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ABSTRACT

STUDIES ON IMPROVED INTEGRATED MEMBRANE-BASED
CHROMATOGRAPHIC PROCESS FOR BIOSEPARATION

by

Yanke Xu

To improve protein separation and purification directly from a fermentation broth, a

novel membrane filtration-cum-chromatography device configuration having a relatively

impermeable coated zone near the hollow fiber module outlet has been developed. The

integrated membrane filtration-cum-chromatography unit packed with chromatographic

beads on the shell side of the hollow fiber unit enjoys the advantages of both membrane

filtration and chromatography; it allows one to load the chromatographic media directly

from the fermentation broth or lysate and separate the adsorbed proteins through the

subsequent elution step in a cyclic process.

Interfacial polymerization was carried out to coat the bottom section of the hollow

fiber membrane while leaving the rest of the hollow fiber membrane unaffected.

Myoglobin (Mb), bovine serum albumin (BSA) and α-lactalbumin (a-LA) were used as

model proteins in binary mixtures. Separation behaviors of binary protein mixtures were

studied in devices using either an ultrafiltration (UF) membrane or a microfiltration (MF)

membrane. Experimental results show that the breakthrough time and the protein loading

capacities were dramatically improved after coating in both UF and MF modules. For a

synthetic yeast fermentation broth feed, the Mb and a-LA elution profiles for the four

consecutive cyclic runs were almost superimposable. Due to the lower transmembrane



flux in this device plus the periodical washing-elution during the chromatographic

separation, fouling was not a problem as it is in conventional microfiltration.

A mathematical model describing the hydrodynamic and protein loading

behaviors of the integrated device using OF membrane with a coated zone was

developed. The simulation results for the breakthrough agree well with the experimental

breakthrough curves. The optimal length of the coated zone was obtained from the

simulation.

A theoretical analysis of the protein mass transfer was performed using a

diffusion-convection model considering the feed-side concentration polarization and the

permeate-side concentration gradient formed by the adsorption. The permeate-side

adsorption can enhance the observed protein transmission through the membrane

considerably at low permeate flux. But the enhancement effect can be neglected at higher

permeate flux when convection dominates the total mass transfer process or the proteins

are very highly rejected by the membrane.
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CHAPTER 1

BACKGROUND

1.1 Introduction

Bioproducts produced by cells are either intracellular or extracellular. For an intracellular

product, cells are first harvested from the fermentation broth or cell culture, and then

lysed to release the bioproducts. For an extracelullar product, the product is excreted by

the producing organisms into the surrounding medium. The products are subsequently

isolated from the cells or cell debris and purified through a sequence of clarification,

concentration, adsorption and chromatography steps. Due to the potential denaturation or

contamination of the biomolecules, the bioprodcuts need to be isolated from the complex

lysate/medium and purified as soon as possible.

Direct bioproduct recovery and purification from a fermentation broth or a lysate

is complicated by the large number of dissolved substances and suspended particles.

Most of the biomolecules are sensitive to heat and harsh chemical conditions; adsorption

and chromatography under mild conditions are the most widely used methods for

separation and purification. Conventional adsorption and chromatography processes are

undertaken in the packed bed, which can not process unclarified feed streams containing

particulate matter which will lead to column plugging. Traditionally, a number of

pretreatment steps have to be employed to eliminate the cellular or colloidal suspended

material and concentrate the feed prior to bioproduct purification via adsorption/

chromatography. These processes include centrifugation, flocculation, liquid-liquid

extraction and various forms of microfiltration (Russotti and Göklen, 2001). It is common

1
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Solid-Liquid Separation
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• Centrifugation

• Microfiltration
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Figure 1.1 Simplified downstream processing schematic based on membrane filtration-
cum-chromatography.
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to take dozens of steps for product recovery and purification in a biopharmaceutical

manufacturing process. For example, in the process of Eli Lilly's human insulin produced

from E. coli fermentation, 27 out of the 31 total processing steps were associated with

product recovery and purification (Prouty 1991; Ladisch 2001). Typically, 50-90% of the

total production costs is for downstream recovery and purification (Committe on

Bioprocess Engineering 1992; Harrison 1994). Furthermore, there are significant losses

of product and risks of contamination in each such complex step. A process/device that

could combine clarification along with recovery and purification of the product

biomolecule/protein as shown in Figure 1.1 would be highly desirable and crucial to low

cost bioproduct manufacturing.

One strategy that has been suggested previously for direct bioproduct capture and

separation from the unclarified feed is suspending adsorbent beads in the unclarified feed

in a stirred tank; the beads can adsorb the target species in the suspension. Once the beads

have been loaded, they can be recovered from the suspension by various filtration

techniques. Byers et al. (Byers, Jsacoff and Naples 1991) used hollow fiber membrane

filtration to recover such loaded beads and another membrane filtration process to

separate the product with the adsorbent beads. Davis (1990) proposed a technique to

circulate the affinity bead-containing stream through one side of a membrane while feed

containing the bioproduct flowing through the other side of the membrane. The target

bioproduct and some impurities bind to the adsorbent upon passing through the

membrane. The bound molecules are recovered from the affinity beads in a separate

elution process. Bucak et al. (2003) recently developed a magnetic nanoparticle

separation technique. The magnetic nanoparticles in the suspension system loaded with
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target proteins are easily retained on the steel wire mesh under high-gradient magnetic

filtration. The proteins are eluted from the retained nanoparticles by passing eluent with

an appropriate pH and ionic strength. The retained nanoparticles are then released by

turning off the magnet, and recycled

Another strategy is using fluidized or expanded bed to capture the bioproduct

directly from the fermentation broth or cell culture (Thommes, Halfar, Lenz and Kula

1995; Finette, Baharin, Mao and Hearn 1998). While the bed is fluidized or expanded by

the feed stream, void fraction of the bed will be increased enough for cells and cell debris

to pass through. The fluidized beads loaded with the target proteins are then washed with

buffer to remove the cells in the void volume and settled down for elution. The proteins

are eluted from the sedimented bed using suitable buffers. Capture of immunomycin from

a streptomyces culture in large scale using a fluidized bed has been reported (Gailliot,

Gleason, Wilson and Zwarick1990). Common chromatography beads have a low density

and narrow size distribution. Thus the fluidized beads experience high degree of axial

mixing in the bed, causing early breakthrough during loading and poor purification result

during elution. The low density beads having low settling velocity also limit the fluid

flow velocity. The bed will be expanded too much and beads will be entrained from the

bed at high flow velocity.

Expanded bed adsorption (EBA) technology was developed to alleviate the extent

of axial mixing in the fluidized bed so that its breakthrough and elution behaviors

resemble those of the packed bed (Chase 1994; Ohashi, Otero, Chwistek, Yamato and

Hamel 2002; Bai and Glatz 2003). The adsorbent beads used in EBA are tailored with

broader size and density distributions. STREAMLINE adsorbents manufactured by
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Amersham Biosciences (Uppsala, Sweden and Piscataway, NJ) are typical media for

EBA. Inert crystalline quartz particles are incorporated into the cross-linked agarose

matrix to increase the density of the beads. The beads exhibit Gaussian like size and

density distribution with a mean particle size of 200 μm (Amersham Biosciences 2000).

Second generation EBA sorbent based on gel-permeate porous zirconium oxide beads

was developed recently by Ciphergen (Fremont, CA). The new material with a density of

3.2 g/ml, has a higher surface area and can be used at higher flow rates (Tunon 2002).

When the bed filled with these beads is fluidized, beads with similar size and density will

stay in their local fluidization layers. Larger and heavier beads will stay at the bottom of

the bed while smaller and lighter beads will stay at the top of the bed. While an expanded

bed is settled down, the mutilayer structure will be kept in the sedimented bed. The

operation of the EBA is illustrated in Figure l.2.

Figure 1.2 Schematic presentation of the steps of EBA. (Amersham Biosciences 2000)
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However, in the fluidized or expanded bed process, the cells or cell debris interact

with the adsorbent beads, affecting protein adsorption (Fernandez-Lahore, Geilenkirchen,

Boldt, Nage, Kula and Thommes 2000) and causing adhesion and agglomeration of the

cells and fluidized beads. Draeger and Chase (Draeger and Chase 1991) found that the

BSA binding capacity on a quaternary anion-exchange resin dropped about 75% after

addition of 2% of Alkaligenes eutrophus cells in the feed. The formation of the particle

agglomerations will breakdown the stability of the fluidization (Johansson, Jagerstern et

al. 1996; Lin, Kula et al. 2003). Cell aggregates can also clog the screen or the flow

distributor at the lower column adapter, causing nonhomogeneous fluidization.

Furthermore, the cells adhered on the adsorbents are difficult to wash out completely.

Adsorbed cells of bakers' yeast on the surface of a DEAE anion-exchange resin were still

observed after extensive washing with an elution buffer (Anspach, Curbelo et al. 1999).

In purifying G6PDH from unclarified yeast cell homogenates using EBA with ion

exchange resin, the eluate was found to have viable cells to the extent of 0.01% of that of

the feedstock (Chang and Chase 1996). Due to these limitations, although EBA

technology has been promoted heavily for over ten years, adoption of the technique has

been slow in spite of its promises of faster processing of crude feedstocks (Tunon 2002).

Microfiltration and ultrafiltration have been widely used in bioprocessing for

solid-liquid separation and product concentration (Sirkar and Prasad 1986; Zeman and

Zydney 1996; Kalyanpur 2000; Wang 2001). The ultrafiltration membrane can also be

used to fractionate proteins of different sizes (Ghosh and Cui 2000). Conventionally, the

two proteins have to be five to ten times different in their molecular weights to be

separated by ultrafiltration. Zydney and van Reis's group developed high-performance
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tangential-flow filtration which can be used to separate two proteins with similar

molecular weight by carefully operating in the pressure-dependent regime and controlling

the buffer pH and ionic strength (van Reis, Goodrich et al. 1997; Zydney and van Reis

2001). Saksena and Zydney (1994) showed that 20-fold selectivity increase for the

filtration of BSA and IgG could be achieved by lowering the pH from 7 to 4.8 and the

ionic strength. Cheang and Zydney ( 2003) also found that the selectivity of α-LA and

β-LG could reach over 55 by adjusting pH and ionic strength. These high selectivities are

usually achieved at low ionic strength and the buffer pH close to the pI of one protein.

The protein near the neutrally charged state will permeate through the membrane easily.

While the other protein, carrying a strong charge under the same conditions, is excluded

by the membrane pores with the same kind of charge. However the membrane process

alone can hardly yield pure product. It should be considered still as a separation and

fractionation step, not a purification step. Also, in the real bioseparation processes, the

complex fermentation broth contains large amount of different biomolecules and

impurities, limiting the extent to which one can play with protein charges to get a high

selectivity.

Molinari et al. (1990) explored direct carboxylesterase capture from the

fermentation broth and partial purification using a hollow fiber membrane device with

affinity or ion exchange beads in the shell side. They circulated the feed broth through

the hollow fiber lumen with two shell-side ports totally closed, i.e., Starling flow

operation mode (Starling 1896). Due to the higher pressure drop along the module at the

lumen side caused by feed flow, the lumen-side pressure was higher than the shell-side

pressure in upstream locations, but the pressure difference was reversed in downstream
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locations. As a result, a small amount of liquid permeated through the membrane to the

shell side in upstream locations, proteins transported along with the liquid were adsorbed

on the beads in the shell side, and liquid permeated back to the lumen side at downstream

location. The loading was continued for five to seven hours. Then the carboxylesterase

was recovered using shell-side elution. The beads at the shell-side acted like a adsorbent

bed. No chromatography separation was involved. The purity of the carboxylesterase in

the eluate was only 2.3 fold of that in the feed solution.

Among the techniques that have been suggested to improve this situation, the

technique proposed by Dai et al. (1999) is especially attractive. In this technique,

chromatographic resin beads are used to fill the shell-side space of a hollow fiber

membrane module. The hollow fiber membrane may be designed for microfiltration (MF)

or ultrafiltration (UF) of the protein solution containing suspended cellular material. The

technique is implemented in a cyclic fashion.

First, the device goes through the loading step in which the feed solution

containing the suspended cellular material is brought to the tube-side of the fibers at a

pressure higher than that in the shell side (Figure 1.3a). Larger entities like cells and cell

debris are rejected by the membrane and flow out with the retentate. Small molecules in

the buffer solution as well as the proteins can permeate through the membrane to the shell

side, where the target proteins will be captured by the beads; the buffer solution and other

non-adsorbable impurities flow out through the permeate outlet. The permeate solution

going through the membrane containing the protein mixture will flow over the shell-side

beads leading to the adsorption of the proteins. After about 5-30 minutes of such protein
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loading, the input of the feed solution to the fiber tube side is stopped. The loading is

stopped prior to significant protein leakage through the shell-side permeate outlet.

In the next step of the cycle, an eluent solution is supplied to the device either

through the tube-side inlet (tube-side outlet remaining closed along with the shell-side

inlet) or the shell-side inlet (tube-side ends closed). The eluate leaves the device through

the shell-side outlet (Figure 1.3b). After the respective bioproduct peaks emerge from the

shell-side outlet, the eluent flow is stopped. The shell-side resin bed is regenerated next

by passing the starting buffer for a certain period of time. Once the bed is regenerated, the

loading-elution-regeneration cycle is repeated.

As the results in Dai et al. (1999) show, the cyclic process works well. It can

separate protein mixtures from a fermentation broth via the hollow fiber membrane and

the chromatographic resin beads. Two distinct protein peaks emerge in the eluent solution

corresponding to the two different proteins present in the feed fermentation broth. As

Figure 10 of Dai et al. (1999) shows, the cyclic process is repeated many times

successfully and continuously to separate a mixture of myoglobin and α-lactalbumin

from a clean feed. Figure 11 of Dai et al. (1999) demonstrates that the same two proteins

can be purified via the cyclic process with two distinct peaks emerging in the eluate if the

feed is a synthetic fermentation broth.
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Figure 1.3 Configuration of the device containing membrane and adsorbent beads under
different operating conditions.
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A large variety of membranes and chromatographic media are commercially

available. They are the two workhorses in bioprocessing. Based on a specific property of

the target protein, broad choice and flexible combination of the membrane and

chromatographic beads for the integrated device will save process development time.

Integrating the advantages of these two separate processes in one device will save many

transitional steps thus simplify the bioprocessing.

The device and process proposed in Dai et al. (1999), however, have an important

characteristic. The proteins in the permeate appearing in the shell-side near the tube-side

outlet/shell-side outlet can be adsorbed by only a thin layer of chromatographic resin

beads in the shell side as it radially flows out to the shell-side permeate outlet. If the

loading process is allowed for a longer period, significant amount of proteins will escape

adsorption over the shell-side beads requiring recycle of the shell-side outlet fluid. This

will reduce the loading capacity of the device.

One strategy therefore used in Dai et al. (1999) is to use an extended section (ES)

containing additional chromatographic resin beads at the permeate outlet on the shell side

(Figures1.3a and1.3b). This provides additional significant adsorption capacity for

proteins coming from permeation at the outlet section of the hollow fiber device and

escaping the beads at the bottom of the shell-side column. Such an extended section can

accommodate, however, only a limited amount of resin beads; it also imposes a

significant amount of pressure drop reducing the permeate flow rate (Dai, Luo, and Sirkar

2000). If the capacity of the shell-side adsorbent bed has to be increased considerably, an
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altogether different solution is needed. A new type of integrated membrane-cum-

chromatographic device has to be developed.

1.2 New Device Concept

To increase the bed utilization factor and reduce the protein leakage without increasing

the permeate outlet back pressure, it is necessary to move the point of the maximum

permeate flux upward away from the permeate outlet (Dai, Majumdar, Luo and Sirkar,

2003). This can be achieved by blocking the membrane pores near the module outlet zone

thus shutting down the liquid and protein permeation at that zone. Coating the inner skin

of the hollow fiber near the outlet zone through interfacial polymerization can be used to

realize this idea. This new device employs chromatographic resin beads on the shell side

of a UF/MF hollow fiber membrane device as in Dai et al. (1999) and Dai et al. (2003).

However, there are two major differences. First, there is no extended section (ES) of resin

beads at the permeate outlet. Thus the significant amount of additional pressure drop in

the permeate flow due to an ES is eliminated. Second, the bottom section of the hollow

fiber membranes in the device, i.e., the section close to the shell-side permeate outlet is

radically restructured. Interfacial polymerization (Cadotte 1981; Cadotte, King Majerle

and Petersen 1981) will be carried out to form an essentially impermeable thin layer of

polyamide membrane on top of the skin surface of the hollow fiber membrane on the tube

side near the shell-side permeate exit (Figure 1.4).
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Figure 1.4 New device concept: an integrated device with a coated zone near the outlet.

The coating essentially makes the bottom section of the hollow fiber impermeable

to water flow due to the pressure drop applied in UF/MF since the coating conditions

create a membrane suitable for reverse osmosis which requires a much higher AP for

water permeation. As a result, during the protein loading step, there is almost no

permeate emerging onto the shell side from the tube side near the shell-side permeate

outlet. Therefore, no fresh protein is introduced into the shell side near the shell-side

permeate outlet from the tube-side feed solution. Consequently, the protein leakage into

the permeate solution observed in Dai et al. (1999) should be drastically reduced.

Correspondingly, the overall protein loading capacity of the shell-side bed should be

increased dramatically in the new device.
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This change introduces a radically new membrane filtration-cum-chromatography

device: a hollow fiber device which for most of its length functions as it should in UF/MF

while the rest of the fiber length is essentially shut off from a filtration point of view.

Correspondingly, the beads on the shell side for this latter section of the device can act as

a conventional resin bed which has considerable adsorption/fractionation capacity

whereas the rest of the resin bed on the shell side performs as in Dai et al. (1999) and Dai

et al. (2003).

The separation performance of this new device will be investigated in this study.

The separations of the following protein mixtures will be studied: Mb and α-LA; Mb and

BSA. Most of the studies will be carried out with a clear feed solution in devices which

either have an UF or a MF membrane. However, a Mb/α-LA solution in an yeast cell-

based fermentation broth will also be employed as a feed for four consecutive cycles in a

MF-based module. The performance of this device will also be compared with that of the

earlier device without the membrane coating for both UF and MF membranes.

A mathematic model describing the hydrodynamic and protein loading behavior

of the integrated device with a coated zone will also be presented in this work.

Comparison of the simulated pressure, flow rate, permeate flux and protein loading

profiles for the module with a coated zone and the module without any coating will allow

insight into the mechanism of loading capacity improvement after a coated zone is

introduced. Optimal length of the coated zone will be found out through simulation of the

model.

Protein mass transfer enhancement was observed earlier in the integrated

membrane filtration-cum-chromatography device (Dai, Luo and Sirkar 1999, Dai 2000).
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A theoretical analysis of the protein transport through the membrane with adsorbent

present at the permeate side will be developed using a diffusion-convection model in this

work. The extent of the mass transfer enhancement using different systems and under

different operation conditions will be explored.



CHAPTER 2

EXPERIMENTAL MATERIALS AND METHODS

2.1 Materials

2.1.1 Hollow Fiber Membranes and Modules

2.1.1.1 Hollow Fiber Modules from A/G Technology. The hollow fiber modules

used were two UFP-100-E-4A ultrafiltration modules (MWCO 100 K) and a CFP-1-E-

4A microfiltration module (pore size 0.1 μm) from A/G Technology (Needham, MA).

Each module (4)1.52x36 cm) contained 50 polysulfone hollow fibers. The hollow fibers

were 1 mm in internal diameter (ID) and 1.6 mm in outer diameter (OD). The effective

hollow fiber length and the corresponding shell space volume for each module used in the

experiments are listed in Table 2.1. Figure 2.1 illustrates the general configuration of the

hollow fiber modules.

Figure 2.1 Hollow fiber module from A/G Technology.

16
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Table 2.1 Parameters for Hollow Fiber Membrane Modules

Module Fiber effective length (cm) Shell space volume (ml)

Type No.

OF
1 24.5 19.8

2 25.4 20.5

MF 3 25.6 20.7

The new membrane modules were soaked in ethanol solution overnight to remove

the glycerol and displace any air in the membrane pores. The modules were then rinsed

with deionized water and flushed with 4L warm deionized water at 60°C.

2.1.1.2 Crossflow Module with Two Sets of Hollow Fibers. To reduce the flow

resistance at the permeate side having the chromatographic media packing, a small but

complete crossflow module (Module No. 4) with two sets of hollow fibers was made in-

house. The module configuration is shown in Figure 2.2. During operation, both of the

shell-side ports remain closed. The permeate flowing out from the feed hollow fiber

flows through the module shell space in a direction perpendicular to the module axis, and

is collected by the permeate hollow fiber (hollow fiber 2). The two sets of hollow fibers

can be different or same in so far as the membrane type and pore size are concerned. Two

microfiltration hollow fibers from A/G Technology (Needham, MA), having a pore size

of 0.2 ID of 1 mm and OD of 1.6 mm, were used to make this module. The two

hollow fibers were carefully aligned to be parallel to each other throughout the length of

the whole module, with a distance of 1 cm between them. A 14 cm diameter transparent

polypropylene (PP) tube was used as the module shell. The effective hollow fiber length

was 13.6 cm.
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Figure 2.2 Two different sets of hollow fiber-based crossflow module.

2.1.2 Chromatographic Media

DEAE (diethylaminoethyl) Sepharose Fast Flow beads were from Amersham

Biosciences (Piscataway, NJ). The weak anion exchange functional groups are covalently

grafted to the pore surface of the highly cross-linked porous agarose beads. The highly

cross-linked agarose beads provide greatly improved physical and chemical stability

compared to Sepharose CL-6B ion exchange media, allowing the Sepharose Fast Flow

beads to be used at higher flow rates required for large-scale chromatography. The

structure of the bead and the functional group for anion exchange are shown in Figure

2.3. The characteristics of the anion exchanger are listed in Table 2.2.

Figure 2.3 Structure of DEAE Sepharose Fast Flow beads.
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Table 2.2 Characteristics of DEAE Sepharose Fast Flow Anion Exchange Beads
(Amersham Pharmacia Biotech 2000)

Total ionic capacity 0.11 - 0.16 mmol/ml gel

Available capacity 100 mg/ml for α-lactalbumin

Bead structure 6% highly cross-linked agarose

Bead size range 45 - 165 Inn

Mean bead size 90 μm

Max. linear flow rate 750 cm/h

Max. operating pressure 0.3 MPa ( 42 psi)

pH working range 3 - 9

pH stability (long term) 3 - 12

pH stability (short term) 1 - 14

Chemical stability All commonly used aqueous buffers, 1 M NaOH,

8M urea, 70% ethanol, etc.

Physical stability Negligible volume variation due to changes in pH

or ionic strength

Autoclavable With counterions (Cl) at 121°C, pH 7 for 30 min.

Storage 20% ethanol at 4°C

2.1.3 Proteins, Adsorbent, and Process Chemicals

Myoglobin (Mb, MW 17566, pI 7.3 (Radola 1973)), a-lactalbumin (α-LA, MW 14175,

pI 4.2-4.5 (Kronman and Andreotti 1964)), bovine serum albumin (BSA, MW 66430, pI

4.7 (Longsworth and Jacobsen 1949)) and sebacoyl chloride (C10H16Cl2O2, MW 239.14)

were purchased from Sigma (St. Louis, MO). 1,6-hexanediamine (C6H16N2, MW 116.2)

was purchased from ACROS (Geel, Belgium). Octane solvent was purchased from EM

Science (Cherry Hill, NJ). Tris-HCl, Tris-base and NaCl were purchased from Sigma (St.

Louis, MO). 20 mM Tris-HCl buffer at pH 8.5 was prepared by dissolving 3.536 g of
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Tris-HCl and 6.976 g of Tris-base in 4 L deionized water and used as the starting buffer

in all of the experiments.

2.1.4 Cells and Synthetic Fermentation Broth Preparation

Yeast strain (S. Cerevisiae NRRLY-12636) was purchased from the United States

Department of Agriculture (Peoria, IL). Yeast extract, malt extract, peptone and glucose

for the YM medium broth were all from Sigma (St. Louis, MO). YM medium broth was

prepared by dissolving 3 g yeast extract, 3 g malt extract and 5 g peptone together in 600

ml water, 10 g glucose in 400 ml water separately, autoclaving at 121°C (15-16 psig

steam) for 20 min, and then mixing the two solutions after cooling down. Yeast cells

were cultured in 50-60 ml YM medium broth in a shaker incubator (New Brunswick

Scientific, Edison, NJ) at 30°C for 20-24 hours. The yeast broth was centrifuged using an

IEC Clinical Centrifuge (International Equipment Co., Needham HTS, MA) at 3000 g for

3 min. The supernatant was discarded and the cells were washed and centrifuged 3 times

with deionized water and finally with the starting buffer.

2.2 Device Fabrication

2.2.1 Packing the Beads into the Shell Side of the Hollow Fiber Module

The ethanol solution in the bead storage container was replaced with the starting buffer.

The beads were washed with the starting buffer 3 times and then equilibrated with the

starting buffer. The dilute bead slurry was degassed for 5 min in a Cole-Parmer 8850

ultrasonic bath (Chicago, IL).
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Before packing the beads into the shell side, the module was thoroughly cleaned

and washed with the starting buffer. With both tube-side ports closed and the shell-side

outlet port covered with a 21 p.m polyester mesh, the starting buffer was pumped through

the shell-side inlet port using a peristaltic pump at a flow rate of 4-6 ml/min. Then the

feed was switched to the dilute bead slurry. The beads were densely packed in the shell

side of the module from the bottom to the top while the buffer flowed out. After the

whole shell-side space was full of beads, the feed was switched back to the clear starting

buffer to flush the packing for 10 more minutes.

2.2.2 Interfacially Polymerized Coating on the Hollow Fiber Inner Skin Near the
Outlet Zone

The membrane filtration-cum-chromatography devices using either OF or MF

membranes fabricated in the last section were first tested for pure water permeation flux,

hydrodynamic parameters, and protein loading-elution behaviors. After these experiments
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were completed, the modules were cleaned thoroughly. To prevent early protein leakage

and improve the loading capacity and protein separation, the bottom part of the hollow

fiber membranes near each module outlet was coated with a thin interfacially-

polymerized nylon 6-10 polyamide film. The following solutions were prepared first for

interfacial polymerization:

Organic phase: 1% sebacoyl chloride in octane;

Aqueous phase: 1% l, 6 — hexanediamine in deionized water.

When such an aqueous phase and the corresponding organic phase meet together

at the phase interface, the sebacoyl chloride in the organic phase will polymerize with the

hexanediamine in the aqueous phase, forming a thin polyamide film. The reaction is

shown in Figure 2.5. The condensation polymerization happens at room temperature

quickly, giving off HCl as the by-product. Small amount of alkalis (such as Na 2CO3 ,

NaOH etc.) can be added in the aqueous phase to absorb the released HCl and promote

higher degree of polymerization. The sebacoyl chloride is highly reactive and could

destroy the polysulfone membrane if the organic solution was allowed to contact the

membrane surface directly. The membrane surface should be thoroughly wetted with the

aqueous solution before the introduction of the organic solution.

Before carrying out the interfacial polymerization, the whole module was

thoroughly flushed with deionized water to remove the Tris-HCl buffer. The schematic of

the coating device is shown in Figure 2.6. With both shell side ports closed and the shell

side filled with water, the interfacial polymerization was performed as follows.

1. The 1,6-hexanediamine containing aqueous solution was injected from the bottom
of the tube-side port to fill the fiber lumen fully above the height of the desired
coating level (say, 5 cm) with a syringe and was held there for 5 min.
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2. The aqueous solution was drained next from the tube-side outlet port. The
remaining aqueous solution in the tube side was blown out using compressed air.

3. The organic phase was then introduced from the bottom of the module into the
fiber lumen with a feed side adjustable U shaped tube to control the organic phase
level at 5 cm above the effective bottom of the hollow fibers. After 1 min, the
organic phase was drained. Then the hollow fiber lumen was blown with
compressed air again to remove any remaining organic phase.

4. With the tube side outlet port fully open, the module tube side was rinsed slowly
with deionized water at a flow rate of 7.5 ml/min for 30 min at room temperature.

Figure 2.5 Interfacial polymerization reaction.



Figure 2.6 Device for partial coating of the hollow fiber membranes by interfacial
polymerization.

5. The tube side was further flushed with warm water at 60°C for 30 min, then with
0.5 N NaOH solution at 60°C for 30 min at a flow rate of about 20 ml/min (this
heat treatment allowed the interfacial polymerization reaction to go to completion
so that the mechanical strength and solvent resistance of the coating will be
improved).

6. The module was then cooled down and flushed first with deionized water and
then with 20 mM Tris-HCl buffer (pH 8.5) at room temperature.

The coating length was about 6 cm, which is about 1/5-l/4th of the total effective fiber

length depending on the module.
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2.3 Experimental Setup

The experimental setup shown in Figure 2.7 was used for measurement of the membrane

water permeation flux and protein transmission as well as the cleaning, loading and

washing of the module with/without bead packing. The liquid in the feed reservoir was

pumped to the module tube side inlet by a Masterflex 7518-60 peristaltic pump (Cole

Parmer, Chicago, IL) at the desired flow rate. The operating pressure was controlled by

the valve at the tube-side outlet. The permeate flow rate was regulated by the valve at the

permeate outlet. Pressures at the tube-side inlet and outlet as well as the shell side were

indicated by pressure gauges. Both the retentate and the permeate can be recycled if

necessary.

Figure 2.7 Setup for membrane filtration and loading of the integrated device.

Crossflow operation was used in all experiments. When starting a crossflow

operation, the permeate outlet valve should be totally closed and the retentate outlet valve

should be fully open at the beginning. Then the feed pump was turned on, the feed flowed

through the membrane tube side without backpressure and the retentate was recycled to

the feed reservoir. After flow in the tube side had stabilized, the permeate side outlet



26

valve was slowly opened and the retentate valve was slowly closed to the extent

necessary to get the permeate flow at the desired operating pressure. The permeate flow

rate was determined by measuring the permeate volume collected within a measured time

interval using a graduated cylinder.

2.4 Membrane Characterizations and Protein Transmissions

The pure water fluxes for various membrane modules were measured using the setup

shown in Figure 2.7 under different transmembrane pressure differences. Water feed flow

rate was 200 ml/min for all tests. Steady state crossflow condition was built up with total

recycling of the permeate and the retentate for 5 min. Then the permeate flow rate was

measured. For the MF module, the pure water fluxes were measured under very low

transmembrane pressure difference because a high permeate flow rate will cause

significant shell-side pressure drop. The transmembrane pressure difference was

measured using an inverted U-tube manometer between the tube-side and shell-side ports

at the inlet side. The manometer was filled with air as the manometric fluid, while the

tubing between the pressure taps and the U-tube was filled with water.

Protein transmissions for the OF module with or without beads packing were

determined using the same setup. Protein solutions were fed to the module tube side at a

flow rate of 200 ml/min and pressure of 34.5 kPag. Permeate flow control was used to

obtain the protein transmission for different value of the permeate flux. Crossflow

filtration was started with total recycle of the permeate and retentate. Then the permeate

outlet control valve was slowly opened and adjusted to the desired permeate flow rate.

When the total permeate volume reached two times the module shell-space volume,
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steady state was assumed to have been achieved. Samples of feed, permeate and retentate

were taken at steady state, and assayed for the protein concentrations.

2.5 Filtration-cum-Chromatography Operation: Single Cycle Run

2.5.1 Cleaning, Loading and Washing Setup and Operations

Before the experiment, the cartridge was cleaned by recycling the 0.5 M NaOH and 0.5

M NaCl cleaning solution at a flow rate of 200 ml/min, pressure of 34.5 kPag and

temperature of 50°C for 1 hr; the cartridge was then flushed with deionized water at

50°C, regenerated with 0.5 M NaCl solution, and equilibrated with the starting buffer at

room temperature. During loading, the protein containing feed solution was introduced to

the module tube side at a flow rate of 200 ml/min. The operating feed pressure was

maintained at 34.5 kPag. The retentate was recycled. The permeate from the shell-side

outlet port was collected and measured for total volume. Both the permeate and the

retentate were sampled and assayed for their protein concentrations. After loading, the

protein solution remaining in the fiber lumen was drained and the lumen was washed

with 50 ml starting buffer while the tube-side outlet valve was fully open and both of the

shell-side ports were closed.

2.5.2 Elution

After protein loading and washing, tube-side elution was performed using a GradiFrac

System from Amersham Biosciences (Piscataway, NJ). The system consisted of a

gradient solvent delivery system, a LKB UV monitor at 280 nm wavelength, a

conductivity monitor, a REC 102 recorder and a GradiFrac fraction collector. The
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Figure 2.8 System for step-wise and gradient elution.

schematic of the setup is shown in Figure 2.8. Solvent A (starting buffer) and solvent B

(0.5 M NaCl in the starting buffer) were pumped by a LKB1 pump and completely mixed

in a mixer forming the elution buffer. The percentage of the solvent B, hence the ionic

strength of the elution buffer, was adjusted by the opening of a PSV-50 control valve at

the pump inlet. The elution buffer flowed into either the tube-side or the shell-side inlets

of the module while the tube-side outlet was closed. The eluate came out through the

shell-side outlet. Fractions were collected every 2.5 min using the GradiFrac fraction

collector and assayed for protein concentrations using an UV spectrophotometer. In

stepwise elution, initially, an elution buffer with lower ionic strength was used for a

period of time to elute out the weaker charged protein, then a step-change of the ionic

strength of the elution buffer was made by increasing the percentage of solvent B to elute
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out the other more highly charged protein. In gradient elution, the eluent salt

concentration was increased linearly from an initial low value to a higher value at a

specific time. Multiple segments with different gradients can be used. The eluent flow

rate was 2.5 ml/min for all elution experiments.

2.6 Cyclic Filtration-cum-Chromatography Operation: Multiple Cycles

Cyclic runs were performed using the MF-cum-chromatography device having a coated

zone in a loading-washing-elution-reequilibration cyclic mode without cleaning in

between as shown in Figure 2.9. Synthetic fermentation broth was also used in the cyclic

run to demonstrate the feasibility of getting purified proteins directly from an unclarified

feed.

Fresh yeast cells obtained from the fermentation step described in section 2.1.4

were added into the protein mixture solution to obtain synthetic fermentation broths

having a cell density of 0.3 — 0.8 g/L. The synthetic fermentation broth was fed directly

to the tube-side inlet of the device at a flow rate of 200 ml/min and pressure of 34.5 kPag.

The retentate was recycled. After loading, the cells and protein solution remaining in the

membrane tube side and the system dead volume were drained. With the permeate outlet

valve totally closed, the membrane lumens were washed with 50-60 ml starting buffer.

The device loaded with protein mixture was then switched to the elution system shown in

Figure 2.8. Tube-side stepwise elution was performed. The eluate fractions were

collected and assayed for protein concentrations. After elution, the device was

reequilibrated with the starting buffer and another cycle was started.



Figure 2.9 Cyclic operation.

2.7 Protein Concentration and Cell Density Assay

Protein concentrations were measured using a Hitachi U-2000 (Danbury, CT) UV-Vis

spectrophotometer. S-10 quartz cuvets (10 mm path length) from Sigma (St. Louis, MO)

were used in the spectrophotometer. The spectrum of Mb shows one peak at 280 nm and

the other peak at 410 nm. Both α-LA and BSA have maximum absorbance at 280 nm,

but negligible absorbance at 410 nm. Standard curves obtained at different wavelengths

for various pure protein solutions are shown in Figures 2.10-2.12, and the calibration

equations as well as their corresponding linear ranges are listed in Table 2.3.



Figure 2.11 Standard curve for Mb at 410 nm.
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Wavelength

Protein
280 nm 410 nm

Myoglobin
C = 0.6699 ABS C = 0.1498ABS

Linear range: 0-1 mg/ml Linear range: 0-0.4 mg/ml

α-LA
C = 0.5269ABS

Linear range: 0-1 mg/ml

BSA
C = 0.1253ABS —0.0034

Linear range: 0-0.6 mg/ml
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The protein concentrations in a binary mixture were determined by the dual-

wavelength method at 410 nm and 280 nm corresponding to their maximum absorbance.

Absorbance of the protein mixture was measured at 410 nm and 280 nm, respectively.

The Mb concentration was determined directly from the absorbance at 410 nm. The other

protein concentration in the binary mixture was then determined by the absorbance of the

mixture at 280 nm by subtracting the contribution from Mb.

For those feed or eluate samples whose protein concentrations were beyond the

upper linear limits, the samples were diluted with the starting buffer before measurement.

Yeast cell culture optical density was measured by the spectrophotometer at a

wavelength of 540 nm. The dry cell density was calculated using the calibration curve

developed by Kang (1989).



CHAPTER 3

RESULTS AND DISCUSSION ON SEPARATION IN THE MODIFIED
INTEGRATED DEVICE

In this chapter, the results of membrane characterization experiments of the integrated

device and the extensive experiments on subsequent loading and elution experiments

with various protein mixtures are presented and discussed. These results cover both the

uncoated as well as the partially coated integrated device. Further, the hollow fiber

membranes studied include both OF and MF membrane. While most of the results are

based on clean mixtures of two proteins, results are also presented on synthetic solution

of proteins containing yeast cells at various density levels. The protein mixtures whose

separations have been studied are: Mb/α-LA and Mb/BSA.

3.1 Membrane Water Permeance

Membrane water permeance was measured for new membrane modules and modules

thoroughly cleaned after protein transmission experiments. Water permeation flow rates

were measured under different transmembrane pressure (TMP) differences. The

permeance was calculated as the slope of water flux vs. TMP. For the two ultrafiltration

membrane modules, the water permeance recovered around 80% of their original values

after cleaning and remained at the same level after many rounds of experiments. For the

MF membranes, the water permeability of the cleaned module recovered its original

value. This is because the larger pores of the microfiltration membrane are much less

likely to be blocked by contaminants or air and can be thoroughly cleaned.

34
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Table 3.1 Water Permeance of Hollow Fiber Membranes

Module New

( xl01° m3/m2/Pa/s)

Cleaned

( x 10^(-10) m3/m2/Pa/s)

#1 OF 8.49 7.15

#2 OF 6.09 4.86

#3 MF 85.9 86.1

3.2 Testing of the Partially Coated Fiber Module

The integrity of the coating was verified first by water permeation at 34.5 kPag. As

shown in Table 3.2, the water permeation rates declined by about 25% corresponding to

the extent of loss of the permeable membrane area; this value agrees very well with the

decrease in the permeable fiber length after coating. The water permeation results

indicate that the coating layer was essentially impermeable to water at the operating

pressure.

Table 3.2 Water Permeation Results from Hollow Fiber Membrane modules

Module
Before

coating

After

coating

Percentage

reduction

OF #1

Permeable fiber length (cm) 24.5 18.5 24.5%

Water flux at 34.5 kPag

(ml/min)
7.2 5.2 27.8%

MF #3

Permeable fiber length (cm) 25.6 19.6 23.4%

Water flux at 34.5 kPag

(ml/min)
10.0 7.8 22.0%
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The coating layer was chemically and mechanically stable under the commonly

used conditions in loading, elution, cleaning and sterilization operations. Especially

during the cleaning operation, the coating layer could endure the hot, caustic cleaning

solution and high shear stress. Both coated modules were used for more than a year in the

experiments. They are still functioning very well as of the thesis preparation time.

3.3 Protein Separations in the Device using an UF Hollow Fiber Membrane

3.3.1 Effect of the Coated Zone on Mb Breakthrough

Figure 3.1 shows the Mb breakthrough behaviors of two devices made from identical UF

modules (UFP-100-E-4A). Both modules have essentially identical amounts of resin

beads on the shell side of the module. However, the adsorption capacity for the module

having a coated zone was much higher. For the UF module without a coated zone, due to

the hydrodynamic characteristics of this configuration, permeate flux increased along the

flow direction and reached a maximum at the outlet point. There is only a thin layer of

beads in the shell space near the module outlet, which is quickly saturated by the protein

molecules permeating through the membrane near the outlet. Breakthrough (when the

protein concentration in the permeate reaches 10% of the feed concentration) happened

quickly (10 minutes after loading.). However, the Mb breakthrough time for the UF

module with a coated zone happened after 50 minutes, signifying 5 times higher capacity.

The operational conditions were identical for both modules.
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Figure 3.1 Mb breakthrough results from the conventional OF module and the module
with a coated zone. (Feed: CMb 0.25 mg/ml, flow rate 200 ml/min, pressure 34.5 kPag )

After the coating layer was introduced on the membrane inner skin in the module

outlet zone, the membrane pores at the coated zone were blocked. Neither protein

molecules nor water could permeate to the shell side along the coated zone. Proteins

permeating through the membrane in the upper unmodified section would be captured by

the beads packed around the hollow fibers in situ and any leaked protein will be captured

by the beads in the coated zone. Breakthrough would not happen until all the beads in the

coated zone were saturated. This new configuration increased the loading capacity

drastically without increasing the flow resistance of the packing encountered in the

extended section of Dai et al. (1999).
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3.3.2 Protein Separation Behavior of the Device with or w/o a Coated Zone

In Figures 3.2a and 3.2b, it is first shown that, for the conditions usually employed in Dai

et al. (1999), the performance of the partially coated module (Figure 3.2b) was very close

to that of the uncoated module (Figure 3.2a) for the elution-separation of Mb and α-

Lactalbumin (α-LA). Note that the tube-side loading in each case was for 15 minutes and

the peak profiles for the two proteins are essentially identical for the partially coated

module and the conventional uncoated module. These conditions, however, are such that

the uncoated module was close to having a breakthrough of the proteins.

On the other hand, Figures 3.3a and 3.3b illustrate the elution profiles for the

same two proteins (Mb and α-LA) from the module having partially coated fibers for two

different conditions: the first one (Figure 3.3a) where the loading was carried out for 55

minutes under feed conditions similar to that of Figure 3.2; the second one (Figure 3.3b)

where the loading was carried out for 25 minutes under the same feed flow rate as in

Figure 3.2 but the feed protein concentrations were five times larger than those in Figures

3.2a and 3.2b. As a result, both conditions in Figures 3.3a and 3.3b show much higher

protein concentrations in the eluate. In fact, the total protein recovered in Figure 3.3b is

about seven times higher for Mb as well as for α-LA compared to those in Figure 3.2a.

Yet there was no breakthrough of the proteins from the partially coated fiber-based

columns in spite of the high amount of protein loading.
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Figure 3.2 Comparison of Mb/α-LA separation behaviors at similar loading conditions
for an OF module. (Loading time: 15 min. Elution: 0-50 min 0.05 M NaCl, 50-100 min 0.5M NaCl in
Tris buffer.)



b. Higher loading concentration. 0.2857 mg/ml Mb and 0.2811 mg/ml α-LA in feed;
loading time: 25 min.

Figure 3.3 Loading capacity enhancement in the OF module having a coated zone for
Mb-α-LA separation. (Elution: 0-50 min 0.05 M NaCI, 50-90 min 0.5M NaCl in Tris buffer.)
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The effect of the partial fiber coating on the reduction of protein leakage and

increase in protein loading capacity as observed in the above experiments is reviewed in

Table 3.3.

Table 3.3 Experimental Conditions and Protein Loading Results for the OF Modules

Item
Before coating After partial coating

Fig. 3.2a Fig. 3.2b Fig. 3.3a Fig. 3.3b

Feed conc.
(mg/ml)

Mb 0.0561 0.0548 0.0548 0.2857

α-LA 0.0422 0.0502 0.0538 0.2811

Loading time (min) 15 15 55 25

Permeate flow rate
(ml/min)

5.9 5.3 5 4.52

Ave. Mb conc. in permeate
(mg/ml)

0.00097 0.00056 0.0011 0.00090

Total Mb loaded (mg) 3.4 3.3 10.4 25.l

Total α-LA loaded (mg) 1.5 2.3 5.l 13.0

An even higher loading capacity was achieved using a high feed concentration as

well as longer loading time. As shown in Figure 3.4, 51.34 mg of Mb and 14.13 mg of α-

LA were loaded and separated completely. The average Mb concentration in the

permeate was 0.01 mg/ml. Mb leaking level was allowed to be higher than that of the

previous loading experiments shown in Table 3.3 because the feed concentration for this

high loading capacity run was much higher, and therefore the breakthrough concentration

would be correspondingly higher. The total amount of the leaked Mb is relatively small

compared to the high loaded amount of Mb.
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Figure 3.4 High loading capacity of Mb-α-LA for module 1 with a coated zone.
(Feed: 0.505 mg/ml Mb, 0.467 mg/ml α-LA; Loading time: 35 min; Tube-side step-wise elution. Total
protein loaded: Mb 51.34 mg, a-LA 14.13 mg)

The effect of the coating on the separation results for another pair of proteins,

namely, myoglobin and bovine serum albumin (Mb/BSA), is similar to that of Mb/α-LA.

Figure 3.5a illustrates the protein separation profiles obtained from the conventional

module (w/o coating). On the other hand, Figure 3.5b shows the significantly increased

loading capacity after the membrane pores in the outlet zone were shut down by

interfacial polymerization-based coating. The loading amount of BSA is apparently

smaller than that of Mb due to its larger molecular size. The total separation result is a

combination of membrane fractionation and shell-side chromatographic separation. If Mb

(the smaller protein) is the target protein, the rejection of the BSA by the membrane

provided a preliminary fractionation saving most of the shell-side bead adsorption

capacity for Mb and simplifying the chromatographic separation.



43

Figure 3.5 Effect of coating on Mb/BSA separation for an OF module. (Loading time: a:
15 min; b: 55 min. Elution: 0-50 min 0.05 M NaCl, 50-90 min 0.5M NaCl in Tris buffer.)
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3.3.3 Comparison of Different Elution Conditions

Different elution conditions were tried for both shell-side and tube-side elution in the

coated device. The loading conditions were the same for all the runs shown in the

following Figures 3.6 to 3.8. The protein feed solution containing 0.05 mg/ml Mb and α-

LA was circulated through the hollow fiber tubeside under 34.5 kPag and a flow rate of

200 ml/min for 15 min. Next, the protein solution remained in the system dead volume

was drained, and the hollow fiber lumen was washed with the starting buffer. Eluents

with different salt concentrations were then introduced either through the tube-side or the

shell-side to elute the proteins out.

Figures 3.6a and 3.6b illustrate the elution profiles of Mb and α-LA using shell-

side gradient elution. Under gradient l, where NaCl concentration in the eluent started

from 0.05 M and increased linearly to 0.5 M in 50 min, α-LA started to came out at 20

min, causing a significant overlap with the Mb peak. As shown in Figure 3.6a, Mb and

α-LA were not totally separated.

Lowering the salt concentration in the initial eluent to 0.02 M and using a two

segment gradient as shown in Figure 3.6b, a good separation of Mb and α-LA was

achieved in a shorter time. Elution was completed in 55 min, 1/3 rd shorter than the time

used for tube-side step-wise elution.

The results of tube-side gradient elution using gradient 2 employed in the studies

for Figure 3.6b are shown in Figure 3.7. The resolution is not as good as that from the

shell-side gradient elution under the same elution condition. The eluent with increased

NaCl concentration flowed through the hollow fiber lumen and reached the bottom part

of the module, permeated through the membrane before the elution front from the upper



t (min)

(b) Gradient 2: 0.02 M to 0.2 M NaCl in 20 min, followed 0.2 M to 0.5 M NaCl in 30
min, and then 0.5 M NaCl for another 30 min (Feed concentration: Mb 0.0524 mg/ml, a-LA
0.0531 mg/ml).
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Figure 3.6 Shell-side gradient elution for mixture of Mb and α-LA using module 1 with
a coated zone. (Loading time: 15 min.)
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Figure 3.8 Tube-side step-wise elution for Mb-α-LA separation. (Feed: Mb 0.0509 mg/ml,
a-LA 0.0495 mg/ml; Loading time: 15 min; Elution: 0-50 min 0.05 M NaCl , 50-80 min 0.5M NaCl in Tris
buffer).
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stream of the shell side. Higher salt concentration in the bottom part of the shell-side

eluted the α-LA earlier, causing a broader α-LA peak and more overlap between the Mb

and α-LA peaks.

However, the tube-side step-wise elution worked very well as shown in Figure

3.8, using a step change of 0.05 M NaCl for 50 min and then 0.5 M NaCl for 30 min. α-

LA was completely separated from Mb.

3.3.4 Effect of the Feed Ionic Strength

It can be seen from the previous experimental results that the loaded amounts of α-LA

were significantly lower than those of Mb. Considering that their molecular weight and

size are similar, and their molecular size should be much smaller relative to the pore size

of the 100K MWCO OF membrane, this high membrane rejection for α-LA should not

be attributed to the molecular size itself. There must be some other factors dominating the

α-LA transmission through the membrane.

Mb and α-LA feed solutions with different ionic strengths were loaded to the

integrated device to investigate the effect of ionic strength on protein transmission.

Figure 3.9a shows the separation result of Mb and α-LA with 0.001 M NaCl in feed. The

loaded amount of α- LA (0.56 mg) doubled compared to that for no NaCl in the feed as

shown in Figure 3.6b (0.28 mg). The loaded amount of Mb only increased slightly. As

the NaCl concentration in the feed was increased to 0.01 M, the loaded amount of α-LA

was increased drastically, by as much as 4 times, as shown in Figure 3.9b. However, the

Mb broke through at relatively high concentrations during loading operation due to the
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Figure 3.9 Loading at different NaCl concentration in the feed for Mb-α-LA system.
(Loading time: 15 min, pressure 35.4 kPa, 	 = 200 ml/min. Shell-side gradient elution.)
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Mb adsorption capacity decreasing as the ionic strength increased. The significant

increase of the loaded amount of α-LA with increasing NaCl concentration in the feed

solution shown in Figure 3.6b and Figures 3.9a and 3.9b suggests that the ionic strength

of the protein feed solution not only affects the protein adsorption on the beads but also

plays an important role in α-LA transmission through the OF membrane.

These results support that the polysulfone membrane is negatively charged under

the loading condition (pH 8.5). With the α-LA (pI 4.2-4.5) being strong negatively

charged, Donnan exclusion dominates the protein transport through the membrane pores.

Under very low ionic strength, the electrical double layers (EDL) of the charged

surfaces of both membrane pore and protein molecule are thick, causing significant

electrostatic interaction between the protein molecules and membrane surface. Under

conditions of a higher ionic strength, the electrical double layer is suppressed by the

small ions in the solution, and the electrostatic interaction was shielded, resulting in

higher α-LA transmission. The Mb (pI, 7.3) is nearly neutral under the loading condition

so that the electrostatic interaction is not as strong as that for α-LA; Donnan exclusion

effect is not significant, and steric hindrance dominates the Mb transportation. More

detailed discussions on the effect of the electrostatic interaction on protein transmission

and permeate flux will be provided in Chapter 5.

The effect of the ionic strength of the feed solution provides one with an

additional option to tailor the protein separations via the integrated device. If Mb is the

target protein, loading at low ionic strength will help to reject α-LA, alleviating the

adsorption burden of the packed beads at the shell side and simplifying the following

elution separation. On the other hand, if α-LA is the target protein, loading at higher
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ionic strength will increase the α-LA transmission, therefore the loaded amount. Mb

adsorption on the bead is weak under high ionic strength, so that it will flow out with the

permeate while α-LA is adsorbed on the beads.

3.4 Protein Separations in the Device Using a MF Hollow Fiber Membrane

3.4.1 Effect of the Coated Zone on Mb Breakthrough

Dai et al. (2003) have shown that the higher the membrane permeability, the more

significant the nonuniform axial solvent flux distribution in a noncoated membrane

module. High water flux near the module outlet and high protein transmission through the

MF membrane will bring large amounts of proteins directly to the module outlet area.

Protein breakthrough will happen much earlier than that in the device using a UF

membrane. The Mb breakthrough curves for module #3 having a MF membrane

with/without a coated zone are shown in Figure 3.10. Protein solutions containing 0.25

mg/ml Mb were circulated through the membrane tube side of the hollow fiber modules

at a flow rate of 200 ml/min and pressure of 34.5 kPag. As was expected, breakthroughs

for the MF module before coating and after coating happened earlier than those for the

module having a UF membrane shown in Figure 3.1.

Similar to the case of the module having a UF membrane, blocking the membrane

pores at the module bottom section using an interfacially polymerized coating layer

extended the Mb breakthrough time by a factor of four. The interfacial polymerization

coating on the MF membrane worked as well as that on UF membrane described in the

last section.



Figure 3.10 Mb breakthrough curves for a device using MF membrane. (Feed: Mb 0.25
mg/ml; Loading condition: pressure 34.5kPag, = 200 ml/min.)

3.4.2 Comparison of Protein Separations in the Device with or w/o a Coated Zone

In the protein separation experiments using the device made of UF membranes, a-LA

and BSA encountered significant rejection due to their molecular size, shape or charge. In

applications where both the smaller protein and the larger protein need to be recovered,

membrane rejection for any of the proteins will be undesirable. Membranes with larger

pores can be used in such situations. A module using MF hollow fiber membranes was

fabricated, and the protein separation behaviors of the module before coating and after

coating were investigated using two pairs of model proteins: Mb/a-LA and Mb/BSA. The

results are shown in Figures 3.11 and 3.12.

The loaded amounts of a-LA and BSA were similar to that of Mb, and much

higher than their loaded amounts in the UF module. The MF membrane did not provide

any selection for different proteins since they are supposed to block only particles like
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cells, cell debris and bacteria. The loaded amount of Mb in the MF module before coating

was only about 2 mg, lower than that in the UF module without coating. This is due to the

much lower flow resistance through the MF membrane causing a greater nonuniformity

in the solvent flux distribution along the axial direction of the hollow fiber MF membrane

compared to that in the hollow fiber UF membrane. Higher amounts of buffer solutions

and proteins permeated through the bottom section of the MF membrane near the outlet

port, leading to an early protein leakage.

Figure 3.11 Effect of coating on Mb/a-LA separation for a MF module.
(Feed: 0.0587 mg/ml Mb and 0.0524 mg/ml a-LA before coating; 0.0545 mg/ml Mb and 0.052 mg/ml a-
LA after coating. Loading time: 4 min before coating; 29 min after coating. Elution: 0-50 min 0.05 M
NaCl, 50-90 min 0.5M NaCl in Tris buffer. Protein loaded amount: before coating, Mb 2.29 mg, a-LA 2.17

mg ; after coating, Mb 10.88 mg, a-LA 9.44 mg.)

Then the bottom section of the hollow fiber MF membrane near the module outlet

was coated by a thin polyamide film using interfacial polymerization described earlier.

The membrane pores in the coated zone were totally shut down for both buffer solution



53

and protein molecules. As has been observed ealier in the module containing the UF

membrane, the loaded amounts of Mb, a-LA and BSA were all increased to around 10

mg, more than 4 times over that before coating. The loaded amount of Mb was similar to

that in the UF module with a coated zone. But the loaded amounts of a-LA and BSA

were significantly higher than that in the UF module with a coated zone. No protein

rejection was observed for any of the three model proteins. The module using MF

membrane can be used to recover and purify the larger protein or both smaller and larger

protein at the same time.

Figure 3.12 Effect of coating on Mb/BSA separation for a MF module.
(Feed: 0.0535 mg/ml Mb and 0.0475 mg/ml BSA before coating; 0.0533 mg/ml Mb and 0.049 mg/ml BSA
after coating. Loading time: 4 min before coating; 25 min after coating. Elution: 0-50 min 0.05 M NaCI ,
50-90 min 0.5M NaCl in Tris buffer. Protein loaded amount: before coating, Mb 1.93 mg, BSA 2.14 mg ;
after coating, Mb 8.74 mg, BSA 9.59 mg.)

The improvement of the loading capacity for the module with a coated zone was

further explored using much higher protein feed concentrations. The separation results for

Mb/α-LA from a binary mixture of around 0.5 mg/ml of each protein are shown in Figure
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3.13 and compared with the earlier results using lower feed concentrations in Table 3.4.

The loading time was 16 min before breakthrough. 50.68 mg of Mb and 46.84 mg of a-

LA were recovered in the fractions corresponding to two totally separated peaks. The

average Mb concentration in the permeate was 0.0085 mg/ml, higher than that for the

runs shown in Figure 3.11, because the breakthrough concentration is higher

corresponding to the higher feed concentration. But the percentage of the total amount of

leaked Mb in the permeate as a fraction of the total Mb loaded on the beads is actually

lower compared to that in the runs shown in Figure 3.11. All such results are compared in

Table 3.4.

Figure 3.13 High loading capacity for Mb/a-LA separation for a MF module with
coated zone. (Feed: 0.499 mg/ml of Mb and 0.461 mg/ml of a-LA. Loading time: 16 min.
Elution: 0-50 min: 0.05 M NaCl , 50-90 min: 0.5 M NaCl in Tris buffer. Protein loaded amount: Mb
50.68mg, a-LA 46.84 mg.)



Table 3.4 Experimental Conditions and Protein Loading Results for the MF Modules

Before coating After partial coating

Fig. 3.11 Fig. 3.11 Fig. 3.13_

Feed conc.
(mg/ml)

Mb 0.0587 0.0545 0.499

a-LA 0.0524 0.052 0.461

Loading time (min) 4 29 16

Permeate flow rate (ml/min) 9.5 7.2 7.1

Ave. Mb conc. in permeate
(mg/ml)

.0022 0.0014 0.0085

Total Mb loaded (mg) 2.28 10.75 50.68

Total a-LA loaded (mg) 2.17 9.54 46.84

3.5 Adsorption Capacity Utilization

The actual amounts of protein loaded in the experiments described in the last two sections

were compared to the maximum equilibrium adsorption capacities under the experimental

conditions. The Mb equilibrium concentration in the beads was calculated using the

isotherm determined by Dai (2000):

where Cf is the protein concentration in the feed, and q* is the equilibrium protein

concentration in the solid phase, all in mg/ml.

Adsorption capacity utilized was calculated as the total amount of Mb loaded over

the total equilibrium loading capacity of the adsorbent, e.g.,
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where WI (mg) is the amount of protein loaded during the experiment, V. (ml) is the total

adsorbent volume, and c = 0.3 is the void fraction of the packing in the shell side.

For the runs using a OF membrane without coating shown in Figure 3.2a, only

10.6% of the total adsorption capacity was utilized. For the same membrane with a coated

zone, the run shown in Figure 3.3a utilized 33.1% of the total adsorption capacity under

the same operating conditions and similar protein leakage but longer loading time.

Adsorption capacity utilization for the module containing a MF hollow fiber

membrane was increased more significantly after a coated zone was formed on the same

membrane. For the results of runs shown in Figure 3.11, the adsorption capacity

utilization was 6.5% before coating and 29.2% after coating, an increase of almost five

times. Around 22.1% of the adsorption capacity was utilized for the run shown in Figure

3.13 using a much higher feed concentration. Considering that the protein dynamic

loading capacity is considerably lower than the equilibrium adsorption capacity in porous

chromatographic media (Sofer and Hagel 1997), 20-30% of the equilibrium capacity

utilization is acceptable in most biochromatographic separations (Natarajan and Cramer

2000).

3.6 Effect of Yeast Cells in the Feed

To demonstrate the direct recovery and separation of proteins from an unclarified feed

and study the effect of cells in the feed, fresh yeast cells were added into the protein feed

mixture to prepare a synthetic fermentation broth. The module containing a MF
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membrane with a coated zone was used in the experiments using the synthetic

fermentation broth as the feed solution during loading operation.

Figure 3.14 Cyclic runs for Mb/a-LA separation from synthetic yeast broths of different
cell densities using the coated MF module. (Feed: 0.0515 mg/ml of Mb and 0.0466 mg/ml of a-
LA with yeast cell suspension. Loading time: 29 min. Elution: 0-50 min: 0.05 M NaCI , 50-100 min: 0.5 M
NaCl in Tris buffer.)

Four consecutive runs for Mb and a-LA separation from the synthetic yeast

fermentation broths with different cell densities were performed in a loading-washing-

elution-reequilibration cyclic mode without cleaning in between. The Mb and a- LA

elution profiles for different runs, as shown in Figure 3.14, are similar to the profiles from

the clear feed solution shown in Figure 3.11. The peak heights in Figure 3.14 are slightly

lower than the peak heights in Figure 3.11 indicating a small decrease in protein

transmission through the membrane. This might have been caused by cell-protein

interactions and the presence of cells near the membrane surface blocking the movement

of protein molecules. Elution profiles of the four consecutive runs are almost
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superimposable, indicating that the washing and elution steps served as efficient periodic

cleaning of external and internal membrane fouling. The membrane cleaning was

integrated into the operational steps of the chromatographic separation. The device can be

used repeatedly without further cleaning in each cycle.



CHAPTER 4

MODELING AND SIMULATION OF THE PARTIALLY COATED DEVICE
PERFORMANCE

4.1 Hydrodynamics of the Coated Device

The hydrodynamics of the integrated filtration-cum-chromatogrpahy device with a coated

zone near the module outlet will be analyzed in this section. A simplified physical model

describing the fluid flow in the device is shown in Figure 4.1.

Figure 4.1 Fluid flow in the integrated device with a coated zone.

4.1.2 Basic Governing Equations

Local permeation flux along the axial direction:

For values of z between z = 0 and z = /p, 0 z 1p , the permeable zone, the local

solvent permeation flux (volumetric flux) is

where A is the membrane water permeation parameter under the shell-side packing
condition.

For values of z between z = /p and z = /t, /p z /t , the coated zone,
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The axial gradient of change of the lumen-side volumetric flow rate due to permeation is:

where No is the total number of fibers packed in the hollow fiber module and d, is the

inner diameter of the fiber lumen. An expression for the lumen-side local liquid flow rate

is obtained by integrating Eq. 4.3:

Similarly, the shell-side local volumetric flow rate is obtained as

For laminar flow in the hollow fiber lumen, the pressure drop can be described by the

Hagen-Poiseuille law (Apelblat Katzir-Katchalsky et al 19741-

For laminar flow in the shell side packed with beads of diameter dp and the bed void

fraction of e, the pressure drop can be described by the Blake-Kozeny law (Bird, Stewart

et al. 1960):

Here us, is the superficial velocity of the fluid flow in the shell-side space of cross section

area Ss
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where Ds is the module housing inner diameter, d, is the hollow fiber outer diameter:

Here a is defined as the total membrane surface area over the corresponding unit shell-

side space volume,

Substituting Eq. 4.7c into Eq. 4.7a, one obtains

4.1.3 Permeable Zone (0 z 5 /p)

By differentiating Eq. 4.1 and combining with Eqs. 4.6a and 4.7e, one can obtain the

governing equation for the permeation flux in the permeable zone (0 z /p)

By differentiating Eq. 4.8 again, a second-order differential equation is obtained:

The general solution of Eq. 4.9a is then:



Therefore the following expressions can be developed:

Integrating from z = 0 to z, one can get the expressions for the lumen-side and shell-side

pressures:

Representing Ps0 with the shell-side pressure at the end of the permeable zone:

Substituting Eq. 4.14b into Eq. 4.14a, one obtains:

Substituting Eq. 4.10 into Eq. 4.4 and Eq. 4.5, respectively and integrating; one can now
get
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4.1.4 Coated Zone (4, z S /t)

In the coated zone near the module outlet, the membrane pores are blocked with the

coating layer on the hollow fiber inner skin. Neither fluid nor other species can permeate

through the membrane, therefore,

The volumetric flow rates of the fluid in both the hollow fiber lumen and the shell

side are constant and equal to their corresponding flow rates at the end of the permeable

zone, e.g., QLz = ; Qs, = Q Slp

The lumen-side pressure drop is

Integrating from 4, to z, one obtains

QLlp can be obtained from Eq. 4.15,

The shell-side pressure drop is

where Qs/, can be obtained from Eq. 4.16,
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Substitute Eq 4.22 to Eq. 4.21 and obtain after integration and rearrangement,

4.1.5 Determination of A l and A2

Boundary conditions:

Substituting Eq. 4.26 into Eq. 4.27, one can obtain using Eq. 4.9b,

Substitute Eq. 4.14b into Eq. 4.24,
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Replace Psi, with Psi  , the pressure at the module shell outlet via Eq. 4.23b; Eq. 4.29 can

be rewritten as

Reorganize and solve for A1 to obtain,

4.1.5.1 Case 1. Tube-side Loading. 	 For tube-side loading, from Eq. 4.7g M3 = 0;
therefore from Eqs. 4.28 and 4.31

When /p = 4, corresponding to the no-coating situation, the expression for A 1 can be

reduced to

which is the same as the equation Dai et al. (1999) obtained for the integrated device

without any coating.
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4.1.5.2 Case 2. Tube-side Elution.	 Boundary conditions:

The constant A2 is the same as shown in Eq. 4.32. The constant A1 can be

determined using Eqs. 4.35, 4.36, 4.32 and 4.22:

In the permeable zone, 0 z <= /p, from Eqs 4.16 and 4.36



67

In the permeable zone,

In the coated zone,

4.1.6 Estimation of the Parameters A and B

The two quantities A and B are parameters describing respectively the flow resistance

through the membrane and the packed bed; A accounts for the membrane permeance

under the shell-side packing condition and B is a characteristic parameter accounting for

the beads and the hollow fiber packing. These two parameters need to be known for

solving the equations describing the hydrodynamic behavior of the integrated device.

Parameters A and B can be estimated from experimental hydrodynamic data. A 'cold'

loading run using the tris-buffer only was performed on module #1 packed with beads

before coating. The feed pressure PLO, shell-side inlet pressure Pso, and the permeate flow

rate Qs/p were measured. Equations 4.14b and 4.16 were used to calculate Pso and Qs/,,

respectively using the initial guess values of A and B. The sum of least squares of the

relative deviation between the experimental data and the calculated values of Pso and Q.*

was used as the optimization function. The optimal value of A and B for the integrated

device shown in Table 4.1 were calculated using the Generalized Reduced Gradient

(GRG2) nonlinear optimization algorithm (Beklaitis, Ravindran et al. 1983) by Excel

solver:



Table 4.1 Hydrodynamic Experimental Data and Estimated Parameters for Module #1

As one can see, parameter A is only about 1/4 th of the original membrane

permeance and 1/3 rd of the cleaned module permeance obtained earlier (Table 3.1) for the

OF module without the shell-side packing. One of the possible reasons is that some

membrane pores at the shell-side membrane surface were blocked by the beads,

introducing more flow resistance through those membrane pores. In cases where the pore

was not blocked, there is a possibility of an additional resistance in the fluid exit due to

the presence of a nearby bead. Another contribution to the deviation is caused by the

radial flow that was neglected in the present one dimensional model. The pressure at the

membrane shell-side interface is actually a little higher than the radial average pressure

across the packing used in our model. The void fraction of the shell-side packing was

calculated from Eq. 4.7e using the value of B shown in the table. Typical void fractions

for packed beds are 0.35-0.5 (LeVan, Carta et al. 1997). Dai et al. (Dai, Luo et al. 1999)

found A, B, g to be 1.857x10-1° , 4.724x10^11 , 0.3248 respectively for a similar device, and

3.255x10 -10 , 3.003x 10 11 , 0.3622 respectively for another similar device.
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4.2 Protein Loading Behaviors in the Device with a Coated Zone

The following assumptions were used in the model:

1. Fluid flow and membrane filtration are at steady state.

2. The permeate flow rate is much smaller than the lumen-side feed flow rate so that the
observed protein transmission through the membrane rob along the permeable fiber
length can be considered as constant.

3. Hollow fibers are distributed evenly in the module housing.

4. Chromatographic beads are packed homogeneously in both axial and radial directions
in the shell side.

5. Mass transport in the mobile phase in the shell side can be described by an one
dimensional axial dispersion model.

6. Linear adsorption equilibrium exists everywhere between the mobile phase and the
stationary phase in the shell side (Dai, Majumdar et al. 2003).

4.2.1 Lumen-Side Material Balance

The observed protein transmission of protein i through the membrane in a conventional

membrane filtration rob, is defined as the shell-side permeate concentration over the

lumen-side feed bulk concentration, where the concentration polarization effect at the

feed side was lumped:

For the same cross flow velocity and the permeation flux, rob, for a membrane is constant.

In this study, we assume rob, is a constant along the membrane length. From the

conventional membrane theory (Ho and Sirkar 1992), the concentration of species i along

the membrane length can be calculated using the following equation



When rob, = 0, the species can not pass through the membrane, and total amount of

species i in the lumen feed side will not change along the membrane length. If the

membrane is permeable to the solvent, species i will get concentrated along the

membrane length. If the membrane is not permeable to the solvent either, as in the coated

zone section in the integrated device of this study, the concentration of species i will not

change along the membrane length.

4.2.2 Shell-Side Material Balance

Figure 4.2 Mass transport in and out of a differential control volume in the shell side.

The material balance for species i over the control volume of Figure 4.2 is
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Here qsi , is the concentration of species i in the adsorbed phase; Dieff is a lumped effective

axial dispersion coefficient of species i; v s, is the interstitial fluid velocity in the shell side

and is equal to the superficial velocity us, divided by the void fraction s,

Substitute Eq. 4.52 into Eq. 4.51 and divide both sides by εSsΔz  ; one obtains

Substitute Eq. 4.7b in to Eq. 4.53 and take the limit of Δ z →  0; one gets the governing

differential equation:

4.2.2.1 Governing Equation in the Permeable Zone. 	 Here the superficial axial

velocity us, varies along the axial direction due to the solvent permeation through the

membrane in the permeable zone, and the gradient of the us, can be obtained by

differentiating Eq 4.7c

The effective axial dispersion coefficient Dieff is a function of vs, thus varies along

the axial direction too. It was found that Dieff/Vsz, is constant regardless of the flow rate and

the type of gel particles and solutes, and is a unique function of the particle size of the gel

(Yamamoto, Nakanishi et al. 1983a; 1983b), e.g.,
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Dai et al.(2003) adopted CD = 7.83 x 10 -4 for an integrated device using the same

kind of ultrafiltration membrane module and chromatography beads:

The second term on the right hand side of Eq 4.55 is a source term representing

the permeation of species i through the membrane from the lumen side:

4.2.2.2 Governing Equation in the Coated Zone. However, in the coated zone,

the right hand side source term of Eq 4.55 becomes zero, and us, remains constant.

Therefore, Eq 4.55 reduces to the governing equation valid for a conventional

chromatography column:

At the module exit, the concentration in the mobile phase will not change after the fluid

leaves the packed bed, thus



4.3 Adsorption Isotherm and Protein Transmission Parameters

Due to the high adsorption capacity of the DEAE Sepharose beads, most of the proteins

permeating through the membrane will be adsorbed in the stationary phase during

loading. As a result, the mobile phase equilibrium protein concentrations in the shell side

are relatively low in the loading step. The equilibrium isotherms for Mb and a-LA fall in

the linear range (Dai 2000).

Dai et al.(2003) reported K, for Mb and a-LA to be 43.4 and 31009, respectively,

in the Tris-buffer of pH 8.5. The extremely high adsorption capacity for a-LA indicates

that a-LA binds very strongly with the DEAE Sepharose Fast Flow beads under the

experimental conditions.

The observed protein transmission through the membrane lumped the feed side

concentration polarization, membrane intrinsic protein transmission and mass transfer

enhancement effect due to the adsorption at the permeate side (for the latter, see Chapter

5 that follows). It is determined by the pseudo-permeate concentration, i.e., the total

loaded amount of a specific protein divided by the total permeate volume in the loading

period, over the feed bulk protein concentration. A more detailed analysis of observed
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protein transmission through the membrane in this integrated device will be presented in

Chapter 5.

Table 4.2 Isotherm and Protein Transmission Parameters

Protein K, τ0b

Mb 43.4 0.48

a-LA 31099 0.88

* Data for K, were obtained from Dai et al. (2003).

4.4 Numerical Solution Procedure

The above partial differential equations ( PDEs) were solved using a public PDE solver

package PDECOL (Madson and Sincovec 1979). The solution method uses finite element

collocation based upon piecewise polynomials for spatial discretization to reduce the

PDEs into ordinary differential equations (ODEs) in the time domain. The resulting

ODEs then are solved by a general purpose ODEs solver package. The original Fortran

77 code was rewritten to be used on PC and errors were corrected according to Madsen

and Sincovec ((Madson and Sincovec 1992)). For simulation of the device without any

coating, the whole module length was divided into 100 subintervals. The Fortran 77 code

is listed in Appendix A. For simulation of the device with a coated zone, the permeable

zone of the module was divided into 75 subintervals and the coated zone was divided into

25 subintervals respectively. The corresponding governing equations for the fluid flow

and the material balance for each specific zone were called upon during use. The Fortran

77 code is listed in Appendix B.
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4.5 Results and Discussion

4.5.1 Protein Loading in the Non-Coated Module

Figure 4.3 shows the flow rate, pressure and flux profiles during loading in module #1

without coating. The lumen-side pressure decreases only slightly along the module

length. But the shell-side pressure decreased much faster due to the high flow resistance

of the packed bed. As a result, the transmembrane pressure increases significantly along

the flow direction, and reaches the maximum at the module exit. The permeate flux

profile shows clearly that more solvent permeates through the membrane at the module

downstream section. The higher solvent permeate flux will bring more protein molecules

through the membrane at the downstream section, causing uneven protein loading across

the module.

Figure 4.4 shows the simulated protein concentration profiles after 15 min loading

corresponding to the hydrodynamic operating conditions shown in Figure 4.3. The

protein feed concentrations used in the simulation were 0.0509 mg/ml for Mb and 0.0495

mg/ml for a-LA. As was expected from the hydrodynamic profiles, the protein

concentrations in the stationary phase and the mobile phase are highly uneven along the

module length. While Mb already starts leaking and the beads near the module exit have

been saturated by the Mb, the beads at the upstream section are still far away from being

saturated. The adsorption capacity of the whole module could not be fully utilized. The

profile for a-LA concentration in the beads are similar to that for Mb, but at a lower

level. The a-LA concentration in the liquid along the whole module is very low due to

the extremely high adsorption capacity of the beads for a-LA. The curve for a-LA



Figure 4.3 Pressure, solvent flux and flow rate profiles during loading in module #1
without coating. (Tube-side feed: flow rate 200 ml/min, pressure 35.4 kPag. )
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Figure 4.4 Protein concentration profiles along module #1 without coating at the end of
loading. (Feed concentration: Mb 0.0509 mg/ml, a-LA 0.0495 mg/ml. Loading condition, tube-side feed
flow rate 200 ml/min, pressure 35.4 kPag. Loading time 15 min.)

concentration in the liquid almost lies on the x-axis in the plot. But strictly speaking,

there will still be trace amount of a-LA (in equilibrium with the a-LA concentration in

beads at the module exit) leaking from the module during loading and the first elution

step for Mb elution. These simulation results provide insight into the reasons for early

protein leakage in Dai et al. (2003) and the lower loading capacity observed in the

experiments using a device without a coated zone.
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4.5.2 Loading of the Module with a Coated Zone

However, when a coated zone of 6 cm length is formed near the module outlet by

interfacial polymerization, neither solvent nor protein molecules can permeate through

the membrane to the shell side through the coated zone. As shown in Figure 4.5, the

permeate flux through the membrane becomes zero along the coated zone.

Correspondingly, the permeate flow rate remains constant in the coated zone. Although

the total permeate flow rate drops due to loss of the permeable membrane area, its rate of

decrease is less than the corresponding permeable membrane area reduction rate. This

is because the lower downstream permeate flow rate leads to a lower pressure build up in

the bed. Therefore, the upstream TMP becomes larger and more solvent permeates

through the membrane in the upstream region. This effect can be seen more clearly if we

compare the flux profile in Figure 4.5 with that in Figure 4.3.

Simulations of the protein loading in the integrated device having a coated zone

were performed under the same operating conditions as those for the experiment shown

in Figure 3.8. The simulated protein concentration profiles for the loading time of 15 min

shown in Figure 4.6a are significantly different from that in Figure 4.4. A clear shock

front layer is formed in the front of the profiles in the coated zone. Ahead of the shock

layer of the Mb, the beads are still fresh. There will not be any protein leakage before the

Mb shock layer reaches the module exit. The upstream protein concentration in the beads

is higher than that in the module without a coated zone shown in Figure 4.4. The total

loaded amounts of the proteins from the simulation are 1.89 mg Mb and 0.47 mg α-LA,

very close to the experimental results.



Figure 4.5 Pressure, solvent flux and flow rate profiles during loading in a module
having a coated zone. (Tube-side feed: flow rate 200 ml/min, pressure 35.4 kPag.)
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Figure 4.6 Protein concentration profiles along the module #1 with a coated zone. (Feed
concentration: Mb 0.0509 mg/ml, a-LA 0.0495 mg/ml. Loading condition, tube-side feed flow rate 200
ml/min, pressure 35.4 kPag.)



81

With the loading continuing, the protein concentration in the beads behind the

shock layer will increase and the shock layer front will propagate forward. Figure 4.6b

shows the protein concentration profiles at the loading time of 55 min. The Mb shock

layer front reached the module exit. and breakthrough happened at a similar level as that

in Figure 4.4 for the module without any coating. But the protein concentrations in the

beads along the whole module are much higher than that in Figure 4.4. Further the

protein concentration profiles are much more uniform along the bed length. The Mb

concentration in the beads at the module inlet is almost four times that in Figure 4.4.

More importantly, the a-LA shock layer front is still remaining at the beginning

of the coated zone, far away from the module outlet. The adsorption of a-LA on the

beads is much stronger than that of Mb so that the a-LA shock layer front propagates

much more slowly toward the module outlet. Before the a-LA shock layer front reaches

the module exit, there will not be any a-LA leakage at all. It will also be much easier to

get complete separation of Mb and a-LA in the elution step. In addition, the

concentration of a-LA in the fresh permeate (just out of the membrane pores, before

adsorption take place) is much lower than that of Mb, due to the higher membrane

rejection for a-LA. The higher membrane rejection for the non-targeted protein will

alleviate the adsorption burden of the beads at the shell-side.

Simulations were also performed for the high feed concentration, high loading

capacity run shown in Figure 3.4 in the experimental results section. The feed

concentrations were 0.505 mg/ml for Mb and 0.467 mg/ml for a-LA (Figure 4.7). The

loading time was 35 min. The total loaded amounts of proteins from simulation are 42.84

mg for Mb and 10.32 mg for a-LA, somewhat less than the experimental values, which
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are 51.34 mg for Mb and 14.13 mg for α-LA. One of the reasons for the deviation is that

constant feed concentrations were adopted as the boundary condition. But the experiment

was performed in the retentate recycle mode to save the total amount of protein used in

the experiment. With every pass-through across the module, the retentate became more

concentrated due to the membrane rejection of the protein molecules. The feed

concentrations increased with the loading time while the retentate was recycled into the

feed reservoir.

Figure 4.7 Protein concentration profiles at the end of loading, for the high feed
concentration, high loading capacity run. (Feed concentration: Mb 0.505 mg/ml, a-LA 0.467
mg/ml. Loading condition, tube-side feed flow rate 200 ml/min, pressure 35.4 kPag. Loading time 35 min.).
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In all of the above protein concentration profiles from simulation, both Mb and α-

LA concentrations in the mobile phase remained very low during the whole loading

process. This validates the use of the linear isotherm in the model and simulations.

4.5.3 Simulation of the Breakthrough Behavior of the Integrated Device, with and
without a Coated Zone

The same program was used to simulate the experimental breakthrough curves shown in

Figure 3.1. The simulation results along with the experimental data points are shown in

Figure 4.8. The lighter curve is the simulated breakthrough curve for the module without

any coated zone. The black curve is the simulated breakthrough curve for the module

having a 6 cm coated zone near the module outlet. The simulated curves fit the

experimental data fairly well and the breakthrough points were correctly predicted.

Figure 4.8 Comparison of the simulation results with the experimental breakthrough
curves. (Loading conditions described in Figure 3.1).
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4.5.4 Optimal Length of the Coated Zone

When the integrated device is operated in a loading-washing-elution-reequilibration

cyclic mode, the productivity is defined as the protein product output per day. Since the

washing, elution and reequilibration times are relatively constant in a cycle, optimizing

the loading step to get the maximum productivity is important. If the loading time is very

short, and the protein loaded amount is low, most of the time spent to produce the

proteins will be consumed by the washing-elution-reequilibration steps, resulting in low

productivity. As has been shown in the previous sections, introducing a coated zone in

the integrated device can increase the loading time and thus the loading capacity. A

simulation of the device productivity for different lengths of the coated zone was

performed. The time for washing-elution-reequilibration in a cycle was assumed to be 90

min. The same loading operating conditions as shown in Figure 3.4 have been used. As

the coating length is increased, more beads on the shell side can be fully utilized, but

more membrane permeable area will be lost. As the total protein amount obtained per

loading is increased, the time for loading is increased too. So the optimal length of the

coated zone will be a trade off between the beads' adsorption capacity utilization and the

available membrane permeable area. At the beginning, with the increase of the coating

length, the productivity increases. At 12 cm length of the coated zone, about half of the

total fiber length, the productivity of the device reaches maximum. Extending the coating

beyond the optimal length will cause the productivity to decline. The loading time

becomes too long and the increase in the loading capacity is not significant enough to

compensate for the increased time for loading.



Figure 4.9 Optimal length of the coated zone.
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CHAPTER 5

MASS TRANSFER ENHANCEMENT ANALYSIS

5.1 Introduction

Dai et al. (1999), as well as Dai (2000) observed that the protein transmission rate

through the membrane was enhanced somewhat by protein adsorption on ion exchange

beads packed in the shell side of the ultrafiltration membrane module. The mechanism of

this protein transmission enhancement phenomenon was not given and could not be

found in literature. Neither did they consider the effect of the potential protein

transmission enhancement on the behavior of the integrated filtration-cum-

chromatography device [(Dai, Majumdar et al. 2003)].

It is useful to conduct a theoretical analysis of the protein transmission

enhancement due to permeate side protein adsorption. This may identify the regions of

operation where such an effect may be important. A pseudo-steady state convection-

diffusion model to describe protein mass transfer through the membrane with permeate

side protein adsorption will be developed now. The mass transfer enhancement factor due

to permeate side protein adsorption for different membrane fluxes and protein

diffusivities can be evaluated for a single protein as well as a binary protein mixture. The

significance of diffusional contributions to the protein transmission will be considered.

5.2 Theoretical Development

Consider a crossflow membrane-based protein filtration process with the adsorbent

beads packed at the permeate side of the membrane surface as illustrated in Figure 5.1.

The feed protein solution flows along the membrane surface in the feed side at a
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pressure higher than that in the permeate side. Protein molecules permeating through the

membrane are adsorbed by the adsorbent beads. The protein concentration of the liquid

near the adsorbent surface can be much lower than that near the membrane interface due

to the adsorption equilibrium. The concentration gradient formed in the permeate side

boundary layer can increase the diffusional transport rate, and therefore, increase the

protein mass transfer rate through the permeate side boundary layer. This means that the

protein concentration at the permeate side membrane interface will be lowered and the

driving force for protein diffusion through the membrane pores will be increased. The

significance of protein transmission enhancement for this process depends on the relative

contributions of diffusion and convection to the total mass transport.

The crossflow filtration-cum-adsorption process described above is a dynamic

process because the protein concentration near the adsorbent surface will be changing

with time due to adsorption equilibration. The dynamic filtration-cum-adsorption process

is complicated for simulation purposes. To explicitly determine the permeate side protein
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adsorption effect, we can assume that the adsorbent is a huge protein sink having a large

enough capacity so that the dynamic process can be approximated by a pseudo-steady

state model. Figure 5.2 illustrates the steady state concentration profiles in the protein

transport process in the feed side boundary layer, the microporous membrane and the

permeate side boundary layer. The permeate bulk concentration is constant under pseudo-

steady state conditions.

Figure 5.2 Pseudo-steady state protein transport mechanism: concentration profiles.

A mass balance in the feed side boundary layer for the protein solute at any z

leads to



where kf = D0/δf  is the protein mass transfer coefficient, and Jv/kf is the Peclect number in

the feed side boundary layer. An alternate form is

Consider now the mass flux through the porous membrane; locate the z-

coordinate origin at the feed-membrane interface going toward the permeate side:

where e is the membrane skin layer porosity, K, is the convective hindrance factor, and

Kd is the diffusive hindrance factor (Opong and Zydney 1991, Anderson and Quinn

1974).

Boundary conditions:

Here (I) is the partition coefficient for the protein between the external solution and the

membrane and is assumed to be the same at both interfaces.

Integrating equation (5.2a) between the two limits:
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Here roc, = 01(c, is the asymptotic intrinsic membrane transmission; Deff = φεKdD0 , is the

effective solute diffusivity in the pore; Pen, is the membrane Peclet number.

Rearranging one gets

For a conventional ultrafiltration process, both CIp and Ns/Jv are equal to Cp, the permeate

protein concentration. One can get the same expression for the intrinsic membrane

transmission z-, from equation (5.2c) as what Quinn et al. (Anderson and Quinn 1974) got

using a classical membrane transport theory (Opong and Zydney 1991, Burns and

Zydney 1999); r, will approach 2-0„ at very high

In addition to the feed side boundary layer, the observed transmission or sieving

coefficient for a conventional ultrafiltration process has been described by Zydney et al.

(Saksena and Zydney 1994, Opong and Zydney 1991, Burns and Zydney 1999) using a

stagnant film model (Michaels 1968) and a hydrodynamic model (been 1987, Anderson

and Quinn 1974) as follows:
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Here kf is the mass transfer coefficient on the feed side. At large values of Pe m and

negligible concentration polarization (J<<kf), τ0b→τ∞  For a membrane filtration-cum-

adsorption process, the protein mass transfer through the permeate side boundary layer

can also be described by the stagnant film theory. Here the protein diffusion is in the

same direction as the convective transport so that diffusion enhances the protein mass

transfer rate, which is different from the concentration polarization in the feed side

boundary layer. Considering the three mass transfer resistances in series, one can derive

an expression for the observed transmission for the ultrafiltration-cum-adsorption

process.

Consider next the mass balance for the permeate side boundary layer. Locate the

z-coordinate at the membrane-permeate interface going away from the membrane:

Boundary conditions:

Integrating:

where kp= D0/δp is the protein mass transfer coefficient, and Jv/kp  is the Peclect number in

the permeate side boundary layer.
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At steady state, the protein flux and the solvent flux do not change along the three

resistances in series from the feed boundary layer to the permeate boundary layer through

the porous membrane. Therefore, the values of NS/JV via equations (5.1d), (5.2c) and

(5.3c) should be identical.

Equating NS/JV from equations (5.2c) and (5.3c), one obtains

Substituting this expression for C11 in equation (4.1d), one can calculate Ns/Jv. Thus one

can get the observed transmission for the UF-cum-adsorption process as:

The quantity Ns/Jv provides an estimate of the pseudo permeate solute

concentration as if the transmitted protein were totally dissolved in the permeate liquid.

5.3 Simulation Results and Discussion

Opong and Zydney (1991) studied the transmission of BSA (MW 69,000 Da) through

different MWCO polyethersulfone asymmetric OF membranes. Table 5.1 shows the

membrane properties and the corresponding BSA transport parameters. The BSA

diffusivity in free solution, Do, was reported to be 6.7 x 10 -11 m2/s (Opong and Zydney
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1991). The BSA observed transmissions for different membrane processes under

different running conditions can be calculated using equations (5.2e) and (5.6). The

simulation results will now be presented and discussed.

Table 5.1 Membrane Properties and the Corresponding BSA Transport Parameters
(Opong and Zydney 1991)

Membrane
MWCO

r,εφKd  (x10^-2) .5„, (µm)

50K 0.001 0.0033 0.5
100K 0.037 0.4 0.5
300K 0.48 5.0 0.5

5.3.2 Effects of the Enhanced Transport on the Permeate Side

The variations of the observed protein transmission with the permeate flux	 for

conventional ultrafiltration and two UF-cum-adsorption runs operated at different

permeate bulk concentrations are shown in Figure 5.3. At low values of permeate flux (<

5x10 -6 m/s), all observed transmissions decrease with an increase of permeate flux due to

the reduction of the relative contribution of diffusion. They go through a minimum at a

permeate flux value of 5x10 -6 m/s and then increase with the permeate flux due to the

high protein concentration at the feed side membrane interface caused by the high degree

of concentration polarization. At low permeate flux, diffusion dominates the mass

transfer. The observed transmissions of the UF-cum-adsorption process are much larger

than that of conventional ultrafiltration and much larger than 1. This means that the total

protein transmission was enhanced by the permeate side concentration gradient created

by protein adsorption. The pseudo permeate concentration is much higher than the feed

concentration. With an increase in the permeate flux, more and more proteins pass
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through the membrane due to the convective flow. The diffusional contribution takes less

and less part in the total protein transmission, and the τ0b for UF-cum-adsorption

approaches the τ0b for conventional ultrafiltration.

Figure 5.3 Observed transmission vs. permeate flux at different bulk permeate
concentrations. 100K membrane, ( Cbf =5 kg/m 3 , kf= kp = 5.2x10 -6 m/s.)

One can see from Figure 5.3 that the τ0b for Cbp = 0 and Cbp = 1 kg/m3 at the same

feed bulk concentration Cbfof 5 kg/m3 are not much different. In real loading operation of

the UF-cum-adsorption process, the permeate concentration is usually much lower than 1

kg/m3. So the pseudo-steady state assumption is valid for the purpose of estimating the

protein transmission. However, for a typical UF-cum-adsorption operation, the permeate

flux ranges from 2x10 -6 to 1 x10 -5 m/s [(Dai, Luo et al. 2000)], which is beyond the

region of diffusion-dominated operation. The mass transfer enhancement effect due to the

permeate side concentration gradient will not then be important.
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5.3.3 Effect of Membrane Pore Size

The membrane asymptotic transmission 'ro c and the hindered diffusion factor εφKd  are

both strong functions of the ratios of the molecular radius to the membrane pore radius.

But 6.01(d decreases much faster than r, does with a decrease of the membrane pore size

as shown in Table 5.1. Figures 5.4 (a) and (b) show clearly the very different observed

transmission behaviors for a 300K MWCO and a 50K MWCO polyethersulfone

membrane respectively. The nominal pore size of the 50K membrane is smaller than the

dimensions of the BSA molecule. Very little protein can permeate through the

membrane; thus a very low observed transmission is obtained (Figure 5.4b). The total

protein mass transfer rate is dominated absolutely by the membrane skin layer. The

permeate side enhanced protein diffusion almost has no effect on the observed

transmission. For the 300K membrane, the average pore size is several times larger than

the BSA molecule. Protein molecules can diffuse much more easily through the

membrane pores so that the permeate side enhanced diffusion effect is very significant at

low permeate fluxes. But as shown in Figure 5.3 for the 100K membrane, the τ0b for the

UF-cum-adsorption process approaches τ0b for conventional OF after the permeate flux

becomes greater than 5x10 -6 m/s. Convection dominates the mass transfer process at high

permeate flux.
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Figure 5.4 Observed transmission vs. permeate flux for different pore size membranes.
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5.3.4 Effect of the Permeate Side Mass Transfer Coefficient

Figure 5.5 illustrates the observed transmission for the UF-cum-adsorption process for

different values of kp. As expected, the protein transmission enhancement becomes

stronger as the permeate side mass transfer coefficient is increased. The quantity kp is

inversely proportional to the thickness of the permeate side boundary layer. For BSA, a

value of kp = 1 x 1O -5 m/s corresponds to a permeate boundary layer thickness of 6.7 1.1m,

significant protein transmission enhancement effect can be seen in a wide range of the

permeate flux (1 x10 -7 m/s ~ 5 x 10-6 m/s). At the permeate flux value of 1 x10 -7 m/s,

where diffusion contributes a lot to the total transmission, the observed protein

transmission for the UF-cum-adsorption process is almost 5 times greater than that for a

conventional UF. Whereas kp = 1 x 10 -7 m/s corresponds to a much thicker permeate

boundary layer of 670 pm, not only the range of the permeate flux where enhancement

occurs is much narrower (1 x10 -7 m/s —3 x10 -7 m/s), but also the extent of enhancement is

much smaller. The thickness of the permeate side boundary layer may be controlled by

adjusting the effective distance between the adsorbent particle and the membrane surface.

Using finer particles will leave less space between the membrane and the particle

surfaces, thus leading to a higher mass transfer coefficient. However, very fine particle

packing will cause significant flow resistance. The practical particle size should be

optimized considering both mass transfer and the hydrodynamics of the packed bed.
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5.3.5 Effect of Membrane Skin Layer Thickness

Figure 5.6 illustrates the simulated value of τ0b for a 5 μm skin layer 100K MWCO

membrane. When compared with the results shown in Figure 5.3 for the same condition

(except a thinner skin layer (0.5 pm)), the observed transmissions for both processes

declined significantly for a thicker skin layer. Also the transport enhancement effect due

to permeate side protein adsorption is much less than that in Figure 5.3. This is because

an increase in membrane thickness increases the membrane Peclet number, thus the
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membrane layer mass transfer becomes the limiting step for the total protein

transmission.

5.3.6 Protein Transmissions for a BSA and IgG Mixture

For the UF-cum-adsorption as a separation device, it would be of significant interest to

explore the protein transmission behaviors for a protein mixture. Two model proteins,

BSA and IgG (MW 155,000), were used in the simulation of the binary mixture

separation. Protein transport parameters on an OMEGA 100 K polyethersulfone

membrane with a skin thickness of 0.5 were reported to be r, = 0.016, Deff= 1.0 x10 -

13 m2/s for BSA and τ∞ = 0.0026, Deff = 4.0 x10 -15 m2/s for IgG respectively (Burns and

Zydney 1999). The diffusivity of IgG in the free solution is estimated from (Young,

Carroad et al. 1980)



Figure 5.7 shows the simulated values of the enhanced transmission for BSA and

IgG assuming that both of them bind to the adsorbent and there are no interactions

between protein molecules. Under the same operating conditions, the observed

transmission of BSA, the smaller protein, for a UF-cum-adsorption process will be

promoted significantly in the permeate flux range of 1 x10 -7 m/s to 5 x10 -6 m/s. However,

Figure 5.7 Observed transmission enhancement for BSA and IgG. (100 K membrane, k1 =

5.2x10 -6 m/s, kp = lxl0 -5 m/s, δm= 5 um, Cbf =5 kg/m 3 , Cbp = 0 kg/m 3 . Solid line: UF-cum-adsorption;
Dotted line: UF.)
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very limited transmission enhancement of IgG, a much larger protein, can be seen even

under very low permeate flux. IgG molecule, with an intrinsic membrane

transmission of only 0.0026, is much larger than the average membrane pore size;

therefore only a very small fraction of the IgG molecules can go through the very small

number of larger membrane pores. As in the case of BSA permeating through a 50K

membrane in section 3.2, the mass transfer resistance through the membrane is the

limiting step in the total protein transmission. The permeate side mass transfer

enhancement will not contribute much to the total protein transmission.

If one can choose an adsorption media with selective binding to the desired

protein, for example, an affinity media, there will be a transmission enhancement for the

desired protein only. All other protein transmissions are going to be as in conventional

ultrafiltration. The selective transmission enhancement will enlarge the membrane

selectivity. This is potentially an ideal situation in the UF-cum-adsorption process.

In many other situations, where both proteins will bind to the adsorbent, the

favored operating conditions are different for the smaller protein and the larger protein. If

a smaller protein is the target product, like BSA in this analysis, the advantages, of both,

the membrane fractionation and the mass transfer enhancement due to the permeate side

adsorption, can be obtained. Operating at a lower permeate flux will benefit selective

protein transmission. Rejecting the larger proteins can simplify the adsorption separation

in the permeate side. If a larger protein is the target product, like IgG in this analysis,

operating at the transmission enhancement range should be avoided. Instead, one should

choose the high permeate flux operating condition where the transmission enhancement

effect is negligible and IgG observed transmission is much larger due to the concentration
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polarization at the feed side. However, the highest permeate flux one can use is restricted

by the fouling and protein aggregation, and precipitation due to the high concentration at

the membrane feed side surface.

5.3.7 Protein Transmission Enhancement Observed in the Integrated Device Using
UF Membrane.

The observed Mb transmissions under different permeate fluxes were measured for the

UF module #2 with or without adsorbent at the permeate side. The experimental results

and the simulation results are shown in Figure 5.8.

Figure 5.8 Mb observed transmission for a UF module w. or w/o adsorbent at the
permeate side.

The diffusivity of Mb in the free solution was estimated using eq. 5.7. The

permeate-side mass transfer coefficient was 1 x10 -4 m/s. The lumen-side mass transfer

coefficient was estimated using correlation (Kulkarni, Funk et al. 1992)



The membrane skin layer thickness is 0.5 μm. The membrane transport

parameters roc, and  εφKd were regressed using eq 5.2e, to be 0.0716 and 0.00186

respectively. The experimental data of observed Mb transmission corresponding to the

permeate fluxes from 1 x10 -6 to 1 x10 -5 m/s in the conventional UF were used in the

regression. The two experimental points under higher permeate fluxes were abandoned

because the membrane fouling becomes more significant at high permeate fluxes,

resulting in lower observed protein transmissions, therefore not reflecting the true

membrane transport parameters.

The theoretical values of the observed transmission for the conventional UF are

shown as the dotted line. The solid line in Figure 5.8 shows the theoretical values of the

observed transmission for the UF-cum-adsorption process calculated using eq. 5.6. One

can see that the calculated value from the proposed convection-diffusion transport model

somewhat underpredicted the experimental value. There are still other factors

contributing to the protein transmission. The streaming potential formed by the

electrolyte flowing through the charged membrane pores may be significant enough to

facilitate the negatively charged protein molecules moving to the permeate side.

That the charged membrane surface affects the solute transport can be supported

by another simple experiment, where the pure water flux variation is significant enough

to be observed with the change of solution pH and ionic strength, indicating the

electrokinetic phenomena is playing a role here. As shown in Figure 5.9, the pure water

flux increases with the increase of the solution ionic strength but decreases with the

increase of the solution pH. With more salt in the solution, the electrical double layers of
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the ions and the membrane pores are compressed. With the increase of the pH of the

solution, the extent of free charge at the membrane pore surface becomes stronger,

causing more electroviscous effect.

Figure 5.9 Salt effect on pure water permeance.
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5.4 Concluding Remarks

In this chapter, the observed transmission in the UF-cum-adsorption process has been

compared to that in the conventional OF process by simulating a model protein BSA

permeating through different MWCO polyethersulfone membranes. The pseudo-steady

state mass transfer model can explicitly show the observed transmission enhancement

effect in the UF-cum-adsorption process. When diffusion makes a significant

contribution to the transmembrane mass transfer, the total protein transmission can be

enhanced considerably by the permeate side protein adsorption. During the protein

loading period in a typical UF-cum-adsorption process, most protein molecules in the

permeate side are captured by the adsorbent so that the protein concentration in permeate

liquid phase is much lower than the feed bulk concentration. Simulation results show that

the low permeate bulk protein concentration does not affect the enhancement effect much

under this situation; therefore, the pseudo-steady state model can be used to describe the

mass transfer behavior of the process. Larger membrane pore size and thinner membrane

skin layer favor protein transmission enhancement effect due to permeate side protein

adsorption. But the enhancement effect can be neglected at higher permeate flux when

convection dominates the total mass transfer process or the proteins are very highly

rejected by the membrane.

In the separation of protein mixtures, a media that selectively binds only the target

protein will enhance the target protein transmission without affecting the transmissions of

other proteins. The selective binding media can provide the fullest advantage of the UF-

cum-adsorption process. If both proteins in a binary mixture bind to the adsorbent,

smaller proteins will encounter more transmission enhancement. If the target protein is
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the smaller one, operating at lower permeate flux where transmission enhancement is

significant will enhance the membrane selectivity, a plus for the separation. If the target

protein is the larger one, operating at the transmission enhancement range should be

avoided by using higher permeate flux.

The diffusion-convection transport model underpredicts somewhat the

experimental Mb observed transmission through the integrated device using UF

membrane. The streaming potential formed while the electrolyte flowing through the

membrane enhanced the protein transmission and need to be considered in the future

modeling work. Electroviscous phenomenon is also observed on the polysulfone UF

membrane, supporting the notion that the membrane surface is charged and electrokinetic

phenomenon plays a significant role.



CHAPTER 6

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE STUDIES

A new membrane filtration-cum-chromatography device configuration was developed by

coating part of the length of the hollow fibers near the module outlet with an essentially

impermeable coating. Interfacially polymerized coating on part of the hollow fiber length

was successfully developed on devices using either an UF or a MF membrane. The

coating layer formed on the inner skin of the hollow fibers was shown to be mechanically

and chemically stable. Through the upper section (about 3/4 - 4/5th of the length) of the

device, the UF/MF hollow fibers behaved in a conventional fashion. The rest of the fiber

length had an interfacially polymerized coating which essentially eliminated water

permeation at transmembrane pressure drops used in UF/MF. Correspondingly, the

permeation of proteins through the coated section of the fibers was eliminated. As a

result, the intrinsically high protein adsorption capacity of the selected chromatographic

resin beads on the shell side of the membrane device was fully utilized without any

limitation of early protein breakthrough through the shell-side permeate outlet.

After coating the bottom section of the hollow fibers with an impermeable layer,

dramatic increases of the protein loading capacities were demonstrated in both UF and

MF modules in separation experiments for the following two systems: Mb/α-LA and

Mb/BSA. In the integrated device using the UF membrane, a-LA and BSA encountered

higher rejection than Mb due to their molecular sizes or charges. For applications where

the more permeable protein molecule is the target product, the UF membrane can provide

selective transmission of the proteins, alleviating the adsorption burden of the impurity

proteins in the succeeding chromatographic separation steps. For applications where the

107
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larger protein or both smaller and larger proteins are the products, membranes having

larger pore size such as a MF membrane need to be used. The MF membrane is used to

block particles like cells, cell debris and bacteria while the proteins permeate through the

membrane and are loaded on the beads located in the shell side.

The ionic strength of the feed solution affects the a-LA transmission through the

UF membrane significantly. At very low ionic strength, the a-LA was highly rejected by

the UF membrane. With the increase of the ionic strength of the feed solution, the a-LA

transmission through the membrane increased significantly because the Debye lengthes

of the electrical double layers around the protein molecules and the membrane pores were

compressed by the salt in the solution.

The proteins, Mb and a-LA, were recovered and totally separated from a

synthetic fermentation broth using the device made of a MF module with a coated zone;

it demonstrates the ability to recover and separate proteins directly from an unclarified

feed. The elution profiles for four consecutive cyclic runs without cleaning in between

were essentially superimposable. The integrated process provided self-cleaning of the

membrane fouling via the washing and elution steps for chromatographic separation.

A mathematical model describing the hydrodynamic and protein loading behavior

of the integrated device with a coated zone was developed. When the length of the coated

zone becomes zero, the model will be reduced to the model for the integrated device

without coating. Using linear isotherms for Mb and a-LA, numerical solutions of the

pressure, solvent flux, solvent flow rate and the protein concentrations along the module

were obtained. The simulation results show that the protein concentrations in beads for

the integrated device with a coated zone are considerably higher than that for the module
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without coating. Shock layers for the different proteins will be developed in the coated

zone. The simulation results allow one to understand why the earlier device configuration

(without coated zone) suffered from early protein leakage and low loading capacity, and

provide insight into how the early protein leakage was avoided and loading capacity

increased and the separation improved in the new configuration(with a coated zone near

the module outlet). The simulated breakthrough curves of Mb on the device with and

without coated zone fit the experimental data well. The optimal length of the coated zone

for the UF module was found to be 12 cm, about half of the total effective hollow fiber

length.

A theoretical analysis of the protein mass transfer enhancement due to the

permeate-side adsorption was performed using a diffusion-convection model considering

the feed-side concentration polarization and the permeate-side concentration gradient

formed by the adsorption. The observed transmission in the UF-cum-adsorption process

has been compared to that in the conventional UF process by simulating a pair of model

proteins, BSA and IgG, permeating through different MWCO polyethersulfone

membranes. When diffusion makes a significant contribution to the transmembrane mass

transfer, the total protein transmission can be enhanced considerably by the permeate side

protein adsorption. But the enhancement effect can be neglected at higher permeate flux

where convection dominates the total mass transfer process or the proteins are very

highly rejected by the membrane. The Mb transport parameters through the UF hollow

membrane from A/G technology were determined from the conventional UF data. The

observed Mb transmissions at different permeate fluxes from simulation using the

diffusion-convection model are somewhat lower than the experimental values on the
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integrated device #2. The streaming potential and the electrostatic interactions between

the protein molecules and the membrane pore surface need to be considered in a more

accurate model.

It can be seen from the protein transport analysis that the observed protein

transmission is a function of the permeate flux. In our integrated device, the permeate

flux varies along the module length, therefore, the observed protein transmission is

actually a variable along the module. The mathematical model in Chapter 4 assumed a

constant observed protein transmission for the whole device. In future, the local observed

protein transmission influenced by the concentration polarization and the mass transfer

enhancement due to the permeate-side adsorption should be combined with the model for

loading behavior simulation in Chapter 4. This will lead to a more realistic model.

To further decrease the flow resistance caused by the packed bed, a new

configuration of the integrated membrane filtration-cum-adsorption device is proposed.

The new device consists of two sets of hollow fiber membranes carefully aligned in the

module so that each fiber is surrounded by the hollow fibers belonging to the other set.

Chromatographic beads are packed in the shell space between the hollow fibers. Feed

stream flows through the lumen of one set of the hollow fiber, liquid and bioproduct

permeate through the membrane and the thin packed bed in the radial direction,

bioproduct will get adsorbed in the beads and the liquid will permeate into the lumen of

the other set of hollow fiber and be collected. Complete cross flow is achieved in this

configuration. The radial flow resistance across the packed bed between the two sets of

hollow fibers is much less than that of the axial flow through the packed bed. As a result,

finer adsorbent beads can be used leading to more available surface area and faster mass
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transfer. Preliminary results show that the device can be loaded and eluted very fast.

However, the hollow fibers need to be specially aligned and regularly distributed in the

module to avoid any channeling. Further study on the hollow fiber packing arrangement

and the device loading and elution need to be carried out in future.



APPENDIX A

FORTRAN 77 CODE FOR SIMULATION OF THE INTEGRATED DEVICE
WITHOUT COATING

The program for simulating the loading step of the integrated membrane filtration-cum-

chromatography device without coating is listed in this appendix.
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DATA A,B,R(1),R(2)/ 2.4D-9, 2.65D6, 0.52,0.88/
C//Parameter A: permeability (cm/(dyn/cm2)/s=0.1 m/pa/s), B:
packing(dyn/cm2).s/m1=1.D5Pa.S/m3), R: REJECTION FACTOR

DATA QFO,C0(1),C0(2)/3.333D0,0.505DO, 0.467D0/
C//QFO, feed flow rate (ml/s). C01: feed conc(mg/ml).

DATA PFO,PPL/3.516D5,8.328D4
C//PFO: tube side inlet gauge pressure (dyne/cm2=0.1 Pa) PPL: shell side
outlet gauge pressure.

DATA WK(1), WK(2)/43.4, 31099./
C//Isotherm.

DATA MIU,CDL/1.D-2, 7.83D-2/
C//Viscosity (poise), DL Dispersion coefficient constance. (cm)

FAI=(1.DO-EP)/EP
C//EP: bed void fraction

C 	 CALCULATION PARAMETERS

write(*,*) 'liwork=',LIWORK, 'LWORK=',LWORK
IWORK(1)=LWORK
IWORK(2)=LIWORK
INDEX=1
TO=0.D0
DT=1.D-10
EPS=1.D-14
DX=COLLEN/DBLE(NINT)
DO 1 I=1,NPTS

XBKPT(I)=DX*DBLE(I-1)
1 	 CONTINUE

XLEFT=XBKPT(1)
XRIGHT=XBKPT(NPTS)

C
CM1=128.*MIU/DI**3

AS=3.14159*(DS**2-SNO*DO**2)/4.
CA=4.*DI*SNO/(DS**2-SNO*DO**2)
CM2=QFO/SNO/3.14159/DI

C 	 B=150.*(1-EP)**2/DP**2/EP**3*MIU*CA
BETA=DSQRT(A*(CM1+B))
A2=-A*CM1*CM2/BETA
A1=A*((PFO-CM1*CM2*COLLEN-PPL)

-(CM1*COLLEN/BETA+B/BETA**2*DSINH(BETA*COLLEN))*A2)
/(DCOSH(BETA*COLLEN)-A*CM1*(DCOSH(BETA*COLLEN) - 1.)/BETA**2)

CQ=SNO*3.14159*DI/BETA
C

DETAT=1.D0
TOUT=0.0D0
WRITE (6,241)

241 	 FORMAT(//2X,'THE CALCULATION RESULTS ARE'//)

51 	 TOUT=TOUT+DETAT
C 	 CALL SUBROUTINE PDECOL

CALL PDECOL(TO,TOUT,DT,XBKPT,EPS,NINT,KORD,NCC,NPDE,MF,
+	 INDEX,WORK,IWORK)

IF (INDEX .NE. 0) GOTO 105
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C 	 CALL SUBROUTINE TO GENERATE VALUES
CALL VALUES(XBKPT,USOL,SCTCH,NPDE,NPTS,NPTS,0,WORK)
TTIME=TOUT
IF ((TTIME .GE.405.)) GOTO 105

C//Compare to loading end time.
GOTO 51

	

105 	 WRITE (6,205) INDEX

	

205 	 FORMAT (10X,'INDEX=',I5)
C 	 protein concentrations in the stationary phase

DO 90 I = 1,NPTS
C//The concentrations in the stationary phase.

CS(1,I)=USOL(1,I)*WK(1)
CS(2,I)=USOL(2,I)*WK(2)

	

90 	 CONTINUE

C 	 Total protein loaded
WS(1)=0.0
WS(2)=O.O
DO 95 I=2,NPTS
WS(1)=WS(1)+(CS(1,I-1)+CS(1,I))/2.*AS*DX*(l. -EP)
WS(2)=WS(2)+(CS(2,I-1)+CS(2,I))/2.*AS*DX*(1.-EP)

	

95 	 CONTINUE
C 	 Output 	

WRITE (6,151) TTIME
WRITE (25,151)TTIME

	

151 	 FORMAT (1X,'Loading time (s):', F10.4)
WRITE (6, 153)
WRITE (25,153)

	

153 	 FORMAT (5X, 'X (cm)', 6X, 'Cl (mg/ml)',4X, 'C2(mg/ml)',5X,
'CS1(mg/ml)',5X,'CS2(mg/ml)')

DO 99 I=1,NPTS
WRITE (6, 152) 	 XBKPT(I),USOL(1,I),USOL(2,I),CS(1,I),CS(2,I)
WRITE (25, 152) XBKPT(I),USOL(1,I),USOL(2,I),CS(1,I),CS(2,I)

	

99 	 CONTINUE

	

152 	 FORMAT (1X, F10.4,4(4X, E10.4))
WRITE(6,160)
WRITE(25,160)

	

160 	 FORMAT(1X, 'Total protein loaded (mg):')
WRITE(6,161) WS(l), WS(2)
WRITE(25,161) WS(1), WS(2)

	

161 	 FORMAT(1X, 'WS1=', F10.4, 6X, 'WS2=',F10.4)

STOP
END

C
C
C 	 SUBROUTINE FOR PDE AND ODE

SUBROUTINE F(T,X,U,UX,UXX,FVAL,NPDE)
IMPLICIT DOUBLE PRECISION (A-H 2 O-Z)
DIMENSION U(2),UX(2),UXX(2),FVAL(2)
DOUBLE PRECISION WK(2),CO(2),R(2)
COMMON /COF/CQ,CDL,CA,BETA,A1,A2,QFO,CO,R,EP,FAI,AS
COMMON /ISOTHERM/WK

FJVZ=A1*DCOSH(BETA*X)+A2*DSINH(BETA*X)
QPZ=CQ*(A1*DSINH(BETA*X)+A2*(DSINH(BETA*X)-l.))



UP=QPZ/AS
QFZ=QFO-QPZ
C1FZ=CO(1)*(QFO/QFZ)**R(1)
C2FZ=CO(2)*(QFO/QFZ)**R(2)

FVAL(1)=(CDL*UP*UXX(1)+(CDL*CA*FJVZ-UP/EP)*UX(1)
+CA*FJVZ*(C1FZ*(1.-R(1))-U(1))/EP)/(1.DO+FAI*WK(1))

FVAL(2)=(CDL*UP*UXX(2)+(CDL*CA*FJVZ-UP/EP)*UX(2)
+CA*FJVZ*(C2FZ*(1.-R(2))-U(2))/EP)/(1.DO+FAI*WK(2))

RETURN
END

C 	  SUBROUTINE FOR BOUNDARY CONDITIONS 	
SUBROUTINE BNDRY(T,X,U,UX,DBDU,DBDUX,DZDT,NPDE)
IMPLICIT DOUBLE PRECISION (A-H 2 O-Z)
DIMENSION U(2),UX(2),DBDU(2,2)
DIMENSION DBDUX(2,2),DZDT(2)
COMMON /ENUPT/XLEFT,XRIGHT
COMMON /GEARO/DTUSED,NC,NSTEPS,NF,NJ

DO 10 I=1,NPDE
DZDT(I)=0.ODO

DO 10 J=l,NPDE
DBDU(I,J) =0.0DO

	

DBDUX(I,J)=0.0D0
10 	 CONTINUE

DBDUX(1,1)=1.D0
DBDUX(2,2)=1.D0

RETURN
END

C 	 SUBROUTINE FOR INITIAL CONDITIONS
SUBROUTINE UINIT(X,U,NPDE)
IMPLICIT DOUBLE PRECISION (A-H 2 O-Z)
DIMENSION U(2)

U(1)=O.0DOU(2)=0.0DO

C 	 U(3)=0.0D0
C 	 U(4)=0.0D0

RETURN
END

C 	 OPTION SUBROUTINE 	
SUBROUTINE DERIVF(T,X,U,UX,UXX,DBDU,DBDUX,DBDUXX,NPDE)
IMPLICIT DOUBLE PRECISION (A-H 2 O-Z)
DIMENSION U(*),UX(*),UXX(*),DBDU(NPDE,*),DBDUX(NPDE,*),

+	 DBDUXX(NPDE,*)
RETURN
END

115



APPENDIX B

FORTRAN 77 CODE FOR SIMULATION OF THE INTEGRATED DEVICE
WITH A COATED ZONE

The program for simulating the loading step of the integrated membrane filtration-cum-

chromatography device with a coated zone is listed in this appendix.

C 	 PROGRAM USING PDECOL to simulate the loading step of the
integrated membrane filtration-cum-chromatography with a coated zone.
C 	 Equilibrium dispersion model.
C 	 Binary mixture tube side feed. Tube side flow rate and conc.
profile using analytical solution.
C 	 Linear isotherm Csi=Ki*Ci
C 	 Output is the conc. profile along the module at the end of the
loading.
C 	 Unit: cm/g/s system.
C 	 created on 08/16/2003 	 MODIFIED 11/08/2003
C 	

IMPLICIT DOUBLE PRECISION (A-H 2 O-Z)
PARAMETER (NPDE=2,NINT=100,NPTS = NINT+l,KORD=4,NCC=2,MF=22,

• NCPTS=KORD*NINT-NCC*(NINT-1),IQUAD=O,
• ML=NPDE*(KORD+IQUAD-1)-1,MAXDER=5,LIWORK=NCPTS*(NPDE+1),
• LWORK=KORD+4*NPDE+9*NPDE*NPDE+NCPTS*(3*KORD+2)+NPDE*NCPTS*

(3*ML+MAXDER+7))
DOUBLE PRECISION U(NPDE,NPTS),XBKPT(NPTS),SCTCH(NINT)
DOUBLE PRECISION WORK(LWORK)
INTEGER 	 IWORK(LIWORK)
DOUBLE PRECISION USOL(NPDE,NPTS), CS(2,NPTS),WS(2)

//USOL: conc. in mobile phasel; CS: conc in stationary phase. WS: total
protein loaded

DOUBLE PRECISION WK(2),CO(2),R(2)
C 	 DOUBLE PRECISION SUM1(2),SUM2(2),SUM3(2)

COMMON /ENUPT/XLEFT,XRIGHT
COMMON /GEARO/DTUSED,NC,NSTEPS,NF,NJ
COMMON /ISOTHERM/WK
COMMON /COL/COLLP
COMMON /COF/CQ,CDL,CA,BETA,Al,A2,QFO,CO,R,EP,FAI,AS

C 	 INPUT PROBLEM PARAMETERS
OPEN (UNIT=25,FILE='LOADINGC.DAT',STATUS='UNKNOWN')

C
C 	 MEMBRANE MODULE PARAMETER
// A: membrane permeability.

DATA SNO,DI,DO,DS/50.D0,O.1,O.16,1.524/
//SNO,total fiber number; DI,fiber inner diameter DO,fiber external
diameter; DS:shell inner diameter.

DATA COLLEN,COLLP/24.5, 12.5/
// COLLEN: column length (cm); COLLP: Permeabale length (cm).
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DATA NINP/75/
// NINP: No. of grid in the permeable zone.
C 	 packing parameters.

DATA DP, EP/90.D-4, O.374 /
//DP: beads average diameter (cm); EP: bed void fraction,

DATA A,B,R(l),R(2)/ 2.4D-9, 2.65D6, O.52,O.88/
//Parameter A: permeability (cm/(dyn/cm2)/s=0.1 m/pa/s), B:
packing(dyn/cm2).s/ml=1.D5Pa.S/m3), R: REJECTION FACTOR

DATA QFO,CO(1),CO(2)/3.333DO,O.505D0, O.0467D0/
//QFO, feed flow rate (ml/s). CO1: feed conc(mg/ml).

DATA PFO,PPL/3.516D5,2.5D4/
//PFO: tube side inlet gauge pressure (dyne/cm2=O.1 Pa) PPL: shell side
outlet gauge pressure.

DATA WK(1), WK(2)/43.4, 31099./
//Isotherm.

DATA MIU,CDL/1.D-2, 7.83D-2/
//Viscosity (poise), DL Dispersion coefficient constance. (cm)

FAI=(1.DO-EP)/EP
//EP: bed void fraction

C 	 CALCULATION PARAMETERS

write(*,*) 'liwork=',LIWORK, 'LWORK=',LWORK
IWORK(1)=LWORK
IWORK(2)=LIWORK
INDEX=1
TO=0.D0
DT=1.D-10
EPS=1.D-14
DX1=COLLP/DBLE(NINP)
DX2=(COLLEN-COLLP)/DBLE(NINT-NINP)
DO 1 I=1,NINP+1

XBKPT(I)=DX1*DBLE(I-1)
1 	 CONTINUE

DO 2 J=NINP+2, NPTS
XBKPT(J)=COLLP+DX2*DBLE(J-NINP-1)

2 	 CONTINUE
XLEFT=XBKPT(1)
XRIGHT=XBKPT(NPTS)

C
CM1=128.*MIU/DI**3
AS=3.14159*(DS**2-SNO*DO**2)/4.
CA=4.*DI*SNORDS**2-SNO*DO**2)
CM2=QFO/SNO/3.14159/DI

C 	 B=150.*(1-EP)**2/DP**2/EP**3*MIU*CA
BETA=DSQRT(A*(CM1+B))
A2=-A*CM1*CM2/BETA
Al=((PFO-PPL)*BETA**2+A*B*CM1*CM2*((COLLEN-COLLP)

Al for tube-side loading in the coated module
*DCOSH(BETA*COLLP)+DSINH(BETA*COLLP)/BETA-COLLEN))
/(CM1+BETA*B*(COLLEN-COLLP)*DSINH(BETA*COLLP)
+B*DCOSH(BETA*COLLP))

CQ=SNO*3.14159*DI/BETA
C
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DETAT=1.D0
TOUT=0.ODO
WRITE (6,241)

	

241 	 FORMAT(//2X,'THE CALCULATION RESULTS ARE'//)

51 	 TOUT=TOUT+DETAT
C 	 CALL SUBROUTINE PDECOL 	

CALL PDECOL(TO,TOUT,DT,XBKPT,EPS,NINT,KORD,NCC,NPDE,MF,
+	 INDEX,WORK,IWORK)

IF (INDEX .NE. O) GOTO 105

C 	 CALL SUBROUTINE TO GENERATE VALUES 	
CALL VALUES(XBKPT,USOL,SCTCH,NPDE,NPTS,NPTS,0,WORK)
TTIME=TOUT
IF ((TTIME.GE.3300.)) GOTO 105

//Compare to Loading end time.
GOTO 51

	

105 	 WRITE (6,205) INDEX

	

205 	 FORMAT (10X,'INDEX=',I5)
C 	 protein concentrations in the stationary phase

DO 90 I = 1,NPTS
//The concentrations at stationary phase.

CS(l,I)=USOL(1,I)*WK(1)
CS(2,I)=USOL(2,I)*WK(2)

	

90 	 CONTINUE

C 	 Total protein loaded 	
WS(1)=0.O
WS(2)=0.O
DO 95 I=2,NINP+1
WS(1)=WS(1)+(CS(1,I-1)+CS(1,I))/2.*AS*DX1*(1.-EP)

//In permeable zone
WS(2)=WS(2)+(CS(2,I-1)+CS(2,I))/2.*AS*DX1*(1.-EP)

	

95 	 CONTINUE
DO 97 I=NINP+2, NPTS
WS(1)=WS(1)+ (CS(1,I-1)+CS(1,I))/2.*AS*DX2*(1.-EP)

// In coated zone
WS(2)=WS(2)+ (CS(2,I-1)+CS(2,I))/2.*AS*DX2*(1.-EP)

	

97 	 CONTINUE
C 	 Output 	

WRITE (6,151) TTIME
WRITE (25,151)TTIME

	

151 	 FORMAT (1X,'Loading time:', F10.4)
WRITE (6, 153)
WRITE (25,153)

	

153 	 FORMAT (5X, 'X (cm)', 6X, 'Cl (mg/ml)',4X, 'C2(mg/ml)',5X,
'CS1(mg/ml) ',5X,'CS2(mg/ml)')

DO 99 I=1,NPTS
WRITE (6, 152) 	 XBKPT(I),USOL(1,I),USOL(2,I),CS(1,I),CS(2,I)
WRITE (25, 152) XBKPT(I),USOL(1,I),USOL(2,I),CS(1,I),CS(2,I)

	

99 	 CONTINUE

	

152 	 FORMAT (1X, F10.4,4(4X, ElO.4))
WRITE(6,160)
WRITE (25, 160)

	

160 	 FORMAT(1X, 'Total protein loaded (mg):')
WRITE(6,161) WS(l), WS(2)



WRITE(25,161) WS(1), WS(2)
161 	 FORMAT(1X, 'WS1=', F10.4, 6X, 'WS2=',F10.4)

STOP
END

C
C
C 	 SUBROUTINE FOR PDE AND ODE

SUBROUTINE F(T,X,U,UX,UXX,FVAL,NPDE)
IMPLICIT DOUBLE PRECISION (A-H 2 O-Z)
DIMENSION U(2),UX(2),UXX(2),FAL(2)
DOUBLE PRECISION WK(2),C0(2),R(2)
COMMON /COF/CQ,CDL,CA,BETA,A1,A2,QFO,CO,R,EP,FAI,AS
COMMON /ISOTHERM/WK
COMMON /COL/COLLP

IF (X.LT.COLLP) THEN
FJVZ=A1*DCOSH(BETA*X)+A2*DSINH(BETA*X)

// Permeable zone
QPZ=CQ-*(Al*DSINH(BETA*X)+A2*(DSINH(BETA*X)-1.))

ELSE
FJVZ=0.0

// Coated zone
QPZ=CQ*(A1*DSINH(BETA*COLLP)+A2*(DSINH(BETA*COLLP)-1.))

ENDIF
UP-QPZ/AS
QFZ=QFO-QPZ
C1FZ=CO(1)*(QFO/QFZ)**R(1)

C2FZ=C0(2)*(QFO/QFZ)**R(2)

FVAL(1)=(CDL*UP*UXX(1)+(CDL*CAFJVZ-UP/EP)*UX(1)
+CA*FJVZ*(C1FZ*(1.-R(1))-U(1))/EP)/(1.D0+FAI*WK(1))

FVAL(2)=(CDL*UP*UXX(2)+(CDL*CA*FJVZ-UP/EP)*UX(2)
+CA*FJVZ*(C2FZ*(1.-R(2))-U(2))/EP)/(l.D0+FAI*WK(2))

RETURN
END

C 	  SUBROUTINE FOR BOUNDARY CONDITIONS 	
SUBROUTINE BNDRY(T,X,U,UX,DBDU,DBDUX,DZDT,NPDE)
IMPLICIT DOUBLE PRECISION (A-H 2 O-Z)
DIMENSION U(2),UX(2),DBDU(2,2)
DIMENSION DBDUX(2,2),DZDT(2)
COMMON /ENUPT/XLEFT,XRIGHT
COMMON /GEARO/DTUSED,NC,NSTEPS,NF,NJ

DO 10 I=1,NPDE
DZDT(I)=0.0DO

DO 10 J=1,NPDE
DBDU(I,J) =O.0DO
DBDUX(I,J)=O.0DO

10 	 CONTINUE
DBDUX(1,1)=1.DO
DBDUX(2,2)=1.DO

RETURN
END

C 	 SUBROUTINE FOR INITIAL CONDITIONS
SUBROUTINE UINIT(X,U,NPDE)

119



IMPLICIT DOUBLE PRECISION (A-H 2 O-Z)
DIMENSION U(2)U(1)=0.0DO

U(2)=0.0D0
C 	 U(3)=0.0D0
C	 U(4)=0.0D0

RETURN
END

C 	 OPTION SUBROUTINE 	
SUBROUTINE DERIVF(T,X,U,UX,UXX,DBDU,DBDUX,DBDUXX,NPDE)
IMPLICIT DOUBLE PRECISION (A-H 2 O-Z)
DIMENSION U(*),UX(*),UXX(*),DBDU(NPDE,*),DBDUX(NPDE,*),

+	 DBDUXX(NPDE,*)
RETURN
END
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