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ABSTRACT

BUS ARRIVAL TIME PREDICTION USING STOCHASTIC
TIME SERIES AND MARKOV CHAINS

by
Rajat Rajbhandari

Public transit agencies rely on disseminating accurate and reliable information to transit

users to achieve higher service quality and attract more users. With the development of

new technologies, the concept of providing users with reliable information about bus

arrival times at bus stops has become increasingly attractive. Due to the fact that bus

operation parameters and variables are highly stochastic, modeling prediction of bus

travel and arrival times has become one of the many challenging tasks.

Stochastic time series and delay propagation models to predict bus arrival times

using historical information were developed. Markov models were developed to predict

propagation of bus delay to downstream bus stops based on heterogeneous conditions.

The bus arrival times were predicted using a Markov model only and performance

measures were obtained and a combined arrival time prediction model consisting of delay

propagation and full autoregressive model was also developed. The inclusion of bus

delay propagation into the bus arrival time prediction algorithm is an important

contribution to the research efforts to predict bus arrival times. The research showed that

Markov models can provide accurate bus arrival time predictions without increasing the

need for a large number of bus operation variables, simulations and high polling

frequency of the geographical bus location as used by other modeling approaches.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

In recent years, Intelligent Transportation Systems (ITS) have been extensively used in

planning, control and management of surface transportation systems. Traffic, highway

and transit management extensively use ITS based systems, and this trend is growing at

an increasing rate, gaining popularity amongst agencies funding and implementing these

systems. Public transit agencies have either successfully implemented, or are in the

process of implementing various ITS applications in public transit planning, bus

maintenance and operation, light rail and high speed commuter rail.

Public transit agencies rely on disseminating accurate and reliable information to

transit users to achieve higher service quality and attract more users. With the

development of ITS, the concept of providing users with reliable information about bus

arrival times at bus stops has emerged as Advanced Traveler Information Systems (ATIS)

and Advanced Public Transportation Systems (APTS). Transit agencies obtain

information in real-time on bus travel time, bus location, speed, passengers on board and

dwell time. With the help of this data, transit agencies can provide information to users

such as, arrival time and anticipated delays in advance. The information collected in real

time becomes historical information and assists transit agencies with planning,

management, and control of the system as well as the improvement of service.

1
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1.2 Problem Statement

As part of a larger ATIS program, numerous research projects have been performed

towards developing algorithms to predict bus arrival times at bus stops. Due to the fact

that bus operation parameters and variables are highly stochastic, modeling bus travel and

arrival times has become one of the many challenging tasks among researchers. A

number of deterministic models based on regression analysis have been proposed to

estimate bus operational parameters including models to predict bus arrival time. Such

models, however, are oversimplified and may not be representative of real bus conditions

as such models do not account for the changes in bus travel time with changing traffic

and transit conditions.

A number of deterministic and stochastic models have been proposed by

researchers to predict bus operations on freeways. However, limited models exist to

estimate bus conditions on urban arterials and local streets. Hence, this research develops

models to predict bus arrival time along urban arterials and local streets based on

stochastic time series modeling of travel time and the inclusion of delay propagation in

the prediction of the bus arrival time. Delay propagation is the process where delay

incurred at an upstream bus stop is carried forward to downstream stops.

Bus arrival time prediction models based on linear and non-linear regression,

Kalman filtering and artificial neural networks do not account for the propagation of bus

delay to downstream time-points (i.e. locations long the route where the bus has to be at

predetermined times as scheduled). The existence of propagation of bus delay is not

questionable as bus drivers are constantly aware of the delay incurred in the previous

time-point and the possibility of these delays propagating to downstream time-points.
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Hence, drivers tend to adjust their speed to reach the downstream time-points on-time and

adhere to the schedule. Some transit agencies do provide schedule adherence status to the

passengers waiting at the bus stops. However, limited research has been performed to

model bus delay and its propagation to downstream bus stops, including the possibility of

including bus delay information in the prediction of bus travel and arrival time.

1.3 Research Objectives

The primary objective of the research is to develop models to predict the bus arrival time

at stops using historical bus travel time information. The research uses a stochastic

approach to predict bus travel time and delay propagation based on historical information

of bus travel time and delay. Before any prediction models are proposed, existing bus

travel and arrival time prediction models were studied to determine their limitations. In

addition, the research established the potential for using the stochastic behavior of bus

travel time and the propagation of delay at bus stops in the prediction of the bus arrival

time.

The research focused on stochastic time dependent prediction models assuming

that bus travel times can be treated as random variables and distributed over time. In this

research, the appropriate stochastic time series models were identified. The ability of the

models to capture the temporal variations of bus travel time was also determined. Since

existing stochastic time series models do not consider the propagation of bus delays to

downstream stops, this research is also focused on modeling the propagation of delay of

buses to downstream stops. In general, the objectives of the research are outlined as

follows:
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Develop bus arrival time prediction models based on stochastic time series
processes and bus delay propagation.

Compare the performance of a number of bus travel time and delay propagation
models based on various measures of effectiveness and evaluate the performance
of the models.

- Analyze the suitability and transferability of the proposed bus arrival time models
to different locations.

1.4 Organization of the Dissertation

The dissertation has been organized into eight chapters. Chapter 1 consists of a brief

introduction on bus arrival prediction and its importance in ATIS. This is followed by a

discussion of the specific problem and objectives of this research. A comprehensive

literature review is presented in Chapter 2, covering past research pertaining to the

prediction of bus arrival time using various methods. In Chapter 3, algorithms to predict

bus arrival times are proposed, including a discussion of the necessary assumptions and

constraints of the proposed model. The chapter also includes a discussion on the

theoretical background of a number of time series models and stochastic Markov

processes. Chapter 4 presents a case study for which bus travel time analysis and delay

propagation were performed. Chapter 5 consists of results from the proposed bus travel

time prediction mode using autoregressive models. Chapter 6 consists of an analysis of

the bus delay prediction models using a Markov process. Bus arrival time predictions are

made in Chapter 7 using both time series methods and delay propagation methods.

Finally, conclusions about the performance of the time series models and delay

propagation models are drawn in Chapter 8. The contributions of the research are

outlined and recommendations for future research are made.



CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

This literature review focused on a number of studies performed by researchers to predict

bus travel and arrival time. Through the literature review, the importance of models for

the prediction of bus arrival times for operational, management and control of bus transit

is well established. Although, the usage of bus arrival time prediction models in ATIS is

well studied, few studies have been performed on bus arrival prediction models using

stochastic time series and models that incorporate delay propagation in the estimate of

bus arrival times. In this literature review, the models and proceedings required for a bus

arrival prediction model, as proposed by various researchers, are discussed. Hence, the

literature review led to the motivation for a stochastic time series and delay propagation

model for bus arrival prediction.

2.2 Application of Bus Arrival Prediction Models

The importance of bus arrival time prediction models as a component of ATIS has been

well argued by numerous researchers (Park et al., 1995; Dailey et al., 2002; Abdelfattah

and Khan, 1998). In addition to ATIS, the Route Guidance System (RGS) and Advanced

Traveler Management System (ATMS) have also relied on accurate short-term prediction

of bus arrival times. Hence, bus arrival prediction has become a critical component of

these systems (Chien and Kuchipudi, 2002).

5
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The purpose of both APTS and ATIS systems should be to benefit travelers on

freeways, as well as, bus passengers on urban roads by reducing their travel time and

waiting time at bus stops. The primary objective of APTS, relating to transit passenger, is

to improve the distribution of information about the public transit system such as, travel

time, delay, vehicle position (Dailey et al., 2000). Hence, the prediction of bus arrival

time at bus stops is found to be valuable information for passengers to help reduce their

waiting time.

The importance of bus arrival time prediction is more significant for trips if the

expected arrival time is relatively far into the future and the headway of the bus service

along the bus route is very long. In such cases, bus passengers are more eager to know

the bus arrival time than if the bus service is very frequent. Also, in transit operations, the

stochastic variation of bus arrival times due to other roadway conditions and vehicle

ridership could be significant. This variation can deteriorate the headway adherence of

the bus and lengthen the passenger waiting time at bus stops. Hence, providing accurate

information on bus arrival at stops includes accounting for this variation and ultimately

becomes critical for providing quality service to passengers and improving the

attractiveness of bus transit (Ding and Chien, 2002).

2.3 Data Source and Errors

Automatic Passenger Counting (APC) systems can provide real time information about

passenger and bus location (Eisele, 1997). This real time information becomes a source

of historical information for future use. Many transit agencies have incorporated an on-

board APC system into a smart bus concept. APC systems have become attractive among
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bus transit planners and managers for bus transit management and control because of the

large amount of information provided by the APC system. As of 2000, 88 transit agencies

in the United States had operational AVL and APC systems and 142 were planning to

install them. With growing interest in using AVL systems for bus arrival information

prediction, a number of researchers have focused on using the AVL/APC system for the

prediction of bus arrival time. However, most of these bus arrivals time prediction

models used by transit agencies are proprietary and literature on the topic is not available

(TCRP, 2003).

The amount of data obtained from APC/AVL systems can be quite large in terms

of the number of records. In addition, such data often contain errors, which are generally

outliers. Chien and Kuchipudi (2002) stated that using real time data, which have a higher

standard deviation (outliers) of travel time data, can adversely affect the accuracy of the

prediction model. Hence, numerous techniques have been developed by researchers to

eliminate outliers and erroneous data (Dailey and Cathey, 2002; Dion and Rakha, 2003;

Shalaby and Farhan, 2003). However, a higher standard deviation of observed travel time

data may be inherent to the data due to the nature of traffic and transit characteristics. It is

also possible that higher standard deviations of bus travel time are due to non-recurring

events. Hence, it is apparent that before developing suitable prediction models, a

statistical analysis of trip samples should be performed to determine the standard

deviation of the bus travel time and outliers should be identified.
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2.4 Bus Arrival Time Prediction Models

The application of bus travel and arrival time prediction models has emerged as a critical

component for many ITS and ATMS systems. Due to the inherent stochastic nature of

bus travel time, prediction and estimation of arrival time has been a challenging task. At

the same time, there is also increasing demand to predict arrival time in real time for use

in adaptive control strategies.

Private vendors have developed a number of proprietary models to predict bus

arrival times. These models have been used by a number of public transit agencies to

implement advanced public transportation information systems. Most of these algorithms

and even entire information systems are patented and are not available to the general

public (TCRP, 2003).

2.4.1 Time-Distance Model

Lin and Zeng (1999) developed multiple algorithms to predict the arrival time of buses.

These algorithms used the current location and the arrival and departure times of the bus

provided by AVL equipped buses. Using time-distance diagrams, the trajectory of the bus

is constructed using the bus position obtained from the on-board Global Positioning

System (GPS). The model consists of four different types of algorithms. Algorithm 1

used the bus location data and the pre-defined travel time matrix to determine the arrival

time at the next bus stop. The arrival time at the next bus stop is determined as the

recorded arrival time of the bus at the previous stop plus the travel time from the pre-

defined matrix. Algorithm 2 used bus schedule data in addition to bus location data. Both

algorithms assumed that the bus travels at a constant speed regardless of delay. Algorithm

3 used the bus location, bus schedule and bus delay data, to predict bus arrival time based
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on an assumption that drivers adjust their travel speed depending on delay. Algorithm 4

was identical to Algorithm 3 but differentiated between links containing at least one time-

point and links containing no time-points. The distinction was made to introduce the

dwell time into the prediction algorithm, since the dwell times at the time-points were

found to be very high along the bus route used in the case study. The overall precision

measures of the algorithms were determined by using the average deviation of the

predicted arrival from the actual arrival time. The results showed that Algorithm 4 has the

best performance. The results obtained a minimum average deviation of predicted arrival

time from observed arrival time of 2.0 minutes and a maximum of 3.6 minutes.

Translink (Texas Transportation Institute, 2000) used a time-based algorithm to

predict bus travel times along a fixed bus route in the Texas A&M University campus.

The time-based algorithm was based on a fixed value of the travel time on the route,

determined as a simple average travel time and an average dwell time at individual bus

stops. The entire bus route was divided into one-minute zones, with the total number of

zones equal to the average bus travel time. The length of each zone is the estimated

average distance traveled by a bus in one minute. The algorithm works by geographically

locating the bus in the zone by an AVL system. The travel time to a bus stop was then

estimated by determining the number of one-minute zones the bus has to travel in order

to reach that bus stop. At bus stops that had an average dwell time value of more than one

minute, time zones would overlap and the value of the predicted travel time was then

decreased by one minute after the bus dwelled in the same time zone for more than one

minute.
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The assumption used in the algorithm is that the simple average travel time of the

bus is sufficient to account for any variation in the bus speed due to change in roadway

conditions by time of day and pedestrian movements along the bus route. The major

limitation of the algorithm is that the bus is operated inside the campus with very limited

traffic impedance. Hence, variation in travel time is not a significant factor in the

algorithm.

2.4.2 Regression Models

The prediction of bus travel and arrival time on urban corridors is a difficult task because

of the stochastic nature of transit operations and the impact of factors such as passenger

demand at stops, traffic control and interaction with other vehicles. The estimation of bus

travel time can be obtained using classical statistical analysis such as regression models.

Frechette and Khan (1997) used Bayesian regression analysis to estimate

vehicular travel times between links in CBD locations. Data for the independent variables

were obtained using a video camera. The independent variables included volume of

through, left and right turning vehicles, number of signalized intersections, percentage of

stopped vehicles on each link, and the percentage of heavy vehicles. Though these

parameters can be obtained using a video camera, this method has two major limitations.

Firstly, installation of a video camera would be required in each and every intersection

along the bus route, which would be expensive. Also, data extraction from the video

camera would be a difficult process and not a real time process compared to AVL

technology. The regression models were developed for both one-way and two-way street

configurations. Although the results were quite appreciable in terms of their high R 2

values, the implementation of the algorithm to predict bus travel times requires collection
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of a large number of independent variables. The authors recommended that developed

models could be incorporated into an ATIS to provide average vehicular travel times.

Abdelfattah and Khan (1998) developed non-linear regression models of bus

delays. The independent variables that influence bus delays in mixed traffic lanes were

collected using a video camera. This field information was used as input into the micro-

simulation package NETSIM and various measures of effectiveness were obtained. The

regression models used a number of independent variables such as link length, number of

bus stops per link, number of buses per link, vehicle turning movements, traffic density

of heavy vehicles, density of traffic signals and number of passengers riding the bus.

These variables are not easily available for the prediction of bus travel time, considering

the amount of data and method of data collection required. The R 2 obtained from the

regression models were above 0.8. Bus arrival times were determined from average bus

speed plus expected delays estimated by the developed regression models. A constant bus

speed was used to determine the bus travel time without any delays. The average

difference between the estimated and actual bus arrival times of 70 buses over a 30-

minute period was determined. For two streets under study, the average difference was

found to be less than 30 seconds.

Patnaik et al. (2004) developed a multivariate linear regression model to estimate

bus arrival time between time-points along a bus route. The data were obtained from the

APC system installed on buses. The travel time of the bus between time-points was

estimated using linear regression of the historical travel times between the time-points.

The linear regression model consisted of independent binary variables to represent time

of day of the bus trip, dwell time, number of stops and distance between time-points. The
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study used cumulative values of dwell time and number of stops between time-points as

independent variables, since individual values of dwell time at stops would not be

significant compared to the total travel time between time-points. The models showed

significant results in terms of higher R 2 values, but did not present comparisons between

observed and predicted bus arrival times.

2.4.3 Artificial Neural Network Models

Artificial neural networks (ANN) and in particular multilayer neural networks that utilize

a back propagation algorithm have been used to predict link travel time for buses as well

as for other vehicles. The majority of the neural network applications used in the field of

transportation are conventional ANN models.

Ding and Chien (2002) developed link-based and stop-based artificial neural

networks (ANN) for predicting bus arrival times in real time. The link-based ANN is

designed to predict bus arrival times by accumulating bus travel times on all traversed

links between pairs of stops. Unlike the link-based ANN, the stop-based ANN estimates

the bus arrival time to a downstream stop using traffic conditions instead of bus travel

times accumulated on all traversed links. For training the ANN models, back propagation

learning algorithms were used.

The factors affecting bus arrival time (e.g., volumes, average speed, delays) were

inputs for link-based and stop-based ANN models. The bus arrival times predicted by

ANN models were compared with results from the micro-simulation model CORSIM,

which was calibrated with field data. The Root Mean Square Error (RMSE) between

simulated bus arrival and predicted arrival time increased as the number of downstream
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stops increased. The RMSE values increased from 1 minute to 4 minutes showing that the

model performed well for the study bus route (Ding and Chien, 2002).

2.4.4 Kalman Filter Models

Kalman filters have also been used for prediction of bus travel time as well as vehicle

travel times on freeways for incident detection models. Bae and Kachroo (1995)

developed a Kalman filter model to estimate arterial travel time for buses by using AVL

equipped buses as probe vehicles. A prototype bus arrival time estimation model was

developed based on an online parameter adaptation algorithm. Based on the dynamics of

both single and multiple stops, a prediction model for bus arrival time was developed.

The model relied on an extended autoregressive model and considered time varying

passenger boarding and alighting rates.

Chien and Kuchipudi (2002) developed a model to predict travel time using real-

time and historical data based on Kalman filters. In the research, a Kalman filtering

algorithm was used to update the state variable (travel time) continuously as new

observations became available. In addition to the real time information, the research

considered the use of aggregate data from previous time intervals and days as historical

seeds to evaluate the prediction accuracy.

Dailey et al. (2000) used time series data obtained from an AVL system to predict

bus arrival time. The data consisted of time and location pairs and was used with

historical data in an optimal filtering framework to predict bus arrival times. The filtering

model continuously predicts the arrival time of the bus as a function of both time and

space. The filtering model assumed that vehicle locations are available irregularly,

typically on a one to five minute basis. The vehicles are assumed to move with constant
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speed over a limited distance. The variability of the modeling process is normally

distributed and includes the starting and stopping motions of the vehicles. The algorithm

provided predicted bus arrival times up to an hour in advance. Using Kalman filters as an

optimal filtering technique, the bus arrival time was determined. The model, however, did

not explicitly use the variability of the bus travel time during different times of day to

include temporal variability of bus travel time and assumed that such variability is

included in the modeling process. The model is entirely based on the trajectory motion of

the bus, which relies on a high polling frequency, so that the bus position is updated

within minutes.

Shalaby and Farhan (2003) proposed two Kalman filter algorithms for the

prediction of bus running time and passenger dwell time alternately in an integrated

framework. The "Link Running Time Prediction Algorithm" made use of the last three

days of historical data of the bus link running time for the prediction. The bus link

running time for the previous bus on the current day at the current time is also used to

predict the bus running time one period ahead. The "Passenger Arrival Rate Prediction

Algorithm" employed similar historical data on passenger arrival rates to predict the

dwell time. The predicted arrival rate is multiplied by the predicted headway and by the

passenger boarding time. The bus arrival time prediction results obtained from the

Kalman filter model were compared with the results obtained from historical average,

regression and artificial neural network models. The Kalman filter model produced a

Mean Relative Error (MRE) between 0.044 and 0.087, while predicting travel time using

four previous days of data and comparing these data with the data observed on the fifth

day. The results showed that the Kalman filter model performed similar to regression and
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ANN models in the normal condition scenario without any congestion. However, the

Kalman filter model outperformed other models in special event and lane closure

scenarios. The performance of algorithms was tested using data from microscopic

simulation.

2.5 Bus Delay Propagation

2.5.1 Delay Propagation Models

Few bus arrival time prediction models have included the propagation of bus delay at

downstream stops, though the importance of delay propagation has been stated in

previous studies (Dailey et al., 2000). For the prediction of bus arrival times, it is

important to incorporate into prediction algorithm information on bus delays, specifically,

how these delays propagate as a bus travels over a route. In this context, bus delay is

defined as the deviation of bus arrival time from the scheduled arrival time. Very often,

bus stops are not equidistant and links connecting the stops are not homogeneous in

traffic characteristics. The correlation of delay between any two stops is hence different,

requiring an approach to determine bus delays by link. However, the degree of

correlation is related to the amount of built-in slack time embedded in the bus schedule

(Lin and Bertini, 2002). The prediction of bus arrival times at subsequent bus stops

requires that the delay incurred at an upstream stop should be considered to propagate to

downstream stops. Hence, considerations of bus delay propagation to downstream stops

due to delay at upstream bus stops have to be made while predicting bus arrival times at

the downstream bus stops.
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Many bus transit systems provide real-time schedule adherence status to their

operators on an in-vehicle display terminal (Strathman et al., 2001). Using the schedule

adherence status, skilled bus operators constantly adjust their speed to keep their buses on

schedule and try to avoid being too late or early. When a bus is delayed at a current bus

stop, the bus operator's ability to reach the downstream stop in time depends on the

amount of slack time built into the bus schedule and the characteristics of traffic along

the link.

Limited studies have been performed regarding the application of delay

propagation in modeling bus arrival times. Bus delay propagation in the form of simple

linear relationships with travel distance has been used (Lin and Zeng, 1999). The model

used a dimensionless input factor A E {OM 
d.

in the prediction model, where 2= 11 ,

is the distance between stops i and j and d is the total length of the trip.

Lin and Bertini (2002) formulated a Markov chain model to capture the

propagation of bus delay at downstream bus stops. It was assumed that the bus stops were

uniformly spaced with equal distance (homogenous condition) and data used to

demonstrate the delay propagation model were not a real-world data.

The research described in this dissertation proposes the use of Markov chains to

model the propagation of bus delay to downstream stops. Previous studies have

demonstrated the use of finite state Markov chain models to simulate and predict traffic

conditions on freeways and arterials. These models were used in conjunction with

microscopic simulation to describe driver behavior in situations such as, traffic

assignment and estimation of vehicle delay between signalized intersections (Evans et al.,

2001; Lin et al., 2003).
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Lin et al. (2003) developed a simple approach to predict delay of vehicles along

an arterial based on Markov chains. The approach used a one-step transition matrix that

related the delay of through vehicles at an intersection to the delay status at the adjacent

upstream intersection. The parameters of the transition matrix were determined based on

three key factors including, flow conditions at the intersection, the proportion of net

inflows into the arterial from the cross streets, and the signal coordination level. The

research also assumed homogeneous conditions between adjacent intersections.

Numerical results show that the model can yield delay predictions with a reasonable

degree of accuracy under various traffic conditions and signal coordination levels. The

model was not validated using field data and the results from the model were compared

with the simulated results. The models were not used to predict bus arrival times.

2.5.2 Finite State Markov Chains

Numerous studies are available regarding estimation using Markov chains (Anderson and

Goodman, 1957; Meshkani and Billard, 1992, Robertson, 1990). The simplest method to

estimate transition probabilities is to determine the ratio of individual transitions

observed to the total number of transitions. Numerous studies have been performed to

improve the determination of transition probabilities. Anderson and Goodman (1957)

developed a maximum likelihood method to determine transition probabilities of a finite

Markov chain for large sample data. Anderson and Goodman (1957) and Lee et al. (1968)

compared the maximum likelihood method and Bayesian estimators to estimate a

transition probability matrix when aggregate proportion data were used. Bayesian

estimators improved the overall estimation of the process over least square and maximum

likelihood methods. The Empirical Bayes method is able to produce non-zero transition
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probabilities, which is common while using a maximum likelihood estimation method for

smaller sample size. However, empirical Bayes methods require more than one data set

that is independent and identically distributed, which may not be always available.

2.6 Stochastic Time Series Models

2.6.1 Stochastic Models for Traffic Prediction

Time series prediction methods have been established as a prominent statistical method

for long term prediction of social and economical variables in planning and management

areas. Due to recent developments in ITS, the same statistical prediction methods used

for social and economic variables have been used in the prediction of traffic parameters.

However, predicting traffic variables are mostly limited to short term prediction, in terms

of minutes or hours rather than days or months, which is more common in long term

prediction of economic variables. Hence, researchers are more focused on developing

time series methods for use in short term traffic prediction.

A number of travel time prediction models have been developed for freeway

conditions mainly for the purpose of incident detection. These prediction models rely on

data obtained from detectors placed at strategic locations along freeway segments.

Distinctions between travel time prediction models in freeway conditions and urban

arterial or downtown conditions are mainly related to statistical uncertainties in

prediction. Due to the fact that fluctuations of traffic conditions exist on arterials and

freeways, travel time is considered time dependent and stochastic. Compared to urban

roadways where a stochastic process is prominent, it is more common among researchers

to consider travel time to be deterministic on freeways. Compared to freeways, a limited
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number of stochastic time dependent models have been proposed to predict bus travel and

arrival time along urban arterials (Hamed et al., 1995; Park et al., 1995).

Short term prediction of traffic variables can be distinguished as either empirical

or based on traffic flow theory. Empirical methods are based on fairly standard statistical

methodology of linear and non-linear regression and adaptive filtering methods. In traffic

process theory, fairly complicated origin-destination flows, traffic assignment and

distribution along paths and links are used for traffic prediction (Arem et al., 1997). Due

to the simplicity of empirical methods in comparison to methods based on traffic

processes, a number of researchers have used time series prediction methods to predict

traffic parameters (Lee and Fambro, 1999; William et al., 1998; Ross, 1982; Ahmed and

Cook, 1979).

Lee and Fambro (1999) developed a Subset Autoregressive Integrated Moving

Average Model (S-ARIMA) for short-term prediction of freeway traffic volume at two

sites in San Antonio using data obtained from the TransGuide project. The study

concluded that time series models are effective for short-term prediction of vehicle travel

time along a freeway. Williams et al. (1998) used seasonal ARIMA models to predict

urban freeway traffic flow assuming that time series of traffic flow data has

characteristics of being periodically cyclic. The 15-min flow rate was obtained from loop

detector data from locations at Capital Beltway in northern Virginia. The missing data

were replaced by using a Kalman filter method and simple average of historical

observations.

Ross (1982) analyzed 5-minute volumes obtained from 24h/day count from loop

detectors along a freeway and an urban arterial. Different smoothing constant (a) values
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for exponential smoothing models were compared at different days for urban arterial time

series data to obtain an optimal value of a. The optimal value of a was obtained by

differentiating the mean square error function of the model for different values of a. The

study also suggested the use of varying a values for different times of the day instead of

using the fixed value of a for the entire week.

Ahmed and Cook (1979) used a Box-Jenkins approach to determine ARIMA

models for predicting traffic volume and occupancy. The data used to develop the models

were obtained from detectors along freeway sections and aggregated to 30 and 60

seconds for the duration of one peak period. The ARIMA models were compared with a

moving average model and double exponential smoothing models using the mean

absolute error and mean square error. The ARIMA models outperformed the moving

average and double exponential smoothing models

Smith et al. (2002) developed seasonal ARIMA models to predict traffic flow

along London Orbital Motorway using 15-min traffic flow obtained from detectors on the

freeway. Instead of using a visual inspection method to determine the parameters of the

ARIMA model, which is the foundation of the Box-Jenkins approach, the research used

Akaike Information Criterion (AIC) to search for a suitable ARIMA model. Box-Jenkin's

method is often termed as subjective because of the subjective method of choosing the

model order using visual interpretations. By using the appropriate AIC, the subjectivity of

selecting the appropriate model can be removed.
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2.6.2 Comparison of ARIMA Models

It is certain from the literature review that one category of time series models cannot

guarantee that it will always give higher prediction accuracy than another category of

time series model. Hence, researchers often use a number of time series models and

compare the performance measure of the model to determine the best model. Lee and

Fambro (1999) developed a full ARIMA model (F-ARIMA), an exponential smoothing

model and a subset ARIMA model for comparison purposes. Exponential smoothing

models gave slightly better result than other time series models, except for subset

ARIMA model which gave the best results. The researchers concluded that exponential

smoothing models should be considered for short-term prediction because these models

were also determined to be easier to implement than ARIMA models.

Williams et al. (1998) also compared predicted freeway traffic flow developed

using seasonal time series, seasonal exponential smoothing, neural network and historical

average models. The seasonal ARIMA model produced the smallest Mean Absolute

Error (MAE) and Mean Absolute Percentage Error (MAPE), followed by the seasonal

exponential smoothing model then the neural network model and finally the historical

average model. Ahmed and Cook (1979) also found better results from ARIMA model

compared to exponential smoothing and historical average models.

Exponential smoothing and historical average models are non-parametric methods

of time series trend estimation and not entirely used for prediction purposes. However,

these models are still used for prediction purposes due to their simplicity in computation.

Hence, these models are popular for one-step-ahead univariate real time prediction

(Makridakis and Wheelwright, 1978).
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AR, MA and ARIMA models are not adaptive such as, Kalman filtering and are

not widely used for real time prediction. However, modified forms of AR, MA and

ARMA models are available to work as an adaptive model although implementation of

such models is computationally intensive (Brockwell and Davis, 2002; Chatfield, 2000).

2.7 Summary

The literature review revealed that bus arrival time prediction models take into account

historical vehicle operations including the bus arrival time for the last several buses on

the same route over the previous several months, and traffic patterns. These prediction

algorithms use historical data as a basis to state the existing traffic conditions at the time

of prediction. The historical profile of travel times is the best knowledge of the past for

use as a basis for the prediction of travel times in the future (Franco and Taranto, 1995).

Time-Distance models (Lin and Zheng, 1999) were developed for rural settings,

where traffic congestion is not a major issue. Hence, these algorithms may not be

applicable to urban areas where congestion is a major issue. These algorithms are also not

able to explain fluctuations in arrival time of the bus due to changes in traffic volume and

other traffic parameters. The model assumed that the delay at a downstream stop is

directly proportion to the travel distance between the bus stops and is propagated to

downstream stops in the same magnitude if the distances between the links are equal.

This assumption may be reasonable in a rural environment where traffic characteristics

between the bus stops may not have a major influence on frequency and amount of bus

delays. However, in an urban environment, equidistant links may have plenty of

variations in traffic characteristics, which in turn could affect bus delays.
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The regression models were developed to determine the vehicular travel time and

bus delays. Even though the obtained R2 values were statistically significant, the studies

did not include the prediction of bus arrival times (Frechette and Khan, 1997; Abdelfattah

and Khan, 1998). The models took into account independent factors that affect the travel

time of the bus along a link such as, distance, speed, number of intersections, and traffic

volume. The models do not take into account the presence of temporal variations of bus

travel times and propagation of delays to downstream stops. In addition, due to the large

number of data required to develop regression models, both studies used output from a

micro-simulation package. The field data were collected as an input to the micro-

simulation package.

The current geographic location of the bus was used to predict the future location

of the bus and predict bus arrival times using Kalman filtering. The model relies on high

frequency of availability of the GPS location, which is most difficult in dense cities with

high rise structures (Dailey et. al, 2000). Another bus arrival time prediction model using

Kalman filter model was based on historical bus travel time information and constant

headway of the bus (Shalaby and Farhan, 2003). Contrary to Kalman filter and regression

models, ANN model requires more intensive computation and data requirements.

The literature review provided a background on limited number of models to

predict bus arrival times based on assumptions of stochastic variation of bus travel times

and delay propagation. Also, literature about proprietary prediction models developed by

private vendors is not available, which are actually being implemented by the transit

agencies. The models described in the literature review are either deterministic models

such as time-distance or regression models or too complicated such artificial neural
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network models. Except time-distance model, all the other models require a large number

of independent variables. Many of these variables are not available to the transit agencies.

In comparison to numerous studies in bus travel time prediction, the literature

review revealed that the application of delay propagation to predict bus arrival times has

been limited. It is important to incorporate information on bus delay into the bus arrival

time prediction algorithm.



CHAPTER 3

ALGORITHM AND METHODOLOGY

3.1 Introduction

This chapter describes the assumptions used for the identification and implementation of

time series and Markov chains to predict bus arrival times. The algorithms to obtain the

bus arrival time prediction is presented, which is followed by a theoretical background of

the stochastic process of time series models and Markov chains, which forms a basis to

obtain the bus arrival prediction models.

3.2 Assumptions and Constraints

Conceptually, time series models rely on data from historical time periods for the

prediction of future time periods. The time series models presume that a pattern or

combination of patterns occurs periodically over time and these patterns can be defined

using mathematical functions. As a consequence, one can also assume that historical data

can be used to identify the patterns or combination of patterns of bus travel time. The

motivation for using time series models for predicting bus travel times is that it is not

necessary to establish relationships between independent variables and the dependent

variable under study in a time series model as it is needed in regression models.

Time series prediction models determine what would happen in successive time

periods rather than why it would happen. Hence, the bus arrival prediction model is not

necessarily concerned with why the bus arrived at a specific future time period, but is

more concerned with when the bus would arrive. Unlike regression and artificial neural

25
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network models used for predicting bus travel times, time series models do not attempt to

discover the factors affecting bus travel times.

Time series models assume that the variable under study is the function of past

values in time and these past values are available in discrete and equispaced time

intervals. The function can be characterized by some reoccurring pattern or combination

of patterns. The following relationship demonstrates these assumptions:

zt = f(zt-hzt-2,  ,zt_p) (3.1)

Where,

zt = Predicted value at future time t

zt -1 , zt-2, = Historical values at equally spaced times t-1, t-2,...

p= Number of time periods used in the forecast

In Equation 3.1, the predicted value of the variable is determined by a function of

historical values of the same variable. Unlike regression models, the explicit relationship

between the historical values and the predicted value is not significant.

In this research, the prediction of bus travel time assumes that some recurring

pattern of bus travel time exists during different times of the day due to recurring traffic

conditions. Based on these patterns, future bus travel times can be predicted. The

foundation of model building for discrete observations over time using time series

methods is the assumption of a stochastic process, where the prediction model describes

the probability structure of the sequence of observations. The future value is predicted by

determining the probability distribution of the population using sample past values.

Most stochastic bus arrival time prediction models lack factors that account for

bus delay propagation to downstream stops. Hence, a separate analysis of bus delay
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propagation is provided in this dissertation assuming that bus delay can be observed as a

stochastic Markov process. The individual bus trips are assumed to be independent and

identically distributed, which is a necessary condition to implement Markov chains. The

predicted bus arrival time is presented in the dissertation using delay propagation only

and also using a combination of both stochastic models to predict travel time and bus

delay propagation to downstream stops. The bus arrival prediction model using only bus

delay propagation requires existing bus schedule information. Bus schedule information

is assumed to be the best estimation of future bus arrivals in the absence of any delay at

an upstream stop or at the origin.

3.3 Bus Arrival Time Prediction Algorithms

3.3.1 Delay Propagation Model

The prediction of the bus arrival time using delay propagation at downstream stops is

based on predicted delay and the scheduled arrival time at each time-point. It is assumed

that the prediction of the bus arrival time is solely based on the prediction of the bus

delay at downstream stops due to observed delay at the origin stop. The predicted arrival

time of the bus at the downstream stop is determined by modifying the scheduled arrival

time of the bus by the predicted delay of the bus. The algorithm to predict the bus arrival

time using the predicted delay and scheduled arrival time is presented as follows:

At t < (A i ),

(Ai) = (D0,1) + (SAT 1 )	 (3.2)

(A2) = (SAT 2) + (D0,2)	 (3.3)

••••
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(Ad) = (SATa) + (Do,d)	 (3.4)

Where,

(Do,i) , 	  (Do,d) = Predicted delay at time t at the origin (i=0)

(A 1 ), 	 , (Ad) = Predicted arrival time of bus at time-point 1 to destination d

(SAT 1 ), 	 (SATd) = Scheduled arrival time at time-points/ to destination d

At any time "t", when the bus has left the origin time-point and has not reached

the next time-point, the arrival time of the bus at the subsequent downstream time-points

can be predicted using Equations 3.2 through 3.4. The arrival time of the bus at any

downstream time-point is predicted based on its scheduled arrival time at the time-point

and the delay predicted at the time-point. This delay is a consequence of the delay

observed at the origin time-point. In Equations 3.2, (D0,1) is determined using a transition

matrix of delay states between time-points 0 and 1. However, (D0,2) . , (D04) are

determined using the successive application of the Markov chain (Kemeny and Snell,

1976), based on the following relationship:

Do,i>o = Po.( P( 1)).sT 	(3.5)

Where,

D0,,,0 = Predicted delay at i, given a delay state at 0

Po = Initial probability vector at i=0

(P(1)) 1 = ith Power of transition matrix P(1), between time-points 0 and / = P(1)

sT = Transpose of delay states at i=0

The delay at time-points 1 through d can be determined by using the integer

multiple of the transition probability matrix between time-points 0 and 1, which is P(1),

as shown in Equation 3.5. The equation is used to predict delay at downstream time-
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points based on a specific time-point and it is assumed that the time-points have similar

traffic and geometric characteristics. The power of the transition matrix in Equation 3.5 is

based on the assumption that the delay states between two time-points are homogenous

having similar traffic characteristics. However, time-points may not be similar in

character. For example, the distance between two time-points can be different. To reflect

the heterogeneity of delay states between two time-points, Equation 3.5 is changed as

follows:

Do,i>0 = Po.P(1).P( 2 ) 	 P(i).sT 	(3.6)

Where,

Da i>0= Predicted delay at i, given a delay state at 0

P0 = Initial probability vector at i=0

P(1), P(2), 	  P(i) = Transition matrix between time-points 0 and 1, 1 and 2,

and i-1 and i.

ST = Transpose of Delay States at i=0

The heterogeneity between the links is reflected by using individual probability matrices

corresponding to each consecutive link instead of using the • th power of the transition

probability matrix P(1). This is shown as Equation 3.6, which consists of individual

transition matrices.

Similarly, when the bus has left time-point 1, the origin time-point is now 1

instead of 0. The transition matrices and the delay states are changed to reflect the delay

at time-point 1 and the subsequent delay propagation at downstream time-points. Hence,

Equations 3.5 and 3.6 are changed as follows to include the observed delay at time-point

1 and predict the delay at downstream time-points (1>1).



30

D0, 1 = Pp.( P(2 pi .sT 	(3.7)

Where,

Di,,,/ = Predicted delay at i, given a delay state at 1

Po = Initial probability vector at i=1

P(2) = Transition matrix between time-points 1 and 2

ST = Transpose of Delay States at i=/

D0, 1 = Po .P(2).P(3) 	 P(i).sT 	(3.8)

Where,

P(2), P(i) = Transition matrix between time-points 1 and 2, 2 and 3,.. i-1 and i

Hence, the algorithm to predict bus arrival times at time-point 2 through d is

updated as follows to reflect the new position of the bus:

At (Ai) < t < (A2),

(A2) = (SAT2) + (D1,2) 	 (3.9)

(Ad) = (SATd) + (D1,d)	 (3.10)

Where,

(D 1 ,2) , 	  , (D1,d) = Predicted delay at time-points 2 through d from the origin

time-point (i=/)

At time-point i=0, the delay at the downstream time-point (Do,2) is based on the

transition probabilities of delay states between i=0 and i=1. As the bus traverses

downstream when i=1, the prediction of delay at time-point i=2 (D1,2) is based on

transition probabilities of delay states between i=1 and i=2.
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3.3.2 Travel Time and Delay Propagation Model

In this research, the arrival time of a bus at a time-point is determined by using a

predicted value of the bus travel time and the dwell time at each time-point. In addition to

travel and dwell time, a third component of the predicted delay at downstream time-

points is introduced during the prediction process. Unlike the algorithm described in

Section 3.3.1, this algorithm does not require the scheduled bus arrival time at time-

points. Instead, the algorithm requires the observed arrival time of the bus at the previous

time-point.

The bus arrival time at each time-point is determined by using a combined

prediction of the stochastic travel time and the delay propagation. The historical values of

bus travel times are used to predict the future bus travel time at individual time-points

using an autoregressive (AR) model in combination with the predicted delay. This

combined algorithm to predict bus arrival time is shown by the following equations:

At, DEP0 < t < (Ai= i )

(A1)= (DEP0) + (TTo,i) + (D o , 1 )

(A2)= (DEP0) + (170,2) ( 30,2)

(Ad) = (DEP0) + (Tro,d) (Do,d)

Where,

(DEP0) = Observed departure time at the origin (i=0)

(3.11)

(3.12)

(3.13)

(A1), 	
 
(Ad) = Predicted arrival time of bus at time-point 1 to destination d

(D0,1) , 	  (Do ,d) = Predicted delay at time-point 1 to d due to delay at the

origin (1=0)



32

(TT0 , 1 ), .... (T1'0,d) = Predicted travel time between time-points 0 to 1, ... 0 to d.

In Equation 3.11, the arrival time of the bus at the first time-point (i=/) is

determined by using the observed bus departure time at the origin (DEP0) and the

predicted travel time and delay due to observed delay at the origin time-point. The bus

arrival time at subsequent time-points (i> 1) is determined by using equations 3.12 and

3.13. Hence, when the bus is at the origin time-point (i=0), the arrival time at all the

downstream time-points can be predicted using Equations 3.11 through 3.13. The

generalized expanded forms of Equations 3.11 through 3.13, where the travel time and

delay are expressed using an autoregressive model and a Markov process, respectively

are as follows:

(Ai) = (DEP 0) + (colzt_ i +92zt_2 + 	 9pzt-p)0,i +(Po.P(/).ST) 	 (3.14)

(A2) = (DEP0) + (9Tzt_1 +92zt_2 +

Or,

(A2) = (DEP0) + (91 zt -1 ± 92zt-2 +

	 9 p zt-d0,2 +( PO.P0,2.S T )
	

(3.15)

	9pzt-do,2 +(Po.P(/).P(2 ).ST ) (3.16)

(AO_ (DEP0) + /I 9/Zi-/ +92Zt-2 + 	 9pZi-pk,d+ +(PO4,d'ST )

Or,

(Ad)--(DEP0)+ (k Corzt—/ +92zt-2 + 	 9pzt-p )0,d ±( PO

(3.17)

P(1).P(2) 	 P(d).ST ) (3.17)

Equations 3.14 through 3.17 represent the expanded form of Equations 3.11

through 3.13. In these new equations, the travel time on a link is defined by the
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autoregressive model and the delay incurred at the downstream time-point due to the

upstream time-point is defined by the Markov model. The difference between Equations

3.15 and 3.16 is that Equation 3.15 requires inclusion of a transition matrix between time-

point 0 and 2 (Po,2) and Equation 3.16 requires the inclusion of transition matrices

between time-points 0 and 1 (P(1)) and 1 and 2 (P(2)).

As the bus traverses towards the downstream time-points, the observed value of

the departure time at the previous stop is used in addition to the observed delay at the

previous stop and the arrival times of the bus at the remaining time-points are updated.

Hence, if the bus has an unexpectedly longer observed delay at a previous time-point, the

arrival time at the following time-point is predicted accurately. For time-points located

downstream of the origin (i=0) time-point, the following equations are used to predict the

arrival times:

At, (DUI) < t < (A2)

(A2)= (DEP1) + (Tvri,2) + (D1,2)

(A3)= (DEP1) + (171,3) + (D1,3)

••••

(Ad) = (DEP1) + (TT1,d) + (D1,d)

At, (DEP2) < t < (A3)

(A3) — (DEP2) + (TT2,3) + (D2,3)

(3.19)

(3.20)

(3.21)

(3.22)

(Ad) — (DEP2) + (TT2,d) + (D2,d) 	 (3.23)

Where,

(DEP 1 ), ..., (DEP2) = Observed departure time of bus at time-point 1 and 2.
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(A2), 	
 
(Ad) = Predicted arrival time of bus at time-point 2 to destination d.

(D1,2) , 	 , (13 1 ,d) = Predicted delay at time-point 2 through d due to delay at

time-point 1.

(D2,3) , 	 , (D2,d) = Predicted delay at time-point 3 through d due to delay at

time-point 2.

(TT1,2), 	  (17d_1,d) = Predicted travel time between two consecutive time-

points.

The predicted values of bus arrival time are determined by using Equations 3.19

through 3.23, for time-points other than the origin (1<i<d). In these equations, time of

prediction is after the departure time of the previous time-point and before the arrival

time of the time-point (DEPH < t < Ad. The expanded forms of Equations 3.19 through

3.21 are as follows:

(A2) = (DEP 1 ) +	 +92zt_2 + 	
 
9pZi_ p )1 ,2 ( Po .P( 2 ).ST ) 	 (3.24)

(A3) = (DEP 1) (9/zt--] +92zt-2 	 9pzi_p)1,3 +( Po .P( 2 ).P( 3 ).ST ) (3.25)

(Ad) = (DEP 1) + (91zt-1 +92zt-2 	 9pzt-p )1,d + Po.P( 2 )....P( d ).S T ) (3.26)
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3.4 Selection of Travel Time Prediction Models

3.4.1 Box-Jenkins Approach

Box and Jenkins (1970) developed a systematic procedure to analyze and forecast time

series using ARIMA models. Hence, this procedure is often called the Box-Jenkins

methodology. The Box-Jenkins methodology to identify an appropriate ARIMA model is

an iterative process and consists of four basic steps. The first step consists of identifying

autoregressive, difference and moving average orders of the model, which are

represented by p, d and q, respectively. This is done based on autocorrelation and partial

autocorrelation plots of the time series. In the estimation process, the parameters of the

model are estimated using the maximum likelihood method. Diagnostic tests are then

performed to determine the adequacy of the model. If the model is considered adequate, it

is used to forecast future values. If not, then the iterative cycle of identification,

estimation and diagnostic checking is repeated until an adequate model is found.

3.4.2 Autocorrelation and Partial Autocorrelation Functions

The autocorrelation and partial autocorrelation functions of the differenced time series

provide clues about the choice of the orders ofp and q for the autoregressive and moving

average models (Box and Jenkins, 1970). The autocorrelation function of a time series is

similar to correlation in regression models, except that the autocorrelation function

defines the relationship between values of the same variable at different time periods or

lags (k). For a time series (z1, z2, z3, ...), the sample autocorrelation at lag k is given by the

following relationship (Bowerman and O'Connell, 1987):



rkk = {II} if k = 1

k-1
rk — Erk _ij .rk _i

i= 1
k-1

1— Erk_i, j -rj
j=1

rkk =

(3.28)

(3.29)if k = 2, 3, ....

36

n

E (zt _ 0(zt _k —±-)
t=k+1 rk =

n
E(zt _ 2) 2

t=1

(3.27)

The partial autocorrelation function can be described in terms of p non-zero functions of

the autocorrelations (Box and Jenkins, 1970). The partial autocorrelation coefficient of

the observed time series at lag k is given by the following relationship (Bowerman and

O'Connell, 1987):

The graph of rk against lag k is called the sample autocorrelation function (ACF)

or in general a correlogram and the graph of rkk against lag k is called the partial

autocorrelation function (PACF). Correlograms can be used to describe the behavior of

the time series in terms of seasonality, amount of differencing performed on the time

series and appropriate orders of p and q. The correlograms also help determine if the

model is purely an AR or a MA or an ARMA. This process forms a basis for the Box-

Jenkins approach of determining the suitable AR, MA and ARMA model for the given

time series.
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Table 3.1 Identification of AR, MA and ARMA Model Based on ACF and PACF Plot
(Bowerman and O'Connell, 1987)

Model 	 Autocorrelation
Function

Autoregressive Exponential Decay
process of order p
Moving	 average Spikes at lag 1 to q and 0
process of order q 	 after lag q 
Mixed AR and MA Exponential Decay
process 

Partial Autocorrelation
Function

Spikes at lag 1 to p and
0 after lag p
Exponential Decay   

Exponential Decay 

The statistical significance of rk at any lag k is determined by the t-statistic given by the

following relationship:

irk
	 rk	

(3.30)
Srk

Where,

0/2
(	 k---1

Srk 	 1 + 2 Er ?
a+0"	 j=1

The statistical significance of rkk at any k is determined by the t-statistic given by the

following relationship:

trkk = rkk (3.31) 
1      

(n — a +1)1/2

As a rule of thumb, it can be concluded that rkk = 0 if 41 2. In addition, the ACF and

PACF plot can also indicate the seasonality in the time series by showing large positive

values of rk at the seasonal period. If the seasonal time series is not stationary, a seasonal

differencing is done to create stationary time series. The autocorrelation and partial
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autocorrelation plots indicate the amount of seasonal differencing required by showing

significant peaks at lags corresponding to the seasonal time periods.

3.4.3 Optimal Order of AR Model

The appropriate order of an autoregressive model is indicated by the autocorrelation and

partial autocorrelation function of a time series, by using visual interpretations and is

often subjective. Most often, the time series can be fitted with different orders of

autoregressive model. However, only one model order is found to be optimum. This

optimum model order is found to have the smallest Akaike's Information Criterion (AIC)

(Jones, 1974). For this criterion, the mean square error for each model order has a

minimum point. Akaike's Information Criterion (Akaike 1974) is given by the following

relationship:

AICP =ln(u 2 )+ 2( P 1 ) 
N

Where,

N =Number of data samples

a2 = Estimate of the Prediction Error Power for model of order p

(3.32)

Using the iterative process, the AIC value corresponding to each model order p is

determined for each link. The optimum order p for the autoregressive model of the link is

the one having the smallest value of AIC.
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3.5 Stochastic Travel Time Models

3.5.1 Historical Average and Exponential Filter Models

Historical average and exponential filter models are considered as base models due to

their simplicity in computations and are used by many researchers to compare more

complex models. The historical average model uses historical data to obtain smoothed

values of the time series. The historical average model can be used to predict a single

period or multiple periods in advance. The historical average for the period t is given by

the following relationship (Makridakis and Wheelwright, 1978):

yt = (zt_i + 4.2 + ......... + zi_d/n	 (3.33)

Where,

Yr = Predicted value for period t

zt_i + 42 + .... = Observed values at period t-1, t-2, ...

n= Number of values or periods used in the average

The historical average model essentially consists of determining the average of a

set of past values and using that average value as the future value. The decision about

how many time values should be included in the historical average is based on subjective

judgment of the user and a comparison of the error between the observed and predicted

values. However, using a smaller or a larger number of periods in determining the

historical average depends on the amount of variability in the underlying pattern of data.

In the historical average model, equal weights are given to past values.

In an exponential smoothing model unequal weights are given to past values,

where recent observations are given larger weight compared to older observations

(Chatfield, 1984). Exponential smoothing is based on the argument that the most recent
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observation carries more relevant information about the future value and should be given

a larger weight. The general form of the exponential smoothing method is given by the

following relationship (Makridakis and Wheelwright, 1978):

Yt+i yt 	 zt — Yr) 	 (3.34)

or,

y1+1 = a zt + a (1 — a) z t_i + a (1 — aJ zt_2 + a a- a)3 4.3 +  	 (3.45)

Where,

yt,yt+1= Predicted values for period t and t+ 1

zt ,zt_i, 	 = Observed values for period t,

a -10, ij= Smoothing Factor

The appropriate value of the smoothing factor (a) is chosen by the subjective

judgment of the user and is based on the variability of the underlying data. One of the

ways to choose the appropriate value of a is by trial and error. For different values of a,

the root mean square error (RMSE) values are then obtained. The smoothing factor (a)

with the smallest RMSE is chosen as the most suitable model. When a has a value close

to 1, the new predicted value will include a large portion of the error from the previously

predicted values. Conversely, when a is close to 0, the new predicted value will include a

smaller portion of the error from previously predicted values. The effect of choosing a

large or small value of a is analogous to choosing longer or shorter periods in the

historical average method. Due to the simplicity of the historical average and exponential

models, they are used as base models to compare other more complicated time series

models.
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3.5.2 Autoregressive and Moving Average Models

Autoregressive and moving average models form a basis for more complicated ARIMA

models which is a combination of autoregressive and moving average models.

Autoregressive models are similar in form to multiple variable regression models.

Regression models use multiple independent variables (regressors) to explain a single

dependent variable using a linear or non-linear relationship. However, in autoregressive

time series models, regressors are the previous observations in time, hence the name

autoregression. In regression models, the regressors are required to be independent with a

smaller correlation among the regressors. However, in autoregressive models the

regressors (previous observations in time) are not required to be independent and errors

or residuals are not assumed to be independent.

The autoregressive process of order p is given by the following equation

(Makridakis and Wheelwright, 1978):

zt = Oizt-i +02 zt _ 2 +...+ Op Z1_ 19 + at 	(3.36)

Where,

Values of a observed process at equally spaced times t, t-1,

vp = Finite set of weight parameters.

at = White Noise(0,a2) with 0 mean and cy2 variance.

In Equation 3.36, the mean of the time series is assumed to be zero. The introduction of a

constant mean does not affect the autocorrelation function of the time series (Chatfield,

1984). The autoregressive model with a constant mean can be obtained by modifying

Equation 3.36 as follows:
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(zt - P) = 9/(zt-1 -0+ 92(zt-2 - P)±.-.±9p(zt-p mu)±at
	 (3.37)

Where,

,u = A constant mean

Unlike autoregressive models, moving average models use a linear combination of past

errors, instead of the past values of the variable itself. The moving average process of

order q is given by the following relationship (Makridakis and Wheelwright, 1978):

zt = at -	 -02at_2 - 	 - qat-q
	 (3.38)

Where,

at_pat_2 ,...,atq = Previous values of errors at t-1, t-2, 	

01 ,02 ,...,0p = Finite set of weight parameters.

Unlike moving average models, which are based on past errors, autoregressive

models are based on past observations. This can be further explained by the correlation

structure of these two types of models. The moving average model of qth order has the

following correlation structure:

Corr( zo rt _i )* 0 6<q), 	 (3.39)

Corr( zt ,zt _ i )= 0 (j>=q)
	

(3.40)

Where,

zt, zt_Lzt,, = Observed time series at t, t-/,t-j

In a moving average model, there is no correlation between the present value (zt)

and all past values except the most recent one (z t_i, where j<q). Hence, in a moving

average model the autocorrelation function cuts off after lag q. The correlation structure



Corr(zt ,zt _ i )= 	 =a,
var(zt )

Corr(zt ,zt _ i )= al (j>q)

covar(zt,zt_i)
(3.41)

(3.42)
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of an autoregressive model of q th order is different from the moving average model and is

shown below:

Where,

a = Constant parameter

Equation 3.42 shows that there is some correlation between the current value (zt) and all

the past values (zt_j , where]	 which is different from the moving average model.

In addition to autoregressive and moving average models, it is possible to

combine both models. The combined model provides the most general class of models

called as ARIMA process of order p and q. The ARIMA process is given by the

following relationship (Makridakis and Wheelwright, 1978):

zt Oizt-i +02 zt _2 +...+ Op 	 p at -19iat _ 1 - 02at_2 - 	 - gat _q (3.43)

Hence, ARIMA models use a combination of past observations and past errors.

3.5.3 ARIMA Models

The ARIMA model, which can represent homogenous nonstationary behavior, is called

an autoregressive integrated moving average (ARIMA) process of order (p,d,q). ARIMA

models require the input time series to be stationary. The time series is differenced by d

times to obtain the stationary time series. The ARIMA model is described by the

following relationship (Makridakis and Wheelwright, 1978):

Wt = 01 Wt-1 + 02 Wt-2 	 • + 0 p Wt-p at -01a1-1 -92 111-2 - ••• - eg al-q
	 (3.44)
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Where,

w, = V d zt = Differenced series

Vz, = z, — z t _ i = (1-B) z,

V d z, = (1- B) d z,

The backward shift operator B is defined by Bz, = zi_ i or Bin z t = z t _ff, . When d=0, the

model is autoregressive and a pure moving average model.

The general ARIMA model can be represented by the following relationship (Box and

Jenkins, 1970):

0(B)wt = 0(B)at 	(3.45)

In Equation 3.45, 0(B) signifies the autoregressive part, 0(B) the moving average part

and at as white noise.

3.5.4 Subset ARIMA Models

An ARIMA model is specified by determining the order of the autoregressive and

moving average terms. The model uses parameters of AR and MA for all lags up to the

specified order. For example, if lags 1 and n are significant, the full ARIMA model uses

parameters from 1 to n. If no moving average parameters are used, then the model is

called full autoregressive model (F-AR). In some cases some lags between 1 and n may

not be significant. Hence, the subset ARIMA models consist of parameters associated

with lags that are statistically significant. Similarly, if there are no moving average

parameters then the model is called subset autoregressive model.

The seasonal ARIMA model is also considered as a type of a subset model

because seasonal models use significant lags associated with periods of seasonality.
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Seasonal models can be AR, MA or ARMA. The general notation of a seasonal ARIMA

model with both seasonal and non seasonal factors is ARIMA (p,d,q) x (P,D,Q),. The

term (p,d,q) gives the order of the non-seasonal part and the term (P,D,Q) gives the order

of the seasonal part. The value of s represents the number of observations in a seasonal

cycle and D represents the degree of seasonal differencing used. The seasonal

differencing combined with non-seasonal differencing is represented by the following

relationship (Box and Jenkins, 1970):

Wt = (1— B) d (1— B s ) D zt 	(3.46)

Where,

s = Number of observations in a seasonal cycle

D = Degree of seasonal differencing

Hence, the general form of a seasonal ARIMA model is represented by the following

relationship (Box and Jenkins, 1970):

0(B) (1)(B s )Wt = 60(B)0(B s )at
	 (3.47)

Where,

J(B s )= Seasonal autoregressive part

O(B s ) = Seasonal moving average part

The value of D can vary based on the seasonality and is suggested by the significance of

the lags in the autocorrelation and partial autocorrelation diagram. In some cases, both

seasonal and non-seasonal parameters may be present, where significant lags may be

present due to seasonal data and some non recurring non-seasonal data.
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3.5.5 Residual Analysis and Performance of Models

A residual is defined as the difference between observed and predicted values of the time

series. The residuals are plotted against time over the total period of fit and used to

evaluate the overall fit of the time series model. The prediction errors are required to be

random for the time series model to be adequate. If the mean residual is close to zero, it is

concluded that there is no forecast bias in the model (Chatfield, 2000). A large individual

residual suggests an outlier in the data.

In addition to the time series of residuals, an ACF plot of residuals describes the

linear relationship between successive residuals. Hence, the ACF plot of residuals also

provide an indication of whether the model has a good fit and indicates any remaining

structure not explained by the model. For a good prediction model, the expected values of

rk should be zero or close to zero. The statistical significance of the individual rk can be

examined to determine if any exceed 2 / .NP—V (where N is the number of sample

observations) in magnitude.

The chi-square test statistic of the residuals indicates whether the residuals are

uncorrelated or have additional information that could be explained by a more complex

model. This is an approximate statistical test of the hypothesis that residuals are

uncorrelated up to a given lag. The p-values of correlation between errors are also

determined using the significance level of 95%. If the p-value is less than 0.005 then the

hypothesis is rejected and concluded that the residuals are correlated and the fitted model

is not adequate.

The performance evaluation of the bus arrival time prediction model is

determined by evaluating Mean Absolute Relative Error (MARE) and Mean Absolute
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Percentage Error (MAPE). MARE values are used to determine the performance of the

arrival time prediction model, where the average of difference between the observed

arrival time and the predicted arrival time is determined. However, MAPE values are

used to determine the performance of the travel time prediction model. The following

equations state the relationships for these measures:

ActualValuei— ForecastValueil

MARE — 1 =1 
	

(3.48)
n

MAPE _ 1=1

ActualValuei —ForecastValuei
	 x 100

ActualValuei
(3.49)

n

Where,

1= Individual bus trips

n= Total number of bus trips

3.6 Discrete and Finite State Delay Propagation Model

3.6.1 Finite State Markov Chain

A Markov chain is a stochastic process where an outcome of an event depends only on

the present state rather than past states. The process can be visualized using a simple

pictorial representation as shown in Figure 3.1, where the process moves from state to

state 	  If the state of the system is represented by s and m is the number of states, (i, j =

1, 	  m) then the nth order transition probabilities for a Markov process is denoted by

p ii(n) as defined by the following relationship:

pii (n)=P(xi+n =si lxi =s1 )
	

(3.50)
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The transition probabilities py(n) denote the probability that the process goes from

state i at the th step to state j after n steps or transitions. For a homogeneous Markov

process, transition probabilities, pu(n), do not depend on n and can be relaxed to pu . In a

non-homogeneous Markov process, py changes over n. With a slight modification in the

probability structure used for a homogeneous Markov process, a non- homogeneous

Markov process can be obtained. Quite often / and n are substituted as time periods

instead of steps. In that case, when the probability relating the next period's state to the

current state does not change over time, then the process is called a stationary Markov

chain.

Figure 3.1 Discrete and finite state Markov chain with "m" delay states and delay
states as "On-time, Late and Early".
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The number of states is assumed to be finite. The transition probability matrix

{Ai } is a square matrix of size m x m and is represented as follows:

••• Pim

P = (13y} = (3.51)   

`pmt • • • Pim /

Where,

P = {p ii } = Transition matrix

P11' 	 pmm = Transition probabilities from state 1 to m (0 py 1)

m = Number of States.

In Equation 3.51, pH represents the probability that given the system is in state 1, it will

move to state 1 after one step or one period of time. All the entries in the transition

probability matrix are nonnegative and the entries in each row must sum to unity, which

is represented as follows (Winston, 1993):

E P( xn = si I P(xn_ i = si )) =1 	 (3.52)

E	 = 1(Vi)
	

(3.53)
= 1

A Markov process is completely defined by its transition probability matrix and

initial state or an initial probability vector (Taylor and Karlin, 1998). The initial

probability vector gives the probabilities for the various possible starting states and is

represented by Po. Based on an initial probability vector, the probability of the process to

be in state sj after n steps is determined the by following relationship (Kemeny and Snell,

1976):

Pn Pn--1.P(n) (3.54)
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Where,

Pn= Transition probabilities after n steps.

Pn-] = Initial probability vector.

P(n) = Transition matrix between the steps n-1 and n.

By successive application of Equation 3.54, the probability of the process after n steps is

given by the following relationship:

Pn ponP(i)
	

(3.55)
i=1

For a homogeneous n-step Markov process, where P(n) are the same for each step or

time-period, Equation 3.55 can be written as follows:

Pn=PO.P(1)n 	 (3.56)

Similarly, for a non-homogeneous n-step Markov process, Equation 3.56 can be modified

as follows:

Pn= Po.P(1).P(2)...P(n)	 (3.57)

Where,

P(1), P(2), ..P(n) = Transition matrix between steps 0 and 1, 1 and 2,...and steps

n-1 and n.

Pn= Transition probabilities after n steps.

In Equation 3.57, instead of using the power of matrix (Pt, individual matrices P(1),...

P(n) are used to reflect the heterogeneous Markov process.
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3.6.2 Estimation of Transition Probabilities

Transition probabilities are easily estimated if observations are available over time on

individual transitions. Transition probabilities can then be determined as a ratio of the

number of observed delay states to the total number of delay states. Anderson and

Goodman (1957) developed a maximum likelihood estimation of stationary transition

probabilities by the following method:

Maximizing Pn Po .P(1) 	 P(n) 	 (3.58)

Subject to,

py 0

E =1
i= 1

Hence,

nil
fiy = 	 (Vi )

Iny

j

(3.52)

Where,

py = Transition probabilities between states i and j of the matrix P(n).

n ii = Number of events where state changed from i to j.

The estimate ofpy is the ith row and jth column of the table of ny 's divided by the

sum of the ith entry in the table (Anderson and Goodman, 1957). This method counts the

frequency of an event (transition from state i to state j) that occurred in the past and

determines the probability (p i.) of that event divided by the total number of i events. The

limitation of the maximum likelihood of estimation of transition probabilities is that, if

any event is zero, then the p ;; for that particular event is zero.
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3.6.3 Application of Markov Chain to Predict Delay

To apply a Markov chain model to predict bus delays at downstream stops, possible delay

states at the upstream stop have to be determined. In this research, the term "Delay" is

used generically to refer to the "Early", "On-time", and "Late" arrival of a bus at a

time-point. Delay is defined as the difference between the observed and scheduled arrival

time of a bus at a time-point. A constant value "w" is introduced, which is transit agency

may use as a threshold value to define if the bus is "Late" or "Early". Since, the value of

"w" may vary among transit agencies, in this research a value of "w" is assumed as 5

minutes. Bus delays are defined by the following relationships:

Di = Oi — Si 	(3.60)

Late = Di > w,( w > 0)

Ontime = (-w	 +w )

Early = Di < —w

Where,

D, = Bus arrival delay at time-point i.

0, = Observed arrival time of bus at time-point i

S, = Scheduled arrival time of bus at time-point i

w = Constant in minutes (Based on a transit agency's policy to define Early, On-

time and Late bus arrivals)

In Equation 3.60, the bus is "Late" if the delay (D,) is greater than w=5 minutes.

If the delay is between -5 and +5 minutes, the bus is "On-time". Similarly, if the delay is

less than w=-5 minutes, then the bus "Early". For each trip, the delay (D,) is determined

using Equation 3.6. In this research, the delay states (si, s2, s3, s„,) represent possible
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ranges of bus delay between any two time-points. The value of m depends on the number

of delay states between each pair of time-points. In this research, the possible delay states

are limited to On-time, Early, Late. More detailed delay states, such as {-10, -8,....., 0,

....,+8, +10) minutes can be used. However, to incorporate more detailed delay states

requires a large number of samples corresponding to each delay state.

The transition probabilities between delay states are represented by a transition

matrix of size (m x m) with elements {p,d, where each element represents the conditional

probability that given a current bus is delayed s, at time-point i, the bus will be delayed si

at time-point i+1. For each combination of time-points, separate transition matrices are

determined represented by ((Ado], ••• ••• ••••, {pidi_1 3 ). As the bus traverses downstream,

the delay at the downstream time-point (i+1) is predicted using the transition matrix

{p,j},,,+] and the initial probability vector at i. To determine the delay at the downstream

time-points, Equation 3.55 is modified as follows:

do = Po.P(1)....P(n).sT
	

(3.61)

Where,

= Delay at the nth time-point.

S
T = Transpose of delay states.

Po = Initial probability vector with the form {0, 1, 0, ... 0} or E pi =1 at 0th

i=i

time-point.

The nature of the bus delay propagation to downstream time-points can be

homogeneous or heterogeneous. Homogeneous propagation refers to an equal amount of

delay propagated to downstream time-points from an upstream time-point. This is
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assumed to occur if the distances between downstream time-points are similar in length

and traffic characteristics to the preceding time-points. In contrast to homogenous

propagation, a heterogeneous propagation of delay occurs when the links connecting

time-points differ in length and traffic characteristics. In homogeneous delay propagation,

the transition matrix between time-points is assumed to be identical. However, for

heterogeneous delay propagation, the transition matrix differs for each set of time-points

as a result of differences in the length and traffic behavior on the links. Markov chain

models can be used to model either homogeneity or heterogeneity of delay propagation

between any combinations of time-points.

To determine the delay at the immediate downstream time-point 1 measured from

time-point 0 (origin), Equation 3.61 is modified as follows:

di = P0 .(P(1)) 1 .sT 	(3.62)

i 
P// • • • P/m 

V i Si \

di = Po   (3.63)     

Piii I • • • Pim i0,1 ism i

Similarly, based on homogeneous propagation of delay between time-points 0 and 1 and

1 and 2, the delay at time-point 2 measured from the time-point 0, is predicted by using

the following relationship:

d2 = p0. (po i)2 .sT (3.64)

( 

Pi] 	 Phn 
N2 / 	 ■

Si

d2 = PO (3.65)
...\Pm 1	 Pmm 10,1 'ini 1



d2 = Po .P(1).P( 2 ).1 (3.66)

• • • 	 Pim
(

Pi i 	 • - • Pim B SI 

(3.67)

— • 	 Pmm

d2 = Po

) 0,1■Pm1 )1,20m i
•••

Pnlm
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Hence, by the successive application of Equations 3.62 and 3.63, the delay at any

downstream time-point can be determined from any upstream time-point assuming a

homogeneous propagation of delay.

However, assuming two corresponding links are homogeneous in characteristics

may not be realistic. In most instances, links have variable lengths, traffic volumes and

number of traffic signals. In such a situation, a heterogeneous Markov chain is used by

obtaining different transition probability matrices between the corresponding time-points.

For example, to predict the delay at time-point (i=2) from origin (i=0), Equation 3.61 is

modified as follows:

Where,

r P11 • • • Pim
i	 \
P11 • • - Pim

= Transition probabilities between

P MI • • • P Mtn 1 0 , 1 P1111 • • • PM M /1 , 2

time-points 0, 1 and 1, 2.

By expanding Equation 3.61, the delay at the nth time-point from any kth (k<n) time-point

can be determined by the following relationships:

do = po. ( p )n—k .5,7•
	

(3.68)

do = Po•P(k )••••P(n).s T (3.69)
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Equation 3.68 assumes that links between time-points k and n have similar

characteristics or are homogeneous and Equation 3.69 assumes that links between time-

points k and n have dissimilar characteristics, or are heterogeneous. The difference

between Equations 3.68 and 3.69 is that in Equation 3.68, the transition probability

matrix is successively powered by an integer. In Equation 3.69, individual transition

probabilities between any two time-points are multiplied.



CHAPTER 4

CASE STUDY ANALYSIS

4.1 Introduction

In this chapter, an explanation of the bus route selected as a case study is provided. The

structure of the source data, which is gathered from an APC system installed on the buses

running along the route, is also explained. The chapter provides a discussion of the

variables required to successfully develop time series models for bus arrival time

prediction. In addition, an analysis of the bus delay propagation pertaining to the case

study is performed. The bus arrival time algorithm and the results obtained for the case

study is presented in subsequent chapters.

4.2 Description of a Case Study

The data for this research was obtained from buses equipped with a GPS based APC

system and operated in the State of New Jersey. Such buses run along a number of

routes, one of which is route number 62, which runs from downtown Newark in Essex

County to Woodbridge Center Mall in Middlesex County. The bus route map is shown in

Figure 4.1.

The one-way trip time from Newark's Penn Station to Woodbridge Center Mall is

about 1 hour 40 minutes. The bus travels through different land uses such as a downtown

location in the city of Newark, industrial areas at Port Newark/Elizabeth, and suburban

locations in towns of Metuchen, Edison and Woodbridge. The route is also comprised of

different types of roadways such as, urban arterials, state highways and rural roads. The
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route comprises of roadways with a variety of traffic volumes and signal density. These

conditions have a direct effect on bus travel time. The bus route consists of 135 stops

with 14 designated time-points.

Figure 4.1 GIS diagram of bus route 62 with time-points.
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4.3 APC Data Structure

The data collected from the APC system consists of 7 months of data from June to

December 2002. In the database used in this research, information about the bus stop is

available only if the bus actually stops there. If the bus did not stop at a bus stop because

of the absence of boarding or alighting passengers, then no information is recorded. The

APC system provides the following information about the existing condition of the bus:

Location of bus in geographical coordinates (latitude and longitude);

Scheduled arrival and departure time at time-points only;

- Observed arrival and departure time at time-points and bus stops;

Time- points where the bus stopped;

Dwell time at bus stops, door open and close time; and

Number of passengers boarding and alighting.

The information about a bus trip provided in the data source is shown in Table

4.1, which consists of data for a single trip. In the table, "Stop ID" represents the

identification given to each stop along the bus route. The door open time and close time

at the corresponding stop is provided with the corresponding scheduled arrival time.

Since Stop ID's 30, 40 and 80 are not time-points, the scheduled arrival times for these

stops are not available. In addition, the bus trips are classified in the database into seven

different time of day periods based on schedule start time of the trip. The classification of

time of day is presented in Table 4.2.. These times indicate the scheduled trip start time.
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Table 4.1 Sample AVL/APC Data of a Single Bus Trip

Scheduled
Open Close Stop ScheduledStart	 Ons Offs

Time	
Time Time ID	 Time

08:05:00 080118 080506 	 10 	 8:05 AM 	 15 	 0
08:05:00 080812 080814 	 40 	 0 	 0
08:05:00 080929 081006 50 	 8:09 AM 	 9 	 1
08:05:00 081121 081231 	 60 	 1 	 1
08:05:00 081313 081322 	 70 	 1 	 1
08:05:00 082052 082100 	 0 	 0 	 1
08:05:00 082350 082429 140 8:25 AM 	 3 	 4
08:05:00 082640 082647 	 0 	 0 	 2
08:05:00 082915 082930 150 	 8:28 AM 	 2 	 1
08:05:00 083140 083212 160 	 8:31 AM 	 1 	 6
08:05:00 084018 084023 190 	 0 	 1

Table 4.2 Classification of Time of Day

Time of Day	 Hour of Day

Early Morning 	 4:00 - 7:00
Morning Peak 	 7:00 - 9:00
Late Morning 	 9:00 — 12:00
Mid-day 	 12:00 —14:00
Early Afternoon 	 14:00 —16:00
Afternoon Peak	 16:00 — 18:00
Evening 	 18:00 - 21:00

4.4 Spatial Analysis of Link Travel Time

The preliminary analysis of the bus travel time data consists of obtaining travel time

values from the system's database to arrange the data in a time series. This process

consists of arranging the travel time data so that it corresponds to identified links and
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time periods. The observed travel time between two time-points is the difference between

the door open time at the following stop and the door close time at the preceding stop.

The door close and open times are obtained from the APC system installed in the bus.

In this research, the coefficient of variation of travel times for each link is

determined to study the characteristics of the links along the bus route. It is presumed that

the coefficient of variation of links along the bus route varies based on the land use of the

link and not the link length. It is assumed that a higher coefficient of variation is observed

at urban and downtown locations and a lower coefficient of variation is observed at rural

and highway locations along the bus route.

For normal (Gaussian) distributions, the coefficient of variation (c v) measures the

relative scatter or variation in the data with respect to the mean and is expressed as the

ratio of standard deviation to mean. A higher coefficient of variation is associated with a

higher variability of travel times and a lower coefficient of variation is associated with a

lower variability of observed travel times.

The coefficient of variation of travel time between links and time-points was

found to vary depending on the length of the link and traffic characteristic along the link.

These characteristics of the link are influenced by the link location (central business

district (CBD), suburban or rural location). Table 4.3 provides the coefficient of variation

of travel time at different links of the study bus route after averaging the travel times. For

a link within the CBD (link 10-50), the coefficient of variation is higher than that of a

link located outside the CBD (link 50-140), in spite of the fact that the length of the link

50-140 is longer than the link 10-50. This finding concurs with the fact that highway

segments have less fluctuation in volume and speed than road segments located in the
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CBD areas. It also shows that the coefficient of variation is independent of the link length

and is the function of the link's land use and traffic characteristics.

Table 4.3 Coefficient of Variation of Observed Travel Times

Starting
Time-
point

Ending
Time- 	 Link Characteristics
point

Link Length Coefficient of
Variation(miles)

10 50	 CBD-Local streets 0.59 0.316

50 Local streets and140
highway

1.32 0.104

140 180	 Local streets 4.70 0.096

180 300	 Local streets 3.70 0.098

300 500	 Local streets 3.20 0.168

500 Highway and suburban900 streets 8.91 0.152

900 1000	 Suburban streets 3.10 0.302

4.5 Bus Delay Propagation Analysis

4.5.1 Characteristics of Bus Delay

The propagation of delay between time-points depends on traffic characteristics and the

length of the link. A longer link distance allows more time for the bus drivers to recover

the schedule at the downstream time-point, if the bus departed late at the upstream time-

point. In addition, the traffic characteristics and roadway type of the link also influences

the schedule recovery process. Hence, bus delay characteristics at individual time-points

were evaluated in this research prior to modeling the delay propagation from the origin

time-point to downstream time-points.
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The percentage of trips for each of the three delay states for all time-points was

obtained. The delay states were determined assuming values of "w " from 1 to 5 minutes,

which is the amount of flexible time included in the schedule. The percentage of trips for

each delay state for all time-points with w=4 and 5 minutes are shown as Figures 4.2 and

4.3, respectively.

Figure 4.2 Percentage trips delayed at individual time-points with w=4
minutes.
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Figure 4.3 Percentage trips delayed at individual time-points with
w=5 minutes.

Figures 4.2 and 4.3 show that the difference between the percentage of "On-time"

and "Late" trips decreases as buses move downstream. For example, in Figure 4.2, the

percentage of trips "On-time" at TP=140 is 80% and "Late" is 22%. At TP=900, the

percentage trips "On-time" and "Early" are 50 percent each. In addition, as the value of

"w" decreases, the percentage of "Late" trips increases and "On-time" trips decrease. At

smaller "w" values, the percentage of "Late" trips is higher than "On-time" trips for all

time-points.

The value of "w" to be adopted is subject to transit agencies. In this research, w=5

minutes is assumed to be a reasonable time period to determine the bus delay status. The

percentage of early trips is not significant except for smaller values of "w". This is

because transit agencies discourage early arrivals. In reference to Figures 4.2 and 4.3, the

bus arrival prediction models should be able to maximize the "On-time" and minimize
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the "Late" percentage of trips at each time-point. Figures 4.2 and 4.3 also show the

"trouble" time-points, where buses have higher probability of arriving late and being

unable to adequately recover the schedule.

4.5.2 Non-Homogenous Delay Propagation

Bus delay propagation to downstream time-points can be either homogeneous or

heterogeneous. The type of delay propagation is important in modeling the delay

propagation. Regardless of whether the delay propagation is homogeneous or

heterogeneous, a Markov chain model can be devised. Homogeneous propagation refers

to an equal amount of delay propagated to downstream time-points from an upstream

time-point. This is assumed to occur if the downstream time-points are equidistant in

length and traffic characteristics are similar along the route. In contrast to homogenous

propagation, heterogeneous propagation of delay occurs when the links connecting time-

points differ in length and traffic characteristics. In this research, the study bus route

travels through links variable in length and traffic characteristics. Based on Table 4.4,

which shows the links connecting time-points for the route under study are variable in

length and land-use, it can be assumed that the links connecting individual time-points

vary in traffic characteristics as well.
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Table 4.4 Linear Regression Slopes Between TP=10 and
Downstream Time-points

Downstream
Time-points

Regression Slope
(Intercept = 0)

50 0.966

140 0.312

180 0.454

300 0.413

500 0.896

900 0.651

1000 1.086

The homogeneity or heterogeneity of delay propagation along a bus route can be

determined by comparing the slopes of a linear regression of delay at individual time-

points. The linear regression of the delay at the origin time-point is the independent

variable (x) and the delay at any downstream time-point (y) is the dependent variable

observed during previous trips. Regression slopes less than 1 suggest that the delay at the

downstream time-point (y) is reduced as the bus travels from one time-point to another.

Hence, the slope of the resulting linear regression represents the schedule recovery by bus

drivers and the delay propagation at a particular time-point along the link. The slopes are

plotted for each link along the entire bus route. If the slopes are decreasing or increasing

towards the destination time-point at a uniform rate, the links along the bus route can be

termed homogeneous.

A linear regression was performed to determine the linear relationship of the bus

delays at the origin time-point (TP=10) and each of the remaining downstream time-

points. Figure 4.4 shows the slopes of the regression model relating the delay at the
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origin time-point to the delay at each downstream time-point. For example, the slope at

TP=50 is greater than 1 and much higher than the slope at TP=140. This relationship

shows that buses are less able to recover their schedule at TP=50 compared to TP=140.

Figure 4.4 also shows that the slopes are not decreasing or increasing uniformly towards

the destination time-point. Hence, it could suggest that the delay propagation is not

homogeneous between individual links and the transition probabilities of each link are

not the same. The existence of homogeneous delay propagation would have generated a

uniformly decreasing or increasing curve.

Figure 4.4 Linear regression slopes between TP=10 and downstream
time-points.

Ideally, if there is a delay at the origin time-point, delays at the downstream time-

points should gradually reduce and reach a negligible value at the destination time-point.

This means bus drivers should be able to fully recover the schedule by the time the bus

reaches the destination time-point. However, from Figure 4.4 it is observed that for the
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study route bus drivers are not able to fully recover the schedule at the destination time-

point (TP=1000), though some amount of schedule recovery occurs at TP=140, as

indicated by the decreasing slope from TP=50 to TP=140. An important observation from

Figure 4.4 is that the schedule recovery process varies at each link between time-points

because of the variable length of link and traffic characteristics. Hence, it would not be

appropriate to assume that delay would propagate homogeneously towards downstream

time-points.

The schedule recovery process shown in Figure 4.4 consists of all the samples (all

available bus trips), and no temporal differentiation has been made. For example, a single

slope is used to represent the schedule recovery process between the links. However, the

amount of schedule recovery may vary during different time periods such as peak and off

peak hours. Figure 4.4, suggests that the schedule recovery process varies at each link as

shown by the varying amount of regression slopes.



CHAPTER 5

PREDICTION OF BUS TRAVEL TIME

5.1 Introduction

The bus travel times are predicted independent of the delay propagation model, which is

based on Markov chains. The bus travel time prediction model is then included as a part

of a combined model with delay propagation model to predict bus arrival times. In this

chapter, the selection of appropriate autoregressive time series models to predict bus

travel time is presented. In addition, the parameter estimates and performance measure of

the models are also presented. Full autoregressive, seasonal and subset autoregressive

models were then developed for individual links that would be used to predict bus travel

times. Finally, comparisons between the autoregressive models and the more complex

models were performed to select the most appropriate model.

5.2 Graphical Analysis

Bus travel time series were obtained for each bus stop along the bus route for different

times of the day. The time series starts from Monday 5 AM and extends to Sunday 8 PM,

as shown in Figures 5.1 and 5.2. Figure 5.1 shows bus travel time between TP=10 and

TP=50 and Figure 5.2 shows bus travel time between TP=50 and TP=140. Each point in

the graph is the mean bus travel time for different days at the same time of day. The

vertical axes in the time series graphs represent the bus travel time between stops. The

horizontal axis represents the day of week.
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Figure 5.1 Time series plot of observed travel time for link 10-50.
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Figure 5.2 Time series plot of observed travel time for link 50-140.
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The above time series provided some insight into the variability, trend and cyclic

behavior of bus travel time. A distinct observation was that the time series graphs were

very similar for all links in terms of trend and variability during time of day. On each day

of the week, morning and evening peak hours showed higher travel times than other

times of day. However, the peaks varied on different days. The graphs showed that the

mean travel time increased from early morning towards the morning rush to afternoon

peak and decreased thereafter, which is a very typical observation of traffic condition.

The graphs showed higher travel time on Monday with slowly decreasing travel times for

the remainder of the week.

The highest peaks in Figures 5.1 and 5.2 are primarily associated with the

afternoon peak period. The afternoon peaks are usually followed by a smaller value of

travel time in the evening. Similar trends in time series were obtained for both links 10-

50 and 50-140. It was observed that the cyclic behavior is more prominent on link 10-50

than on link 50-140. This is because link 50-140 has a lower coefficient of variation and

the link consists of highway sections with a lower probability of recurring congestion.

5.3 Autocorrelation Functions

The sample ACF/PACF plot and model fit plot were obtained for each time series. The

ACF and PACF plots differ by link and by time of day. The ACF plot showed

statistically significant lags at the peak periods, but also showed seasonality extending

five days starting from Monday through Friday. Hence, in addition to full autoregressive

models, subset/seasonal autoregressive models were also considered to determine bus
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travel time models using significant lags only and comparing these models with full

autoregressive models.

The ACF and PACF plots indicated a full autoregressive model with lag 7 for

most of the links. Hence, the time series fitted autoregressive parameters with p= 7. The

ACF plot of link 10-50 is shown in Figure 5.3. For link 50-140, the ACF plot is similar to

the ACF plot of link 10-50. Lags are shown in the horizontal axis and the autocorrelation

(rk) is shown on the vertical axis. It can be seen from Figure 5.3 that all the parameters of

the lags from 1 to 7 were not significant. The significant lags are 2, 5 and 7. These lags

correspond to the morning peak, early afternoon and evening periods. The full

autoregressive model was developed based on the above observations.

Figure 5.3 Autocorrelation plot of observed travel time for link 10-50.
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The presence of seasonality in all time series was also checked with ACF and

PACF plots. The time series of link 10-50 showed peaks at lags 7 and 14, but the peaks

die down exponentially as shown in Figure 5.3. Hence, there is strong seasonality in this

link. From the ACF and PACF plots, it is clear that the peaks at periods 2 and 7, which

correspond to morning and afternoon peak, were more prominent. Using these

observations for all links, the parameters were selected for full, subset and seasonal

models.

5.4 Historical Average and Exponential Smoothing Models

The selection of the appropriate number of periods (n) used in the historical average

model and the smoothing factor (a) in the exponential smoothing model was made

iteratively. Mean absolute percent error (MAPE) was used as the performance measure to

compare the performance of the model for different values of n and a. The higher the

value of (n) in the historical average model, the smoother the fit of the curve resulting in

larger reduction of the overall MAPE of the prediction model. In the exponential

smoothing model, the lower value of a gives a smoother model and reduces the overall

MAPE. The smoother curve means the variance in the original time series is not well

described by the model.

From Table 5.1, the overall MAPE for link 10-50 is below 20% and 10% for the

rest of the links except for link 300-500. The MAPE values observed for all the links are

consistent with the coefficient of variation of travel times at these links. For example, the

coefficient of variation for link 50-140 was lower than the coefficient of variation for link

10-50. Similarly, the MAPE of link 50-140 is lower than that of link 10-50.
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Table 5.1 MAPE for Historical Average and Single Exponential
Smoothing of Observed Bus Travel Time

Links
Historical 	 Exponential
Average 	 Smoothing  

a
10-50 20.81 3 20.03 0.4

50-140 5.60 3 5.75 0.3

140-180 4.35 5 5.55 0.1

180-300 5.21 5 7.24 0.1

300-500 12.50 6 13.40 0.3

500-900 7.50 6 7.46 0.1

900-1000 7.55 6 8.00 0.1

Figures 5.4 and 5.5 show estimates of bus travel times using the historical average

and exponential smoothing models and the observed travel time for links 10-50 and 50-

140, respectively. The MAPE achieved for both models did not vary significantly. The

estimated travel times obtained from both models are also similar. However, the

smoothing models are not able to correctly estimate the peak values during certain time-

periods. These peak values are the results of re-occurring peak conditions along the bus

route. For this reason, historical average and exponential smoothing models are not

suitable to predict bus travel times in links where there is substantial peaking of bus

travel time data.
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Figure 5.5 Smoothing model diagram for link 50-140.
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5.5 Minimum AIC and Parameter Estimates

The minimum value of the AIC is used to select the appropriate number of "p"

parameters in the full autoregressive model. In addition, the Mean Absolute Percentage

Error (MAPE) of the model is also used to evaluate the performance of the model. The

MAPE and AIC were determined for different "p" parameters for two links, 10-50 and

50-140, as shown in Figures 5.6a and b. In both figures, there is a sudden drop in the AIC

close to the optimum value of "p". The sudden drop in the AIC is also consistent with the

drop in the MAPE. This confirms that the model selected based on minimum AIC

consistently shows minimum MAPE as well. The process of selecting the final models

using minimum values of MAPE and AIC were used for all links.

The number of parameters used in developing the full autoregressive model is

always equal to the number of time-periods (time of day) in a day minus one time period.

For example, in link 10-50, the minimum MAPE and AIC occurred at p=6. The number

of time periods within any day for link 10-50 is 7 demonstrating the relationship between

the optimum p value and the number of time periods within the day. Similarly, for links

140-180 and 180-300, the morning peak trips were not available, which resulted in one

less time period and one less parameter in the full autoregressive model. Hence, the

number of autoregressive parameters was 5 (p=5).
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Figure 5.6 Minimum AIC and MAPE for links a) 10-50 and b) 50-140.
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5.6 Full Autoregressive Model

The analysis using full autoregressive models showed that higher orders ofp resulted in a

MAPE around 15% for link 10-50 and less than 10% for the rest of the links as shown in

Table 5.2, with the exception of link 140-180 which has a MAPE of 10.78%. These

values are a significant improvement from the historical average and exponential

smoothing models. The AIC for all links listed in Table 5.2 are minimum values. Hence,

the order of autoregressive models is optimum. The results also showed that single order

of differencing is appropriate for the full autoregressive models.

Table 5.2 MAPE for Full AR Model of Observed Bus Travel Time

Link MAPE Model AIC

10-50 14.30 (6,1,0) 115.14

50-140 4.61 (6,1,0) 93.71

140-180 10.79 (5,1,0) 160.77

180-300 4.72 (5,1,0) 98.91

300-500 6.53 (6,1,0) 148.56

500-900 4.88 (6,1,0) 184.51

900-1000 7.48 (6,1,0) 134.05

Table 5.3 provides the estimated parameters for link 10-50 with the standard

error, t-value and p-values. The p-values for all parameter estimates are significant at a

95% confidence level with one parameter having a p-value of 0.0540. The full

autoregressive prediction model for link 10-50 can be written as follows:

zt = —0.632zt_i —0.751zt_2 —0.677zt_3 — 	 —0.315zt_6 +at 	(5.1)

Or,
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(1+0.632B 1 +0.751B2 +0.677B3 + 	 +0.315B6 )zt =at 	(5.2)

Table 5.3 Parameter Estimates of Full AR Model for Link 10-50

Model = F-AR (6,1,0)

Parameter Estimate	 Standard
Error t Value	 Pr > Iti

col -0.63262 0.15875 -3.99 <.0001

92 -0.75123 0.14151 -5.31 <.0001

93 -0.67767 0.17677 -3.83 0.0001

94 -0.51271 0.17540 -2.92 0.0035

-0.76909 0.14209 -5.41 <.0001

96 -0.31504 0.16348 -1.93 0.0540
MAPE 14.30%

The estimated and observed travel times for links 10-50 and 50-140 using full

autoregressive models are shown in Figures 5.7 and 5.8, respectively. The peaks

predicted by the full autoregressive model are similar to the observed peak values, unlike

the estimate predicted by the historical average and smoothing models. These figures also

include 95% upper and lower confidence limits of the predicted travel time. The observed

travel times are well within the confidence limits.
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Figure 5.7 Fit diagram of full AR model for link 10-50.

Figure 5.8 Fit diagram of full AR model for link 50-140.
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5.7 Seasonal and Subset Autoregressive Model

The results of fitting a seasonal autoregressive model on the time series are shown in

Table 5.4. For all links, the order of seasonal models used was 7 based on 7 time periods

in a given day. It was assumed that the seasonality is repeated each day. However, the

order of seasonality of links 140-180 and 180-300 was 6 because the number of time

periods available was 6 in a day. For link 10-50, the MAPE obtained was similar to that

of the full autoregressive model. However, the MAPE was higher for the seasonal model

compared to the full autoregressive model for all other links. This demonstrates that a

seasonal model may not be suitable for predicting bus travel times. Figures 5.9 and 5.10

show observed and predicted bus travel times for links 10-50 and 50-140, respectively.

Table 5.4 MAPE for Seasonal AR Model of the Observed
Bus Travel Time

Links MAPE Model AIC

10-50 18.40 (1,1,0)(1,1,0)7 111.85

50-140 6.27 (1,1,0)(1,1,0)7 88.21

140-180 14.15 (1,1,0)(1,1,0)6 145.60

180-300 5.97 (1,1,0)(1,1,0)6 88.63

300-500 6.68 (1,1,0)(1,1,0)7 123.53

500-900 7.25 (1,1,0)(1,1,0)7 168.44

900-1000 8.93 (1,1,0)(1,1,0)7 118.48
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Figure 5.9 Fit diagram of seasonal AR model for link 10-50.

Figure 5.10 Fit diagram of seasonal AR model for link 50-140.
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The subset model uses only those parameters that are significant rather than all

the parameters as in the full autoregressive model. Subset models consist of parameters

associated with the significant lags observed in ACF and PACF plots. For all links,

parameters associated with statistically significant lags were identified from the results

obtained from the full autoregressive model. Estimates of the statistically significant

parameters have p-value less than 0.005. These significant lags are shown in Table 5.5.

For example, for link 10-50, parameter estimates corresponding to lags 2 and 5 are

statistically significant. Hence, the subset model for the link is represented by S-AR(2) at

lags 2 and 5 in Table 5.5.

Table 5.5 MAPE for Subset AR Model of Observed Bus Travel Time

Link MAPE Model AIC

10-50 17.81 S-AR (2) at lags 2, 5 126.72

50-140 5.914 S-AR (2) at lags 2, 7 109.73
140-180 14.04 S-AR (2) at lags 1 and 6 171.00

180-300 6.45 S-AR (2) at lags 1 and 6 108.96

300-500 8.09 S-AR (1) at lag 7 157.77
500-900 6.73 S-AR (2) at lags 2 and 7 196.55

900-1000 9.05 S-AR (2) at lags 1 and 7 141.18

Table 5.6 provides the estimated parameters for link 10-50 with the standard

error, t-value and p-values. The p-values for all of the parameter estimates are significant

at a 95% confidence level. The subset autoregressive model for link 10-50 can be written

as follows:

zt = —0.335 zt_2 —0.464zt_5 +at 	(5.3)
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Or,

(1+0.335B 2 +0.464B5 )zt =at 	(5.4)

Table 5.6 Parameter Estimates of Subset AR Model at Lags 2 and 5
for Link 10-50

S-AR (2) at lags 2 and 5

Parameter Estimate Standard
Error t Value

CO2

5

-0.33568

-0.46432

0.12556

0.12821

-2.67

-3.62

MAPE 17.81%

Pr > It!

0.0075

0.0003

Figures 5.11 and 5.12 show estimated and observed bus travel times for links 10-

50 and 50-140, respectively. For the time series, the peaks predicted by the model do not

fit the observed pattern as the observed peaks seem to lag behind the predicted peaks as

seen in the historical average and exponential smoothing model. Hence, subset

autoregressive models may not appropriately model the observed bus travel time during

peak periods.
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Figure 5.11 Fit diagram of subset AR model at lags 2 and 5 for link 10-50.

Figure 5.12 Fit diagram of subset AR model at lags 2 and 7 for link 50-140.
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5.8 Comparison of Autoregressive Models

The analysis showed higher order full autoregressive models resulted in an MAPE of

around 15% for link 10-50 and 4.5% for link 50-140. This is compared to the historical

and smoothing exponential models which resulted in MAPE values of 20.81 and 5.61.

The MAPE for the full autoregressive model are lower than the MAPE obtained from

historical average, exponential smoothing models, seasonal and subset autoregressive

models.

The results also showed that the appropriate model "p" parameter was 6 except

for links 140-180 and 180-300, for which it was 5. In most cases, lags pertaining to peak

hours were more significant than lags of other periods. The peaks predicted by the full

autoregressive model are similar to the observed peak values.

For seasonal models there was a mixed response, since some links showed strong

seasonality and some did not. For example, the time series for link 10-50 showed peaks at

lags 7 and 14, but the peaks die down exponentially. For link 50-140, the peaks at lags 2

and 5 were statistically significant followed by statistically significant peaks at 10 and 14.

However, there was not much increase in MAPE using seasonal models in comparison to

full autoregressive models.

The subset model focuses on using individual significant parameter estimates

rather than all the parameter estimates as in the full autoregressive model and consists of

parameters associated with the significant lags only. The peaks predicted by the model do

not fit the observed pattern as the observed peaks seem to lag behind the predicted peaks

as in historical average and exponential smoothing model.
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In conclusion, full autoregressive models perform better than seasonal and subset

models. The presence of seasonality is not significant except in a few cases, because of

the larger variation in observed travel times. Hence, seasonal and subset autoregressive

models do not improve the overall MAPE above the performance of the full

autoregressive model.

5.9 Cross Validation of Full AR Models

It is important to determine if full autoregressive models would perform differently when

the time series is shortened. If the MAPE of the full autoregressive model is very

different for the time series with a smaller amount of data, then the ability of the model to

consistently give similar MAPE may be questionable. The ability of the full

autoregressive model to predict bus travel time using variable lengths of time series was

validated by splitting the time series data.

The full autoregressive model for the entire week (Monday,   Saturday) of

time series data was split and evaluated using only the first four days (Monday, ......,

Thursday). Due to the fact that the number of samples was reduced, the parameter

estimates for the model using the time series for the entire week and the parameter

estimates for the model using a time series consisting of the first four days differed even

though the full autoregressive model order was the same. In addition to the consistency of

models, the analysis also showed the individual model's ability to provide reasonable

forecast with a smaller number of time series data.

To compare the model's performance due to the reduced sample and to test the

ability of the models to forecast the following two days of data, MAPE for individual
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links were obtained by using the reduced time series data consisting of four days only.

Table 5.7 shows the comparisons of results obtained by using the full 7-day week, five

days and four days of data to build full autoregressive models. The MAPE values using

the entire week of data, five and four days of the data are shown in Table 5.7. The table

shows that the MAPE increases slightly with a decrease in the number of days of time

series data. However, there are no large changes in the MAPE as a result of the reduction

in the number of samples in the time series.

Using time series consisting of five and four days, one day and two days lead

forecasts were performed and the MAPE was obtained and shown in Table 5.7. The

results showed that the MAPE for two days lead forecast was higher than MAPE for one

day lead forecast. This showed that less than a full week of data can be used to

adequately model full autoregressive given the resulting MAPE value do not vary

significantly. However, in this research full week of data was used in the full

autoregressive model.

Table 5.7 Cross Validation of Full AR Models

Links

Mean Absolute Percent Error (%)
Using Full
Week Time

Series

Using Five
Days Time

Series

Using Four
Days Time

Series

Two Days
Lead

Forecast

One Day
Lead

Forecast

10-50 14.30 15.55 15.34 20.51 13.42

50-140 4.61 4.94 5.32 4.96 2.87

140-180 10.79 11.10 11.71 9.89 11.59

180-300 4.72 4.93 4.26 7.18 4.66

300-500 6.53 6.28 6.45 5.22 8.81

500-900 4.88 4.85 4.45 7.13 4.75

900-1000 7.48 5.63 5.43 8.58 6.71



CHAPTER 6

PREDICTION OF BUS DELAY

6.1 Introduction

This chapter describes the use of a Markov process to determine the propagation of bus

delay and provides a basis for using bus delay in the prediction of bus arrival times. The

propagation of bus delay based on a Markov process has been explained in this chapter.

Based on an assumption of either homogeneous or heterogeneous traffic conditions

between the links, the transition probabilities are predicted and compared with observed

transition probabilities. Predicted transition probabilities obtained using heterogeneous

traffic conditions between links were close to the observed transition probabilities.

6.2 Estimation of Transition Probabilities

The formulation of a Markov process to determine bus delay propagation requires the

estimation of transition probabilities of delay states between time-points. To determine

transition probabilities of delay states between time-points, the number of observed delay

states were obtained and classified as "On-time", "Late" and "Early" at each time-point.

The transition probabilities were obtained using the following relationship:

,m E (1,3},k E (LK}	 (6.1)

Where,

m = Total number of delay states = 3

ny = Number of events where state changed from i to ./
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k = Number of time-points

The delay states and the representative transition matrix is shown as follows:

Pij

n
rl 1

P21

31

P12

P22

P32

P13

P23

P33

ontime — ontime

late — ontime

early — ontime

ontime —late

late —late

early — late

ontime — early \

late — early

early — early ,,

(6.2)

Each po represents the probability of being in a delay state at the downstream time-

point when the upstream time-point has a delay state of (i). For example, pi represents

the probability that the delay state at the downstream time-point is "On-time", given the

delay state at the origin time-point (TP=10) is also "On-time".

For each combination of origin time-point (TP=10) delay state and downstream

time-point delay state, transition probabilities (py) were determined using Equation 6.1

and are shown in Table 6.1. In addition, the transition probabilities of delay states

between consecutive time-points were determined as shown in Table 6.2. The observed

transition probabilities for the remaining links are provided in Appendix A. In Table 6.1,

the probability of the bus being "On-time" at a downstream time-point is higher if the

bus is "On-time" at the origin time-point. The "Early" delay state has lower frequency

than other delay states. This is because transit agencies discourage drivers to reach time-

points early.

The largest probability in any transition matrix occurs when the upstream time-

point has "On-time" delay state and the corresponding delay state at the downstream

time-point is also "On-time". This shows that most of the trips on the study route reach

time-points "On-time" when buses reach the upstream time-points "On-time". However,

this probability decreases as the bus moves downstream, as seen from the lower transition

probabilities for time-points 180 to 1000 in Table 6.1.



Table 6.1 Observed Transition Probabilities Between TP=10 and Downstream
Time-points Based on Maximum Likelihood Estimation

On-time Late Early Downstream
TP

Total Sample
Size

On-time 0.876 0.119 0.005 50 215

Late 0.107 0.893 0.000

Early 0.000 0.500 0.500

On-time 0.905 0.048 0.048 140 274

Late 0.595 0.380 0.025

Early 0.500 0.000 0.500

On-time 0.653 0.327 0.020 180 86

Late 0.622 0.378 0.000

Early 0.000 0.000 0.000

On-time 0.762 0.201 0.037 300 271

Late 0.596 0.385 0.019

Early 0.333 0.000 0.667

On-time 0.715 0.252 0.033 500 204

Late 0.436 0.526 0.038

Early 0.333 0.333 0.333

On-time 0.657 0.224 0.119 910 114

Late 0.383 0.553 0.064

Early 0.000 0.000 0.000

On-time 0.638 0.313 0.050 1000 266

Late 0.431 0.559 0.010

Early 0.000 0.500 0.500
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Table 6.2 Observed Transition Probabilities Between Time-points Based on
Maximum Likelihood Estimation

On-time Late Early Upstream
Time-point

Downstream
Time-point

On-time 0.876 0.119 0.005 10 50

Late 0.107 0.893 0.000

Early 0.000 0.500 0.500

On-time 0.922 0.026 0.052 50 140

Late 0.353 0.647 0.000

Early 0.000 0.000 1.000

On-time 0.777 0.215 0.008 140 180

Late 0.050 0.900 0.050

Early 0.667 0.000 0.333

On-time 0.865 0.125 0.010 180 300

Late 0.146 0.854 0.000

Early 0.200 0.200 0.600

On-time 0.790 0.189 0.021 300 500

Late 0.132 0.868 0.000

Early 0.250 0.000 0.750

On-time 0.898 0.020 0.082 500 910

Late 0.105 0.895 0.000

Early 0.000 0.500 0.500

On-time 0.887 0.113 0.000 910 1000

Late 0.000 1.000 0.000

Early 0.545 0.182 0.273
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6.3 Prediction of Transition Probabilities

The transition probabilities for all combinations of time-points were predicted using

Markov chains. This was done based on both homogeneous and heterogeneous

propagation of delay between time-points. Transition probabilities of delay states were

predicted at downstream time-points initially with reference to the origin time-point

(TP=10). Thereafter, the transition probabilities of delay states were predicted with

reference to the time-point (TP=50) and so on.

Based on homogeneous delay propagation between time-points, the transition

probabilities between the downstream time-point (TP=1000) and time-point (TP=10) are

determined as follows:

P10-1000 = P10-50•P50-140•P140-180.P180-300•P300-500•P500-900•P900-1000 (6.3)

P10-50 = P50-140 = P140-180 = 	 = P900-1000 	 (6.4)

P10-1000 = (P10-50)7 (6.5)

(0.876	 0.119	 0.005\7

o— l000 = 0.107	 0.893	 0.000	 (6.6)

\0.000	 0.500	 0.500 ji0_50

Where,

P 1 0-56 •••• P 1 0-1 000 = Transition probabilities of delay states between TP=10 and

remaining time-points.

Similarly, the transition probabilities between the downstream time-point

(TP=900) and time-point (TP=10) are determined as follows:

P10-900 = P10-50•P50-140•P140-180•P180-300•P300-500•P500-900
	 (6.7)
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P10-900 ={ Pij }ro-5,9	 (6.8)

(0.876 0.119 0.005 6

P10-900 = 0.107 0.893 0.000
	

(6.9)

0.000 0.500 0.500 10_50

Equation 6.3 is based on the assumption that the delay at TP=1000 due to the delay at

TP=10 is a function of delay at individual links and these delays are homogeneously

propagated as shown in Equation 6.4.

Unlike Equation 6.3, by assuming that propagation of delay is heterogeneous, the

predicted delay state at downstream time-point (TP=1000) with reference to the origin

time-point (TP=10) is obtained by following relationships:

P10-1000 = P10-50.P50-140.P140-180.P180-300 	
1

900-1000

P10-50 P50-140 	  P900-1000

	0.876 0.119 0.005 1 	'0.887 0.113 0.000\

	Pi o-1000 = 0.107 0.893 0.000
	

0.000 1.000 0.000
	

(6.12)

	\ 0.000 0.500 0.500110_50 	0 545 0.182 0.273)900-1000

Using Equations 6.10 and 6.12, the po 's for all the downstream time-points were

determined with reference to time-point (TP=10). The results of the predicted transition

probabilities at individual time-points with reference to the origin time-point (TP=10) are

shown in Table 6.3. The predicted transition probabilities for all the links are presented in

Appendix B.



Table 6.3 Predicted Transition Probabilities Between TP=10 and
Downstream Time-points

On-time Late Early Downstream
TP

On-time 0.876 0.119 0.005 50

Late 0.107 0.893 0.000

Early 0.000 0.500 0.500

On-time 0.849 0.099 0.050 140

Late 0.484 0.580 0.005

Early 0.176 0.323 0.500

On-time 0.698 0.272 0.028 180

Late 0.354 0.611 0.034

Early 0.486 0.329 0.184

On-time 0.650 0.325 0.024 300

Late 0.403 0.573 0.024

Early 0.506 0.378 0.115

On-time 0.563 0.405 0.032 500

Late 0.400 0.573 0.026

Early 0.478 0.424 0.097

On-time 0.548 0.390 0.062 910

Late 0.519 0.534 0.045

Early 0.474 0.437 0.087

On-time 0.520 0.463 0.017 1000

Late 0.397 0.590 0.012

Early 0.468 0.507 0.023
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6.4 Comparison of Transition Probabilities

The transition probabilities of delay states between origin TP=10 and the remainder of

the downstream time-points were predicted first by using Equation 6.9 and assuming a

homogeneous propagation of delay and then by using Equation 6.10 and assuming a

heterogeneous propagation of delay between time-points. The predicted transition

probabilities were then compared with the observed values, which are shown in Figure

6.1, assuming a homogeneous propagation of delay, and Figure 6.2, assuming a

heterogeneous propagation of delay.

Figure 6.1 a consists of predicted and observed transition probabilities of "On-

time" delay state between time-points TP=10 and 50, based on homogeneous propagation

of delay. Figure 6.1b consists of predicted and observed transition probabilities of "Late"

delay state between time-points TP=10 and 50. The comparison between predicted and

observed transition probabilities of "Early" delay states are not shown because of their

large prediction error. This is because the sample size of "Early" delay states is very

small and in most cases zero.
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Figure 6.1 Comparison of predicted and observed transition probabilities a)
and b) p2j assuming homogeneous delay propagation.
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In Figure 6.1 a, three comparisons are made for transition probabilities p11, p12 and

p13. The transition probability pi i refers to the probability of the delay state going from

"On-time" to "On-time". Transition probability p12 refers to the probability that the delay

state goes from "On-time" to "Late". For pii, the predicted probability is a smooth curve

similar to a negative exponential curve. This is because of the nth power of a matrix for

homogeneous propagation (Kemeny and Snell, 1979). The predicted probability is

relatively close to the observed probability for this case. For p12, the predicted

probability that the bus goes from being "On-time" to being "Late" increases as the

distance to the time-point increases.

Figure 6.1b compares the observed and predicted transition probabilities p21, p22,

and p23. The transition probability p21 refers to the probability that the delay state goes

from "Late" to "On-time". Transition probability p23 refers to the probability that the

delay state goes from "Late" to "Early". For p21, the predicted probability that the delay

state goes from "Late" to "On-time" increases as the distance to the time-point increases.

This observation indicates that schedule recovery has a higher chance of occurring at

further time-points. Differences between the predicted and observed probabilities seem

to be larger for the first time-point and for the last two time-points. For p22, the predicted

probability that the delay state for the bus goes from "Late" to "Late" decreases as the

distance to the time-point increases. This observation reflects the condition that schedule

recovery is likely to occur as the distance increases, and therefore, the likelihood of the

bus remaining in a "Late" state decreases as the distance to the time-point increases. For

P23, the predicted probability that the delay state for the bus goes from "Late" to "Early"

is very similar to the observed probability.
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Figure 6.2 Comparison of predicted and observed transition probabilities a)
pi; and b) p2j assuming heterogeneous delay propagation.

99



100

Figure 6.2a compares the observed and predicted transition probabilities p11, p12

and p13 assuming a heterogeneous propagation of delay. Figure 6.2b compares the

observed and predicted transition probabilities p21, p22, and p23 also assuming a

heterogeneous propagation of delay. In Figure 6.2, the predicted transition probabilities

follow the observed probabilities closely and the differences appear to be much smaller

than those for a heterogeneous propagation of delay. This shows that heterogeneous delay

propagation is closer to the observed delay propagation.

The difference between the predicted and observed transition probabilities

observed assuming a homogeneous propagation of delay for p21 and p22 is 0.406 and

0.430, respectively. This difference is reduced to 0.181 and 0.201 when a heterogeneous

propagation of delay is assumed in Figure 6.2. Similarly, differences between other

predicted and observed p ly values are also significantly reduced when heterogeneous

propagation of delay is assumed. Hence, it is observed that assuming heterogeneous delay

propagation provides better prediction of the observed delay propagation process than

homogeneous delay propagation.

In Figures 6.1a and 6.2a, the probability of buses reaching the downstream time-

points "On-time" when buses are "On-time" at the origin time-point decreases , which is

shown by the curve of p11. Hence, it becomes more likely that the buses will go from

being "On-time" to being "Late" at downstream time-points (p12 starts to increase).

Similarly from Figures 6.1b and 6.2b, the probability to reach downstream time-points

"Late" is somewhat constant when the bus is "Late" at the origin time-point, which is

shown by the curve for p22. However, at the destination time-point (TP=1000), the

difference between the probability of the buses reaching "Late" and "On-time" when
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the bus is "Late" at the origin time-point, represented by p22 and 1321, respectively, is

smaller than at other downstream time-points. This shows that bus drivers try to recover

the "Late" bus to reach the destination time-point "On-time".

6.5 Performance Evaluation of Markov Model

A chi-square goodness of fit test was employed to test whether the observed transition

probabilities are close to the transition probabilities predicted from the Markov process.

If the chi-square statistic is less than the table value, then the hypothesis that the observed

data are the outcomes of the predicted Markov process is true. The chi-square model for

(r-1) degrees of freedom is given by the following relationship (Lee and Judge, 1973):

2
X(r-1) =E N( - SO2 / S7i (6.13)

Where,

r = Number of delay states

N= Sample size

yi = Observed proportion in state i

yi = Predicted proportion in state I

The chi-square values obtained using Equation 6.13 determined for homogeneous

and heterogeneous delay propagation are shown in Table 6.4. These values are compared

against the chi-square values of 5.991 for a 95% confidence interval and 2 degrees of

freedom. From Table 6.4, the calculated chi-square values for the transition probabilities

predicted with reference to origin time-point (TP=10) assuming heterogeneous delay

propagation are less than 5.991 except for links 10-180, 10-300 and 10-1000. This shows
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that the predicted transition probabilities are close to the observed transition probabilities

and they are outcomes of the Markov process.

However, the calculated chi-square values for the transition probabilities

predicted with reference to origin time-point (TP=10) assuming homogeneous delay

propagation are higher than 5.991 for all links This shows that the predicted transition

probabilities determined assuming homogeneous delay propagation are not close to the

observed transition probabilities and they may not be an outcome of the Markov process.

Table 6.4 Comparison of Predicted and Observed Transition Probabilities

Upstream
TP

Downstream
TP

x2 (Calculated)
(Homogeneous Delay)

p11....p13	 P21...P23 	 P31...P33

10 50 0.000 0.000 0.000*
10 140 9.796 16.938 28.000
10 180 1.369 6.732 0.000*
10 300 13.984 9.328 19.862
10 500 18.852 6.699 9.031
10 900 8.687 15.427 0.000*
10 1000 5.002 1.993 93.667

(* indicates zero sample size)

Upstream
TP

Downstream
TP

x2 (Calculated)
(Heterogeneous Delay)

P21...P23 	 P31...P33

10 50 0.000 0.000 0.000
10 140 2.356 3.677 0.916
10 180 2.032 5.513 9.000
10 300 3.685 5.366 15.394
10 500 5.203 4.482 5.110
10 900 3.150 0.413 2.000
10 1000 4.724 0.203 109.508



CHAPTER 7

BUS ARRIVAL TIME COMPUTATIONS

7.1 Introduction

This chapter presents the results of bus arrival time predictions using delay propagation

only, autoregressive models only, and a combination of both methods. For comparison

purposes, the MARE was obtained for the delay propagation algorithm and the combined

algorithm as mentioned in Section 3.3.

7.2 Prediction of Bus Arrival Time Using Delay Propagation

The transition probabilities were predicted as explained in Chapter 3 and 6 assuming

heterogeneous traffic conditions, as the assumption of heterogeneous transition

probabilities produced results closer to the observed probabilities than the transition

probabilities assuming homogeneous conditions. For individual trips, the predicted delay,

obtained by using the Markov process at a time-point was compared with the observed

delay and the MARE was calculated. As the difference between the observed and

predicted delay is the same as the difference between the observed and predicted arrival

time, the difference in delay was used to determine the reliability of the Markov process.

The prediction of the bus arrival time uses scheduled arrival time and the predicted delay,

which are shown by the following relationships:

A i = SATi + PDi (7.1)

0D i = AT i — SAT i (7.2)

Prediction Error = AT i — A i = ATi — SATi — PD i = 0D i — PD i (7.3)
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Ei ODD — PDi I
MARE =

k

Where,

ATi = Observed arrival time at time-point i = Door open time at i

Ai = Predicted arrival time at time-point i using Markov process

SAT i = Scheduled arrival time at i

OD i = Observed delay at i

PD i = Predicted delay at i using Markov process

MARE values show the capability of the Markov delay model to reasonably

predict the bus arrival time at various downstream time-points. MARE values were

determined for each combination of time-points and are shown in Table 7.1.

Table 7.1 MARE of Bus Arrival Time at Time-points Using Markov Model Only

DestinationOrigin 50 140 180 300 500 900 1000
10 3.38 3.22 3.3 3.24 3.24 3.27 3.27
50 2.71 2.43 2.04 3.15 3.33 2.82
140 2.94 2.25 2.77 3.17 2.43
180 1.48 2.67 4.02 4.14

Table 7.1 consists of MARE values obtained for selected route segments. The

MARE values move decreases till time-point TP=500. After TP=500, the MARE values

do not show a definite trend. This shows that the prediction capability of the Markov

model increases when a time-point that is being used to predict the bus arrival time is

located near the destination time-point. For example, while predicting delay at TP=300,

the MARE is smaller when the origin is TP=140 compared to the MARE when the origin
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TP=10. This is shown by the MARE value for TP=10 which is higher than that for

TP=140. This result shows that the MARE decreases and the prediction accuracy

increases as the bus arrival time is predicted closer to the destination time-point.

The MARE values are about 3 minutes when the origin TP=10, 50 and 140.

However, the MARE values slightly exceeded 4 minutes for the origin time-points

TP=180 and 300. The MARE value of 3.2 minute for link 10-50 is inadequate

considering the average travel time of 5.0 minutes. However, considering the average

travel time between time-points 10 and 1000 is 90 minutes, the 3 minute MARE is a

highly desirable accuracy of predicting bus arrival times.

The benefits of using delay propagation to predict bus arrival time and relay delay

information to passengers at downstream time-points are determined by comparing the

probability distributions of predicted and observed delay at time-points. The probability

distribution in the form of a histogram and normal curve of the observed and predicted

delay for link 10-50 is shown as Figure 7.1. The comparison of probability distributions

between predicted and observed delay for the rest of the links is presented in Appendix E.

In Figure 7.1, the left graph is the histogram and normal curve for the observed

delay and the right graph is for the predicted delay. The graph for the predicted delay has

a steeper curve than the curve for the observed delay. Also, the spread of absolute values

of predicted delay is smaller than the spread for the observed delay, which indicates

smaller mean and standard deviation for the predicted delay. Smaller mean and standard

deviation of predicted delay indicates a lower probability of prediction error when

providing the predicted delay information to passengers. Also, the prediction model did

not produce very high prediction error, which shows that the prediction model is robust.
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Figure 7.1 Histogram and normal curve of absolute values of (a) observed
and (b) predicted delay at link 10-50.

7.3 Bus Travel Time Prediction Using Autoregressive Models

The appropriate full autoregressive models for each combination of time-points were

determined to predict bus travel times using the optimum AIC method having the

minimum MAPE. The full autoregressive models for all the links are presented in Table

7.2, including MAPE and AIC values. In addition to MAPE, MARE values were

determined for each combination of time-points, which are presented in Figure 7.2.



Table 7.2 Final Full AR Models of Bus Travel Time

Link MAPE Model AIC
10-50 14.30 (6,1,0) 115.14

10-140 9.70 (2,1,0) 181.13
10-180 7.40 (6,1,0) 221.64
10-300 7.39 (7,1,0) 255.65
10-500 6.58 (6,1,0) 270.03
10-900 4.59 (6,1,0) 270.66
10-1000 4.45 (7,1,0) 273.96
50-140 4.61 (6,1,0) 93.71
50-180 4.41 (6,1,0) 175.25
50-300 6.62 (6,1,0) 233.79
50-500 6.02 (6,1,0) 247.09
50-900 5.57 (6,1,0) 278.84
50-1000 10.61 (6,1,0) 279.59
140-180 10.79 (5,1,0) 160.77
140-300 9.39 (6,1,0) 226.54
140-500 9.39 (6,1,0) 226.55
140-900 4.38 (6,1,0) 261.22
140-1000 5.41 (6,1,0) 275.02
180-300 4.72 (5,1,0) 98.91
180-500 7.16 (3,1,0) 214.51
180-900 5.32 (7,1,0) 265.55
180-1000 5.70 (6,1,0) 280.28
300-500 6.53 (6,1,0) 148.56
300-900 5.42 (6,1,0) 227.55
300-1000 5.59 (6,1,0) 252.70
500-900 4.88 (6,1,0) 184.51
500-1000 10.90 (6,1,0) 299.59
900-1000 7.48 (6,1,0) 134.05
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Figure 7.2 MARE values of bus travel time at time-points using full autoregressive
model.

Figure 7.2 shows the MARE values obtained from different upstream time-points

to downstream time-points using multiple trips. The MARE of the predicted travel time

using full autoregressive models varied linearly as the bus traversed downstream. The

MARE increased from 1 minute while predicting bus travel time to time-point (TP=50) to

5 minutes for travel time at time-point (TP=1000). However, the MARE values at time-

point (TP=1000) from all the other upstream time-points remained constant at around 5

minutes. Considering that the average travel time from the origin time-point (TP=10) to

time-point (TP=1000), which is 1.5 hours, the MARE of 5 minutes can be considered an

acceptable result.
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7.4 Combined Model of Autoregressive and Delay Propagation Models

Using the combined algorithm, which includes a full autoregressive time series model to

predict bus travel time and a Markov process to predict bus delay at time-points, the

arrival times of bus at individual time-points were predicted. The bus travel times

between time-points were predicted using a full autoregressive model based on historic

bus travel time data. The predicted delay propagation at individual downstream time-

points was determined using the Markov model based on heterogeneous delay

propagation between time-points.

The difference between the predicted and the observed arrival times were

compared using MARE values, as shown in Figure 7.3. The MARE values increased as

the prediction horizon extended to downstream time-points, reaching close to 6 minutes

at the destination time-point (TP=1000). This observation is valid for all origin time-

points, as shown by each curve corresponding to origin time-points in Figure 7.3. In

addition, MARE values decreased as the time-point from where the prediction is being

performed is closer to destination time-points. For example, the curve for time-point

(TP=50) is lower than the curve for the time-point (TP=10). This shows that there is

reduction in MARE values when bus arrival time prediction is done from the time-point

closer to the time-point for which the bus arrival time is being predicted. Hence, it can be

concluded that the prediction accuracy increases as the reference time-point is moved

closer to the time-point where bus arrival time prediction is being predicted.



110

Figure 7.3 MARE values at time-points using combined model.

The effect of combining bus delay propagation with the full autoregressive model

to predict bus arrival times is shown by comparing the MARE values of predicted and

observed arrival times using only the full autoregressive models, as presented in

Figure 7.4.
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Figure 7.4 MARE values using full autoregressive model only.

To better compare Figures 7.3 and 7.4, the curves obtained in both figures were

combined and are presented as Figure 7.5. In Figure 7.5, the curves for time-point

(TP=10), 10* represents the MARE values determined by using full autoregressive model

only and 10 represents the MARE values determined by using the combined model

consisting of the full autoregressive and Markov models. Figure 7.5a consists of MARE

values for time-points TP=10 to TP=140 and Figure 7.5b consists of MARE values for

time-points TP=180 to TP=500.
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Figure 7.5 MARE values using full autoregressive and combined model from
time-points a) 10 through 140 and b) 180 through 500.
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In Figure 7.5, the MARE values obtained using the combined model and the full

autoregressive model only crossed each other between time-points TP=300 and TP=500,

when the prediction was performed from time-points TP=10 through 300. For example,

before the TP=300, the difference of MARE values using the combined model and full

autoregressive model for the curve corresponding to origin TP=10 is positive. This is

shown in Figure 7.5 by a block arrow. The difference of MARE values is negative after

TP=500. This observation indicates that the benefit of including delay propagation with

the autoregressive model to predict bus arrival times is not positive till TP=500.

This observation suggests the possibility of the existence of an optimal "location"

before which, the benefit of including delay propagation in the combined model may not

become beneficial in terms of a reduction in the arrival time prediction error. The reason

behind the positive benefits of including bus delay propagation with the full

autoregressive models after the "optimal location" is because of a significant portion of

the arrival time constitutes the predicted amount of delay , which is determined by the

Markov model.



CHAPTER 8

CONCLUSION

8.1 Results and Findings

In this research, bus arrival time prediction models were developed using historical bus

travel time information. The research used a stochastic approach to predict bus travel

time and delay propagation based on historical information of bus travel time and delay.

The existing bus travel and arrival time prediction models were studied to determine their

limitations. In this research, the appropriate stochastic time series models were

developed. The ability of the models to capture the temporal variations of bus travel time

was also determined. Since existing stochastic time series models do not consider the

propagation of bus delays to downstream stops, this research also focused on modeling

the propagation of delay of buses to downstream stops. The bus arrival time prediction

models were developed using a case study route and historical information on bus travel

times and delay were obtained.

The analysis of historical bus travel time showed that the coefficient of variation

differed between time-points. The coefficient of variation is consistently related to the

MAPE achieved using time series prediction models. Links with a higher coefficient of

variation had a higher MAPE and links with a lower coefficient of variation had a lower

MAPE. This is because of the presence of a larger proportion of a random component in

the observed travel time.

The recurring patterns of bus travel times were modeled by using full

autoregressive models, which produced better MAPE than other time series models. Full
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autoregressive models also closely predicted bus travel times and were able to

accommodate variations in the observed travel time. The seasonal models and subset

autoregressive models failed to significantly improve the MAPE when compared with

full autoregressive models. Hence, only full autoregressive models were used to predict

bus travel times for links in the final analysis. The full autoregressive models also

performed better than historical average and smoothing models for all links in terms of

the MAPE for these models. Full autoregressive models showed a better fit than historical

average and smoothing models in terms of capturing the periodic variations during peak

periods.

The comparison of predicted and observed transition probabilities between delay

states results showed that the Markov process can adequately model the propagation of

delay to downstream stops using the assumption of heterogeneous delay propagation. The

chi-square comparisons between predicted and observed transition probabilities of links

did not follow the Markov process when using the assumption of homogeneous delay

propagation to downstream time-points.

The benefits of using bus delay propagation to predict bus arrival times at

downstream time-points were shown by producing a probability curve of the deviation

between predicted and observed arrival time. The normal curve of predicted delay is

narrower and less spread that the curve for observed delay. This showed the probability

of deviation from the scheduled arrival time is smaller if delay propagation is used to

predict bus arrival times. Hence, it is beneficial for transit agencies to relay predicted bus

arrival time to passengers by using only bus delay propagation at downstream stops than

not providing any information.
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A separate analysis of the benefits associated with including the delay

propagation with the full autoregressive model to predict bus arrival times was also

performed. The positive benefits of delay propagation and its benefit to predict bus

arrival time at downstream stops were established. The inclusion of delay propagation

into the arrival time prediction algorithm decreased the relative error when predictions

were made at time-points with some distance from the origin time-point. These

conditions occurred because the contribution of the predicted bus delay at destination

time-points was significant in proportion to the predicted travel time. Finally, the

comparisons were made between results of the model using delay propagation only and

the combined model. In summary, the research results are as follows:

- The recurring patterns of bus travel times were modeled by using full
autoregressive models, which produced better MAPE than other time series
models analyzed in the research.

- The comparison of predicted and observed transition probabilities between
delay states showed that the Markov process can adequately model delay
propagation.

After analyzing the benefits of the bus arrival time prediction model using the
predicted delay only, it is beneficial to relay such arrival time information to
passengers using the predicted delay only.

- A separate analysis of benefits from combining the delay propagation with the
full autoregressive models to predict bus arrival times was also performed.
However, an optimal location exists along the route, after which the inclusion
of delay propagation may not be beneficial.

- MARE values do not remain constant while predicting bus arrival time at a
time-point. In this research, MARE values increased from 1 minute to 5
minutes. The MARE values differed when predicting the bus arrival time at a
time-point from two different upstream time-points.
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8.2 Research Contributions

The objective of this research was to develop an arrival time prediction algorithm with

focus on bus operation conditions on urban streets. The case study used in this research

included suburban locations as well as downtown locations, so the research demonstrated

differences in the prediction algorithm between urban and suburban locations.

The methodology proposed in this research consisted of full autoregressive

models to predict bus travel times based on historical information and a Markov process

to predict delay at downstream time-points. The inclusion of bus delay propagation into

the bus arrival time prediction algorithm is an important contribution to the research

efforts to predict bus arrival times. A significant attempt has been made in this research to

explain the delay propagation phenomena into the arrival time prediction algorithm. It

was shown that the proposed methodology was able to produce significant benefits to

accurately predict bus arrival time by including delay propagation.

The research showed that the transit agencies can provide more accurate bus

arrival times by using delay propagation and a Markov process instead of using the

scheduled arrival time only to estimate the bus arrival time. Transit agencies can also

choose to use historical travel time information and predicted delay to provide more

accurate bus arrival time information.

The delay propagation model based on Markov chains is entirely based on

historical bus information. The model does not require collection of a large number of

variables. The literature review showed that bus arrival time prediction models were also

developed based on Kalman filters models using the current geographic location of the

bus and the predicted trajectory of the bus. However, this model requires a high polling
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frequency to determine the geographic location of the bus. Another Kalman filter model

was based on historical bus travel time information and a constant headway of the bus.

This research, however, does not require frequent observation of the geographic location

of the bus and the assumption of constant headway is not made. The results of the

research showed that by using the historical information of delay propagation, bus arrival

time predictions can be done with accuracy of between 1 to 5 minutes for a total travel

time of 1.5 hours. Hence, by using delay propagation model based on Markov chains,

accurate bus arrival time predictions can be performed without collecting a large number

of bus operation variables, simulations and additional hardware requirements.

8.3 Recommendations for Future Research

In this research, the transition probabilities defining the delay states between the time-

points were determined based on heterogeneous conditions between time-points. Between

any two time-points, a constant transition probability matrix is used to define the

relationship between the delay states. However, the transition probabilities of delay states

between any two time-points can vary depending on temporal conditions. For example,

the transition probabilities may vary between peak and off-peak conditions and between

weekday and weekends for the same delay states. Hence, there is a possibility of more

accurately defining the transition probabilities between any two time-points based on

temporal variations. However, this requires a larger sample size than that used in this

research.

A larger sample size can obviously increase the accuracy of the transition

probabilities. However, the literature review showed that using a larger sample size
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creates an opportunity to use more complex processes to obtain better estimates of the

transition probabilities, such as a Bayesian approach and non linear programming.

The research showed that there exists an optimal location. Before or after this

location, the inclusion of bus delay propagation into the arrival time prediction model

produces benefits or disbenefits. Hence, there is a possibility to determine a relationship

between the optimal location and the variables that influence bus arrival time, such as

distance from the origin, travel time, and number of time-points.



APPENDIX A

OBSERVED TRANSITION PROBABILITIES

The observed transition probabilities for each combination of time-points are provided in

the following tables.

Table A.1 Observed Transition Probabilities of Individual Links

Link jell P12 P13 P21 P22 P23 P31 P32 P33

10-50 0.876 0.119 0.005 0.107 0.893 0.000 0.000 0.500 0.500

50-140 0.922 0.026 0.052 0.353 0.647 0.000 0.000 0.000 1.000

140-180 0.777 0.215 0.008 0.050 0.900 0.050 0.667 0.000 0.333

180-300 0.865 0.125 0.010 0.146 0.854 0.000 0.200 0.200 0.600

300-500 0.790 0.189 0.021 0.132 0.868 0.000 0.250 0.000 0.750

500-900 0.898 0.020 0.082 0.105 0.895 0.000 0.000 0.500 0.500

900-1000 0.887 0.113 0.000 0.000 1.000 0.000 0.545 0.182 0.273

Table A.2 Observed Transition Probabilities of Links from TP=10

Link P11 P12 P13 P21 P22 P23 P31 P32 P33

10-140 0.905 0.048 0.048 0.595 0.380 0.025 0.500 0.000 0.500

10-180 0.653 0.327 0.02 0.622 0.378 0.000 0.000 0.000 0.000

10-300 0.762 0.201 0.037 0.596 0.385 0.019 0.333 0.000 0.667

10-500 0.715 0.252 0.033 0.436 0.526 0.038 0.333 0.333 0.333

10-900 0.657 0.224 0.119 0.383 0.553 0.064 0.000 0.000 0.000

10-1000 0.637 0.312 0.050 0.431 0.558 0.009 0.000 0.500 0.500
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Table A.3 Observed Transition Probabilities of Links from TP=50

Link p11 P12 P13 P21 p22 P23 P31 P32 P33

50-180 0.591 0.386 0.023 0.222 0.778 0.000 0.000 0.000 1.000

50-300 0.770 0.194 0.036 0.256 0.744 0.000 0.111 0.000 0.889

50-500 0.714 0.241 0.045 0.227 0.773 0.000 0.500 0.333 0.167

50-900 0.607 0.262 0.131 0.300 0.700 0.000 0.500 0.500 0.000

50-1000 0.632 0.308 0.060 0.324 0.676 0.000 0.556 0.333 0.111

Table A.4 Observed Transition Probabilities of Links from TP=140

Link 	 p11 	 P12	 P13	 P21	 P22	 p 23 P31	 P32	 P33

140-300 0.790 0.195 0.015 0.056 0.944 0.000 0.310 0.000 0.690

140-500 0.671 0.298 0.031 0.000 1.000 0.000 0.500 0.250 0.250

140-900 0.594 0.323 0.083 0.167 0.833 0.000 0.333 0.000 0.667

140-1000 0.607 0.353 0.040 0.118 0.882 0.000 0.621 0.276 0.103

Table A.5 Observed Transition Probabilities of Links from TP=180

Link 	 pH 	 P12	 P13	 P21	 p 22	 P23 P31	 P32	 P33

180-500 0.574 0.368 0.059 0.206 0.794 0.000 0.636 0.182 0.182

180-900 0.421 0.447 0.132 0.360 0.520 0.120 0.667 0.000 0.333

180-1000 0.562 0.371 0.067 0.179 0.795 0.026 0.750 0.188 0.063

Table A.6 Observed Transition Probabilities of Links from TP=300

Link 	 pii 	 P12	 P13	 P21	 P22	 P23 P31	 P32	 P33

300-900 0.711 0.171 0.118 0.171 0.800 0.029 0.250 0.250 0.500

300-1000 0.708 0.257 0.035 0.143 0.857 0.000 0.292 0.542 0.167



APPENDIX B

PREDICTED TRANSITION PROBABILITIES

The predicted transition probabilities for each combination of time-points are provided in

the following tables.

Table B.1 Predicted Transition Probabilities of Links from TP=10

Link P11 p12 P13 P21 P22 P23 P31 P32 P33

10-140 0.849 0.100 0.051 0.414 0.581 0.006 0.176 0.324 0.500

10-180 0.699 0.272 0.029 0.354 0.611 0.034 0.487 0.329 0.184

10-300 0.650 0.326 0.024 0.403 0.573 0.024 0.506 0.379 0.115

10-500 0.563 0.405 0.032 0.400 0.573 0.026 0.479 0.424 0.097

10-900 0.548 0.390 0.062 0.420 0.534 0.046 0.475 0.438 0.088

10-1000 0.520 0.463 0.017 0.397 0.590 0.013 0.469 0.507 0.024

Table B.2 Predicted Transition Probabilities of Links from TP=50

Link p11 P12 P13 P21 P22 p23 P31 P32 P33

50-180 0.752 0.222 0.026 0.307 0.658 0.035 0.667 0.000 0.333

50-300 0.689 0.288 0.023 0.369 0.607 0.024 0.644 0.150 0.206

50-500 0.588 0.380 0.032 0.378 0.597 0.026 0.580 0.252 0.168

50-900 0.568 0.368 0.064 0.402 0.554 0.044 0.547 0.321 0.132

50-1000 0.539 0.444 0.017 0.380 0.608 0.012 0.557 0.407 0.036
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Table B.3 Predicted Transition Probabilities of Links from TP=140

Link P11 P12 P13 P21 P22 P23 P31 P32 P33

140-300 0.705 0.282 0.012 0.185 0.785 0.030 0.644 0.150 0.206

140-500 0.598 0.378 0.024 0.257 0.716 0.027 0.580 0.252 0.168

140-900 0.577 0.363 0.061 0.306 0.659 0.034 0.547 0.321 0.132

140-1000 0.545 0.439 0.017 0.291 0.700 0.009 0.557 0.407 0.036

Table B.4 Predicted Transition Probabilities of Links from TP=180

Link 	 P11 p 12	 P13	 P21	 P22	 P23 P31	 P32	 P33

180-500 0.703 0.272 0.025 0.228 0.769 0.003 0.334 0.211 0.454

180-900 0.660 0.270 0.070 0.286 0.694 0.020 0.323 0.423 0.254

180-1000 0.623 0.358 0.019 0.265 0.730 0.006 0.425 0.506 0.069

Table B.5 Predicted Transition Probabilities of Links from TP=300

Link 	 p11 	 P12	 p 13	 P21	 p 22	 p 23 P31	 P32	 P33

300-900 0.729 0.196 0.075 0.210 0.779 0.011 0.224 0.380 0.395

300-1000 0.688 0.292 0.020 0.192 0.805 0.003 0.415 0.477 0.108

Table B.6 Predicted Transition Probabilities of Links from TP=500

Link 	 P11	 P12	 P13	 P21	 P22	 P23 P31	 P32	 P33

500-1000 0.841 0.137 0.022 0.093 0.907 0.000 0.273 0.591 0.136



APPENDIX C

GRAPHICAL COMPARISONS OF TRANSITION PROBABILITIES

The graphical comparisons between observed and predicted transition probabilities at

different origin time-points are shown in the following figures.
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Figure C.1 Comparison of predicted and observed transition probabilities a) p 1./

and b)p2j assuming heterogeneous propagation of delay for TP=50.



1.000

0.800

0.600

0.400

0.200

0.000  

300

Time-points

520 	 900 	 1000

---4-- Predicted - p 21 —1— Actual - p21

Predicted -p 22 	 - Actual - p22

Predicted - p 23 —11-- Actual - p23

1.200

1.000

0.800

0.600 	

0.400

0.200

0.000

180

520  	 900   1000
Predicted - p 11 —11— Actual - p 11
Predicted - p 12 	 Actual - p 12

--*— Predicted - p 13 —1— Actual - p 13

180 	 300

Time -points

(a)

(b)

Figure C.2 Comparison of predicted and observed transition probabilities a) p
and b) p2i assuming heterogeneous propagation of delay for TP=140.
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Figure C.3 Comparison of predicted and observed transition probabilities a) p ij

and b) p2, assuming heterogeneous propagation of delay for TP=180.
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Figure C.4 Comparison of predicted and observed transition probabilities a)
and b) p2j assuming heterogeneous propagation of delay for TP=300.
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APPENDIX D

CHI-SQUARE COMPARISONS

The chi-square comparisons between observed and predicted transition probabilities for

each combination of time-points are provided in the following tables.

Table D.1 Chi-Square Comparisons for Origin TP=50

Down- 	 P11	 P12	 P13	 Number Chi
Squarestream 	 of

TP 	 Predicted Observed Predicted Observed Predicted Observed Samples

140 0.922 0.922 0.026 0.026 0.052 0.052 77 0.000

180 0.752 0.591 0.222 0.386 0.026 0.023 44 6.942

300 0.689 0.770 0.288 0.194 0.023 0.036 139 6.621

500 0.588 0.714 0.380 0.241 0.032 0.045 112 9.341

900 0.568 0.607 0.368 0.262 0.064 0.131 61 6.344

1000 0.539 0.632 0.444 0.308 0.017 0.060 133 21.591
Down- 	 P21	 P22	 P23	 Number Chi

Squarestream 	 of
TP 	 Predicted Observed Predicted Observed Predicted Observed Samples

140 0.353 0.353 0.647 0.647 0.000 0.000 17 0.000

180 0.307 0.222 0.658 0.778 0.035 0.000 9 0.722

300 0.369 0.256 0.607 0.744 0.024 0.000 39 3.467

500 0.378 0.597 0.597 0.773 0.026 0.000 22 4.509

900 0.402 0.300 0.554 0.700 0.044 0.000 10 1.077

1000 0.380 0.324 0.608 0.676 0.012 0.000 37 1.027
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0.777 0.777 0.215 0.215 0.008 0.008

0.705 0.790 0.282 0.195 0.012 0.015

0.598 0.671 0.378 0.298 0.024 0.031

0.577 0.594 0.363 0.323 0.061 0.083

0.545 0.607 0.439 0.353 0.017 0.040

121 	 0.000

205 	 7.681

161 	 4.481

96 	 1.262

201 	 11.300
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Table D.2 Chi-Square Comparisons for Origin TP=140

Down-Numberpii 	 P12	 p13 	Chistream 	 of
TP Predicted Observed Predicted Observed Predicted Observed Samples

 Square

180

300

500

900

1000

Down- 	 P21	 P22	 P23 	Number Chistream 	 of
TP Predicted Observed Predicted Observed Predicted Observed Samples

 Square

180 0.050 0.050 0.900 0.900 0.050 0.050 20 0.000

300 0.185 0.056 0.785 0.944 0.030 0.000 36 5.530

500 0.257 0.000 0.716 1.000 0.027 0.000 21 8.336

900 0.306 0.167 0.659 0.833 0.034 0.000 12 1.731

1000 0.291 0.118 0.700 0.882 0.009 0.000 34 5.435

Table D.3 Chi-Square Comparisons for Origin TP=180

Down-NumberpH 	 P12	 P13 	Chistream 	 of
TP Predicted Observed Predicted Observed Predicted Observed Samples 

Square

300 	 0.865 	 0.865 	 0.125 	 0.125 	 0.010 	 0.010 	 104 	 0.000

500 	 0.703 	 0.574 	 0.272 	 0.368 	 0.025 	 0.059 	 68 	 6.910

900 	 0.660 	 0.421 	 0.270 	 0.447 	 0.070 	 0.132 	 38 	 9.742

1000 	 0.623 	 0.562 	 0.358 	 0.371 	 0.019 	 0.067 	 89 	 11.458
Down- 	 P21	 P22	 P23 	Number Chistream 	 of
TP Predicted Observed Predicted Observed Predicted Observed Samples 

Square

300 0.146 0.146 0.854 0.854 0.000 0.000 41 0.000

500 0.228 0.206 0.769 0.794 0.003 0.000 34 0.209

900 0.286 0.360 0.694 0.520 0.020 0.120 25 13.913

1000 0.265 0.179 0.730 0.795 0.006 0.026 39 4.170
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Table D.4 Chi-Square Comparisons for Origin TP=300

Down- 	 P11	 P12	 P13 	Number Chistream of
TP Predicted Observed Predicted Observed Predicted Observed Samples 

Square

500 	 0.790 	 0.790 	 0.189 	 0.189 	 0.021 	 0.021 	 143 	 0.000

900 	 0.729 	 0.711 	 0.196 	 0.171 	 0.075 	 0.118 	 76 	 2.182

1000 	 0.688 	 0.708 	 0.292 	 0.257 	 0.020 	 0.035 	 171 	 2.573

Down-NumberP21	 P22	 P23 	Chistream of
TP Predicted Observed Predicted Observed Predicted Observed Samples 

Square

500 0.132 0.132 0.868 0.868 0.000 0.000 53 0.000

900 0.210 0.171 0.779 0.800 0.011 0.029 35 1.294

1000 0.192 0.143 0.805 0.857 0.003 0.000 70 1.328



APPENDIX E

PROBABILITY STRUCTURES OF OBSERVED AND PREDICTED DELAY

The probability distributions of observed and predicted delay determined based on

Markov chain for different combinations of time-points are provided in the following

figures. The left graph is the histogram and normal curve of the observed delay and the

right graph is for the predicted delay. The vertical axis in the graph represents the delay

in minutes and horizontal axis represents the frequency.

Figure E.1 Comparison of probability structures for link 10-140.

132



7-

6-

5 	

4 - 	

3 -	

	

2-	

1- 	

0 - 	

133

Figure E.2 Comparison of probability structures for link 10-180.

Figure E.3 Comparison of probability structures for link 10-300.
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Figure E.4 Comparison of probability structures for link 10-500.
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Figure E.5 Comparison of probability structures for link 10-900.
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