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ABSTRACT

ENRICHING AND DESIGNING METASCHEMAS
FOR THE UMLS SEMANTIC NETWORK

by
Li Zhang

The disparate terminologies used by various biomedical applications or professionals make

the communication between them more difficult. The Unified Medical Language System

(UMLS) of the National Library of Medicine (NLM) is an attempt to integrate different

medical terminologies into a unified representation framework to improve decision making

and the quality of patient care as well as research in the health-care field. Metathesaurus

(META) and Semantic Network (SN) are two main components of the UMLS system,

where the SN provides a high-level abstract of the concepts in the META.

This dissertation addresses three problems of the SN. First, the SN's two-tree struc-

ture is restrictive because it does not allow a semantic type to be a specialization of several

other semantic types. This restriction leads to the omission of some subsumption knowl-

edge in the SN. Secondly, the SN is large and complex for comprehension purposes and

it does not come with a pictorial representation for users. As a partial solution for this

problem, several metaschemas were previously built as higher-level abstractions for the SN

to help users' orientation. Third, there is no efficient method to evaluate each metaschema.

There is no technique to obtain a consolidated metaschema acceptable for a majority of the

UMLS's users.

In this dissertation work the author attacked the described problems by using the

following approaches. (1) The SN was expanded into the Enriched Semantic Network



(ESN), a multiple subsumption structure with a directed acyclic graph (DAG) IS-A hierar-

chy, allowing a semantic type to have multiple parents. New viable IS-A links were added

as warranted. Two methodologies were presented to identify and add new viable IS-A

links. The ESN serves as an extended high-level abstract of the META. (2) The ESN's

semantic relationship distribution and concept configuration were studied. Rules were de-

fined to derive the ESN's semantic relationship distribution from the current SN's semantic

relationship distribution. A mapping function was defined to map the SN's concept config-

uration to the ESN's concept configuration, avoiding redundant classifications in the ESN's

concept configuration. (3) Several new metaschemas for the SN and the ESN were built

and evaluated based on several different partitioning techniques. Each of these metaschema

can serve as a higher-level abstraction of the SN (or the ESN).
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Biomedical professionals have diverse perspectives and approaches for solving contem-

porary problems. The disparate terminologies used by various biomedical applications or

professionals make the communication between them more difficult. Controlled vocabu-

laries have proven to be extremely useful in facilitating such communications. The Unified

Medical Language System (UMLS) of the National Library of Medicine (NLM), initi-

ated in 1986, is an attempt to integrate a number of medical terminologies into a unified

knowledge representation framework [5, 30, 31, 34]. It also helps to improve the ability of

computer programs to "understand" biomedical meaning in user inquiries and to use this

understanding to retrieve and integrate relevant machine-based information. The UMLS

provides users with accurate and up-to-date information which helps to improve decision

making and ultimately the quality of patient care as well as research in the health-care field.

The UMLS [59] contains three Knowledge Sources: the Metathesaurus (META)

[56, 58], the Semantic Network [37, 40], and the Specialist Lexicon. The META is the

central vocabulary component of the UMLS, which represents medical knowledge in the

form of names of concepts and links between those concepts [45]. Different names for a

biomedical meaning are linked to a single Metathesaurus concept. Extensive additional in-

formation describing semantic characteristics, occurrence in machine-readable information

sources, and how concepts co-occur in these sources is also provided, enabling a greater

1
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comprehension of the concept in its various contexts. Thus the META serves as the central

repository of concepts used in the biomedical field. The META also preserves the meaning,

hierarchical connections, and other relationships between concepts presented in its source

vocabularies. The latest version of the UMLS contains the Metathesaurus (META) with

about 900,000 concepts (790,000 concepts in [59] and 871,000 concepts in [60]).

The purpose of the Semantic Network (SN) is to provide a consistent categorization

of all concepts found in the META and to provide useful links between these concepts at

the level of the semantic types [38, 40]. The SN contains 135 semantic types (134 in [60]),

and hierarchical and non-hierarchical relationships between semantic types [40, 61]. Each

concept in the META is assigned to one or more semantic types, so that the SN can provide

some semantics for META's concepts. The assignment of concepts to semantic types in-

volves algorithmic procedures as well as extensive review by domain experts based on two

assumptions: 1) each concept is assigned to the most specific semantic type available; 2)

semantic types are assigned according to the meaning or meanings that the concept has in

its source vocabulary [38]. In this way, the SN serves as a high-level abstract view of the

META [38, 40], which helps organize the large number of concepts in the biomedical field.

This is expressed in [41] as follows: "The Semantic Network encompasses and provides a

unifying structure for the Metathesaurus constituent vocabularies."

The SN contains a hierarchy consisting of two trees, rooted at the semantic types

Event' and Entity, respectively [37]. This hierarchy is based on the IS-A relationship,

which connects a more specialized semantic type (a child) to a more generalized semantic

type (its parent). Each semantic type, except for Event and Entity, is a specialization

1 Semantic types will be written in bold font in this dissertation except in tables and figures.
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of exactly one semantic type (its parent) and inherits semantic relationships only from this

unique parent. The child semantic type will inherit all semantic relationships from its parent

unless a relationship is explicitly blocked from being inherited using the "DNI" (Defined

but Not Inherited by the children of the Arguments) or the "blocked" mechanism.

While this tree structure is easy to implement and process, it is restrictive in that it

does not allow multiple parents and the accompanying multiple inheritance of relationships

from several semantic types. There are, in fact, some semantic types that could naturally be

specializations of more than one semantic type. For example, Gene or Genome could con-

ceptually be a child of two semantic types: one is its current parent Fully Formed Anatom-

ical Structure; the other is Molecular Sequence. Hence, Gene or Genome should inherit

from Molecular Sequence the semantic relationship result_of to Mental Process. In a

case such as this, the modeling of the SN omits an aspect of current medical knowledge.

Therefore, one important research goal is to enrich the SN from a two-tree structure into a

Directed Acyclic Graph (DAG) to accommodate these omitted subsumption relationships.

As a result of the enrichment, a new version of the SN, called the Enriched Semantic Net-

work (ESN) is derived. The ESN will serve as an extended high-level abstract view of the

META.

The SN, besides its IS-A links, contains about 7,000 semantic (non-hierarchical)

relationships instances of 53 kinds which connect semantic types. This number of relation-

ships makes it a large and complex framework, difficult for orientation and comprehension

purposes. It is necessary to develop efficient visualization tools to help user orientation

to the complex SN. Typically, a convenient way for a user to get oriented to such a large
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knowledge structure is by studying a diagrammatic representation. People often prefer a

graphical representation to an equivalent textual form, which may be quite extensive and

unruly. However, a complete picture of the SN is by far too large for easy comprehen-

sion. As such, it is important to construct a compact higher-level abstraction network

(metaschema) [6, 23] of the SN such that the metaschema can serve as the first view of

the UMLS. A metaschema is based on a partition of the SN (or the ESN), which groups

similar semantic types into a semantic-type group according to some criteria. Hence, it is

interesting to study different partitioning techniques to yield different metaschemas. It is

also important to develop an efficient method to evaluate these metaschemas.

1.2 Literature Review

In [38], McCray presented the structure of the•UMLS's Semantic Network (SN) and de-

scribed how to represent biomedical knowledge in the SN. The purpose of the SN is to

provide a consistent categorization of all concepts in the META and to provide useful links

between these concepts at the level of semantic types. The SN is organized in a hierar-

chy of two trees by the IS-A links. The appropriate place of a semantic type in the SN is

determined by its definition, regardless of whether that definition is based on inherent or

attributed features. Figure 1.1 shows part of the Event portion of the SN's IS -A hierarchy.

The IS-A link in the SN allows a child semantic type in the IS-A hierarchy to inherit seman-

tic relationships from its parent to ensure efficient information storage. When a semantic

relationship is not allowed to be inherited, then the "DNI" or the "blocked" mechanism is

used to prevent inheritance of this relationship.



Figure 1.1 Part of Event portion of the SN's IS-A hierarchy.

Besides the IS-A links, semantic types in the SN are connected by semantic re-

lationship of 53 kinds. Semantic relationships in the SN fall into five major categories

which are themselves relationships: Physically _related_to, temporally _related_to,

functionally_related_to, spatially_related_to, and conceptually_related_to. Semantic relationships,

like semantic types, are given precise definitions and organized in a tree hierarchy rooted

at associatedwith which have the above five children. For example, performs is a child

of functionallyrelated_to which is in turn a child of associated_with. Figure 1.2 shows

conceptually_related_to part of the relationship hierarchy.

In order to make the SN a high-level abstraction of the META, each concept in the
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META is assigned to one or more semantic types in the SN according to the two principles

in Section 1.1. A concept may be assigned to multiple semantic types since the concept

might appear in different contexts in the source vocabulary and those contexts signal dif-

ferent semantic types in the SN. In this way, the SN provides a consistent categorization of

the META's concept and thus serves as an abstraction of the META.

As stated in Section 1.1, an important goal of the research is to enrich the SN's hi-

erarchy to accommodate multiple subsumption knowledge. In fact, the same idea was rec-

ommended to the NLM by other researchers in [11]. This paper addressed the suitability of

the UMLS content for representing patient information in the large hospital-based Clinical

Information System (CIS) at Columbia-Presbyterian Medical Center (CPMC). The SN was

compared with the Medical Entities Dictionary (MED) developed at Columbia University

[10, 32] in several specific aspects such as MED database entities vs. SN semantic types,
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MED classes vs. SN semantic types, and MED semantic links vs. SN semantic relation-

ships, etc. For example, Event in the SN is different from "event" in the MED in that in the

SN events are broadly defined as any actions while in the MED events are the occurrences

of actions with specific time or person. Although the SN provides a good coverage for

classes of terms in the MED, some classes are still missing from the SN (i.e., Specimen

and Drug Form). Most classes of data in the CPMC CIS and the important classes in the

MED are well represented in the SN. But because the SN is based on concept classes and

relationships from medical information sources (i.e., MEDLINE) and not from a clinical

database, there are still some dissimilarities. Based on the comparison results, several rec-

ommendations were proposed to the NLM. Enriching the SN into a DAG structure was

one of them. Multiple hierarchies in the SN would be helpful in overcoming the above

dissimilarities.

During the enrichment of the SN, anatomical knowledge from the Foundational

Model of Anatomy (FMA) developed at the University of Washington was used in this

dissertation. A detailed introduction to the FMA is presented in [53, 54]. The FMA is

an evolving ontology, containing entities and relationships necessary for coherently and

consistently modeling knowledge about the human anatomy. The FMA is implemented

in a frame-based system and stored in a relational database as a reusable and generaliz-

able resource of anatomical knowledge. It is independent of any specific application and

can be filtered according to different needs of different applications. The FMA currently

contains 70,000 distinct anatomical concepts and 1.5 million relationship occurrences of

over 170 kinds [43]. These anatomical concepts represent various anatomical structures
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ranging in size from some macromolecular complexes and cell components to major body

parts. Based on ten fundamental principles, the high-level scheme of the FMA now has four

components: Anatomy Taxonomy, Anatomical Structural Abstraction, Anatomical Trans-

formation Abstraction, and Metaknowledge. This organization captures the necessary in-

formation for describing the anatomy of the whole body as well as any structure or space

that constitutes the body. The Protege-2000 ontology editing and knowledge acquisition

environment [47] was chosen for encoding the FMA, because of its frame-based architec-

ture. An anatomical concept and a set of attribute (property)/value pairs of this concept

is represented by a frame in Protégé-2000. Attributes and relationships of an anatomical

concept are expressed by slots in the frame. A facet of a frame imposes constraints on the

value that a slot can have. These frames are assigned as instances to different metaclasses

which represent higher-level abstractions of the frames. Relationships and attributes can

be inherited along hierarchical (IS-A) relationships among metaclasses. The concepts in

the FMA will be added to the UMLS as an extension of the anatomy component of the

UMLS. The FMA can be used as a reference ontology for bioinformatics, since its concept

representation is independent of any specific applications. Furthermore, it is processable

by computers and therefore, provides for machine-based inference.

Besides enriching the SN to accommodate more subsumption knowledge, there are

other effort to extend the SN to accommodate concepts of other biomedical field. Since the

UMLS is a large-scale knowledge source designed to facilitate retrieval and integration of

information from multiple-readable biomedical information resources, it is quite important

to insure that integrating a terminology of a new biomedical area into the UMLS is pos-
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sible. In [62], the SN was extended to integrate concepts important for genomic research.

Previously an ontology concerning genomic concepts was developed to specify important

concepts and their relationships in the genomic domain. Based on this ontology, the SN

was analyzed and extended to integrate these genomic concepts and relationships. There-

fore, some concepts in the ontology were manually mapped to existing semantic types in

the SN. This mapping was done by examining the network and looking at the definitions

of semantic types provided by the UMLS. For those concepts that do not have correspond-

ing semantic types in the SN, new semantic types were created and attached at appropriate

places in the SN's hierarchy. As a result, it was observed that over 30 existing semantic

types and most of the existing semantic relationships in the SN are relevant to the genome

project. Six new semantic types were added and 16 new semantic relationships were in-

troduced into the SN. The successful mapping between the genomic ontology and the SN

shows the suitability and the adaptability of the SN for the representation of the growing

domain of biomedical knowledge.

One of the methodologies to enrich the SN is based on the partition presented in

[39]. In that paper, McCray, Burgun, and Bodenreider presented a partition of the SN

into 15 groups, with each group representing a subject area. This partition was derived

externally since the authors first picked different subject areas in medicine and then as-

signed each semantic type to a proper subject area. The groupings of semantic types were

subject to a set of general principles including, semantic validity (the groups must be se-

mantically coherent); parsimony (the number of groups should be as small as possible);

exclusivity (each semantic type must belong to only one group); completeness (the groups
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must cover the full domain); naturalness (the groups characterize the domain in a way that

is acceptable to a domain expert); and utility (the groups must be useful for some purpose).

Table 1.1 shows the 15 groups resulting from applying these rules. Two possible methods

were presented to measure the degree of semantic coherence for each group in the resulting

partition. One way is too see if all semantic types in a group are hierarchically related to

each other. The other way is to analyze the semantic relationships exhibited by semantic

types in a given group. The resulting partition can be used for display purposes to reduce

conceptual complexity and to provide a broad overview of the SN. It might be also helpful

to discover inconsistencies in the representation of the SN.

Other important goals of the research in this dissertation are to study different par-

titioning techniques to construct metaschemas as upper-level abstract views of the SN, to

help user comprehension and to study the applications of these metaschemas. One possible

application of a metaschema is to provide a partial graphic view of a specific subject area

that is of interest to a user [49]. Another pertinent application is to audit the UMLS concept

categorizations using a metaschema. Why can a metaschema be used to detect concept cat-

egorization errors in the UMLS? Every meta-semantic type in a metaschema represents a

specific subject area of the SN, and thus of the underlying META. Therefore, concepts as-

signed to different semantic types in the SN may also be assigned to several meta-semantic

types. It is more likely that a concept will be erroneously assigned to semantic types of dif-

ferent meta-semantic types than to semantic types of the same meta-semantic type because

of larger semantic distance between different meta-semantic types. Based on this hypoth-

esis, [18] concentrated on auditing concepts that were assigned to different meta-semantic
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types. In the auditing process, all concepts belonging to two or more semantic types where

these semantic types are of different meta-semantic types were identified and reviewed by

a domain expert. Different kinds of categorization errors were exposed in the process of

review. The results showed that the metaschema is efficient in identifying groups of highly

erroneous concepts in auditing the UMLS for concept categorization errors.

This dissertation also investigated partitioning techniques that can be used to par-

tition the SN into semantic-type groups representing subject areas in the SN. Grouping

semantic types into different subject areas is helpful in improving visualization and dis-

playing the knowledge in a particular domain, and in other applications where high-level

categories are sometimes needed and useful. Bodenreider and McCray presented in [2]

a new technique to explore semantic-type groups through visual approach while assess-

ing semantic coherence of these groups using their semantic relationships as important

indicators. They first exhaustively examined semantic relationships existing between each

pair of semantic-type groups, determining the nature and number of relationships for each

pair. Based on this investigation, a radial diagram was developed to display the number

of semantic relationships between a given semantic-type group and any other group in the

partition of [39]. The radial diagrams proved useful for comparing the profiles and natures

of various groups and exposing some inconsistence and errors in the SN's design. Seman-

tic relationships exhibited among semantic types in a given group were studied. It was

shown that a given relationship usually applies only to a limited number of semantic-type

groups, which indicates that the constitution of the groups takes into account the semantics

of the types as well as that of the relationships. If each sematic-type group is represented
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by a node, then the number of semantic relationships exhibited by each group can be rep-

resented as the in-degree and out-degree of the corresponding node in a graph. Thus, for a

specific kind of semantic relationship, a directed acyclic graph can be used to demonstrate

the distribution of this relationship among semantic-type group pairs of the partition. For

a given relationship, the semantic coherence should translate into a small number of nodes

(pivot nodes) with high in-degree or out-degree, while most nodes are of degree 1 or 0

since such a relationship is only exhibited by a limited number of groups. This means that

semantically coherent groups should result in a small number of subsets for a given kind

of relationship in the whole SN. It was shown that semantic-type groups resulting from

random partitions of the SN do not exhibit such a property. Finally correspondence analy-

sis [15] was used for studying the association between semantic types and relationships of

the semantic-type groups in the partition. The result was displayed in a two-dimensional

graphical representation which was proven quite helpful in data visualization and knowl-

edge navigation [26, 44]. The result showed that most of the semantic-type groups in the

partition of [39] are semantically or semi-semantically coherent. The correspondence anal-

ysis also presented some improvement suggestions for the partition of [39].

1.3 Dissertation Overview

This dissertation is an amalgamation of four papers. They are organized as follows. The ac-

cepted journal paper [65] is the basis for Chapter 2 which presents the methodologies used

to enrich the two-tree structured SN into a DAG structured ESN with a multiple subsump-

tion hierarchy. Chapter 3 is based on a submitted journal paper [63] which demonstrates
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the impact of the ESN's multiple subsumption hierarchy on the ESN's relationship distribu-

tion and concept configuration and presents the whole ESN, including its IS-A hierarchy,

relationship distribution and concept configuration. Chapter 4 is based on the published

journal paper [67] which extends a metaschema to be applicable to a DAG-structure net-

work such as the ESN and presents the qualified metaschema and the cohesive metaschema

of the ESN. The submitted journal paper [66], which is the basis for Chapter 5, presents a

lexical metaschema for the SN, based on the lexical partition. The lexical partition groups

lexically-related semantic types in the same semantic-type group. The evaluation of the

lexical metaschema, using experts' opinions, is also described in this chapter. Finally, con-

clusions of this dissertation are in Chapter 6. Chapter 7 describes some future work based

on this dissertation. A brief overview of these four research issues and how the fit together

will be presented in the next section.

1.3.1 Enrich the Semantic Network's Hierarchy

In the first phase of research, the restriction of the SN's current two-tree structure is pre-

sented and analyzed. The current SN's tree structure does not allow semantic types to have

multiple parents or ancestors, which should be a natural situation in the medical terminol-

ogy. To enrich the SN tree-structure into a DAG structure allowing multiple parents, extra

IS-A links have to be identified and added.

Two methodologies are presented in Chapter 2 to enrich the SN's IS-A hierarchy.

The first methodology is based on a previous partition of the SN [39] which partitioned the

SN into semantic-type groups representing different subject areas. The second methodol-

ogy is based on the string matching between various semantic types' definitions and names.
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Both methodologies identified and added extra viable IS-A relationships to the SN, after

reviewed by a domain expert.

The addition of these IS-A links changes the SN from a two-tree network into a

multiple subsumption hierarchy network. This new network is referred to as the Enriched

Semantic Network (ESN).

1.3.2 ESN's Relationship Distribution and Concept Configuration

The ESN's multiple subsumption hierarchy allows semantic types to have multiple parents

and thus to inherit new relationships from their new parents or ancestors. This kind of

inheritance, called multiple inheritance, makes the ESN's relationship distribution differ-

ent from that of the SN. Chapter 3 presents a technique to derive the ESN's relationship

distribution based on that of the SN.

The ESN serves as a high-level abstraction of the underlying META, with each

concept being assigned to one or more semantic types. It is impossible to assign the 900,000

concepts to the ESN's semantic types by hand. A mapping function is defined to derive the

ESN's concept configuration based on that of the SN. This mapping function ensures that

the ESN's concept configuration comply with the principle that each concept be explicitly

assigned to the lowest (or most specialized) semantic type in the IS-A hierarchy, that is,

this configuration is free from any redundant classifications. The whole ESN, including its

IS-A hierarchy, relationship distribution and concept configuration, is also presented.
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1.3.3 ESN's Metaschemas

The ESN, which is more complex than the SN, is a large network, which is difficult for

user orientation and comprehension purposes. Therefore, it is helpful to build higher-level

abstraction for the ESN to help user orientation. The previously mentioned metaschema can

function as such an abstraction. In Chapter 4, the metasehema notion, which was developed

for tree-structured networks, is extended to be applicable to DAG-structured networks such

as the ESN. The requirements and derivation of such a metaschema are provided.

Two metaschemas are derived for the ESN in Chapter 4. One is the Qualified

metaschema (in short, Q-metaschema) which is derived from the partition of the ESN in

[65]. Another is the Cohesive metaschema (in short, C-metaschema) which is derived from

a partition of the ESN based on the relationship structure of its semantic types. The two

metaschemas are compared and evaluated. Applications of a metaschema, for example, the

Q-metaschema, are demonstrated. The author shows how a user can take advantage of a

metaschema to help him with comprehending the ESN and with navigation in the UMLS.

1.3.4 SN's Lexical Metaschema

A metaschema is always derived from a partition of the network. For the SN, differ-

ent partitions yielded different metaschemas. Chapter 5 introduces a new metaschema,

named the lexical metaschema, which is based on a lexical partition of the SN. The lex-

ical partition groups semantic types that are lexically related into the same semantic-type

group. Each such semantic-type group is represented by a meta-semantic type in the lexi-

cal metaschema. Chapter 5 presents the detailed derivation of the lexical partition and the

lexical metaschema.
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To evaluate the lexical metaschema, experts' responses in a study are used. Cumu-

lative metaschemas, which represent different levels of experts' aggregation are built and

compared to the lexical metaschema. Qualitative evaluation techniques are also used to

measure the similarity of the lexical metaschema and the cumulative metaschemas. Results

show that the lexical metaschema is similar to the cumulative metaschema which represents

a simple majority of the experts' responses.



CHAPTER 2

ENRICHING THE SEMANTIC NETWORK'S STRUCTURE

2.1 Introduction

As analyzed in Section 1.1, the UMLS's Semantic Network's tree structure is restrictive

since it does not allow multiple parents when warranted. Some semantic types could nat-

urally be specializations of more than one semantic type. For example, Gene or Genome

could conceptually be a child of two semantic types: one is its current parent Fully Formed

Anatomical Structure; the other is Molecular Sequence. Hence, Gene or Genome

should inherit from Molecular Sequence the semantic relationship result_of to Mental

Process. In a case such as this, the modeling of the SN omits an aspect of current medical

knowledge. It is quite natural to enrich the SN to accommodate this omitted subsumption

knowledge in order to provide a more accurate modeling of the current medical knowledge.

In [11], a study was conducted to evaluate how well the UMLS could support clinical infor-

mation systems at Columbia-Presbyterian Medical Center as compared to the local Medical

Entities Dictionary (MED) [10, 32]. A recommendation resulting from this study was that

multiple parents be permitted in the SN.

Many researchers have suggested that concept-oriented [7, 9] and logic-based [3,

4, 51, 50] approaches are beneficial for creating categorical terminological structures [55],

especially when their purpose is to support, as the UMLS does, cross-thesaurus mappings

[55, 12]. However, the SN does not provide sufficient logic-based structures to apply such

methods; alternative methods to improve the consistency and utility of the SN must be

developed.

18
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In this chapter, two methodologies are presented to structurally enrich the SN by

transforming its hierarchy into a directed acyclic graph (DAG) structure that allows mul-

tiple parents. The methodologies are based on the identification of viable new IS-A re-

lationships currently not included in the SN. These omissions may have been due to the

tree-structure restriction on the SN, noted above. New semantic types are added to the

SN as necessary to accommodate the new multiple subsumption framework. In the first

methodology, the identification of new IS-As is guided by imposing connectivity on an ex-

isting partition of the SN [39]. In the second methodology, the identification is based on

partial string matching between names of semantic types and the definitions of other se-

mantic types. These identified potential IS-A relationships are then reviewed by a domain

expert to decide whether they are semantically valid. With the addition of these new IS-A

relationships, a new DAG version of the SN, referred to as the Enriched Semantic Network

(ESN), is derived. Furthermore, a partition of the ESN consisting of groups that each have

a tree structure is obtained. The ESN serves as an enhanced abstraction of the UMLS. The

accompanying partition enables the creation of a metaschema [67], an additional abstract

layer of the ESN that can help users in their orientation to the UIMLS.

Section 2.2 presents the two methodologies to enrich the Semantic Network. In

Section 2.2.1, the first methodology of identifying new IS-As is guided by the process of

imposing connectivity on an existing partition of the SN [39]. In Section 2.2.2 the sec-

ond methodology of identifying extra viable IS-A links is based on partial string matching

between names of semantic types and the definitions of other semantic types. These iden-

tified potential IS-A relationships are then reviewed by a domain expert to decide whether
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they are semantically valid. With the addition of these new IS-A relationships, a new DAG

version of the SN, referred to as the Enriched Semantic Network (ESN), is obtained. Sec-

tion 2.3 presents the results for the two methodologies and the final hierarchy of the ESN.

Furthermore, a partition of the ESN consisting of groups, each of which has an internal

tree structure is also presented in Section 2.3. The ESN serves as an enhanced abstraction

of the UMLS. The accompanying partition enables the creation of a metaschema [67], an

additional abstract layer of the ESN, that can help users in their orientation to the UMLS.

Section 2.4 contains a discussion of the advantages of the ESN and an evaluation of the two

methodologies. Section 2.5 contains conclusions.

2.2 Methods to Enhance the SN's IS-A Hierarchy

In this section, two methodologies are presented to enhance the SN's IS-A hierarchy. In

Section 2.2.1 the author presents the first method, based on imposing connectivity on a

previous partition in [39]. Four transformations are developed to explore this situation.

Section 2.2.2 contains the second method based on the string matching between definitions

and names of various semantic types in the SN.

2.2.1 Imposing Connectivity on an SN Partition

2.2.1.1 Basis

In [39], McCray, Burgun, and Bodenreider presented a partition of the SN into 15 groups,

with each group representing a subject area. Six principles that such a partition should

satisfy were proposed. Among all of the principles, semantic validity is perhaps the most

important one [39]. Without semantic coherence, it is hard to see how useful such a parti-
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tion would be for any given purpose. Therefore, it is quite important to assess the degree

of semantic coherence for each group in the resulting partition. As stated in [39] "One

way to measure semantic validity is to assess the degree to which the types in a group are

hierarchically related to each other. This is so, since parents and children in a hierarchy

share essential properties." In other words, one way for a group to satisfy semantic validity

requires that all semantic types in the group together with the IS-A links connecting them

be a connected subgraph [39] of the SN. This is referred to as the connectivity property.

Since the SN's IS-A hierarchy consists of two trees, such a connected subgraph must form

a tree with a unique root.

In the analysis of [39], it was noted that: "In some cases, it was not possible to

resolve anomalies in our attempt to create a coherent and semantically valid set of group-

ings." In fact, some of the partition's groups do not satisfy the connectivity property. Such

groups contain a forest, comprising two or more trees, or perhaps isolated semantic types.

(Some groups have both.) For example, the Physiology' group contains a forest of two trees

(Figure 2.1). There are no hierarchical relationships between a semantic type of one tree

and a semantic type of the other tree. Therefore, the Physiology group is not connected.
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In previous work [6], an alternative partition of the SN was presented based on the

sets of relationships exhibited by its semantic types. In that technique, the hierarchy of each

group of the partition was required to be a tree, exhibiting the connectivity property. In this

way, a partition that is strictly semantically uniform was obtained. A difference between

the partition of [39] and that of [6] is that the connectivity is only a preferred, not required,

property in [39], while it is required and enforced in [6].

In the semantic technique, the partition of [39] will be used as a basis for augment-

ing the SN's hierarchy, and, in particular, for identifying new viable IS-A relationships.

The basic idea is to bridge the gap between the two partitioning techniques by imposing

the connectivity property on the partition of [39]. In order to convert the disconnected

groups of [39] into connected groups, additional IS-As will be identified and added to the

SN. This will yield a first version of the desired multiple subsumption hierarchy and an

accompanying partition. Analysis of the definitions of semantic types within each discon-

nected group will guide the introduction of the new IS-A links. In this context, four kinds of

transformations will be developed with respect to the groups of [39]. Another methodology

employing exact string matching will then be utilized in a following subsection.

2.2.1.2 Four Transformations to Identify New IS-A Links

The possible transformations that can be applied to disconnected groups to make them

connected are listed in the following. The choice of which transformation to utilize is

based on reviews of the definitions of all semantic types within a group.

IS-A Addition Transformation: Identify a viable IS-A and add it to transform the group

into a connected subtree. 0
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Split Transformation: Split a group into several groups, each of which is either a rooted

tree structure or can be transformed into a rooted tree structure by adding IS-A rela-

tionships. ❑

Root-Addition Transformation: Create a new semantic type that will be an ancestor of

all roots in the group. Make the new semantic type the group's root by adding ad-

ditional IS-A relationships from all the roots of the group's connected components

(either directly or via more new semantic types, if necessary). ❑

Root-Moving Transformation: Locate a semantic type (from another group) that is a

lowest common ancestor of the roots of all the disconnected group's subtrees and/or

isolated semantic types. Move that lowest common ancestor into the disconnected

group, making it the root of the group and thereby connecting the group. Also, move

all the new root's existing descendants into the group. ❑

The new network obtained by applying these transformations is called the Enriched

Semantic Network (ESN). It has a DAG structure rather than a two-tree structure. In the

following, the various transformations will be demonstrated and their impact on different

disconnected groups will also be analyzed.

As an example, the group Disorders demonstrates the IS-A addition transformation

and split transformation (Figure 2.2). This group contains twelve semantic types, eleven of

which belong to three trees rooted at Pathologic Function, Anatomical Abnormality, and

Finding, respectively. Injury or Poisoning is an isolated member of the group. Clearly,

Disorders does not satisfy connectivity.



The IS-A addition transformation is first applied to this group to connect Injury

or Poisoning to the tree rooted at Pathologic Function. It is observed that Injury or

Poisoning should have a subsumption relationship to Disease or Syndrome and inherit its

semantic relationships. Thus an IS-A link is added to capture this. Since in the original SN,

Disease or Syndrome is a descendant of Phenomenon or Process, the original IS-A from

Injury or Poisoning to Phenomenon or Process can be removed because it can be inferred

transitively via the new IS-A link from Injury or Poisoning to Disease or Syndrome.

At this point, the group is still a collection of disconnected trees. To rectify this, the

split transformation is applied to form three new groups. According to the definitions of

the twelve semantic types, it is clear that Pathologic Function and its six descendant se-

mantic types, including the new descendant Injury or Poisoning, emphasize phenomenon

or process and are in the Event tree, while the remaining semantic types emphasize an

entity or object and are in the Entity tree. Furthermore, Anatomical Abnormality and its

children are descendants of Physical Object, while Finding and its child are conceptual

entities. Therefore, it is natural to partition this group into three smaller connected groups,
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each comprising a tree. These groups, Pathologic Function, Anatomical Abnormality, and

Finding, are shown in Figure 2.3. Note that using here a Root-Addition transformation for

all or any two trees is not an option since this new root could not be placed anywhere in the

SN due to the differences in the contents of the trees. The new groups are named after their

roots.

Figure 2.3 Three new groups: (a) Pathologic Function, (b) Anatomical Abnormality, and
(c) Finding (derived via IS-A addition transformation and split transformation).

In the next example, the Anatomy group undergoes a root-addition transformation;

that is, new semantic types are added to make the group connected. The group contains a

tree of seven semantic types rooted at Anatomical Structure and four isolated semantic

types, Body Substance, Body System, Body Location or Region, and Body Space or

Junction (Figure 2.4). In carrying out this transformation, the analysis of [43] for defini-

tions of anatomical concepts is used as reference. For example, the new semantic type Ma-

terial Physical Anatomical Entity is defined as "IS-A Physical Anatomical Entity which

has a mass" [43]. Body Substance is not an Anatomical Structure since it does not have

a 3D shape, but it is a Material Physical Anatomical Entity since it has mass. Thus, both
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Body Substance and Anatomical Structure are made children of the new semantic type

X - J.- -1 	 - 1 ♦ - 	 - - 1 1I7 41:4

1:7 	 A

Furthermore, Body Space or Junction is not a Material Physical Anatomical

Entity, but it is a Physical Anatomical Entity (defined in [43] to have spatial dimensions).

Hence, both Body Space or Junction and Material Physical Anatomical Entity are made

children of the newly introduced Physical Anatomical Entity, which in turn IS-A Physical

Object. The original IS -A from Anatomical Structure to Physical Object is cut because

it can be inferred from the new IS -A from Anatomical Structure to Physical Anatomical

Entity.

On the other hand, Body Location or Region and Body System have neither mass

nor spatial dimension and thus cannot be descendants of Physical Anatomical Entity.

Nevertheless, both obviously should belong to the Anatomy group. Following [43], the new

semantic type Conceptual Anatomical Entity is introduced, which in turn IS-A Concep-

tual Entity, to complement Physical Anatomical Entity and serve as the parent of Body

Location or Region and Body System.
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Finally, the new semantic type Anatomical Entity is added as the parent of both

Physical Anatomical Entity and Conceptual Anatomical Entity. In turn, Anatomical

Entity IS-A Entity. In this way, the whole Anatomy group is transformed into the new

group Anatomical Entity (Figure 2.5). The dashed rectangles in the figure represent the

newly added semantic types, and the dashed arrows represent the newly added IS-A links.

It is important to note that each of the four new semantic types should have at least the cor-

responding concepts suggested in [43] assigned to it. (These concepts have been submitted

to the NLM for inclusion in the next UMLS release.2)

Figure 2.5 Anatomical Entity group.

2C. Rosse, personal communication, 2002.
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In the next example, the Root-moving transformation is applied to the disconnected

Procedures group to make it connected. The group contains seven semantic types, with

two trees rooted at Health Care Activity and Research Activity, respectively, and the

isolated Educational Activity (Figure 2.6). These three are children of Occupational

Activity, which has another child Governmental or Regulatory Activity. Both of these

semantic types, in turn, belong to the Activities and Behaviors group. In the context of

the UIMLS, these five semantic types refer to health-care related issues. They describe

activities of health-care professionals. Thus, Occupational Activity, the lowest ancestor of

the seven semantic types in the group, and its child Governmental or Regulatory Activity

are moved to this group. By doing this, the group is transformed into the new Occupational

Activity connected group (Figure 2.7).

Figure 2.6 Procedures group.

2.2.2 String Matching

Additional IS-A links can be found by using string matching involving names and defini-

tions of various semantic types in the SN. To be more formal, a string match is defined as

follows:

Definition (String Match): A string match from a semantic type T 1 to another semantic



Figure 2.7 Occupational Activity group.

type T2 is a triple (Ti; T2; S) such that S is a string appearing both in the definition of Ti

and in the name of T2. S is called the common string and must contain one or more (not

necessarily consecutive) complete words (ignoring case). ❑

For example, the definition of Plant contains the word "organism" which happens

to be the name of a semantic type. Hence, a string match (Plant; Organism; "organism")

exists.

The motivation for using this kind of string matching to find viable new IS-A links

is based on the evaluation of string matches among the 132 pairs of semantic types that

currently have IS-A relationships between them in the SN. By analyzing the definitions

of the children in the pairs, there are string matches from 88 children to their respective

parents. The string match (Plant; Organism; "organism") is one of them. Thus the sensi-

tivity of this approach with known IS-A links is 67%. This finding leads to the following

observation.

Observation: If T i IS-A T2, then there is a high likelihood of a string match from T 1 to

"%It

T2. ❑
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This leads to formulate the inverse hypothesis.

Hypothesis: If there is a string match from one semantic type to another, then it is likely

to imply a viable subsumption relationship between them. ❑

Based on this hypothesis, the string matching method is developed to identify ad-

ditional viable IS-A relationships not already appearing in the SN. This methodology is a

human-computer interactive methodology and contains three steps:

Step 1: Preprocess names and definitions of semantic types to obtain the input file;

Step 2: Apply the "AllMatches" algorithm to the input file to get all string matches;

Step 3: Manually review all resulting string matches and determine which constitute addi-

tional viable IS-A links between semantic types.

In Step 1, some common techniques from the data mining and information retrieval

fields are utilized for the preprocess [24].

from names and definitions.

Verb variant processing: All verbs and verb variants are removed from definitions of se-

mantic types. In the string matching, consider verbs and verb variants will not be

considered in string matching. The reason is that most semantic types' names con-

sists only of nouns, adjectives, and adverbs.

Lexical normalization: The Specialist Lexicon (coupled with highly efficient "lexical

variant generator" code) [42] is applied to stem-word variations. All adjectives and
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adverbs are converted to nouns, and all plurals are converted to singular forms. Also,

uppercase letters are changed to corresponding lowercase.

In Step 2, the following AllMatches algorithm is used to find string matches be-

tween any two semantic types not currently connected by a single IS-A link or a path of

such links. The input file to the algorithm contains the names and definitions of semantic

types after the preprocessing step.

In the description of the AllMatches algorithm, let T1, T2, ... T be all semantic

types in the SN. (In the 2002 version, m = 134). The notation DEF(T2 ) is used to repre-

is used to represent the name of T i , in the form of a string, after preprocessing. For ex-

ample, suppose T i = Anatomical Structure, which is defined as: "a normal or patholog-

ical part of the anatomy or structural organization of an organism." After preprocessing,

NAME(T) ="anatomy structure" and DEF(Ti ) = "normal pathology part anatomy struc-

ture organization organism."

In the following AllMatches algorithm, a list L is used to hold all common strings.

The following functions defined for lists are also used in the algorithm:

Lengthy(): Return the number of elements in the list

Retrieve(k): Retrieve the V' element of the list

AllMatches algorithm: Find all string matches in the SN.



32

The function FindCommonStrings(R 1 , R2) is used to find all common strings in-

volving a given pair of strings R 1 and R2. During a call, R 1 is the definition of a semantic

type T i in a string format, and R2 is the name of a semantic type Ti as a string. For each

pair (T i , TO that has no direct IS-A relationship or directed path of IS-A relationships be-

tween its components, the function FindCommonStrings(DEF(T i) is called, NAME(T j ))

to get all possible common strings between DEF(T i) and NAME(T j). Each such common

string is inserted into L. A match M is called redundant if its constituent common string

S is a substring of another match's common string (again ignoring case). Hence, function

FindCommonStrings(DEF(T i ), NAME(T j )) identifies the redundant matches and does not

return them. Consequently, L contains no redundant common strings. Finally, all string

matches (T i ; Ti ; S) are written to the output file. After AllMatches has been executed, the

output file will contain all non-redundant string matches between pairs of semantic types

not connected by IS-A relationships in the SN.

As an example, consider Enzyme whose definition is "a complex chemical, usually

a protein, that is produced by living cells and which catalyzes specific biochemical reac-

tions." The AllMatches algorithm finds three string matches:

In Step 3, an expert is called upon to review all resulting string matches to find new
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IS-A links not currently appearing in the SN. These newly discovered IS-A links can then

be added to the ESN.

As it happens, in the case of the three string matches involving Enzyme, the third

match implies the existence of a new IS-A link, since any enzyme must be a kind of protein.

Hence, Enzyme IS-A Amino Acid, Peptide, or Protein.

As noted above, the sensitivity of the string matching approach, when applied to

known IS-A links is 67%. In order to determine the sensitivity of this method for detect-

ing unknown IS-A links, a gold standard is established by performing a manual review of

randomly generated relationship pairs.

2.3 Results

By applying the two methods in Section 2.2, extra valid IS-A links are identified and added

to the SN. These additions enrich the SN's IS-A hierarchy from a two-tree structure to a

DAG structure. In this section, results of the application of the two methods are presented

in Section 2.3.1 and Section 2.3.2, respectively. Section 2.3.3 contains the summary of the

two results and shows the structure of the enriched semantic network.

2.3.1 Results of Imposing Connectivity on the Partition

Besides the three disconnected groups described in Section 2.2.1, the original partition of

[39] contains six other disconnected groups. Table 2.1 presents the six groups and the six

transformations applied to them. For each such group, the table shows the isolated semantic

types or trees that existed in the group and the transformations used. In the second column

of the table, each tree in the group is denoted by placing its constituent semantic types in



Table 2.1 Transformations Applied to Six Disconnected Groups of the Partition of [39]

Old Group
Name

Isolated Semantic Types
and/or Trees in a
Disconnected Group

Transformation
Type Transformations Applied New 	 Group

Name

Chemicals
and Drugs Clinical Drug Split Transfor-

mation
Split into two connected groups. The group.Clinical Drug contains just one semantic
type.

Two 	 groups:
Chemical;
Clinical Drug

Devices Research Device; Medical
Device

Root-moving
Transforms-
tion

Move Manufactured Object from the Ob-
jects group and make it the new root of the
Devices group

Manufactured
Object

Genes and
Molecular
Sequences

Gene or Genome
IS-A addition
Transforms-
tion

Add (Gene or Genome IS-A Molecular Se-
quence) link

Molecular Se-
quence

Living
Beings

{Organism; Fungus; Alga;
Virus; Human; Plant; Ar-
chaeon; Reptile; Rickettsia
or Chiamydia; Amphib-
ian; 	 Mammal; 	 Fishl};

{Group;	 Family Group;
Age Group; Population
Group; Professional or Oc-
cupational Group; Patient
or Disabled Group}

Split Transfor-
mation intonto two smaller connected groups.

Two 	 groups:
Organism;
Group

Phenomena Laboratory or Test Result
IS-A addition
Transform-
tion

Add (Laboratory or Test Result IS-A Phe-
nomenon or Process) link

Phenomenon
or Process

Physiology {Organism Attribute; Clinical
Attribute}

IS-A addiction
Transform-
tion

Add (Organism Attribute IS-A Physiologic
Function) link

Physiologic
Function
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braces "{}". In the fourth column, the notation (A IS-A B) is used to denote a single IS-A

link that was added to the group, where A and B are semantic types. The new groups are

named after their respective roots.

Overall, using the four kinds of transformations, all disconnected groups are con-

verted into new connected groups, each with an internal tree structure. During this process,

a total of ten transformations were applied: the IS-A addition transformation was used four

times; the split transformation was used three times; the root-addition transformation was

used once (on the Anatomy group); and the root-moving transformation was used twice.

Note that multiple transformations might have been applied to a single group (see the Dis-

orders group). The application of the four transformations yielded the preliminary ESN

with 15 new IS-A links. Its DAG structure allows semantic types to have multiple parents.

A total of 19 disjoint groups, which together constitute a partition of the ESN, was

also obtained. See Table 2.2, where "*" is used to denote a group different from that

originally appearing in [39]. Each group is a connected subgraph of the ESN. Hence, the

partition satisfies the connectivity property preferred for semantic validity. The groups of

the resulting partition and semantic types for each group is listed in Table 2.3.

2.3.2 Results of String Matching

For the manual review, 550 (3%) of the 17,396 possible pairs of semantic types for which

no ancestor/descendant relationship currently exists were randomly selected. Neither of

the two reviewers judged any of the 550 pairs to represent a true parent-child relationship.

This corresponds to a prevalence of unknown pairs of 0%, with a 95% confidence interval

of 0-0.54%.
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A total of 665 string matches were found by the algorithm. Only 5 of these were

judged to represent true parent-child relationships, for a precision of 0.75%. However,

these 5 positive results suggest a prevalence of 0.029% (5/17, 396), which is within the

95% confidence interval of the gold standard analysis.

The semantic method resulted in the addition of 15 new IS-A links. However, 11

of these links involved the addition of new semantic types, leaving 4 previously undis-

covered IS-A links. One of these, Gene or Genome IS-A Molecular Sequence was also

detected by the string matching method. Thus, a total of 8 new parent-child relationships

were discovered (prevalence 8/17, 396 0.046%, still within the range found by the gold

standard). The string matching method detected 5 of the 8 true parent-child relationships

discovered by both methods, yielding a sensitivity (or recall) of 62.5%. At the maximum

prevalence suggested by the 95% confidence interval (0.54%), the sensitivity could be as

low as 5.3%.

The four additional IS-A links are presented as follows. One is the new IS-A
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link from Enzyme to Amino Acid, Peptide, or Protein, which was demonstrated in Sec-

tion 2.2.2.

Another example relates to Receptor, for which there were five string matches:

(Receptor; Cell Component; "cell")

(Receptor; Cell; "cell")

(Receptor; Anatomical Structure; "structure")

(Receptor; Amino Acid, Peptide, or Protein; "protein")

(Receptor; Hormone, "hormone")

In accordance with the review of the domain expert, an IS-A link from Receptor to

Cell Component was added. The other string matches did not imply IS-A links.

The third valid IS-A link involves Vitamin, which had four matches:

(Vitamin; Pharmacologic Substance; "substance")

(Vitamin; Organic Chemical; "organic chemical")

(Vitamin; Body Substance; "substance")

(Vitamin; Animal; "animal")

Based on the domain expert's review, two IS -A links were added: one IS -A from Vi-

tamin to Pharmacologic Substance, and another IS -A from Vitamin to Organic Chemi-

cal.

2.3.3 Summary of Results of Two Methodologies

By adding the new IS-A links derived by the above two methodologies, a new network,

referred to as the Enriched Semantic Network (ESN), was obtained. Compared to the

original SN, the ESN has four new semantic types and 19 new IS-A links. Two IS-A links
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appearing in the SN were not included in the ESN. Hence, the ESN has 150 IS-A links and

139 semantic types, among which twelve semantic types (about 8%) have multiple parents,

giving the ESN a DAG-structured IS-A (subsumption) hierarchy. See Table 2.4 for these

twelve semantic types and their parents.

shows part of the portion rooted at Entity. To emphasize the changes from the original SN,

dashed arrows are used to denote the new IS-A links and thick dashed rectangles to denote
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new semantic types. Thin dashed rectangles denote semantic types that originally resided

in the other tree of the SN. Ellipses in a rectangle indicate that the names of one or several

semantic types are not shown due to lack of space.

2.4 Discussion

The ESN obtained in Section 2.3 has a DAG-structured IS-A hierarchy with more semantic

types and more IS-A links. In this section, The advantages of the ESN is presented for

semantic relationship modeling of the SN and the META's concept classification. The

limitations of the two methodologies and a brief evaluation are also included in this section.

2.4.1 Advantages of the ESN

The ESN has twelve semantic types with multiple parents. As it happens, most such seman-

tic types are leaves or parents of leaves. As such the changes are local, not influencing other

semantic types. An exception is the modeling of the four new semantic types, Anatomical

Entity, its two children Conceptual Anatomical Entity and Physical Anatomical Entity,

and the child of the latter, Material Physical Anatomical Entity. This is the most visi-

ble difference from the original SN's two-tree structure, since it happens close to the root

Entity rather than at the bottom levels of the SN. As such, it is not a local change.

The ESN has a number of advantages over the original SN. The multiple sub-

sumption hierarchy enables better modeling of IS-A relationships for those semantic types

having multiple parents. In the ESN, some semantic types will have more semantic rela-

tionships than they had in the SN. Specifically, semantic types with multiple parents will

inherit relationships independently from each of those parents. Thus, such a semantic type
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will have a larger relationship set than before. For example, Organism Attribute and

its child Clinical Attribute will now have a relationship named result_of to Anatomical

Abnormality. This relationship is inherited by Organism Attribute from its new parent

Physiologic Function, and further inherited by its child Clinical Attribute.

One might consider the introduction of multiple inheritance as a potential problem

in that inconsistent information from different parents might be inherited. However, when

the placement of a concept into two classes is semantically correct, then the inheritance of

definitional attributes from multiple parents is, by definition, also correct. Multiple inher-

itance will allow the identification of inconsistencies that were already there implicitly; it

will not introduce new ones.

The addition of the IS-A links helps to expose missing classifications of concepts

of the META to semantic types. The following example demonstrates this with regards to

the concepts assigned to the semantic type Vitamin.

All 1,204 concepts from the META assigned to Vitamin are checked and found

that 957 are also assigned to Pharmacologic Substance. One of them is also assigned

to Antibiotic, which is a child of Pharmacologic Substance. The other 246 concepts

are not assigned to Pharmacologic Substance. For example, the concept F0LATE3  is not

assigned to Pharmacologic Substance. However, some drugs, for example, vitamins given

to pregnant women, contain folate to prevent possible congenital deficiencies of the baby.

Hence, F0LATE should indeed be assigned to Pharmacologic Substance. As a matter

of fact, all the remaining 246 concepts should also have been assigned to Pharmacologic

Substance because all vitamins can be ingredients of drugs.

3 Concept names will be written in a "small caps" style in this chapter.
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Similarly, all concepts in Vitamin should also be assigned to Organic Chemical

or one of its descendants. Among the 1,204 concepts assigned to Vitamin, 735 are also

assigned to Organic Chemical or children of Organic Chemical. But there are 469 con-

cepts assigned to Vitamin that are neither assigned to Organic Chemical nor to any of its

children. An example is 24,25-DIHYDROXYVITAMIN D, which is a kind of vitamin D that

is helpful for the absorption of Calcium and is certainly an organic chemical. In fact, all

these 469 concepts should have been assigned to Organic Chemical.

Another advantage of the multiple-parent hierarchy is that it can simplify the as-

signment of META's concepts to semantic types. An important rule promoted by the SN's

designers states that a concept should be explicitly assigned to the most specialized pos-

sible semantic type in the SN's IS-A hierarchy [41]. Suppose a concept was assigned to

two semantic types T 1 and T2 that originally had no IS-A path between them in the SN.

If in the ESN, there is a direct IS-A link or path from T 1 to T2 (i.e., T2 is now a parent or

ancestor of T i ), then the assignment of the concept to T2 is considered redundant [19, 48]

and should be removed because it can be inferred from the assignment to T 1 .

As an example, consider the new IS-A link from Vitamin to Pharmacologic Sub-

stance. After adding this IS-A link, the 957 assignments of Vitamin's concepts to Phar-

macologic Substance should be removed since Vitamin is now more specialized than

Pharmacologic Substance in the network. The 957 concepts should only be assigned to

Vitamin, because implicit assignments to Pharmacologic Substance can be inferred via

the new IS-A. After the addition of Vitamin IS-A Organic Chemical, the 735 assignments

to Organic Chemical should also be removed for the same reason.
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In the preceding discussion, the 469 additional concepts are proposed to assigned to

Organic Chemical and then are removed subsequently. However, the proposed additions

were strictly in the context of the current SN hierarchy, where simultaneous assignment to

Vitamin and Organic Chemical is not redundant and is in fact warranted. In the ESN,

with Vitamin now being a child of Organic Chemical, such assignments become redun-

dant and therefore, unnecessary. This further supports the validity of the new IS-A link

and demonstrates that the ESN hierarchy requires fewer explicit assignments of META's

concepts to the semantic types.

The partition of the ESN can enable the design of a metaschema [49], a higher-level

abstraction network that can aid in user orientation. Among other things, a metaschema will

allow a user to focus on a subject area of interest, without losing sight of the overall ESN

layout.

Regarding limitations, the first methodology was applied only to the partition pre-

sented in [39], and decisions were made with respect to the current definitions of semantic

types. Of course, there are many possible partitions of the SN. If other partitions were used

as references, different IS-A links might be identified.

The string matching methodology is dependent on the definitions of the semantic

types. It is important to realize that the current definitions are not necessarily the only

ones possible for the given semantic types. Another team of designers might come up

with slightly different definitions. Because the exact wording of the definitions is utilized,

the results may very well be altered by alternative definitions. Furthermore, the average

time complexity of the algorithm is about 0 (n2 ) , and this limits its scalability. It is thus
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applicable only to a compact upper-level abstraction ontology (like the SN), not a full-scale

ontology. For example, the algorithm will be very time-consuming if it is applied to finding

string matches for the META's concepts. Word-level synonymy (or phrase synonymy) was

not considered in the algorithm. If utilized, it may increase the string match cases and

maybe the number of new viable IS-A links found. However, this would likely erode

the algorithm's efficiency, which is already low, and might increase the number of false

positives, which is already high.

2.4.2 Evaluation

Without an exhaustive examination of all 17,396 pairs of unrelated semantic types, it is im-

possible to know the exact prevalence of undiscovered parent-child relationships. However,

all of the methods used (semantic modeling, manual review, and string matching) suggest

that the number of such relationships is very low. In the absence of a precise figure for

prevalence, estimating the sensitivity of the automated methods is impossible. However,

the semantic modeling revealed 15 links and the string matching revealed 5 links; either

of these counts represent a significant contribution to the number of links in the SN; taken

together as 19 (since one was repeated), they increase the number of links by 14.3%.

While at first glance the precision of the string matching method (0.75%) appears

poor, applying it to the SN reduces the number of semantic-type pairs that must be manually

reviewed by 94%. It is important to note that there is no inherent reason why a string

match from the definition of a semantic type to the name of another semantic type would

necessarily indicate an IS-A link. The match may indicate another kind of connection,

such as a semantic relationship. The hypothesis was that if there is a shared string, then
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the likelihood of a parent-child relationship is substantially higher. The results support the

hypothesis.

2.5 Summary

In this chapter, the UMLS's Semantic Network (SN) hierarchy was enhanced by adding

new IS-A links and new semantic types to accommodate multiple parents. A new semantic

network that has a DAG structure instead of a two-tree structure was obtained. This new se-

mantic network, containing 139 semantic types and 150 IS-A relationships, is referred to as

the Enriched Semantic Network (ESN). The ESN expresses cases of multiple subsumption

for several semantic types. Furthermore, a partition of the ESN comprising 19 groups was

derived; each group in the partition exhibits connectivity and semantic uniformity. This

new partition enables the design of a metaschema [67] which helps to further improve user

orientation to the ESN.



CHAPTER 3

ESN'S RELATIONSHIPS DISTRIBUTION AND CONCEPT CONFIGURATION

3.1 Introduction

In Chapter 2, the creation of the Enriched Semantic Network (ESN) as an extension of the

SN was described. Its key characteristic is an IS-A hierarchy permitting multiple parents

for a single semantic type. The ESN thus exhibits a directed acyclic graph (DAG) hierarchy,

in contrast to the SN's tree-structured hierarchy. The ESN also contains some additional

semantic types that were included to support the new multiple subsumption framework.

Overall, the ESN contains 139 semantic types and 150 IS-A links.

As in the SN, semantic types of the ESN are also connected by semantic (non-IS-

A) relationships of 53 different kinds. Such relationships can be directly introduced at a

semantic type or inherited by it. When a relationship is defined at a semantic type but not

at its parent, that semantic type is called an introduction point of the relationship. All the

descendants of an introduction point inherit this introduced relationship, unless the inheri-

tance is explicitly blocked. There are two mechanisms for blocking inheritance in the SN.

The first mechanism, called "blocking," nullifies the definition of an inherited relationship.

The second mechanism allows a newly introduced relationship to be designated as "de-

fined but not inherited (DNI)." This means that the relationship is not inherited by any of

the children (and thus descendants) of the semantic type that is introducing it.

The entire set of relationships exhibited by a semantic type—including those in-

herited and those introduced—is called the "relationship structure" of the semantic type.

Collectively, the collection of relationship structures of all semantic types is referred to as

48
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the relationship distribution of the SN. The relationship distribution plays a major role in

the analysis of a partition of the SN [2]. The relationship structure of a given semantic

type in the ESN may in general differ from that of the same type in the SN. This is a re-

sult of the fact that in the ESN a semantic type can have more than one parent and inherit

relationships independently from each—a situation referred to as "multiple inheritance."

The ESN was designed so that all semantic types should at least preserve their relationship

structures. That is, the relationship structure of a semantic type in the ESN will be a (not

necessarily proper) superset of that in the SN. It will be noted though that introduction

points for relationships may have changed.

In Chapter 2, only the IS-A hierarchy of the ESN was presented without presenting

the details of the relationship structures. In this chapter, a technique to derive the ESN's

entire semantic relationship distribution is presented and its application is analyzed, with

particular emphasis placed on those semantic types having more than one parent. The intro-

duction points for all relationships and the relationship structures of all types are examined

in the context of the new multiple subsumption network. All newly inherited relationships

are audited for semantic validity, and those deemed invalid are excluded from the ESN.

As with the SN, the ESN is designed to serve as a high-level abstraction of the

underlying META, with each concept being assigned to one or more semantic types. Col-

lectively, such assignments of concepts to semantic types is referred to as the "concept

configuration." Rather than redoing all the work of the UMLS's maintenance personnel,

the ESN's concept configuration is derived automatically from that of the SN. In this chap-

ter, a mapping function is defined through which this derivation takes place. An important
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issue in the development of this mapping is compliance with the principle that each concept

be explicitly assigned to the lowest (or most specialized) semantic type in the IS-A hier-

archy [41]. In previous work [20, 48], many situations were found where a concept was

assigned both to a descendant semantic type and its ancestor type simultaneously. Such a

situation, which is refer to as a "redundant categorization," must be avoided in the ESN's

concept configuration. The mapping function ensures that the ESN is free of any redundant

categorizations.

3.2 Derivation of Relationship Distribution

In the SN, there are 53 different kinds of semantic relationships. However, there are typ-

ically many different occurrences for each kind of relationship. For example, there is an

affects relationship from Anatomical Abnormality to Alga; meanwhile, there is also an

affects relationship from Amino Acid, Peptide, or Protein to Biologic Function. Each of

them is an occurrence of affects, with different source and target semantic types.

The notation r(X, Y) is used to denote an occurrence of the relationship of kind r

from semantic type X to semantic type Y. Here, r is the kind of relationship; X and Y are

the source semantic type and the target semantic type of the relationship, respectively.

In the original SN, there are 6,977 semantic relationship occurrences of the 53 dif-

ferent kinds. Hence, the average number of occurrences per semantic type is about 50.

A semantic type may be the source of several occurrences of the same kind of relation-

ship, with different targets. For brevity, "occurrence" and "relationship" will be used inter-

changeably whenever there is no possibility of confusion.



51

Relationships fit into two categories:

• Introduced relationship

• Inherited relationship

Let X and Y be two semantic types, and let Px be the parent of X. A relationship

r(X, Y) is an introduced relationship of X if there does not exist a relationship r(Px, Y) in

the SN; otherwise, it is an inherited relationship of X unless r(P x ,Y) is a DNT relationship

at Px or a blocked relationship at X.

There are 422 introduced relationships in the SN and in total 6, 977 — 422 = 6, 555

inherited relationships. There are only 27 DNI relationships (about 6% of the introduced

relationships) and ten "blocking" relationships.

The ESN's relationship distribution is derived from that of the SN according to the

following three rules and review step.

Rule 1: An introduced relationship r(X, Y) in the SN implies an introduced relationship

r(X, Y) in the ESN;

Rule 2: An inherited relationship r(X, Y) in the SN implies an inherited relationship r(X,

Y) in the ESN;

Rule 3: If a semantic type T has multiple parents (or ancestors) in the ESN, then initially

T inherits all the relationships of its new parents (or ancestors) except for those that

have been explicitly blocked or are DNI relationships.

Review Step: A domain expert manually checks the semantic validity of all newly inhere-

kited relationships in the ESN. Only those relationships that are deemed semantically
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valid are retained; otherwise, blocking or DNI is used to avoid inheritance of an

invalid relationship.

All existing introduced relationships in the SN are preserved in the ESN according

to Rule 1; and all existing inherited relationships in the SN are also preserved in the ESN in

Rule 2. For each semantic type having multiple parents, Rule 3 will find all newly inherited

relationships that can be inherited from the new parent(s).

As an example of Rule 3, Gene or Genome has a new parent Molecular Sequence

in the ESN. According to Rule 3, it will inherit all non-blocked and non-DNI relation-

ships from the new parent. There is a relationship result_of (Molecular Sequence, Mental

Process) that is not defined at either Gene or Genome or its unique parent Fully Formed

Anatomical Structure in the SN. Therefore, according to Rule 3, Gene or Genome will

initially inherit the result_of relationship in the ESN. That means there is a relationship

result_of (Gene or Genome, Mental Process) in the ESN waiting to be reviewed by a do-

main expert in the Review Step. For this relationship, it is deemed valid according to the

expert's review. Therefore, Gene or Genome will truly have a relationship result_of (Gene

or Genome, Mental Process) in the ESN.

Rule 3 implies that a semantic type with multiple parents might have more relation-

ships in the ESN than in the SN, because it could inherit new relationships from its new

parents. The same is true for its descendants.
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3.3 Concept Configuration Mapping

To complete the abstraction provided by the ESN, all of META's concepts must be assigned

to one or more of the ESN's semantic types. As noted, the UMLS documentation actually

views these assignments in the opposite direction, with semantic types being assigned to

concepts. Moreover, the entire set of assignments, which is referred to as the concept

configuration, is considered a part of META and distributed in the file MRSTY. Because

the ESN was created as a new abstraction mechanism on top of META, it is better to keep

the ESN's concept configuration separate from META itself. In this regard, the author

talks of the assignment of concepts to types. This arrangement also avoids any upheaval in

META's current representation. Of course, a new file, say, MRSTYE could be constructed

to serve in the same role for the ESN that MRSTY does for the SN.

The simplest way to construct the ESN's concept configuration is to use that of

the SN without any change. That is, if a concept C in META was assigned to a set of

semantic types {A1, A2, ..., Am ,} in the SN, then in the ESN, the concept C will also be

assigned to these same types. This mapping, although direct and simple, will possibly

yield two kinds of redundant categorizations in the ESN. In the first case, an already

existing redundant categorization is copied over to the ESN. In the second case, a new

redundant categorization arises as a result of a semantic type having more parents than it

did before. The mapping function deals with these situations in order to prevent introducing

any redundant categorizations in the ESN. For the latter case, it is necessary to check each

pair of semantic types having a new IS-A path between them in the ESN that did not

exist in the SN. If such a new IS-A path has the potential for introducing new redundant
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categorizations, then this must be accounted for in the mapping.

For example, besides the current parent Conceptual Entity, Organism Attribute

has a new parent Physiologic Function in the ESN (see Figure 3.1). Among the 2,381 con-

cepts assigned to Organism Attribute, 14 concepts, e.g., INTRACHAMBER DIAST0LIC,'

are also assigned simultaneously to Physiologic Function (see Table 3.1 for the whole

list). Since Physiologic Function is now a parent of Organism Attribute in the ESN,

the 14 assignments to Physiologic Function would be redundant categorizations if they

were to appear in the ESN's concept configuration. Therefore, The mapping must prevent

introducing these 14 assignments to Physiologic Function.

Figure 3.1 Organism Attribute with its parents in the ESN.

With the above considerations in mind, the mapping function can be defined as

follows. Suppose concept C was assigned to the semantic types A1, A2, ... , Amp in the

SN. The assignments for concept C in the ESN's concept configuration can be obtained

according to the following three rules.

Concept names will be written in a "small caps" style in this chapter.



Rule 2: If among the m semantic types, A1, A2,	 Am, there exists a pair (A i , Aj) (i j)

such that T i is an ancestor of Ai in the SN, then the assignment of C to A i will be

excluded from the ESN. 0

Rule 3: If among the m semantic types, there exists a pair (A i ,	 (i 	 j) such that A 2

is a new ancestor of Ti in the ESN, then the assignment of C to A 2 will be excluded

from the ESN. 0

Rule 1 is used to preserve all non-redundant categorizations in the SN. Rule 2

excludes all redundant categorizations currently existing in the SN's concept configuration

from the ESN's concept configuration. Rule 3 averts the introduction of new redundant

categorizations arising from multiple-parent cases in the ESN. Overall, the application

of the three rules yields an ESN concept configuration that preserves the SN's concept
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configuration while purging existing redundant categorizations and avoiding new ones.

Note that in the SN no concept is assigned to the four new semantic types of the

ESN. However, each of the four should be assigned at least the corresponding concept, of

the same name, suggested in [43, 54]. (These concepts have been submitted to the NLM

for inclusion in the next UMLS release. 2 ) Furthermore, a domain expert should review the

concepts assigned to the parents and children of each of the four new semantic types to

check whether any assignments of their concepts should be switched to one of these four.

The application of the three mapping rules involves the use of algorithms that detect

all existing or potential redundant categorizations. For Rule 2, the algorithm in [48] (here

referred to as "DetectRedundantCatgs") is used to scan through the SN's concept config-

uration (as supplied in MRSTY) and mark all assignments it determines to be redundant

categorizations. Subsequently, these marked assignments are not introduced into the ESN's

concept configuration.

For Rule 3, the following DetectNewRedundantCatgs algorithm is applied to detect

and mark all potentially new redundant categorizations arising from new IS-A paths in the

ESN. In the algorithm, ET denotes the set of concepts assigned to a semantic type A in the

SN. NewAncestors(A) is the set of all new ancestor semantic type(s) (including the new

parent(s)) of A in the ESN. ETl I1 ET2 is the intersection of the concept sets of A i and A2.

Following the UMLS convention, the notation (C I A) is used to denote the assignment of

concept C to the semantic type A.

DetectNewRedundantCatgs algorithm: mark potentially new redundant categoriza-

tions.

2C. Rosse, personal communication, 2002.
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for (each semantic type T with a new parent(s)

}

With the algorithms to detect and mark the existing and potentially new redundant

categorizations, the GenerateESNConceptConfig algorithm can be defined to implement

the mapping function. It creates the ESN concept configuration free of any redundant

categorizations. In the following, assume that the SN's concept configuration is available

as a set:

GenerateESNConceptConfig algorithm: assign META's concepts to ESN's semantic

types.

Note that the mapping function handles a redundant categorization in a way such

that the assignment of the concept to the parent (or ancestor) will always be the one ex-

cluded from the ESN. But it is possible that in the original SN, the assignment of the

concept to the parent (or ancestor) is actually correct while the assignment to the child is
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wrong. In such a case, the assignment to the parent should be preserved in the ESN while

the assignment to the child should be excluded. If such a case is found by a human ex-

pert and corrected in the original SN, this algorithms can be re-run after the correction to

guarantee that the concept is assigned to the correct type in the ESN.

3.4 RESULAS

This section first presents the ESN's relationship distribution derived from that of the SN,

taking into account the newly inherited relationships. Then the ESN's concept configura-

tion is presented as the result of the mapping function defined in Section 3.3. The ESN's

concept configuration is free from any redundant categorizations.

3.4.1 ESN Relationship Distribution

By applying the three rules and the Review Step in Section 3.2, the ESN's relationship

distribution is obtained. Rule 1 obtained 422 introduced relationships, and Rule 2 yielded

6,555 inherited relationships. In Rule 3, 426 newly inherited relationships are obtained

through multiple inheritance. In the Review Step, all 426 new relationships were audited

by professor James J. Cimino, our medical expert.

Among the 426 new relationships, twelve involve the four semantic types appear-

ing exclusively in the ESN and not in the SN. These were deemed valid upon review.

For example, for the new semantic type Anatomical Entity, there is a relationship is-

sue_in(Anatomical Entity, Biomedical Occupation or Discipline) that is inherited from

its parent Entity in the ESN. Table 3.2 lists all twelve relationships.
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The remaining 414 (426 — 12 = 414) newly inherited relationships involve cur-

rently existing semantic types having multiple parents (or ancestors) in the ESN because

only these semantic types might inherit new relationships from their parents (or ancestors).

Among all 135 semantic types in the SN, 21 semantic types have multiple parents (or an-

cestors) in the ESN. They are Anatomical Structure with its ten descendants, Organism

Attribute with its child Clinical Attribute, and eight other leaf semantic types. Hence, at

most 21 semantic types can exhibit different relationships structures in the ESN from those

in the SN. The 414 newly inherited relationships involve these 21 semantic types.

A review of the 414 new relationships found that 314 out of the them (about 75.8%)

are valid and are thus retained in the ESN. These are inherited by a total of 12 semantic

types out of the 21 types having multiple parents. The other 100 relationships are se-

mantically invalid and are blocked from being inherited by the children from their new

parents. Therefore, those twelve semantic types have different relationship structures in
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the ESN from those in the SN. For example, Body substance in the ESN has a differ-

ent relationship structure from that in the SN since it inherits a valid part _of relationship

to Organism from its new parent Conceptual Anatomical Entity. As an example of an

invalid new relationship, Organism Attribute's new parent Physiologic Function has a

process _of relationship to Organism that might be inherited by Organism Attribute in

the ESN. After being reviewed by a domain expert, process _Organism Attribute, Or-

ganism) is deemed invalid and is excluded ("blocked") in the ESN. Table 3.3 presents

these twelve semantic types, number of newly inherited relationships reviewed, number of

valid relationships in the ESN, and number of invalid relationships that are blocked in the

ESN.

Now consider the semantic types for which blocking occurs. In the ESN, Injury

or Poisoning has a new parent Disease or Syndrome. This new IS-A relationship causes

112 newly inherited relationships for Injury or Poisoning. After being reviewed, 92 are

deemed valid and are retained, while 20 are invalid and excluded. For example, there

is a new relationship affects(Injury or Poisoning, Organism) inherited from Disease or

Syndrome. The review concluded that this relationship is valid and retained. Meanwhile,

another new relationship degree_of(Injury or Poisoning, Pathologic Function) was found

invalid and is excluded. Table 3.4 shows the 20 invalid relationships. All the 92 valid

relationships are not listed because of space limitations.

Another example involves Laboratory or Aest Result which has the new parent

Phenomenon or Process. This new IS-A relationship causes 22 new relationships for

Laboratory or Aest Result that might be inherited from Phenomenon or Process. In the
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Review Step, all of them were deemed valid and were retained in the ESN. For example,

the new relationship result_of(Laboratory or Aest Result, Acquired Abnormality) is

deemed valid on review. Table 3.5 shows all the 22 new valid relationships.

There are in total 7,297 relationships (including both introduced and inherited rela-

tionships) in the ESN vs. 6,977 in the original SN. Among the 139 semantic types in the

ESN, 122 have the same relationship structures as in the SN, and 16 have different rela-

tionship structures. Among them, four are new semantic types, twelve are semantic types

having newly inherited relationships. Table 3.6 shows these 16 semantic types and their

numbers of relationships in the SN and ESN.
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As an example of a new semantic type, Anatomical Entity has three relationships

in the ESN: one is the introduced part_of relationship; the other two are occurrences of

issue_in (with different targets) inherited from the parent Entity. The four new semantic

types obviously did not have any relationships in the SN. As an example for semantic types

having newly inherited relationships, Vitamin has 86 semantic relationships in the SN as

opposed to 109 semantic relationships in the ESN.

Anatomical Structure is a special case for relationship structure. Although it has

the same relationship structure in the ESN and in the SN, its relationship introduction pat-

tern is different. In the SN, it is the introduction point of the relationship part_of(Anatomical



Structure, Organism), but in the ESN it inherits this relationship from its new parent

Physical Anatomical Entity instead of itself introducing this relationship. Therefore,

part_of(Anatomical Structure, Organism) is an introduced relationship in the SN, while

it is an inherited relationship in the ESN. Since the relationship structure of Anatomical

Structure did not change, the relationship structures for nine of its descendants did not

change either in the ESN (the tenth descendant Gene or Genome inherits a new relation-

ship from its new parent Molecular Sequence.).



3.4.2 ESN Concept Configuration

The mapping function did not include all 5,653 existing redundant categorizations in the

ESN's concept configuration. For example, Enzyme has the old parent Biologically Ac-

tive Substance in the ESN. Among the 19,226 concepts assigned to Enzyme, 54 were

also assigned to Biologically Active Substance. Therefore, the assignments of the 54 con-

cepts to Biologically Active Substance would be redundant categorizations in the ESN

because they can be inferred by the assignments to Enzyme. All 54 of those redundant

categorizations are not included in the mapping process.

Altogether, the mapping function prevented 21,297 potential new redundant cate-
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gonzations in the process of constructing the ESN's concept configuration. For example,

the semantic type Enzyme has a new parent Amino Acid, Peptide, or Protein. There are

19,226 concepts assigned to Enzyme. Among them, 18,941 concepts are also assigned to

Amino Acid, Peptide, or Protein, and 88 are assigned to Organic Chemical, which is

the parent of Amino Acid, Peptide, or Protein. The new IS-A relationship would have

made these assignments redundant categorizations if the mapping function did not prevent

the assignments to the new parent and ancestor. Table 3.7 shows all the potential new re-

dundant categorizations prevented by the mapping function. Column 2 shows the number

of concepts in the child semantic type. Column 3 shows the new parents) (or ancestors)

of the child semantic type, the assignments to which would become redundant categoriza-

tions. Column 4 contains the number of prevented redundant categorizations with respect

to the different new parents or ancestors.

Another example is Vitamin, which has two new parents in the ESN (see Fig-
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ure 3.2): Organic Chemical and Pharmacologic Substance. Among the 1,208 concepts

assigned to Vitamin, 644 were also assigned to Organic Chemical, and 948 were also

assigned Pharmacologic Substance. The mapping function also prevented these potential

redundant categorizations.

Figure 3.2 Vitamin with its parents in the ESN.

In total, the mapping function avoids the generations of 26,950 (5,653+21,297)

redundant categorizations in the construction of the ESN's concept configuration.

3.5 Discussion

The ESN has 12% more IS-As than the SN: 150 vs. 133. In contrast, the increase in the

number of (semantic) relationships is only about 4.8% (314 + 12 = 326 new relationships).

The main reason for the relatively low impact of the extra IS-As on the increase in the num-

ber of relationships in the ESN is the position of these IS-As. Most of the semantic types

with multiple parents are leaf semantic types or parents of leaves. Thus, most of the in-

crease in relationship numbers happens at leaf semantic types where no further inheritance

occurs—and thus the expansion is limited.

An interesting issue regarding the design of the SN is whether its lack of a multiple-
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parent configuration is due to (A) an a priori imposition of the tree structure, or (B) the

fact that those who defined the IS-As did not see the need for multiple parents in proper

modeling. Insight into this issue can be gained by examining whether the designers tried

to compensate for the lack of multiple parents by explicitly introducing relationships at a

semantic type that would have otherwise inherited them if multiple parents existed. To be

more specific, if a semantic type A lacks an IS-A to another type B, the designers of the

SN could have duplicated at A those semantic relationships defined at B, since they would

not be inherited. If the designers of the SN had taken such steps, then the new IS-As of the

ESN would not imply much of a difference between the relationship distributions of the

ESN and the SN.

The observation in Section 3.4.1 is that such actions were not undertaken in the

design of the SN. Only three such duplicate relationship introductions appear in the SNP;

they involve the relationship resultof at Organism Attribute and Clinical Attribute and

part_of at Anatomical Structure. In the ESN, these three relationships were obtained by

the respective types via inheritance rather than explicit introduction. On the other hand,

the 314 new relationships that appear in the ESN were not defined previously at the proper

semantic types in the SN. Hence, there is no evidence of an effort to compensate for the

inability to model multiple parents with duplicate relationship introductions in the SN.

A similar issue can be raised regarding the assignment of concepts to semantic

types. If, as before, an IS-A from A to B is lacking, the domain experts doing the concept

assignment could have assigned to B all the concepts that were assigned to A. In this

way, each such concept would be both in A and B, even though A IS-A B could not be
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modeled. Such an effort was actually seen in the assignment of 18,941 concepts to Amino

Acid, Peptide, or Protein, which are among the 19,226 concepts assigned to Enzyme.

The only other such meaningful effort appears in the assignment of most of the vitamins to

Pharmacologic Substance and Organic Chemical. See Table 3.7 for more details. Thus,

the redundant categorizations that are (potentially) caused by the addition of an IS-A to the

SN exactly expose the efforts utilized to accurately model the knowledge in the SN, where

the IS-A did not originally appear. As in Table 3.7, this approach can be found in a few

of the cases, but it does not seem to be a widespread policy applied systematically by the

domain experts doing the concept assignments.

In summary, judging from studies of the impact of adding IS-As to the SN on the

relationship distribution and concept configuration, a general systematic effort cannot be

identified in the design of the UIMLS to compensate for the lack of multiple parents. Never-

theless, there is more of a tendency to compensate in the assignments of concepts to types

than in duplicate introductions of semantic relationships. The latter activity was found to

be practically nonexistent.

3.6 Summary

The semantic relationship distribution in the ESN is more complex than that of the SN

due to the new multiple-parent IS-A hierarchy. In this arrangement, relationships can be

inherited from more than one source. In this chapter, a technique is presented for deriving

the relationship distribution of the ESN from that of the SN. The technique sought to

preserve relationship introductions and existing relationship inheritance. All the newly
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inherited relationships were audited for semantic validity. Based on the audit step in the

technique, the ESN's relationship distribution is obtained, consisting of a total of 7,303

relationships.

The entire set of assignments of concepts to types in the ESN was derived automat-

ically according to three rules. The process ensured that a concept is only assigned to the

most specialized semantic types that are appropriate. In this way, redundant categorizations

were avoided completely, unlike in the SN.

The resulting complete ESN contains 139 semantic types, 150 IS-A links, and 7,303

semantic relationships. There are in total l,013,876 concept assignments with an average

of 7,294 per semantic type. Compared to the SN, the ESN serves as an extended and more

refined abstraction of the UMLS's META.



CHAPAER 4

DESIGNING MEAASCHEMAS FOR AHE ESN

4.1 Introduction

While the SN of the UMLS is an important abstraction of the META, it is still a difficult

mechanism to employ for comprehension due to its large number of semantic types and

semantic (i.e., non-IS-A) relationships. Some previous work has been done to help with

the visualization and navigation of the UMLS knowledge. In [46], a Hypercard browser of

Meta-l (MetaCard) was adapted to enable users to continue the browsing process, extended

from the Metathesaurus to a variety of different knowledge sources. In [57], a review

about visualization and navigation of knowledge in the medical domain was presented.

The notion of a metaschema was introduced in some previous work [23, 49], based on a

partition of the SN [6]. A metaschema is a higher-level network that serves as a compact

abstraction of the SN. As shown in [23, 49], the notion of metaschema offers various

compact (partial) views which can help users in their orientation to the SN.

In the current version of the SN with its two-tree hierarchy, each semantic type has

at most one parent semantic type and can inherit relationships only from this unique parent.

Some semantic types are naturally specializations of more than one semantic type. The tree

structure does not allow for this kind of multiple parents arrangement. To improve the SN's

structure, two methodologies were presented in Chapter 2 to add IS-A links and obtain the

Enriched Semantic Network (ESN), a network similar to the SN but permitting multiple

parents.

Because the ESN has a more complex hierarchy than the current SN, it is even

70
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more critical to develop an ESN metaschema to help in its orientation. This chapter will

concentrate on extending the notion of metaschema to make it applicable to a DAG hier-

archy network and thus to the ESN. A methodology to derive such a metaschema is also

provided.

The rest of this chapter is organized as follows. Section 4.2 provides a brief re-

view of the ESN. Section 4.3 introduces the notion of metaschema for a network having a

DAG hierarchy. The requirements that a higher-level network must satisfy in order to be a

metaschema are discussed. A method by which a metaschema can be derived from a parti-

tion of a network like the SN or the ESN is described. The separate description is intended

to emphasize that for the same network, there may exist several useful metaschemas, corre-

sponding to various partitions of the network. Section 4.4 presents two metaschemas of the

ESN based on two different partitioning techniques that have previously appeared [6, 64].

One metaschema is the "qualified metaschema" ("Q-metaschema" for short) based on the

partitioning technique in [64] which is a modification of the partition of the SN in [39];

another is the "cohesive metaschema" ("C-metaschema") based on the technique in [6].

Section 4.5 contains a comparison and evaluation of the two metaschemas. Section 4.5.l

introduces a general example to demonstrate how a user can employ a metaschema to help

in orientation to the ESN. Other applications of the metaschema to auditing for classifica-

tion errors and to the prevention of redundant classifications in the UMLS are also briefly

discussed. A summary appears in Section 4.6.
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4.2 Background

A partition of the SN into 15 groups was previously presented in [39]. Each group in this

partition represents a subject area. Six qualities were proposed as desired for such a parti-

tion: semantic validity, parsimony, completeness, exclusivity, naturalness, and utility. The

semantic validity quality means that each group must be semantically coherent [39]. One

way to assess a group's semantic validity is to see if its semantic types together with their

IS-A links form a connected subgraph of the SN. This is called the connectivity property

[64]. Since the SN's IS-A hierarchy consists of two trees, such a connected subgraph must

form a tree with a unique root.

Some groups in the partition of [39] do not satisfy the connectivity property. Each

such group comprises two or more trees. For example, the Phenomena group (Figure 4.l)

contains two trees; one of them consists solely of Laboratory or Aest Result having no

IS-A links to any other members.

Another partitioning technique was developed to derive a cohesive partition of the

SN in [23, 49, 6] which requires that all groups in the partition be connected. Following
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the cohesive partition in [23, 49, 6], the connectivity property was enforced for all groups

in the partition of [39] in the design of the ESN in Chapter 2. Four transformations were

presented to convert each disconnected group into a new connected group, based on re-

views of the definitions of all semantic types within a given disconnected group. During

the transformations, new potential IS-A links were identified and then, where appropriate,

were added. In Chapter 2, another methodology was also described to identify additional

potential IS-A links for the SN. This methodology is based on string matching between

names and definitions of various semantic types. Using this, four extra IS-A links were

identified and added to the SN.

Based on above work, a new semantic network, referred to as the Enriched Semantic

Network (ESN), was obtained, with an accompanied derived partition of the ESN. For an

excerpt of the ESN hierarchy containing some of the descendants of Entity, see Figure 4.2.

To emphasize the changes from the original SN, dashed thick arrows are used to denote the

added IS-A links and thick dashed rectangles to denote new semantic types. Thin dashed

rectangles denote semantic types that originally resided in the Event tree of the SN. An

ellipsis in a rectangle indicates that some semantic types are not shown due to lack of space.

In the ESN, as in the SN, a pair of semantic types can be linked by 54 kinds of

non-hierarchical (semantic) relationships. Each semantic type inherits all the semantic

relationships of its parents via IS-A unless such an inheritance is explicitly blocked. Each

concept of META is assigned to one or more of the semantic types. Thus the ESN is fairly

complicated.

It is necessary to develop a metaschema to help in the orientation to the ESN. How-
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ever, since the ESN is a DAG rather than two trees, the definition of metaschema (as pro-

posed in [23, 49]) is not applicable to the ESN. For example, in [23, 49] the hierarchical

relationships of the metaschema were derived under the assumption that each semantic type

had at most one parent. This is not true for the ESN. In the next section, the definition of a

metaschema for a network with a DAG-structured hierarchy will be presented.

4.3 Methods

The requirements for and the actual derivation of a metaschema are presented in this chap-

ter. In Section 4.3.l, the properties of a metaschema for a given semantic network are

presented, independent of the way an actual metaschema is derived. For this, the require-

ments a network should satisfy to qualify as a metaschema of a DAG hierarchy network

are described. The derivation of a metaschema is described in Section 4.3.2. The separate

description is intended to emphasize that for the same semantic network, there may exist

several useful metaschemas, corresponding to various partitions of the network.

4.3.1 Metaschema Requirements

For the requirements of a metaschema, some definitions are necessary.

Definition (Partition): A partition of a set V of elements is a family of subsets

That is, a partition of V is a set of disjoint subsets such that each element of V

belongs to exactly one subset.

A partition of the set of semantic types of the SN was presented in [39]. For ex-
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ample, the Phenomena group of [39] is {Phenomenon or Process, Human-caused Phe-

nomenon or Process, Natural Phenomenon or Process, Laboratory or Aest Result,

Environmental Effect of Humans, Biologic Function} (Figure 4.l). However, the SN is

more than the set of its semantic types; it is a network where the semantic types are con-

nected via hierarchical (IS-A) and non-hierarchical (semantic) relationships. Thus, it is im-

portant to consider a partition of a graph (network) rather than a set, particularly a partition

of the hierarchy of the SN consisting of the semantic types and all the IS-A relationships

connecting them. For this, the following definition is provided. In all the discussions a

graph refers to a directed graph.

In other words, the V'-induced subgraph of G contains the nodes in V' and all the

edges of G connecting them. For example, when G is the hierarchy of the SN, the graph

induced by the Phenomena group of [39] appears in Figure 4.l.

Definition (Connected Partition): A partition of a graph is a connected partition

if each of its subgraphs is a connected graph having a unique root. ❑

Note that a connected subgraph of a tree must have a unique root, but this is not

necessarily true for a DAG. Thus, when dealing with the ESN having a DAG hierarchy,
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rather than the SN having a tree hierarchy, the requirement for a unique root must be added

to the definition.

The partition of the SN hierarchy of [39] is not a connected partition since, for

example, the subgraph of the Phenomena group is not connected. (See left subgraph of

Figure 4.3). On the other hand, the partition of the ESN in [64] is a connected partition.

For example, see the subgraph of the Phenomenon or Process group in the right subgraph

Figure 4.3 Phenomena Group vs. Phenomena or Process group.

Based on the above definitions, the notion of a metaschema for a DAG can be

defined as follows.

Definition (Metaschema): A metaschema of a network G with a DAG hierarchy is

a directed network which consists of a set of nodes called meta-semantic types (MSTs) con-

nected via hierarchical meta-child-of relationships and non-hierarchical meta-relationships

satisfying the following two conditions:

1. The set of MSTs represents a connected partition of the given DAG hierarchy.



78

2. The hierarchy of the rnetaschema which consists of MSTs and all the meta-child-of

relationships connecting them is a DAG.

The reason for condition 1 is that an MST standing for a set of semantic types, say,

S represents the subgraph of G induced by S. That is, a set of semantic types together with

all their hierarchical relationships and semantic relationships. The set of subgraphs of G's

hierarchy induced by the set of MSTs in a metaschema make up a connected partition of

G. The reason for condition 2 is obvious: in order to qualify as a hierarchy a network must

be a DAG; a cycle contradicts the notion of a hierarchy of its nodes.

4.3.2 Metaschema Derivation

A metaschema will be derived based on a connected partition. For each group of the par-

tition, a meta-semantic type (MST) is defined to represent the group. The MST is named

after the unique root of the corresponding group. The term "root of an MST" denotes the

semantic type which is the root of the semantic-type group represented by this MST. Af-

ter defining the MSTs, the meta-child-of relationships and the meta-relationships for the

metaschema will be derived.

Let {G 1 , G2, ... Gk} be a connected partition of a network G with a DAG hierar-

chy. Then semantic type A is the unique root of the semantic-type group represented by

MST A (called the root of A for short)) Since G has a DAG hierarchy, A may have several

parents P1, P2, • • •, P3. There are two cases.

Case 1: All j parents are associated with a single MST B.

An italic font will be used for MSTs in this chapter.



79

Then a meta-child-of relationship in the metaschema is defined from A to B. All

semantic types associated with A are descendants of the root semantic type A. Since

all A's parents are descendants of the root semantic type B of B, all semantic types

in A are descendants of semantic type B of B. ❑

Case 2: The j parents P 1 , P2, • • •, Pj are not associated with one MST.

Suppose these j parents are associated with 1 MSTs M1, M2, • • • , M1. Then there

should be a meta-child-of relationship from A to each of the 1 MSTs. Therefore, all

semantic types associated with A are descendants of each of the roots Mid (1 < i < 1)

of the 1 MSTs. ❑

After the hierarchical meta-child-of relationship is derived for the metaschema, the

meta-relationships between two MSTs is obtained as follows.

Let A be the root of the MST A, and let Bib be a semantic type in the MST B. If in

the original network there exists a semantic relationship real connecting A to B ib, then in

the metaschema there exists a link labeled "re l" 2 connecting A to B. Such a link is called

a meta-relationship.

Note that semantic type B ib does not need to be the root of B, but the source semantic

type of the re 1 relationship must be the root A of A. Sometimes in the original network,

there is a semantic relationship re 1 1 from semantic type C to semantic type D where C is

not a root of an MST. This does not mean that there exists a meta-relationship re 1 1 from

the MST associated with C to the MST associated with D. The reason for this asymmetry

in the requirements for the source and target semantic types of meta-relationships is as

2A courier font will be used for semantic relationships and meta-relationships in this chapter.
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follows. For a meta-relationship real to be defined from MST A to MST B, it is ideal to

have a situation that for each semantic type Ai of MST A, there should be some semantic

type Bib of MST B such that Ai re 1 Bib. For this re 1 should be defined at the root semantic

type A of MST A, so re 1 is inherited by all semantic types of MST A, which are all

descendants of the root semantic type A. Such a requirement is not needed for the target

semantic type B ib of the relationship, since not every semantic type in MST B has to be a

target of such a relationship. It is enough that there exists some semantic type in MST B

which is a target of rel for each source semantic type Ai of MST A.

To reflect the relationship inheritance of the original network, the inheritance of

meta-relationships can be defined along the hierarchical meta-child-of relationships in the

metaschema. Suppose there exist three MSTs A, B, and C, where a meta-child-of link

connects B to A. If there is a meta-relationship rel from A to C, then B also has a meta-

relationship real to C, and to all MSTs that have meta-child-of links or a chain of meta-

child-of links to C.

The relationships of the metaschema should reflect the relationships in the SN. For

example, if A is meta-child-of B, then every semantic type in A should be a descendent of

some semantic type in B. Similarly, if there is a meta-relationship real from A to B, then

there should be a relationship rel defined for every semantic type in A to some semantic

type in B.

In Section 4.4, the metaschema derivation described will be applied to the ESN

network with its DAG hierarchy.
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4.4 Results: Awo Metaschemas

For a given semantic network, any connected partition leads to a metaschema. Each such

metaschema will be named after its partition. In this section, two possible metaschemas for

the ESN are presented, both derived using the method given in the previous section.

4.4.1 Qualified Metaschema of the ESN

Definition (Qualified Partition): A partition of a set is called a qualified partition if it

possesses the six qualities (principles) listed in [39]: semantic validity, parsimony, com-

pleteness, exclusivity, naturalness, and utility. 0

Note that "Q-partition" is used as an abbreviation for "qualified partition" through-

out the remainder of the chapter.

The partition of the SN in [39] is a Q-partition but not a connected partition. Thus,

it cannot be used to derive a metaschema for the SN. However, the partition of the ESN

obtained in [64] is a connected Q-partition. Thus, a metaschema can be defined based

on the connected Q-partition of the ESN. The resulting metaschema is referred to as the

qualified metaschema (Q-metaschema for short).

The hierarchy found in each group in the Q-partition [64] is a tree with a unique

root. An MST whose name is the root of the group is defined to represent each group.

Therefore, a metaschemas of 19 MSTs (see Table 4.l) is obtained.

Now, it is time to derive the hierarchical meta-child-of relationships for the Q-

metaschema relating to the above Q-partition. For example, the root of MST Phenomenon

or Process is the semantic type Phenomenon or Process which is a child of Event. Event
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is associated with Event; hence, there is a meta-child-of from Phenomenon or Process to

Event in the Q-metaschema. The root of Pathologic Function, the semantic type Pathologic

Function, is a child of Biologic Function which resides in Phenomenon or Process. Thus,

there exists a meta-child-of from Pathologic Function to Phenomenon or Process.

By applying this meta-child-of derivation process to all 19 MSTs, the entire Q-

metaschema hierarchy consists of 17 meta -child-of links. Figure 4.4 shows this hierarchy.

Each node contains the name of the MST and the number of constituent semantic types
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written in parenthesis. It is interesting to note that no root of a group in the Q-partition

actually has more than one parent. Multiple parents occur only for non-root semantic types

in the Q-partition. Hence, the hierarchy of the Q-metaschema has a two-tree structure, as

did the original SN.

Figure 4.4 The Q-metaschema hierarchy of the ESN based on the Q-partition.

Besides the meta-child-of relationships, the metaschema also has meta-relationships.

For example, Pathologic Function introduces the manifestation_of relationship to

Physiologic Function. Since Pathologic Function is the root of Pathologic Function, and

Physiologic Function is in Physiologic Function, there is a mani f es tat i on_o f meta-

relationship from Pathologic Function to Physiologic Function in the metaschema. There

is a relationship occurs_in from Pathologic Function to Group. Thus, there is also an

occurs_in meta-relationship from Pathologic Function to Group. Meanwhile, Patho-

logic Function also defines co-occurs_with, complicates, manifestation_of.

and occurs_in relationships to Injury or Poisoning, which is in Finding. Thus, there



exhibits, performs
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are also meta-relationships co-occurs_with, complicates, manifestation_of,

and occurs_in from Pathologic Function to Finding.

In total, there are 63 meta-relationships belonging to 22 kinds of relationships. Fig-

ure 4.5 shows the whole Q-metaschema, including its 19 MSTs, 17 meta-child-of rela-

tionships, and 63 meta-relationships. Note that only the meta-relationships introduced at

an MST are shown in the figures; the inherited meta-relationships are not shown to avoid

clutter. The existence of these additional relationships is easily derived from the figure.

A thick arrow denotes a meta-child-of relationship, while a labeled thin arrow denotes a

meta-relationship. This metaschema, which is displayed on only one page, serves as a

compact abstraction of the ESN and can help with user orientation.

4.4.2 Cohesive Metaschema of the ESN

The technique for deriving a metaschema for the SN described in [23, 49] first defined

the "structure" of a semantic type as the set of its defined relationships, either introduced

directly or inherited. Semantic types with the same structure were grouped as one semantic-

type group. Thus, a structural partition of the SN was obtained. However, that partition

was not connected. By applying the three rules defined in [49], a cohesive partition was

obtained, consisting of cohesive (singly rooted) semantic-type collections. An MST was

then defined to represent each cohesive semantic-type collection. It should be noted that

elements of the structural partition were called groups to distinguish from elements of the

cohesive partition that were called collections. Based on the cohesive partition, the cohesive

metaschema of the SN was derived in [23, 49].
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Now the second metaschema of the ESN, referred to as the cohesive metaschema

based on an application of the methodology of [23, 49], will be derived. First, A structural

partition of the ESN will be obtained. Note that the structural partition of the ESN will

differ from the structural partition of the SN due to the multiple parent configuration and

the new distribution of inherited relationships. Then the three rules are applied to derive

a cohesive partition from the structural partition. Finally, the method of Section 4.3.2 is

used to obtain the cohesive metaschema of the ESN. The term "C-metaschema" and "C-

partition" are used as abbreviations for the cohesive metaschema and the cohesive partition

of the ESN, respectively.

4.4.2.1 Cohesive Partition of the ESN

Since the structural partition depends on the relationships defined at semantic types, it is

important to note the relationships of the four new semantic types of the ESN. Following

the precedent set by the Digital Anatomist Foundational Model [43], the new Anatomical

Entity semantic type in the ESN is defined as "a biologic entity which forms the whole

or part of or is an attribute of the structural organization of a biological organism." Thus,

Anatomical Entity introduces the part_of relationship directed at Organism 3 instead of

having its descendant Anatomical Structure introduce it, as in the current SN. Thus, in the

ESN, Anatomical Structure inherits part_of from Anatomical Entity; it still introduce

the loc at i on_o f relationship. The introduction of these relationships is relevant to the

structural partition of the ESN, as each of these two semantic types is a root of a semantic-

type group.

Cornelius Rosse, personal communication, 2002.
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For the ESN, its structural partition consists of 74 semantic-type groups. Most of

these contain only one semantic type. Such groups are called singletons. See Table 4.2 for

the distribution of the numbers of groups according to their sizes.

To obtain the U-partition of the ESN, the Following three rules [491 are applied to

the 74 semantic-type groups.

Rule 1: Each semantic-type group with a non-leaf unique root becomes a semantic-

type collection and is named after its root. ❑

Rule 2: If a leaf semantic type L is a singleton in the structural partition, then L is

added to its parent's semantic-type collection. ❑

Rule 3: Let the semantic types A1, A2, , An (n > 2) be roots of the same

semantic-type group G of the structural partition. If there exists a lowest common an-

cestor A of A1, A2, ... , An in the IS-A hierarchy, then add all the semantic types of G to

the semantic-type collection of A. ❑

However, in applying Rule 2, there are eight leaf singletons that have multiple par-

ents. Note that some leaves with multiple parents are not singletons as they share the same

structure (relationship set) and thus the same group with one of the parents. For example,

Vitamin has three parents, but it has the same structure as its parent Biologically Active

Substance and is thus in the same group as that semantic type.

Each of the eight leaf singletons has a different relationship set from all its parents.

Besides this, its parents exhibit different structures and thus are not in the same semantic-
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type group. Rule 2 stated that a leaf singleton should be merged into its parent's semantic

type collection. In such a case of multiple parents, it is required to determine to which

semantic-type collection each singleton should be added since each semantic type must

belong to exactly one semantic-type collection in the C-partition. For this, it is necessary

to differentiate between different kinds of parents of such a singleton. Among the parents,

only one parent will be identified as the "primary parent" of the singleton; other parents

will be considered "secondary parents." The singleton will then be merged into the group

of its primary parent. Of course, if the singleton has only one parent, then this parent is

considered the primary parent. The process of identifying the primary parent is discussed

in the following subsection.

4.4.2.2 Identifying the Primary Parent among Multiple Parents

The process of differentiating multiple IS-A links from a singleton to all its parents is

guided by the analysis of the names and definitions of the singleton semantic type and its

parents. The following guidelines are provided, which are modifications of the guidelines

in [21, 22].

A definition of a singleton semantic type is distinguished among three kinds: the

descriptive kind, the functional kind, and the characterizing kind. The descriptive kind cap-

tures the essence or nature of the semantic type. The functional kind captures the function-

ality or usage of the semantic type. The characterizing kind does not describe the essence

of the knowledge or its function, but characterizes what kind of knowledge is represented.

A definition sometimes has both a descriptive part and a functional part.

For each singleton semantic type having multiple parents, it is important to find,
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from all its parent semantic types, which parents are descriptive, which parents are func-

tional, and which parents are characterizing. Typically, all parents contribute to the defini-

tion of the child; a descriptive parent highlights the essence or nature of the child seman-

tic type; a functional parent highlights the function or usage of the child semantic type;

a characterizing parent classifies the kind of knowledge rather than concentrating on the

knowledge itself.

Case 1: Some of the parents are descriptive and the others are functional.

First check the descriptive part and the functional part of the singleton's name or

definition, and determine which part is the primary part.

If the primary part is the descriptive part and there is only one descriptive parent, then

choose this descriptive parent as the primary parent; otherwise, choose the primary

parent from among the group of descriptive parents using Case 2.

If the primary part is the functional part and there is only one functional parent,

choose this functional parent as the primary parent; otherwise, choose the primary

parent from among the group of functional parents using Case 3. ❑

Case 2: All parents are descriptive (or the primary part of the singleton's name or defini-

tion is descriptive). Among these descriptive parents, distinguish the primary parent

by linguistic analysis of the name or definition of the singleton. If the name of one

parent is used as a noun and the names of the other parents are used as adjectives in

the singleton's name or definition, then the noun defines the primary parent.

If the names of all parents are used as nouns in the name or definition of the single-

ton, then the last noun is considered the primary noun. The corresponding parent is
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chosen as the primary parent. If the names of all parents are used as adjectives in the

name or definition of the singleton, then the adjective closest to the noun in the name

or definition is considered the primary adjective. The corresponding parent is chosen

as the primary parent. ❑

Case 3: All parents are functional (or the primary part of the singleton's name or defini-

tion is functional).

Again, use the linguistic analysis described in Case 2 to identify the primary (func-

tional) parent. ❑

Case 4: Some parents are characterizing.

Examples of such parents are: Physical Object, Functional Concept, Spatial Con-

cept, and Conceptual Entity.

The only case where such a parent semantic type will be the primary parent of a

child semantic type is when the child is also considered characterizing. In all other

circumstances, another parent will be picked as primary using the other three cases

after removing the characterizing parents from consideration. ❑

In each case, the singleton is merged into the collection of its primary parent in the

partition. To capture the situation of a singleton with more than one parent, Rule 2 defined

in [23, 49] must be restated as:

Rule 2': If a leaf semantic type L is a singleton in the structural partition, then L is

added to its primary parent's semantic-type collection.

The following will demonstrate how to identify the primary parent for the eight
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singletons with multiple parents, following the method described above. For example, con-

sider Enzyme, a singleton in the structural partition of the ESN having two parents. One

is the old parent Biologically Active Substance; the other one is the new parent Amino

Acid, Peptide, or Protein. Enzyme is defined as "a complex chemical, usually a protein,

that is produced by living cells and which catalyzes specific biochemical reactions." The

descriptive part in the definition is "a complex chemical, usually a protein," while the func-

tional part is "that is produced by living cells and which catalyzes specific biochemical

reactions." The two parents' definitions are reviewed. Biologically Active Substance is

defined as "a generally endogenous substance produced or required by an organism, of pri-

mary interest because of its role in the biologic functioning of the organism that produces

it." This definition emphasizes the role (or usage) of the substance, in this case Enzyme, in

an organism. Hence, Biologically Active Substance is a functional parent. Amino Acid,

Peptide, or Protein is defined as "amino acids and chains of amino acids connected by

peptide linkages." This describes the chemical composition of Enzyme. (Enzyme is a kind

of protein.) Therefore, Amino Acid, Peptide, or Protein is a descriptive parent. Since

one parent is functional and the other one is descriptive, both the descriptive part and the

functional part of Enzyme's definition has to be checked. Finally the primary part of the

definition must be determined. It is clear that what makes enzyme different from other

proteins lies in its function (usage), which is catalyzing specific biochemical reactions of

an organism. Thus, the functional part of Enzyme is the primary part of its definition. So,

the functional parent Biologically Active Substance is chosen as the primary parent, and

Enzyme will be merged into the Biologically Active Substance group.
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As another singleton example, Gene or Genome has two parents in the ESN. One

is the old parent Fully Formed Anatomical Structure; the other one is Molecular Se-

quence. First, the definition of Gene or Genome is reviewed, which is defined as "a spe-

cific sequence, or in the case of the genome the complete sequence, of nucleotides along a

molecule of DNA or RNA (in the case of some viruses) which represent the functional units

of heredity." In the definition, the descriptive part is "a specific sequence, or in the case of

the genome the complete sequence, of nucleotides along a molecule of DNA or RNA (in

the case of some viruses)." The functional part is "which represent the functional units of

heredity." Next the definitions of its two parents are also checked. Fully Formed Anatom-

ical Structure is defined as "an anatomical structure that exists only before the organism

is fully formed; in mammals, for example, a structure that exists only prior to the birth of

the organism. This structure may be normal or abnormal." This definition is descriptive as

no function is discussed. Molecular Sequence is defined as "a broad type for grouping the

collected sequences of amino acids, carbohydrates, and nucleotide sequences." This defini-

tion is also descriptive since it does not discuss the function or usage of Gene or Genome.

Since both parents are descriptive, the linguistic analysis has to be used to distinguish the

primary parent from the secondary one. In the definition of Gene or Genome, the primary

noun is "sequence"; therefore, Molecular Sequence is the primary parent, and Gene or

Genome will be merged into the Molecular Sequence group.

Some leaf singleton semantic types with two parents have one parent which is a

characterizing parent, while the semantic type is not of the characterizing kind. Both Body

Location or Region and Body Space or Junction have the characterizing Spatial Con-
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cept as a parent. Body System has the characterizing Functional Concept as parent. All

these parents are considered to be secondary while the primary parent semantic types are

Physical Anatomical Entity and Conceptual Anatomical Entity respectively (where by

linguistic analysis "anatomical" is the primary adjective being closer to the noun in the

name of the semantic type). Note that although these two primary parents have a character-

izing part in their names, namely Physical and Conceptual, these two parts are considered

secondary in the names of the parents.

By using the above guidelines, the primary parent for each leaf singleton having

multiple parents is determined (see Table 4.3). Those singletons will be merged into the

groups of their primary parents according to the revised Rule 2'. When applying the three

rules to the 74 semantic-type groups, 29 collections of semantic types, called cohesive

semantic-type collections, are obtained (see Table 4.4). The "# of STs" column is the



94

number of semantic types in each semantic-type collection. The "# of rel." column in

Table 4.4 is the number of semantic relationships introduced by the root of each semantic-

type collection in the ESN. These relationships will imply the meta-relationships in the

derivation of the ESN's cohesive metaschema. The 29 collections together form a partition,

called the cohesive partition ("C-partition" for short).

It is important to stress here that the IS-A link from the singleton to the secondary

parent is still part of the ESN. It is just labelled so the user can determine uniquely the
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groups of the partition on which the metaschema is based. Interestingly in most cases, the

secondary parent was the original parent in the SN, while the connection to the primary

parent is a newly added IS-A link.

4.4.2.3 Derivation of the Cohesive Metaschema

The derivation of the cohesive metaschema (C-metaschema) for the ESN is based on the

above C-partition. For each cohesive semantic-type collection, an MST is defined to rep-

resent it. It is named after the root of the collection. The meta-child-of relationships and

meta-relationships are derived as described in Section 4.3.2. The C-metaschema contains

29 MSTs, 28 meta-child-of relationships, and 124 meta-relationships belonging to 31 kinds

of relationships. Figure 4.6 shows the cohesive metaschema hierarchy of the ESN with 29

MSTs. Note that this metaschema has a DAG hierarchy, which will be discovered further

in Section 4.5. The number in each rectangle denotes the number of semantic types in the

MST. Interestingly, the choice of the primary parents for the singleton leaves does not have

influence on the metaschema itself, since no leaf is an MST in the metaschema. However,

there is an impact on the underlying partition, reflected in the number of semantic types

for some groups. Figure 4.7 shows the C-metaschema including all meta-child-of relation-

ships and most meta-relationships. Unfortunately, there is insufficient space to draw all the

meta-relationships.



Figure 4.6 The C-metaschema hierarchy of the ESN.
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4.5 Comparison of Two Metaschemas

Based on the C-partition of the ESN in [64], the C-metaschema of the ESN was obtained

(Figure 4.4). Modifying the method in [23, 49], the C-partition and the C-metaschema

were derived (Figure 4.6) of the ESN. Each of the metaschemas provides an abstract view

of the ESN.

The C-metaschema contains 19 MSTs, while the C-metaschema contains 29 MSTs.

There are some common MSTs between the two metaschemas. Among the 19 MSTs in

the C-metaschema, six also appear in the C-metaschema, representing the same semantic-

type collections in both the C-partition and the C-partition. That means both metaschemas

agree that these six MSTs are quite important in the abstraction of the ESN, providing the

metaschema with the representation of natural units of semantic types. These six MSTs are:

Anatomical Abnormality, Finding, Group, Occupation or Discipline, Organization, and

Pathologic Function (see Table 4.5). Together they cover 24 semantic types (i.e., 17.4% of

the ESN).

There are some obvious differences between the two metaschemas and their under-

lying partitions. The C-metaschema contains two trees, while the C-metaschema is a DAG.

In the Q-partition, semantic type Organism Attribute and its child Clinical Attribute are

part of the Physiologic Function group. However, in the C-partition, these two semantic

types form a separate semantic-type collection due to structural differences; hence, there is

an MST named Organism Attribute in the C-metaschema. This MST has two parents in the

C-metaschema: one is Entity, the other is Physiologic Function. These two meta-child-of

relationships make the C-metaschema a DAG.
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In the C-metaschema, the MSTs Clinical Drug and Geographic Area each repre-

sent a semantic-type collection that contains only a leaf singleton semantic type. In the

C-metaschema, there is no such case because Rule 2' explicitly merges each leaf singleton

into its parent's group. On the other hand, the C-metaschema contains two MSTs, Natural

Phenomenon or Process and Biologic Function, that each represent a semantic-type col-

lection consisting of only one internal (non-leat) semantic type. This is because a semantic

type like Natural Phenomenon or Process has a different structure (relationship set) from

its parent and its child, and it is not merged into its parent's group since it is an internal

node of the DAG.

There are also some other differences between the two metaschemas and their un-

derlying partitions. Some semantic-type collections in the C-partition are split into several

different semantic-type collections in the C-partition, which results in several separated
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MSTs in the C-metaschema. These MSTs in the C-metaschema are more refined than the

corresponding MSTs in the C-metaschema (Table 4.6). For the number of semantic types

in the respective MSTs, see the parentheses alongside the MSTs' names in Figure 4.4 and

Figure 4.6.

For example, the Chemical group in the C-partition is split into three semantic-type

collections in the C-partition. One is Pharmacologic Substance containing Pharmacologic

Substance and its child. One is Biologically Active Substance containing Biologically Ac-

tive Substance and its children. The third is Chemical containing Chemical and all its de-

scendants, except those in the Pharmacologic Substance and Biologically Active Substance

semantic-type collections. This is because Pharmacologic Substance introduces the five

relationships complicates, diagnoses, disrupts, prevents, and treats, and

Biologically Active Substance introduces associated_with, complicates, and

disrupts. Since these relationships are not defined at Chemical, Pharmacologic Sub-
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stance and Biologically Active Substance start new MSTs.

Another example is the MST Anatomical Entity in the C-metaschema. This MST

represents a group of 15 semantic types. This group is split into three semantic-type collec-

tions in the C-partition. One collection contains Anatomical Entity and its seven descen-

dants which are not in the other two collections; the second collection contains Anatomical

Structure and Embryonic Structure; and the third contains Fully Formed Anatomical

Structure and its children. This is because Anatomical Structure introduces a new rela-

tionship 1 oc ati on_o f that is not defined for its ancestors, and Fully Formed Anatomi-

cal Structure defines two new relationships, contains  and produc es. Hence, Anatom-

ical Structure and Fully Formed Anatomical Structure both begin new MSTs in the

C-metaschema.

On the other hand, the semantic-type collection Manufactured Object in the C-

partition, containing Manufactured Object, Medical Device, Research Device, and Clin-

ical Drug, is split into two groups in the C-partition. One group is Clinical Drug, con-

taining only Clinical Drug; the other group is Manufactured Object, consisting of the

remainder of the three semantic types. This is because in the C-partition, the leaf singleton

Clinical Drug is merged into the group of its parent semantic type Manufactured Object,

while in the C-partition, there is no rule to avoid leaf singletons.

From the above comparison, it is clear that the C-metaschema generally provides

a more refined abstract view of the ESN than the Q-metaschema. The collections that are

similar in the two metaschemas, up to the refinement level, cover 92 semantic types (i.e.,

66.7% of the ESN).



102

There are 22 semantic types of the ESN that are assigned to MSTs differently in the

two metaschemas. The MSTs involved are Entity, Conceptual Entity, Molecular Sequence,

and Geographic Area in the C-metaschema and Entity, Idea or Concept, and Substance

in the C-metaschema. There are also cases where MSTs with the same name in the two

metaschemas represent different semantic-type collections in the underlying partitions. For

example, Entity appears in both metaschemas, but it represents different semantic-type

collections in each. Please note that the major differences in the two metaschemas involve

only 15.9% of the ESN.

An interesting measure for the two metaschemas is how many semantic relation-

ships of the ESN are not reflected by the meta-relationships of the metaschema. There

are 422 defined semantic relationships in the ESN, but when the inherited semantic rela-

tionships are taken into account, the number is 7,303. For the C-metaschema, there are

699 out of the 7,303 semantic relationships (about 9.6%) that are not reflected. For the

C-metaschema, there are only 285 out of the 7,303 semantic relationships (about 4%) that

are not reflected. Hence, the C-metaschema is better at capturing the relationship structure

of the ESN. The reason for this is not just the larger number of MST; it is also due to

the fact that the initial design of the collections is based on the grouping of all semantic

types with the same set of relationships. This organization minimizes the cases of relation-

ships introduced at a non-root semantic type of a collection. Furthermore, all 285 semantic

relationships that are not reflected by the C-metaschema are defined at leaves and are not

inherited. This is not the case for the C-metaschema.

Although the C-metaschema captures less ESN's semantic relationships than the
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C-metaschema, it contains less MSTs. Therefore, its network is more compact and sim-

pler than that of the C-metaschema. Hence, the whole C-metaschema with all its meta-

relationships can be displayed on one page. To summarize, both metaschemas have their

advantages and disadvantages and each can serve as a compact abstraction of the ESN.

Note that conceptually there is loss of knowledge in a metaschema view versus

the complete ESN diagram. The loss occurs both in the nodes and in the links. In the

nodes, only the roots of the collections are appearing and represent the rest of the semantic

types. In the links, only the meta-relationships were presented, standing for the semantic

relationships defined at the roots of the semantic-type collections. Hence, semantic re-

lationships whose sources are non-root semantic types were missed. Furthermore, for the

meta-relationships the knowledge of the target semantic type for each relationship is not re-

flected is the metaschema. Such knowledge loss is unavoidable in the process of capturing

a large network in a compact abstract view.

However, there is no permanent loss of any knowledge as the metaschema is just

the first view a user will employ when orienting herself to the ESN. The user will still have

access to all the ESN's elements. Section 4.5.1 demonstrates how various partial graphical

views, based on the metaschema, provide complete knowledge of small, comprehensible

portions of the ESN. In particular, the fact that Figure 4.7 of the C-metaschema cannot

show all the 124 meta-relationships defined for it is not so critical, as the missing meta-

relationships and the semantic relationships represented by them will be displayed in the

various partial views.



104

4.5.1 Applications of a Metaschema

In this section, three applications of a metaschema are briefly described. (These applica-

tions were described in detail in [49].)

The first application uses the metaschema notion for auditing the classification of

concepts in the UMLS, where concepts of the META are assigned to one or more semantic

types of the ESN. Auditing the META concept classification is a persistent, and perhaps

overwhelming, task for UMLS professionals. There is a need to design auditing techniques

for the UMLS which will minimize the effort and maximize the probability of finding

errors.

Previously published papers have exploited UMLS knowledge to help audit the

META. For example, in [8], Cimino used semantic methods to uncover UMLS classifica-

tion errors. Gu et al. [19] and Bodenreider [1], respectively, described techniques to support

the maintenance of the META by constructing object-oriented models of the UMLS. Hole

demonstrated a new method to find missed synonymy in the META [27].

Metaschemas, too, can be used to help uncover classification errors in the META.

In a metaschema, closely related semantic types are grouped into semantic-type collections

and abstracted these into meta-semantic types. Since a concept may be assigned to several

semantic types, it may also be associated with several meta-semantic types. However, it is

more likely that a concept will be erroneously assigned to several semantic types residing

in different meta-semantic types than to several semantic types of the same meta-semantic

type. The reason is that, in general, two semantic types of the same meta-semantic type

belong to the same domain. On the other hand, if two semantic types are in two different
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meta-semantic types, they belong to two different domains. This observation leads to the

idea of an audit that concentrates on concepts which are associated with several meta-

semantic types. The idea is that such concepts are more likely to be in error than other

concepts, and the effort to review them is limited since their number is not very large. For

more details and examples, see [17].

One example is the concept SERIAL ANALYSIS 0F GENE EXPRESSI0N that was

assigned to Plant and Research Activity simultaneously. In the C-metaschema, these

two semantic types belong to MSTs Plant and Research Activity, respectively. The MST

Plant consists of semantic types residing in the Entity part of the ESN, while the Research

Activity contains semantic types residing in the Event part. They are quite different in

nature. Hence, the classification of a concept assigned to these two MSTs is suspicious. As

a matter of fact, from the name of the concept, it is clear that the assignment of the concept

to Plant is erroneous and should be removed. A typical user for this application is an NLM

employee who is an auditor of the UMLS concept classifications. Such a person can utilize

the metaschema to help in detecting classification errors.

The second application is using various kinds of graphical views, based on the

metaschema, to enhance user orientation to the ESN. These views include:

1. A collection subnetwork which is a subgraph of the ESN induced by a semantic-type

collection (See Figure 4.8).

2. The focus MST submetaschema which contains an MST in which the user is inter-

ested (a focus MST) and all its neighboring MSTs (See Figure 4.9).

3. The bi-collection subnetwork which is the subgraph of the ESN induced by two
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neighboring collections (i.e., the corresponding MSTs are neighbors). (See Fig-

ure 4.10.)

The following example describes a scenario of a user employing these graphical

views to gain an orientation. The user starts by viewing the metaschema hierarchy (Fig-

ure 4.6) to identify which MST is closest to her interest. Suppose it is Phenomenon or

Process. Then the viewer looks at the Phenomenon or Process collection subnetwork

(Figure 4.8), and she can see all the semantic types in the collection and all relation-



ships connecting them. Once the user gains this knowledge, she might want to see the

interaction between semantic types of this collection and other external semantic types.

But the number of relationships between semantic types of this collection and other se-

mantic types may be overwhelming. Thus, the user can first view an abstraction of this

interaction by viewing the Phenomenon or Process focus MST submetaschema where the

relationships to and from the various neighboring MSTs of Phenomenon or Process are

shown (Figure 4.9). If, for example, the user identifies an interest in the interaction be-

tween Phenomenon or Process and Anatomical Abnormality, she can choose to view the

Phenomenon or Process/Anatomical Abnormality bi-collection subnetwork (Figure 4.10).

The subnetwork contains all the interactions in the ESN between the semantic types of

these two collections. Note that this view may show relationships from non-root semantic

types of a collection which were not reflected in the metaschema, e.g., the indicate s

relationship from Laboratory or Test Result to Anatomical Abnormality. That is, the
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loss of relationship knowledge in the metaschema is not a permanent loss, and the "lost

relationships" appear in the bi-collection views. If the user wants to learn about all the

external relationships of the Phenomenon or Process collection, then she can view a se-

quence of bi-collection subnetworks, one for each pair of neighboring MSTs in the focus

MST submetaschema. In this way, the overwhelming task of reviewing all the relationship

interactions of one collection is divided into a sequence of manageable tasks, supporting

user comprehension efforts. A potential user for this application is a medical informat-

ics student or professional who is not familiar with the SN of the UMLS and is trying to

achieve an orientation to the SN.

For the third application, the user is an NLM employee classifying concepts of the

UMLS who can use the graphical views, provided by a metaschema framework, to help

detect and avoid redundant classifications within an MST. A classification of a concept

to a semantic type while it has a simultaneous assignment to a descendant of the semantic

type is called a redundant classification and is forbidden in the UMLS [41]. This situation

can be demonstrated with regards to classifications involving chemicals and will use the

Chemical collection subnetwork view (Fig 4.11).

As an example, consider the concept C0NCENTRIN assigned to semantic types

Steroid, Lipid, and Organic Chemical. From the Chemical collection subnetwork in

Fig 4.11, Organic Chemical is the parent of Lipid, which in turn is the parent of Steroid.

Therefore, the assignment of concept C0NCENTRIN to Organic Chemical and Lipid is

redundant since it can be inferred from the assignment to Steroid.

In another example, there are two concepts, FLU0R PR0TECT0R and AELITEFIL,
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Figure 4.11 Chemical collection subnetwork.

assigned to three semantic types within the same subnetwork: Chemical Viewed Struc-

turally, Organic Chemical, and Inorganic Chemical, where Chemical Viewed Struc-

turally is the parent of the other two semantic types. Hence, the assignment of the two

concepts to Chemical Viewed Structurally is redundant. Furthermore, a concept cannot

be both an organic chemical and an inorganic chemical simultaneously. As a matter of fact,

the two concepts are organic chemicals.

The following statistics demonstrate that such users might need the help of graphi-

cal views in determining concept classifications. In [19], while reviewing all intersections

of semantic types in the SN of the 1998 version of the UMLS, it was discovered that 8,622

concepts had redundant classifications. This group of redundant classifications was re-

ported to the NLM so they could be omitted in subsequent releases. Recently, a follow-up

audit was performed on the 2001 UMLS to determine the status of these 8,622 concepts.
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It was found that a portion (38.3%) of the redundant classifications was properly removed.

However, a large number of them (57%) were still present. A third portion (4.7%) of the

redundant classifications was partially treated. For instance, an existing redundant classi-

fication was removed, and a new assignment to another semantic type was added instead,

only to create a new redundancy. The graphical views provided by a metaschema frame-

work might help such users in concept classification, especially in avoiding the creation of

new redundant classifications while removing existing redundant classifications.

4.6 Summary

The UMLS's Semantic Network (SN) provides an abstract view for its Metathesaurus and

helps with its comprehension. However, the SN itself can be hard to comprehend since it is

complex and large. At the same time, the SN does not allow for multiple parents and mul-

tiple inheritance. The ESN with its DAG structure in Chapter 2, enabling multiple parents,

is more accurate but also more complex than the SN. In this chapter, the author presented

the requirements for and derivation of metaschemas that support the comprehension of the

ESN. The "qualified metaschema" (C-metaschema) based on the qualified partition (C-

partitions) and the "cohesive metaschema" (C-metaschema) based on the cohesive partition

(C-partition) were obtained. The two metaschemas and their underlying partitions were

compared. The C-metaschema is a more compact metaschema, and the C-metaschema is

more refined. Each metaschema can be used as a compact abstract layer of the ESN to help

in its comprehension. Potential applications of metaschemas were described.

In [16, 35, 36] techniques to design an upper-level schema for the MED terminology
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were developed. Similar techniques can be applied to other medical terminologies such as

the SNOMED-CT to abstract its huge concept hierarchy into a schema of classes or groups

of structural similar concepts. The role of this schema for the given terminology is similar

to the role of the Semantic Network for the META of the UMLS. The technique presented

in this chapter can then be applied to derive a simplified metaschema to serve as a higher-

level compact view of the schema and indirectly of the concept hierarchy. The metaschema

can be used as the first view presented to users to help in their orientation.



CHAPAER 5

METASCHEMAS FOR THE SN

5.1 Introduction

While the SN is an important abstraction of the META, it is still a difficult source to em-

ploy for orientation purposes due to its extensive content. To give an idea of the SN's

complexity, its Event subnetwork is shown in Fig 5.1. Note that the figure displays nei-

ther the incoming relationships from semantic types out of the scope of the figure (i.e.,

from the Entity side) nor the inherited relationships of the semantic types. A circle with

a question mark inside denotes a semantic type that is a relationship target in the Entity

part. This figure clearly demonstrates the need to provide comprehensible access to the SN

through simpler and more compact views to help user orientation. In previous work [49],

the notion of metaschema was introduced, which is a higher-level network derived from

a partition of the SN [6]. A metaschema serves as an abstraction of the SN. As shown

in [49], a metaschema offers various compact (partial) views that can help users in their

orientation to the SN. Additional applications were described in [49, 17]. In Chapter 4, the

notion of metaschema was extended to encompass a directed acyclic graph (DAG) seman-

tic network. Two metaschemas were obtained for the DAG-structured Enriched Semantic

Network (ESN) in Chapter 4.

In this chapter, a new kind of lexical partitioning technique is presented based on

string matching from definitions of semantic types to the names of their parents. In this

technique, a child and parent that are "lexically related" will be grouped together in the

same element of the lexical partition. A metaschema, called the lexical metaschema, based

112



Figure 5.1 Event subnetwork of the SN.
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on the lexical partition is then derived.

To evaluate the quality of the lexical metaschema, it is compared to a collection

of "cumulative metaschemas" derived from a group of UMLS experts. These cumula-

tive metaschemas are obtained from the application by experts of a manual partitioning

procedure defined for them. Each cumulative metaschema represents a different level of

aggregation of the experts' responses.

The notion of metaschema was introduced in [49] as an abstraction of the SN. A

metaschema is based on a connected partition of the SN where the SN's IS-A hierarchy

is partitioned into disjoint semantic-type groups. A partition is said to be connected if

each of its semantic-type groups satisfies the condition that its semantic types together with

their respective IS-A links constitute a connected subgraph of the SN with a unique root.

Additionally, while a semantic-type group can be a singleton (i.e., can contain only one

semantic type), that semantic type cannot be a leaf in the SN's hierarchy. This condition is

imposed because the metaschema should manifest some size reduction, which singletons

do not contribute to. However, a singleton containing a non-leaf semantic type is allowed,

since it may express an important internal branching point in the metaschema.

In a metaschema, each semantic-type group of the partition is represented by a sin-

gle node, called a meta-semantic type. Two kinds of relationships connect meta-semantic

types. The hierarchical meta-child-of relationships between meta-semantic types are de-

rived as abstractions of the SN's IS-A links. The non-hierarchical relationships, called

meta-relationships, are derived from the SN's semantic relationships. Details of these

derivations were presented in [49, 67], and a summary appears in Section 5.2.2.
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For example, the hierarchy of the Event portion could be partitioned into five

semantic-type groups as in Fig 5.2. Each semantic-type group is represented by a meta-

semantic type in the corresponding metaschema. A meta-semantic type PHEN0MENON OR

PROCESS 1 is defined to represent the semantic-type group rooted at Phenomenon or Pro-

cess in Fig 5.2. The metaschema hierarchy derived from the partition of the Event portion

is shown in Fig 5.3.

Figure 5.2 Partition example for Event portion of the SN.

Overall, a diagram of a metaschema serves as a good visualization mechanism of

the SN and, in turn, the META, and helps in the navigation of the UMLS knowledge. In [49]

various partial graphical views of groups of semantic types supported by the metaschema

paradigm were introduced. These views can help in orientation of a user to the full scope

of the SN's semantic relationships. In addition to the notion of metaschema, other previous

'Meta-semantic types will be written in "small caps" style in this chapter.



Figure 5.3 Metaschema hierarchy of the partition of Event portion.

work has focused on different methods to facilitate UMLS knowledge comprehension and

visualization. Bodenreider and McCray described how to use visualization of semantic

relationships as important indicators to explore coherence of semantic groups and help in

auditing and validating the SN [2]. In [46], Nelson and Sherertz, et al., presented the

Hypercard browser MetaCard to enable users to extend the browsing process from META

to a variety of different knowledge sources. In [33], knowledge exploration tools using

levels of indentation to represent items standing in hierarchical relationships were used

for displaying biomedical hierarchies in environments such as Protege-2000. A review of

knowledge visualization and navigation in the medical domain was presented by Tuttle et

al. in [57].

5.2 Methods

This section first introduces the lexical partitioning technique for generating a lexical par-

tition. Then it describes how to derive the lexical metaschema based on the lexical parti-

tion. After that, the instructions given to the various UMLS experts are described and the

derivation of the cumulative metaschemas from their responses is presented. Finally, the

evaluation techniques used to judge the quality of the lexical metaschema compared to the
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experts' responses are introduced.

5.2.1 A Lexical Partitioning Technique Based on String Matching

The lexical partitioning technique is based on string matches among pairs of child and

parent semantic types. The notion of "string match" is defined in the following, where the

term "child/parent pair" ("CP-pair" for short) is used to denote a pair of semantic types

(A 1 , A2) such that A 1 is a child of T2 in the SN.

In Section 2.2.2, it was observed that some child semantic types referred to the

names or part of the names of their respective parents in their definitions. Term "string

match" was defined to describe such a case. For example, the definition of Plant contains

the word "organism" which happens to be the name of its parent Organism. Hence, there is

a string match (Plant; Organism; "organism"). On the other hand, there is no string match

from Biologically Active Substance to its parent Chemical Viewed Functionally. The

string match between a child semantic type and its parent semantic type reflects the lexical

relationship in this CP-pair. From this overlapping word usage, the following definition is

given:

Definition (Lexically related): A CP-pair (A 1 , A2) is said to be lexically related if there

exists a string match between A 1 and T2. ❑

For example, the CP-pair (Plant, Organism) is lexically related, while (Biologically

Active Substance, Chemical Viewed Functionally) is not lexically related. The child in a

CP-pair that is not lexically related is called lexically independent. The two roots of the SN,

Entity and Event, are by definition lexically independent since they do not have parents.

In order for a metaschema to help users in their orientation to the SN, its associ-
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ated partition must have semantic-type groups that capture various subject areas within the

medical field. An underlying assumption of the lexical partitioning technique is that if a

CP-pair is lexically related, then both semantic types belong to the same subject area and

should therefore be in the same semantic-type group. If, on the other hand, a CP-pair is

not lexically related, then the child can be seen as a transition to a new (although related)

subject area. The child in this case will be made the root of a new semantic-type group in

the lexical partition. Its own lexically related children and, in turn, all their lexically related

children, etc., will be part of this semantic-type group, too.

For example, Biologically Active Substance will start a new subject area and thus

will be the root of a new semantic-type group. In contrast, Plant is deemed to be in the

same subject area as Organism, and thus resides in the same semantic-type group.

To construct the lexical partition, it is necessary to identify all lexically related CP-

pairs. That is, it's required to check if string matches exist for the 133 CP-pairs in the SN.

In the following, the partitioning process will be described as a series of four steps.

Step 1: Apply the string match method presented in Section 2.2.2 to identify all string

matches in all CP-pairs of the SN;

Step 2: For each CP-pair, if there exists a string match, mark the CP-pair as "lexically

related"; otherwise, mark it as "lexically unrelated."

Step 3: For each lexically unrelated CP-pair: if the child is not a leaf, then the child marks

the root of a new semantic-type group in the partition; otherwise, the child is assigned

to the same semantic-type group as its parent. For each lexically related CP-pair: the

child is assigned to the same semantic-type group as its parent.
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Please note that even though "lexically related" is not transitive, the following is a

consequence of the rules. If (B, A) is a lexically related CP-pair, then B is assigned to the

same semantic-type group as A. Meanwhile, if (C, B) is a lexically related CP-pair, then

C is assigned to the same semantic-type group as B. Therefore, A, B, and C will be in the

same semantic-type group in the lexical partition.

5.2.2 Metaschema Derivation

With the lexical partition in place, the lexical metaschema can be derived. A metaschema

comprises three kinds of components: meta-semantic types, meta-child-of relationships,

and meta-relationships. These are defined below along with their derivations.

A meta-semantic type is a node defined to represent a single semantic-type group.

It is given the name of the semantic-type group's root. The root of the semantic-type group

is also called the root of the meta-semantic type. The size of a meta-semantic type is the

number of semantic types in the group it represents.

A meta-child-of relationship ("meta-child-of" for short) is a link between two meta-

semantic types representing the IS-A relationships between the two corresponding semantic-

type groups. More specifically, let A and Br be semantic types in the semantic-type groups

of meta-semantic types A and B, respectively. Furthermore, let Br be the root of B and Br

IS-A A. Then in the metaschema, there exists a meta-child-of directed from B to A. Note

that the semantic type A does not need to be the root of its meta-semantic type. Only the

source Br has to be a root in order for a new meta-child-of to be induced in the metaschema.

The derivation of the meta-child-of links is motivated in detail in [49].

A meta-relationships is a link between two meta-semantic types representing a spe-
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cific semantic relationship (non-IS-A relationship) between the two corresponding semantic-

type groups. Specifically, let A, and B be semantic types in the semantic-type groups of

meta-semantic types A and B, respectively. Furthermore, let A, be the root of A and let

there exist a semantic relationship rel from A, to B. Then in the metaschema, there exists a

meta-relationship rel2  directed from A to B. Note that the semantic type B does not need

to be the root of its meta-semantic type. Only the source of the relationship rel (i.e., AO

has to be a root in order for a new meta-relationship rel to be induced in the metaschema.

The derivation of meta-relationships is also motivated in [49].

5.2.3 Evaluation Techniques

5.2.3.1 Cumulative Metaschemas Based on Experts' Responses

An important assumption underlying the construction of the lexical metaschema is that even

though the lexical partition is the result of an algorithmic process using string matching, it

still effectively yields subject areas of the SN similar to those an expert might choose. A

study to evaluate the validity of this assumption was conducted. A group of experts with

reputations in UMLS research are selected and sent two pages with diagrams of the SN's

IS-A hierarchy, i.e., the two trees rooted at Event and Entity. Each participant received a

page of instructions as follows:

1 Start marking by a star the root node of the tree and continue to scan the semantic types

downwards.

2 While scanning, mark by a star semantic types, which you judge as IMPORTANT AND

CUITE DIFFERENT from their parent semantic types.

meta-relationship will be written in a courier font in this chapter.
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3 There is one exception: Don't mark semantic types which have no children. Thus, you

only need to consider the 45 semantic types with children.

4 The star markings of each participant will be used to define a metaschema where each

semantic type marked by a participant names a meta-semantic-type. The metaschema

will be compared with the results of other respondents and with the algorithmically

derived metaschema.

The instructions heavily utilize the one-to-one correspondence between the semantic-

type groups underlying the meta-semantic types, and their root semantic types. By selecting

a set of semantic types that are "important and quite different" from their parents, a partic-

ipating expert induces a partition of the SN and a corresponding metaschema. Each such

metaschema is referred to as an "expert metaschema."

Note that although the instructions seem quite elaborate, they only define struc-

tural limitations, such as "don't mark semantic types which have no children." These

limitations are necessary to make the computation of a valid comparison score between

the metaschemas of the participants and the algorithmically obtained lexical metaschema

possible. On the other hand, the instructions do not limit the semantic decisions of the

participants, who still have the complete freedom to mark semantic types of their choice.

The definitions of the semantic types were not provided with the partitoning, but they were

available at the NLM Website. Most participants probably relied on their understanding of

the semantic types derived from the types' names and positions in the SN's IS-A hierarchy.

It is quite interesting in quantifying the variability of the experts' responses. To-

wards this, the X-by-X agreement matrix (assuming X participating experts) between
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participants is computed to examine the agreement between any two experts. In the agree-

ment matrix, the number in row i and column j indicates how many meta-semantic types

participant i and participant j agree on.

It is to be expected that some choices will be repeated by many participating experts.

For the study, what is more interesting are metaschemas that represent a kind of aggrega-

tion of the experts' responses rather than the expert metaschemas of the individuals. In

particular, a sequence of cumulative metaschemas are constructed, each of which reflects

a specific level of aggregation of the experts. Suppose there are X experts' responses. A

threshold value N is defined in the range (I, X) to represent the level of aggregation. The

cumulative metaschema for a given N is constructed as follows. For each semantic type

marked by at least N participating experts, a meta-semantic type is defined and given the

name of the semantic type. Then meta-child-of's and meta-relationships are derived as de-

scribed in Section 5.2.2. The cumulative metaschema with the threshold value representing

a simple majority [28] of the experts (i.e., N = IX/21) is referred to as the consensus

metaschema.

5.2.3.2 Analysis Approach

As noted, the assumption is that the lexical technique can help to capture subject areas of

the SN similar to those derived by domain experts. Therefore, it is necessary to evaluate to

what degree the lexical metaschema is similar to each expert's choice, and to what degree

the lexical metaschema is similar to each cumulative metaschema. In particular, it is good

to know how similar the lexical metaschema is to the consensus metaschema representing

the simple majority of experts.
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A gold standard is created based on the majority vote of the X participating experts

(in the study, X = 11) on the 45 candidate non-leaf semantic types. To assess the reliability

of the gold standard generated by the X experts, Cronbach's a [13] is calculated, which

should ideally be greater than or equal to 0.7.

Performance of the experts is calculated using a gold standard composed of the

other X — 1 (10 in the study) experts. The majority vote with a random decision for

ties is used. The agreement between the algorithmic lexical approach and each expert's

choice is obtained to show the similarity between the lexical metaschema and each expert

metaschema.

Performance of the algorithmic lexical approach is measured in terms of accu-

racy, sensitivity (recall R), specificity, precision (P), receiver operating characteristic curve

trapezoidal area [25], and Rijsbergen's F measure with equal weighting of recall and pre-

cision [52]:

The performance of the lexical algorithm to the average performance of the experts

is computed [29], and confidence intervals and p-values are also calculated using bootstrap

[14] estimates of variance.

To verify that majority vote rather than another threshold (e.g., 8 out of 11 experts)

should have been used to define the consensus metaschema, the performance of the algo-

rithm for different values of N is also assessed. P, R, and Rijsbergen's F measure of the

lexical metaschema are calculated relative to the corresponding cumulative metaschema,

using N as an independent variable. The F measure, dependent symmetrically on P and
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R, is used as a typical benchmark to evaluate the similarity between the lexical metaschema

and the cumulative metaschemas.

5.3 Results

5.3.1 Lexical Metaschema

Applying the "AllMatches" algorithm to the 133 CP-pairs results in string matches involv-

ing 88 CP-pairs. The string match (Plant; Organism; "organism") is one of them. Hence,

about 70% of the children in the SN refer to the name or part of the name of their respective

parents in their definitions. Therefore, there are 88 lexically related CP-pairs and 45 that

are not lexically related.

In total, there are 47 lexically independent semantic types (including Entity and

Event), among which 21 are non-leaf semantic types, and 26 are leaves. For example,

(Organism, Physical Object) is not lexically related, and Organism is a non-leaf semantic

type. (Human, Mammal) is not lexically related either, but Human is a leaf. Table 5.1

displays all 47 lexically independent semantic types.

Step 4 of Section 5.2.1 yields 21 semantic-type groups for the lexical partition. Each

of the 21 non-leaf, lexically independent semantic types starts a new semantic-type group.

Each of the 26 lexically independent leaves is assigned to the group of its respective parent.

The constituent semantic types of each of the 88 lexically related CP-pairs are assigned to

the same groups.

For example, Organism is a non-leaf, lexically independent semantic type; its child

Archaeon is a lexically independent leaf; and the CP-pair (Organism, Plant) is lexically



125

related. thence, Ourgamsm starts a new semantic-type group; rcnaeon ana Gant are also

assigned to this group. The chart in Figure 5.4 shows the distribution of the numbers of

semantic-type groups according to their sizes. For example, there are four semantic-type

groups of size six.

In Table 5.2 each row shows a root of a semantic-type group, the group's size, and

the complete list of the semantic types in the group. For example, the semantic-type group

rooted at Organism has 17 semantic types which are listed in the first row of the table. The

groups are listed according to the order of their roots in Table 5.1.



Figure 5.4 Size distribution of semantic-type groups.

With the lexical partition in place, the lexical metaschema can be derived. For ex-

ample, a meta-semantic type PATH0L0GIC FUNCTION is defined to represent the semantic-

type group rooted at Pathologic Function. PATH0LOGIC FUNCTI0N has six constituent

semantic types. Pathologic Function is the root of PATH0L0GIC FUNCTION, and Bio-

logic Function is in the group represented by PHEN0MEN0N 0R PR0CESS. Since Patho-

logic Function IS-A Biologic Function in the SN, there exists a meta-child-of directed

from PATH0L0GIC FUNCTION to PHEN0MEN0N 0R PR0CESS. Meanwhile, the four se-

mantic relationships, co_occurs_with, complicates, manifestation_of, and

occurs_in, are defined from Pathologic Function, the root of PATH0LOGIC FUNC-

TION, to Injury or Poisoning, which is in PHEN0MEN0N 0R PR0CESS. Therefore, four

meta-relationships, co_occurs_with, complicates, manifestation_of, and

occurs_in, are defined from PATHOLOGIC FUNCTI0N to PHEN0MEN0N 0R PR0CESS.

The hierarchy of the lexical metaschema is shown in Fig. 5.5. The size of a meta-



Table 5.2 Lexical Partition of the SN
Root 	 of 	 Semantic-
Type Group Size Semantic Types in Group

Organism 17 Organism; Plant; Alga; Archaeon; Virus; Animal; Invertebrate; Vertebrate; Mammal; Human; Reptile; Fish; Bird; Amphibian;
Bacterium; Fungus; Rickettsia or Chiamydia

Anatomical Structure 11 Anatomical Structure; Embryonic Structure; Fully Formed Anatomical Structure; Body Part, Organ, or Organ Component;
Tissue; Cell; Cell Component; Anatomical Abnormality; Acquired Abnormality; Congenital Abnormality; Gene or Genome

Organism Attribute 2 Organism Attribute; Clinical Attribute
Finding 3 Finding; Sign or Symptom; Laboratory or Test Result

Physiologic Function 7 Physiologic Function; Organ or Tissue Function; Organism Function; Mental Process; Molecular Function; Genetic Function;
Cell Function

Pathologic Function 6 Pathologic Function; Experimental Model of Disease; Disease or Syndrome; Neoplastic Process; Mental or Behavioral Dys-
function; Cell or Molecular Dysfunction

Event 1 Event

Activity 15
Activity; Behavior; Individual Behavior; Social Behavior; Daily or Recreational Activity; Machine Activity; Occupational Ac-
tivity; Health Care Activity; Laboratory Procedure; Diagnostic Procedure; Therapeutic or Preventive Procedure; Governmental
or Regulatory Activity; Educational Activity; Research Activity; Molecular Biology Research Technique

Phenomenon or Pro-
cess 6 Phenomenon or Process; Human-caused Phenomenon or Process; Environmental Effect of Humans; Natural Phenomenon or

Process; Biologic Function; Injury or Poisoning;

Entity 13 Entity; Conceptual Entity; Group Attribute; Language; Intellectual Product; Classification; Regulation or Law; Group; Profes-
sional or Occupation Group; Population Group; Family Group; Age Group; Patient or Disabled Group

Physical Object 6 Physical Object; Manufactured Object; Research Device; Medical Device; Medical Delivery Device; Clinical Drug;
Idea or Concept 6 Idea or Concept; Functional Concept; Body System; Temporal Concept; Qualitative Concept; Quantitative Concept
Spatial Concept 4 Spatial Concept; Geographic Area; Body Location or Region; Body Space or Junction
Molecular Sequence 4 Molecular Sequence; Amino Acid Sequence; Carbohydrate Sequence; Nucleotide Sequence
Occupation or Disci-
pline 2 Occupation or Discipline; Biomedical Occupation or Discipline

Organization 4 Organization; Professional Society; Health Care Related Organization; Self-help or Relief Organization
Lipid 3 Lipid; Steroid; Eicosanoid
Pharmacologic Sub-
stance 2 Phannacologic Substance; Antibiotic

Biologically 	 Active
Substance

7 Biologically Active Substance; Receptor; Vitamin; Enzyme; Hormone; Neuroreactive Substance or Biogenic Amine; Immuno-
logic Factor

Substance 11
Substance; Body Substance; Food; Chemical; Chemical Viewed Functionally; Hazardous or Poisonous Substance; Biomedical
or Dental Material; Indicator, Reagent, or Diagnostic Aid; Chemical Viewed Structurally; Inorganic Chemical; Element, Ion,
or Isotope

Organic Chemical 5 Organic Chemical; Amino Acid, Peptide, or Protein; Organophosphorus Compound; Nucleic Acid, Nucleoside, or Nucleotide;
Carbohydrate



Activity(1 5)

Physiologic
Function(7)

Event(1)

Phenomenon
or Process(6)

Pathologic
Function(6)

Physical
Object (6)

Organism
(17)

Anatomical
Structure(11)

Biologically
Active

Substance(7)

Finding(3)

Pharmacologic
Substance(2)

Substance(11)

Entity(13)

Occupation or
Discipline(2)

Organic
Chemical(5)

A

Lipid(3)

Molecular
Sequence(4)

Idea or
Con cept(6)

Spatial
Concept(4)

Organization(4)

A

Organism
Attribute(2)

128

semantic type is displayed in parentheses following its name. Fig. 5.6 shows the metaschema

including all meta-child-of's and meta-relationships. Overall, the metaschema contains 21

meta-semantic types, 19 meta-child-of's, and 86 meta-relationships. The average size of a

meta-semantic type is close to six.

Figure 5.5 Lexical metaschema hierarchy.

5.3.2 Cumulative metaschemas

In the study, eleven responses from eleven experts (X = 11) were received and thus eleven

cumulative metaschemas were obtained by varying N over the range (1, 11). For N = 8,

for example, there were 16 semantic types marked by at least eight out of the eleven experts,

and so the corresponding cumulative metaschema has 16 meta-semantic types. Table 5.3

shows the number of semantic types marked for each N. Obviously, the larger the value of

N, the smaller the common number of meta-semantic types.

As in the table, the number of meta-semantic types varies from two (for N = 11)
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Figure 5.6 Entire lexical metaschema.
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Aable 5.3 Threshold Value N and Number of Semantic Types Marked (= # meta-semantic
types chosen)

Threshold (N) 1 2 3 4 5 6 7 8 9 10 11
# meta-semantic types 45 45 45 42 36 26 20 16 10 7 2

to 45 (for N = 1, 2, and 3). The corresponding metaschema for the first case contains two

meta-semantic types ENTITY and EVENT, each spanning the whole corresponding tree of

the SN. For the latter cases, each non-leaf semantic type names a meta-semantic type. The

metaschema that emerges in those cases is effectively just the SN itself. No real grouping

of related semantic types occurs. Obviously such extreme metaschemas are not interesting.

The consensus metaschema (N = 6) contains 26 meta-semantic types. Its hierarchy is

shown in Figure 5.7.

Entity (1)

A

Phenomenon
or Process (5)

A

Physical
Object (1)

A

Group (6)

Organization
(4)

Activity (1)

Research
Activity (2)

Biologic
Function (8)

Pathologic
Function (6)

Manufactured
Object (5)

z
Organism

(15) 

Plant (2)

Occupation or
Discipline (2)

Conceptual
Entity (5)

Substance
(11)

Pharmacologic
Substance (2)

Organic
Chemical (8)

Spatial
Concept (8)

Idea or
Concept (6)

Intellectual
Product (3)

Figure 5.7 Consensus metaschema hierarchy (N = 6).
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5.3.3 Statistical Evaluation Results

While studying responses from different experts, it is found found that individual partic-

ipants' responses varied greatly both in the choice of semantic types marked and their

number. First, the agreement between the lexical metaschema and each expert metaschema

is calculated. For example, expert 1 chose 21 semantic types to name meta-semantic types

in his expert metaschema. Among these 21 meta-semantic types, 13 also appear in the lexi-

cal metaschema. Table 5.4 shows the number of semantic types that were chosen by both a

participating expert and the lexical algorithm. The second row in Table 5.4 shows the num-

ber of meta-semantic types for the participants. The number in the third row shows how

many semantic types among those marked by this expert (shown in the second row) were

also chosen by the lexical algorithm. For example, expert 1 marked 21 semantic types,

among which 13 also appear as meta-semantic types in the lexical metaschema since they

are roots of semantic-type groups in the lexical partition. The average similarity of the par-

ticipants with the lexical metaschema is 13.27, with a high of 17 and low of 7. The average

number of meta-semantic types marked by a participant is about 26, with minimum and

maximum numbers of 12 and 36, respectively. The large variation in the numbers of the

expert metaschemas' meta-semantic types raises doubts about the appropriateness of using

them to evaluate the lexical metaschema and led to the consideration of aggregating their

responses.

To substantiate this, the agreement matrix of all eleven experts (Table 5.5) was

constructed to demonstrate the agreement as well as the high variability of participant re-

sponses. For instance, participants 2 and 5 both marked 34 semantic types and agree on 27
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of them. The average inter-participant agreement is 16.76, with a high of 30 and a low of

six. The large range shows the high variability of participant responses and the difficulty of

using an individual expert metaschema as a measure to evaluate the lexical metaschema (or

for that matter, any other algorithmically derived metaschema), as experts vary so much in

their opinions. In other words, what is the sense of comparing the lexical metaschema with

the expert metaschemas if each expert creates one that is so different from those of his or

her peers?

Aable 5.4 Algorithm-participant Similarity

Participant 1 2 3 4 5 6 7 8 9 10 11 Average

# Meta-semantic
types (Expert) 21 34 21 35 34 35 25 26 12 15 36 26.73

Expert and
algorithm 13 17 13 15 15 16 12 9 7 12 17 13.27

Table 5.5 Inter-participant Agreement Matrix; Average = 16.76

1 2 3 4 5 6 7 8 9 10 11

1 19 15 16 15 19 12 11 11 12 20
2 18 28 27 27 20 19 12 14 28
3 16 16 17 14 9 10 10 18
4 28 26 23 21 8 10 30
5 27 20 20 8 10 27
6 19 22 10 14 27
7 14 8 7 24
8 6 9 18
9 9 11
10 13
11
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Cronbach's a for the gold standard was 0.62. The performance of the lexical

metaschema and of the experts is shown in Table 5.6, with 95% confidence intervals in

parentheses. The values (i.e., accuracy, R, etc.) measure the performance of the lexical

metaschema compared to the average performance of the experts. There were no statisti-

cally significant differences between the lexical algorithm and the experts. The experiment

had sufficient power to detect a difference of 0.15 in ROC area and in the F measure.

Aable 5.6 Performance Comparison of Lexical Algorithm and Experts

Lexical Algorithm Experts
Accuracy 0.71 (0.53 to 0.84) 0.59 (0.50 to 0.66)

R 0.65 (0.44 to 0.84) 0.66 (0.57 to 0.73)
Specificity 0.79 (0.38 to 0.95) 0.51 (0.44 to 0.56)

P 0.81 (0.53 to 0.95) 0.70 (0.56 to 0.79)
ROC area 0.72 (0.58 to 0.85) 0.59 (0.52 to 0.64)
F measure 0.72 (0.53 to 0.87) 0.65 (0.53 to 0.74)

To verify that the simple majority vote, rather than another threshold, should have

been used in the consensus metaschema evaluation, the performance of the algorithm for

different levels of the threshold was assessed. Table 5.7 shows the results. The second

column shows the number of semantic types marked (i.e., number of meta-semantic types

chosen) by at least N participants. The third number is the number of semantic types

marked by at least N participants that were also identified as roots of groups by the lexical

metaschema. For example, the cumulative metaschema with N = 8 contains 16 meta-

semantic types, among which eleven also appear in the lexical metaschema. Therefore,

precision P =11121 = 0.524, recall R = 11/16 = 0.688, and F = 0.595.

From the plots in Figure 5.8, it is easy to see that the larger the value of N, the



Aable 5.7 Performance Comparison of Lexical Metaschema for Different Values of N

Threshold (N) Marked (B) Lexical (C) P= C/21 R = C/B F=2PR/(P+R)
11 2 2 0.095 1.000 0.174
10 7 5 0.238 0.714 0.357
9 10 8 0.381 0.800 0.516
8 16 11 0.524 0.688 0.595
7 20 13 0.619 0.650 0.634
6 26 17 0.810 0.654 0.723
5 36 20 0.952 0.556 0.702
4 42 21 1.000 0.500 0.667
3 45 21 1.000 0.467 0.636
2 45 21 1.000 0.467 0.636
1 45 21 1.000 0.467 0.636

smaller the number of semantic types marked by at least N experts, and thus the lower the

precision value. Also, the smaller the value of N, the lower the recall. The F measure peaks

at N = 6, with a high precision and a medium recall. This result indicates that the lexical

metaschema is most similar to this cumulative metaschema, which, in fact, is actually the

consensus metaschema representing a simple majority of the experts. Out of the 26 meta-

semantic types in the consensus metaschema, 17 are also in the lexical metaschema with

the recall value of 81%, indicating high similarity between the two metaschemas.

5.4 Discussion

While the value of 0.62 obtained for Cronbach's a is lower than the target of 0.7 [13], it

is not unreasonable. Future studies might benefit from using, say, 15 rather than eleven

experts.

Table 5.6 compares the performance of the lexical metaschema to the average ex-

134
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Figure 5.8 P, R, and F values for different thresholds N.

perts' performance. It shows that while there appears to be a trend of the lexical approach

outperforming the experts, none of the differences were statistically significant. One can at

least conclude that the algorithmic technique did not grossly underperform the experts.

The results in Table 5.7 show that the lexical metaschema is quite similar to the

consensus metaschema. Thus, it can be concluded that the lexical metaschema can capture

subject areas in the SN similar to the ones picked by a simple majority of the experts.

While most of the results bear this out, some do not. Consider, for example, Plant in the

lexically related CP-pair (Plant, Organism). As such, it is part of the meta-semantic type

ORGANISM in the lexical metaschema. But in the consensus metaschema, PLANT is a

separate meta-semantic type, probably due to the difference from other semantic types in

the ORGANISM group.

In the comparison, only the meta-semantic types' names are considered without
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taking into account the underlying semantic-type groups represented by the meta-semantic

types. Although the chosen semantic types determined the whole metaschema, it is good

to compare the two metaschemas in more detail. Now the lexical metaschema and the

consensus metaschema are compared by their underlying semantic-type groups. To support

the comparison, some definitions are given.

Let M1 and M2 be two metaschemas of the SN.

Definition (Identical): A meta-semantic type A in M1 is identical to a meta-semantic type

B in M2 if both meta-semantic types have the same underlying semantic-type group. ❑

Definition (Similar): A meta-semantic type A in M1 is similar to a meta-semantic type B

in M2 if the roots of their underlying semantic-type groups are the same. ❑

To facilitate the comparison between the lexical and consensus metaschemas, their

hierarchies are shown together in Fig 5.9. Identical meta-semantic types are indicated by

black shadows. Similar meta-semantic types are denoted by gray shadows.

The lexical metaschema contains 21 meta-semantic types, while the consensus

metaschema contains 26 meta-semantic types. There are ten identical meta-semantic types

between the two metaschemas. For example, FINDING is a meta-semantic type appearing

in both metaschemas and representing the same underlying semantic-type group containing

three semantic types. Therefore, FINDING in the lexical metaschema is identical to FIND-

ING in the consensus metaschema. Table 5.8 lists all the identical meta-semantic types

and their sizes. This means both metaschemas agree that these ten meta-semantic types

represent important subject areas in the SN. Altogether, they cover 53 semantic types (i.e.,

39.3% of the SN).
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Aable 5.8 Identical Meta-semantic Types in Lexical and Consensus Metaschemas

Meta-semantic type Size
ANATOMICAL STRUCTURE 11

BIOLOGICALLY ACTIVE SUBSTANCE 7

EVENT 1

FINDING 3
IDEA 0R CONCEPT 6

OCCUPATI0N OR DISCIPLINE 2
ORGANIZATION 4

PATHOL0GIC FUNCTION 6

PHARMAC0L0GIC SUBSTANCE 2

SUBSTANCE 11

There are seven similar meta-semantic types. For example, SPATIAL CONCEPT in

the lexical metaschema represents an underlying semantic-type group with four semantic

types, while SPATIAL C0NCEPT in the consensus metaschema represents a semantic-type

group with eight semantic types. Hence, SPATIAL C0NCEPT in the lexical metaschema

is similar, but not identical, to SPATIAL C0NCEPT in the consensus metaschema. Ta-

ble 5.9 shows these similar meta-semantic types along with their sizes in each of the two

metaschemas. In the lexical metaschema, these seven cover 66 semantic types, which is

about 48.9% of the SN. In the consensus metaschema, these seven cover 44 semantic types,

which is about 32.6%.

To better understand the difference between pairs of similar meta-semantic types,

note that in some cases the difference reflects various levels of granularity in the partition,

rather than major disagreements between the metaschemas. To be more specific, it is found

that some meta-semantic types in the lexical metaschema are split into several separate
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Aable 5.9 Similar Meta-semantic Types in Lexical and Consensus Metaschemas

Meta-semantic type Size in lexical
metaschema

Size in consensus
metaschema

ACTIVITY 15 6
ENTITY 13 1

ORGANIC CHEMICAL 5 8
ORGANISM 17 15

PHENOMENON 0R PROCESS 6 5
PHYSICAL OBJECT 6 1
SPATIAL CONCEPT 4 8

meta-semantic types in the consensus metaschema, or vice versa.

To be formal, "refinement" can be defined as follows. Let Gm (A) denote the

semantic-type group represented by the meta-semantic type A in the metaschema M.

Definition (Refinement): Let A be a meta-semantic type in metaschema M1 . If there

exists a set of meta-semantic types {B 1 , B2, ..., BO} (k > 2) in metaschema M2 such that

Gm, (A) = U!L i Gm2 (B i ), then the set {B1, B2, ..., BO} is called a refinement of A. 0

As an example, the meta-semantic type ACTIVITY in the lexical metaschema rep-

resents a semantic-type group containing 15 semantic types. These 15 semantic types

are split into four semantic-type groups represented by ACTIVITY, BEHAVIOR, HEALTH

CARE ACTIVITY, and RESEARCH ACTIVITY in the consensus metaschema. Therefore,

{ACTIVITY, BEHAVIOR, HEALTH CARE ACTIVITY, RESEARCH ACTIVITY} in the con-

sensus metaschema is a refinement of ACTIVITY in the lexical metaschema.

Table 5.10 shows the cases of refinement from the lexical metaschema to the con-

sensus metaschema. The size of a meta-semantic type is displayed in parentheses following

the name. This kind of refinement covers 38 semantic types.
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Aable 5.10 Refinements in Consensus Metaschema

Meta-semantic type in
lexical metaschema Refinement in the consensus metaschema

ACTIVITY (15) {ACTIVITY (6), BEHAVI0R (3), HEALTH CARE ACTIV-
ITY (4), RESEARCH ACTIVITY (2)1

‘PHYSICAL OBJECT (6) {PHYSICAL OBJECT (1), MANUFACTURED OBJECT
(5 )/

ORGANISM (17) {ORGANISM (15), PLANT (2)1

Aable 5.11 Refinements in Lexical Metaschema

Meta-semantic type in
consensus metaschema Refinement in the lexical metaschema

ORGANIC CHEMICAL (8) {ORGANIC CHEMICAL (5), LIPID (3)1

SPATIAL CONCEPT (8) {SPATIAL C0NCEPT (4), MOLECULAR SEQUENCE
(4)1

On the other hand, there are also some refinements in the other direction from

consensus metaschema to lexical metaschema. For example, {ORGANIC CHEMICAL,

LIPID} in the lexical metaschema is a refinement of ORGANIC CHEMICAL in the con-

sensus metaschema. Table 5.11 shows all such refinement cases. This kind of refinement

covers 16 semantic types.

Note that if there is a refinement case, then there is always a meta-semantic type

in one metaschema that is similar to one of the meta-semantic types in the refinement.

For example, {ORGANIC CHEMICAL, LIPID} in the lexical metaschema is a refinement

of ORGANIC CHEMICAL in the consensus metaschema, where the ORGANIC CHEMICAL

meta-semantic types in both metaschemas are similar. However, not every case of similar

meta-semantic types is a refinement. For example, ENTITY and PHEN0MEN0N 0R PRO-

CESS are both cases of similarity, but they do not have refinements. The total number of
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semantic types covered by refinements in either direction is 54 (about 40%).

Besides the identical meta-semantic types, the similar meta-semantic types, and

the meta-semantic types appearing in refinements, there are two meta-semantic types that

appear exclusively in the lexical metaschema; these are PHYSIOL0GIC FUNCTION and

ORGANISM ATTRIBUTE. There are also four meta-semantic types that appear exclusively

in the consensus metaschema; these are BI0LOGIC FUNCTION, CONCEPTUAL ENTITY,

INTELLECTUAL PR0DUCT, and GROUP.

If, as in the previous section, only the meta-semantic type names and not the un-

derlying semantic-type groups are considered, then 17 out of the 21 meta-semantic types

in the lexical metaschema also appear in the consensus metaschema (about 81%). At the

same time, the semantic types covered by identical meta-semantic types and refinements

together are 107 (about 79%). Both measures show the high similarity between the two

metaschemas. In other words, the lexical metaschema provides a good approximation

for a partition of meaningful subject areas in the SN, when compared to the consensus

metaschema capturing the aggregation of a simple majority of the human experts' opin-

ions.

5.5 Summary

In this chapter, the lexical metaschema derived via an algorithmic lexical partitioning ap-

proach is presented. A sequence of cumulative metaschemas are also built as aggregations

of the opinions of eleven UMLS experts participating in an evaluation study. Of partic-

ular interest is the consensus metaschema representing a simple majority aggregation of
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the experts' opinions. The cumulative metaschemas is used to evaluate the quality of the

lexical metaschema. From the evaluation, it can be concluded that the result of the lexical

algorithmic approach was similar to the consensus metaschema, within the limits of the

experiment. It is interesting to note that among all cumulative metaschemas, the lexical

metaschema is closest to the consensus metaschema. Note that this is a coincidental result.

It is not always expected.

A metaschema is a compact, abstract view of the SN. Various metaschemas are

possible. In previous work [49], the cohesive metaschema derived according to purely

structural considerations is presented. In that metaschema, each meta-semantic type rep-

resented a group of semantic types with the same (or almost the same) relationships. A

natural question is: which of these three metaschemas, cohesive, lexical, or consensus, is

better than the others in supporting user orientation to the SN? To answer this question, it

is needed to find a way to measure the overall quality of a given metaschema. As can be

expected, each metaschema has its advantages and disadvantages. This observation leads

to a natural question: is it possible to construct a metaschema that incorporates the "good

parts" of each of the above metaschemas while avoiding their pitfalls? These issues will be

addressed in future research.



CHAPAER 6

CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

In this dissertation, the UMLS's Semantic Network (SN) hierarchy was enhanced from a

two-tree structure to a DAG structure by adding new IS-A links and new semantic types

to accommodate multiple parents. The resulting Enriched Semantic Network contains 139

semantic types and 150 IS-A relationships. The ESN contains cases of multiple subsump-

tion for several semantic types. The semantic relationship distribution in the ESN is more

complex than that of the SN due to the new multiple-parent IS-A hierarchy. In this ar-

rangement, relationships can be inherited from more than one source. The relationship

distribution of the ESN was derived based on that of the SN. The ESN consists of a total

of 7,303 semantic relationships. The concept configuration of the ESN was derived from

that of the SN through a mapping function that prevents any redundant categorizations.

The function ensured that a concept is only assigned to the most specialized semantic types

that are appropriate. The resulting concept configuration of the ESN in total has 1,013,876

concept assignments with an average of 7,294 per semantic type, 26,950 fewer assignments

than that of the SN. Compared to the SN, the ESN serves as an extended and more refined

abstraction of the UMLS's META.

During the enrichment of the SN, a connected partition of the ESN comprising 19

groups was derived; each group in the partition exhibits connectivity and semantic unifor-

mity. The previously developed metaschema notion was extended to be applicable for a

network with a DAG structure such as the ESN. Based on this new partition, a "qualified
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metaschema" was derived as a higher-level abstraction of the ESN. Additionally, a "cohe-

sive metaschema" of the ESN was also derived from a partition in which semantic types

with the same relationship structure were grouped together. The two metaschemas and their

underlying partitions were compared. Each metaschema can be used as a compact abstract

layer of the ESN to help in its comprehension.

Besides the metaschemas for the ESN, a new lexical partitioning technique was in-

troduced for the SN. In this partition, semantic types that are lexically related were grouped

in the same semantic-type group. Based on this lexical partition, the lexical metaschema

of the SN was derived. A sequence of cumulative metaschemas were built as aggregations

of the opinions of eleven UMLS experts participating in an evaluation study. Of particu-

lar interest is the consensus metaschema representing a simple majority aggregation of the

experts' opinions. The cumulative metaschemas was used to evaluate the quality of the

lexical metaschema. From the evaluation, it comes the conclusion that the result of the

lexical algorithmic approach was similar to the consensus metaschema, within the limits of

the experiment.

Applications of metaschemas that can help user orientation were described in this

dissertation. A metaschema can be used to provide a user with a partial graph of the SN

containing a specific subject area that is of interest to him. A metaschema is also helpful

in studying the relationships existing between two different subject areas. Moreover, a

metaschema can help in detecting the UMLS's concept categorization errors.
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6.2 Future Work

In this dissertation, two methodologies were presented to enrich the SN from a two-tree

structure to a DAG structure. Two possible research issues arise as a result. The first issue

is: Are there any other methods to identify extra valid IS-A links omitted in the SN? The

second issue is: How do we use quantitative methods to prove that the ESN is better than

the SN in capturing and modeling medical knowledge more accurately? This dissertation

showed that the ESN is an extension of the SN in capturing and modeling current medical

knowledge. But there is no quantitative method developed for this evaluation.

Another important future work is to study new partitioning technique for the SN

or the ESN. As a result, several different metaschemas will be derived. It is important to

develop an efficient evaluation measurement to evaluate the quality of each metaschema.

In this dissertation, primary statistical techniques were used for metaschema evaluation. Is

it possible to develop more advanced evaluation techniques?

As was mentioned in this dissertation, a metaschema is a compact, abstract view

of the SN. Various metaschemas were derived for the SN or the ESN based on different

partitioning techniques. As expected, each metaschema has its advantages and disadvan-

tages. Another promising future study is to construct a consolidated metaschema (or "ideal

metaschema") that incorporates the "good parts" of each metaschema while avoiding their

pitfalls. Hence, it is necessary to define the criteria which a metaschema needs to satisfy in

order to be an "ideal metaschema." With the consolidated metaschema, it is possible to de-

fine the distance between each algorithmic metaschema and the consolidated metaschema

and use the distance as an measurement to evaluate a metaschema's quality.
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