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ABSTRACT

SCATTERING MATRIX ANALYSIS OF PHOTONIC CRYSTALS

by
Valeriy Lukyanov

Using a scattering matrix approach we analyze and study the scattering and transmission

of waves through a two-dimensional photonic crystal which consists of a periodic array

of parallel rods with circular cross sections. Without making any assumptions about

normal incidence, single mode propagation, and sufficient inter-scatter separation in

the direction of propagation, we show how to compute the transmission and reflection

coefficients of these periodic structures. The method is based on the computation of

a generalized scattering matrix for one column of the periodic structure.

We also develop an analytical method to analyze and to study the scattering and

transmission of waves through a two-dimensional photonic crystal which consists of a

periodic array of parallel metallic rods with rectangular cross sections. The method

is based on the computation of generalized scattering matrices for several parts of

the periodic entire structure, and their composition to form the scattering matrix

for the structure. We derive an explicit formula for the reflection and transmission

coefficients when we take into account only one propagating mode in a specific portion

of the periodic structure.

Finally, we develop an analytical method to analyze and to study Rayleigh-Bloch

surface waves propagating along a two-dimensional diffraction grating which again

consists of a periodic array of rods with rectangular cross sections. The method is

based on mode matching. By taking into account all propagating and only a finite

number of evanescent modes in a specific portion of the waveguide we show that the

surface waves correspond to the zeros of the determinant of a Hermitian matrix.
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CHAPTER 1

INTRODUCTION

1.1 Photonic Crystals

In the past decade, a great deal of effort has been devoted to the study of photonic

crystals. Photonic crystals are periodic structures of dielectric or metallic materials

which are designed to control the propagation of light. The characteristic feature

of a photonic crystals is that it has a spectral gap in its dispersion relationship.

Light can not propagate in the crystal when its frequency is in this gap. This effect

has long been used in dielectric mirrors and optical filters, which are made from

alternating dielectric layers. Photonic crystals allow the extension of this idea to

two and three dimensions. Some periodic structures have a complete band gap in

which light can not propagate in any directions. This property is the optical analog

of electronic band gaps in semiconductors caused by their periodic atomic lattice

structures. This similarity has many potential applications in designing of optical

devices. For example, it is believed that by replacing electrons with photons the

speed and band-width of communication system will be dramatically increased. Other

applications might be designing entirely optical computers, high efficiency lasers, laser

diodes, highly efficient wave guides, high speed optical switches, and more.

A two-dimensional photonic crystal can be constructed from a lattice of parallel

dielectric rods. A commonly used material for rods is GaAs with a dielectric constant

= 13. The rods are separated by air for which E = 1. The computation of band

gaps for 2D photonic crystals (moreover, for 3D crystals) is a challenging numerical

problem. The theory of 2D photonic crystals reduces to the solution of two scalar

equations for the E- and H-polarized electromagnetic fields. The common approach to

the computations of band gaps is based on the decomposition of the fields into plane

waves with a consequent series truncation. Although this approach can be applied

1
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to any periodic dielectric structure, in practice, the truncation severely limits the

accuracy of the plane-wave method. The reason for this is that usually dielectric

constant c(x) is discontinuous for photonic crystals as function of x and, hence,

the series of plane waves for it converges very slowly. Therefore, to get accurate

results we should keep enormous number plane waves and deal with extremely large

matrixes. Another numerical approach is to apply finite difference time domain

method (FDTD). Although it can be applied to any photonic crystals this method

is also requires significant computer resources and it only clarify the "physics" of

photonic crystal after many numerical simulations.

In this thesis, we show how to apply a scattering matrix approach for the

investigation of photonic crystals. This method is based on a natural representation of

the electromagnetic field in terms of plane waves and allows a considerably reduction

of computations. This is because only one generalized scattering matrix is required. In

Ref. [3], Kriegsmann applied it to compute the reflection and transmission coefficients

in one mode regime, by neglecting evanescent modes. Here we apply scattering

matrix theory without these assumption to photonic crystal consisted of metallic or

dielectric cylinders. In Ref. [2], Venakides et al. solved the problem, with an incident

wave, using a boundary integral method technique. They reduced the problem to

the boundary integral equation on 71 cylinders, where n is the number of columns

of a periodic structure. The scattering matrix approach reduces the problem to a

boundary integral equation on only one cylinder. We describe how to solve this

integral equation by means of Nostrem method with quadrature formulae based on

Lagrange polynomials and Ewald representation of the Green's function.

Although in this thesis the scattering matrix theory is applied only to 2D

photonic crystals it can be extended for 3D case and this is a goal of my future

research. For 3D photonic crystals the advantages of this theory become more obvious.
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1.2 Dissertation Overview

This thesis is organized in the following way. In Chapter 2, we analyze and study

the scattering and transmission of waves through a two-dimensional photonic crystal

which consists of a periodic array of parallel rods of a circular cross section. Without

making any assumptions about normal incidence, single mode propagation, and sufficient

inter-scatterer separation in the direction of propagation, we show how to compute the

transmission and reflection coefficients of periodic structures. The method is based on

computation of generalized scattering matrix for one column of the periodic structure.

We show that evanescent waves play an important role in periodic structures such as

photonic crystals and that taking into account several of them gives good approximation

for the solution.

In Chapter 3, we show how to solve the problem on scattering of plane wave by

one column of metallic and dielectric cylinders. We reduce the problem to boundary

integral equation on one cylinder using periodic Green's function and show how to

discretize it.

In Chapter 4, we develop an analytical method to analyze and to study the

scattering and transmission of waves through a two-dimensional photonic crystal

which consists of a periodic array of parallel rods of a rectangular cross section. The

method is based on the computation of generalized scattering matrices for several

parts of the periodic structure, and their composition to form the scattering matrix

for the structure. We show that an explicit formula for the reflection and transmission

coefficients can be obtained if we take into account only one propagating mode in

a specific portion of the periodic structure. We demonstrate numerically that the

formula gives good results under certain conditions on the wave number and the

distance between rectangular rods.

In Chapter 5, we develop an analytical method to analyze and to study the

Rayleigh-Bloch surface waves propagating along two-dimensional diffraction grating
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which consists of a periodic array of rods of a rectangular cross section. The method is

based on the mode matching. By taking into account all propagating and only finite

number of evanescent modes in a specific portion of the waveguide we show that the

surface waves correspond to the singularities of a Hermitian matrix. We demonstrate

numerically that the method gives accurate results if we take into account only several

evanescent waves.



CHAPTER 2

COMPUTATION OF ELECTROMAGNETIC FIELDS

IN PERIODIC STRUCTURES

2.1 Introduction

Two-dimensional photonic crystals are man made periodic structures made of either

dielectric or metallic cylinders. These crystals are used in many technological fields,

such as optics and microwaves. Examples of the former are optical filters and Fabry-

Perot resonators, and of the latter are antenna and filter design. A typical crystal

structure is shown in Fig. 2.1.

The problem of finding transmission and reflection coefficients for periodic

structures has been successively studied by researchers employing boundary integral

equation methods [1,2]. These techniques produce accurate approximations, but

become computationally intensive when the number of columns making up the periodic

structures become moderate to large. Because of this fact these techniques are costly

when used as a design tool for periodic structures.

In a recent paper [3], the scattering and transmission of waves through a two-

dimensional photonic crystal were studied using scattering matrix theory. This is

computationally more efficient than those reported in [1,2] because it requires solution

of the problem only for one layer of periodic structure. However, the application of

this theory required two assumption, which limits its applicability. The first required

the scatterers to be sufficiently far apart in x-direction to neglect evanescent waves.

The second required them to be sufficiently close together in the y-direction for a

fixed frequency, to ensure single mode propagation in a fundamental waveguide-cell.

In this paper, we show how to solve such problems without these assumptions.

Specifically, we remove the requirement that scatterers are far apart and take into

account the evanescent modes and eliminate the restriction of single mode propagation.

5
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Accordingly, the resulting theory becomes more involved than the one presented in

Ref [3]. Our new theory is based upon the computation of a generalized scattering

matrix which in principal takes into account any finite number of propagating and

evanescent modes. The number of the former is determined by the frequency and the

spacing of the cylinders in y-direction. However, the required number of evanescent

modes is determined by the spacing in the x-direction and the amount of accuracy

needed.

In order to estimate the number of evanescent modes to include we consider the

structure shown in Fig. 2.1 with N = 2. We first approximately solve this problem

by employing a boundary integral equation technique which yields very accurate

approximations to the transmission and reflection coefficients for this grating. In

the second approximation, we first compute the generalized scattering matrix for the

structure, when N = 1, which incorporates m evanescent modes. Again the same

boundary integral technique is employed. Then, we apply our generalized scattering

matrix method to approximate the reflection and transmission coefficients for the

case N = 2. These are compared with those of our first approximation to obtain the

error. The dependence of this error on the x-spacing, In, and the frequency is then

studied and trends are observed. Specifically, we can systematically estimate m for a

prescribed accuracy in the reflection and transmission coefficients.

Finally, we apply our generalized scattering matrix theory to the problem with

N = 10 columns. The dependence of the modulus of the transmission coefficient upon

m, k, and the x-direction spacing is presented and discussed. In particular, their

effects on the pass and stop bands are exhibited. Since our technique depends only

upon determining the generalized scattering matrix for a single column, i.e., N = 1,

our results do not suffer the computational burden of a straightfoward application of

the boundary integral method. Because of this fact, our method may be useful as a
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design tool for periodic structure when the frequency is fixed and the inter-column

distance is varied.

2.2 Statement of the Problem

Consider an infinite array made up of N columns of identical metallic cylinders. The

cylinders have radius 1 and their centers are located at points (hm, 2dn), m = 1, N,

n = 0, ±1, ±2, ..., where h is the spacing between cylinders in the x-direction and 2d

is the spacing in the y (see Fig. 2.1).

Figure 2.1 Geometry of the problem.

Two dimensional scattering problem we wish to solve is governed by the Helmholtz

equation

where u represents the z-component of the magnetic field, u, is unknown scattered

field, and u i is an incident plane wave impinging upon our structure
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(2.2)

We assume that on the surface of each cylinder Neumann boundary conditions are

satisfied, i.e.,

Because of periodicity of the problem, we can represent the incident and scattered

fields in the form

where 0 is a real number and ii i and it, are periodic functions with respect to y and

consider only a single interval of length 2d in the y-direction

This is the fundamental waveguide in which we formulate and study our problem.

The periodic function u, satisfies the equation

with the periodic boundary conditions

Taking into account Eqs. (2.4) we can recast the problem (2.1)-(2.3) in the

fundamental waveguide R with quasi periodic boundary conditions
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To solve this problem we split it into two parts. In the first we consider only one

cylinder in the fundamental waveguide,i.e., N = 1. In the appendix we show how this

problem can be solved numerically by using boundary integral equation technique. In

the second, we solve the problem with N cylinders by using the generalized scattering

matrix, introduced in Section 2.3. Specifically, we employ this matrix to obtain

difference equations for the Fourier's coefficients of the scattered field. By solving

these equations we find approximate reflection and transmission coefficients for this

photonic structure.

2.3 The generalized scattering matrix and its calculation

In order to introduce the scattering matrix we consider one cylinder in the fundamental

waveguide. Let ui and vi be incident waves (see Fig. 2.2) impinging upon the cylinder

from the left and right respectively. These waves contain both propagating and

Figure 2.2 One scatterer in the waveguide.

evanescent modes. Similarly u s and vs are the scattered waves. In the appendix we

briefly explain how to find the scattered fields u s and vs . To find them we employ

the boundary integral equation method.
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We shall now describe the generalized scattering matrix. The incident and

scattered field can be expanded into

(2.9)

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)

and describe their modal amplitudes by the infinite column vectors

where T denotes transposition. Here the amplitudes with the numbers n = —L, —L+

1,...,M — 1, M correspond to the amplitudes of the propagating plane waves and the

other correspond to the amplitudes of the evanescent waves. Because of linearity of

the problem there are infinite matrices S11, S12, S21, 822, which relate the amplitudes



of incident waves a, b to the amplitudes of scattered waves c, d

11

is called generalized scattering matrix. The difference between generalized scattering

matrix and standard scattering matrix is that the former takes into account both

propagating and evanescent modes while the latter just handles propagating modes.

To calculate S we consider incident waves, which may be evanescent,

where the m-th coordinate is equal to 1 in the vector a. Let c,- and dn be the Fourier's

coefficients of the scattered fields v, and u8 . It follows from Eqs. (2.11)-(2.12) that

for a fixed x

It then follows from Eqs. (2.16), (2.20), and (2.21) that
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Performing this procedure for each m we can find the matrices 8 11 and S12. Because

of the assumed symmetry of the scatterer we have

2.4 The Difference Equations for the N Arrays

In this section, we use the generalized scattering matrix and obtain difference equations

for the Fourier's coefficients of scattered field. We begin by defining Dm the region

between mth and (m + 1)th cylinders (see Fig. 2.3),

Figure 2.3 Fundamental waveguide with N scatterers.
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We can rewrite the incident plane wave (2.2) in the form

where J and /3 are such that

and βj and -ye are defined in Eqs. (2.13) and (2.14) with n = J. We shall seek

the scattered field in the form of a linear combination of propagating and evanescent

plane waves

Here amn and bmn are unknown complex amplitudes, v m (x, y) is the sum of plane

waves propagating in direction +x (n = — L, ..., M) and evanescent waves (for the

other n) in the positive x direction. Similarly, wm (x, y) is the sum of plane waves

propagating in the opposite direction.

We can describe the field in the region Dm by infinite vectors



Incident, scattered, and transmitted fields are also described by infinite vectors:

14

respectively.

Consider the cylinder at y = 0. If

is the generalized scattering matrix for one cylinder, we can write

and 6m,„ is the Kronecker delta function.

By translating the cylinder to x = mh and introducing a suitable change of

variables,i.e., X = x — mh, we can deduce

We then seek a solution of the these equations in the form
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Substitution of these representations into (4.10) yields

This is a generalized eigenvalue problem for el`. By solving it, we can find the

characteristic numbers eμ and eigenvectors a and /3. Eq. (2.34) is similar to the

equations obtained in Ref. [1] except now the are infinite matrixes. We note here

one important property this generalized eigenvalue problem: if el' is an eigenvalue

with eigenvector (a, ,(3) T then is an eigenvalue with eigenvector (/3, α)T .

For numerical computation we need to decide how many evanescent modes we

should take into account, i.e., where we should truncate matrixes To obtain

some insight into this truncation process we first consider the problem with only

two columns of cylinders. In the following section we derive a formula for the

amplitudes of the waves, both propagating and evanescent in the region to the right

of this structure. This formula involves the described above. We then describe

a numerical method which determines the S ij and the amplitudes of the transmitted

waves. These amplitudes are then compared to those obtained from an accurate

boundary integral equation method which takes into account both cylinders.

2.5 Computation of Transmission Coefficient for Two Arrays

In this section we find an approximation for the transmission coefficients for two

cylinders in the waveguide by applying the above theory which uses the generalized

scattering matrix for a single cylinder. Let vectors ao and al , a2, bo, b1 describe an

incident wave and the scattered field (see Fig. 2.4). The vectors ao , b0 , al , and b 1

are related by Eq. (2.30)



Figure 2.4 Two scatterers in the waveguide.

where the diagonal matrix D is defined by Eq. (2.31). This is the system of four linear

equations with four unknowns a l , a2 , b0 and b 1 . Solving it we get expression for the

vector a2 whose elements are the transmission coefficients for both propagation and

evanescent modes

2.6 Numerical Results for Two Arrays

We consider a particular width of the waveguide d = 2.5, the radius of cylinders

r = 1, normal incidence 0 = 0, and k = 1. For these particular parameters there is

only one propagating mode in the fundamental waveguide. In Fig. 2.5 we show the

amplitude and phase of the transmission coefficient of this mode as a function of h

the distance between the cylinders.

The solid line corresponds to the solution obtained from a boundary integral

equation method applied to both cylinders and the dashed lines to the solution

16
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obtained from Eq. (2.37) without evanescent waves. We consider the former results

to be exact, as we choose our discretization to produce very accurate computations.

Thus, from Fig. 2.5 we see that neglecting evanescent modes produces for the above

set of parameters a very good results unless h < 4.

In Fig. 2.6 we show the dependence of the amplitude and phase error on h for

two, four, and zero evanescent modes. These errors are obtained by subtracting our

exact and approximate transmission coefficients. Again when h > 0 the inclusion of

the evanescent modes offers only marginal improvement. However, when h < 4 then

inclusion increases the accuracy significantly.

In Fig. 2.7 we fix the distance between the cylinders at h = 3 and show of

the transmission coefficient on k. Again the solid lines represent the exact solution

and the dashed our approximation with no evanescent modes. The omission of these

modes produces very good results for 0.2 < k < 0.6. However, for larger k the results

are poor, especially near k = 1.2. This point is close to k = 7r/d 1.26, where

a second mode becomes propagating. The inclussion of four evanescent modes, as

in the previous examples, yields a result which is almost indistinguishable from the

exact solution.

2.7 Computation of Transmission Coefficient for the N Arrays

The calculations described in Section 2.5 allow us to decide where to truncate the

infinite matrix S. Let S11, S12, S21, and S22 denote the n x 71 matrixes obtained after

truncation of S11, 512) 521, and S22. Assume that we have found the characteristic

numbers el", eit2 ,...,e112n and the corresponding eigenvectors

for generalized eigenvalue problem (2.34). These can be obtained numerically by

employing standard methods for finding generalized eigenvalues and egenvectors. As
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it was mentioned in Section 2.5 if el' is an eigenvalue with eigenvector a, then e -1`

is an eigenvalue with eigenvector /3, a. Using this property we can divide eigenvalues

into two groups each consisting of n, elements. In the first group p is real and less

then zero or p, is complex and Re p > 0 and in the second group p is real and greater

then zero or p, is complex and Re p < 0. We renumber so that p1 ,...42n

are from the first group and are from the second. We can say that the

eigenvalues from the first group correspond to the wave propagating in direction +x

and the eigenvalues from the second group correspond to the wave propagating in

direction — x.

We will seek the solution of the system (2.32) of the form

It follows from the form of the incident waves, that

where in the vector ao the coordinate corresponding to the propagating mode is equal

to e -ik . Setting m = 0 and m = N into Eq. (2.38) we obtain

Eqs. (2.39)-(2.41) give us 2n linear equations with 2n unknowns C1, C2,•••,C2n•

Solving them we can compute the remaining a m and bm and thus the electromagnetic

field in each region Dm. The coordinates of the vectors b0 , aN corresponding to



19

propagating waves are the reflection and transmission coefficients, respectively, for N

cylinders in the waveguide.

2.8 Numerical Results for 10 Arrays

We consider the periodic structure made of N = 10 columns and take the same

parameters as in section 2.6: d = 2.5, r = 1,13 = 0, and k = 1.

In Fig. 2.8 we show the dependence of the modulus of the transmission coefficient

on h, the distance between the cylinder centers. The dashed line corresponds to

modulus obtained without evanescent waves and the solid line to the modulus with

two evanescent modes. Increasing the number of evanescent modes further does not

significantly alter the results. Thus, from Fig. 2.8 we see that neglecting evanescent

modes produces a very good results unless h < 4.

In Fig. 2.9 we fix the distance between the cylinders at h = 3 and show

the dependence of modulus of the transmission coefficient on k. The dashed line

corresponds to the modulus obtained without evanescent modes and the solid line

corresponds to the modulus obtained with two evanescent modes. Again, increasing

the number of evanescent modes does not significantly alter the results. Thus, from

Fig. 2.9 we see that the omission of these modes produces very good results for

0.2 < k < 0.6. However, for larger k the results are poor, especially near k = 1.2

which is close to k = 7r/c/;.---, 1.26, where a second mode becomes propagating.

It should be noted that once the scattering matrix for a single cylinder is

calculated we can plot similar graphs, almost instantly, for any number of cylinders.

Boundary integral equation methods such as these developed in Ref. [2,3] take

significantly more time to produce such curves, especially Fig. 2.8. Because for

this their codes must be applied for each value of distance between cylinders and for

each number of cylinder.
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2.9 Conclusions

Without making any assumptions about normal incidence, single mode propagation,

and sufficient inter-scatterer separation in the direction of propagation, we have

developed a generalized scattering matrix approach to compute the transmission

and reflection coefficients of periodic structures. Our approach only requires the

generalized scattering matrix for a single element. This is computed by applying

a boundary integral equation method which is described in the appendix. The

generalized scattering matrix takes into account the effect of evanescent modes.

Results obtained from a numerical study of a structure with two columns gives us

insight into the estimation of the number evanescent modes we should take into

account to obtain numerical solution with prescribed accuracy.

We then find the solution with N columns. Using the generalized matrix for

a single scatterer we derived a matrix difference equation whose solution gives the

amplitude of propagating and evanescent waves in the region between the elements.

Associated with this matrix difference equation is an associated eigenvalue problem.

We have shown how the eigenvalues of this related problem contain the essence of wave

propagation in two dimensional periodic structures; they determine the location of

pass and stop bands. The solution of this eigenvalue problem is then used to efficiently

determine the transmission and reflection coefficients for this photonic structure.

Finally, we have shown the effect of evanescent modes on the transmission and

reflection coefficients of propagating modes. Generally speaking, they are important

when the inter-column spacing, h, is reduced.
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Figure 2.5 Dependence of modulus (a) and phase (b) of transmission coefficient
on distance between cylinders (for fixed wave number k = 1). Solid line corresponds
to results obtained from integral equation and dashed line corresponds to results
obtained from scattering matrix approach without evanescent modes.
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Figure 2.6 Dependence of error in approximation of modulus (a) and phase (b)
of transmission coefficient on distance between cylinders (for fixed wave number
k = 1). Solid line corresponds to results obtained from scattering matrix approach
without evanescent modes, dashed, and dotted line corresponds to results obtained
from scattering matrix approach with 2 and 4 evanescent modes.
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Figure 2.7 Dependence of modulus (a) and phase (b) of transmission coefficient on
wave number k (for fixed distance between cylinders h = 3). Solid line corresponds
to results obtained from integral equation and dashed line corresponds to results
obtained from scattering matrix approach without evanescent modes.
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Figure 2.8 Dependance of modulus of transmission coefficient on distance between
cylinders for 10 cylinders (for fixed wave number k = 1).
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Figure 2.9 Dependance of modulus of transmission coefficient on wave number for
10 cylinders (for fixed distance between centers of cylinders d = 3).



CHAPTER 3

COMPUTATION OF THE GENERALIZED SCATTERING

MATRICES FOR METALLIC AND DIELECTRIC OBSTACLES

3.1 Introduction

In this chapter, we show how to solve the problem on diffraction of plane wave by

one column of cylinders. In Sections 3.2 and 3.3 we consider the cases of metallic

and dielectric cylinders. As mentioned in Section 2.3, it allows us to compute the

generalized scattering matrices for one column of metallic and dielectric cylinders.

We use the boundary integral equation technique to solve the problem. To

reduce the problem to the boundary integral equation we represent the field in terms

of single and double layer potentials with periodic Green's function. In the case of

metallic cylinders we obtain the Fredholm integral equation of the second kind and in

the case of dielectric cylinders we obtain the system of Fredholm integral equations of

the second kind. In order to discretize them we apply the quadrature formulae based

on Legandre polynomials [9-11].

3.2 Computation of the Generalized Scattering Matrix for Metallic

Obstacle

In this Section, we apply the boundary integral technique to solve the problem on

diffraction of plane wave by one column of metallic cylinders (2.1)-(2.3). In order to

reduce this problem to the boundary integral equation we introduce periodic Green's

function, i.e., function G which satisfies the following equation

Using separation of variables it is not difficult to show that



where
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(3.3)

(3.4)

If points x = (x 1 , x2 ) and y = (Yi, y2) are close, this formula is not suitable

for calculating G because in this case e—I'mlx 1 is small and the series in Eq. (3.2)

converges slowly. To calculate G in this case, we use the Ewald representation of G

where a is any positive number,

Further we will use the derivatives of the Green's function. If points x = (x 1 , x2 ) and

y = (Yi, Y2) are far apart ((x i — 	 > 0.2) we use the following formulae for derivatives



and otherwise we use Ewald's representation for derivatives
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Using properties of single and double layer potentials we can reduce the scattering

problem (2.1)-(2.3) with one row of cylinders to the boundary integral equation of

the second kind

where G is periodic Green's function, S is the boundary of the cylinder in the

fundamental waveguide, 7b = us I s , and

aui

g = a7, s

To solve it we use technique developed in Ref. [10,11]. We can rewrite the last

equation in the form:

where
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is the fundamental solution to the two-dimensional Helmholtz equation.

The integrals

can be discretized by use of quadrature formulae based on Legandre polynomials [10]
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Note that the kernels K1, K2, L1, and L2 are analytic and

where C = 0.57721... is the Euler constant.

For the other two integrals we apply trapezoid rule. The trapezoid approximation

for this integrals has exponential rate of convergence because the function G — F is

smooth.

3.3 Computation of the Generalized Scattering Matrix for Dielectric

Obstacle

In this Section, we apply the boundary integral technique to solve the problem

on diffraction of plane wave by one column of dielectric cylinders, i.e., the two

dimensional scattering problem the two dimensional scattering problem governed by

the Helmholtz equation

where ui is an incident plane wave impinging normally upon our structure
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u, is the scattered field, and u int is the field inside the cylinders. On the interface of

each cylinder, the matching boundary conditions satisfy

where v = 1 in the case of E polarization (TM waves) and v = € in the case of H

polarization (TE waves).

Figure 3.1 Geometry of the problem on scattering by one row of cylinders.

It is known [9] that if

then the functions cb and V) satisfy the following system of boundary integral equations



Discretization of integrals

is described in Section 3.2. Now we show how to discretize integral
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If points x = (x 1 , x2) and y = (yi, y 2 ) are far enough (Ix — yl > 0.2) we use the

following formulae for the second-order partial derivatives of G

If points x = (x1, x2) and y = (yi, Y2) are close to each other (Ix — yl < 0.2) we use

Ewald representation for the second-order partial derivatives of G



Here

Show that

i.e.,it has "log" singularity. For that we extract singularities from the second-order

partial derivatives of G
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To extract singularity from the second-order partial derivatives of F we use

asymptotic expansion of F



Here C is the Euler constant. It follows from this formula that
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(3.22)

It follows from Eqs. (3.21)-(3.22) that

(3.23)

It follows from this equality and Eq. (3.23) that
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where

Thus, we prove that function

is continuous and

To discretize the integral (3.20) we represent it in the form

The first integral can be descretize by technique described in Section 3.2. For the

second integral we can apply trapezoid rule. Trapezoid approximation for this integral

has exponential rate of convergence because the kernel is smooth.

We apply the developed method to the particular set of parameters: d = 2.5,

k = 1, 0 = 0. In Fig. 3.2, we show the dependence of the modulus of the transmission

coefficient on k.



Figure 3.2 Dependence of the modulus of the transmission coefficient on k
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CHAPTER 4

ANALYTICAL MODELING OF PHOTONIC CRYSTALS

4.1 Introduction

In recent years, a great deal of effort has been devoted to the study of photonic

crystals. Photonic crystals are artificial structures composed of dielectric or metallic

materials which are designed to control the propagation of light. Usually, the properties

of photonic crystals are investigated numerically or experimentally. Only a few

papers have been devoted to the investigation of photonic crystals using approximate

analytical methods [1-5]. In Ref. [5], the governing equation was slightly modified

in such a way that separation of variables can be used. The eigenfunctions and the

spectra of the modified operators are then used to obtain Rayleigh-Ritz-type estimates

of the spectrum of the governing operator. In this paper, we develop an approximate

method which can be applied to the investigation of the scattering and reflection of

waves through a two-dimensional photonic crystal which consists of a periodic array

of parallel rods of a rectangular cross section. For this particular geometry we find an

analytical formula which turns out to be a good approximation to the exact solution.

The reminder of the paper proceeds as follows. We formulate the scattering

problem in Section 4.2. In order to solve this problem we consider three auxiliary

problems in Sections 4.3-4.5. In Sections 4.3 and 4.4 we develop an analytical method

for computing the generalized scattering matrix for a stepped waveguide (see Fig.

4.3) and for a single gap (see Fig. 4.4). The method is based upon mode matching.

In general, mode matching for such problems produces a coupled, infinite system

of linear equations of the first kind. By taking into account only a finite number of

propagating and evanescent modes in a specific part of the periodic structure we show

how the truncated infinite system can be solved. This requires inverting a 2M x 2M

matrix where M is the number of modes taken into account. In the particular case

38
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M = 1, this matrix can be inverted explicitly, i.e, in this case we can derive an explicit

formula for the elements of the generalized scattering matrices. We show numerically

that these explicit formulas give a good approximation of the solution, if the thin part

of the waveguide is small (see Fig. 4.3 and 4.4) and the wave number is not close to

the point where the second mode becomes propagating.

In Section 4.4, we apply our scattering matrix approach to find the generalized

scattering matrix for N — 1 gaps (see Fig. 4.5). We derive matrix difference equations

for the amplitudes of the propagating and evanescent modes in the thin part of

the waveguide. In order to solve these equations we need to find eigenvalues and

eigenvectors of a generalized 2M x 2M eigenvalue problem. This can be done numerically.

In the particular case M = 1, we solve it explicitly, i.e, in this case we derive an explicit

formula for the elements of the generalized scattering matrix.

Combining the results from Sections 4.3-4.5 we find the formulas for the transmission

and reflection coefficients for the two-dimensional photonic crystal in Sections 4.6. In

particular for the case M = 1, we derive explicit formulas for these coefficients.

4.2 Governing Equations

The infinite array we wish to study made up of N columns of identical rectangle

metallic cylinders. The centers of the rectangular cylinders are located at points

(2(L d)m, H 2Hn), m = 1, N, n = 0, ±1, ±2, , where 2L is the spacing

between cylinders in the x-direction and 2h is the spacing in the y (see Fig. 4.1). The

projection of cylinder on plane Oxy is a rectangle with length 2d and width 2(H — h).

The field u satisfies the two-dimensional Helmholtz equation
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Figure 4.1 Geometry of the problem.

and is represented by

where us is unknown scattered field and u i is an incident plane wave with wave number

k impinging upon our structure

We assume that on the surface of each cylinder the field satisfies Neumann boundary

conditions

Because of the periodicity of the problem in the y-direction we can formulate

and study the problem in the fundamental waveguide (see Fig. 4.2)



To do this we represent the incident and scattered fields in the form

where 'd i and ft, are periodic functions with respect to y and 0 is determined by the

form of the incident plane wave. The periodic function u 3 satisfies the equation

with the periodic boundary conditions

on the part of the boundary of the fundamental waveguide where y = ±H, and

on the boundaries of the rectangular cylinders.

Taking into account Eq. (4.5) we can recast the problem (4.1)-(4.3) in the

fundamental waveguide R with quasi periodic boundary conditions

on the part of the boundary of the fundamental waveguide where y = ±H, and

(4.9)
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on the boundaries of the rectangular cylinders.



42

Figure 4.2 Fundamental waveguide.

4.3 Generalized Scattering Matrix for Stepped Waveguide

In this Section, we develop an analytical method for computing the generalized

scattering matrix for a stepped waveguide (see Fig. 4.3). This Section consists

of 4 subsections. In Subsection 4.3.1, we define the generalized scattering matrix

for a stepped waveguide and describe how it can be computed. This involves the

solution of the problem of scattering by a stepped waveguide. We solve this problem

in Subsection 4.3.2. In Subsection 4.3.3, we consider a particular case in which we

can derive an explicit formula for the solution. In Subsection 4.3.4, we examine the

accuracy of this explicit formula.

4.3.1 Definition of the Generalized Scattering Matrix and its Computation

In this Subsection, we define and show how to calculate the generalized matrix for a

stepped waveguide (see Fig. 4.3). Let u i and vi be the incident fields, and u, and v,

be the scattered fields. We assume that u i and vi are given by
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Figure 4.3 Stepped waveguide.

Here

are transverse eigenfunctions and

are their corresponding propagation constants.
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We next expand the scattered fields u 3 and v3 into sum of propagating plane

and evanescent waves,

We can succinctly describe u i , vi , us , and vs by the column vectors

respectively. Because of the linearity of the problem there are matrices R11, R12, R21,

R22, which relate the amplitudes of the incident waves a, b and the amplitudes of the

scattered waves c, d

matrices respectively. The matrix

is called generalized scattering matrix. The difference between generalized scattering

matrix and standard scattering matrix is the former takes into account both propagating

and evanescent modes, while the latter only handles the propagating modes.

To calculate R11 and R12 we consider the incident field described by
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where the m-th coordinate of the vector a is equal to 1 (—oo < m < oo). We assume

that we know the scattered field

It follows from Eq. (4.18) that

In order to compute R21 and R22 we consider incident field described by

where the m-th coordinate of a vector b is equal to 1 (0 < m < M). We assume that

we know scattered field

It follows from Eq. (4.18) that

In the next Subsection, we show how to find the two sets of scattered fields.

4.3.2 Scattering by Stepped Waveguide

In this subsection, we show how to find the scattered field if the incident waves are

given by
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where On(y), 7,bn(y), On, an, 7n , an are defined by Eqs. (4.12)-(4.15). Let u, and vs

be the scattered field in thick and thin parts of stepped waveguide respectively (see

Fig. 4.3). We expand them into the sum of propagating plane and evanescent waves

Here the coefficients cn and cln are unknown and we now describe a method to find

them.

It follows from the continuity of the field and its derivative with respect to

y at x = 0 —h < y < h and the Neumann boundary condition at x = 0, y E

We first multiply Eq. (4.27) by Orn (y) and integrate the result from — h to h. We

next multiply Eq. (4.28) by Orn (y) and integrate this expression from —H to — h and

from h to H. Adding these two results we obtain



Here the inner products are defined by
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We can express the coefficients cm in terms of dm from Eq. (4.29) by

Substituting this expression for cm into Eq. (4.26) we obtain

Multiplying this equation by 0,i (y) and integrating from — h to h we deduce the

(M + 1) x (M + 1) system of linear equations for the (M + 1) unknowns do ,...,dm
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where

By solving this system of linear equations we obtain amplitudes d o , d1 ,..., dm describing

of the scattered field in the thin part of the waveguide. Amplitudes c o , c1 ,... of the

scattered field in the thick part of the waveguide can be found from Eq. (4.33). Note

that our approximation of the scattered field takes into account all the modes in the

thick part of the waveguide.

4.3.3 Explicit Formula for the Case M = 0

In the case M = 0, we can solve system (4.35) explicitly. The final formulas for the

scattering matrix are as follows

where

(4.42)



49

4.3.4 Numerical Results

In this Subsection, we demonstrate that the explicit formulas, from the previous

Section give good results if the thin part of the waveguide is small and the wave

number is not close to the point where the second mode becomes propagating. To do

this we consider the problem with two sets of parameters. At first we consider the

problem with h = 0.05 and H = 0.5. This corresponds to a relatively small, thin part

of the waveguide. For these particular parameters there is only one propagating mode

both in the thin and the thick regions of the waveguide. For this problem, (R11)00 is

the reflection coefficient. In Fig. 4.7 we show the modulus and phase of this reflection

coefficient as a function of the wave number k of the normally incident plane wave.

The modulus and phase of the reflection coefficient are computed using the explicit

formula (4.38). To examine the accuracy of this graph we have computed the modulus

and phase of the reflection coefficient by taking into account 8 evanescent waves in the

thin part of the waveguide, using the method developed in Subsection 4.3.2. We have

found that the difference between the results is of order 10 -3 . Increasing M further

produces results that differ by increasingly smaller amounts. This result shows that

the explicit formulas (4.38)-(4.40) give good results for this set of parameters.

Now we consider the problem with a relatively big, thin part of the waveguide:

h = 0.35 and H = 0.5. In Fig. 4.8 we show the modulus and phase of this reflection

coefficient as a function of k. The modulus and phase are computed using the explicit

formula (4.38). To examine the accuracy of this result we have computed the modulus

and phase of the reflection coefficient by again taking into account 8 evanescent waves

in the thin part of the waveguide. In Fig. 4.9 we show the dependence of the modulus

and phase of the difference between these results. This graph shows that as M

increases the error decreases. Thus, we infer that the M = 0 formula produces small

error if k is not close to 7r/2H = 6.28 where the second mode becomes propagating.
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4.4 Scattering Matrix for One Gap

In this Section, we develop an analytical method for computing the generalized

scattering matrix for two discontinuity in the waveguide (see Fig. 4.4). We will refer

to this structure as one gap. This section consists of four subsections. In Subsection

4.4.1, we define the generalized scattering matrix for one gap and describe how it can

be computed. This involves the solution of the problem of scattering by one gap. We

solve this problem in Subsection 4.4.2. In Subsection 4.4.3, we consider particular

case in which we can derive an explicit formula for the solution. In Subsection 4.4.4,

we examine the accuracy of this explicit formula.

4.4.1 Definition of Generalized Scattering Matrix for One Gap and its

Calculation

Now show how to find the scattering matrix for one gap. Let ui and vi be the incident

fields, and u3 and v3 be the scattered field (see Fig. 4.4). Assume that u i and vi are

given by

Figure 4.4 One gap.
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We next expand the scattered fields into sum of propagating and evanescent

modes.

We can succinctly describe u i , vi , u8 , and v, by the column vectors

respectively. Because of the linearity of the problem there are matrices S11, S121 8211

822, which relate the amplitudes of the incident waves a, b and the amplitudes of the

scattered waves c, d

To calculate 811 and 812 we consider the incident field described by

(4.48)
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where the m-th coordinate of the vector a is equal to 1 (0 < m < M). In the

Subsection (4.42), we describe how to find the scattered fields

It follows from Eq. (4.5) that

Because of symmetry we have

4.4.2 Scattering by One Gap

In this Subsection, we show how to find the scattered field if the incident waves are

given by

(see Fig. 4.4). Let u s and vs be the scattered fields and w 1 and w2 be the fields in

the thick region of the waveguide. We expand them into the sum of propagating and

evanescent waves
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Here the functions On (y) and 0,,,(y) are defined by Eqs. (4.12)-(4.15). It follows from

the continuity of the field and its derivative with respect to x at x = L — h < y < h

and Neumann boundary condition on x = L, y E [-H, — h] U [h, H] that

We first multiply Eq. (4.56) by 0,,(y) and integrate the result from — h to h.

We next multiply Eq. (4.57) by 07„(y) and integrate this expression from — H to — h

and from h to H. Adding these two results we obtain

It follows from the continuity of the field and its derivative with respect to

x at x = — L — h < y < h and the Neumann boundary condition on x = — L,
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We first multiply Eq. (4.59) by 0, 7,(y) and integrate the result from —h to h.

We next multiply Eq. (4.60) by (/),,(y) and integrate this expression from —H to —h

and from h to H. Adding these two results we obtain

This is a 2 x 2 system of linear equations for fm and gm . By solving it we can

express the coefficients fm and gm in terms of cn and dn
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Substituting these expressions for fm and gm into boundary conditions (4.55)

and (4.59), multiplying this equation by 0,(y), and integrating from —h to h we

obtain the (2M + 2) x (2M + 2) system of linear equations for the (2M + 2) unknowns

ci and di

4.4.3 Explicit Formula

In the case M = 0, we can explicitly solve the 2 x 2 system (4.71)-(4.72) using the

definitions (4.64)-(4.66) and (4.68)-(4.70). In this case, the matrix elements S i, are

just numbers and are given by
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4.4.4 Numerical Results

In this Subsection, we demonstrate that the explicit formulas (4.73) and (4.74) give

good results if the thin part of the waveguide is small and the wave number is not close

to the point where the second mode becomes propagating. To do this we consider

the problem with two sets of parameters. At first we consider the problem with

h = 0.05, H = 0.5, and L = 0.75. This corresponds to a relatively small thin part of

the waveguide. For these particular parameters, there is only one propagating mode

both in the thin and the thick regions of the waveguide. For this problem, 8 11 is the

reflection coefficient. In Fig. 4.10 we show the modulus and phase of this reflection

coefficient as a function of the wave number k of the normal incident plane wave.

The modulus and phase of the reflection coefficient are computed using the explicit

formula (4.73). To examine the accuracy of this graph we have computed the modulus

and phase of the reflection coefficient by taking into account 8 evanescent waves in the

thin part of the waveguide using the method developed in Subsection 4.4.2. We have

found that the difference between the results is of the order 10 -2 . This result shows

that the explicit formulas (4.73)-(4.74) give good results for this set of parameters.
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Now we consider the problem with a relatively big, thin part of the waveguide:

h = 0.35, H = 0.5, and L = 0.5. In Fig. 4.11 a) we show the modulus of the

reflection coefficient as a function of k. The modulus and phase are computed using

explicit formula (4.73). To examine the accuracy of this graph we have computed

the modulus and phase of the reflection coefficient by again taking into account 8

evanescent waves in the thin part of the waveguide using the method developed in

Subsection 4.3.2. In Fig. 4.11 b) we show the dependence the modulus and phase

of the difference between these results. This graph shows that the error is small if k

is not close to 7r/2H = 6.14 which corresponds to the point where the second mode

becomes propagating.

4.5 Scattering Matrix for N — 1 Gaps

In this Section, we show how to find the generalized scattering matrix for N —1 gaps

(see Fig. 4.5). This section consists of three subsections. In Subsection 4.5.1, we

define the generalized scattering matrix for N — 1 gaps and describe how it can be

computed. This involves the solution of the problem of scattering by N — 1 gaps. We

solve this problem in Subsection 4.5.2. In Subsection 4.5.3, we consider a particular

case in which we can derive an explicit formula for the elements of the generalized

scattering matrix.

4.5.1 Definition of generalized scattering matrix for N — 1 gaps and its

computation

In this Subsection we define and show how to compute the scattering matrix for N —1

gaps (see Fig. 4.5). We begin by defining the regions Dm (1 5_ m N) by



where

Let u 1 and vN be the incident fields, and v 1 and uN be the scattered fields.

Assume that u 1 and vN are given by
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We next expand the scattered field into sum of propagating and evanescent

waves.



We can succinctly describe u i , vi , us , and vs by column vectors

Because of the linearity of the problem there are matrices S11, S12, S21, S22, which

relate the amplitudes of the incident waves a, b and the amplitudes of the scattered

waves c, d

To compute Q ii and Q12 we consider the incident field described by

where the m-th coordinate of the vector a is equal to 1 (0 < m < M). We assume

that we know the scattered field
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It follows from Eq. (4.86) that
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To compute Q12 and Q22 consider incident field described by

where m-th coordinate of vector b is equal to 1 (0 < m < M). Assume that we know

how to find the scattered fields

It follows from Eq. (4.86) that

In the next Subsection, we show how to find the two sets of scattered fields.

4.5.2 Scattering by N — 1 Gaps

In this Subsection, we show how to find the scattered field if the incident waves are

given by Eqs. (4.82)-(4.83) (see Fig. 4.5). Let u, and v3 be the scattered fields. We

shall seek them in the form of a linear combination of propagating and evanescent

plane waves

and the transmitted field by

In the region Dm (2 < m < N 1), the field is given by um + vm , where
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Here amn and bmn are unknown complex amplitudes, vm(x, y) is the sum of propagating

and evanescent waves propagating in direction — x. Similarly, vm(x, y) is the sum of

plane waves propagating in the opposite direction.

We can describe the field in the region Dm (m = 1, ..., N) by the column vectors

The incident, scattered, and transmitted fields are described by

respectively.

Now we consider the gap between region D 1 and D2. If

is the generalized scattering matrix for one gap, we can write

where the diagonal matrix D is defined by
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and 6,,n is the Kronecker delta function.

By translating the gap and introducing a suitable change of variables, we can

deduce

We then seek a solution of the matrix difference equation (4.97) of the form

Substitution of these representations into (4.97) yields

This is a generalized eigenvalue problem for et'. By solving it, we can find the

characteristic numbers ei' and eigenvectors a and /3. We note here one important

property of eigenvalues of this generalized eigenvalue problem. If is an eigenvalue

with eigenvector (a, 13) then e-µ is an eigenvalue with eigenvector (/3, a).

Assume that we have found the characteristic numbers 011, 012 ,...,e .u2 (m+i) and

the corresponding eigenvectors

for generalized eigenvalue problem (4.99). These can be obtained numerically by

employing standard methods for finding generalized eigenvalues and eigenvectors.

We can divide eigenvalues into two groups each consisting of n elements. In the first
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group p, is real and less then zero or it is complex and Re u > 0 and in the second

group p, is real and greater then zero or p is complex and Re p < 0. We renumber

t1 1,•••,I12(m+1) so that tti,...,,,tm+1 are from the first group and pm+2,•••,12(m+1) are

from the second. We can say that the eigenvalues from the first group correspond

to the wave propagating in direction +x and the eigenvalues from the second group

correspond to the wave propagating in direction — x.

We will seek the solution of the system (4.97) of the form

It follows from the form of the incident waves, that

where in the vector ao the coordinate corresponding to the propagating mode is equal

to e-ik . Setting m = 1 and m = N into Eq. (4.100) we obtain

Eqs. (4.101)-(4.102) give us 2(M + 1) linear equations with 2(M + 1) unknowns

C2,•••,C2(m+1)• Solving them we can compute the remaining am and bm and thus

the electromagnetic field in each region Dm . The coordinates of the vectors b 1 , aN

corresponding to propagating waves are the reflection and transmission coefficients,

respectively, for N — 1 gaps in the waveguide.
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4.5.3 Explicit Formula

In the case M = 0, we can solve difference equations (4.91)) explicitly. In this case,

the matrix elements Qii are just numbers and are given by

The final formulas for the scattering matrix are as follows:

where the Sij are defined by Eqs. (4.73)-(4.74) and

4.6 Scattering by N Columns of Rectangular Cylinders

In this section, using two auxiliary problems from Sections 4.3 and 4.5 we find the

solution for the problem described in Section 4.2. As mentioned in Section 4.2 we

can consider the problem in the fundamental waveguide with incident wave given by

Eq. (4.2) (see Fig. 4.6).

In this Section, we use the same definitions (4.77)-(4.79) for regions Dm (2 <

m < N — 1) and representation of the fields in them as in Subsection 4.5.3. We define
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the regions Do and DN+1 by

and redefine the regions D 1 and DN by

(see Fig. 4.6). Let uo be incident field and v o and uN+1 be the scattered fields in

regions Do and DN+1. Let these field be characterized by the infinite column vectors

ao, bo, and aN +1 . We can rewrite the incident plane wave (4.2) in the form

where J is an integer such that

and /3,1 and ye are defined by Eqs. (4.14) and (4.15) with n = J. According to Eq.

(4.109) the vector a0 has the following form:

where the coordinate corresponding the J propagating mode is equal to c ilid .

It follows from the definition of generalized scattering matrices that



Figure 4.6 Geometry of the problem.
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Eqs. (4.110)-(4.112) are system of six linear equations with six unknowns bo,

al , b 1 , aN, bN, and aN+1. Solving it we obtain

where
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and matrix D is defined by Eq. (4.96).

In the case M = 0, we can find the elements of the vectors b0 and aN+1 explicitly

In Fig. 4.12 we show the dependence of modulus of the reflection coefficient as

a function of k for particular parameters: h = 0.05, H = 0.5, L = 0.75, d = 1, N = 9.

4.7 Conclusions

We have developed an analytical method to study the problem on scattering and

transmission of waves through a two-dimensional photonic crystal which consists of

a periodic array of parallel rods of a rectangular cross section. Without making

any assumptions about normal incidence, single mode propagation, and sufficient

inter-scatterer separation in the direction of propagation, we have shown how to

compute the reflection and transmission coefficients for the structure. The method

is based on generalized scattering matrix approach. At first we have computed the

generalize scattering matrix for a single element of the periodic structure. To find

it we have used mode matching. By taking into account only a finite number of

propagating and evanescent modes in a specific part of the periodic structure we have

shown how the infinite system can be solved. Solution of this system involves inverting

the M x M matrix, where M is the number of modes taken into accounts. In general,

it can be done numerically. In the case M = 1, we have derived the explicit formulas
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Figure 4.7 Dependence of modulus (a) and phase (b) of the reflection coefficient
on wave number k for the scatterer in Fig. 4.3 with h = 0.05. It is obtained without
taking into account evanescent waves in the thin part of the structure.
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Figure 4.8 Dependence of modulus (a) and phase (b) of the reflection coefficient
on wave number k for the scatterer in Fig. 3 with h=0.35. It is obtained without
taking into account evanescent waves in the thin part of the structure.
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Figure 4.9 Dependence of error in modulus (a) and phase (b) of the reflection
coefficient on wave number k obtained with different numbers of evanescent waves for
the scatterer in Fig. 4.3 with h = 0.35.
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Figure 4.10 Dependence of modulus (a) and phase (b) of the reflection coefficient
on wave number k for the scatterer in Fig. 4.4 with h = 0.05, H = 0.5, and L = 0.75
. It is obtained without taking into account evanescent waves in the thin part of the
structure.
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Figure 4.11 Dependence of modulus (a) and error in modulus (b) of the reflection
coefficient on wave number k for the scatterer in Fig. 4.4 with h = 0.35, H = 0.5,
and L = 0.5.



73

Figure 4.12 Dependence of modulus of the reflection coefficient on wave number
k for 9 columns of rods with h = 0.05, H = 0.5, and L = 0.75 computed using the
explicit formula.
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for the elements of the generalized scattering matrix. We have demonstrated that

this explicit formula gives good results under certain conditions on the wave number

and the distance between rectangular rods.

To find generalized scattering matrix for N —1 elements of the periodic structure

we have derived matrix difference equations for the amplitudes of the propagating

and evanescent modes in the thin part of the waveguide. We have reduced this

difference equation to solution of a generalized 2M x 2M eigenvalue problem. By

solving it numerically we have computed the reflection and transmission coefficients

of the periodic structure. In the case M = 1 we have solved it explicitly and derived

an explicit formulas for the elements of the generalized scattering matrix.



CHAPTER 5

ANALYTICAL MODELING OF RAYLEIGH-BLOCH SURFACE

WAVES ALONG METALLIC RECTANGULAR RODS

5.1 Introduction

Rayleigh-Bloch surface waves are waves which propagate along two-dimensional diffraction

grating which consists of a periodic array of rods and exponentially dump with

the distance to the grating. In a recent paper, Porter and Evans [1] developed

a boundary integral method for studying the Rayleigh-Bloch surface waves along

periodic gratings. They reduced the problem to the boundary integral equation on

the surface of one element of the periodic grating and after discretization of it they

showed that the surface waves correspond to the zeros of the resulting determinant.

They proved that in the case of symmetric elements this determinant is real.

In this Chapter, we develop an analytical method to study propagating surface

waves along diffraction grating which consists of a periodic array of rods of a rectangular

cross section. For this particular geometry, we use mode matching to show that surface

waves correspond to the singularities of a Hermitian matrix. The dependence of the

number of surface waves on the length of rectangular cross section is studied.

The reminder of the Chapter proceeds as follows. The problem is formulated

in Section 5.2. In Section 5.3, we use mode matching to show that the surface

waves correspond to nontrivial solution of homogeneous system of linear equation.

In general, mode matching for such problems produces a coupled, infinite system

of linear equations of the first kind. By taking into account only a finite number

of evanescent modes in a specific part of the periodic structure we show how the

truncated infinite system can be solved. We apply our method to the particular set

of parameters. We show numerically that the method gives accurate results if we take

into account only several evanescent waves.

75



76

5.2 Statement of the Problem

Consider an infinite array of identical rectangular metallic cylinders. The cylinders

have the length L and the width 2h and their centers are located at points (0, (2m +

1)H), m = —oo, ..., +oo where 2H is the spacing between centers of rectangular (see

Fig. 5.1).

Figure 5.1 Geometry of the problem.

The Rayleigh-Bloch surface wave is a nontrivial solution of the homogeneous

Helmholtz equation

and homogeneous boundary conditions on the interfaces

where n is exterior normal to the rods. Rayleigh-Bloch surface waves are damped as

Because of the periodicity of the problem in the y-direction we can formulate

and study the problem in the fundamental waveguide (see Fig. 5.2)



Figure 5.2 Fundamental waveguide

To do this we represent the field in the form

where ft is a periodic function with respect to y and 0 is to be determined. The

periodic function ii satisfies the equation

with the periodic boundary conditions

on the part of the boundary of the fundamental waveguide where y = ±H, and
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on the boundaries of the rectangular cylinders.
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Taking into account Eq. (5.5) we can recast the problem (5.1)-(5.3) in the

fundamental waveguide R with quasi periodic boundary conditions

on the part of the boundary of the fundamental waveguide where y = +H, and

on the boundaries of the rectangular cylinders.

5.3 Analytical Approximation to Surface Wave

Let D1, D2 , and D3 be the regions defined by

and v1 , v2 , and v3 be the functions defined by

where u is the nontrivial solution of the problem (5.1), (5.8), and (5.9) (see Fig. 5.2).

We expand the functions v 1 and v2 into sum of evanescent modes



where
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are transverse eigenfunctions and

are their corresponding propagation constants. In the region D3, we seek the unknown

field v3 as the sum of only N propagating and evanescent modes

For symmetric surface waves we have that

and for anti-symmetric surface waves

At first we consider symmetric case (5.17). It follows from the continuity of the field

and its derivative with respect to x at x = L, — h < y < h and the Neumann boundary



We first multiply Eq. (5.20) by Om (y) and integrate the result from —h to h.

We next multiply Eq. (5.21) by Om (y) and integrate this expression from —H to —h

and from h to H. Adding these two results we obtain

Here the inner products are defined by

and

It follows from Eq. (5.22) that

Substitution of this expression for am into Eq. (5.19) yields
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Multiplying this equation by Om (y) and integrating from —h to h we obtain the

homogeneous system of linear equations for b0,...,bN
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where

Rayleigh-Bloch surface waves correspond to these values of 13 which make the

determinant of A vanish. In general, 13 is complex. We now show how to transform

the system (5.28) to an equivalent system with a Hermitian matrix. We rewrite the

system (5.28) in the form

It is equivalent to

where

We consider the case when there are no radiating waves:
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It means that we operate at frequency below the cut-off frequency. In this case all

7m are complex and we have

i.e., matrix B is Hermitian and its determinant is real.

5.4 Numerical Results

In this Section, we apply our method to the particular set of parameters: L = 1.0,

h = 0.2, H = 1.0. In Fig. 5.3, we show the dependence of det A on 0 for fixed

k = 1.0. Solid, dashed, and dotted lines correspond to results obtained with 0, 2, and

4 evanescent waves in region D3. It follows from that graph that for k = 1.0 there are

two surface waves. In Fig. 5.4, we show dependence of /3 corresponded to the surface

waves on k the wave number.



Figure 5.3 Dependence of det A on 0 for fixed k = 1.0
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Figure 5.4 The dependence of j3 corresponded to the surface waves on k the wave
number



CHAPTER 6

FUTURE RESEARCH

In Chapter 2 of this dissertation, we have applied the scattering matrix approach to

study the scattering and transmission of waves through a two-dimensional photonic

crystal. As a topic for future study, it might also be interesting to apply the scattering

matrix approach to study the scattering and transmission of waves through a three-

dimensional photonic crystal.

In Chapter 4, we have developed an analytical method to analyze and to study

the scattering and transmission of waves through a two-dimensional photonic crystal

which consists of a periodic array of parallel metallic rods with rectangular cross

sections. Similar ideas allow us to develop an analytical method to analyze and to

study the scattering and transmission of waves through a three-dimensional photonic

crystal which consists of periodic array of metallic cubs. It is also possible to derive

an explicit formula for the reflection and transmission coefficients when we take into

account only one propagating mode in a specific portion of the periodic structure.

The analytical method developed in Chapter 5 can be applied to analyze and to

study the surface waves along three-dimensional structure which consists of periodic

array of finite cylinders. It can be showed that the surface waves correspond to the

singularity of a Hermitian matrix.

The analytical method developed in Chapter 4 can be applied to study the

localized modes along the line defect in two-dimensional periodic structure which

consists of a infinite periodic array of parallel metallic rods with rectangular cross

sections.
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