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ABSTRACT

A GIBBS SAMPLING APPROACH TO MAXIMUM A POSTERIORI
TIME DELAY AND AMPLITUDE ESTIMATION

by
Michele Picarelli

Research concerned with underwater propagation in a shallow ocean environment

is a growing area of study. In particular, the development of fast and accurate

computational methods to estimate environmental parameters and source location

is desired. In this work, only select features of the acoustic field are investigated,

namely, the time delays and amplitudes of individual paths, the signal-to-noise ratio,

and the number of multi-path arrivals. The amplitudes and delays contain pertinent

information about the geometry associated with the environment of interest. Estimat-

ing the time delays and amplitudes of select paths in a manner that is both accurate

and time efficient, however, is not a trivial task. A Gibbs Sampling Monte Carlo

technique is proposed to recover these arrivals and their features. The method is

tested on synthetic data as well as data from the Haro Straight experiment for the

estimation of the number of arrivals, the amplitude and time delay associated with

each arrival, and the variance of noise. Signals involved in shallow water propagation

closely resemble signals obtained in other areas such as radar and communication

problems. Therefore, the estimation techniques presented here may be useful in these,

among several other, applications.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

In the last few decades, there has been explosive growth in the development of

numerical models used as tools in research involving underwater acoustics. One

particular area of interest in underwater acoustics is the propagation of sound in

a shallow ocean environment. The reason, in part, for such interest is the way

submarines are constructed today. First, some submarines, such as those which

transport navy seals, are much smaller than they were years ago. Their compact

size now allows the submarines to maneuver into more shallow water. Second, the

submarines are designed to be much quieter than they were in the past. This makes

them more difficult to detect. The harder these sounds are to detect, the easier it

is for these vessels to approach land, and hence, travel into shallow water. These

sounds, if detected, can be linked to a sound propagation model for the estimation of

source location.

Difficulties arise when one attempts to predict propagation of sound in a shallow

water ocean environment. The difficulty stems from the fact that a signal travelling in

shallow water will interact multiple times with both the ocean's surface and bottom.

In addition to knowing the source location and receiver location, as well as the

properties of the water, such as sound speed and depth of the water column, we also

need information about the parameters associated with the ocean bottom. We need

to identify the layers of the ocean bottom that the transmitted signal has interacted

with and how this interaction affects the received signal. Then, for each layer in the

bottom, we need to know the sound speed, density, attenuation and thickness of the

sediment. Thus, there has been strong motivation for the development of fast and

1
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accurate inversion models for the concurrent estimation of location and environmental

parameters. In [1, 2, 3, 4, 5] it was shown that linking arrival times and amplitudes

of received time series to acoustic models, we can extract valuable information on

the environment and the location of the sound emitting source. However, accurate

identification of arrival times and amplitudes is not always simple. This identification

is the focus of this work.

1.2 Environment

We are interested in modelling sound phenomena generated by a source and received

by a hydrophone in a range-independent shallow water ocean environment. In shallow

water, signals transmitted from an acoustic source usually arrive at the receiver

through multi-path propagation. Figure 1.1 shows three typical paths the rays will

take in travelling from the source to the receiver; there is a ray that goes directly

from the source to the receiver, a ray that is reflected off the ocean surface, and a ray

that is reflected off the ocean bottom before they reach the receiver.

Figure 1.1 Typical ray paths.

Thus the received signal in a shallow water environment, as well as in many

other problems in signal processing, can be modelled as a superposition of a finite

number of signals embedded in noise. These signals consist of delayed and attenuated

replicas of the transmitted signal due to various interactions with the boundaries. The
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received signal can be generally written as:

r(n) = E as(n — ni) w(n).

M is the number of arrivals, ail and ni are the amplitude and time delay of the ith

arrival, and w(n) is additive noise.

Figure 1.2 captures some of the features associated with arrivals corresponding

to distinct paths. This figure, however, is an over-simplification of an actual signal

obtained at a receiver because it does not include noise and it reflects the case of

undistorted high frequency signals.

0.05

0.04

0.03

0.020.05

E                                                                                                                                                                                                                                                                                      

- 0.05                                                         

- 0.02

- 0.03

- 0.04

-0.05
5.28                                                                                                                                                

i 	 i 	 i 	 i 	 i 	 i 	 i 	 i 

5.3 	 5.32 	 5.34 	 5.36 	 5.38 	 5.4 	 5.42 	 5.44 	 5.46
	

5.48
Time Delay

Figure 1.2 Signal obtained at the receiver.

The "spikes" in Figure 1.2 are the arrivals that we want to identify. Each arrival

has a time delay, due to the varying arrival times of the multi-paths, and amplitude

associated with it. The distinct arrivals correspond to rays which have travelled

along different paths from the source to the receiver. The first arrival is typically the

ray which travelled directly from the source to the receiver. The second arrival has

often gone through one surface reflection before reaching the receiver. The surface

reflected path is recognized by the change in polarity. The third arrival is the first
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bottom bounce. The arrivals that follow are due to rays which have interacted with

the surface, bottom, and bottom layers multiple times.

1.3 Replica Field Generation

Illustrative examples are presented here to show the effects the propagation environ-

ment has on the amplitudes and arrival times of a transmitted signal. In order to

demonstrate these effects, synthetic fields need to be constructed. Sound propagation

in the ocean is mathematically described by the wave equation. There are various

models available (Normal modes, PE, ray theory, etc.) [6] which describe sound

propagation in the ocean and can be used to calculate synthetic fields. Theoretical

data is obtained by use of the Green's function, i.e., the solution of the wave equation

describing propagation from a unit impulse source to an arbitrary location in the

waveguide [6].

KRAKEN [7], a normal mode method, is used to obtain the received signals in

Figure 1.3. Since the ultimate goal of this research is to simplify a highly complex

problem, we illustrate this complexity by assuming that the source, receiver, and

environmental parameters are known. The source is located 30 m below the ocean

surface. The receiver is placed 50 m below the surface; its distance is 1 km away from

the source. The depth of the water column is 115 m. The sound speed profile for

the water decreases with depth, with a maximum speed of 1543 m/s near the surface

of the ocean and a minimum speed of 1526 m/s near the bottom, typical of shallow

water. We assume that the ocean bottom is composed of only one layer; below that

layer will be a half-space (taken to be limestone). In each of the plots in Figure 1.3,

the layer between the water and the half-space is different. Either the height of the

sediment is changed (5 m, 20 m, or 50 m) or the sediment itself is changed (clay,

sand, or chalk).
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Table 1.1 gives the compressional sound speed for clay, sand, chalk and limestone

[6] used to run KRAKEN.

Table 1.1 Sound Speeds for Ocean Bottoms Used in Figure 1.3

Sediment Sound speed

Clay 1500 m/s

Sand 1650 m/s

Chalk 2400 m/s

Limestone 3000 m/s

0.5

0

- 0.5

-1
05
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0.5

- 0.5

-1 	
15 	 05 	 15

--111114000•••••.----
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Time Delay (s)
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05 	 1 	 15
Time Delay (s) 	 Time Delay (s)

0.5

0

- 0.5

Figure 1.3 Signal obtained at the receiver with various bottom properties.

In a shallow water ocean environment, the sound speed in the ocean bottom, as

well as the height of the sediment, significantly changes the appearance of the signal

obtained at the receiver. As we move from left to right in Figure 1.3, the sound

speed of the bottom sediment increases. We can see that increase in sound speed has
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affected the amplitude of the signal, particularly at later times. As we move from

top to bottom in Figure 1.3, the height of the bottom layer is increased while the

sediment remains unchanged. Once again, we can see that a change in the height

of the sediment has an impact on the signal. We have acquired simulated data for

several test ocean bottom (basalt, limestone, chalk, moraine, gravel, sand, silt and

clay for example) and various sediment heights. Studying the received signals, it is

evident that the appearance of the signal is a direct consequence of the environment

the signal propagated through.

A typical approach for extracting information from received acoustic fields is

to use an inverse method which is generally cast as an optimization problem. In

this framework, we will concentrate on the appearance of the received signal. The

features associated with the signal we are interested in are the time delays and

amplitudes of each arrival as well as the Signal to Noise Ratio (SNR). (Time delay

and amplitude estimation is important in applications where a transmitted signal

arrives at a receiving sensor through different propagation paths.) These features

will form a basis for future estimation, reducing the computational time needed for

the implementation of full-field inverse method. As shown in Figure 1.3, the various

bottom sediments affect the amplitudes and the changes in sediment thickness affect

the time delays. Therefore, the focus of this work is to develop an efficient method

to easily recover these amplitudes and time delays, since they can provide significant

information on the propagation environment and geometry.

This dissertation is structured as follows: In Chapter 2 a brief overview of

methods typically applied to the problem at hand is provided. The Gibbs sampling

algorithm is derived and results for amplitude and time delay estimation are presented

and compared to other methods in Chapters 3 and 4. Noise is added in the estimation

process in Chapter 5 and results are presented. In Chapter 6 the number of arrivals

in the received signal is treated as an unknown. Chapter 7 deals with the issue of
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convergence of the Gibbs sampling process. The number of arrivals, time delays,

amplitudes, and noise level are estimated for the real data from the Haro Straight

experiment in Chapter 8. Conclusions are given in Chapter 9.



CHAPTER 2

APPROACHES TO PARAMETER ESTIMATION PROBLEMS

Matched field processing (MFP) has been a popular approach for source localization

and parameter estimation in the ocean [8, 9]. MFP is a full-field matching approach.

It requires the replica field, which corresponds to theoretical array data, to be construc-

ted for each test ocean environment. Maximization of similarity between the replicas,

derived from the wave equation, and the data, measured at an array of sensors, is

then employed using correlation techniques to determine parameter estimates. This

process can become extremely computationally intensive due to the large number

of parameters involved. For example, one may only be interested in locating the

source, yet many other parameters associated with the environment such as sound

speed profile, water depth, bottom properties, etc. need to be taken into account.

Therefore, several approaches for reducing the computational requirements of MFP

have been proposed [10, 11, 12, 5].

An alternative approach to MFP is to perform the estimation in two steps. The

first step in the process is to obtain estimates for the parameters associated with

the received signal, for example, the amplitudes and time delays, noise variance, the

number of arrivals, etc. These estimates can then be used to quickly find estimates for

the parameters associated with the problem of interest, such as source and receiver

location, sound speed profile, bottom properties, etc. This work will focus on the

first step; we will concentrate only on select features of the synthetic field, extending

work presented in [12, 13, 14, 5, 15].

Previous work has been done on amplitude and arrival time estimation. Analyti-

cal Estimation [16J], Matched Filter (MF) [16, 171], Expectation Maximization (EM)

[12, 18], and Simulated Annealing (SA) algorithms [13] have been implemented to

8



9

identify these features. In this work, we develop a Gibbs sampling approach for

amplitude and arrival time estimation. We will compare our results using Gibbs

sampling to those obtained using the analytical estimation method, MF, EM, and

SA. Therefore, for the sake of completeness, we will provide a brief outline of the

major components involved in analytical estimation [16], MF [16, 17], EM [12], and

SA [10, 11, 13, 19].

In this paper, the method referred to as the analytical method is a maximum-

likelihood procedure for estimating the amplitudes and arrival times of individual

pulses in the multi-path signal [16]. Estimates of the N sets of amplitude and arrival

times can be obtained by formulating a 2N parameter estimation problem. First, the

maximum-likelihood estimates of arrival times for N pulses are obtained by finding

the maximum over ni of 13TA(I where (I) is the vector of matched filter outputs for

a particular set of arrival times n i and A is the cross-correlation matrix for the N

signals with delays n i , n2, ..., no. In general, there is no simple technique for finding

this maximum. The only recourse is to calculate (13 TA(I over a N-dimensional volume

in time space. The resulting set of arrival time estimates is then used in A = A -i (I)

to obtain the amplitude estimates. The computational demands required by this

estimation method quickly becomes overwhelming when the signal at hand has four

arrivals or more.

A Matched Filter (MF) can be used to recover the amplitudes and time delays of

a received signal. MF is favorable due to the ease in which it is implemented, simply

correlating each arrival in the received signal with the transmitted waveform [16, 17].

The time at which the filter output peaks gives the arrival time and the height of

the peak gives the amplitude. Difficulty will arise with the MF technique when the

arrival times of the received signal are close. Resolving individual waveforms in the

case of overlapping arrivals using MF could be erroneous [2, 13]. However, it can be

shown that, if the arrivals are separated in time by more than the duration of the



10

signal autocorrelation function, MF is equivalent to maximum likelihood estimation

(MLE) [16].

The EM algorithm is an iterative technique for solving MLE problems [11, 10].

The algorithm starts with an initial guess. EM is a two step process involving the

log-likelihood of the observed data. The first step is to compute the conditional

expected value of the unknown parameters given a signal. The second step in the

EM algorithm is to maximize the expected value found in the first step over all the

unknown parameters. EM is fast and works well with the proper initial conditions.

However, its performance is highly dependent on the initial conditions; the method

is quick to converge to a local maximum. As in all "hill climbing" techniques there

is no guarantee of convergence to a global maximum. Therefore, a "randomized hill

climbing" technique, referred to as SA, is more promising from this aspect, although

for this scheme global convergence in practice is not guaranteed [12, 11, 11] either.

SA is a Monte Carlo optimization approach [13]; it arose from the technique used

to slowly cool liquid metal to a crystal of minimum energy. Each parameter is given

an initial value. This initial value is perturbed through an addition of a random

component. The algorithm begins at a "high" temperature T. This temperature,

when high, increases the probability that we will accept the new values for the

parameters regardless of whether they are good or not. As the temperature decreases,

so does the probability of accepting a "bad" value. Starting at a "high" temperature

allows the algorithm to jump out of local minima. The core of SA is choosing the

appropriate cost function, annealing schedule, and suitable parameter perturbations.

The cost function is the quantity we wish to minimize (like the energy of the crystal).

The annealing schedule determines how T will be decreased. Choosing the appropriate

cost function and a good cooling schedule is critical to the success of an SA algorithm.

In this work, we present a novel method for estimation of time delays, amplitudes,

and number of multi-paths, as well as noise variance with a maximum a posteriori
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estimation approach. Maximum a posteriori estimation is optimal if the appropriate

statistical models are selected for the received data. We propose a method of maximum

a posteriori estimation in which optimization is performed using Gibbs sampling

[24, 25, 26, 27, 28].



CHAPTER 3

GIBBS SAMPLING FOR PARAMETER ESTIMATION

To efficiently estimate the arrival times and amplitudes of a multi-path signal, we

propose a scheme that maximizes the posterior probability density function of those

unknowns. Noise variance and number of arrivals of arrivals are presently considered

as known parameters; this assumption will be removed in future chapters. To obtain

the posterior distribution of the arrival times and amplitudes, a standard Bayesian

approach is followed. That is, given received data, r, and a set of unknown parameters,

a, the joint probability distribution, p(r, a), is

p(r, a) = p(rla)p(a) = p(alr)p(r), 	 (3.1)

and the a posteriori probability of a is given by:

p(alr) = p(rla)p(a) 
p(r)	 •

(3.2)

Selecting the values of a that maximize p(air) is known as maximum a posteriori

(MAP) estimation [29, 16]. Since p(r) is independent of the parameter a, maximizing

the a posteriori density is equivalent to maximizing the product p(ria)p(a) [19]. The

method is very powerful. The results, however, are dependent on the accuracy of the

statistical model p(ra) and the nature of prior beliefs encapsulated in p(a).

In [19] it is shown that if the prior distribution of a is broad and void of peaks,

there is a lack of any real knowledge on parameter a, except potentially for the limits

on the range of a. In this event, maximizing p(alr) is equivalent to maximizing

p(r la), which is known as maximum-likelihood estimation. As shown in [16], this is

the optimal approach to estimating time delays between distinct signals and their

corresponding amplitudes in a white Gaussian noise environment (a simple matched

12
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filter is not optimal for overlapping arrivals). This maximization given observed data

leads to an analytical expression for the amplitudes, whereas time delays can be

obtained by identifying where the maximum of an M dimensional function occurs,

where M is the known number of paths [16]. When M is large, time delay estimation

becomes a computationally cumbersome task.

To alleviate some of the computational demands, we will use a Gibbs sampling

technique to efficiently estimate the posterior distribution of all unknown parameters

[14, 15]. The Gibbs sampler is a Monte Carlo Markov Chain approach for the

calculation of a numerical estimate of posterior probability distributions. In [26,

17, 15, 18] it is shown that the posterior distribution to be estimated is uniquely

determined through the conditional distributions of individual parameters.

3.1 Derivation of the Gibbs Sampler

In order to implement the Gibbs sampler for the purpose of estimating the unknown

parameters in our problem, the conditional distributions of time delays and amplitudes

need to be obtained. Equation 1.1 is used as a model for the received signal, where

w(n) is white Gaussian noise with zero mean and noise variance o -2 .

In our case, the amplitudes are real numbers and the sign indicates their polarity.

Since this is the only prior information available on the amplitudes, uniform, non-

informative prior distributions for these parameters are assumed. That is,

p(ai) = 1, —co < a i < d-oo, i = 1, ..., M. (3.3)

For the time delays, we will assume uniform priors for arrival times that vary between

1 and A, i.e.,

1
p(ai ) = 

' 
1 < ni < A'  i — 1 M
 •

(3.4)
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The joint posterior probability distribution function of all unknown parameters

ailand ni, i = 1, ...,Mgiven observed data r(n) can be written as follows [30, 31, 31]:

p(ni, ..., Om , al, ...,am lr(n)) =

1 	1	 1 
N 	 M

K 
N" (1117)

ouoexp(
 1o-2 

E (r(A) — E ais(n — n2 )) 2 ), (3.5)

where 1/K is the N-dimensional joint probability density function of r(A), n =

1, ..., N, which is a constant. Equation 3.5 can be simplified by consolidating all

constants:

P(ni, ...,Om, al, ..., amlr(n)) =
1

N 	 M
CeXP( 

1 2
E (r(n) — E as(n — n))2).

From this joint posterior probability distribution function, an expression for the

conditional distribution of a ilcan be obtained assuming allail, j= 1, ...,M, ji and

all Lk , k =1,...,M are known. From Equation 3.6, the marginal posterior distribution

for a ilcan be obtained:

1
Dexp(— 1,72 (cti —

P(ailn17
o

(E r(n)s(n
n=i

...,Am, a l , ..., ai+i , ai+i , ..., am , r(n)) =
M 	 N

— n i) — E ail > s(n — n i)s(n— n3)))2), (3.7)
i=i(joi) n=i

where D is the normalization constant of the distribution. The distribution of

Equation 3.7 can be identified to be Gaussian with mean

o 	 M 	 oE r(L)s(L— L ib )— E aj E s(n — Li )s(L — nj ) 	 (3.8)
n=i 	 j=1(j0i) n=i

n=i 	 i=i

(3.6)
n=i 	 i=i

and variance o-2 .
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The conditional posterior distributions for time delays n n , i = 1, M are

obtained on a grid. Assuming ail, j = 1, M and Lk , k = M, k i are

known, the conditional distribution of n n is written:

p(nilni , 	 ...,Lm, al , ..., am , r(n)) =

1
Gexp( — 	  (On) — E as(n — n))2)

a2 n=1 	 n=1
(3.9)

where G is the normalization constant of the distribution.

3.2 Gibbs Sampling Implementation

Gibbs sampling is a Monte Carlo Markov Chain approach that can be used to

obtain estimates for the arrival times and amplitudes of the distinct arrivals. It

is a technique for generating random samples from a joint posterior distribution

indirectly by drawing samples from conditional distributions [14, 28]. The Gibbs

sampling Markovian updating scheme proceeds as follows.

Given a received signal with M distinct arrivals, the algorithm begins by assign-

ing initial values to the 1M unknown parameters (each arrival has a time delay and

an amplitude associated with it). The Gaussian distribution of Equation 3.7 is used

to generate a sample for a l , which is conditional on all 2M — 1 other parameters

involved in the estimation. Using this new value for a l , a sample is generated for a 2 .

The updating process continues until a sample is generated for all a il , i = 1, ..., M.

The conditional distribution, Equation 3.9, is then used to obtain samples for each

N. However, since the posterior distributions of the time delays are not analytically

tractable, the distribution in Equation 3.9 will be calculated on a grid. Once a sample

has been generated for all 2M parameters one iteration is complete and the process

is continued repeatedly until many samples have been drawn for all parameters.

Reference [16] shows that under mild conditions, after many iterations, the samples

generated can be regarded as simulated observations from the true joint distribution.
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And so, Gibbs sampling is based only on elementary properties of Markov chains

and avoids difficult calculations, replacing them instead with a sequence of easier

calculations [28].

Investigations have shown that iterative sampling achieved through Gibbs sam-

plers is efficient, converging quickly for a wide range of problems. Advocacy of the

approach rests on its simplicity and universality but not on any claim that it is the

most efficient procedure for any given problem [27]. This work will show that, for

the purpose of estimating time delays and amplitudes, the algorithm is not only

accurate and efficient but is also more informative than other estimation methods. It

provides estimates of the posterior probability distribution functions in addition to

point estimates typically provided by other approaches.



CHAPTER 4

PERFORMANCE EVALUATION OF ESTIMATION APPROACHES

In this chapter the proposed Gibbs sampling algorithm is tested on synthetic data and

compared to the optimal analytical method [16], MF, EM, and SA. Numerous received

signals are numerically simulated. These five methods are then used to calculate

estimates for the time delays and amplitudes for each arrival. Error measures are then

calculated in order to compare the performance of each algorithm. Also presented

in this chapter is an example in which one run of the Gibbs sampler appears to

fail to locate all the arrivals present in the received signal when only looking at the

point estimates obtained. However, it is shown that the distribution of all samples

generated provides information on the missed arrival.

4.1 Signal Generation

Received signals are numerically generated for two source signals. The first source

sequence is the broad in time, truncated sinc pulse shown in Figure 4.1. The second

source used to generate replicas of transmitted signals is the more narrow sinc pulse

shown in Figure 4.2. Arranging these signals at different places in time with various

amplitudes creates signals similar to those generated when a pulse travels to a receiver

by way of many paths.

17
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Figure 4.1 Broad in time source signal.

20 	 30 	 40 	 50

Time Sample

Figure 4.2 Narrow in time source signal.

Given a transmitted signal, we will consider cases in which two and three arrivals

are present in the received signal. Figure 4.3 is an example of a received signal without

noise for two very closely spaced arrivals using the broad source pulse in Figure 4.1.

Figure 4.4 is an example of a received signal without noise for three widely spaced

arrivals using the narrow source pulse in 4.2.
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Figure 4.3 Signal consisting of two arrivals closely spaced without noise for the
broad transmitted signal.
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Figure 4.4 Signal consisting of three arrivals widely spaced without noise for the
narrow transmitted signal.
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The final step in the signal generation is to include the effects of noise in the

transmitted signal. Random noise with variance ranging from 0.01 to 0.1 is then added

to the multi-path signals to simulate realistic receptions. Noisy signal realizations are

presented in Figures 4.5 through 4.7.

Time Sample

Figure 4.5 Signal obtained at the receiver for three arrivals with noise variance
0.01.

Signals are generated by varying the number of arrivals, the time delay and

amplitude associated with each arrival, and the noise variance. For each case, 100

realizations are generated from which the amplitudes and delays are estimated by all

five algorithms.
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Figure 4.6 Signal obtained at the receiver for three arrivals with noise variance
0.05.
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Figure 4.7 Signal obtained at the receiver for three arrivals with noise variance 0.1.
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4.2 Error Analysis

To quantify the results generated by the five comparative methods, the following

error analysis is adopted. First, the combined errors L ib and L2 [33], based on the

estimates obtained for all unknown parameters, are calculated from the following

equations. According to [33], estimations are considered excellent when L ib < 0.1.

- mil
= 	 Lib	A ,A T

1V1 vintage 	 'min/ ti=i

1 M — Xi[
L2 =

\FM— ti=i 'max

where, i = 1, M is the number of unknown parameters,

Xi is the estimate value for the ith parameter,

xi is the true value for the ith parameter, and

Image) is the search interval for the ith parameter.

Additional information about the accuracy of the estimates for the distinct

arrivals is obtained by calculating an error for each individual parameter using the

following equation.
2

2

) 22

(4.1)

(4.2)

Pi =
Image

(4.3)
xi — xi

where, i = 1, M is the number of unknown parameters,

Xi is the estimate value for the ith parameter,

xi is the true value for the ith parameter,

I is the max(xi — min, Image — Xi) and (Imin , Image) is the search interval for the ith

parameter.

One hundred signals were generated from which the amplitudes and delays were

estimated by all five algorithms. Presented in the tables that follow are the mean
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errors from these 100 runs. The first set of results correspond to the broad transmitted

signal in Figure 4.1. Two arrivals are present; the true delays and amplitudes are given

in Table 4.1. The amount of added noise varies. Tables 4.2 through 4.4 display the

mean errors for signals generated with noise variance 0.01; Tables 4.5 through 4.7

are the mean errors for signals with noise variance 0.05; and Tables 4.8 through 4.10

display the mean errors for signals with noise variance 0.1.

Table 4.1 True Time Delays and Amplitudes for Two Arrivals

Arrival Time delay Amplitude

1 50 100

2 52 -90

Table 4.2 Mean Li and L2 Errors for Two Arrivals With Noise Variance 0.01

Method Mean Lib Error Mean L2 Error

Analytical 0.0054 0.0075

Gibbs Sampling 0.0054 0.0075

MF 0.0595 0.1061

EM 0.0612 0.1090

SA 0.0472 0.1017
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Table 4.3 Mean Time Delay Errors Using Pn for Two Arrivals With Noise Variance
0.01

Method Delay 1 Delay 2 Average

Analytical 0.00001 0.00003 0.00002

Gibbs Sampling 0.00001 0.00003 0.00002

MF 0.0040 0.0065 0.0053

EM 0.0084 0.0072 0.0078

SA 0.0040 0.0276 0.0158

Table 4.4 Mean Amplitude Errors Using Pi for Two Arrivals With Noise Variance
0.01

Method Delay 1 Delay 2 Average

Analytical 0.0002 0.0002 0.0002

Gibbs Sampling 0.0002 0.0002 0.0002

MF 0.0028 0.0030 0.0029

EM 0.0031 0.0035 0.0033

SA 0.0022 0.0023 0.0023

The Gibbs sampling results, Tables 4.2 through 4.4, for this case are practically

identical to the optimal analytical results. Although all five methods satisfy the

condition stated in [33], L i < 0.1, and, hence, all results are considered excellent, the

superiority of Gibbs sampling is clearly evident. MF has difficulty resolving closely

spaced arrivals. Regardless of the initial conditions chosen for this case, and many

different combinations were tried, the EM estimates differ in general from the true

values. The results presented in this paper, unless otherwise stated, all methods
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requiring initial conditions, Gibbs sampling, EM, and SA, are started with the same

initial conditions for fair comparison. SA was generally unable to recover the second

arrival.

Table 4.5 Mean Lib and L2 Errors for Two Arrivals With Noise Variance 0.05

Method Mean L1 Error Mean L2 Error

Analytical 0.0447 0.0908

Gibbs Sampling 0.0447 0.0917

MF 0.0787 0.1714

EM 0.0878 0.2001

SA 0.1061 0.2827

Table 4.6 Mean Time Delay Errors Using Pn for Two Arrivals With Noise Variance
0.05

Method Delay 1 Delay 2 Average

Analytical 0.0029 0.0242 0.0136

Gibbs Sampling 0.0029 0.0249 0.0138

MF 0.0087 0.0502 0.0295

EM 0.0145 0.0491 0.0318

SA 0.0115 0.1252 0.0684
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Table 4.7 Mean Amplitude Errors Using Pi for Two Arrivals With Noise Variance
0.05

Method Delay 1 Delay 2 Average

Analytical 0.0030 0.0031 0.0031

Gibbs Sampling 0.0030 0.0031 0.0031

MF 0.0029 0.0038 0.0034

EM 0.0034 0.0038 0.0036

SA 0.0036 0.0037 0.0037

The Gibbs sampling results, Tables 4.5 through 4.7, for this case are nearly

identical to the optimal analytical results. Since this signal is the same as in the

previous example (only with more added noise), it was expected that MF would not

perform very well. The performance of the EM approach has not changed from the

previous case. Once again the SA method was unable to recover the second arrival.

Table 4.8 Mean Li and L2 Errors for Two Arrivals With Noise Variance 0.1

Method Mean L1 Error Mean L2 Error

Analytical 0.0880 0.1903

Gibbs Sampling 0.0925 0.2040

MF 0.1014 0.2358

EM 0.1042 0.2567

SA 0.1254 0.3337
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Table 4.9 Mean Time Delay Errors Using Pi for Two Arrivals With Noise Variance
0.1

Method Delay 1 Delay 2 Average

Analytical 0.0204 0.0642 0.0425

Gibbs Sampling 0.0215 0.0787 0.0501

MF 0.0335 0.0839 0.0587

EM 0.0166 0.0876 0.0521

SA 0.0252 0.1456 0.0854

Table 4.10 Mean Amplitude Errors, Pi , for Two Arrivals With Noise Variance 0.1

Method Delay 1 Delay 2 Average

Analytical 0.0075 0.0075 0.0075

Gibbs Sampling 0.0070 0.0069 0.0069

MF 0.0031 0.0039 0.0035

EM 0.0034 0.0038 0.0036

SA 0.0037 0.0036 0.0036

According to [33] the analytical method and Gibbs sampling results are consid-

ered excellent estimates, Tables 4.8 through 4.10; whereas MF, EM, and SA perform

poorly for this last case. Although the additional information provided by the

amplitude error analysis is beneficial, it is only useful if the delay is correctly located

in time. Otherwise the occurrence of an incorrectly estimated delay is actually a

fabrication of the noise present in the signal and the associated amplitude is not the

amplitude of an arrival but rather noise. Thus, the error analysis for the amplitude

estimates could be somewhat misleading.
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To further compare performance the five algorithms, in particular relative to

arrival times, the mean Li and L2 errors for the delays alone were computed and are

now presented in Figures 4.8 through 4.10 and in Tables 4.11 to 4.13. Two arrivals

are considered in which the separation between the arrivals varies from 2 to 20.

Figures 4.8, 4.9 and 4.10 plot the mean L1 errors for the time delays only for

the given signals with noise variance 0.01, 0.05 and 0.1 respectively. Each line graphs

the mean error from one hundred runs of the various estimation methods. In each

run the signal and initial guesses remain the same, the noise varies. The blue lines

trace the error for the analytical results, red is used for Gibbs sampling, MF errors

are plotted in green, EM in black, and SA in yellow. It is clear that Gibbs sampling

is the method most comparable to the analytical method. It is also easy to see in

these results that the performance of MF improves as the time between the arrivals

increases. EM results, compared to the analytical and Gibbs sampling results, are

mostly disappointing. This issue will be addressed later in this chapter. Overall, the

results for SA are poor.

Separation Between Arrivals

Figure 4.8 Mean Li errors for delays only with noise variance 0.01.
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Separation Between Arrivals

Figure 4.9 Mean L 1 errors for delays only with noise variance 0.05.

Separation Between Delays

Figure 4.10 Mean L 1 errors for delays only with noise variance 0.1.
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Tables 4.11, 4.12, and 4.13 present the L2 errors for the time delays only for

the given signals with noise variance 0.01, 0.05, and 0.1 respectively. Each column

gives the mean error from one hundred runs of the given estimation method. The

first column contains the mean errors for received signals which have delays separated

by 2 units of time. In column 2 the delays are 5 units apart, followed by delays 10

units apart. Columns 4 and 5 are the mean errors for signals separated by 15 and

10 units of time, respectively. Again, it is clear that Gibbs sampling is the method

most comparable to the analytical method. It is also clear in these results that the

performance of MF improves as the time between the arrivals increases. EM results,

compared to the analytical and Gibbs sampling results, are good on some occasions

however not for all cases. Overall, the results for SA are poor.

Table 4.11 Mean L2 Errors for Delays Only With Noise Variance 0.01

Method

Delays

50 and 52

Delays

50 and 55

Delays

50 and 60

Delays

50 and 65

Delays

50 and 70

Analytical 0.00004 0.00009 0.0002 0.0003 0.0003

Gibbs Sampling 0.00002 0.00009 0.0002 0.0004 0.0009

MF 0.0053 0.0033 0.0023 0.0018 0.0013

EM 0.0078 0.0028 0.0028 0.0064 0.0049

SA 0.0158 0.0104 0.0117 0.0152 0.0154



Table 4.12 Mean L2 Errors for Delays Only With Noise Variance 0.05

Method

Delays

50 and 52

Delays

50 and 55

Delays

50 and 60

Delays

50 and 65

Delays

50 and 70

Analytical 0.0193 0.0098 0.0053 0.0054 0.0040

Gibbs Sampling 0.0138 0.0117 0.0067 0.0052 0.0060

MF 0.0295 0.0186 0.0156 0.0142 0.0102

EM 0.0318 0.0162 0.0062 0.0207 0.0094

SA 0.0684 0.0525 0.0492 0.0397 0.0347

Table 4.13 Mean L2 Errors for Delays Only With Noise Variance 0.1

Method

Delays

50 and 52

Delays

50 and 55

Delays

50 and 60

Delays

50 and 65

Delays

50 and 70

Analytical 0.0544 0.0326 0.0264 0.0256 0.0304

Gibbs Sampling 0.0502 0.0391 0.0263 0.0190 0.0237

MF 0.0589 0.0564 0.0375 0.0350 0.0321

EM 0.0522 0.0420 0.0353 0.0692 0.0251

SA 0.0856 0.0711 0.0827 0.0728 0.0568

31
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The next set of results are for the broad transmitted signal in Figure 4.1. Three

arrivals are present; the delays and amplitudes for these arrivals are given in Table

4.14. Tables 4.15 through 4.17 display the mean errors for signals generated with

noise variance 0.01. Once again, it is shown that the Gibbs sampling algorithm is a

good match to the analytical method. The separation between the first and second

arrival is narrow relative to the width of the transmitted signal and hence MF has

difficulty locating the second delay. In this case, SA outperforms EM, however neither

method fairs well compared to the other three in this case.

Table 4.14 True Time Delays and Amplitudes Spaced Signals

Arrival Time delay Amplitude

1 10 100

2 15 -90

3 150 85

Table 4.15 Mean Li and L2 Errors for Signal Described in Table 4.14

Method Mean Lib Error Mean L2 Error

Analytical 0.0331 0.1049

Gibbs Sampling 0.0317 0.0870

MF 0.0731 0.2632

EM 0.2449 0.9402

SA 0.1082 0.4057
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Table 4.16 Mean Time Delay Errors Using Pi for Signal Described in Table 4.14

Method Delay 1 Delay 2 Delay 3 Average

Analytical 0.0015 0.0371 0.0017 0.0135

Gibbs Sampling 0.0020 0.0220 0.0001 0.0083

MF 0.0134 0.1289 0.0024 0.0482

EM 0.4502 0.4602 0.00005 0.3035

SA 0.0261 0.1815 0.0375 0.0817

Table 4.17 Mean Amplitude Errors Using Pi for Signal Described in Table 4.14

Method Delay 1 Delay 2 Delay 3 Average

Analytical 0.0013 0.0017 0.0004 0.0011

Gibbs Sampling 0.0039 0.0039 0.0001 0.0026

MF 0.0026 0.0046 0.0003 0.0025

EM 0.0029 0.0051 0.0014 0.0032

SA 0.0044 0.0066 0.0018 0.0043

Next, once again three arrivals are considered. The first and second arrivals are

now further apart than in the previous example (Table 4.18). Results for the same

noise variance are presented in Tables 4.19 through 4.21. The Gibbs sampler is a close

second to the performance of the analytical method. Although the MF errors here

are lower for this signal than it was in the previous example, the separation between

the delays are still too narrow relative to the width of the transmitted signal for it

to perform as well as the analytical method. The initial conditions chosen this time

enhanced the performance of EM.
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Table 4.18 True Time Delays and Amplitudes

Arrival Time delay Amplitude

1 10 100

2 30 -90

3 150 85

Table 4.19 Mean Lib and L2 Errors for Signal Described in Table 4.18

Method Mean Lib Error Mean L2 Error

Analytical 0.0115 0.0252

Gibbs Sampling 0.0187 0.0360

MF 0.0592 0.2281

EM 0.0354 0.1207

SA 0.0736 0.2622

The set of results that follow are for the narrow in time transmitted signal of

Figure 4.2. Three arrivals are present; the delays and amplitudes for the these arrivals

are given in Table 4.22. The separation between the first and second delays is further

increased. Tables 4.23 through 4.25 display the mean errors for signals generated. In

this case, MF compares well to the analytical method and Gibbs sampling because

of the characteristics of the received signal.
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Table 4.20 Mean Time Delay Errors Using Pi for Signal Described in Table 4.18

Method Delay 1 Delay 2 Delay 3 Average

Analytical 0.00003 0.00002 0.00001 0.00002

Gibbs Sampling 0.00005 0.00004 0.00001 0.00003

MF 0.0067 0.0524 0.0598 0.0397

EM 0.0019 0.0317 0.0207 0.0181

SA 0.0064 0.0671 0.0606 0.0447

Table 4.21 Mean Amplitude Errors Using Pi for Signal Described in Table 4.18

Method Delay 1 Delay 2 Delay 3 Average

Analytical 0.0003 0.0005 0.00006 0.0003

Gibbs Sampling 0.0029 0.0032 0.00009 0.0020

MF 0.0016 0.0046 0.0023 0.0029

EM 0.0019 0.0021 0.0005 0.0015

SA 0.0029 0.0055 0.0033 0.0039

The following set of results are for the broad in time transmitted signal of Figure

4.1. Three arrivals are present; the delays and amplitudes for the these arrivals are

given in Table 4.14. Tables 4.26 through 4.28 display the mean errors for signals

generated with noise variance 0.05. Again, Gibbs sampling is second only to the

analytic method with SA coming in third this case.
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Table 4.22 True Time Delays and Amplitudes

Arrival Time delay Amplitude

1 50 100

2 100 -90

3 150 85

Table 4.23 Mean Lib and L2 Errors for Signal in Described Table 4.22

Method Mean Lib Error Mean L2 Error

Analytical 0.0067 0.0144

Gibbs Sampling 0.0068 0.0145

MF 0.0071 0.0148

EM 0.1326 0.4744

SA 0.0721 0.2140

The next set of results are for the narrow in time transmitted signal of Figure

4.2. Three arrivals are present; the delays and amplitudes for the these arrivals are

given in Table 4.18. Tables 4.29 through 4.31 display the mean errors for signals

generated with noise variance 0.05. EM does well here compared to the analytic

method and Gibbs sampling because the chosen initial conditions were close to the

true parameters' values.
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Table 4.24 Mean Time Delay Errors Using Pi for Signal Described in Table 4.22

Method Delay 1 Delay 2 Delay 3 Average

Analytical 0.0006 0.0011 0.0006 0.0008

Gibbs Sampling 0.0006 0.0011 0.0006 0.0008

MF 0.0006 0.0013 0.0006 0.0009

EM 0.0419 0.0478 0.1471 0.0789

SA 0.0108 0.0284 0.0174 0.0189

Table 4.25 Mean Amplitude Errors Using Pi for Signal Described in Table 4.18

Method Delay 1 Delay 2 Delay 3 Average

Analytical 0.0001 0.0003 0.0002 0.0002

Gibbs Sampling 0.0001 0.0003 0.0002 0.0002

MF 0.0002 0.0004 0.0002 0.0003

EM 0.0026 0.0053 0.0028 0.0035

SA 0.0038 0.0076 0.0027 0.0047

The following set of results are for the narrow in time transmitted signal of

Figure 4.2. Three arrivals are present; the delays and amplitudes for the these arrivals

are given in Table 4.22. Tables 4.32 through 4.34 display the mean errors for signals

generated with noise variance 0.05. Gibbs sampling, MF, and SA all provide results

comparable to the analytic. However, once again we see EM's dependence on the

initial conditions, which in this case were chosen far from the true values.
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Table 4.26 Mean Lib and L2 Errors for Arrivals Described in Table 4.14

Method Mean Lib Error Mean L2 Error

Analytical 0.1189 0.4273

Gibbs Sampling 0.1365 0.4366

MF 0.1644 0.6250

EM 0.2178 0.8378

SA 0.1611 0.5672

Table 4.27 Mean Time Delay Errors Using Pn for Arrivals Described in Table 4.14

Method Delay 1 Delay 2 Delay 3 Average

Analytical 0.0577 0.2144 0.0095 0.0939

Gibbs Sampling 0.0846 0.2021 0.0089 0.0985

MF 0.1523 0.3263 0.0124 0.1637

EM 0.3261 0.4197 0.0075 0.2511

SA 0.1029 0.2673 0.0325 0.1342

The set of results that follow are for the broad in time transmitted signal of

Figure 4.1. Three arrivals are present; the delays and amplitudes for the these arrivals

are given in Table 4.18. Tables 4.35 through 4.37 display the mean errors for signals

generated with noise variance 0.1. In this case, looking only at the L ib and L2 errors it

appears that Gibbs sampling fails. However the errors for the individual parameters

shows that it does find the time delays in accordance with the analytic method and

the excessive error is due to the amplitude estimation in this case.
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Table 4.28 Mean Amplitude Errors Using Pi for Arrivals Described in Table 4.14

Method Delay 1 Delay 2 Delay 3 Average

Analytical 0.0045 0.0075 0.0022 0.0047

Gibbs Sampling 0.0187 0.0244 0.0043 0.0158

MF 0.0032 0.0096 0.0010 0.0046

EM 0.0035 0.0055 0.0013 0.0034

SA 0.0053 0.0096 0.0033 0.0061

Table 4.29 Mean Lib and L2 Errors for Arrivals Described in Table 4.18

Method Mean Lib Error Mean L2 Error

Analytical 0.0684 0.2529

Gibbs Sampling 0.0778 0.2801

MF 0.0831 0.3032

EM 0.0791 0.3031

SA 0.1098 0.3854

The final set of results are for the narrow in time transmitted signal of Figure

4.2. Three arrivals are present; the delays and amplitudes for the these arrivals are

given in Table 4.22. Tables 4.38 through 4.40 display the mean errors for signals

generated with noise variance 0.1. Once again, the reliability of Gibbs sampling is

confirmed.
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Table 4.30 Mean Time Delay Errors Using Pi for Arrivals Described in Table 4.18

Method Delay 1 Delay 2 Delay 3 Average

Analytical 0.0057 0.0758 0.0405 0.0407

Gibbs Sampling 0.0048 0.0755 0.0438 0.0414

MF 0.0056 0.0715 0.0637 0.0469

EM 0.0030 0.0574 0.0841 0.0482

SA 0.0222 0.1030 0.0672 0.0641

Table 4.31 Mean Amplitude Errors Using Pi for Arrivals Described in Table 4.18

Method Delay 1 Delay 2 Delay 3 Average

Analytical 0.0043 0.0050 0.0040 0.0044

Gibbs Sampling 0.0045 0.0051 0.0043 0.0046

MF 0.0044 0.0058 0.0050 0.0051

EM 0.0030 0.0058 0.0045 0.0044

SA 0.0041 0.0063 0.0029 0.0044

4.2.1 EM Algorithm and Initial Conditions

The EM results were surprising to us. This led to some further investigation into

the process. The algorithm was, thus, run one hundred times on the same signal,

each time starting with a different randomly selected set of initial conditions. The

assumption that EM's performance depends on the chosen initial condition was

confirmed. However, as it will be shown in the results that follow the choice of initial

conditions is not obvious. A two arrival problem was examined. The initial conditions

for the first and second delays are given as well as the L i error for the initial conditions

which resulted in estimates with the least error and the greatest error. Tables 4.41
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Table 4.32 Mean L i and L2 Errors for Arrivals Described in Table 4.22

Method Mean L i Error Mean L2 Error

Analytical 0.0772 0.2141

Gibbs Sampling 0.0780 0.2131

MF 0.0816 0.2380

EM 0.1381 0.4804

SA 0.0881 0.2448

Table 4.33 Mean Time Delay Errors Using Pn for Arrivals Described in Table 4.22

Method Delay 1 Delay 2 Delay 3 Average

Analytical 0.0143 0.0277 0.0217 0.0212

Gibbs Sampling 0.0139 0.0276 0.0216 0.0210

MF 0.0249 0.0287 0.0263 0.0266

EM 0.0652 0.0558 0.1216 0.0809

SA 0.0144 0.0341 0.0274 0.0253

through 4.46 are error results for signals with two arrivals. The correct delays are at

50 at 60 and their corresponding amplitudes are 100 and -90. The initial conditions

are required to get the EM algorithm started. Changing these conditions greatly

impacts the estimation process which we can see by the huge discrepancies in the

errors. There is a big difference between the least and the greatest error which is

calculated using the parameter estimates obtained by EM.

Using the stated initial conditions, the resulting estimates that correspond to

the least L i errors, 0.00009 (for noise variance 0.01), 0.0055 (for noise variance 0.05),

and 0.0060 (for noise variance 0.1) are presented in Table 4.41, Table 4.43, and Table
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Table 4.34 Mean Amplitude Errors Using Pi for Arrivals Described in Table 4.22

Method Delay 1 Delay 2 Delay 3 Average

Analytical 0.0045 0.0084 0.0053 0.0061

Gibbs Sampling 0.0043 0.0088 0.0062 0.0064

MF 0.0047 0.0071 0.0056 0.0058

EM 0.0030 0.0053 0.0035 0.0039

SA 0.0048 0.0104 0.0058 0.0070

Table 4.35 Mean Lib and L2 Errors for Arrivals Described in Table 4.18

Method Mean Lib Error Mean L2 Error

Analytical 0.1088 0.3084

Gibbs Sampling 0.1507 0.3535

MF 0.1589 0.5593

EM 0.1315 0.4865

SA 0.1339 0.4334

4.45, respectively. The greatest L ib errors, 0.3671 (for noise variance 0.01), 0.3772

(for noise variance 0.05), and 0.3960 (for noise variance 0.1) are presented in Table

4.42, Table 4.44, and Table 4.46, respectively. It appears that the initial conditions

chosen for the time delays is a critical factor responsible for EM's performance. In the

examples presented, the error is maximized when the starting values for each delay

approach the end of the received sequence. However, changing the initial conditions

does not guarantee that the algorithm will converge to the true parameter values.

In addition, if resources are expended in running the code for multiple sets of initial

conditions, we argue that Gibbs sampling can be efficiently used in the first place.
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Table 4.36 Mean Time Delay Errors Using Pn for Arrivals Described in Table 4.18

Method Delay 1 Delay 2 Delay 3 Average

Analytical 0.0181 0.0930 0.0399 0.0503

Gibbs Sampling 0.0273 0.0977 0.0381 0.0544

MF 0.0941 0.1651 0.1149 0.1247

EM 0.0916 0.1252 0.1081 0.1083

SA 0.0470 0.1616 0.0337 0.0808

Table 4.37 Mean Amplitude Errors Using Pn for Arrivals Described in Table 4.18

Method Delay 1 Delay 2 Delay 3 Average

Analytical 0.0168 0.0213 0.0086 0.0155

Gibbs Sampling 0.0498 0.0912 0.0375 0.0595

MF 0.0076 0.0147 0.0068 0.0097

EM 0.0058 0.0052 0.0031 0.0047

SA 0.0102 0.0110 0.0053 0.0088

As mentioned earlier, the results using EM on the two arrival problem with

delays at 50 and 52 and corresponding amplitudes 100 and -90 are poor. Illustrated

in Figures 4.11 and 4.12 is an example which is typical of the outcomes obtained from

multiple runs of the algorithm for this signal. The initial conditions used are (49,105)

for the first arrival and (53,-85) for the second arrival, seemingly ideal considering

the true values. Figure 4.11 plots the samples at each iteration for the amplitude

of the first delay and Figure 4.12 graphs the samples for the second delay. As the

EM process runs, the samples diverge from the true amplitudes, in spite of the initial

conditions and regardless of the length of time the code is allowed to run.



Figure 4.11 Samples obtained by EM for amplitude of the first arrival.

Figure 4.12 Samples obtained by EM for amplitude of the second arrival.
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Table 4.38 Mean L1 and L2 Errors for Arrivals Described in Table 4.22

Method Mean Li Error Mean L2 Error

Analytical 0.1085 0.2880

Gibbs Sampling 0.1046 0.2761

MF 0.1163 0.3177

EM 0.1470 0.4966

SA 0.1116 0.2960

Table 4.39 Mean Time Delay Errors Using Pi for Arrivals Described in Table 4.22

Method Delay 1 Delay 2 Delay 3 Average

Analytical 0.0214 0.0420 0.0305 0.0313

Gibbs Sampling 0.0209 0.0378 0.0283 0.0290

MF 0.0388 0.0454 0.0335 0.0392

EM 0.0756 0.0666 0.1172 0.0865

SA 0.0276 0.0448 0.0307 0.0344

4.3 Gibbs Distributions

Point estimates obtained from Gibbs sampling through MAP estimation do not

necessarily coincide with the true, unknown parameter values. That is particularly

anticipated as a result of estimation with Gibbs sampling or any other method

when the received signals are particularly noisy. As mentioned before, a beneficial

feature incorporated in the Gibbs sampling algorithm is the computation of the

posterior probability density functions of the unknown parameters. To emphasize

the significance, we include Figure 4.13. Unlike the other algorithms, which only
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Table 4.40 Mean Amplitude Errors Using Pn for Arrivals Described in Table 4.22

Method Delay 1 Delay 2 Delay 3 Average

Analytical 0.0088 0.0124 0.0091 0.0101

Gibbs Sampling 0.0081 0.0128 0.0094 0.0101

MF 0.0084 0.0122 0.0092 0.0099

EM 0.0042 0.0060 0.0045 0.0049

SA 0.0088 0.0169 0.0059 0.0105

Table 4.41 L i Error Using the Given Initial Conditions for EM With Noise Variance
0.01

Arrival 1

(Time,Amplitude)

Arrival 2

(Time,Amplitude)

Initial Condition (42,-65) (66,-46)

Estimate (50,100) (60,-80)

provide point estimates for each arrival, the Gibbs sampling algorithm allows us to

view the distributions obtained for the time delays and amplitudes.

The true delays in this example are 10, 30 and 150. The point estimates for the

time delays from Gibbs sampling are 10, 149, and 149. It appears that the algorithm

was unable to find the second arrival at delay 30. Looking at the distribution, Figure

4.13, however, we can see that there another arrival at the appropriate delay (30).

The Gibbs sampling - maximum a posteriori estimation approach has demon-

strated to be more informative than other time delay and amplitude estimation

methods, because it provides a wider picture of the probability that unknown parame-
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Table 4.42 L i Error Using the Given Initial Conditions for EM With Noise Variance
0.01

Arrival 1

(Time,Amplitude)

Arrival 2

(Time,Amplitude)

Initial Condition (199,81) (199,-60)

Estimate (197,69) (198,-63)

Table 4.43 L i Error Using the Given Initial Conditions for EM With Noise Variance
0.05

Arrival 1

(Time,Amplitude)

Arrival 2

(Time,Amplitude)

Initial Condition (49,77) (92,-81)

Estimate (50,118) (58,-91)

ters take on a broad range of values. Thus, information that would be concealed by

the point estimates is now revealed.

The results presented in this chapter strongly support the argument in favor

of using Gibbs sampling to estimate arrival times and amplitudes of signals. Overall

the results found from the Gibbs sampler most resemble the optimal analytic results.

Unlike the other methods presented for the comparison, Gibbs sampling is not affected

by initial conditions chosen by the user, nor is it significantly affected by the sigal

characteristics.
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Table 4.44 Lib Error Using the Given Initial Conditions for EM With Noise Variance
0.05

Arrival 1

(Time,Amplitude)

Arrival 2

(Time,Amplitude)

Initial Condition (199,98) (199,-51)

Estimate (191,119) (191,-97)

Table 4.45 Lib Error Using the Given Initial Conditions for EM With Noise Variance
0.1

Arrival 1

(Time,Amplitude)

Arrival 2

(Time,Amplitude)

Initial Condition (39,89) (129,39)

Estimate (50,120) (58,-88)

Table 4.46 Lib Error Using the Given Initial Conditions for EM With Noise Variance
0.1

Arrival 1

(Time,Amplitude)

Arrival 2

(Time,Amplitude)

Initial Condition (177,102) (184,-79)

Estimate (191,179) (191,-148)
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Figure 4.13 Distributions obtained by Gibbs sampling.



CHAPTER 5

MODELLING VARIANCE AS AN UNKNOWN PARAMETER

Recall that the received signal follows Equation (1.1). We have shown that the Gibbs

sampler successfully identified the amplitudes and time delays assuming the noise

variance was known. This variance is now treated as an unknown parameter, added

to the attenuated and delayed replicas of the transmitted signal. To do this, we make

use of the following theorem:

Thm.: Let the sample quantity N s2be distributed as (o-2/N)A. If the prior

distribution of logo is locally uniform, then, given Ns2, K2  is distributed a posteriori as

(As2 )xA. ,-2 [34].

In the context of the work presented here, x2N is the sum of the squares of A

random numbers. A is the length of the received signal and Nsy = ET,=i (r(n) —

E im=i ais(n — ni))2

We will use the following noninformative prior for the variance [30, 34].

/ 2\ = 
1 
y'
	 CI

2 > 0 	 (5.1)

This choice represents the fact that no information is available on the variance.

Including this in the joint distribution Equation 3.5, we can now write the posterior

probability distribution function of all unknown parameters (in this case, n i , ail for

i = 1, , M, and cry) as follows:

p(ni, ...,nm,ai, 	 am, 0-y Ir(n)) =
1 1

H 
 m y 	

1

(Or)
o

Ko
exp( 

1  > (ran) — ais(n — ni))2 ), 	 (5.2)
A A- 2A-y n=1 	 i=1
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where H is a constant.

Consolidating all the constants in Equation 5.2, the conditional distribution of

A-2 given ail and ni, i = 1, 2, ..., M and received signal r(n) can be written as:

p(K y In i , ail, r(n)) = F
K

lo+y exP( — -2,2 E ( ( ) - E ajs(n — n n )) y )•

F is the normalizing constant of the distribution.

This conditional distribution is recognized as a chi-square distribution with N

degrees of freedom, x2N. Equation 5.3 is used to generate samples variance.

5.1 Results for Unknown Variance

Treating the noise variance as an unknown parameter in the Gibbs sampling algorithm,

samples were obtained using Equation 5.3. Synthetic data was constructed for the

source shown in Figure 5.1. The results are presented for received signals with time

delays and amplitudes included in Tables 5.1 and 5.2. Three different noise variances

are considered, .01, .05 and .1. Figures 5.2 - 5.4 show the noisy realizations of the

received signal for the three cases.

Table 5.1 True Values for the Wide Arrival Case

Arrival Time delay Amplitude

1 10 100

2 30 -80

3 150 60

1 N 	
m

(5.3)
n=1 	 i=1
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Figure 5.1 Source signal.

Table 5.2 True Values for the Close Arrival Case

Arrival Time delay Amplitude

1 10 100

2 15 -80

3 150 60

Figures 5.5 through 5.7 present samples of the posterior distributions of the

variance as obtained from the Gibbs sampler for the wide arrival case for the indicated.

The results presented show Gibbs sampling's overwhelming ability to correctly identify

the variance.
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Figure 5.2 Signal obtained at the receiver for three arrivals widely spaced with
noise variance 0.01.
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Figure 5.3 Signal obtained at the receiver for three arrivals widely spaced with
noise variance 0.05.
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Figure 5.4 Signal obtained at the receiver for three arrivals widely spaced with
noise variance 0.1.
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Figure 5.5 Distributions for the variance obtained from 10 runs of the Gibbs
sampling algorithm for the wide arrival signal. The true variance is 0.01.
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Figure 5.6 Distributions for the variance obtained from 10 runs of the Gibbs
sampling algorithm for the wide arrival signal. The true variance is 0.05.
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Figure 5.7 Distributions for the variance obtained from 10 runs of the Gibbs
sampling algorithm for the wide arrival signal. The true variance is 0.1.
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Figures 5.8 through 5.10 present variance samples for the close arrival case for

the indicated noise variances.

Case 2. Variance..01
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0.05
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Figure 5.8 Distributions for the variance obtained from 10 runs of the Gibbs
sampling algorithm for the close arrival signal. The true variance is 0.01.

5.2 Importance of Accurate Variance Estimation

The following graphs show the importance of correctly estimating the noise variance

and the effects of an assumption of a wrong variance on the arrival estimates. When

the assumed variance is correct as in Figure 5.11 the Gibbs sampler appears to be

able to find the arrivals with more certainty than when the incorrect variance is

considered, Figure 5.12. Using the Gibbs sampler to estimate the variance actually

improves the performance of the algorithm in estimating the arrivals. When the

noise is incorrectly estimated, there is more ambiguity in the distributions and hence,

decreases the likelihood the time delays and amplitudes will be estimated accurately.
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Figure 5.9 Distributions for the variance obtained from 10 runs of the Gibbs
sampling algorithm for the close arrival signal. The true variance is 0.05.
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Figure 5.10 Distributions for the variance obtained from 10 runs of the Gibbs
sampling algorithm for the close arrival signal. The true variance is 0.1.
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Figure 5.11 Time delay and amplitude distributions obtained by Gibbs sampling
assuming the true variance.
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Figure 5.12 Time delay and amplitude distributions obtained by Gibbs sampling
assuming a wrong variance of 0.1 (true variance is 0.05).



CHAPTER 6

UNKNOWN NUMBER OF ARRIVALS

We have assumed until now that the number of arrivals in the received signal is

known. This assumption is quite common [17, 351]. It is argued that this is not as

restrictive as it appears since, in many cases the number of paths (arrivals) can be

determined from the geometry of the channel. However, since we do not assume any

prior knowledge about the environment, it is not valid to assume prior knowledge

about the number of arrivals. Therefore, the next task at hand is to use the Gibbs

sampling algorithm to determine the number of arrivals present in the received signal.

6.1 Empirical Approach

First, we run the Gibbs sampling algorithm assuming present in the received signal

are two arrivals, three arrivals, four arrivals, etc. One interesting feature of the Gibbs

sampler is that, when generating samples for the time delays, the program can be

forced to find an arrival different from those already found. When running the Gibbs

sampler assuming the number of arrivals is greater than the true number of arrivals,

the process often gets "stuck" in a loop. This is the first indication that the original

guess exceeds the true number of arrivals and provides a limit on the maximum

number of arrivals that should be assumed when running the algorithm. Exploiting

this phenomenon, we can implement a flag waving technique suggesting that it may

be necessary to reduce the assumed number of arrivals.

Furthermore, we can study the distributions obtained for each considered case.

In the next example, the true number of arrivals is three. The received time-series

is generated employing the source signal of Figure 6.1 with various amplitudes, time

delays, and added noise.
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Time Sample

Figure 6.1 Source signal.

Figures 6.2 through 6.4 present time delay and amplitude distributions for the

received signal with arrivals given in Table 6.1 and noise variance 0.01.

Table 6.1 True Values for the Wide Arrival Case

Arrival Time delay Amplitude

1 10 100

2 30 -80

3 150 60
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Figure 6.2 Distributions obtained by Gibbs sampling assuming two arrivals are
present for the wide arrival signal with variance 0.01.

Figure 6.3 Distributions obtained by Gibbs sampling assuming three arrivals are
present for the wide arrival signal with variance 0.01.

Figure 6.4 Distributions obtained by Gibbs sampling assuming four arrivals are
present for the wide arrival signal with variance 0.01.



Time Delay

62

Figure 6.2 demonstrates the distributions obtained from Gibbs sampling assum-

ing that the signal consists of two arrivals. The algorithm correctly identifies the first

two. Figure 6.3 plots the Gibbs distributions assuming three arrivals are present.

We can clearly identify a third, distinct arrival not located in the previous trial.

Continuing on, Figure 6.4 displays the distributions obtained when the Gibbs sampling

algorithm is prompted to find four arrivals. The four subplots in Figure 6.4 are the

individual distributions for each arrival (that is, these are joint distributions of arrival

time and amplitude). We can see that there is ambiguity in the third subplot. The

algorithm does not find a distinct arrival, instead, sometimes it identifies the true

second arrival and other times it locates the true third arrival. The extra arrival

seems to be a duplicate of a true arrival. Looking at these graphs, there is a strong

indication that there truly are only three arrivals present. Notice that the algorithm

not only finds the correct number of arrivals but also correctly identifies the arrival

times.

Figures 6.5 through 6.7 are the distributions for the received signal with arrivals

given in Table 6.1 and variance of noise 0.05. These distributions are quite similar to

the respective distributions obtained in the previous example. Therefore, we again

conclude the algorithm success- fully estimates the correct number of arrivals.

Figure 6.5 Distributions obtained by Gibbs sampling assuming two arrivals are
present for the wide arrival signal with variance 0.05.
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Case 1. Assume 4 arrivals. Variance=0520
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Figure 6.6 Distributions obtained by Gibbs sampling assuming three arrivals are
present for the wide arrival signal with variance 0.05.

Time Delay

Figure 6.7 Distributions obtained by Gibbs sampling assuming four arrivals are
present for the wide arrival signal with variance 0.05.



50 	 100 	 150

Time Delay

-100

-150

-20

100

150

-50

50

)0

200

-200 	 -100 	 -200 	 0
50 100 150 200 	 50 100 150 100 	 50 100 150 100

100

150

100

50

200

150

100

50

-50

-100

-150

10f

150(

10(

100

150150

50 150

0

-5(

-10(

- 15(

0

-50

-100

-150

64

Figures 6.8 through 6.10 are the distributions for the received signal with arrivals

given in Table 6.1 and variance of noise 0.1.
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Figure 6.8 Distributions obtained by Gibbs sampling assuming two arrivals are
present for the wide arrival signal with variance 0.1.
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Figure 6.9 Distributions obtained by Gibbs sampling assuming three arrivals are
present for the wide arrival signal with variance 0.1.
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Figure 6.10 Distributions obtained by Gibbs sampling assuming four arrivals are
present for the wide arrival signal with variance 0.1.

6.2 Analytic Approach

The next step is to mathematically formulate the behavior observed in the previous

section. This can be done using techniques similar to Akaike Information Criteria

(AIC) and Schwartz [36], approaches typically employed to determine the number

of parameters involved in a problem. In essence, the AIC approach involves the

log-likelihood of the maximum likelihood estimator of the parameters of the model.

Whereas, Schwartz's approach is based on Bayesian arguments; assume that each

competing model can be assigned a prior probability, and select the model which

yields the maximum posterior probability. Samples are generated for the posterior

distributions of the time delays, amplitudes, and noise variance using the Gibbs

sampler, assuming various numbers of arrivals are present.

We will use the following uniform prior for the number of arrivals M:

(6.1)

where Q = 114-— max — Mmnn + 1 .

This choice represents the fact that no information is available on the number

of arrivals. However, whenever possible, prior knowledge indicating the maximum
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number of arrivals should be taken into consideration to avoid unnecessary calculations.

The conditional probability of all unknown parameters (in this case, n i , ai for i =

, M, and, Ay ) given the number of arrivals M and a received signal r(n)can be

written as follows:

p(n1 , ...,Om , al , ..., am , cry lM,r(n)) =
1 	1	 1 

N	 M

K 	 o exp(— ,.Cy E (r(n) — E ais(n — ni))2),
Amp (V27) 

or 
o 	L u i=1 	 i=1

(6.2)

where 1/K is the N-dimensional joint probability density function of r(n), n =

1, A, which is a constant.

Marginal distribution of M given a received signal is obtained by integrating

the product of Equation 6.2 and the prior for M over all unknowns. That is,

P(mIr (n)) = L2 al fa2 Jam Li L2 iM

P(ni,	 nm,ai, ..., aMI, Ky1M, r (n))p(M)dnm...dnydnidam ...daydaidA-2 	(6.3)

In practice, the distribution of Equation 6.3 is obtained by first generating

samples for the delays, amplitudes, and noise variance for a set of predetermined

number of arrivals. The integral must be evaluated for all samples generated. Posterior

distribution, p(Mir (n)), for the number of arrivals is then numerically implemented

by summing the integrand in Equation 6.3 over all parameters.

6.3 Analytical Results for Unknown Number of Arrivals

Gibbs sampling was used to generate samples for the distributions of time delays

and amplitudes for ten received signals with three different variances, 0.01, 0.05, and

0.1. The correct number of arrivals, delays, and amplitudes are shown in Tables 5.1

and 5.2. We ran the algorithm three different times assuming two arrivals, three

arrivals, and four arrivals are present. This provided samples for the time delays
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Table 6.2 Probability of Number of Arrivals for the Wide Arrival Case With Given
Variance

Variance 2 Arrivals 3 Arrivals 4 Arrivals

0.01 3.7552x10- 5 0.9998 1.758x10-4

0.05 0.0684 0.9306 0.0011

0.1 0.0243 0.9751 6.5071x10-4

and amplitudes for each arrival, as well as the variance of noise. The modes of

the distributions were used in Equation 6.3 to obtain a probability for each case of

assumed number of arrivals.

The results presented in Table 6.2 and Table 6.3 are the mean probabilities

for the ten widely spaced signals and ten closely spaced signals, respectively, for the

assumed number of arrivals.

Figure 6.11 plots the mean probabilities using Equation 6.3, for ten received

signals. Presented are the results for the received signal with variance of noise 0.05

for the widely spaced example shown in Table 5.1.

Table 6.3 Probability of Number of Arrivals for the Close Arrival Case With Given
Variance

Variance 2 Arrivals 3 Arrivals 4 Arrivals

0.01 3.76x10-5 0.9997 1.76x10-4

0.05 0.08 0.919 0.01x10- 1

0.1 0.03 0.9693 6.51x10-4
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Figure 6.11 Mean probability for the given number of arrivals.

In both cases, for all amounts of noise, there was overwhelming success with the

Gibbs sampler in being able to identify the correct number of arrivals.



CHAPTER 7

CONVERGENCE

When performing parameter estimation using iterative sampling-based techniques

such as the Gibbs sampler, convergence must be monitored. Convergence of the

samples generated from the proposed Gibbs sampling algorithm will be measured in

two ways. First, the algorithm will be replicated with different starting points; it

will then be checked whether the different runs converge to the same point (or, if

not, we will note multiple solutions). In principle, the choice of starting values is

unimportant since the Gibbs sampler should run long enough to "forget" its initial

states. Early in the Gibbs process sampling in low probability regions is permitted,

allowing it to move around the sample space [24, 28]. It is always useful to simulate at

least two parallel sequences and examine the independent simulations to see if they

converge. Experience suggests that with Bayesian posterior simulation, the added

information obtained from replication out- weighs any additional costs required in

multiple simulations. Then, we will also monitor the stability of the modes of the

estimated distributions as a function of iteration number.

7.1 Convergence of Parallel Sequences

Figures 7.1 - 7.6 show the samples obtained at each iteration for the time delays and

amplitudes for the signal presented in Table 5.1 (variance 0.01). The five plots in

each figure are the results obtained for the given parameter from five runs of the

Gibbs sampling algorithm. For each run, different initial conditions were chosen.

The number of iterations was 5000 for each run. In practice, the number of iterations

necessary before convergence is observed will vary. It depends on the signal; signals

with high SNR require fewer iterations than signals with a lot of noise.

69



ooh
500 1000 1500 3500 4000 7500 50002900 	 2500 	 3000

70

20o 

-

1 	 i 	 t 

40

20

i 20o

F.3 0
20

O;4
10

co

• 

0
▪70

a)

I-

70

I 	 I 	 I 	 I 	 I 	 I 	 I 	 I

Iteration

Figure 7.1 Samples for the time delay for the first arrival at each iteration.

Figure 7.1 presents the samples obtained at each iteration from the Gibbs

sampling algorithm for the first delay. The true value is 10. It appears that the

Gibbs sampler quickly converges to the correct time delay for the first arrival in all

five runs.

Figure 7.2 demonstrates the samples obtained at each iteration using Gibbs

sampling for the second delay. The true value is 30. In all five runs it appears that

the Gibbs sampling algorithm converges to the correct time delay for the second

arrival, as well.

Figure 7.3 contains the samples from five runs of the Gibbs sampling algorithm

for the third delay. The true value is 150. Again convergence is observed.

Similarly, amplitude information is presented in Figures 7.4 - 7.6. The amplitudes

are concentrated around the true values of 100, -80, and 60.

7.2 Convergence to a Distribution

Since convergence of the Gibbs sampling algorithm is really convergence to a distribu-

tion rather than to a point, it is reasonable to check convergence of the algorithm
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Figure 7.3 Samples for the time delay for the third arrival at each iteration.
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Figure 7.4 Samples for the amplitude for the first arrival at each iteration.
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Figure 7.5 Samples for the amplitude for the second arrival at each iteration.

72



73

- 290

500

0

-500

• 290

a) -290

500

-EL 0

-500

290

0

- 290
0
	

500
	

1000
	

1500 	 2000 	 2500 	 3000
	

3500
	

7000
	

4500
	

5000

Iteration

Figure 7.6 Samples for the amplitude for the third arrival at each iteration.

by looking at the modes of the distributions, the amplitudes and delays at which

the distributions are maximized. To illustrate the algorithm's performance in this

capacity, we will take a couple of different approaches.

To check convergence of a single run of the Gibbs sampling algorithm, we find

the modes of the distributions obtained at various points throughout the iterative

process. After throwing away the first 1000 samples, we find the modes for the second

set of 1000 samples, the third set of 1000 samples, the fourth set of 1000 samples, and

the fifth set of 1000 samples (for a run consisting of 5000 iterations). Presented here

are the results for the amplitudes since, most often, if there is an issue of divergence,

it is more prominent with the amplitudes. The estimates for the amplitudes of the

first three arrivals are the modes for each distribution containing 1000 samples. The

modes for each arrival correspond to the combination of amplitude and delay at which

we observe the highest posterior probability.

Table 7.1 and Table 7.2 shows the results obtained for two different runs of

Gibbs sampling. Each run is 5000 iterations long. The modes are calculated for each
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distribution produced by the samples generated during the given iterations. The true

amplitudes for the first, second, and third arrival are 100, -80 and 60, respectively.

Table 7.1 The Modes of the Amplitudes for Run 1

Iterations A l A2 A3

1001-2000 95 -85 65

1001-3000 105 -75 55

3001-4000 95 -75 55

4001-5000 105 -85 55

Table 7.2 The Modes of the Amplitudes for Run 2

Iterations A l Ay A3

1001-2000 95 -75 65

1001-3000 95 -85 65

3001-4000 95 -85 65

4001-5000 105 -85 65

Both runs of the algorithm converge to the correct modes for all three amplitudes

very quickly.

To check whether the distributions obtained from different runs of the Gibbs

sampler converge to the same mode, Table 7.3 presents the modes obtained for the

amplitudes for each arrival for five runs. Each run is started with different initial

conditions.
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Table 7.3 The Modes of the Amplitudes for Five Different Runs

Run A l Ay A3

1 95 -75 65

2 105 -85 55

3 105 -75 55

4 95 -85 65

5 95 -75 65

The results obtained from all five runs of the algorithm allow us to say, with a

sufficient amount of confidence, that the correct estimates for the three amplitudes

have been found.



76

7.3 Divergence Issues

It has also happened that a single run of Gibbs sampling appears to have "converged" ,

but plots obtained from independent runs of the algorithm show that they are not

converging to the same value. Figure 7.7 plots the samples obtained from two runs of

Gibbs sampling for the time delay of the first arrival. The correct delay is 10. In the

first plot, the value that appears the most is 6. In the second plot, this value appears

to be 13. This emphasizes the benefits obtained from multiple runs of the Gibbs

sampler. In situations like this, the inconsistencies can be remedied in several ways.

The algorithm can be restarted using different initial conditions or the algorithm can

continue to run longer. Using either approach, the algorithm will eventually converge

to the same distribution.

Iteration

Figure 7.7 Samples obtained by Gibbs sampling for the time delay for the first
arrival.

The Gibbs sampling algorithm does not necessarily converge quickly. It can

happen that the user's choice of number of iterations may be insufficient to guarantee

convergence. In our problem the number of iterations is typically set to 5000. Figures

7.8 and 7.9 present a case where divergence was detected within the first 5000
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iterations. The process was then continued for an additional 5000 iterations, during

which convergence to the true amplitude values of 100 and -80 was attained.
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Figure 7.8 Samples obtained by Gibbs sampling for the amplitude for the first
arrival at each iteration. The correct amplitude is 100.

As previously mentioned, another alternative to dealing with results that have

diverged is to restart the program with a new seed, which is comparable to changing

the initial conditions. This changes the values of the random variables generated at

each iteration and, in turn, changes the samples generated. Figures 7.10 and 7.11 are

the samples obtained for the amplitudes of the first and second arrivals, which have

diverged.

Figures 7.12 and 7.13 are the samples obtained for the amplitudes of the first

and second arrivals, which have now converged after rerunning the code with a new

seed.

We can also see this trend by looking at the modes of the estimated distributions

at various intervals throughout the iterative process. The modes are calculated for

each distribution produced by the samples generated during a chosen set of iterations.
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Figure 7.9 Samples obtained by Gibbs sampling for the amplitude for the second
arrival at each iteration. The correct amplitude is -80.

Figure 7.10 Samples obtained by Gibbs sampling for the amplitude for the first
arrival at each iteration. The correct amplitude is 100.
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Iteration

Figure 7.11 Samples obtained by Gibbs sampling for the amplitude for the second
arrival at each iteration. The correct amplitude is -80.
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Figure 7.12 Samples obtained by Gibbs sampling for the amplitude of the first
arrival vs. iteration. The correct amplitude is 100.
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Figure 7.13 Samples obtained by Gibbs sampling for the amplitude of the second
arrival vs. iteration. The correct amplitude is -80.

The amplitudes of the first, second, and third arrival are 100, -80 and 60, respectively.

Table 7.4 shows the results for a single run consisting of 10,000 iterations.

As the table shows, divergent modes will eventually converge. The modes

obtained for the amplitudes of the first two arrivals are diverging for the first 6000

iterations. However, after that point the modes obtained for all three amplitudes

move towards the true values of the amplitudes.



Table 7.4 Monitoring the Modes of the Distribution

Iterations A l A2 A3

1001-2000 455 -405 75

1001-3000 135 -125 75

3001-4000 395 -475 75

4001-5000 1175 -1175 75

5001-6000 1255 -1215 65

6001-7000 85 -75 65

7001-8000 95 -85 65

8001-9000 105 -85 65

9001-10000 95 -85 65
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CHAPTER 8

APPLICATION TO REAL DATA

The Gibbs sampling algorithm presented here will now be applied to real data from

the Haro Straight experiment. This experiment recorded signals obtained at several

phones from an emitted sound. One of these signals is studied to estimate the number

of arrivals, amplitude and time of each arrival, and the noise variance. For more details

about the experiment the reader is referred to [5]. To test the performance of the

algorithm, the received and transmitted signal are needed.

50 	 100 	 150
	

200
Time delay

Figure 8.1 Real data from the Haro Straight experiment.

Although the received signal was available to us, we did not have access to

the source (transmitted) signal. An estimate of the source signal was obtained by

selecting one of the early arrivals from the received sequence. Figures 8.1 and 8.2

show the received signal and the estimate of the transmitted signal, respectively.
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Figure 8.2 Transmitted signal for real data from the Haro Straight experiment.

The Gibbs sampler is run for several possible numbers of arrivals. Samples for

the amplitudes are generated using Equation 3.7. Time delay samples are generated

using Equation 3.9. Also acquired from the Gibbs sampling algorithm are samples for

the noise variance using Equation 5.3. Clearly there are at least five arrivals present

in Figure 8.1; thus estimates for signals with five, six, seven, and then eight arrivals

are generated. Once the sampling process is complete, the modes of the distributions

are found for each arrival. That is, since each arrival has an amplitude and time delay

associated with it, the most frequently occurring pair is chosen as the estimate for

the given arrival. Subsequently, the posterior distributions of the number of arrivals

is attained. In Table 8.1 the estimates for the time delays and amplitudes are shown.

Table 8.2 and Figure 8.3 contains the probability of a certain number of arrivals being

present in the received signal.
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Table 8.1 Estimates (Time Delay, Amplitude) Obtained for the Arrivals in the Real
Data in Figure 8.1 Using Gibbs Sampling

Assume

5 arrivals

Assume

6 arrivals

Assume

7 arrivals

Assume

8 arrivals

1st arrival (74, -1.3) (74, -1.3) (74, -1.3) (74, -1.3)

2nd arrival (99, 1.1) (99, 1.1) (99, 1.1) (99,0.7)

3rd arrival (144, -0.7) (143, -0.5) (143, -0.5) (100,-1.0)

4th arrival (179, -0.6) (144,-0.9) (144,-0.9) (143,-0.5)

5th arrival (227,-0.6) (179, -0.8) (179, -0.9) (144, -0.9)

6th arrival (230, -0.5) (186, -0.4) (179, -0.9)

7th arrival (230,-0.6) (186,-0.5)

8th arrival (230,-0.6)

Studying the estimates in Table 8.1 and the probability associated with the

various choices for the number of arrivals, one can infer that there are seven arrivals

present in the data. Including a new arrival in the estimation process increases

the probability until seven arrivals are considered. After that point, a reduction in

probability is observed when additional arrivals are considered. Before concluding

that the estimates for each arrival are those presented in Table 8.1 for the seven

arrival case, convergence should be checked.
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Table 8.2 Probability the Signal in Figure 8.1 Contains a Given Number of Arrivals

Number of arrivals Probability

5 0.0761

6 0.2364

7 0.3999

8 0.2876

6 	 7

Number of Arrivals

Figure 8.3 Probability the signal in Figure 8.1 contains a given number of arrivals.

Presented in Figure 8.4, are the samples obtained for the first time delay at

each iteration from three different runs of the Gibbs sampling algorithm. Each run

is quick to converge.
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Figure 8.4 Samples for the first time delay from three runs of the Gibbs sampler.

Overall, the algorithm converged efficiently for each arrival. At this point,

(74, -1.3), (99, 1.1), (143, -0.5), (144,-0.9), (179,-0.9), (186, -0.4), and (230,-0.6) are

accepted as the time delays and amplitudes of the seven arrivals present in the Haro

Straight data.

The only other component in the data to be estimated is the noise variance.

The samples generated during the three runs of the Gibbs sampling algorithm are

plotted in the histograms shown in Figure 8.5. In all three cases, the mode is at 0.005

and so we will assume that is the noise variance.
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Figure 8.5 Samples for the variance from three different runs of the Gibbs sampler.



CHAPTER 9

CONCLUSIONS

In this work, an approach for the calculation of maximum a posteriori estimates

for time delays, amplitudes, noise, and number of arrivals using a Gibbs sampling

optimization method is developed. It has been shown that the approach is efficient

to implement and can compute maximum a posteriori estimates rapidly in cases of

several multi-paths, when the analytical maximum a posteriori approach is computa-

tionally not feasible.

The proposed Gibbs sampler was initially applied to synthetic data. Several

cases were examined, testing the performance relative to the signal-to-noise ratio,

number of multi-path arrivals, and time between the distinct arrivals. The results

presented here have exhibited superiority to other optimization methods. The pro-

posed method is faster than simulating annealing. It does not dependent on initial

conditions like EM, and does not present any difficulties with closely spaced arrivals

encountered with MF. In addition to efficiency and accuracy in the estimates, the

Gibbs sampling method has the additional advantage of computing an estimate of

the entire joint probability distribution of the unknown parameters, in contrast to

most other methods that result only on point estimates, giving a more informative

picture of the problem at hand.

The algorithm was also tested for convergence. This issue was approached in two

different ways: First by checking parallel runs of the algorithm and then by examining

the modes of the distribution. Convergence was typically attained within a relatively

small number of iterations. On a few occasions, additional runs or iterations were

necessary for the posterior distributions to stabilize.

88



89

The method was also applied to the Haro Straight data. Given a time series,

the number of arrivals was recovered. Once this number was decided and the samples

were checked for convergence, estimates were obtained for the time delays, amplitudes,

and noise variance.

The work presented here can be further extended, treating the Gibbs sampler

as the first step in a two step process. First, generate samples to determine values

for the time delays, amplitudes, noise variance, and number of multi-paths. Once

estimates are obtained for the parameters associated with the received signal, they

can then be used to quickly find estimates for the parameters associated with the

problem of interest, such as source and receiver location, sound speed profile, bottom

properties, etc, in shallow water propagation.
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