured data. In C. Zaniolo, P. C. Lockemann, M. H. Scholl,
and T. Grust, editors, Advances in Database Technology - EDBT 2000, 7th
International Conference on Extending Database Technology, volume 1777 of
Lecture Notes in Computer Science, pages 302-316. Springer, March 2000.

[62] X. Wang, J. T. L. Wang, D. Shasha, B. A. Shapiro, I. Rigoutsos, and K. Zhang.
Finding patterns in three-dimensional graphs: Algorithms and applications to
scientific data mining. IEEE Transactions on Knowledge and Data Engineering,
14(4):731-749, July/August 2002.

[63] T. Washio and H. Motoda. State of the art of graph-based data mining. ACM
SIGKDD Explorations Newsletter, 5(k, July 2003.

[64] Y. Xiao, J. Yao, Z. Li, and M. Dunham. Efficient data mining for maximal frequent
subtrees. In IEEE International Conference on Data Mining, 2003.

[65] X. Yan and J. Han. CloseGraph: Mining closed frequent graph patterns. In ACM
SIGKDD International Conference on Knowledge Discoyery and Data Mining,
2003.

[66] L. Yang, M. L. Lee, and W. Hsu. Efficient mining of xml query patterns for caching. In
29th International Conference on Very Large Databases, Berlin, Germany, 2003.

{67] K. Yoshida and H. Motoda. Clip: concept learning from inference patterns. Artificial
Intelligence, 75(k:63-92, May 1995.



145

[68] M. Zaki and C. Hsiao. Charm: an efficient algorithm for closed association
rule mining. Technical Report, Department of Computer Science, Rensselaer
Polytechnic Institute, Oct. 1999.

[69] M. J. Zaki. Efficiently mining frequent trees in a forest. In Proceedings of the 8th ACM
SIGKDD International Conference on Knowledge Discoyery and Data Mining,
pages 71-80, July 2002.

[70] K. Zhang, J. T. L. Wang, and D. Shasha. On the editing distance between undirected
acyclic graphs. International Journal of Foundations of Computer Science,
7(k:43-57, March 1996.

[71] S. Zhang, L. Liao, J. Tomb, and J. T. L. Wang. Clustering and classifying enzymes
in metabolic pathways: Some preliminary results. In M. J. Zaki, J. T. L. Wang,
and H. T.T. Toivonen, editors, Proceedings of the 2nd ACM SIGKDD Workshop
on Data Mining in Bioinformatics, pages 19-24, 2002.

{72] S. Zhang, J. T. L. Wang, and K. Herbert. Xml query by example. International
Journal of Computational Intelligence and Applications, 2(3):329-338, 2002.


	Pattern discovery in structural databases with applications to bioinformatics
	Recommended Citation

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Copyright
	Approval Page
	Biographical Sketch
	Dedication
	Acknowledgment (1 of 2)
	Acknowledgment (2 of 2)

	Table of Contents (1 of 2)
	Table of Contents (2 of 2)
	Chapter 1: Introduction
	Chapter 2: Cousin Pattern Mining
	Chapter 3: Frequent Agreement Subtree Mining
	Chapter 4: Implementation
	Chapter 5: Conclusions
	Appendix A: Source Code of Phylominer
	Appendix B: Source Code of Main PERL Module
	Appendix C: Phylominer Mining Result in XML Format
	References

	List of Tables
	List of Figures (1 of 3)
	List of Figures (2 of 3)
	List of Figures (3 of 3)


