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ABSTRACT

BORON AND PHOSPHORUS IMPLANTATION INTO (100) GERMANIUM:
MODELING AND INVESTIGATION OF DOPANT ANNEALING BEHAVIOR

by
Yong Seok Suh

Germanium is increasingly being considered at this time for future silicon compatible

optoelectronic and complementary metal oxide semiconductor (CMOS) device

application. Germanium implantation will be a critical process for future device

fabrication. However, critical properties like Pearson parameters and dopant activation

temperatures are not well established. In this study, boron and phosphorus were

implanted into (100) germanium with energies ranging from 20 to 320 keV and doses of

5x10 13 to 5x 1016 cm-2. The behavior of the boron and phosphorus before and after

annealing for 3 hours at 400, 600 or 800°C in ultra high purity nitrogen were

characterized using secondary ion mass spectrometry (SIMS), spreading resistance

profiling (SRP) measurements, Hall Effect measurement, X-ray diffraction (XRD)

measurement, and Rutherford backscattering spectrometry (RBS). A predictive model

for the implanted dopant distribution's dependence on energy was developed using

the experimentally determined implant moments combined with Pearson distributions

and the post-annealing electrical, structural and diffusion behavior was characterized.

Results from numeric simulation and analytic calculations using Lindard-Scharff-Schiott

(LSS) theory are presented to offer insight into the physics of the pre-annealed implanted

dopant distributions.
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CHAPTER 1

INTRODUCTION

1.1 Motivation of the Research

Interest in germanium has been renewed because of recent process advances, such as

progress in low defect density Si i_„Ge,, heteroepitaxy on silicon h1] and the development

of new high-k gate dielectrics for germanium based metal oxide semiconductor field

effect transistors (MOSFET) h2]. The progress in these areas has resulted in significant

efforts to develop germanium on silicon or germanium on insulator (Ge0I)

communication wavelength photodetectors and high mobility FETs h3-5].

Ion implantation and dopant activation are crucial steps for the fabrication of these device

structures. However, critical modeling, for which modeling parameters typically

available for silicon fabrication (e.g. Pearson's implant parameters, accurate diffusivities,

and solid solubilities) are either not reliable h6, 7] or are not available for germanium.

Therefore, it is necessary to establish these experimental parameters.

1.2 Renewed Interest in Germanium

Germanium, which was discovered by Winkler in 1886 h8], and which was the material

used for the first transistor h9] in 1947, is a gray-white semiconductor material. Several

material properties of germanium like a suitable band gap (0.67 eV), high absorption

coefficients at the wavelengths of interest (1.3 and 1.55 	 [10]), Figure 1.1, and high

hole mobility make it a superior choice for fabrication of detectors and transistors to

silicon. Some critical properties of germanium and silicon h11-15] are shown in

1



2

Table 1.1. Historically, however, the lack of a stable oxide on germanium (germanium

oxide (Ge02) is water-soluble and dissociates at 800°C h16]) as well as the inability to

epitaxially grow thick layers of germanium on silicon, has made it difficult to integrate

germanium into mainstream silicon based complementary metal oxide semiconductor

(CMOS) technologies.

Figure 1.1 Optical absorption coefficients vs. wavelength for the selected
semiconductor materials h17].



Table 1.1 Properties of Germanium and Silicon at Room Temperature

3

The lattice structure of germanium is the diamond configuration, which is the

same as silicon, but the lattice constant of germanium is 5.657 A, which is 4.2% greater

than that of silicon (Table 1.1).

The electron and hole mobility in germanium is three times as high as that in

silicon. For this reason, germanium is attracting attention in the field of silicon based

high-frequency devices. The carrier mobility (p) is related with the effective mass (m *)

of the respective carrier in Equation (1.1):

The effective mass is inversely proportional to the curvature of band in the relationship
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between energy (E) and wave vector (k), as described in Equation (1.2) and Figure 1.2

h18-20]:

Figure 1.2 Schematic diagram for energy band vs. wave vector for germanium h19].

In Table 1.2, the known values for the effective masses for germanium and silicon

are shown. The effective masses of germanium are smaller than those of silicon. Thus,

according to Equation (1.1), the carrier mobility of germanium is higher than that of

silicon. To get the conductivity effective mass (mri *) for electrons, Equation (1.3) is used:

where ml and mt are the longitudinal and transverse effective mass, respectively h18].



Table 1.2 Effective Masses for Electron and Hole at Room Temperature h12]

5

1.3 Recent Advances in Process Technologies for Germanium

As mentioned in Section 1.2, germanium does not have a stable oxide, which is a major

problem for the fabrication of semiconductor devices. Recant technologies in the

fabrication of a thin high-permittivity (k) gate dielectric material, such as zirconium

oxide (Zr02) or germanium oxynitride (GeON) for germanium have been presented

h2, 4]. For example, Chui, et al. successfully developed germanium MOSFET having

a Zr02 gate dielectric with an equivalent oxide thickness (EOT) of 6-10 A, which showed

relatively good MOSFET I-Ys with high mobilities [2].

In optical communication, 1.3 and 1.55 um wavelengths are preferred because of

the low attenuation in the fiber. Germanium is a good candidate because of a high

absorption coefficient in this wavelength range as shown in Figure 1.1. Recently,

germanium optoelectronic devices have been explored in the hope of developing

a communication wavelength silicon compatible technology that would be low cost h21].

The mismatch of lattice constants between germanium and silicon, however, has been
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a challenge because the mismatch can make defects and degrade the performance of

devices. Recently, low defect density germanium epitaxially deposited on silicon

substrate has been achieved by a number of groups using graded buffer layer (Figure 1.3).

Using these relaxed graded buffer layers, photodetectors for communication wavelength

application were demonstrated h1] .



CHAPTER 2

REVIEW OF LITERATURE

2.1 Ion Stopping Theory

When an energetic ion moves through a solid, the kinetic energy of the ion is transferred

to the lattice through the coulombic interaction in nuclear collisions with the lattice nuclei

and with the electrons around the lattice atoms. The energy loss per unit length due to

nuclear collisions is called the nuclear stopping power S„ (E), and the electronic stopping

power S e(E) for electrons. The total distance of ion traveled in target is the range (R);

the penetration depth of the implanted ion along the implantation direction is known as

the projected range (Rp), as in Figure 2.1.

Figure 2.1 Description of the ion range, R, and projected range, Rp .

7



where b is the energy of the ion at a point x along its path, and N is the atomic density.

The negative sign means that the energy is decreased with depth due to the collision and

the coulombic interaction. Thus, the total range, which ion travels, can be obtained by

integrating Equation (2.1) with respect to energy, Equation (2.2) [13, 16, 22]:

2.1.1 Stopping Powers based on LSS theory

As mentioned above, the total range is strongly related with the nuclear and electronic

stopping power. Basically, nuclear stopping can be imagined by a collision between

two atoms as shown in Figure 2.2 h23].

Figure 2.2 Schematic diagram before a collision between two atoms.
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The nuclear stopping power can be obtained from a transferred energy (T) during

a collision, considering the conservation of energy and momentum h23]:

where M1 and M2 are the masses of the projectile and the target atom, respectively.

In Equation (2.3), da is the differential cross section, which is equal to 27tpdp. Here, p is

the impact parameter. In Equation (2.4), Cc  is the scattering angle in Figure 2.3, which is

defined by Equation (2.5) [22, 24].

Figure 2.3 Schematic diagram after a collision between two atoms.



where p is the impact parameter, rn,,„ the minimum distance of approach, and E r

the energy in the center of mass system equal to (M2E)/(M1+M2). V(r) is the interatomic

potential function with a screening function:

where a is the screening parameter given by the Thomas-Fermi value, Bo is the Bohr

radius (= 0.529 A), and C is the fitting constant (-13 ). If Equation (2.7) is chosen for

calculation, the standard stopping power (S„ °) is obtained h22].
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The electronic stopping power (S e) can be treated as a projectile in a viscous

medium such as a free electron gas, which can be defined by h13]:

where CNSE is electronic stopping constant (keY I-P/micron), and p varies from 0.4 to 0.58.

For light ions from boron to neon, an empirical formula, presented by Northcliffe and

Schilling, can be used:

where ENS is the Northcliffe constant. The following table shows some defined constants

for boron or phosphorus in germanium h13], and the calculated energy losses, NS(E), are

shown in Figure 2.4 (a) and (b) for boron and phosphorus implant into germanium and

silicon, respectively.
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Figure 2.4 Nuclear and electronic energy loss vs. energies for (a) boron and (b)
phosphorus in germanium and silicon, calculated from LSS theory.
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Due to the collision between the projectiles and the target, the trajectory is not

a straight line, as shown in Figure 2.1. Thus, a second parameter called the projected

range, Rp, is approximately given by h25]:

Gibbons et al. calculated the nuclear and electronic stopping power as well as

the projected range and straggle using the above calculations and experimental

corrections h13]. In this study, these calculated values were used to better understand

the phenomenon of ion implantation and compare with our experimental data.

2.1.2 Monte-Carlo based SRIM

SRIM h26] based on Monte-Carlo calculation, which is abbreviated from the Stopping

and Range of Ion in Matter, is a free program to simulate the implanted profiles.

However, the limitation of this program is that the target material is assumed as

amorphous, which results in the inability to predict the "channeling effects," usually

observed in implantation into the crystalline. In spite of this limitation, it is useful in

distinguishing which component of the resulting implant profiles were due to channeling

in this study.

The basic idea of Monte-Carlo calculation is the simulation of the history of

a projectile through its successive collisions with target atoms h27]. The result is based

upon the summation of these scattering events occurring along a large number of

simulated particle trajectories within the target. The particle, which is initially possessed

of a given energy, position, and direction, is assumed to change direction due to binary

nuclear collisions and to move in straight paths between collisions.



(a)
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Figure 2.5 SRIM simulation: (a) ion trajectories of 180 boron ions (b) ion ranges of
99,999 boron ions implanted into amorphous germanium at 60 keY.
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Figure 2.5 shows a two-dimensional scatter plot for the simulation of 180 boron

ions implanted into germanium at 60 keV and the projectile distribution after

99,999 counts with 7° tilt. The implanted ions come to rest as a result of nuclear and

electronic energy loss as mentioned in previous section. However, the screening function

of interatomic potential used in LSS theory is not accurate at low energies, Figure 2.6

h28]. Thus, due to the unrealistic long tail of charge of the Thomas-Fermi adopted

potential, the resulted projected ranges would be deviated at the lowest energies. Instead

of Thomas-Fermi potential, the simulations in this work use universal screening potential

defined as:

where x is (c/a), and a is defined by Equation (2.9).
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The nuclear stopping power using Equation (2.16) is shown in Equation (2.17).

The reduced energy and nuclear stopping power are also shown in Equation (2.18) and

(2.19) h28]:

In the case of 140 keY boron implant into germanium, the reduced energy is 6.74, and

3.72 for 320 keY phosphorus implant into germanium. Thus, the energy loss (NS„) of

LSS theory is 16% greater than that calculated from Equation (2.17) for 60 keV

phosphorus implant into germanium. This difference is reduced as the energy increases.

The damage induced implantation can be roughly predicted from the SRIM

simulation. Figure 2.7 shows the result of simulation for the collision events. From

the simulation, the amorphization of germanium would be expected for 5x10 16 cm-2

boron (at 60 keV), and 5x1016 cm2 and 5x 10 16 cm2 phosphorus (at 170 keV). In this

study, all simulations were carried out using 99,999 counts and a 7° tilt with

the assumption of amorphous germanium.



Figure 2.7 SRIM simulation of the collision events for phosphorus implant into
germanium at 170 keV, which was carried out 99,999 counts.

2.2 Channeling

Channeling describes the phenomena of implanted ions passing relatively unimpeded in

particular crystal directions for which the atoms of the lattice form "channels," see

Figure 2.8. In standard device fabrication, channeling is considered undesirable because

it tends to increase the junction depth. Shallow junction depths currently represent

an increasingly challenging hurdle to future scaling of MOSFETs.
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Channeling can be analytically characterized by a critical angle W1 that is

maximum angle between ion and channel for a glancing collision to be possible, in

Figure 2.9 h23, 29]:

where d is the atomic spacing along the ion direction (A), E is the ion energy (keY).

A stable channeled trajectory requires multiple glancing collisions. The angular

half-width Wi12 is given as h23, 29]:

where a is the screening length (see Equation (2.9)). Table 2.2 shows the critical angle

and the angular half-width for silicon and germanium with selected energies. These

calculations indicate an expected increase in the acceptance angle for channeling in

the case of germanium compared to silicon for the same species and implant energies.

The number of channeled dopant atoms is therefore expected to be greater in the case of

germanium than silicon for the same implant conditions. It will be shown, however, that

implant distributions into germanium typically show a less pronounced tail than in silicon.

Finally, it is common to tilt the substrate by 7°, so that the lattice presents a denser

orientation to the incident beam, for implantation into silicon and germanium to reduce

the channeling effect.



Table 2.2 Calculation of y 1 and W 1 ,2 for Born and Phosphorus Implanted into
Germanium and Silicon
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Figure 2.10 and 2.11 show three-dimension view along <100> germanium and

tilted 7° with respect to <100> direction. Open channels offer ion implanted atoms a low

scattering path, however, these are reduced when the crystal is tilted 7°.
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2.3 Analytical Modeling Method

The analytical method is basically an empirical method. There are several distribution

functions to present the implanted profiles, such as the simple Gaussian, the joined half

Gaussian, the Edgeworth distribution, the Pearson distributions, and so on. However, it is

well known that Pearson distribution is easier and more accurate than others, especially

channeling occurs during the implantation into crystal materials. Sometimes, for

the purpose of a more accurate description in the tail region, the dual Pearson distribution

can be used.

2.3.1 Distribution Functions

The Gaussian distribution is a first approximation, which is characterized by

two moments: the projected range and the straggle. This distribution was used in

LSS theory, and is symmetric so it does not satisfactorily fit experimental data, which are

characterized by asymmetrical profiles even if the target is amorphous. Thus,

to overcome the limitation of the Gaussian distribution, the modified distributions,

such as the joined half Gaussian h30] and the Edgeworth distribution h31], were adopted.

However, the joined half Gaussian use only three moments, and the Edgeworth

distribution required the knowledge of higher-order moments. Thus, among

the analytical modeling methods, the Pearson distribution is probably the best choice for

more accuracy and convenience.
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2.3.2 Pearson Distribution

One of the advantages of ion-implantation is that the distribution of implanted ions in

the substrate can be modeled and predicted. In order to describe the implant profiles,

the first four moments were calculated for both the boron and phosphorus SIMS profiles

in germanium and silicon. The first four moments are commonly called the projected

range (the first moment), straggle (the second moment), skewness (the third moment),

and kurtosis (the fourth moment) h23]. The projected range can be explained as

the average depth of the implanted ions. However, the projected range does not describe

the shape of the profile. The straggle is the width of the distribution, and it indicates

the statistical fluctuations of the depths of the implanted ions. The skewness measures

the asymmetry of the distribution. For example, if the skewness is negative,

the distribution falls off toward the surface more smoothly and decreases rapidly on

the other side of the distribution peak. The opposite behavior occurs for a positive value.

The kurtosis describes the extent of the tail for any distribution, and also indicates how

flat the top of a distribution is. A distribution with a high value for kurtosis will be

sharply peaked with a long exponential tail h23, 32]. Figure 2.12 shows graphically

the effect of the skewness and kurtosis on the distribution.
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Figure 2.12 Schematic illustration of the skewness and kurtosis.

The projected range, Rp can be obtained from Equation (2.22), where x is the

depth normal to the surface in unit of cm, and f(x) is the concentration of dopant at x in

atoms/cm3 . The denominator of Equation (2.22) equals to the dose (4)) of the implanted

ions in atoms/cm2 h33]:
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The family of thirteen Pearson distributions (including the Gaussian distribution)

is frequently used to fit and simulate dopant implants. The differential Equation, which

describes the Pearson distribution, is h23]:

The different Pearson types (from I to XII and Gaussian) is due to the nature of the roots

of the Equation, boa + biy + b2y2 = 0. For example, common distributions are described

by the following: Gaussian (b1 = b2 = 0) and Pearson IY (0 <b12/4b0b2 < 1). The typical

conditions for determination of Pearson distribution type are shown in Table 2.3.

The resulting expression for Pearson I, IY and VI are the following Equations (2.27-29)

h33]:



Table 2.3 The Different Pearson Types and Gaussian Distribution with Conditions
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The program for the calculation of the first four moments and the determination

of the Pearson types using Mathematica software is shown in Appendix.



CHAPTER 3

EXPERIMENTAL METHODOLOGY

3.1 Description of Samples

In experiments, n- and p-type (100) germanium, and n- and p-type (100) silicon wafers

were used as substrates. The n-type germanium was nominally doped with 2x10 16 cm"3

antimony (Sb) (0.04-0.4 ohm-cm), and the p-type germanium substrate was nominally

doped with 1 x10 18 cm"3 Gallium (Ga) (0.005-30.0 ohm-cm), see Table 3.1.

All germanium wafers were single sided chemomechanically polished, and had

dislocation densities that were less than 5000 cm -2 .
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3.2 Process of Ion Implantation

Ion Implantation is a common method for doping semiconductors. The most important

advantages over more simple techniques such as driven-in diffusion are (1) the ability to

introduce nearly any kind dopant into the substrate with precise control of the dopant

location, and (2) the ability to model and therefore predict the dopant location as well as

the distribution. The implanted dose (4) in cm -2) is precisely controlled by beam current

(I in ampere), and implantation duration (t in second):

where A is the area of target in cm2 , and q is the charge per ion (= 1.602x10 "19 C) h16].

In this study, germanium and silicon substrates were implanted with 31 13+ or 11 B+,

while tilted 7° away from the beam axis, which was expected to reduce channeling.

In this condition, the crystal surface seems to be much more densely packed with atoms

and the channels are much less pronounced h22], as shown in Figure 2.10 and 2.11.

The ion source gases were PF 6 or BF3 for 31 13+ or 11 B+, respectively, and YARIAN CF4 or

YARIAN A2F-200 was used for phosphorus or boron ion implant, respectively. Implant

energies for boron or phosphorus ranged from 20 to 320 keY. Ion doses ranged from

5x10 13 to 5x 1 016 cm-2 for both boron and phosphorus, as listed in Table 3.2.



Table 3.2 Conditions of Ion Implantation into (100) Germanium and Silicon wafers
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3.3 Process of Activation Annealing

After ion implantation, dopant annealing is necessary for the electrical activation of

the implanted ions. To examine the dopant activation in germanium, the samples were

subsequently cleaved and annealed for 3 hours at either 400, 600 or 800°C in ultra high

purity N2 (02 < 2ppm and H20 < 1 ppm). As shown in Figure 3.1, the annealing system

consists of three main parts: gas delivery, furnace and exhaust system. In gas delivery

system, conventional mass flow controllers were used to monitor and control a 100 sccm

flow rate of nitrogen. A MKS Baratron gauge with a 1000 Corr range was used to

monitor the pressure in the chamber. The chamber is made of a fused quartz tube, and
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inserted into a Lindbergh three-zone furnace with operation temperatures up to 1200°C.

Plantinel II thermocouples (type F) were connected to the furnace, and were used to sense

and control the temperature. The chamber was sealed at both openings by end caps and

0-rings. Water was allowed to circulate around the end caps to keep avoiding thermal

expansion of the 0-rings, which can cause leakage in the system. The pressure was kept

constant by a control valve.

Figure 3.1 Schematic of the annealing system.
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The calibration of flow rate and temperature were carried out before annealing

process. The readout on the mass flow controller needs to be calibrated before

experiment. The following Equation (3.2) shows how to calculate the flow rate in sccm:

where dVIdt is the flow rate of gas in sccm, V, is the volume of the chamber

(-1.8x 104 cm3), T is the measured chamber temperature in Eelvin, and dP/dt is the rate of

pressure increase. For measurement of the rate of pressure increase, first, the chamber

was evacuated for several hours. Then, N2 gas is allowed to flow in the chamber. When

the pressure is stable, the outlet valve of the chamber was closed, and the pressure change

with time was measured.

The thermocouple was positioned outside of chamber, so it is important to

measure the difference of temperatures between outside and inside chamber.

The temperature is controlled by manual settings of the oven controls. The E-type

thermocouple was inserted in the desired position, on which the sample should be placed.

The temperature inside the chamber was then measured under the nitrogen flow.

Annealing at a higher temperature to improve dopant activation, 800°C for

3 hours, resulted in substantial roughening of the surface, perhaps due to the evaporation

of germanium h34]. In Figure 3.2, the degradation of the surface is shown as viewed with

a microscope after 800°C annealing. The surface after 600°C annealing is also shown.



0.02 mm(b)
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Figure 3.2 Effect of annealing at high temperature: 60 keV, lx10 15 cm-2 boron
implantation into germanium with annealing temperature of (a) 600°C and (b) 800°C for

3 hours in N2 (60x 10 magnification).



CHAPTER 4

CHARACTERIZATION METHODS

4.1 Secondary Ion Mass Spectrometry (SIMS)

Secondary ion mass spectrometry (SIMS) is a very powerful analytical technique for

the characterization of surface and near surface chemical profiles, and it is ideal for

characterization of dopants in semiconductor materials. A beam of energetic primary

ions impinges onto the sample surface, and the ions in the sample surface are sputtered

off. The ions that are sputtered off are called secondary ions, and these ions are detected

by a mass spectrometer, Figure 4.1.

Figure 4.1 Schematic diagram of the sputtering process h35].
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The primary beam can be 02 +, Cs+ , Gad+, and so on. 02+ is typically used for

the detection of electropositive species, Cs + for electronegative, and Gad+ for improved

lateral resolution. In this study, after implantation, substrates were cleaved into samples

and each sample was measured using SIMS, which was performed with a PHI

Quadrupole SIMS instrument using a primary beam with 3.0 keY 02+ or 4.0 keY Cs+ for

boron or phosphorus, respectively, in Table 4.1. Quantitative data were obtained by

counting the number of secondary ions of a given species as a function of sputter time.

Then, the crater depth was measured using standard profilometry. The concentration as

a function of depth was then determined using sputter rate for translating time to depth.

Typically a calibration factor called the relative sensitivity factor (RSF) is used to

translate ion count to concentration h36]:

where Cif is the concentration of the impurity, and RSF is the relative sensitivity factor,

which is a function of the impurity of interest and the sample matrix. I is the secondary

ion intensity for impurity (i) or matrix (m), respectively.
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The accuracy of the depth calibration should be within ±3%, and

the concentration accuracy depends on the accuracy of the reference material estimated to

be within approximately 20-30% in all samples, unless otherwise noted. The detection

limit is the lowest concentration that can be measured for a given element, which is

commonly limited by either the ion yield from the sputtering process or non-intentional

deposition of trace species in the vacuum chamber during the sputtering process.

Detection limits can vary depending on many parameters including matrix, element and

sputtering species. The detection limit of this study for both species in germanium was

approximately lx1015 cm -3 as shown in Table 4.1.

In general, RSF is a constant as long as the element is present as a dilute solute in

the matrix. However, the dependence of ion count on concentration is known to become

nonlinear in some cases when the concentration approaches atomic densities

(e.g. — 5x102° cm"3) h37]. The concentration dependence and accuracy of the SIMS RSFs

were, therefore, examined by comparing measured doses in silicon reference substrates

with that found in the germanium substrates for both species. In the case of the highest

boron dose implants, the total implanted dose detected by SIMS in the germanium was

over twofold greater than in the silicon reference wafers (see Table 5.1). RSFs are

relatively well established for silicon; however, those for germanium are not. Because

the doses measured by SIMS in silicon matched those expected from the implant

conditions but disagreed with those measured in the germanium at high dose,

the germanium profile at high concentration is suspect. The uncertainty in the high boron

dose implant case into germanium (i.e. in the case of 5x10 16 cm-2) is suspect and is

therefore believed to far exceed that of the previously estimated 20% uncertainty.
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The discrepancy of the measured doses in all other germanium cases was, however,

within ±21% of that measured in the silicon for the same implant conditions. This is in

good agreement with the previous estimate of the RSF uncertainty.

Figure 4.2 Example of "knock-on" effect with primary ion beam energies h36].

Another common difficulty with SIMS profiles in new materials, for which

the SIMS sputtering parameters are not well characterized, are artifacts in the trailing

edge due to affects like "knock-on," as shown in Figure 4.2 h23, 36]. Profile artifacts in

SIMS usually result in a limited slope of the trailing edge. This effect produces
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a measured dopant profile that extends much deeper into the substrate than is actually

there. Spreading resistance profiles and SIMS of annealed implant profiles show good

agreement between the locations of the measured junctions and the SIMS profiles

(see Figure 5.14 and 5.16). Furthermore, a trailing edge slope of — 25 nm/decade of

17phosphorus was measured at concentrations as low as 1 x10 cm "3 using the same SIMS

conditions as that used in this work, indicating that the SIMS conditions can resolve

much steeper phosphorus falling edges than are observed in the as-implanted samples

presented in this work. These combined observations indicate that the SIMS profiles

presented in this work do not suffer from grossly exaggerated trailing edges due to SIMS

artifacts like the "knock-on effect."

4.2 Spreading Resistance Profiling (SRP)

Spreading resistance profiling (SCP), which was proposed by Mazur and Dickey h38],

is normally used to determine active doping profiles in semiconductor materials.

Two-probe methods are usually used. This approach uses two probes that make direct

contact, and are moved along a polished bevel as gentle as possible. A known current (I)

is applied between the probes, and the voltage drop (V) is measured across these probes

to get a spreading resistance (CSR ) defined by Ohm's Law (RsR  = Y/I) h16]. Figure 4.3

shows the schematic diagram of spreading resistance profiling for the two-probe method.
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Figure 4.3 Schematic diagram of spreading resistance profiling.

The spreading resistance can be converted to the resistivity (p) by the following

Equation for the two-point probe system:

where a is an empirical quantity which is related to the effective electrical contact radius.

The depth scale is obtained by using bevel angle and step increment. To quantify

the efficiency of dopants to produce free carriers, the resistivity vs. depth profile is

converted to the active carrier concentration vs. depth. The resistivity can be converted

to the active carrier concentration by using Sze & Irvin curves [39, 40] or Equation (4.3)

when the mobility of carrier is known:

where	 is the carrier mobility in cm 2/volts-sec, q is the charge of an electron

(= 1.602x1049 C), and p is the resistivity in ohm-cm. The n and p indicate the electron

and hole, respectively. To determine doping type from SRP measurement, the hot probe
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method is generally used. The conductivity type can be determined by changing

the polarity of the voltage. It is also important to take into account compensation effects,

that is, the charge neutrality due to the background doping for investigating SCP results.

The sheet resistance from the SCP data, which is useful to determine the extent of

activation percentage after annealing treatment, can be obtained by the following

Equation:

where p is the resistivity, and t is the depth of each sub layer h41].

In the SRP measurement for this study, the bevel angles between 0.00676-0.706°

were used leading to ±3% uncertainty in depths, and ±15% uncertainty has been

estimated for the accuracy of the measured resistivity. In addition, the sampling volume

correction adds ±15% uncertainty. The probes were loaded with 3.0 g on the samples.

The SCP calibration for germanium is however not well established compared with

silicon [42, 43]. Thus, the comparison the SRP results with the SIMS data is necessary.

Carrier concentrations (background doping) in the substrate, calculated using the single

crystal mobility, agree very well (i.e. within ±14%) with the dopant concentrations found

in the substrate using SIMS indicating a relatively good calibration of SCP to

the expected active dopants in the substrate.
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4.3 X-ray Diffraction (XRD)

After ion implantation, the lattice is damaged by atoms displaced from their substitutional

sites sometimes so much so as to create an amorphous layer [44]. This induced damage

generates strain in the crystal h45]. To observe the ion implantation induced damage and

the formation of amorphous layers, high-resolution x-ray diffraction (HRXRD) and

Rutherford backscattering spectrometry (CBS), which will be discussed in Section 4.5,

have been used. The implant damage can be removed by subsequent thermal annealing.

Because the diffraction patterns are sensitive to the crystallinity and lattice constant,

XRD is capable of qualitatively indicating the effects of the presence of defects by

the location of the peak and increased diffuse scattering. Thus, x-ray diffraction was also

used to examine the effect of thermal annealing on the structural properties of

the implanted germanium h46].

The basic concept of x-ray diffraction is expressed by Bragg's Law h47].

In the condition of satisfying Bragg's Law, the intensity of diffraction is strong.

To examine the damage in the implanted single crystal materials, the rocking curves are

used. The width of a rocking curve is a direct measurement of the amount of strain

presented in the irradiated area of the crystal h48, 49]. That is, the changes can be

determined from line broadening h50]. The depth of X-ray penetration can be calculated

by the following Equation:
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by the layer of depth x as a fraction of the total integrated intensity diffracted by

a specimen of infinite thickness. Generally, 95 percent of the total would be contributed

in the result of x-ray diffraction h48]. In this study, the linear absorption coefficient of

germanium for copper Ea radiation (A, = 1.54 A) is 361.33 cm"1. The peak for (100)

germanium would appear at 33°. Thus, the depth of x-ray penetration is around 23 1.1m

assuming Ex  is 0.95 (that is, Kx  is 3.00). Thus, the result of x-ray diffraction gave

the information within the depth of 23 inn from surface.

The rocking curves were collected with a high resolution diffractometer, equipped

with a conventional x-ray source (sealed tube with Cu anode), a parabolic mirror, and

a Bartels monochromator (Ge (220)). The role of the mirror is to collect all radiation that

exit from the tube and to convert it in a parallel beam, so to increase the intensity of

the beam. The monochromator is able to suppress unwanted wavelength, so that only

a part of the Cu ICI line of copper spectrum survives. The spectra were collected with

a slit put in front of the detector, to reduce the angular acceptance to 0.25°. The current

was 40 mA, and the applied voltage was 40 kY. The used reflection was (004).
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4.4 Hall Effect Measurement

The SRP data relies on calibration based on data in previously published literature and

known carrier mobility in a sample h39]. It is necessary that the actual mobility of the

sample be measured to account for effects of radiation damages. The Hall effect

measurement is an indispensable technique for the simultaneous determination of carrier

density and mobility of carriers in semiconductors. The principle of the Hall effect

measurement is demonstrated in Figure 4.4 h51].

Figure 4.4 The principle of Hall effect measurement.

When a constant current (I x) flows along the x-direction, and while applying

simultaneously a magnetic field (B r) in z-direction, electrons for n-type semiconductor

(hole for p-type) move toward the negative y-direction, resulting in an excess surface

electrical charge (i.e. due to the Lorentz force [52]) on the sides of the sample.
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A resulting voltage is produced called the Hall voltage, YH, as shown in Figure 4.4.

This YH can be expressed by Equation (4.6), where I, is the current, 13, is the magnetic

field, d is the effective sample thickness, no is the carrier density, and q (= 1.602x10 "19 C)

is the elementary charge (Note that the sign is negative for electrons and positive for

holes):

Finally, as a rapid measure of the total resistivity of surface, 4-point probe techniques are

employed to measure the "sheet" resistance. The sheet resistance C s can be determined

by a van der Pauw resistivity measurement technique. In this technique, a dc current (I)

is applied to contact 1 and out of contact 2, and the voltage Y43 from contact 4 to

contact 3 is measured. Next, the current flows into contact 2 and out of contact 3, and

the voltage V14 from contact 1 to contact 4 is measured. Then, RA, RB, and Cs can be

calculated by means of the following Equation:
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Unfortunately, Hall effect measurement was not successfully conducted in this

study. It might be due to the leakage current between the implanted and the unimplanted

region in germanium, which might have resulted from the relatively high background

doping, the narrow bandgap, and the damage during implantation.

4.5 Rutherford Backscattering Spectrometry (RBS)

Cutherford backscattering spectrometry (CBS) is commonly used to evaluate the impurity

distribution and the crystal damages. The 2 MeV He was used as a projectile to obtain

RBS spectrum. The intensity of the final backscattered primary projectile is recorded as

a function of the final energy of the primary ions. The final energy (E f) is related with

mass of the target and the scattering angle (0) [47]:

where Mob and E0 are mass and energy of an incident ion, and M is mass of the target.

CBS can detect and measure the thickness of an amorphous layer on a single

crystal of the same material by means of the difference in the backscattered ion intensity

between a channeling and a random direction. An ion beam that penetrates a single

crystal in an "open" direction will channel deep into the crystal and therefore only

a relatively small fraction will be backscattered. However, in an amorphous layer, an ion

beam impinges in a "random" crystal direction, the intensity of the backscattered ions

will be larger h53] as shown in Figure 4.5.
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Figure 4.5 Detection of an amorphous layer with CBS. (a) Ion beam penetrating
crystal in "open" direction; (b) corresponding spectrum of channel and random; (c) ion
beam scattered from amorphous layer; (d) corresponding spectrum h53].



CHAPTER 5

RESULTS AND DISCUSSION

5.1 Observation of Dopants Implanted into Germanium

Boron and phosphorus implanted into germanium were measured by secondary ion mass

spectrometry (SIMS), high resolution x-ray diffraction (HCXRD), and Rutherford

backscattering spectrometry (RBS) to examine distribution of dopants and induced

damage in the substrate. Implants with the same dose and different energies were chosen

to study the variation of the dopant distribution with increasing energy, and implant with

increasing dose were chosen to examine the effects of increasing amorphization due to

increasing radiation damage, which are separately discussed in Section 5.3. The

increasing amorphization can reduce the channeling component as the crystal structure of

substrate changes from the crystalline to the amorphous state h44]. The doses and

energies used to study the energy dependence of the profiles are believed to be below

the threshold to form an amorphous layer, which is supported by SRIM simulations as

well as the RBS spectra. The initial discussion and modeling focus on the profile

dependence on energy in the non-amorphous regime of implantation. Modeling of

the effects of amorphization is more complex and comments on this are left to the end of

Chapter 5.

47



48

5.1.1 Observation of Dopant Distribution by SIMS

In Figure 5.1, as-implanted dopant profiles are shown with different doses and energies.

The peak of distributions increased with increasing dose, and at higher energy the peak of

distribution was observed deeper in the substrate. In Figure 5.2, as implanted dopant

profiles in silicon were also shown with the same implant parameters as the case of

germanium.
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Figure 5.1 SIMS data of (a) boron and (b) phosphorus implanted into germanium with
various doses and energies.
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Figure 5.2 SIMS data of (a) boron and (b) phosphorus implanted into silicon with
various doses and energies.



51

As shown in Figure 5.1 (a) and Table 5.1, in the case of the highest boron dose

implants, the total implanted dose detected by SIMS in the germanium was over twofold

greater than in the silicon witness wafers. This is, as mentioned in Chapter 4, due to the

inaccuracy of SIMS CSF for germanium.
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5.1.2 Modeling by Pearson Distribution

The Pearson distribution requires knowledge of the first four moments, which are

the projected range (the first moment, Rp), straggle (the second moment, a p), skewness

(the third moment, y), and kurtosis (the fourth moment, (3), and from these four moments

the appropriate one of twelve Pearson distributions can be chosen h33]. These four

moments were, therefore, calculated from the SIMS data using Equations (2.22-25). In

this calculation, the low concentrations of SIMS data, which would be the noise of

the measurement, were subtracted from the measured profile in order to make more

accurate calculations of the moments (e.g. below ~ lx10 16 cm 3).

The moments of the boron and phosphorus implants can also be predicted either

using the LSS theory or by a standard Monte-Carlo algorithm such as SRIM-2003 h26].

Two moments for the LSS theory have been previously tabulated for boron and

phosphorus in "Projected Range Statistics" published by J. F. Gibbons, et al. [13], and are

shown in Table 5.3 and 5.4 for boron and phosphorus in germanium and silicon,

respectively. All four moments can also be calculated using SCIM-2003. These

simulations were carried out using 99,999 counts, a 7° tilt and the material properties for

amorphous germanium. Appropriate Pearson types obtained from the relation between

the skewness and kurtosis, were also presented in Table 5.3 and 5.4.



Table 5.3 	 The first Four Moments with Pearson Type for Boron and Phosphorus in Germanium

Dose Energy 	 (pm) 	 cc, (11m) 	 Skewness 0) 	 Kurtosis (A) 	 Pearson

(c "2) (keV) SIMS 	 LSS 	 SCRIM SIMS LSS 	 SRIM SIMS SCRIM SHIMS SRIM Type

Boron implantation into germanium

5x1013

5x10 13

1x1015

5x1016

5x10 13

5x10 13

5x10 13

1x1015

5x1016

54013

20 0.0739 0.0474 0.0573 0.0448 0.0353 0.0284 1.3462 0.2447 6.5157 2.5225

60 0.2024 0.1506 0.1443 0.0988 0.0814 0.0599 0.7731 -0.0876 4.3984 2.4837

60 0.1835 0.1506 0.1443 0.0839 0.0814 0.0599 0.3902 -0.0876 3.4451 2.4837

60 0.1907 0.1506 0.1443 0.0762 0.0814 0.0599 -0.0044 -0.0876 2.5382 2.4837

140 0.3751 0.3573 0.2984 0.1414 0.1404 0.0988 -0.0486 -0.4413 3.0001 2.8781

Phosphorus implantation into germanium

60 0.0672 0.0475 0.0587 0.0387 0.0273 0.0297 1.0984 0.3422 5.2620 2.6966

170 0.1810 0.1369 0.1542 0.0859 0.0626 0.0665 0.4473 0.0217 3.3435 2.5302

170 0.1812 0.1369 0.1542 0.0821 0.0626 0.0665 0.3747 0.0217 3.7043 2.5302

170 0.1773 0.1369 0.1542 0.0920 0.0626 0.0665 0,6568 0.0217 4.2360 2.5302

320 0.2760 0.2627 0.2807 0.1315 0.0995 0.1041 0.3327 -0.2322 2.6793 2.6457



Table 5.4 The first Four Moments with Pearson Type for Boron and Phosphorus in Silicon

Dose Energy	 Rp (pm)	 q (pan)	 Skewness ()	 Kurtosis (A	 Pearson

(cm -2) (keV) SIMS	 LSS	 SCRIM SHIMS LSS SRIM SALVES SCRIM SHIMS SRAM Type

Boron implantation into silicon

5x10 13 20 0.0926 0.0662 0.0790 0.0452 0.0283 0.0315 0.7094 -0.1026 3.4865 2.5898

5x1,0 13 60 0.2449 0.1903 0.2026 0.0864 0.0556 0.0605 0.3413 -0.5063 3.0982 3.1403

1x10 15 60 0.2318 0.1903 0.2026 0.0753 0.0556 0.0605 0.1352 -0.5063 3.4154 3.1403

5x10 16 60 0.2154 0.1903 0.2026 0.0646 0.0556 0.0605 -0.2612 -0.5063 3.2024 3.1403

5x10 13 140 0.4754 0.3974 0.4199 0.1255 0.0813 0.0914 0.0807 -0.8880 3.3491 4.3487

Phosphorus implantation into silicon

5x10 13 60 0.0820 0.0730 0.0843 0.0442 0.0298 0.0331 1.4997 0.0750 7.3159 2.6553

5x10 13 170 0.2430 0.2149 0.2233 0.0964 0.0689 0.0699 0.6266 -0.2716 3.9718 2.8123

lx10 15 170 0.2451 0.2149 0.2233 0.0958 0.0689 0.0699 0.7806 -0.2716 5.1076 2.8123

5x10 16 170 0.2393 0.2149 0.2233 0.0878 0.0689 0.0699 0.3902 -0.2716 4.1551 2.8123

5x1013 320 0.3652 0.4060 0.4067 0.1406 0.1059 0.1055 0.1912 -0.5550 2.7088 3.2894
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The resulted Pearson fits with the experiment data were shown in Figure 5.3 for

the same energy and Figure 5.4 for the same dose. The Pearson distributions were well

fitted to the experimental data. In Figure 5.3, at the highest boron dose case, the Pearson

curve does not fit well the tail of the experimental data. However, as mentioned in

Section 4.1, the SIMS data was suspect in this case.
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Figure 5.3 The SIMS data and the fitted Pearson distribution curves of (a) 60 keY
boron and (b) 170 keY phosphorus implanted into germanium with various doses.
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Figure 5.5 Comparison of SIMS data, Gaussian distribution based on LSS theory, and
SRIM simulation compared to the fitted Pearson distribution curves of (a) 60 keY,
5x1016 cm"2 boron and (b) 170 keY, lx1015 cm"2 phosphorus implanted into germanium.
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As shown in Figure 5.5, the Pearson curves were better fitted with the

experimental data from SIMS compared to both of Gaussian distribution based on LSS

theory and SRIM simulation. It should be noted, however, that both the LSS and SRIM

calculations were done to gain insight about the implants into germanium rather than to

compare to state of the art implant calculations. More complete Monte-Carlo simulation

that calculates channeling contributions, do exist and would be expected to agree better

with the experimental profiles.

5.1.3 Relationship between Moments and Energy

Implants with the same dose and different energies were chosen to study the variation of

the dopant distribution with increasing energy. It has previously been suggested that

the first two moments dependence on energy can be fit relatively well with an empirical

relation A*EB , where A and B are fitting constants, so that Pearson distributions over

the entire implant range may be generated h32]. The unit of energy in the empirical

relation is keV, and the first two moments have the unit of [tam. Relatively good fits to

the SIMS data compared to theoretical predictions were made for both boron and

phosphorus, as shown in Figure 5.6 (a) and (b) respectively. The constants A and B were

calculated to be 0.00786 and 0.783 for boron and 0.00311 and 0.780 for phosphorus.
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The projected range as a function of energy for the LSS, SRIM and SIMS results

for the case of boron and phosphorus implantation in germanium with a dose of

5x10 13 
CM

-2 are presented in Figure 5.6 (a) and (b). The projected range was found to be

as much as 56% and 41% greater than that predicted by LSS theory for boron and

phosphorus at the lower energy, respectively. This difference between the experimental

data and LSS theory is reduced as the energy is increased. The neglect of the channeling

effect in the SRIM simulation and the LSS theory presumably contributes to this

disagreement. In addition, inaccuracy of the Thomas-Fermi adopted potential in the LSS

theory is believed to produce errors for the LSS predictions at low energy h281

The projected ranges were shallower in germanium than in silicon for the same

ion species and energy. Rates of energy loss have been calculated using the LSS theory

for the nuclear and electronic components to better understand this trend and are shown

in Figure 2.4. The rates of energy loss are used to calculate a range (i.e. the total path

length in the lattice), which is a combination of both the depth of penetration and the

lateral excursion of the atom in the lattice. To calculate the projected range (i.e. the first

moment calculated from the SIMS profile), an approximate relationship between the

projected range and the range has been derived for the LSS theory, which accounts for

the scattering angle dependence on incident and target masses h25] as defined in

Equation (2.15).

For phosphorus, according to the LSS theory, both nuclear and electronic

stopping play significant roles in the slowing of the phosphorus ions depending on the

implant energy regime. In all cases, the energy loss is greater in germanium than in
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silicon and the shallower projected ranges are easily understood as a result of a faster rate

of energy loss in germanium.

For boron, the electronic energy loss is calculated to dominate over the nuclear

energy loss in both silicon and germanium, Figure 2.4 (a). The LSS theory predicts that

the stopping power in silicon is, furthermore, greater than that in germanium leading to

longer predicted ranges in germanium than in silicon (i.e. longer total path lengths).

Shallower projected ranges in germanium compared to silicon are, nevertheless,

observed and predicted by the LSS theory because of the higher lateral excursion

produced by the larger angle collisions with the higher mass germanium. The ratio of R

to Rp is found to be 73% greater in germanium than silicon, which is enough to account

for the shallower predicted projected range in germanium despite the longer boron range

in silicon.
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The boron and phosphorus straggle (i.e. the second moment) after 5x10 13 cni2

dose implants in the germanium are shown as a function of energy for the LSS, SRIM

and SIMS results, Figure 5.7 (a) and (b), respectively. The straggle of the phosphorus

and boron measured by SIMS was as much as 42% greater than that calculated by the

LSS theory, and 65% greater than that simulated by the SRIM simulation. The fitted

curve has the same functional form as that used for the projected range h32] and the

constants for boron were 0.0101 and 0.537, for A and B respectively; while for

phosphorus they were found to be 0.00216 and 0.713, respectively. Small straggle is

important for the fabrication of sharp dopant profiles required for shallow junctions and

other size-scaled electronic devices. It is interesting to note, therefore, that the boron

straggle is greater in the germanium than the silicon for the same implant energies (i.e.

a greater straggle was observed in the germanium despite a smaller projected range than

in silicon).

Figure 5.8 shows the skewness (the third moment) as a function of energy for the

experimental data and SRIM calculation for 5x10 13 cm2 boron or phosphorus in

germanium. The experimental data was found to be higher than predicted by the SRIM

in all cases, which is a signature of the calculated SRIM distribution decreasing more

sharply on the substrate side of the profile than that measured by the SIMS. The

experimentally obtained skewness was, furthermore, fit with the functional form

A—Bln(E) [31], where E is the energy in keY and A, B are the coefficients determined

from the SIMS data. The resulting fits were 3.53—(0.707)1n(E) for the boron, and

3.00—(0.474)1n(E) for the phosphorus implantation.
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The kurtosis or forth moment as a function of energy for the experimental data

and SRIM calculation are shown for boron and phosphorus implantation into germanium

with the dose of 5x10 13 cm"2 , in Figure 5.9. The kurtosis is found to be higher than that

predicted by the SRIM simulation in most cases and the values above 3 are indicative of

the extended tails that are not predicted by the simulation. The smaller kurtosis predicted

by the SRIM calculation is in part due to the neglect of the channeling component in

the simulation. This disagreement becomes less at higher energies.

To estimate the kurtosis over the entire range of implant conditions the fourth

moment was fitted using a functional form A+B9. Previously, the kurtosis has been

found to correlate with the square of the skewness h23, 54], and this functional form

appears to hold over the energies considered in this work, Figure 5.9. The resulting

curves were 3.33+(1.64) for boron and 2.46+(2.5l)9 for phosphorus.
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Pearson fitting parameters can be derived from the first four moments of the

implant distribution. However, initially the appropriate one of twelve distributions must

be selected to fit the implant distribution. Ashworth, et al. have shown that the

appropriate distribution can be selected based on the implants skewness and kurtosis h33].

The respective relationship between skewness, kurtosis and the Pearson's domains for all

cases considered in this work are shown in Figure 5.10. Most SRIM simulation cases fell

into the region of the Pearson I distribution, whereas, some implant profiles measured

with SIMS required either the Pearson IV or VI distributions in addition to the Pearson I

to fit the profiles.



Figure 5.10 Domains of Pearson types on the 13-y2 plane: the experimental points and
SRIM simulation (a) for boron and (b) for phosphorus implantation into germanium and
silicon. The region of Pearson type is indicated (i.e. I, IV, or VI). The line A and B are
the boundary between Pearson types.
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After the appropriate distribution was selected the Pearson parameters were

calculated from the first four moments for each of the implant conditions h33]. All

Pearson parameters calculated in this study are summarized in Tables 5.5 and 5.6.
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5.2 Activation Annealing

Annealing is necessary to remove the induced damage during ion implantation as well as

to electrically activate dopants. To examine electrical activation and dopant diffusion, all

samples were annealed at either 400, 600, or 800°C for 3 hours in nitrogen ambient.

5.2.1 Boron Activation Behavior

Figure 5.11 shows 60 keV, 1 x 10 15 cm-2 boron implanted into germanium (SIMS data)

after 400 and 600°C annealing, and as-implanted case. Negligible broadening of the

boron profiles was observed after annealing at 400 or 600°C, consistent with the diffusion

lengths expected from previously reported diffusivities in the literature h55]. The absence

of enhanced diffusion due to implant damage or an increase in dopant activation suggests

a significantly different and enigmatic relationship between boron and the point defects

formed in germanium by the implant.



Figure 5.11 Comparison of SIMS data for 60 keY, lx10 15 cm-2 boron implanted into
germanium after 400 and 600°C annealing, and as-implanted case.
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SRP measurements indicated hole carrier concentrations in the boron implanted

regions immediately after boron implantation in Figure 5.12, resulting in sheet resistances

of 388, 171, and 18 ohms/sq for the 5x10 13 , 1 x 10 15 , and 5x10 16 cm-2 boron doses,

respectively, in Table 5.7. No increase in carrier concentration was observed with

subsequent annealing at either 400 or 600°C, Figure 5.12. P-type defect centers (H1, H2

and H3) have previously been identified as a result of implant damage, however,

previously these were observed to anneal out at temperatures above 350°C [7],

suggesting that these defects were not responsible for the observed hole concentrations in

this study.
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Immediate activation of 100% of all boron implanted into germanium without

annealing has previously been reported for boron implants (but not BF2) as high as

l x . -141U cm2 and for energies ranging from 25-150 keV h7]. Peak hole concentrations

measured in this study, for the case of 5x10 13 cm-2 dose, were also approximately the

same as measured by SIMS suggesting 100% activation. For higher doses, 1 x 10 16 and

5x10 16 cm2, above that examined by Jones and Haller, the peak carrier concentration did

not increase linearly with boron concentration, Figure 5.13, possibly because of

increasing implant damage.
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Figure 5.13 Summary of peak for boron concentrations measured from SRP and SIMS
assuming single crystal mobilities for germanium h39]. Previously reported solid
solubilities of boron in germanium were also shown h55].

5.2.2 Phosphorus Activation Behavior

In contrast to boron implant, annealing of the phosphorus implants significantly changed

the electron concentrations in the implanted region, which is consistent with the previous

report h59]. Figure 5.14 shows SIMS and SRP data for 170 keY, 5x10 16 
CM

"2 phosphorus

implant into germanium after 400 and 600°C annealing. Initially a p-type region was

observed immediately after the phosphorus implant. Annealing at 400°C resulted in

an increase of the peak electron concentration switching the region to n-type, and

annealing at 600°C further increased the peak electron concentration to as high as

2x 10 19 cm-3 , leading to sheet resistances of 157 and 13 ohms/sq for the temperatures of
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400 and 600°C, Table 5.8. This behavior is qualitatively similar to dopant activation in

Si h57], for which both phosphorus and boron implants must be annealed to remove

damage and dissolve dopants on substitutional sites. The peak carrier concentrations

were, however, lower than previously reported dopant solid solubilities at this

temperature h55], but were similar to what has been observed in more recent reports h42].

Possible sources of discrepancy are improper calibration of SRP and residual unannealed

damage leading to an over estimate of the carrier mobility used to calculate the carrier

concentration.
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Negligible phosphorus diffusion was observed after annealing at 400°C for

3 hours in all cases, Figure 5.14, 5.15, and 5.16. The phosphorus diffusion after the

5x10 13 cm-2 implant exhibited a slow diffusing peak with a faster diffusing tailing edge,

Figure 5.15, which is similar to post-implant transient enhanced diffusion (TED)

observed for boron and phosphorus in Si h58]. As the dose was increased and

concentrations increased above the intrinsic carrier concentration, — 4x 10 18 cm3

(at 600°C), the phosphorus profiles flattened out and showed very non-gaussian behavior,

Figure 5.16. Such profiles are characteristic of highly extrinsic diffusion and can be

explained qualitatively as a consequence of a very rapid diffusivity in the high

concentration region, which leads to uniformly distributed regions terminated by sharp

leading edges due to the slower low concentration diffusivity.
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Chui et al. have successfully modeled the concentration dependence for

phosphorus in germanium using an extrinsic diffusivity of the form D (n102 h42].

An order of magnitude estimate of the phosphorus diffusion length can be made to

determine whether the observed diffusion depths are reasonable or enhanced due to

radiation damage (e.g. TED). Assuming that the concentration remains constant and

approximately equal to the concentrations measured by SIMS in Figure 5.14 and 5.16,

diffusion lengths of 0.58 and 1.72 pm were calculated for the 10 19 and 3x10 19 cm -3

cases, respectively h23, 42]. These diffusion lengths are of the same order of magnitude

as the observed diffusion depths and suggest that the extremely rapid diffusion might

only be a consequence of the extrinsic diffusivity and not related to TED. The immobile

phosphorus peak in the highest dose case (see Figure 5.14), however, clearly indicates

more complex diffusion dynamics for high dose implants with concentrations over

4x 10 19 cni3 phosphorus, and we furthermore note that, if measured carrier

concentrations (SRP) are used rather than SIMS concentrations, the calculated diffusion

lengths are much too slow to explain the observed diffusion. Further investigation is

needed to evaluate the disagreement between SIMS and SRP.
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Figure 5.16 SIMS and SRP data of the as-implanted and annealed cases (3 hours at
either 400 or 600°C in N2) for 170 keV, lx10 15 cni2 phosphorus implant into germanium.
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In Figure 5.17, the electron concentrations increase with increasing annealing

temperature, while the electron concentrations remain below reported solid solubilities

even after long anneals at 600°C [55].

Figure 5. 17 Summary of peak phosphorus concentrations measured from SRP and
SIMS assuming single crystal mobilities for germanium [39]. Previously reported solid
solubilities of phosphorus in germanium were also shown h55].
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5.3 Observation of Damage Induced by Ion Implantation

RBS-channeling measurements were performed by G. Bisognin at the University of

Padova on the germanium implanted with phosphorus and boron to observe the

implantation-induced damage. In Figure 5.18, the resulting RBS spectra are shown for

various doses of boron (at 60 keV) and phosphorus (at 170 keV) implanted into

germanium. The spectra were taken in channeling geometry along the [001] direction.

As reference, a spectrum in a random geometry was also measured. It is clear that the

germanium substrate, which was implanted with 1 x 10 16 CM
-2 phosphorus, is amorphized

(the green spectrum had the same high of the red random spectrum in the region of

higher-energy). As the phosphorus dose was increased (the blue spectrum) the layer

apparently undergoes a reordering, since the channeling yield is measured to decrease

indicating more crystalline behavior. This effect is very probably due to the phenomenon

of Ion Beam Induced Epitaxial Crystallization (IBIEC). The beam of phosphorus is able,

at 170 keV, to recrystallize partially the implanted-damaged layer, maybe assisted by

heating due to the high dose implantation. Csepregi, et al. reported that epitaxial

regrowth of ion-implanted amorphous germanium occurred between 300 and 400°C [60],

and for implantation doses similar to the highest phosphorus dose case in this work,

the temperature is expected to reach several hundred degrees during the implant.

In the case of the boron implantation, for two lower boron doses (the magenta and

cyan spectrum), there was no damage detectable by channeling of the germanium

samples, while for the higher boron dose (the orange spectrum) there was detectable

damage in the substrate. The sharp peak of the orange spectrum (5x10 16 cm-2 boron)

corresponds to damage located at the surface. The backscattering peak disappears with
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increasing energy followed by a small increase indicating crystal disorder in both the

surface and a sub-surface region. This phenomenon may also be a result of IBIEC

combined with heating.

To convert the energy scale to a thickness scale, the reference was that 11.7 keV

corresponded to 10 nm. The germanium edge corresponded to the surface; lower

energies correspond to signals coming from the deeper part of the germanium sample.

Thus, the depth of the amorphous region for 170 keV, 1 x 10 15 cm-2 phosphorus implant

into germanium is about 0.15 1.1m.

Figure 5.18 The RBS spectra for various boron and phosphorus doses implanted into
germanium. The red curve indicates random spectrum.
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To quantify the amount of boron and its substitutional fraction, a nuclear reaction

in random and in channeling (h001] geometry) was conducted. The 11B(p,a) 8Be nuclear

reaction was used, which is sensitive only to "B and not to 1°B. The nuclear reaction

yield from 11 B atoms was obtained by using a 650 keV proton beam to exploit the

maximum of the broad resonance in the iiB(p 5a) Be nuclear reaction cross section.

After the reaction, the energy of a particles was measured. The random spectra were

collected while rotating the sample around the selected axial direction, with an azimuth

angle of 5°. The channeling spectra were collected on h001] axial direction. The

substitutional fraction can be obtained using the ratio between the random and channeling

yield. Table 5.9 shows the measured boron dose and the substitutional fraction. The data

of 5x10 13 cm"2 boron implanted into germanium were not available because of the low

implantation boron dose (see the random spectra of 5x10 16 and 1 x10 15 cm -2 boron

implant into germanium, Figure 5.19).
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To further examine the crystal damage, the lattice of germanium was probed

using x-ray diffraction rocking curves around the 004 reflection, courtesy of G. Bisognin

of the University of Padova. Because the lattice constant is sensitive to strain, XRD can

sometimes be useful in detecting damage and substitutional dopants. Figure 5.20 shows

data observed on the germanium sample implanted with 60 keY, 5x10 16 cm -2 boron

(red line). The rocking curve exhibits two features other than the sharp 004 peak

resulting from the substrate reflection: (1) a peak at approximately 1000 arcsec displaced

from the 004 reflection indicative of a tensily strained layer and (2) a shoulder on the

negative displacement of the 004 peak, which can be indicative of compressive strain.

The 11 B(p,a) 8Be nuclear reaction indicates a large fraction of substitutional boron

(i.e. — 15%) and for this high dose boron concentrations are of the order of an atomic
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percent. A tensily strained layer would be consistent with lattice dilation, which would

be expected when large atomic fractions of a smaller atom like boron are incorporated in

the germanium lattice. Without modelling it is unclear what the sources of these XRD

features are, however. The blue curve of Figure 5.20 is from the XRD rocking curve of

the germanium sample implanted with 60 keV, lx10 15 cm"2 boron. In this case, there is

no peak at the right of substrate peak (tensile strain), although there is a less pronounced

compressive shoulder (more visible in Figure 5.21). Defects introduced by ion

implantation even at smaller boron doses can induce defects and may be the cause of this

less pronounced shoulder h61]. The solid black curve in Figure 5.20 corresponds to the

60 keY, 5x 10 13 cm-2 boron, which shows no X-ray scattering on either side of the 004

reflection. The rocking curve in this case is indistinguishable from that of a single crystal

showing that this low dose implant produces no damage detectable by this technique.
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For the phosphorus implant into germanium, the same considerations apply as

described for the boron, Figure 5.22. In this case, the blue curve (170 keV, 5x 10 16 cm-2

phosphorus) shows the same qualitative features exhibited by the boron case (rea curve,

60 keV, 5x 1 0 16 cm"2 boron) of Figure 5.20. In the lx1013 cm-2 dose case a new feature is

observed, pendelosung fringes, overlapped on the X-ray scattering in the compressive

strain side of the rocking curve. The scattering on the compressive strain side of the

rocking curve suggests the formation of a highly defective layer (~ 0.201 ± 0.001 m).

The Pendelosung fringes, furthermore, are indicative of X-ray interference between high

quality interfaces and suggest that the highly defective layer is in fact buried below

a defect free germanium cap layer. Further modeling would be necessary to verify this

hypothesis, however, this was not the purpose of this study. In Figure 5.23, the peak

related to tensile strain for the highest dose of boron and phosphorus was shown. The

case of phosphorus implant was closer to the substrate peak, indicating less tensile strain

than in the sample implanted with boron despite implanting the approximately the same

number of atoms. This may qualitatively be accounted for by several effects: (1) the

smaller lattice mismatch produced by incorporation of the larger phosphorus atom;

(2) less substitutional incorporation of phosphorus than boron immediately after implant;

(3) more lattice relaxation in the phosphorus doped layer than in the boron case. The

p-type layer after phosphorus implant does suggest that this affect may be explained by

less substitutional incorporation of phosphorus. To check how pseudomorphically

strained the layers are, reciprocal space maps were measured.
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In Figure 5.24 (a), the reciprocal space map around (224) reflection of the

germanium implanted with 5x 10 16 cm-2 boron was shown. It is clear that the boron

doped zone was almost fully strained and that the in-plane parameter was almost equal to

the germanium substrate parameter (the (224) node of the doped layer was aligned with

that of the substrate). Figure 5.24 (b) shows the reciprocal space map around (224)

reflection of the germanium implanted with 5x10 16 cm-2 phosphorus. The strain was not

so high as in the phosphorus doped zone. The layers in the phosphorus implanted sample

are, therefore, not completely pseudomorphically strained indicating that the reduced

strain observed in the rocking curve is also partly due to incoherent relaxation.

No conclusive observation about the substitutional incorporation in the phosphorus

compared to the boron can, therefore, be made.
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After thermal annealing, the strain due to implantation-induced damage was

observed to decrease in the broadening, which indicates that the annealing does indeed

partially remove the crystal damage after the 400°C anneal and completely removes the

damage after the 600°C anneal.



CHAPTER 6

CONCLUSIONS

A renewed interest in germanium based semiconductor devices has arisen due to

advances in alternative gate dielectrics and an increased desire to find silicon CMOS

compatible devices that have more desirable properties for optoelectronic and high-speed

electronic applications. However, critical process parameters necessary for device design

and fabrication, which are typically available for silicon, are not currently available for

germanium. Implantation and dopant activation represent two of these primary device

fabrication steps for which more characterization and fundamental understanding is

needed. In this dissertation, boron and phosphorus implants into germanium before and

after annealing were characterized using secondary ion mass spectrometry (SIMS),

spreading resistance profiling (SRP), high resolution x-ray diffraction (XRD), Rutherford

backscattering spectrometry (RBS), and nuclear reaction analysis (NRA). Numeric

simulation (SCRIM) and LSS theory were used to better understand the underlying physics

of the resulting implant distributions and the combined measurements were used to

develop a better understanding of the effects of annealing on dopant activation and

diffusion.

Specifically, boron and phosphorus implantation profile in germanium were

measured using SIMS, and the first four moments of the distributions were extracted

from the SIMS measurements. Projected ranges were found to be shallower in

germanium than in silicon for the same implant energies for both dopant species, but the

boron straggle (i.e. the second moment) was found to be greater in germanium than in
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silicon. The qualitative behavior of the first two moments is consistent with the LSS

theory's predictions, which gives the first two moment's dependence on implant energy

based on calculated electronic and nuclear stopping powers. An analytic fit for the

moments dependence on implant energy between the ranges of 20-320 keY was

determined, providing values for all four moments over the entire range of energies

examined in this work. These moments were used to determine the appropriate Pearson

distributions that fit the implant profiles. Pearson parameters were, subsequently,

calculated from the first four moments.

The implantation-induced damage was, furthermore, examined by RBS and

HRXRD. As expected from SRIM calculations, low doses of boron resulted in no

detectable disordering of the germanium substrates, however at the highest dose of boron

significant damage was produced in germanium. In the case of phosphorus implantation,

substrates were found to be completely amorphized to depths as great as 0.15 1.tm

beginning at a dose of 5x1016 cm-2 . Interestingly, however, in the highest dose boron and

phosphorus cases, evidence of recrystallization during the implant were seen, which was

presumably due to solid phase epitaxy produced by the increased temperature during ion

implantation. Through channeling experiments, a large fraction (as much as 15%) of

the boron was found to be substitutional immediately after implant for doses as high as

5x10 16 cm-2 .

Phosphorus was found not to be active immediately after implant, however, boron

was active immediately after implant. The behavior of phosphorus and boron in

germanium after 400 and 600°C annealing were characterized using SIMS and SRP.

Annealing led to very rapid phosphorus diffusion and increased electron carrier
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concentrations, presumably due to annealing of implant damage. Boron implanted

germanium, in contrast, showed relatively low resistance (i.e. for the boron dose

implanted) p-type surfaces immediately after implantation, and carrier concentrations did

not increase with annealing. The combination of SRP, SIMS, RBS, NRA and XRD

measurements indicates that a very large fraction of boron is active and resides in

substitutional sites immediately after implant for doses as high as 5x 10 16 cm-2 ,

presumably due to recrystalization during implantation. Negligible diffusion was,

furthermore, observed in the boron case. Finally, this work is also relevant to the issue of

scaling of silicon complementary MOSFETs, which is increasingly challenged by the

need to anneal and activate the p-type dopant, boron. Post-implant anneals are well

known to lead to rapid diffusion that ultimately defines the size of the device. In this

thesis, it is observed that boron implants into pure germanium result in relatively high

p-type activation without the need of further annealing. The junction might, therefore, be

limited only by the implant rather than diffusion. This observation combined with recent

introduction of SiGe to the source/drain region for strained silicon is significant, therefore,

as it may offer insight in how future shallow junctions are formed in high germanium

content SiGe source/drains. Advantages may exist in moving towards engineering

source/drains with very high or pure germanium content for p-channel MOSFETs. In

summary, to assist in future device design and modeling, a predictive model for boron or

phosphorus implant distributions vs. energy in germanium is presented; and the pre- and

post-annealing electrical, structural and diffusion behavior is characterized.



APPENDIX

PROGRAMMING FOR CALCULATION OF MOMENTS

The first four moments can be calculated using the below programming cord for

Mathematica software. Using this cord, the first four moments can be easily and fast

calculated.
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vars3/sl

sigmap=Sqrthvar] (*the straggle*)

(4) The third moment (the skewness, y), Equation (2.24):

m3 :=(dlistge-rp)^3

sumskelst:=clistge m3

s4=Plus@@sumskelstskel=s4/sl

skewness=ske 1/(sigmap)^3 (*the skewness*)

ske2=skewnessA2

(5) The fourth moment (the kurtosis, i3), Equation (2.25):

m4:=(dlistge-rp)^4

sumkurlst:=clistge m4

s5=Plus@@sumkurlstkurl=s5/s1

kurtosis=kurl/(sigmap)^4 (*the kurtosis*)

(6) The calculation of Pearson parameters, Equation (2.26):

c=(2(5 * kurtosis-6* ske2-9))^-1

b1=-skewness*sigmap* (kurtosis+3)*c

b0=-sigmapA2*(4*kurtosis-3*ske2)*c

b2=-(2*kurtosis-3*ske2-6)*c
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(7) The determination of the Pearson type h32]:

namuda=ske2 (kurtosis-3 (8 kurtosis-9 ske2-12)-4 (4 kurtosis-3 ske2) (5

kurtosis-6 ske2-9)^2

condl=(39 ske2+48+6 (ske2+4)^(3/2))/(32-ske2)

(*For Gaussian*)

Ifiskewness#0 And kurtosis=3, yes,no]

(*Type I*)

Ifiskewness#0 And (ske2+1)5_kurtosis<(3+(3/2) ske2),yes,no]

Iffnamuda#0 And c#Infinity, yes,no]

(*Type II*)

Ifiskewness#0 And kurtosis-3, yes,no]

(*Type III*)

Ifiskewness#0 And kurtosis=(3+(3/2) ske2), yes,no]

(*Type IV*)

If[0<(b1^2)/(4*b0*b2)<1, yes,no]

(*Type V*)

Ifh0<ske2<32 And kurtosis#condl, yes,no]

(*Type VI*)

Ifiskewness#0 And (3+(3/2) ske2)<kurtosis<condl, yes,no]

Iffnamuda#0, yes,no]

(*Type VII*)

Ifiskewness=0 And kurtosis>3, yes,no]

kurtosis1=2.8+2.4*ske2
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