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ABSTRACT

EFFECT OF FULLERENE CONTAINING LUBRICANTS ON WEAR
RESISTANCE OF MACHINE COMPONENTS IN BOUNDARY LUBRICATION

by
Andriy Titov

Fullerenes, a new form of carbon nanomaterials, possess unique physical and mechanical

properties that make their use as additives to liquid lubricants potentially beneficial. The

goal of this study was to investigate the effect of fullerene containing lubricants on wear

resistance of steel-bronze couples operating under boundary lubrication conditions. A

mathematical model of deformed asperity contact was built to calculate real contact area

and real contact pressure. Computer controlled wear friction testing methodology and

equipment were designed, developed and implemented for obtaining reliable and

objective experimental data. In addition, optical and scanning electron microscopy and

standard surface texture analysis were employed. Heavy duty motor oil SAE 10 was

modified by admixing fullerenes C60, a fullerene mixture of C60 and C70, fullerene

containing soot, and graphite powder. The experiments showed that all of the selected

fullerene additives dissolved in liquid lubricants reduce wear of the tested materials. In

addition, it was found that despite improvements in wear resistance, the selected modified

lubricants did not significantly change friction characteristics.

Improvement of wear resistance of contact surfaces operating with fullerene

modified lubricants can be explained by the presence of fullerenes in real contact while

the liquid lubricant is squeezed out. Fullerenes are considered to function as minute hard

particles that do not break down under applied normal force, and tend to separate direct

contact of functional surfaces of selected materials.
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CHAPTER 1

INTRODUCTION

Wear caused by friction is one of the most important factors in the deterioration of

machinery with moving components. It limits both service life and performance of the

equipment. In order to decrease friction and reduce wear of rubbing parts, lubricants are

used as a total or partial separator of surfaces in contact.

Presently, two most common approaches in lubricant improvement are

development of synthetic lubricants and improvement of mineral oils by additives.

Advantages of synthetic oils are their superior properties, disadvantages — their high cost.

Additives are chemical compounds added to lubricating oils to impart specific properties

to the finished o ils. S ome a dditives impart n ew and u seful properties to the 1 ubricant,

some enhance already existing properties, while some act to reduce the rate at which

undesirable changes take place in the product during its service life. Today, practically all

types of lubricating oil contain at least one additive, and some oils contain additives of

several different types. The amount of additive used varies from a few hundredths of a

percent to 30% and more. The use of additives is inexpensive, compared to development

of synthetic lubricants, and efficient way of getting desired properties of lubricants.

Among the most widely used additives are graphite powder, zinc dialkyl dithiophosphate

and others.

For efficient development of lubricants, it is important to understand the

difference between two most important regimes of lubrication — hydrodynamic and

boundary lubrication. In hydrodynamic lubrication, lubricant films are normally many

1
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times thicker than the surface roughness. The film thickness normally exceeds 10 -6 m. In

boundary lubrication, the solids are not separated by lubricant; thus, fluid-film effects are

negligible and there is considerable asperity contact. The properties of bulk lubricant are

of minor importance, and the friction coefficient does not depend on the viscosity of the

fluid in such extent as in hydrodynamic regime. The frictional behavior is similar to that

encountered in dry friction between two solids.

Although the most common lubrication mode is hydrodynamic lubrication, the

highest wear rate happens in occasional periods of boundary lubrication — in start-stop

periods of machine operations. Thus, special attention should be paid to this regime and

the ways, which can prevent extensive wear. Special interest of lubrication engineers is

the development of additives, which will not be squeezed out in asperity contact. In this

case, fullerenes separate surfaces of contacting bodies and prevent direct contact of

materials. Another valuable property of fullerenes is that they may act as anti-oxidation

agents, thereby lengthening lubricant service or storage life. Fullerenes may combine

with and modify peroxides (initial oxidation products) to make them harmless. High

elasticity, strength of C60 crystals, weak intermolecular interactions, low surface energy,

and quazispherical shape of molecules confirm described views.



CHAPTER 2

BACKGROUND

2.1 Friction and Wear

Friction is a very complex phenomenon, which involves many different stages and

parameters; its complexity is illustrated by the diagram in Figure 2.1. It shows the main

factors, which must be allowed for in analyzing the frictional interaction between solids.

This analysis can be facilitated if the friction and wear process is considered in three

consecutive stages: interaction of surfaces, change in surface properties during sliding

and surface damage.

Figure 2.1 Factors that affect friction force and wear rate between solids.

Friction is not a measure of wear or the tendency to wear; therefore, it does not

determine service life. Frictional heating sometimes causes a machine part to fail, but this

usually occurs when circumstances create abnormal friction effects. To emphasize the

3
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importance of friction in machine design, it is estimated that about 30 % of the power in

an automobile is wasted through friction [1].

Although all described input factors are significant in friction lessening and wear

rate reduction, not all of them can be easily changed. Lubricant is one of the most flexible

input parameters and, therefore, attracts particular interest of tribologists and lubrication

engineers. In this work, almost all parameters are considered constant, but lubricant is

subject to change. To understand the effect lubricants make in friction process is

important to recognize the nature of friction and types wear.

2.1.1 Friction

Friction is the resistance to motion during sliding or rolling that is experienced when one

solid body moves tangentially over another with which it is in contact. The resistive

tangential force, which acts in a direction directly opposite to the direction of motion, is

called the friction force. Three types of friction that commonly encountered are:

hydrodynamic, dry and boundary friction. Hydrodynamic friction describes the tangential

component of the contact force that exists between adjacent layers in a fluid that are

moving at different velocities relative to each other as in a liquid or gas between bearing

surfaces. As its name suggests, dry friction describes the tangential component of the

contact force that exists when two dry surfaces move relative to one another. Boundary

lubrication is an intermediate case between dry and hydrodynamic modes of friction — in

boundary friction, a lubricant presents in contact between surfaces, but direct contact

between surfaces exists.

If the solid bodies are loaded together and a tangential force is applied, then the

value of the tangential force that is required to initiate motion is the static friction force
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F. It may take a few milliseconds before relative motion is initiated at the interface. The

tangential force required to maintain relative motion is known as kinetic (or dynamic)

friction force Fk. In the future, only kinetic friction force will be considered and subscript

k will be omitted.

Two basic rules of intrinsic (or conventional) friction are generally obeyed over a

wide range of applications [2]. The first rule is expressed by Equation (2.1)

F = f • N (2.1)

where F — friction force, N — applied normal force and f is friction coefficient, which is

independent of normal load.

The second rule states that the friction force (or friction coefficient) is

independent of apparent area of contact between the contacting bodies. Thus two bodies,

regardless of their physical size, have the same coefficient of friction.

2.1.2 Wear

Wear is the surface damage or removal of material from one or both of two solid surfaces

in a sliding, rolling, or impact relative to one another. In most cases, wear occurs through

surface interactions at asperities. In the beginning of relative motion, material on the

contacting surface may be displaced so that properties of the solid body are altered, but

little or no material is actually lost. Later, material may be removed from a surface and

may result in the transfer to the mating surface or may break loose as a wear particle. In

the case of transfer from one material to another, net volume or mass loss of the interface

is zero, although one of the surfaces is worn. Wear damage precedes actual loss of

material and it may occur independently. Definition of wear is generally based on loss of

material, but it should be emphasized that damage due to material displacement on a
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given body, with no net change in weight or volume, also constitutes wear. Wear, like

friction, is not a material property, it is a system response and, thus, subject to operating

conditions.

Wear occurs by mechanical and/or chemical means and is generally accelerated

by frictional heating. The intrinsic part of wear is the removal of solid material from

rubbing surfaces [3-14]. Although there are fundamental works on lamination theory [15]

and diffusion theory [16], five principal, quite distinct types of wear are: (1) adhesive, (2)

abrasive, (3) fatigue, (4) impact by erosion and percussion and (5) chemical (or

corrosive) wear. Other commonly encountered wear types - fretting and fretting corrosion

— are not distinct mechanisms, but rather combinations of the adhesive, corrosive and

abrasive forms of wear. According to some estimates, two-thirds of all wear encountered

in industrial situations occurs because of adhesive- and abrasive-wear mechanisms. Wear

by all mechanisms, except by fatigue mechanism, occurs by gradual removal of material.

In many cases, wear is initiated by one mechanism and it may proceed by other wear

mechanisms, thereby complicating failure analysis.

Adhesive wear. Adhesive wear occurs when two nominally flat solid bodies are in sliding

contact, whether lubricated or not. Adhesion (or bonding) occurs at the asperity contact at

the interface, and these contacts are sheared by sliding, which may result in detachment

of a fragment from one surface and attachment to the other surface. As the sliding

continues, the transferred fragments may come off the surface on which they are

transferred back to the original surface or else form loose wear particles. Some are

fractured by a fatigue process during repeated loading and unloading action resulting in
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formation of loose particles. Schematic showing two possibilities of break (1 and 2)

during shearing of an interface is shown in Figure 2.2.

Figure 2.2 Adhesive wear, where N— normal applied load and F— friction force.

Abrasive wear. Abrasive wear occurs when asperities of a rough, hard surface or hard

particles slide on a softer surface and damage the interface by plastic deformation or

fracture, see Figure 2.3.

In the case of ductile materials with high fracture toughness (metals and alloys),

hard asperities or hard particles result in the plastic flow of the softer material. Most

metallic and ceramic surfaces during sliding show clear evidence of plastic flow, even

some for ceramic brittle materials. Contacting asperities of metals deform plastically even

at the lightest loads. In the case of brittle materials with low fracture toughness, wear

occurs by brittle fracture. In these cases, the worn zone consists of significant cracking.



Fatigue wear. Subsurface and surface fatigues are observed during repeated rolling

(negligible friction) and sliding, respectively. The repeated loading and unloading cycles

to which the materials are exposed may induce the formation of subsurface or surface

cracks, which eventually, after a critical number of cycles, will result in the breakup of

the surface with the formation of large segments, leaving large pits in the surface, also

known as pitting. Prior to this critical point (which may be hundreds, thousands, or even

millions of cycles), negligible wear takes place, which is marked contrast to the wear

caused by an adhesive or abrasive mechanism, where wear causes a gradual deterioration

from the start of running. Therefore, the amount of material removed by fatigue wear is
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not a useful parameter. Much more relevant is the useful life in terms of the number of

revolutions or time fatigue failure occurs.

Impact wear. Two broad types of wear phenomena belong under this heading: erosive

and percussive wear. Erosion can occur by jets and streams of solid particles, liquid

droplets, and implosion of bubbles formed in the fluid. Percussion occurs from repetitive

solid body impacts. Repeated impacts result in progressive loss of solid material.

Solid particle erosion occurs by impingement of solid particles, see Figure 2.4. It

is a form of abrasion that is generally treated rather differently because the contact stress

arises from the kinetic energy of particles flowing in an air or liquid stream as it

encounters a surface. As in the case of abrasive wear, erosive wear occurs by plastic

deformation and/or brittle fracture, dependent upon material being eroded away and upon

operating parameters.

Figure 2.4 Jet abrasive particles hitting a surface at a high velocity.
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Percussion is a repetitive solid body impact, such as experienced by print

hammers in high-speed electromechanical applications and high asperities of the surfaces

in a gas bearing. Percussive wear occurs by hybrid wear mechanisms, which combines

several o f t he following m echanisms: a dhesive, abrasive, s urface fatigue, fracture, and

tribochemical wear.

Chemical (corrosive) wear. Chemical or corrosive wear occurs when sliding takes place

in a corrosive environment. In air, the most dominant corrosive medium is oxygen.

Therefore chemical wear in air is generally called oxidative wear. In the absence of

sliding, the chemical products of corrosion such as oxides would form a film typically

less than a micrometer thick on the surfaces, which would tend to slow down or even

arrest corrosion, but the sliding action wears the chemical away, so that the chemical

attack can continue. Thus, chemical wear requires both chemical reaction (corrosion) and

rubbing of surfaces in contact.

2.2 Measurement Methods of Friction and Wear

Understanding the nature of the interactions of two materials and, therefore, solving the

various tribological problems heavily depend on obtaining as much as possible

information about friction and wear behavior of bodies in contact. Although internal

factors of frictional interaction such as changes in surface structure or roughness should

be considered, friction coefficient and wear rate are two most important output factors,

see Figure 2.1. The measurement of these parameters as well as friction force and weight

loss of materials in contact is a fundamental task of tribologists and lubrication engineers.
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Development of wear friction testing system plays important role in material and

lubricant testing as well as making valid comparison with previously obtained results.

Thus, the most important aspects of friction and wear testing have to be considered and

analyzed. These aspects include contact geometry of bodies in contact, testing procedure

and standard tests, description of friction regimes and approaches to wear assessment [2].

2.2.1 Contact Geometry

The most commonly used contact geometries for testing of components and materials are

shown in Figure 2.5. Each of these contact geometries can be conforming (the contact is

not a line or a point, it is some area) as well as non-conforming and has its advantages

and disadvantages. For example, positive aspects of point-to-point geometry are

elimination of alignment problems and opportunity to study wear from initial stages of

the test, but negative feature is that the stress level of this geometry changes as the

surfaces wear out.

Figure 2.5 Typical contact geometries used for sliding friction and wear tests: a) pin-on-
disk, b) pin-on-flat, c) pin-on-cylinder, d) thrust washers, e) pin-on-brushing, f)
rectangular flats on rotating cylinder, g) cross cylinders and h) four balls.
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Figure 2.5 Typical contact geometries used for sliding friction and wear tests: a) pin-on-
disk, b) pin-on-flat, c) pin-on-cylinder, d) thrust washers, e) pin-on-brushing, f)
rectangular flats on rotating cylinder, g) cross cylinders, and h) four balls. (Continued)
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Pin-on-disk. In the pin-on-disk test apparatus, the pin is stationary and the disk rotates

(Figure 2.5-a). The pin can be a hemispherically tipped, a nonrotating ball, a flat-ended

cylinder or a rectangular parallelepiped. This test apparatus is probably the most

commonly used in tribological testing.

Pin-on-flat. In this apparatus, the flat moves relative to the stationary pin in reciprocating

motion, such as in Bowden and Leben apparatuses (Figure 2.5-b). In some cases, the flat

is stationary and the pin reciprocates. The pin can be a ball, a hemispherically tipped pin

or a flat-ended cylinder. By using small oscillation amplitude at high frequency, fretting

wear experiments can be conducted.

Pin-on-cylinder. The pin-on-cylinder test apparatus is similar to the pin-on-disk

apparatus, except that loading of the pin is perpendicular to the axis of rotation or

oscillation (Figure 2.5-c). The pin can be a flat or a hemispherically tipped.

Thrust washers. In the thrust-washer test apparatus, the flat surface of a washer (disk or

cylinder) rotates on the flat surface of a stationery washer (Figure 2.5-d). The testers are

face loaded because the load is applied parallel to the axis of rotation. This configuration

is the most common for testing materials for low-stress applications, such as journal

bearings and face seals.

Pin-into-bushing. In the pin-into-bushing test apparatus, the axial force necessary to

press an oversized pin into a bushing is determined (Figure 2.5-e). The normal (axial)

force acts in the radial direction and tends to expand the bushing; this radial force can be

calculated from the material properties, the interference and the change in the bushing's

outer diameter. Dividing the axial force by the radial force gives the coefficient of

friction.
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Rectangular flats on a rotating cylinder. In this test apparatus, two rectangular flats are

loaded perpendicular to the axis of rotation of the disk (Figure 2.5-f). This apparatus

includes some of the most widely used configurations such as the Hohman-6 tester. In the

Alpha model LFW-1 or the Timken tester, only one flat is pressed against the cylinder.

The major difference between Alpha and Timken testers is in the loading system. In the

Falex tester, a rotating pin is inserted between two V-shaped (instead of flat) blocks so

that there are four lines of contact with the pin. In the Almon-Wieland tester, a rotating

pin is placed in between two conforming bearing shells.

Crossed cylinders. The crossed-cylinders test apparatus consists of a hallow (water-

cooled) or solid cylinder as the stationary wear member and a solid cylinder as the

rotating wear member that runs at the right angle to the stationary member, such as in the

Reichert wear tester (Figure 2.5-g).

Although non-conforming contact geometry provides an opportunity to track

friction coefficient and wear rate from the initial stages of the test, its major drawback is

that the contact area and stress level of this geometry changes as the surfaces wear out. It

creates some difficulties with monitoring friction and wear for extended time periods.

On the other side, conforming contact geometry generally allows mating parts to

wear-in to establish uniform and stable contact geometry before taking data and,

therefore, is considered excellent choice for simulation of stable friction and wear

conditions. Conforming contact geometry permits to carry out prolonged experiments

that simulate operational conditions of machine components in widely used mechanisms

such as automobile engines and factory machines.
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For the mentioned reasons, in wear friction testing machine, which is used for

experimental investigation of the selected lubricants, a rectangular concave surface on a

rotating cylinder with conforming contact geometry is employed. The detailed

description of wear friction testing machine and contact characteristics is shown in

Chapter 5.

2.2.2 Standardized Friction and Wear Tests

There are many models proposed for use in calculating friction coefficient and wear rate

from system properties. However, because they invariably involve the use of information

that is not readily available in handbooks or databases, these models are not widely

accepted. The alternative is actual measurement of friction coefficient and wear rate.

A number of organizations have been developed standard tests for measuring

friction coefficients [17]. These tests vary greatly in type and purpose. In the present day,

ASTM standardized tests received the highest recognition and acceptance for the

laboratory use. Some of them are designed for a particular application or material, while

others are for general evaluation of materials. The most prevalent ASTM tests are:

B 460 — "Dynamic coefficient of friction and wear of sintered metal friction materials
under dry conditions", material couple — friction material versus metal;

B 461 — "Frictional characteristics of sintered metal friction materials run in lubricants",
material couple — friction materials versus metal;

B 526 — "Coefficient of friction and wear of sintered metal", material couple — friction
materials versus gray cast iron;

D 1894 — "Static and kinetic coefficients of friction of plastic films and sheeting",
material couple — plastic film versus stiff or other solids;

D 2047 — "Static coefficient of friction of polish coated floor surfaces as measured by the
James machine", material couple — flooring materials versus shoe heels and soles;
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D 2714 — "Calibration and operation of Alpha model LFW-1 friction and wear testing
machine", material couple — steel ring versus steel block;

D 3028 — "Kinetic coefficient of friction of plastic solids and sheeting", material couple —
plastic sheets or solids versus other solids.

Test D 2037 was selected as the base test for the development of wear friction

testing machine described in Chapter 5. The beneficial aspects of this test are material

couple, flat-on-cylinder contact geometry and measured parameters. The test conditions

that require applied normal load of 22 N and angular velocity of 7.54 s -/ (72 RPM) have

been change to variable applied load and angular velocity of 23.9 s-1 (229 RPM). These

changes provide some flexibility for testing procedure and make the designed computer

controlled wear testing machine the key element of lubricant testing under boundary

lubrication conditions.

2.2.3 Friction Regimes

Dependence between wear of surface in contact and friction coefficient for different

systems is shown in Figure 2.6. This figure illustrates: a system that experiences

insignificant wear or changes in behavior when wear occurs (a), a system where friction

force increases with time until reaching a steady-state condition (b) and a system where

friction force varies with each event in the wear process (c).
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Each of the shown regimes can be encountered in various engineering

applications. Figure 2.6-a shows the behavior of friction coefficient under stable

conditions, which are the most beneficial for operation of machine components. This

regime is characterized by stable friction coefficient as well as wear rate. Development of
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these conditions reproduces common operation of moving parts and allows tracking

friction test characteristics for extensive time periods.

2.2.4 Wear Rate

There is no single standard way to express wear rate. The units used depend on the type

of wear and the nature of the tribosystem, in which wear occurs. Wear rate can be

expressed [18] as (1) volume of material removed per unit time, per unit sliding distance,

per revolution of a component or per oscillation of a body (that is, in sliding wear), (2)

volume loss per unit normal force per unit sliding distance (mm3/N*m, which is

sometimes called the wear factor), (3) mass loss per unit time, (4) change in a certain

dimension per unit time or (5) relative change in dimension or volume with respect to the

same changes in another (reference) substance. The manner of expressing wear rate is

sometimes prescribed in specific standard test methods. In other cases, standards are

established for given sectors of technology.

2.2.5 Test Preparation

The procedural considerations should be addressed to ensure that test procedure would

produce valid data [2]. Friction is a system property and systems must be modeled

carefully — same test parameters, same materials, same treatment and so forth. The factors

that play vital role in setup of friction test include design methodology, sample

preparation, friction and wear measurements and interpretation of data. Although

simulation is the most critical issue, other issues should also be thoroughly studied.

Proper simulation ensures that the wear mechanism experienced in the test is

identical to that of the actual system. Given the complexity of wear processes and the
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incomplete understanding of wear mechanisms, test development is subject to trials and

errors and is dependent on the capabilities of the investigator. A successful simulation

requires similarity between the functions of the actual system and those of the test

system, that is, similarity of inputs and outputs and of the functional input-output

relations. To obtain this similarity, selection of the test contact geometry is a critical

factor in simulating wear conditions. Other factors that significantly influence the success

of a simulation include type of motion, load, speed, lubrication conditions and operating

environment.

Operation testing is inexpensive and fast method of troubleshooting. However, if

it is not done properly, the wear mechanism to be simulated may change. Wear change is

normally caused by increase in load, speed or temperature, by decrease in lubricant

supply on contact surfaces or by changes in other indirect factors.

Specimen preparation plays a key role in obtaining repeatable/reproducible

results. For metals, surface roughness, geometry of the specimen, microstructure,

homogeneity, hardness and the presence of surface layers must be inspected carefully for

both contact materials. Similar controls are necessary for the wear-causing medium. For

instance, in an abrasive wear test, purity, particle size, particle shape and the moisture

content of the abrasive must be controlled.

2.2.6 Contemporary Tribotesters

Today the market of friction and wear testing apparatuses offers a selection of various

products that allow not only to track changes in friction coefficient and wear rate, but also

to control such factors as sample geometry, applied load, sliding velocity, ambient

temperature and humidity. Wear and friction testing machines based on different
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interface geometries are produced by such companies as Falex — Le Valley Corporation,

USA, Cameron Plint Tribology, UK, Center for T ribology, USA, Optimol Instruments

GmbH, Germany, and CSEM, Switzerland.

However, testing is not limited to the equipment produced by the industrial

companies. For certain applications, new types of wear and friction testing equipment on

the base of described geometries and principles are often designed. Such applications

include boundary lubrication, simulation of special contacts of machine components and

other applications.

2.3 Lubrication Regimes, Types of Lubricants and Oil Oxidation

2.3.1 Lubrication Regimes

The four distinct regimes of lubrication are hydrodynamic, mixed, boundary and dry

lubrication. The relationship among first three regimes is shown by Stribeck curve, see

Figure 2.7. This curve illustrates the relationship between coefficient of friction and

dimensionless number (η -U/P), where 77 is the dynamic viscosity, U is the speed

(revolutions per minute for a journal), and P is the load per unit of projected area [18]. As

can be seen in this graph, even insignificant changes in 77, U or P can lead to substantial

changes in friction coefficient and the lowest value of friction coefficient is in

hydrodynamic lubrication, an excellent regime for any two parts in relative motion. The

friction coefficient in this regime is much lower than that in boundary lubrication.
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In hydrodynamic lubrication, the pressure in the narrow converging gap between

bodies in contact enables a load to be transmitted between the surfaces with very low

friction, since the surfaces are completely separated by a film of fluid [2], see Figure 2.8.

In this situation, it is the physical properties of the lubricant, mainly the dynamic or

absolute viscosity, that dictate the behavior of the contact. Thus, lubricant films are

normally many times thicker than the surface roughness. The film thickness normally

exceeds 10 -6 m.

The other most common lubrication regime is boundary lubrication. In this

lubrication regime, the solids are not separated by lubricant; thus, fluid-film effects are

negligible and there is considerable asperity contact, see Figure 2.9.
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The properties of bulk lubricant are of minor importance, and the coefficient of

friction is essentially independent of the viscosity of the fluid. The frictional behavior is

similar to that encountered in dry friction between two solids. The surface films vary in

thickness from 5 x 10 -9 to 10 -8 m.

Although hydrodynamic regime is the most practical lubrication regime, under

some conditions, such as extreme pressures, low running speed or high surface

roughness, penetration of the lubricant film occurs and boundary lubrication takes place.
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Usually, this happens in the start and stop moments of machine running. The transition

from hydrodynamic lubrication to boundary conditions is marked by a drastic change in

wear rate.

2.3.2 Mineral Oils

The goal of lubricants, as previously discussed, is to physically separate two surfaces in

relative motion to one another and prevent direct contact of rubbing surfaces. Industrial

machinery lubricants must, therefore, be suitable, depending upon the particular

application, either for hydrodynamic or b oundary c onditions (or sometimes mixture of

the two). Common requirements for many industrial liquid lubricants used in different

applications are chemical and thermal stability, friction reduction and load carrying

ability (including extreme pressure lubrication).

Due to the use of increased loads, speeds and temperatures, which have come

about by the development of greater efficiency of industrial design, increasing

requirements are applied on the lubricating oils. Although the majority of industrial

applications can still be adequately met by mineral oil products, in some special

applications specially that require fire-resistance of lubricating oil, it has become

necessary to use synthetic oils. Although synthetic oils are excellent for many

applications in the technological point of view, and appear to be an obvious choice, they

are not always economically viable [19].

Mineral oils are mixtures of vast number of hydrocarbons, but small amounts of

sulphur and traces of nitrogen and oxygen compounds may be present. The composition

of the hydrocarbon mixture may largely vary. However, most oils are mixtures of

paraffins, naphthenes and aromatics, see Figure 2.10. The paraffinic oils are more
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resistant to oxidation than the aromatic oils, but when oxidation is not a problem, the

unsaturated ring type structures of the aromatics allows them to absorb greater quantities

of energy before break-down occurs. This specific advantage of aromatic oils is exploited

in the nuclear power field where lubricants are subjected to radiation in their working

environment. It is also used, for example, in the field of high temperature transfer where

the better thermal stability of the aromatic type oils becomes advantageous. However,

when the oxidation stability of the oil is more important than its thermal stability, for

example, in a quenching oil bath, then the paraffinic type of oil is preferred to the

aromatics. In low temperature applications, such as refrigerator oils, the use of

predominantly naphthetic type oils has been traditionally preferred.

The selection of lubricant grade, for a specific application, will often be

influenced by the general state of the machinery and its age and past service record.

Without doubt, the most important single physical characteristic of the oil selected will be

friction coefficient, which depends on molecular weight of lubricant molecules [20], see

Table 2.1.
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In many traditional applications, the selection of certain oil may not be enough to

cope with working conditions imposed on it and, thus, additives are usually used to

enhance lubricant properties. The main types of additives used in mineral oils are the

oxidation inhibitors, rust and corrosion preventives, anti-foam agents, load carrying and

frictional characteristic improvers, pour point depressants and viscosity index improvers

and anti-wear agents.

Table 2.1 Dependence of Friction Coefficient on Molecular Length of Lubricants
(clean glass on glass, f= 0.94)

Material
Coefficient of

Friction
Molecular

Weight
Formula

Pentane 0.71 72.09 C5 H12

Hexane 0.69 86.11 C6 H14

Heptane 0.68 100.12 C7 H16

Octane 0.66 114.4 C8 H18

Undecane 0.58 156.19 C11 H24

Nondecane 0.42 268.32 C19 H40

Tetracosane 0.33 338.39 C24 HSO

2.3.3 Oil Oxidation

Oxidation is one of the most important problem of lubricants. Present day refining

techniques yield oils of excellent oxidation stability, especially if they are of paraffinic

origin. However, oil oxidation is inevitable process for any lubricant, which operates in

oxygen content environment. Oil oxidation cannot be prevented, but it can be slowed



26

down. Even slight deceleration of oxidation process will give essential savings in

operating expenses of machine components [22].

The main idea of oil oxidation is shown in Figure 2.11. Hydrocarbons, which are

the base of any lubricants, under sufficient thermal extent, react with oxygen and the

products of this reaction are oil soluble hydroperoxides such as aldehydes, ketones and

acids [19]. Future oxidation turns them into oil insoluble gums and sludges, which cause

essential damage to the surfaces in contact.

Figure 2.11 Mechanism of oil oxidation.

Oxidation related processes lead to loss of viscosity and loss of load carrying

capacity of operating oils. Additives proposed today increase thermal stability of

lubricants and reduce their degradation rate, but still lubricant degradation can be
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reduced. The new approach is the use of new more stable chemical molecules that have

lower degradation rate under oxygen influence. N owadays, there are many works [21-

23], which describe the use of fullerenes a s lubricant additives — fullerenes posses the

qualities that necessary to act as antiwear agent as well as oxygen inhibitor. The behavior

of C60 films deposited on various surfaces was studied in oxidation tests [24, 25], which

show that fullerene C60 has strong capability of bonding oxygen, thus, decreasing the

oxygen concentration in the ambient medium.

Use of fullerenes, particularly C60 and C70, as lubricant additives, opens great

perspectives. Fullerenes can be easily dissolved in oils as well as in solvents such as

toluene and benzene. The main advantages of fullerenes are their low surface energy,

high chemical stability, spherical shape, weak intermolecular bonding and high load

bearing capacity. These properties of C60 molecules offer potential for their various

mechanical and tribological applications.

2.4 Lubricant Additives

The primary function of lubricant is to control friction, wear and surface damage over the

intended life of a system that contains machine elements, such as gears and bearings.

Other lubricant functions are prevention of surface corrosion and diminishing of heat, dirt

and wear debris effects.

The choice of a base lubricant and appropriate additives depends on application,

cost and health, safety and environmental considerations. Mineral oils have good

characteristics and are less expensive than synthetic lubricants. Thus, additives help

lubricants to get desired properties without significant effect on the product final price.
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The amount of additive used in lubricants can vary from a few hundredths of a percent to

30 % and more. Some additives that offer advantages in one performance area may be

destructive in other areas, whereas other additives work best in combination.

2.4.1 Types of Lubricant Additives

The widely used types of additives and their functions are following. Dispersants are

additives that are used to suspend oil-insoluble resinous oxidation products and disperse

contaminants in the bulk oil. Detergents perform functions that are similar to those of

dispersants as well as neutralize acidic combustion and oxidation products, and hence,

control rust, corrosion and resinous built-up in the engine. Rust and corrosion inhibitors

help to prevent the damage done to metal surfaces by the attack of atmospheric oxygen

and acidic products. Emulsifiers are chemical compounds that enable two immiscible

fluids to form an intimate mixture known as an emulsion. Foam inhibitors slow down

foam formation by changing the surface tension of the oil and by facilitating the

separation of air bubbles from the oil phase. The principal function of a viscosity

improver is to minimize viscosity variations with temperature. Oxidation inhibitors

function by circumventing the radical chain mechanism of the oxidation process.

Antiwear additives function by thermal decomposition and by forming products that react

with the metal surface to form a solid protective layer.

Lubricant additives can be categorized as either chemically active or chemically

inert [17]. Chemically active additives such as dispersants, detergents, antiwear and

extreme pressure agents, oxidation inhibitors and rust and corrosion inhibitors, have an

ability to chemically interact with metals to form a protective film and with polar

oxidation and degradation products to make them harmless. Chemically inert additives,
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which improve the physical properties critical to the effective performance of the

lubricant, include emulsifiers, pour-point depressants, foam inhibitors and viscosity

improvers.

Most lubricant additives, except some viscosity improvers and pour-point

depressants, consist of an oleophilic hydrocarbon group and a hetero-atom (N, 0, S and

P) — b ased p olar functionality. T he hydrocarbon group h as sufficient c arbon length t o

deliver the desired solubility characteristics to the additive. The additives that require

greater solubility in oil (dispersants, detergents and viscosity improvers) usually contain

large hydrocarbon groups. T hose t hat require e ither lower s olubility o r greater surface

activity (foam inhibitors and extreme pressure agents) contain small hydrocarbon groups.

The major role in improving lubricant properties under boundary lubrication

conditions is played by oxidation inhibitors and antiwear additives. Prevention of direct

contact and development of protective layer are the primary goal of antiwear additives.

Besides, reduction of oxygen effect in hot temperature zone of asperity contact can

significantly decrease wear of contact surfaces under boundary lubrication conditions.

Detailed description of oxidation inhibitors and antiwear additives is represented in the

following chapters.

2.4.2 Oxidation Inhibitors

Due to their hydrocarbon base, all present lubricants are susceptible to oxidation [26, 27].

Each type of base stock (mineral or synthetic) has a stable threshold, beyond which

stabilizers or oxidation inhibitors are needed to retard oxidation. High operating

temperature and high air exposure applications make oxidation processes in the operating

lubricant inevitable. During the initial stage, the lubricant reacts with oxygen to form free
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radicals. During the propagation stage, these radicals react with the oxygen and the

lubricant to form hydroperoxides. The hydroperoxides decompose to form a variety of

additional radicals and oxygen-containing compounds. During the termination stage, the

radicals either self-terminate or terminate by reacting with other lubricant compounds.

Today, oxidation inhibitors function by circumventing the radical chain

mechanism of the oxidation process. Oxidation inhibitors can be classified as

hydroperoxide decomposers and radical scavengers. The hydroperoxide decomposers

convert the chain-propagating hydroperoxides to alcohols while getting themselves

oxidized to higher oxidation levels. The radical scavengers remove the radicals from the

oxidation process by transferring a hydrogen atom to the radical, thereby making it

innocuous. Because radical scavengers act in the initial stage of lubricant decomposition,

they are considered more effective means in oil oxidation.

Under boundary lubrication conditions, oil oxidation and lubricant decomposition

processes are unavoidable and special attention should be paid to binding free radicals in

the initial stage and preventing development of hydroperoxides. For solving these

problems, fullerenes possess two qualities that are important to help free radicals to bind

into new chemical compounds — high absorption ability and spherical shape. Because of

high absorption ability, fullerenes bind fast neighbor free radicals developing "moss"

around their spherical molecules, which does not significantly affect molecular strength

of fullerene molecules. Spherical shape of fullerenes increase chances of development of

new chemical compounds out of radicals bound to the fullerene surface. A schematic

representation of free radical absorption by fullerene molecules and further development

of new chemical compounds from these radicals is shown in Figure 2.12.
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Figure 2.12 Schematic representation of functionalization of fullerene C60: a) initial state
of fullerene and radicals R1 and R2, b) in working conditions radicals break into parts, but
fullerene stays untouched, c) free radicals start binding to fullerene, d) the process of
breaking radicals and their binding to fullerene continues, e) radicals bound to fullerene
start reacting to e ach other and f) all radicals bound to each other and c lean fullerene
surface for possible future reactions.

Spherical shape of their molecules gives fullerenes strong advantages over

existing lubricant additives such as graphite. Although graphite has the same benzene

structure, see Figure 2.13, and binds free radicals in the same way as fullerenes do, it has

much lower absorption ability due to its laminar structure. Due to large distance between

layers, jumps of free radicals from one layer to another are regarded as problematical.
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Figure 2.13 Graphite structure.

In comparison with phenols and arylames, fullerenes look more beneficial due to

their strong molecular bonding and an ability to clean up their surface. Phenols and

arylames have some limit in binding free radicals and over its limit become a burden for

the lubricant. Unlike them, fullerenes can function as radical scavengers long time that

lengthen their life as oxidation inhibitors.

2.4.3 Antiwear Additives

Antiwear additives offer protection under boundary lubrication conditions [28]. They

function by thermal decomposition and by forming products that react with metal surface

to form a solid protective layer. This solid metal film fills the surface asperities, thus

reducing friction and preventing welding and surface wear. Depending on the antiwear

agents, the metal film consists of iron halides, sulfides or phosphates.

Dithiophosphoric acid zinc salts are the most widely used antiwear additives.

They are primary used in gasoline and diesel engine oils and in industrial lubricants. Zinc
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dialkyl dithiophosphates or diaryl dithiophosphates are synthesized by chemical reaction

of dithiophosphoric acids with zinc oxide.

The thermal and hydrolytic stability of these products depends on the nature of

the organic group. The dialkyl dithiophosphates derived primary from alcohols are more

thermally stable than those derived from the secondary alcohols. Although the diaryl

dithiophosphates are the most thermally stable of this family, hydrolytically they are the

least stable. They are not very effective and therefore not often used as antiwear agents.

Dithiophosphate derivatives decompose (generally below 200 °C or 390 F) to form thiols,

olefins, polymeric alkyl thiophosphates and hydrogen sulfide [29, 30].

Most antiwear additives contain sulfur, chlorine, phosphorus, boron or their

combinations. Molybdenum disulfide and graphite are common examples that are

generally used in greases, some industrial oils and various break-in lubricants. In general,

antiwear agents are commonly used in engine and gear oils, automatic transmission

fluids, power steering fluids and tractor hydraulic fluids.

Properties that may make fullerenes successful antiwear additives are spheroid

shape, high elasticity and high load carrying capacity of their molecules. Different from

the lubrication mechanism of widely accepted antiwear additives, fullerenes are expected

to act as minute firm balls, which cannot be easily squeezed out from the contact. Due to

fullerene chemical stability, they do not react with metal surface, but fill the surface

asperities reducing friction and surface wear. Detailed consideration of fullerenes

behavior in lubricant is covered in Chapter 7.
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2.5 Overview of Fullerenes

Until recently, carbon was believed to exist in only two forms, diamond and graphite, but

now a third previously unknown form — fullerene, buckminsterfullerene or buckyball —

has been discovered. Since Sir Harold W. Kroto, Robert Curl, Jr. and Richard Smalley

received Nobel Prize in Chemistry "for their discovery of fullerenes", fullerenes have

been attracting scientists all over the World and increasing their attention to studies on

their syntheses, properties and possible applications. The number of atoms in a fullerene

molecule can be 2n, where n is any integer number. Among a large variety of fullerenes

(C24, C28, C32, C80 and others), the most studied and easily produced ones are C60 and C70,

see Figure 2.14.

Figure 2.14 Structure of fullerene molecules.

Fullerene molecules have a form of hallow geodesic domes. All molecules are

networks of pentagons and hexagons with covalently bonded carbon atoms. It has been

reported that besides a certain number of hexagons, any fullerene must have precisely 12

pentagons in order to close into a spheroid and fullerene molecules may have carbon
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numbers ranging from 32 to 960 [31]. However, the most stable molecules are C60 and

C70. The structure of C60 molecule has 20 hexagons in the dome taking the highest

possible symmetry for any molecule (icosahedral) that assumes the shape of a soccer ball.

The structure of C70 has 25 hexagons, producing a shape reminiscent of a rugby ball. The

two interatomic distances within a C60 molecule are 0.140 nm between two carbon atoms

shared by adjacent hexagons and 0.145 nm between the two carbon atoms shared by a

hexagon and a pentagon. The C60 molecule forms a hallow carbon cage of 0.71 nm in

diameter [32, 33]. One-dimensional arrangement of C60 molecule [34] is shown in Figure

2.15. Like other aromatic molecules, carbon atom in this new geodesic form is bonded to

only three other atoms being satisfied in a strong double bond, delocalized over the

geodesic sphere. All single bonds are strong covalent bonds. As the bonds in the C60

structure are examined, carbon-to-carbon bonds in the pentagon subunits are single bonds

while alternate bonds in the hexagonal subunits are double bonds. It is further noted that

to maintain the aromatic network, pentagonal subunits are not placed to each other.

Wilson and others [37] have shown that molecules in evaporated C60 films tend to

order i n h exagonal arrays. Based o n sc anning t unneling microscopy o f C60 molecules,

Bhushan and others [36] observed the atomic configuration of a C60 molecule and

showed t hat s olvated films c onsist o f s pherical clusters a ggregate o f m olecules. X -ray

diffraction studies of the single crystal of fullerenes show that at room temperature, the

spheres, or C60 molecules, are packed in a face-centered cubic (FCC) lattice with the

nearest neighbor distance, between two cage centers, of 1.003 nm and a lattice constant of

1.4198 nm [31]. The molecules in the FCC lattice are bonded by weak Van der Waals

attractions. Carbon-13 NMR measurements of this solid form revealed that the fullerenes
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are spinning freely even in the crystal lattice, at speeds over 10 8 revolutions per second.

This motion is frozen out upon going to 77 K. A phase transition occurs to simple cubic

near 253 K [37, 38].

Figure 2.15 One-dimension arrangement of a molecule of C60.

The fullerene C60 is a blackish powder. It sublimes readily at temperatures above

450 °C and dissolves in a wide range of solvents. Since C60 sublimes and is soluble at

room temperature, it is unique among all other forms of pure carbon available. C60 is

stable in air. When sublimed, C60 is found to produce yellow-gold colored film of

excellent cohesive quality on a wide range of substrates. The fullerenes readily form

crystals with a density of about 1.7 g cm -3 . Frum and others [39] reported the infrared

spectrum of a C60 sample after heating above 500 °C differs from that of the original
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material which suggests that C60 lattice structure may not be stable above 500 °C. The

FCC phase of solid C60 remains stable under hydrostatic compression to at least 20 GPa,

with an atmospheric-pressure isothermal bulk modulus of 18 GPa. However, under non-

hydrostatic compression, a transition to a crystallographic structure of lower symmetry is

observed at about 16 GPa [37]. Based on experimental evidence, Regueiro and others

[41] reported that non-hydrostatic compression of C60 to a pressure of 20 ± 5 GPa

transforms it instantaneously into bulk polycrystalline diamond at room temperature.

Since the C60 molecules are bonded with Van der Waals forces, the fullerene

crystals are expected to be as soft as graphite. Based on nanoindentation measurements

conducted using atomic force microscope, Ruan and Bhushan [42] have shown that

fullerene clusters are loosely bonded and can be indented readily. However, at high

pressures, approximately 20 GPa, they are expected to be very hard because of its phase

transformation [41]. These experiments suggest that fullerene molecules can carry heavy

loads.

The index of refraction of solid C60 is 2.2 at 630 nm wavelength, cohesive

energies per C60 molecule and per atom are 1.5 eV and 7.4 eV, respectively, and the

ionization potential is 7.6 eV [32]. As such, it is highly insulating at room temperature,

but like all semiconductors, the conductive and photoconductive properties of these new

materials should be highly sensitive to small amounts of dopants. Numerous researchers

are doping fullerenes to change their properties, for example, to make them

superconducting by doping with alkali metals. Selig and others [43] has produced fully

fluorinated fullerenes (C60 F60), which may be as good a lubricant as another fluorocarbon

polytetrafluoroethylene (PTFE).
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To date, it is possible to synthesize fullerenes by different methods, such as

combustion method [43] or treatment of graphite electrodes by electric arc discharge

[44], carbon arc plasma [45] and laser pyrolysis of benzene [46]. Although now fullerene

production is not completely established and fullerene price is comparatively high, there

is a hope that in next few years this problem will be successfully solved.

The fullerenes are perhaps the purest and most stable form of carbon. The other

two forms, diamond and graphite, are not environmentally stable. Under normal

conditions, the diamond surface is instantly covered with hydrogen or hydroxide, which

ties up the dangling surface bonds. Graphite works in the same way. Thus, diamond and

graphite can never be truly pure under normal conditions. The fullerenes, on the other

hand, need no other atom to satisfy their chemical bonding requirements on the surface.

In this sense, the fullerenes are the only known stable form of pure carbon. The

molecules C60 and C70 are considered very important due to their high stability and

applicability. However, higher fullerenes also have significant applications.

Fullerenes can be used as possible admixtures to different lubricants and

conventional oils in order to increase antifrictional properties, wear resistance and even

anticorrosive properties. Another beneficial aspect of fullerene use as lubricant additives

is their strong absorption ability. There are works [47, 48], which describe strong

absorption force of fullerene and nanotubes. This leads to the idea that they can function

as oxidation inhibitors.

Some publications [49, 50] already suggest modification of lubricants in order to

improve their durability. In addition, there is coverage on producing new additives to

lubricants [51, 52]. Recently new developments such as [21, 53] propose to use fullerenes
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C60 as additives for solid and liquid lubricants, as well as protective solid film for

coatings. Because of high elasticity, strength of crystals, weak intermolecular

interactions, low surface energy and quasi-spherical shape of molecules, fullerenes C60

can be used for solving various tribological problems.

Ginzburg and others [53] present results obtained on steel-to-steel method

operated in friction-sliding mode. The additives considerably improve wear resistant

properties for all loads in hand. It is known that intermolecular lacing of polymer

coatings increases their wear resistance, and introduction of C60 fullerenes in lubricant

oils is expected to increase wear resistance of friction couples. There are some works [21-

23, 54], where a film of fullerene C60 is as a solid lubricant and as an additive for liquid

or solid lubricants. Although there is some data of fullerene effect on wear resistance of

materials in load contact, still there is no consistency in these data as well as there is no

consensus on mechanism of tribological behavior of fullerene-enriched lubricants.

Therefore, Gruen and others [21] proposed the idea that fullerene additives in lubricants

serve as precursors for developing diamond films. At the same time, Ginzburg and others

[22] suggested that fullerene-enriched lubricants create protective films on the metal

surface. Bhushan and others [23] offered opinion that fullerenes in friction process

function as tiny rigid balls that are not squeezed out from load contact as the host

lubricant.

Analysis of fullerene properties leads to the point that fullerene content lubricants

have many advantages over already existing materials, and an investigation of possible

applications of fullerene content lubricants can give new approach in wear resistance of

materials.



CHAPTER 3

GOAL AND OBJECTIVES

The goal of this work is to study performance of fullerene containing lubricants under

boundary lubrication conditions.

In order to achieve this goal the following objectives should be met:

• Development and implementation of computer-controlled wear friction testing

methodology for getting reliable and objective data of friction moment, friction

force, coefficient of friction, weight loss and wear rate of the contact materials

during load and sliding operation.

• Modification of heavy-duty standard motor oil by fullerene additives and

assessment of physical properties of the prepared lubricants.

• Evaluation of surface topography characteristics of tested friction couples at

different stages of the experimental study.

• Investigation of influence of fullerene containing lubricants on friction and wear

of the tested materials.

• Evaluation of maximum pressure in real contact areas of the friction couple.

• Assessment of the role of fullerene additives to liquid lubricant in improvement of

wear resistance of the selected materials.
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CHAPTER 4

NATURE OF CONTACT

Due to the difficulties with characterization of real surface topography and materials,

mechanics heavily relies on the assumptions that surfaces and materials in hand are ideal.

These assumptions are acceptable in most problems where surface irregularities can be

neglected. However, tribology problems require detailed consideration of surfaces in

contact.

In general, contact of two solids involves both elastic and plastic deformations

within and below asperities. Elastic deformations are described by Hertz's equations and

give the size of the contact region and its stress distribution. The stress level that causes

plastic deformations helps understand the nature of the contact. Finally, the development

of asperity contact model makes possible calculation of real contact area and real contact

pressure to draw the valid picture of the processes in contact and additive effects.

4.1 Hertzian Contact

Because of elasticity that is an intrinsic property of most engineering materials, the

contact region of cylindrical and flat surfaces is not limited by a line — it has some width.

The width of and the stress distribution in this region depend on the applied load and

mechanical properties of the materials in contact — Young's modulus E and the Poisson

ratio v [55]. Equations that give the size of the contact region and the stress distribution

are available in many forms, but the most complete description was made by Hertz.

41
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Based on the Hertz's theory, the evaluation of contact area for the case of steel roller and

bronze shoe is made.

4.1.1 Cylinder on Flat

Without the applied normal force, the only contact between the cylindrical and flat

surfaces is a direct line [56]. After applying the normal load, due to elastic deformations

the line contact becomes a rectangular area. The width of this contact is 2a, as shown in

Figure 4.1, where a is half-contact width.

where Reg is an equivalent contact radius and N is the dimensionless load which can be

defined by the expression



In this equation, N is the applied normal load, L — the effective length of the

cylinder and Eeq is the equivalent modulus of elasticity. For a contact of two different

materials, the equivalent modulus of elasticity Eeq can be determined by Equation (4.3)

where v1 and v2 are Poisson's ratio and El and E2 are the modules of elasticity of the two

materials in contact, respectively.

Equivalent radius Reg of contact curvature is calculated as

where R1 and c of the convex contact. For a concave contact, see Figure 4.2, radius R1 is

negative, because the contact is inside this circle. The result is that the equivalent radius

is derived according to Equation (4.5)

Figure 4.2 Concave contact, where R1 — outside diameter and R2 - inside diameter.
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For cylinder-on-flat contact, the maximum elastic deformation of the roller in the

direction normal to the contact area is

According to Hertz's theory, there is a parabolic pressure distribution at the

contact area, as shown in Figure 4.3.

Figure 4.3 Pressure distribution in a rectangular contact area.

The maximum contact pressure is at the center of the contact area, and it equals

According to Hertz's theory, contact width depends on the applied normal load,

the effective length of the cylinder and the equivalent modulus of elasticity. Calculations

of contact pressure show that it reaches the maximum value in the middle of the contact

region, decreases to the sides and become zero on the borders of the contact region.
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4.1.2 Calculations of Hertzian Contact Area and Pressure Distribution

In the case of initial contact of steel AISI 4340 roller and bronze SAE 40 shoe that are

used in the experimental part, the material parameters and test characteristics are

following

• Rr, radius of roller — 25.40 •10-3 m;

• Rs , radius of shoe — 25.41 .10-3 In;

• El, elastic modulus of roller (steel AISI 4340) — 200 GPa;

• E2, elastic modulus of shoe (bronze SAE 40) — 93 GPa;

• v1 , Poisson's ratio of roller (steel AISI 4340) — 0.32;

• v2 , Poisson's ratio of shoe (bronze SAE 40) — 0.30;

• N, normal load — 640 N;

• L, length of cylindrical contact — 10-2 M.

Substitution of above values for contact parameters into the expressions (4.1-4.7)

gives the values of Hertzian contact characteristics

The equivalent modulus of elasticity Eeq

The dimensionless load N



According to these calculations, the full width of contact is equal to 2a = 17.1

10-3 m and the total contact area is

This value of total contact area demonstrates that the initial contact covers almost

all area of bronze shoe and the maximum contact pressure is at the center of the contact

area and equals

The above calculations show the Hertzian contact characteristics of the initial

stage of roller-shoe contact. Although the described values of the maximum pressure and

contact area are valid only for the initial period of testing, they have important meaning

as a starting point of following consideration of elastic-plastic deformations and asperity

contact.
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4.2 Estimation of Elastic and Plastic Deformations

4.2.1 Classification of Friction Regimes

Destruction of the rubbing surfaces is generally manifested in the separation of particles

of material of size varying from a few fractions of a micron to several microns. In rare

cases, destruction is manifested by evaporation (dissociation) of the solid (abrasive wear).

To a large extent, the way is prepared for the separation of these particles by the repeated

load and temperature pulses on individual asperities. As a result of the constant

accumulation of irreversible changes, inhomogeneity of structure and a condition of

stress arise, that is, stress raisers are produced, or cracks may even appear, which form

wear particles on linking up. Destruction is often preceded by a change in the properties

of solids. Naturally, under these conditions, the changes, which precede destruction of the

material and the nature of this destruction, are extremely variable, and this is reflected in

the numerous classifications of different types of wear.

According to the classification based on the nature of the interaction between

surfaces [57], the nature of the process involved in breaking a frictional bond and the

group of processes occurring in the surface layers and microvolumes depend on

numerous geometrical, mechanical, physical, and chemical factors. The geometrical

factor, which characterizes the ratio of the depth of penetration or the magnitude of the

compression to the radius of an individual asperity (h/R) is one of the most important of

these. This characteristic provides a means of distinguishing elastic contact, plastic

contact, and microcutting. The physico-mechanical factor, which characterizes the ratio

of the tangential stress of a molecular bond to the yield point of the base material (r/ 6T) is

a second important factor. Two types of rupture of frictional bonds should thus be



48

distinguished: destruction of the bond along the separation surface between two bodies or

along films coating these bodies (when the layers of base material are not affected), and

rupture of the frictional bond in the bulk of the base material, in which case surface

friction changes to subsurface friction. On the basis of the above, the following five types

of frictional bond can be distinguished:

I. Elastic displacement of the material by the asperities of the counterface occurs
when the actual load and the adhesion do not lead to stress in the contact zone
exceeding the yield stress. In this case, damage to the material (wear) can occur
only by frictional fatigue.

2. Plastic displacement or plugging of the material occurs when the contact stress
reaches the yield stress but the material flows around the penetrating asperities of
the counterface. In this case, wear will be the result of low cycle frictional fatigue.

3. Microcutting occurs when the contact stresses on deformation attain values large
enough to produce damage (disturbance of the conditions for flow of deformed
material around the penetrating asperities). In this case, damage occurs at the
onset of interaction.

4. Adhesion disturbance of the frictional bond (along the same surface on which it
arises) does not lead directly to damage, but provides a contribution to the contact
stresses and strains, that is, it accompanies fatigue processes.

5. Cohesion rupture arises when the frictional bond is stronger than the underlying
material and tearing occurs. In this case, as under (3), wear occurs at the onset of
interaction.

Table 4.1 Classification of Frictional Bonds
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The fact that, depending on the type of damage to the frictional bond, see Table

4.1, the separation of material occurs as a result of different numbers of events, from very

large (106 — 108 cycles) in elastic displacement to a single event in cutting of a material, is

important for a proper understanding of the wear process.

4.2.2 Characteristics of Bodies in Contact

Classification of frictional bond helps to understand the nature of deformations of bodies

in contact. In case of steel AISI 4340 roller and bronze SAE 40 shoe, the described

parameters and evaluation of the nature of deformations are shown in Table 4.2.

Table 4.2 Characteristics of Bodies in Contact and the Nature of Deformations

Parameter Roller, steel 4340 Shoe, bronze SAE 40

Depth of penetration, h 0.025 pm 0.25 pm

Radius of individual asperity, R 25 pm 20 pm

The geometrical factor, h/R 0.01 0.0125

Tangential stress of a
molecular bond, r

80 MPa —40 MPa

Yield tensile strength, σT 470 MPa 125 MPa

Physico-mechanical factor, 1/2
(I — 2 r/ err)

~

 0.3

~

 0.2

Comparison of geometric and
physicomechanical factors

h/R < 1/2 (1 — 2 r/ ay) h/R < 1/2 (1— 2 τ/σT)

Number of cycles, n 13, 700 13, 700

Nature of deformation

Elastic deformations;
plastic deformations —

negligible;
microcutting — negligible

Elastic deformations;
plastic deformations;

microcutting - negligible

Contact materials, their surface texture characteristics and test parameters are

selected in such a way that only one material — bronze shoe — experiences both elastic and
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plastic deformations. Meanwhile, steel roller has only elastic deformations and its plastic

deformations can be neglected. This selection facilitates the development of real contact

model for evaluation of real contact pressure and real contact area.

4.3 Estimation of Real Contact Characteristics

When two surfaces come into contact, the contact is not continuous, and only certain

parts of the surface will carry the applied load. The sum of these discrete contact areas

forms the real contact area. Accordingly, the real contact area defines those parts of the

surfaces where there is strong interaction between the bodies. Consequently, if other

parameters are equal, friction force and wear rate can be directly related to the real

contact area.

Surface damage to solids during sliding (wear) is also closely bound up with the

magnitude of the real contact area, since the most highly stressed elements of the layers

near the surface are determined by its dimensions. Formation of the real contact area

under load occurs as a result of the penetration or crushing of individual microasperities,

and the greater the deformation, the larger the real contact area. Determination of the

contact deformation is important for calculating the real contact area and for some other

reasons. It has now been established that under the loads generally used in engineering,

the deformations, which develop at a contact region, are mainly responsible for

determining the change in the mutual positions of interacting components.
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4.3.1 Types of Contact Areas

The discrete nature of the contact is a characteristic feature of all contacts between solids

without exception and is related to their roughness. The lack of uniformity in the

distribution of the contact points is not quite so characteristic, although it always occurs

with sufficiently extended contacts and depends on the existence of waves on the surfaces

of solids, see Figures 4.4 and 4.5. Waviness, as with surface roughness, arises during the

manufacture of components (manufacturing waviness) and during use (service waviness).

The ratio of the frequency characteristic to the amplitude can be used as a criterion for

distinguishing between waviness and surface roughness. The wave height is comparable

with the asperity height, but the wave spacing is much larger than average distance

between asperities. For waves, the ratio of wave spacing to wave height is much larger

than for asperities. This criterion is used as the basis for a classification of the irregularity

of real surfaces [58].

Figure 4.4 Surface waviness parameters.
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Figure 4.5 Surface roughness parameters.

When components make contact, because of the waviness of their surfaces, the

real contact points will arise mainly at the wave tips. Each such region will be bounded

by a contour containing the real contact points, an elementary contour area M c, see

Figure 4.6. These contours are separated by a distance equal to the wavelength. The

contour contact area A, is equal to the sum of the elementary areas AA, [3].

Figure 4.6 Diagram of three contact areas.
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Introduction of the contour area concept is necessary for the following reasons.

The surface relief is assessed from a profilogram, which is obtained from a very restricted

part of the surface. The base line (for the most widely occurring surface roughness

classes) varies over the range 0.25 — 0.8 mm, which is less, or in the limiting case of the

same order as the wavelength. Accordingly, a profilogram does not reflect the true relief

of the whole surface, but gives an indication of a small part of it.

The presence of waves is associated with localization of regions where

microcontacts can exist, which leads to an increase in their density, so that the commonly

used theory of the absence of any mutual effect between microcontacts must be

erroneous. The contact area arises as a result of deformational processes concentrated in

the surface layers of contacting bodies, and thus depends essentially on the load and the

mechanical properties of the material. The contour area is a fictitious area and is

introduced as a stepping-stone in the transition from the nominal area A„, to the real

contact area A,.

The real contact area A,. is the sum of the elementary real contact area  Δ Ar arising

from deformation of individual asperities. This area determines the region of strong

interaction between two rough bodies determined by intermolecular interaction.

Calculation of the real contact area is, thus, one of the most important parts of friction

and wear evaluations.

Nominal contact area A a is the area over which bodies would make contact if they

had ideally smooth surfaces. In the case of bodies with a surface of uneven contour, this

is the area, over which two smooth bodies of same contour would make contact when a

load i s applied. T his area a rises from deformation o f t he b odies (mainly elastic), and,
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thus, as with the two areas described above, is determined by contact geometry, the

mechanical properties of the materials and the applied load. In calculating the nominal

contact area, it is reasonable to use the appropriate solutions of contact problems in

theory of elasticity. The quantity Aa as well A, is a fictitious quantity, and it is convenient

to use dimensionless areas

Three types of pressure can be distinguished — the actual pressure p„ the contour

pressure pc and the nominal pressure pa that equal

4.3.2 Surface Roughness Models

The wide volume of experimental material, which has accumulated on the real contact

area, enables the most characteristic features of the process of forming it to be classified

as follows:

1. the contact of rough surfaces has a discrete character;

2. elementary contacts (real contact points) arise as a result of both elastic and
plastic deformation;

3. the real contact area and the load are related by Equation (4.19)

where z = 1 in plastic contact and is very close to 1 (z=~  0.8-0.9) in elastic contact;
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4. with increase in load the increase in real contact area occurs mainly because of the
appearance of new contact points, the mean size of the contact points remaining
almost constant.

According to point (1) above, a surface roughness model can be represented in the

form of a set of asperities, which must be described by a number of parameters

characterizing their geometrical profile. Investigation of surface relief by various

methods gives some ideas of the shape and dimensions of these asperities. A very good

imagination would be required to perceive the true geometrical profile in actual contours

of asperities. However, in the interests of simplicity and clarity the model of an individual

asperity should be selected from a series of the simplest geometrical profiles. In fact, the

contact problems of elasticity and plasticity theory, which are the basis of calculations of

the real contact area, have comparatively simple solutions only on bodies of regular

geometrical profile. At this point, it is simply noted that of the numerous forms of

asperities, spherical, cylindrical and elliptical asperities are the ones, which most

completely fulfill all the required conditions. For setting up a universal model suitable for

calculating the real contact area and for friction and wear calculations in general, the

spherical model is to be preferred because of axial symmetry. In addition, a spherical

model reflects the isotropic character of friction, whereas a flat die and a wedge models

describe anisotropic effects.

4.3.3 Contact Area of Two Real Surfaces

In deriving the theoretical relations the following assumptions are made:

I.	 The surface roughness model consists of spherical segments or radius r on a rigid
base. The approach of two bodies is thus determined only by the deformation of
the smooth body and of rough layer.
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II.	 It is assumed that close contacts do not affect each other and the existence of an
unambiguous connection between the load and deformation at the contact point is
assumed.

The first assumption depends on the following considerations. Formation of the

real contact area is closely bound up with irregularity of deformations. If a system of

concentrated forces with a spacing s is applied to the surface of the body, according to the

St. Venant principle [59], the stress distribution at a distance from the surface

commensurate with the value of s is the same as if a uniform load distribution acted on

the surface. Consequently, the dimension of a layer with non-uniform strain distribution

is of the same order as s. It can be assumed that a concentrated force acts at each contact

point that the dimensions of this layer can then be assessed at around 100 ,um, which is

more than an order of magnitude higher than the height of the asperities.

However, the stresses in this layer are significantly less than those, which arise at

the asperities themselves — about 1/100 — 1/1,000 of these stresses. Accordingly,

movement of the underlying layer of material because of deformation is less than the

contact movements by a factor of 10-102, so that this movement can be ignored in the

calculations.

The contact between a smooth body S and a rough body R will be considered. In

the unloaded state body R makes contact with the surface 00 of body S at its highest

asperity. Figure 4.7-a represents a section through the contacting bodies in a plane

perpendicular to the smooth surface of body S. On applying a load N the bodies are

drawn together by an amount H1-H2, see Figure 4.7-c.
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Figure 4.7 The contact between ideally smooth and rough surfaces: a) initial position, b)
intermediate position with partial load and c) position after applying a compressive force.
On these pictures: H1 and H2 - distances between bodies in contact in unloaded and
loaded cases, respectively, hmax — the relative contact approach of the highest asperity, h i

— the relative contact approach of i-th asperity, dx — a elementary layer of thickness, xi - a
distance from the tip of the largest asperity to a elementary layer dx.
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The boundary between the rigid base of body R and a certain point on the surface

of body S that is sufficiently far from the contact region, is taken as a basis for calculating

the magnitude of the "approach", that is the relative approach of the two surfaces under

load after the initial contact has been made.

The dotted line in Figure 4.7-c shows the spherical segments in the unloaded

state. All the asperities, the tips of which lie above the line 00, enter into the contact, and

the given approach of the surfaces will be attained when each i-th asperity of the

asperities entering into the contact approaches body S by the amount h i. The magnitude of

the approach is taken to be the displacement of the i-th asperity and body S as calculated

at the moment of contact. The approach of two bodies is thus numerically equal to the

approach, or hypothetical interpenetration, of the largest asperity and the body S.

As a distance x from the tip of the largest asperity there is a layer of thickness dx.

All the asperities with tips in this layer are approached by the surface of body S by the

same amount, equal to 6 - x, where c is the relative approach of the bodies, which is equal

where x is a dimensionless coordinate which is equal to

and where Xis the distance from the tip of the largest asperity to the layer.

The positions of the spherical segments of the model are given by

where nr is the number of tips lying above the level x, n, is the total number of spherical

segments, and C and /3 are constant. Assuming that the function φ(x), see Equation
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(4.22), is continuous, the number of asperities with the tips in the layer between levels x

and x+dx can be calculated from

Assuming that for given conditions of interaction there is an unambiguous

connection between the load received by the asperity and the magnitude of its approach,

N = N(ε-x), it is possible to find the load for all asperities having tips with coordinates in

layer dx

Summing over all the layers containing the tips of the contacting spheres, and

writing the equilibrium conditions, an equation is arrived at which connects the approach

of the rough and smooth bodies with the applied load

The function N(ε-x) can be expressed in terms of the mean normal pressure on the

contact pr(ε - x), and the projection of the area of an individual contact on a plane parallel

to the smooth surface A: = A:, where Ar° is cross-sectional area of an asperity at a

distance s - x from its tip. The factor E depends on the type of contact (elastic or plastic).

For spherical model consideration of the geometry shows that the area A° can be

calculated from
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In deriving this equation the square of the sphere penetration is ignored by

comparison with the derivative 2rRmax(ε-x), since in these calculations it is always true

that r » Rmax (ε-x ).

Allowing for the above, Equation (4.25) can be written in the form

Equations (4.25) and (4.27) are written in the most general form. The factor a and

the functions n(s - x) and prfr - x) in these equations depend on the type of deformation

arising on contact of the bodies, so that further consideration of the problem is impossible

unless this has been established. Between two types of real asperity contact, elastic and

plastic, elastic contact, which is generally found in sliding applications, has vast practical

importance.

Elastic contact. From a solution of the Hertz problem for the contact between a sphere

and a flat surface it follows that the function N(ε - x) has the form

where 0 = (1— v1^2)/E1 + (1— v; )/E2 is generalized Kirchhoff elastic constant, and E1 and

v1 are the elastic modulus and Poisson's ratio of the bodies, respectively.

Allowing for the fact that

and inserting Equations (4.28) and (4.29) into Equation (4.25), it is found that
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where 7 = x/e .

The integral in Equation (4.30) consists of a beta function B (5/2; ,l3), which can

be expressed as a gamma-function

Using the expression for /3 and C show details

Allowing for Equation (4.32) and making some transformations, the equation

obtained is

where b is bearing area curve parameter and Kλ = I(2+1)/1-(2+3/2) is a numerical factor

which depends on parameter for the degree of approximation of the bearing curve area 2

and contour pressure pc .

If the elastic modulus of one of the bodies is significantly larger than the other,

then the first body can be considered absolutely rigid and in this case the approach will be

determined only by the elastic properties of the second body.

The quantities in Equation (4.33) can be classified in the following terms:

External conditions. An example is the contour pressure pc. The approach is proportional

to the contour pressure in the index 2/(22+1), which is less than unity.
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Elastic properties of material.  This is represented by the symbol O. Since Poisson's ratio

changes insignificantly for a wide range of materials, the stiffness of the contact depends

mainly on the elastic modulus. The approach is inversely proportional to the elastic

modulus in the index 2/(22+1).

Surface microgeometry.  The effect of surface microgeometry appears in two ways.

Firstly, the parameter v takes part in forming the index for p c and O. Secondly, in passing

from relative values of the approach to an absolute value, all the surface microgeometry

criteria can be united in the complex expression r̂(1/2)Rmax^λ//CAI)

It is generally known that the higher the surface roughness class of mating

surfaces, it means the smaller the value of Rmax, the more rigid the joint. In this relation,

the complex expression r 112 Rmaxk K/ 2b only confirms a widely known rule. What is new in

principle is that surface treatment methods, on which the remaining characteristics in the

equation depend, are very important as well as the surface roughness class. For example,

the radius of curvature of the asperity tips for the same class of surface roughness can

vary within two orders of magnitude, depending on the type of surface treatment, which

leads to an approximately tenfold change in the penetration.

The following considerations are used in calculating the real contact area. The

radius of a circular contact area is given by

The area of a single contact formed by an asperity with its tip at the level x is then

given by
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Substituting for N(ε-x) and φ '(x) as given by Equations (4.28) and (4.29) and

integrating, the obtained equation is

If waviness of the surface in contact is negligible, contour contact area A c is

considered equal to nominal contact area Aa that leads to ηa,c=~ηr,cηa,c =~ηr,c.

The multiplier 1/2 in Equation (4.37) is a. Allowing for (4.33) Equation (4.37)

takes the form

It can be seen from Equation (4.38) that the real contact area is proportional to the

contour pressure and inversely proportional to the elastic modulus when the index is

close to the unity.

4.3.4 Calculations of Real Contact Area and Pressure

Below are shown surface roughness profiles of bodies in contact — roller of steel AISI

4340, see Figure 4.8-a, and shoe of bronze SAE 40, see Figure 4.8-b. The major surface

texture parameters are shown in Figure 4.9.
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Figure 4.8 Roughness profiles of the bodies in contact: a) roller and b) shoe.

Parameter field for steel roller: 	 Parameter field for bronze shoe:
Ra 	 0.39 pm 	 Ra 	 0.11 pm
Rz 	 3.54 pm 	 Rz 	 0.88 pm
Rq 	 0.54 pm 	 Rq 	 0.14 pm
Rp 	 0.87 pm 	 Rp 	 0.41 pm
R3z 	 2.60 pm 	 R3z 	 0.57 pm
R Sk 	 -1.68 	 R Sk 	 -0.50
R Ku 	 7.42 	 R Ku 	 3.61
Rv 	 2.67 pm 	 Rv 	 0.47 pm
Rvl 	 2.01 	 pm 	 Rv1 	 0.58 pm
Rv2 	 2.75 pm 	 Rv2 	 0.40 pm
Rv3 	 2.72 pm 	 Rv3 	 0.51 pm
Rv4 	 3.61 pm 	 Rv4 	 0.36 pm
Rv5 	 2.27 pm 	 Rv5 	 0.49 pm
Rv sigma 	 0.55 pm 	 Rv sigma 	 0.08 pm
Rdq 	 0.182 	 Rdq 	 0.035
Rk 	 0.98 pm 	 Rk 	 0.39 pm
MR1 	 4.99 % 	 MR1 	 6.76 %
MR2 	 81.80 % 	 a) MR2 	 87.34 % 	 b)

Figure 4.9 Surface texture parameters: a) roller and b) shoe.
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For the calculations of real contact area and pressure, waviness of the surface in

contact is negligible and contour contact area A c is considered equal to nominal contact

area Aa . The values of the following parameters are used:

• Rmax, maximum height of profile asperities — 3.1 pm;

• r, radius of an individual asperity — 30.5 pm;

• 2, parameter for degree of approximation of the area curve — 2;

• b, bearing area curve parameter — 2;

• El, elastic modulus of roller (steel AISI 4340) — 200 GPa;

• E2, elastic modulus of shoe (bronze SAE 40) — 93 GPa;

• v1, Poisson's ratio of roller (steel AISI 4340) — 0.32;

• v2, Poisson's ratio of shoe (bronze SAE 40) — 0.30;

• N, normal load — 640 N;

• Ac, contour area —1. 710-4  m2 .

Substituting the values of these parameters into the expressions for following

values, we get the value of the generalized Kirchhoff elastic constant

A numerical factor

The contour pressure pc
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The performed calculations show that the real contact area is only a small fraction

of contour area and, therefore, the real contact pressure Pr, see Equation (4.45), is much

higher than contour pc, see Equation (4.41).



CHAPTER 5

METHODOLOGY

Wear friction testing methodology and equipment, which are developed, m anufactured

and implemented in Surface Engineering Laboratory at NJIT, consists of computer

controlled wear friction testing machine (WFTM) and various research techniques of

both quantitative and qualitative analysis of friction-wear experiment output. These

methods include evaluation of friction moment, friction force and friction coefficient,

calculation of wear rate and weight loss of a tested sample, examination of contact

surfaces before and after experiment and processing and representation of obtained data.

5.1 Computer Controlled Wear Friction Testing Machine

5.1.1 Design of the Machine

The overall design of wear-friction testing machine [60, 61] is shown in Figure 5.1. It

consists of electric motor (1) with suspended stator, reducer (2), cycle counter (3), driving

shaft (4), rubbing couple — roller (5) and shoe (6), loading mechanism (7), strain gages

beam (8), strain gages (9), strain indicator (10), computer (11) and digital linear indicator

(12). For collecting and processing of experiment data, the LabView application was

developed and implemented — for friction measurements, and Visual C++ program was

built and set up — for wear measurement part. The rubbing couple — AISI 4340 steel roller

and bronze SAE 40 shoe — was selected in such a way that only shoe manufactured of a

soft material experiences noticeable wear and weight loss. Wear of roller is minimal and

67
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is neglected in this research. The final output of friction-wear test is friction coefficient of

the rubbing couple, wear rate and weight loss of the shoe.

Figure 5.1 Computer controlled wear friction testing machine.

This machine design makes possible to calculate motor's power changes, which

are triggered by changes in friction force between shoe and roller. The distinctive point of

the proposed computer-controlled wear friction testing machine is the use of suspended

electric motor placed between two bearings. This design allows to measure motor's

power losses by attaching strain gages beam by one end to the stator of electric motor and

the other end on a stopper fixed to the unmovable table. If the stator of the motor under
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the effect of established magnetic field between the rotor and the stator tends to rotate

around the rotor attached to the driving shaft (4), the beam (8) experiences bending

stresses. These stresses depend on motor's consumed power and can be measured by

strain gages placed in the middle of the beam. Strain gages resistance changes due to

beam elongation registered by strain gage amplifier go to the computer. Computer

receives and saves the data that are later used for calculations of friction characteristics.

Detailed discussion of friction test characteristics is shown in Section 5.2.

The other task of WFTM is online recording and calculation of wear rate and

weight loss of a tested sample. For these purposes, wear testing machine is furnished with

digital linear gage (12) (DLG), which is placed between movable shoe holder and the

table and can provide online recording of distance change between the center of the roller

and the bed of the shoe holder. This distance change is used in calculation of wear rate

and weight loss of a shoe, see Section 5.3.

5.1.2 Tribotest Flow Chart

Development of computer controlled wear friction test solution consists of

implementation of sub solutions for different stages of the whole process. The principal

stages of whole process, which have to be accomplished during a test, are listed below:

start; power is on for the testing system; start AC motor; warm up period for AC
motor; 10 second warning for warm-up period end; start DA system; start
solenoid of lubrication supply device and selection of lubrication cycle; start load
mechanism and load mode selection; 10 second wait and start load test data; test
duration time; pre warn duration of test finishing; unload test load; wait 10
second for full unload; turn off lubrication; complete test cycle; reset.

Operational steps of computer controlled wear friction testing machine are shown

on the flow chart in Figure 5.2.
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Figure 5.2 Flow chart of the wear-friction testing process.
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5.1.3 Description of the System

The described wear-friction testing machine employs parallel measurement of wear rate

and friction coefficient. For measurements of friction and wear parameters, two

independent subsystems of data collecting are used, see Figure 5.3. Detailed description

of each element on this diagram is given in Subsections 5.1.3-5.1.9.

Figure 5.3 Block system for measuring and collecting of friction and wear data.

5.1.4 Strain Gages and Strain Gage Amplifier

Strain gages placed on the beam for monitoring of bending stresses are sensitive to any

stresses developed in the beam, which are the key point in measuring changes in motor's

moment. Strain gages are a product of Omega, model SG-7/350-DY11. Encapsulated
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with ribbon leads these strain gages are easily glued to the beam. Nominal resistance is

350 Ohm, dimensions of the grid are 7.0 mm on 3.8 mm and dimensions of the carrier are

12.0 mm on 11.0 mm. Maximum permitted bridge energizing voltage is 15 V.

The role of strain gage amplifier is to monitor resistance changes in strain gages,

strengthen this signal and transmit it to the computer. The Model 3800 Wide-Range

Strain indicator is a highly versatile, precision instrument specifically designed for use

with strain gages and strain-gage-based transducers. Gage factor varies from 0.0500 to

50.00. The balance controls of the Model 3800 provide a total balance range of greater

than +100 % of full-scale reading at a gage factor of 2.000. The balance range is further

subdivided into 32 overlapping ranges to obtain precise settability and resolution. All

balance voltages are electronically injected into the input amplifier. This method

eliminates potentiometric bridge loading errors and does not compromise the

measurement range of the instrument. The excitation voltage of the Model 3800 is

precisely settable by a front-panel thumbwheel switch over a range of 1 to 15 V in one-

volt increments. The amplifier gain is automatically adjusted in inverse ratio to the

excitation s etting s o t hat g age factor i s independent o f excitation. U ltra-stable i nternal

half-bridge, 120/1000-Ohm and 350-Ohm dummy gages are provided. Shunt calibration

is achieved by connection of shunt calibration resistors across dummy gages.

Connections to the Model 3800 may be made via the front-panel binding posts or the

rear-panel transducer connector.

Special attention in setting and tuning of strain gages is paid to calibration of

strain gages stresses and conversion of the obtained signal to stresses developed in the
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beam. Calibration of strain gages was done by gradual applying of known moment values

to the beam and taking respective data from strain gage amplifier.

5.1.5 Data Acquisition Card

This data acquisition card (DAC) serves as converter and stabilizator of the signal

received from strain gage amplifier. The PCI-DAS 1001 data acquisition card is

multifunction analog and digital I/O board designed to operate in computers with PCI bus

accessory slots. The board provides 16 single-ended/8 differential analog inputs with

sample rates as high as 150 KHz. The board is fully plug-and-play, with no switches or

jumpers to set, and fully auto- and self-calibrating with no potentiometers to adjust. All

calibration is performed via software and on-board trim D/A converters. This board is

fully supported by the Universal Library software driver library as well as a wide variety

of application software packages.

5.1.6 Loading Mechanism

The role of loading mechanism is to develop various loading-unloading modes during a

test — cyclic mode, stable load and others simulating different real machinery processes.

Loading mechanism is motor-controlled system, which can be operated in manual and

automatic modes. It consists of shoe holder, sliding bearing, lever mechanism, DC motor

and cam. The loading cycle of cam can be preset on computer. Design of loading

mechanism is based on a cam configuration and reinforced by effective leverage of 72.

Setting different programming modes for the cam gives different simulations of real

friction processes.
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5.1.7 Lubricant Supply Device

Lubrication mode plays important role during a test and requires precious delivery in

contact. For this purpose, lubrication supply device was developed and installed. It

includes lubricant pot, control valve, electric supply, connecting pipe and pipette.

Operational regime of valve is to be set up before test and can be variable or stable.

5.1.8 LabView Application

For receiving and processing signal from strain gages, which is strengthened by strain

gage amplifier and converted by DAC, LabView Virtual Instruments application has been

developed and installed. This program allows multi-level processing of the obtained

signal, such as signal synchronization with timer, conversion signal into a required

format, displaying obtained data on the computer screen and saving them in a file. Figure

5.4 shows major steps of data processing. The first step (1) is to define a number of

cycles in test. Operational frequency of data collecting can be set up as high as 50 Hz, but

because of system synchronization, data collecting of this LabView application is lined

up with C++ program and frequency is set up on 1 Hz. Empty Path (2) is responsible for

tracking any errors in the cycle. Timer (3) sends signal to (4) every 1000 milliseconds,

and this signal after being divided by 1000 is displaying test time in second on the screen

(7). Data acquisition board number, channel number and data range are identified in (5).

After error filter (6), current signal is displayed on the screen (7). Next stage is data

formatting, compiling and recording to file. For these purposes, time and strain gage

signal are being converted to decimal number (8), divided by tabulation for easing future

processing and accumulated in one data line (9). Saving to file (10) is final step of the
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cycle and after its completing cycle start over. This application uses so called "for" loop —

program works for number of cycles determined in the beginning.

Figure 5.4 Scheme of LabView Virtual Instruments diagram.

Figure 5.5 shows computer screen in a pilot test. Information on screen indicates

technical data such as DA board number, channel, signal range and number of points in

test. In the left bottom corner second timer is located. Time data as well as friction

coefficient readings are being sent to file with initially specified frequency. On the big

graph, dynamics of friction coefficient in boundary lubrication regime is shown.

Horizontal axis of this graph is time and vertical axis is friction coefficient. Initially
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friction coefficient is stable on some level, after applying normal load friction coefficient

steadily goes up and, after unloading, drops back to initial level.

Figure 5.5 Computer screen displays strain gages readings.

5.1.9 System Characteristics

For the design of WFTM, AC motor with constant angular velocity of 150.8 s-/ (1,440

RPM) was selected. Conversional ratio of the reducer is 6.3 and angular velocity of roller

of 23.9 s-/ (229 RPM), which equivalent of about 0.61 m/s sliding speed. Installation of

DC motor could make sliding speed variable. The load mechanism consists of the lever

system with transmission ratio 72 and the linear sliding-pusher, which can work in
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manual and automatic modes. Applied load on entrance lever from 0.23 kg (0.5 lb) to

1.81 kg (4 lb) provides 160-1280 N range on the shoe. For selected nominal contact area

Aa of a shoe, nominal contact pressure ranges from 0.94 MPa to 7.5 MPa.

5.2 Friction Measurements

Calculations of friction force and friction coefficient are based on measuring power

losses in motor that are caused by friction between shoe and roller. Because rotational

speed of the motor is constant, any changes in motor power result in changes of moment

produced by the stator. General form of moment balance law is following

where J— the inertia moment of the system, /3(t) — the angular velocity and Ml — moments

of all system power generating and power consuming elements. Averaging over a time

period T, the fluctuations in the angular velocity disappear and this problem transfers to

quasi-stationery equation

In W FTM s ystem, M1 is feeding ( driving) moment b etween s tator and rotor t o

overcome all frictional moments in the system, M2 is frictional moment in all bearings

and reducer and M3 is frictional moment between shoe and roller. Multiplying this

equation by constant angular velocity 13 leads power balance equation
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Then Equation (5.3) can be expressed as

.
where E1 is the total power necessary to spend in order to compensate all losses in the

.
system, E2 is the power necessary to compensate losses in all bearings and reducer, and

.
E3 is the power necessary to compensate losses between roller and shoe.

.	 .	 •	 •
E2 depends on power E3 and can be expanded as E2 ( E3 ) function into the

•	 •
Taylor series. Only first two members of E2 ( E3 ) Taylor series can be considered and

Equation (5.4) becomes

.	 •	 •
where E20 is constant frictional losses, which do not depend on E3 . E3 can be derived

from Equation (5.5)

Assuming that power losses in bearings have both constant and linearly changing

components and so k is a constant of the system, friction moment can be determined.

For measuring magnetic moment between rotor and stator in AC electrical motor,

the beam with strain gages was attached to the suspended stator. Schematic

representation of the suspended motor and description of the used terms are shown in
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.

Figure 5.6. Thus, E3 can be expressed through friction force F between roller and shoe

•	 •
and El and E20 through the reaction forces Nr and Nro

where F is the friction force between the roller and the shoe, I-, — radius of the roller, A

and po — angular speed of the rotor and roller respectively, Nr — the reaction force acting

on the beam, Nro — the reaction force acting on the beam under zero applied load and dm  —

the distance from the rotor axis to the point of reaction.

Figure 5.6 Scheme of the suspended motor.
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Substitution of Equation (5.7-5.9) into Equation (5.6) gives

Friction force F is equal to product of friction coefficient f on applied normal

force N. Then friction coefficientfcan be calculated by following expression

In this formula k, 130 , fat, dm and r, are the constants of the system and the value of

N, can be obtained from strain gauges. Calibration of the system is done by gradually

applying known forces AT, on the distance d, from the rotor center on the side of the motor

opposite to the stator's bar as shown in Figure 5.6. Calibration chart, shown in Figure 5.7,

represents relationship between strain gage readings and calibration moment, which can

be calculated as

Figure 5.7 Calibration chart of strain gages.
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As the result of this calibration, the dependence between strain gauge readings

and reactive moment was developed. Using the calibration graph, computer system

converts the signal obtained from strain gauges to the moment generated by stator and, as

a result, calculates friction moment, friction force and friction coefficient. This approach

provides the researcher with needed test data at any moment of a test. These data help to

define different stages of friction and wear and are an important step in understanding the

processes that take place in friction phenomenon.

5.3 Wear Measurements

The idea of wear rate evaluation is based on measurement of distance between the center

of roller and the shoe's bottom. For these purposes, Digital Linear Gage is attached to the

moving table on which the shoe is fixed.

5.3.1 Digital Linear Gage

Operable by remote control, IDF Digimatic Indicator of Mitutoyo allows tracking any

changes in thickness of a tested material. Figure 5.1 shows the scheme of wear rate

measurements. On this picture, steel roller fixed to stationary axle rubs against bronze

shoe, which is placed on movable platform that is loaded by applied normal force N.

During test time, bronze shoe experiences wear and its thickness decreases. Digital linear

gage attached to the stationary axle, as shown in Figure 5.8, tracks changes in shoe

thickness Al during test.

Digital linear gage can work in two modes: manual — pushing button on the gage

top triggers sending its current reading through the input tool to the computer and

automatic — computer program periodically forwards 1-bit signal through the input tool to
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the gage and gets back reverse signal from the digital linear gage. Technical

characteristics of the gage also include a miniature linear encoder, preset capability and

SPC output, a maximum response speed is 31.5 "/s. The operational range of this model

is from zero up to 25 mm (1") with accuracy of up to .00005" (0.001 mm).

Figure 5.8 Scheme of wear rate assessment.

Input tool IT-007 R of Mitutoyo passes activation signal from the computer to the

Linear gage and sends back data signal from linear gage to the computer. This mode

provides automatic measurement and control. Input tool is PC/AT, PC/AT-compatible,

and compatible machines with an R-232C interface.
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5.3.2 Visual C++ Application

For the control of digital linear gage, Visual C++ program was developed and installed.

The tasks of this program are sending 1-bit signal with specified frequency, receiving

back signal from digital linear gage, synchronizing obtained signal with timer and saving

all this information to file. Because of synchronization of this program with LabView

application program, the frequency of data collecting is set up at 1 Hz. The complete

Visual C++ program is shown in Appendix B.

5.3.3 Calculations of Wear Rate

Estimation of wear rate and weight loss is based on the measurement of distance between

the center of the roller and the shoe's bottom. This distance multiplied by nominal

contact area Aa and material density p gives weight loss W of the tested sample

In addition, tested samples have been weighed before and after each test. The

performed experiments for heavy-duty boundary conditions showed good alignment —

within 5 % — between online data and before-and-after test weight measurements.

5.4 Surface Texture Analysis

Surface analysis is applied to both roller and shoe and assesses various parameters of

examined surface texture such as profile depth Pt, roughness depth Rz, mean roughness

Ra, material ratio tp and others. For these purposes, Perthometer PGK of Mahr Federal

with testing accuracy of 0.01 µm  was used. Some surface texture profiles and parameters

are shown in Figure 5.9 and Table 5.1.
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Figure 5.9 Surface analysis characteristics: a) roughness profile, b) core roughness and
c) material ratio profiles.

Table 5.1 Major Surface Texture Parameters

Term Symbol Value Term Symbol Value

Cutoff LC (RC) 0.25 mm Core roughness depth Rk 0.32 pm

Traversing Length LT 5.60 mm Reduced peak height Rpk 0.10 pm

Evaluating Length LM 4.00 mm Reduced valley depth Rvk 0.12 pm

Roughness average Ra 0.08 pm Waviness height Wt 1.48 gm

Mean roughness depth R, 0.71 pm Arithmetic mean deviation Wa 0.30 pm

Maximum single
roughness depth R, max 0.93 pm Profile depth PI 3.46 pm

Mean profile valley depth R, 0.40 pm Arithmetic mean deviation Pa 0.55 pm
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Surface texture observations were performed on Olympus optical microscope

furnished with Clemex imaging system, which allows to examine texture of shoe and

roller before and after experiment, store and process these data later on. The tools of

image processing include assessment of surface material structure, seizure, pits, bulk

distortion and others. An example of optical microscope image is shown in Figure 5.10.

Figure 5.10 Optical microscope image of bronze shoe (x 100).

5.5 Data Processing

After data collecting, readings are processed on Microsoft Excel. Final test data include

all essential characteristics of the test such as length of the test, applied normal load,

normal force, strain gage readings, power losses, friction moment, friction force, friction

coefficient, digital linear gage readings and wear rate and weight loss of a tested sample.

The graphs of friction coefficient and wear or weight loss are superimposed on each other

and their dependence on time is shown. Examples of the described dependence are shown

in Figures 5.11 and 5.12.
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Figure 5.11 Dependence of friction coefficient and total weight loss of bronze shoe on
time.

Figure 5.12 Dependence of friction coefficient and wear rate on time.



CHAPTER 6

EXPERIMENTAL RESULTS

Experimental performance analysis of the base lubricant modified by the selected

additives is based on evaluation of friction behavior of bronze-steel couple, assessment of

wear rate and weight loss of materials in contact and their surface texture analysis before

and after experiments. The experimental setup, test condition and lubrication regime are

described in Chapter 5. Tested materials bronze SAE 40 and steel AISI 4340 and their

surface texture characteristics are demonstrated in Section 6.1. The grounds of the

selection of the base heavy-duty motor oil SAE 10 and its properties are listed in Section

6.2. Summary of fullerene C60 properties and brief overview of other fullerenes and

fullerene containing soot is illustrated in Section 6.3.

Study was carried out in two experiment series — Series 1 and Series 2. Series 1

included analysis of three types of additives - fullerene C60, fullerene mixture C60 and C70

(1 to 1) and graphite powder. Series 2 consisted of analysis of graphite powder, 3 w%

fullerene soot, 7 w% fullerene soot and fullerene mixture C60 and C70 additives as well as

plasma treated oil SAE 10. Selected additives in both series 1 and 2 and brief description

of their physical properties are shown in Section 6.4. Sections 6.5 and 6.6 are devoted to

weight loss and friction measurement results for the selected lubricants.
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6.1 Description of Tested Materials

6.1.1 Material Composition and Mechanical Properties

The couple selected for this series of experiments represents common conditions of

rubbing materials in mechanisms. First, the materials of rubbing couple are selected in

such a way that hardness of one material, roller made of steel AISI 4340, is higher than

that of the other, shoe made of bronze SAE 40. This choice creates situation when only

soft material experiences noticeable wear and weight loss. Meanwhile, the wear of the

second, hard material, can be neglected, see calculations in Chapter 4. Chemical

composition and mechanical properties of steel AISI 4340 and bronze SAE 40 are shown

in Tables 6.1-6.3.

Table 6.1 Chemical Composition of Steel AISI 4340

Element Fe C Ni Cr Mn Mo P S Si

% 96 0.37 —
0.43 1 . 83 0.7 —

0.9 0.7 0.2 —
0.3 0.035 0.04 0.04

Table 6.2 Chemical Composition of Bronze SAE 40

Element Cu Pb Sn Zn

°A 85 5 5 5

Table 6.3 Mechanical Properties of Steel AISI 4340 and Bronze SAE 40

Steel AISI 4340
(annealed)

Bronze SAE 40

Hardness, Brinell 217 60

Tensile Strength, Ultimate 745 MPa 255 MPa

Tensile Strength, Yield 470 MPa 125 MPa

Modulus of Elasticity 200 GPa 93 GPa
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Second, selected c onforming block-on-ring c ontact g eometry allows to p erform

extended experiments that simulate operational conditions of machine components in

various common mechanisms such as automobile engines and industrial machines.

6.1.2 Surface Texture Parameters

Surface analysis is applied to both contact bodies — steel AISI 4340 roller and bronze

SAE 40 shoe. Although surface texture parameters, which can be assessed by available

equipment such as Perthometer of Mahr Federal include about 200 various parameters,

only major parameters are selected for the detailed consideration. These parameters

consist of average roughness Ra, mean roughness depth R, and skewness Rsk. Detailed

description of some surface finish parameters is given below:

• average roughness Ra is the arithmetic average of the absolute values of the
roughness profile ordinates

where 1 is evaluation length and Z(x) — profile ordinates of the roughness profile.

• mean roughness depth R, is the arithmetic mean value of single roughness depths
Rzi of n consecutive sampling lengths

• skewness R sic is a m easure o f t he a symmetry of the amplitude d ensity curve; a
negative skewness value indicates a surface with good bearing properties

where Rq — is root mean square roughness.
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The accuracy of 0.01 ,um and repetitive measurements assure comprehensive

picture of the state of contact surfaces. Preparation of surfaces before series of

experiments includes development of conforming contact geometry and formation of

certain surface texture profiles for both contacting bodies. Each series of experiments has

similar surface p rofiles, but s lightly different p arameters o f s teel roller. Due t o p lastic

deformations of bronze shoe, its surface profile experiences slight variations in the way

of experiments that, according to the obtained experimental data, did not affect

experiment output. Figures 6.1 and 6.2 show surface profiles of roller and shoe (different

vertical scales) and values of major surface parameters for Series 1. Statistical analysis of

surface texture parameters is shown in Table 6.4.

Figure 6.1 Surface texture profile for steel 4340 roller (a) and bronze SAE 40 shoe (b)
used in Series 1.
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Figure 6.2 Surface texture parameters for steel 4340 roller (a) and bronze SAE 40 shoe
(b) used in Series 1 (cut-off LC - 0.25 mm, evaluating length LM— 4.00 mm).

Table 6.4 Statistical Analysis of Surface Parameters in Experiment Series 1

Parameter Average value Standard deviation Standard variance

Ra, pm 0.29 0.03 0.00

R, pin 3.00 0.47 0.22

Rsk, /an 1.95 0.48 0.23

Surface profiles of roller and shoe in experiment Series 2 and statistical analysis

of surface texture parameters are shown in Figure 6.3 (identical vertical scales) and Table

6.5. D etailed d escription o f surface texture profiles and p arameters for b oth s how and

roller is presented in Appendix A.
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Figure 6.3 Surface texture parameters for (a) steel 4340 roller and (b) bronze SAE 40
shoe used in Series 2 (cut-off LC - 0.25 mm, evaluating length LM— 4.00 mm).

Table 6.5 Statistical Analysis of Surface Parameters in Experiment Series 2

Parameter Average value Standard deviation Standard variance

Ray Ion 0.31 0.03 0.00

Rv Pin 3.00 0.36 0.13

Rsk, pun 1.77 0.34 0.12

Comparative analysis of surface texture data shows the difference in surface

preparation of samples for Series 1 and 2. Although this is not considerable difference, it

generated certain difference in results of wear rate and weight loss, which are shown in

Section 6.5.
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6.2 Base Lubricant

The choice of the base lubricant was dictated by its properties, low price and wide use.

Heavy-duty motor oil SAE 10 of Illinois Oil Products is common and inexpensive motor

oil, which has applications in such areas of lubrication as automobile motors. This oil is

designed for heavy-duty applications in automobile motors and operates in contacts

similar to conforming block-on-ring contact presented in wear friction testing machine.

Because of its heavy-duty applications, paraffins contribute substantial part to this oil,

meanwhile content of aromatic is limited by about 2.4 % and content of naphthenes is

negligible. Summary of physical and chemical properties of this base oil is presented in

Table 6.6.

Table 6.6 Physical and Chemical Properties of Heavy-duty Motor Oil SAE 10

Content of paraffins (approximate) 96 %

Content of aromatics (approximate) > 2.4 %

Naphthene content Negligible

Specific gravity 0.88

Viscosity at 40 °C 11 cSt

Viscosity at 100 °C 2.8 cSt

Appearance Amber to light

Solubility in water Negligible

Presented properties and negligible content of additives make this oil a good

starting point for modifications by additives. Selected additives and their properties for

both series are discussed in Section 6.4.
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6.3 Fullerene Properties

Although tested lubricant additives include various carbon-based materials, fullerene C60

is selected as the principal additive for the base oil. Overview of fullerenes is presented in

Section 2.5 and summary of basic properties of C60 and fullerene FCC structure are

shown in Table 6.7 and Figure 6.4.

Table 6.7 Summary of C60 Fullerene Properties

Interatomic distance 0.140 and 0.145 nm

Molecule diameter 0.71 nm

Crystalline structure FCC lattice

Distance between two nearest cage centers 1.003 nm

Lattice constant 1.4198 nm

Type of molecular bond Van der Waals

Spinning speed 108 RPS

Temperature of a phase transition 253 K

Crystal density 1.7 g cm-3

Compression stability 20 GPa

Isothermal bulk modulus 18 GPa

Cohesive energy per C60 molecule 1.5 eV

Cohesive energy per atom 7.4 eV

Figure 6.4 Face-centered cubic structure of fullerene C60.
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The other additives that used for valid and comprehensive analysis include

graphite, C70 fullerenes and fullerene containing soot. Chemical and physical properties

of C70 are analogous to those of C60 shown in Table 6.7. Fullerene containing soot

consists of various amorphous forms of carbon and carbon onions, brief explanation of

which is given in next chapter.

6.4 Tested Additives

6.4.1 Description of Additives

Tested lubricants have been prepared on the base of heavy-duty motor oil SAE 10 by

adding one weight percent of selected additives. The amount of 1 w% is selected as the

maximum solubility of fullerenes C60 and C70 in SAE 10 oil. In experiment Series 1, the

tested lubricants are following:

Series 2 was focused on confirmation of results obtained in Series 1 for fullerene

C60+C70 and graphite mixtures as well as getting comparative results for other modified

lubricants. These lubricants include oils with 3 and 7 w% fullerene soot and plasma

treated oil. The complete list of lubricants used in Series 2 is shown below
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4. oil SAE 10 plus 1 w% of 7 w% fullerene soot;

5. oil SAE 10, plasma treated;

6. oil SAE 10 plus 1 w% of C60 and C70 (1 to 1).

Graphite powder used in these experiments has surface area — 80 m2/g and bulk

density — 200-230 kg/m3 Fullerene containing soot, which was used in additives 3 and 4

of Series 2, contains 3 and 7 w%, respectively, of fullerenes C60 and C70 mixture (ratio 1

to 1). The rest is a mixture of amorphous carbon (70-85 w%) and variety of carbon

onions (10-20 w%). Amorphous carbon is a graphite-like structure that possesses low

structural as well as chemical stability. Carbon onions are generally described as

nanoparticles composed of concentric graphitic layers and exhibit strength of molecules

close to that of fullerenes. Transformation of carbon onions to diamond requires pressure

above 10 GPa and high temperatures. The spacing between the onion shells is about 0.34

nm and the diameter varies from 5 to 40 nm.

Incorporation of additives in oil has been performed by ultrasound mixer. In order

to avoid any possible impurities, lubricants with fullerene additives C60 and C70 have

been filtered by Whatman 1 filter paper. The characteristics of this paper are following:

particle retention is more than 11 ,um, porosity — medium and filtration speed is 40 s by

ASTM standard test and 150 s by Herzberg standard test.

6.4.2 Viscosity Measurements of Prepared Lubricants

To ensure valid comparison of prepared lubricants, their viscosity has been established.

Method of measurements is chosen as falling ball in a tube. Schematic representation of

measuring method is shown in Figure 6.5 and test parameters are following:
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2.95'1045.00*10^-4

8.19*10^-6

890

20

Length of the tube, m

Radius of the ball, m

Mass of the ball, kg

Density, kg/m3

Ambient temperature, C

Figure 6.5 Schematic representation of viscosity measuring method.

Test results for dynamic and kinematic viscosity (10 readings for each lubricant)

as well as some auxiliary data are shown in Table 6.8.
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Table 6.8 Viscosity Test Results for Tested Lubricants

Time,
sec

Velocity U,
m/s

Dynamic
viscosity,

kg/m ,,s

Dynamic
viscosity,

cP

Kinematic
viscosity,

cSt

Oil SAE 10 3.43 0.086 0.021 20.6 23 ± 1

Oil + graphite
powder

3.35 0.088 0.020 20.2 23 ± 1

Oil + mixture of
C60 and C70

3.22 0.092 0.020 19.5 22 ± 1

Oil + C60 3.24 0.093 0.020 19.5 22 ± 1

Oil + 3 w% soot 3.52 0.084 0.021 21.2 24 ± 1

Oil + 7 w% soot 3.82 0.077 0.023 23.0 26 ± 1

Plasma oil 3.21 0.092 0.020 19.3 22 ± 1

Kinematic viscosity can be calculated from dynamic (or absolute) viscosity by

dividing its value by lubricant density. Dynamic viscosity is presented in two units —

kg/m*s and centiposes cP and kinematic viscosity in centistokes cSt. Viscosity

measurements showed that introduction of one weight percent of described additives does

not significantly affect the viscosity of the host lubricant and, thus, wear and friction

changes in the presence of these lubricants cannot be attributed to changes in viscosity.

6.5 Wear Evaluation of Contact Bodies

Wear evaluation of contact bodies is based on on-line measurements of w ear rate and

measurements of weight loss of shoe after test. Weight loss results of steel roller showed

that it does experience negligible weight loss that confirmed the evaluation made in

Chapter 4. Presented data of shoe weight loss are based on 60-minute tests with at least

five independent measurements. The length of experiments was selected as 60 minutes

(total distance — 2, 200 m ) in order to diminish the importance of wear effects in the
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beginning period of experiment and to make test relatively long to evaluate performance

of lubricants in an extended run. According to online wear measurements, 250-minute

experiments showed that except for some initial time period, wear rate stays stable for the

entire experiment and wear in the initial period can be neglected. For 30 and less minute

experiments, wear in the initial period has to be considered separately that makes weight

loss calculation essentially complicated.

The range of applied normal loads was set up as 320 — 640 N. Upper limit of this

selection, 640 N, was selected as the maximum applied load under which friction

coefficient can be stable. Loads higher than 640 N sometimes cause catastrophic wear of

contact bodies that is unacceptable in these experiment series. Lower limit of applied

loads was dictated by capabilities of wear friction testing machine — below 320 N, and

even at this load, experimental data become inconsistent. These limitations are associated

with vibrations of the whole system. Despite its relatively low value, system vibrations

significantly affect experiment outcome for low applied normal loads.

6.5.1 Experimental Data for Series 1

Results of weight loss measurements for applied normal loads of 320 N, 480 N and 640 N

for experiment Series 1 are shown in Figure 6.6-6.8. Presented diagrams show that

introduction of 1 w% of C60 and C60+C70 mixture as well as graphite powder into the base

lubricant improves its properties.

Shoe weight loss results have similar character for both loads — 480 and 640 N

and illustrate certain advantage of C60+C 70 mixture over C60 additive and graphite

lubricants. C60 additives improve the wear performance of the host lubricant by

approximately 12 % for applied normal load of 640 N and about 22 % for 480 N loads.
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C60+C70 mixture additives decrease the weight loss of tested materials by about 33 % for

640 N and about 50 % for 480 N. Graphite powder shows improvement of wear results by

about 15 % for 640 N and 39 % for 480 N load.

Comparative analysis of the presented lubricants shows that both C60 and C60+C70

mixture notably improve the performance of the base lubricant. Moreover, C60+C70

mixture showed better performance than graphite powder by about 27 % for 640 N load

and about 28 % for 480 N load. In addition, C60+C 70 mixture has advantage in

performance over C60 additive — about 25 % for 640 N applied load and about 29 % for

480 N load.

Figure 6.6 Weight loss of bronze shoe against steel roller for 640 N load for different
lubricants in Series 1.
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Figure 6.7 Weight loss of bronze shoe against steel roller for 480 N load for different
lubricants in Series 1.

Finally, C60 additives and graphite powder demonstrated similar wear

improvement performance; there is negligible difference of about ± 1 % for both 480 and

640 N applied normal loads.

Although the data for applied normal force of 320 N does not show consistency,

data for other two sub series — 480 N and 640 N — stay in line with the proposed idea.

Possible explanation of discrepancy between 320 N sub series and other two sub series is

that the designed wear friction testing machine does not possess appropriate sensitivity

for low applied normal loads.
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Figure 6.8 Weight loss of bronze shoe against steel roller for 320 N load for different
lubricants in Series 1.

6.5.2 Experimental Data for Series 2

The goal of Series 2 was obtaining additional experimental data for C60+C70 mixture

performance as well as assessment of other additives. This series of experiments includes

testing of, besides the base oil, five different lubricants; their description is given in

Chapter 6.4. Results of weight loss measurements in Series 2 are shown in Figures 6.9-

6.11.

Comparison of the performance of C60+C70 mixture and graphite powder showed

results similar to those obtained in Series 1. C60+C70 mixture demonstrates better

performance than graphite mixture for both applied normal loads. Finally, introduction of

these additives showed some improvement in comparison with the host lubricant in both

series.
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Introduction of fullerene containing soot into the base lubricant gives results

similar to those for fullerene C60 and mixture of C60 and C70. Possible explanation of this

outcome is chemical composition and properties of this soot. Although presented soot has

low fullerene content, the presence of carbon onions (10-20 w%) and amorphous carbon

(70-85 w%) in its composition makes it valuable lubricant additive. Similar nanoparticles

but on the base of halogens, tungsten and sulfur are currently used in lubrication

applications.

Performance data for the oil with both 3 w% and 7 w% fullerene containing soot

show close results — these lubricants improve wear by 10 and 11 %, respectively, over the

base lubricant for applied normal load of 640 N. Comparison of fullerene containing soot

with C60+C70 mixture and graphite powder lubricant demonstrates that although fullerene

containing soot is better than graphite (4 %), it is still inferior to fullerene C60 +C70

mixture.

Results for plasma treated oil show that for both loads 480 N and 640 N its

performance is poorer than that of the base lubricant. This outcome is in line with the

concept that heat-treating of oil and its following degradation make deteriorating effect

on oil performance.
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Figure 6.9 Weight loss of bronze shoe against steel roller for 640 N load for different
lubricants in Series 2.

Figure 6.10 Weight loss of bronze shoe against steel roller for 480 N load for different
lubricants in Series 2.
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Inconsistency of results for applied normal load of 320 N as well as for some

results for 480 N load has the same character as in Series 1. This discrepancy is

associated with limitations of the presented wear friction testing machine.

Figure 6.11 Weight loss of bronze shoe against steel roller for 320 N load for different
lubricants in Series 2.

6.6 Measurements of Friction Parameters

Friction parameters, which include friction moment, friction force and friction

coefficient, are essential part for understanding the processes which take part in rubbing

of two materials. Experimental results of friction measurements are done for all selected

lubricants for applied normal loads of 320, 480 and 640 N by getting five independent

graphs for each lubricant.
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The characters of friction behavior of steel-bronze couple in the presence of the

selected lubricants for applied normal load of 480 N for Series 1 are shown in Figure

6.12. Data for 320 N and 480 N applied loads, have similar character. Presented results

show that tested additives do not affect friction value of the base lubricant. Although

there is certain difference in friction coefficient, it lies in the deviation range of the base

lubricant.

Figure 6.12 Friction coefficient for selected lubricants for 480 N load in Series 1.

Friction data for applied normal load of 640 N for lubricants in Series 2 are

presented in Figure 6.13. Data for 320 N and 480 N applied loads, show analogous

character. These results show slight improvement in the performance of tested lubricants

over the base lubricant oil SAE 10.
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Due to the scarce repeatability, demonstrated results do not prove that the tested

lubricants essentially improve frictional characteristics of the base lubricant and,

therefore, cannot be regarded as antifrictional additives.

Figure 6.13 Friction coefficient for selected lubricants for 640 N load in Series 2.

Friction analysis shows that although presented additives improve wear of

materials in contact, they only insignificantly affect friction characteristics of bodies in

contact.



CHAPTER 7

ASSESSMENT OF FULLERENE ROLE IN LUBRICANT MODIFICATION

Fullerene role as additives to liquid lubricants used in boundary lubrication is based on

review of lubrication characteristics, testing of the properties of the modified lubricants,

measurement of changes in surface texture of the contact materials, evaluation of

available m ethodology and e quipment for friction and w ear t esting and verification o f

objectivity and consistency of the collected and recorded results.

In boundary lubrication, contact surfaces are not fully separated by lubricant that

means the lubricant film is thinner than the height of some of the asperities. This leads to

direct asperity contact that, under sliding conditions, results in temperature spikes in the

contact areas, surface deterioration by seizure and following wear. Due to high build-up

pressure in real contact areas, the liquid lubricant, as a rule, is squeezed out from these

zones and may stay only in surface valleys. Thus, its lubricating influence in real contact

areas is neglected, metallic surfaces come into contact and wear starts.

Another common problem of liquid lubricants associated with boundary

lubrication is acceleration of lubricant oxidation. Although continuing air exposure

applications make oil oxidation inevitable, high temperature spikes produced in contact

areas significantly speed up this process. Hydrocarbons, which are the base of any

lubricant, under sufficient thermal exposure, react with oxygen and form oil soluble

hydroperoxides such as aldehydes, ketones and acids [19]. These byproducts reduce the

lubricant viscosity and, therefore, significantly decrease lubricant's load carrying

capacity. Future oxidation turns hydroperoxides into oil insoluble gums and sludges,

108
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which increase friction between the contact surfaces and cause essential damage to the

working surfaces in contact. The lubricant becomes darker and less viscous and,

consequently, its overall performance goes down.

The most effective way to prevent direct asperity contact and, therefore, decrease

wear and damage of the contact surfaces is to introduce in the interface of the contact

certain material or intermediator that will not be easily squeezed out from the contact.

This intermediator will serve as a separator between the contact bodies and effect friction

and wear. One of such solutions is the use of hard coatings applied to one or both

surfaces in contact. Although the use of such coatings has many advantages over

conventional lubricants in some application areas, their drawbacks do not allow to make

the wide use of these techniques. The principal barriers on the way of wide applications

of hard coating are their high cost and time-consuming production. The other efficient

solution is the use of antiwear additives to liquid lubricants that is inexpensive and

effective method to improve wear and antioxidation resistance of the contact surfaces.

In the present study, fullerenes were used as additives to heavy-duty motor oil

SAE 10. Developed lubricants were tested under simulated boundary lubrication

conditions by computer controlled wear friction testing machine described in Chapter 5.

Estimations of real contact area show that under the presented conditions, real contact

area is about 0.23 % of the nominal contact area, see Chapter 4. Surface roughness

profiles of contact roller and shoe give excellent understanding of the size of real contact

area. These profiles in two different scales with evaluated length of 4.00 mm and 0.40 mm

are illustrated in Figure 7.1. Presented calculations lead to the conclusion that the width

of an asperity contact is estimated to be 50-100 nm. Scanning electron microscope images
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of high magnification (x 300,000) lead to similar assessment, see Figure 7.2. The

performed estimations of maximum build up pressure A, in real contact is about 1.6 GPa

that is much higher than the computed nominal contact pressure Aa. In spite of the

presence of liquid lubricant, this pressure causes significant wear of contact surfaces.

Figure 7.1 Roughness profiles of roller and shoe at different evaluation length: a)
evaluation length — 4 mm and b) evaluation length — 0.4 mm.
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Figure 7.2 Scanning electron microscope image of bronze shoe (x 300,000): a) general
image with designation of real contact area and b) comparison of an asperity contact with
fullerene size.

The presented experimental results, shown in Chapter 6, demonstrate that

fullerenes C60 and C70 additives improve wear performance of the base lubricant.

Introduction of 1 w% of fullerene C60 and fullerene mixture of C60 and C70 in heavy-duty

motor oil SAE 10 improves its wear performance under boundary lubrication conditions

at applied normal loads of 480 and 640 N. It can be assumed that because fullerene

additives do not change viscosity of the base lubricant and wear resistance of the contact

bodies in their presence increases, fullerenes might fully or partially separate surfaces in

contact and, therefore, act as intermediator between the two engaged surfaces.

Today evaluation techniques do not allow to prove the presence of fullerenes in

real contact area by direct methods. The size of fullerenes, which is about 7 A, can not be

detected on the surface of the contact couple by scanning electron microscope or by other

available techniques. For these reasons, the possible explanation of fullerene role in
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lubricant modification can be based on assumptions and the logical conclusion from the

performed investigation and the available information.

Fullerene additives to liquid motor oils are considered to serve as intermediator

between two loaded surfaces. Fullerenes C60 and C70 have the qualities that make possible

to use them as liquid lubricant additives: high elasticity of molecules, weak

intermolecular interactions, quazispherical shape of molecules, high chemical stability

and solubility in oil. Due to strong atomic bonds, fullerenes cannot be easily broken

down, and, therefore, stay in contact as hard particles. According to the estimations [78],

the stress level required to break fullerenes down at regular room conditions is

approximately 20 GPa.

Analysis of pressure build up in real contacts and its comparison with the

compression stability of fullerenes clearly demonstrate that the pressure required to break

fullerenes down is much higher than the stress level that can be achieved in the real

contact. Although build up contact pressure may cause plastic deformation in the bronze

shoe, its value is insufficient to break fullerenes down. Therefore, fullerenes may be

considered a s hard particles that, after being delivered to the contact, cannot be easily

squeezed out of the contact area. Thus, fullerenes can stay in the area of deformed

asperity contact and, depending on the developed build up pressure, be partially or fully

pressed in the bulk of contacting materials. Because hardness of steel AISI 4340 is much

higher than that of bronze SAE 40 (Brinell 217 versus 60), fullerenes may be forced

down mostly into the bulk of bronze shoe. Schematic representation of fullerene behavior

in the deformed asperity contact and their role in decreasing wear of surfaces in contact

are shown in Figure 7.3.
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Figure 7.3 Schematic representation of fullerene behavior in asperity contact: a) initial
pre-load state of asperity contact in the presence of fullerene content lubricants, b)
asperity contact with some light load and c) asperity contact under full load.

According to the evaluation of the deformed contact geometry, the width of an

average asperity contact can be covered by up to 10-15 fullerenes C60 or C70. Although

fullerene concentration, which is one weight percent, does not high enough to provide
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dense fullerene layer of the entire contact area, a certain number of fullerenes will

positively stay in contact. This leads to the point that the maximum pressure acting on

fullerenes in the contact area is relatively higher than the estimated pressure in the real

contact that is 1.6 GPa. Consequently, fullerenes are partially pressed into the surface of

bronze shoe creating a protective layer. The detailed understanding and the stages of

fullerene behavior in sliding loaded contact are schematically shown in Figures 7.3 and

7.4.

Figure 7.4 Fullerenes in asperity contact: a) no normal load and sliding applied and b)
normal load and sliding are applied.

Figures 7.3-a and 7.4-a show the state of an asperity contact without any applied

normal load. In these figures, surface 2 is bronze SAE 40 shoe, which is softer than steel

AISI 4340 roller, surface 1. Initially, when liquid lubricant is delivered to the contact

area, fullerenes are dissolved in the lubricant and are in suspended state. After normal

load and tangential force are applied and two surfaces came into direct asperity contact,

see Figures 7.3-b,c and 7.4-b, the lubricant is squeezed out from the contact areas, but
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fullerenes as hard particles stay and plastically impinged into one of the contact surfaces.

Comparison of the build up pressure and the elastic limit, see Table 6.3, allow to

conclude that this scenario is most probable. Thus, fullerenes create a protective layer of

hard particles on the functional surfaces engaged in contact and prevent direct asperity

contact that leads to the increase of wear resistance of the functional surfaces.

The summary of the presented hypothesis can be expressed in the following

statements:

• Fullerenes are soluble in mineral oils, possess high chemical stability and do not

react with the base lubricant or the contact metal surfaces.

• Fullerenes have high compression stability and the pressure developed in real

contact area is insufficient to break them down.

• Fullerenes as hard particles cannot be easily squeezed out from the asperity

contact and can be partially or fully pressed into the surfaces in contact.

• Fullerenes act as minute hard balls, partially reduce direct asperity contact and,

therefore, decrease wear of contacting functional surfaces.

• Fullerenes can function as oxidation inhibitors by scavenging free radicals and

later rebuild them into new harmless structures.



CHAPTER 8

CONCLUSIONS

Modification of existing lubricants by new additives is an important issue in improving

and lengthening the lifetime of machine components. The present study discusses the

efficiency of fullerenes as additives to liquid lubricants. This study illustrates that the use

of fullerenes is beneficial for improvement of wear resistance of steel— bronze friction

couple. The achievements of the present research may be summarized as following:

• Computer-controlled wear friction testing methodology was developed and
implemented. This methodology consists of computer controlled wear friction
testing machine and various research techniques of both quantitative and
qualitative analysis of friction-wear experiment output. These methods include
evaluation of friction moment, friction force and friction coefficient, calculation
of wear rate and weight loss of a tested sample, examination of contact surfaces
before and after experiment and collecting, processing and representation of
obtained data.

• Heavy-duty standard motor oil was modified by various fullerene containing
additives such as fullerene C60, fullerene mixture C60 and C70, 3 w% fullerene soot
and 7 w% fullerene soot. Assessment of the prepared lubricants was carried out to
ensure that introduction of the selected additives did not make any significant
changes in physical properties of the base lubricant.

• Surface texture analysis was applied to the friction couple at different stages of
the experimental study. This analysis included evaluation of surface
characteristics by profilometer and optical and scanning electron microscopic
examination of the surfaces in contact.

• Fullerene containing lubricants were tested for their wear and friction efficiency
at various applied normal loads. Despite insignificant changes in friction
parameters, fullerene containing lubricants made considerable improvements in
wear resistance of selected materials.

• Evaluation of real contact parameters was based on the model of asperity contact
of spherical segments. This evaluation showed that real contact area is about
0.023 % of nominal contact area and maximum contact pressure is about 1.6 GPa.
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• Assessment of the role o f fullerene additives to liquid lubricant was developed
and presented. This assessment was based on the obtained experimental data and
logical conclusions from the performed investigation. Comprehensive picture of
friction phenomenon in the presence of fullerene containing lubricants was
produced.

This work shows wide perspectives of fullerene use as antiwear additives.

Although fullerenes did not significantly change antifrictional properties of the base

lubricant, they improve wear resistance of surfaces and have a strong advantage over

already known antiwear additives such as graphite powder or dithiophosphoric acid zinc

salts — fullerene are soluble in oil. This advantage is a result of fullerene ability to be

dissolved in mineral oils.

The present study brings out many issues, which would be interesting to cover in

the future studies. These issues include:

• Study of the performance of fullerene containing lubricants under boundary
lubrication c onditions with normal loads b Blow e lastic 1 imit o f t he m aterials i n
contact. It will help to evaluate the behavior of fullerenes when they are not
partially or fully pressed in the contact bodies.

• Investigation of the changes in the chemical and physical properties of fullerene
containing lubricants when the lubricants are exposed to high temperature spark
due to a long operation time under boundary lubrication conditions. This study
will allow to get a comprehensive picture of oxidation abilities of fullerene
containing lubricants.

• Study of the use of fullerenes as additives for solid lubricants or greases and the
base for surface coatings. This study is interested from the point of view of the
universality of fullerenes in various tribological applications.



APPENDIX A

SURFACE TEXTURE PARAMETERS

Although surface texture analysis presented in this work includes evaluation of only

major parameters such as average roughness Ra, mean roughness depth R, and skewness

Rsk, detailed description of all parameters, from which these parameters were taken, gives

a comprehensive picture of the surfaces in hand. This chapter provides the description of

all parameters, which can be evaluated by Perthometer PGK.

A.1 Description of Surface Texture Parameters

Settings:

LC — Cutoff

LT — Traversing Length

LM — Evaluating Length

Z — Number of sampling lengths

VB — Measuring range

LY — Width (Y) of topography

NY — Number of topography profiles

NX — Number of profile points

dX — Point spacing in profile

VT — Measuring speed

Roughness Parameters:

[CREF (R)] [5.00 %] — Specify
percentage reference line

[C (R)] [-1.00 mum] — Specify absolute
intersection line

[C-MR (R) [10.00 %] — Specify
intersection line for zone width

[Cl (R)] [0.50 %] — Specify upper
intersection line

[Cl (R)] —0.50 %] — Specify lower
intersection line

LC-R — Cutoff (roughness)

Ra — Roughness average

R max — Maximum roughness depth

Rz — Mean roughness depth

Rz max — Maximum single roughness
depth

Rz-L — List of roughness depths
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Rq — Root mean square roughness

Rp — Mean profile peak height

Rp max — Maximum profile peak height

Rp-L — List of profile heights

Rt — Roughness depth

R3z — Base roughness depth

R3z max — Maximum roughness depth

R3z-L — List of roughness depths

R Sm — Mean width of profile elements

R S — Mean spacing of local profile
peaks

R Pc [<C1>, <C2>] — Peak count of the
R-profile

R H SC [ <C1>] — Peak c ount o f t he R-
profile

R Mr [<C>; <CREF>] — Material ratio
of the R-profile

R Mr-L [-1.00 mum; <CREF>] —
Material ration list of the R-profile

R M% [<C-MR>; <CREF>] — Zone
width of two material ratios

R M%-L [10.00 %; <CREF>] — Zone
width list

R Sk — Skewness of the R-profile

R Ku — Kurtosis of the R-profile

Further Roughness Parameters:

Rv — Mean profile valley depth

Rv-L — List of profile valleys depths

Rdq — RMS slope of the profile depth

Core Roughness Parameters:

Rk — Core roughness depth

Rpk — Reduced peak height

Rvk — Reduced valley depth

MR1 — Material ration of peaks

MR2 — Material ratio of valleys

Al — Material filled profile peak area

A2 — Lubricant filled profile valley area

CNOMO Parameters:

[A] [0.50 mm] — Specify operator for
roughness motifs

[B] [2.50 mm] — Specify operator for
waviness motifs

R — Mean depth of roughness motifs

AR — Mean spacing of roughness motifs

W — Mean depth of waviness motifs

AW — Mean spacing of waviness motifs

Rx — Maximum depth of profile
irregularity

Wx — Maximum depth of waviness
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Wte — Total depth of waviness

CMP — NCRX/NR (combination factor)

Core Roughness (Re-profile):

[Rke-A] [0.50 mm] — Specify operator
for roughness motifs

[Rke-B] [2.50 mm] — Specify operator
for waviness motifs

Rke — Core roughness depth (Re-profile)

Rpke — Reduced peak height (Re-
profile)

Rvke — Reduced valley depth (Re-
profile)

Rpkxe — Full peak height (Re-profile)

Rvkxe — Full valley depth (Re-profile)

Waviness Parameters:

LC-W — Cutoff (waviness)

Wt — Waviness height

Wa — Arithmetic mean deviation of the
W-profile

P-Profile Parameters:

Pt — Profile depth

Pa — Arithmetic mean deviation of the P-
profile

D-Profile Parameters:
Incl — Inclination of the D-profile

A.2 Analysis of Surface Profiles of Tested Materials for Series 1

This chapter illustrates the detailed analysis of typical steel roller and bronze shoe

surfaces for experimental Series 1.

Figure A.1 Roughness profile for bronze SAE 40 shoe in Series 1.



Figure A.2 Surface parameter field for bronze SAE 40 shoe in Series 1.
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Figure A.4 Roughness profile for steel AISI 4340 roller in Series 1.



Figure A.5 Surface parameter field for bronze SAE 40 shoe in Series 1.
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0.80 mm/div

Figure A.7 Roughness profile for steel AISI 4340 roller in Series 2.

4.00 mm
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Core roughness; Profile: R [LC ISO 13565 0.00 mm]

Figure A.6 Material ratio profile for bronze SAE 40 shoe in Series 1.

A.3 Analysis of Surface Profiles of Tested Materials for Series 2

This chapter shows the detailed analysis of a typical steel roller surface for experimental

Series 1.

Profile: R [LC GS 0.80 mm]
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Figure A.8 Surface parameter field for steel AISI 4340 roller in Series 2.
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Figure A.9 Material ratio profile for bronze SAE 40 shoe in Series 2.
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APPENDIX B

VISUAL C++ APPLICATION

Visual C++ program was developed and installed to control digital linear gage. The tasks

of this program are sending 1-bit signal with specified frequency, receiving back signal

from digital linear gage, synchronizing obtained signal with timer and saving all obtained

information to file. Description of this program is divided by Source and Header files

which are listed in Sections B.1 and B.2, respectively.

B.1 Source Files

ChildFrm.cpp

// ChildFrm.cpp : implementation of the CChildFrame class
//
#include "stdafx.h"
#include "ComTest.h"
#include "ChildFrm.h"
#ifdef DEBUG
#define new DEBUG_NEW
#undef THIS FILE
static char THIS_FILE[] = _FILE_;
#endif
/////////////////////////////////////////////////////////////////////////////
// CChildFrame
IMPLEMENT DYNCREATE(CChildFrame, CMDIChildWnd)
BEGIN_MESS-AGE MAP(CChildFrame, CMDIChildWnd)

//{ {AFX MSG MAP(CChildFrame)
// NOTE - the ClassWizard will add and remove mapping macros here.
// DO NOT EDIT what you see in these blocks of generated code !

//}}AFX MSG MAP
END MESSAGE—MAP()
// ///////////////////////////////////////////////////////////////////////
// CChildFrame construction/destruction
CChildFrame::CChildFrame()

// TODO: add member initialization code here

CChildFrame::—CChildFrame()
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BOOL CChildFrame::PreCreateWindow(CREATESTRUCT& cs)
{

// TODO: Modify the Window class or styles here by modifying
// the CREATESTRUCT cs
if( !CMDIChildWnd::PreCreateWindow(cs) )

return FALSE;
return TRUE;

1
/////////////////////////////////////////////////////////////////////////////
// CChildFrame diagnostics
#ifdef DEBUG
void CthildFrame::AssertValid() const
{

CMDIChildWnd::AssertValid();
}
void CChildFrame::Dump(CDumpContext& dc) const
{

CMDIChildWnd::Dump(dc);
1
#endif // DEBUG
/////////////////////////////////////////////////////////////////////////////
// CChildFrame message handlers

ComTest.cpp

// ComTest.cpp : Defines the class behaviors for the application.
//
#include "stdafx.h"
#include "ComTest.h"
#include "MainFrm.h"
#include "ChildFrm.h"
#include "ComTestDoc.h"
#include "ComTestView.h"
#ifdef DEBUG
#define new DEBUG_NEW
#undef THIS FILE
static char THIS_FILE[] = _FILE_;
#endif
/////////////////////////////////////////////////////////////////////////////
// CComTestApp
BEGIN_MESSAGE MAP(CComTestApp, CWinApp)

//{ {AFX MSG MAP(CComTestApp)
ON_COMMAND(ID APP_ABOUT, OnAppAbout)

// NOTE - the ClassWizard will add and remove mapping macros here.
// DO NOT EDIT what you see in these blocks of generated code!

//1 }AFX MSG MAP
// Standard file based	 document commands
ON_COMMAND(ID_FILE_NEW, CWinApp::OnFileNew)
ON_COMMAND(ID_FILE_OPEN, CWinApp::OnFileOpen)
// Standard print setup command
ON COMMAND(ID_FILE_PRINT_SETUP, CWinApp::OnFilePrintSetup)

END MESSAGE_ MAP()
//////////////////////////////////////////////////////////////////////////
// CComTestApp construction
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CComTestApp::CComTestApp()

// TODO: add construction code here,
// Place all significant initialization in Initlnstance

/////////////////////////////////////////////////////////////////////////////
// The one and only CComTestApp object
CComTestApp theApp;
/////////////////////////////////////////////////////////////////////////////
// CComTestApp initialization
BOOL CComTestApp::InitInstance()

AfxEnableControlContainerO;
// Standard initialization
// If you are not using these features and wish to reduce the size
// of your final executable, you should remove from the following
// the specific initialization routines you do not need.

#ifdef _AFXDLL
Enable3dControlsO;	 // Call this when using MFC in a shared DLL

#else
Enable3dControlsStaticO; // Call this when linking to MFC statically

#endif
// Change the registry key under which our settings are stored.
// TODO: You should modify this string to be something appropriate
// such as the name of your company or organization.
SetRegistryKey(_T("Local App Wizard-Generated Applications"));
LoadStdProfileSettingsO; // Load standard INI file options (including MRU)
// Register the application's document templates. Document templates
// serve as the connection between documents, frame windows and views.
CMultiDocTemplate* pDocTemplate;
pDocTemplate = new CMultiDocTemplate(

IDR COMTESTYPE,
RUNTIME_CLASS(CComTestDoc),
RUNTIME_CLASS(CChildFrame), // custom MDI child frame
RUNTIME CLASS(CComTestView));

AddDocTemplate(pDocTemplate);
// create main MDI Frame window
CMainFrame* pMainFrame = new CMainFrame;
if (!pMainFrame->LoadFrame(IDR_MAINFRAME))

return FALSE;
mpMainWnd = pMainFrame;
// Parse command line for standard shell commands, DDE, file open
CCommandLinelnfo cmdlnfo;
ParseCommandLine(cmdlnfo);
// Dispatch commands specified on the command line
if (!ProcessShellCommand(cmdInfo))

return FALSE;
// The main window has been initialized, so show and update it.
pMainFrame->ShowWindow(m nCmdShow);

pMainFrame->UpdateWindow();
return TRUE;

/////////////////////////////////////////////////////////////////////////////
// CAboutDlg dialog used for App About
class CAboutDlg : public CDialog
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public:
CAboutDlg();

// Dialog Data
//{ {AFX DATA(CAboutDlg)
enum { IDD = IDD_ABOUTBOX };
//}}AFX DATA
// ClassWizard generated virtual function overrides
//I {AFX VIRTUAL(CAboutDlg)
protected
virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV support
//} }AFX_VIRTUAL

// Implementation
protected:

//{{AFX MSG(CAboutDlg)
// No message handlers

//I AFX MSG
DECLARE_MESSAGE_MAPO

1;
CAboutDlg::CAboutDlg() : CDialog(CAboutDlg::IDD)
1

// { {AFX_DATAINIT(CAboutDlg)
II} I AFX_DATA _INIT

}
void CAboutDlg::DoDataExchange(CDataExchange* pDX)
{

CDialog::DoDataExchange(pDX);
//{ {AFX_DATA_MAP(CAboutDlg)
//} I AFX_DATA_MAP

1
BEGIN_MESSAGE MAP(CAboutDlg, CDialog)

//I {AFX MSG_MAP(CAboutDlg)
7/ No message handlers

//} AFX MSG MAP
END_MESSAGE_MAP()

// App command to run the dialog
void CComTestApp::OnAppAbout()
{

CAboutDlg aboutDlg;
aboutDlg.DoModal();

}
/////////////////////////////////////////////////////////////////////////////
// CComTestApp message handlers

ComTestDoc.cpp

// ComTestDoc.cpp : implementation of the CComTestDoc class
//
#include "stdafx.h"
#include "ComTest.h"
#include <string.h>
#include "ComTestDoc.h"
#include "MyFileDlg.h"
#ifdef _DEBUG
#define new DEBUG NEW
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#undef THIS_ FILE
static char THIS_FILE[] = _FILE_;
#endif
#define OUT DATA SIZE 13
////////////////////////////////////////////////////////////////////////////
// CComTestDoc
IMPLEMENT DYNCREATE(CComTestDoc, CDocument)
BEGIN_MESSAGE MAP(CComTestDoc, CDocument)

//1 {AFX MSG MAP(CComTestDoc)
7/ NOTE - the ClassWizard will add and remove mapping macros here.
// DO NOT EDIT what you see in these blocks of generated code!

//}}AFX MSG MAP
END_  MESSAGE MAP()
/////////////////////////////////////////////////////////////////////////////
// CComTestDoc construction/destruction
CComTestDoc:: CComTestDoc()
1

// TODO: add one-time construction code here
strcpy(m_pComData, "1");
m nByteCnt = 1;
m sec = 0;

}

CComTestDoc::~CComTestDoc()
1
1
BOOL CComTestDoc::OnNewDocument()
{

if (!CDocument::OnNewDocument())
return FALSE;

// TODO: add reinitialization code here
// (SDI documents will reuse this document)
DCB dcb;
BOOL fSuccess;
hCom = CreateFile( "COM1",

GENERIC_READ|GENERIC_WRITE,
0, // comm devices must be opened w/exclusive-access
NULL, // no security attributes
OPEN_EXISTING, // comm devices must use OPEN_EXISTING
0, // not overlapped I/O
NULL // hTemplate must be NULL for comm devices
);

if (hCom = INVALID_HANDLE_VALUE)
return FALSE;

fSuccess = GetCommState(hCom, &dcb);
if (!(Success)

return FALSE;
// Fill in the DCB: baud=2400, 8 data bits, no parity, 1 stop bit.
dcb.BaudRate = 2400;
dcb.ByteSize = 8;
dcb.Parity = NOPARITY;
dcb.StopBits = ONESTOPBIT;
fSuccess = SetCommState(hCom, &dcb);
if (!fSuccess)

return FALSE;
CMyFileDlg dlg;
dlg.m filename = "data.xls";

131



dlg.DoModal();
mout file.open(dlg.m filename);
return TRUE;

}
/////////////////////////////// //////////////////////////////////////////////
// CComTestDoc serialization
void CComTestDoc::Serialize(CArchive& ar)
{

if (ar.IsStoring())
{

// TODO: add storing code here
}
else

// TODO: add loading code here
1

}
/////////////////////////////////////////////////////////////////////////////
// CComTestDoc diagnostics
#ifdef DEBUG
void CComTestDoc::AssertValid() const
{

CDocument::AssertValid();
}
void CComTestDoc::Dump(CDumpContext& dc) const
1

CDocument::Dump(dc);
1
#endif // DEBUG
////////////////////////////////////////////////////////////////////////////
// CComTestDoc commands
void CComTestDoc::PutToCOM()
{

if(!hCom)
return;

char buff[OUT_DATA_SIZE+1 ] ;
DWORD nBytesWritten = 0;
DWORD nBytesRead = 0;
WriteFile(hCom, mpComData, m nByteCnt, &nBytesWritten, NULL);
ReadFile(hCom, buff, OUT_DATA_SIZE, &nBytesRead, NULL);

buff[nBytesRead]='\0';

m_out_file << ++m sec << '\t' << (char*)(buff+3);
}
void CComTestDoc::OnCloseDocument()
{

I/ TODO: Add your specialized code here and/or call the base class
CloseHandle(hCom);
m out_file.close();

CDocument:OnCloseDocument();

}

ComTestView.cpp

// ComTestView.cpp : implementation of the CComTestView class
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//
#include "stdafx.h"
#include "ComTest.h"
#include "ComTestDoc.h"
#include "ComTestView.h"
#ifdef DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = _FILE_ ;
#endif
/////////////////////////////////////////////////////////////////////////////
// CComTestView
IMPLEMENT_DYNCREATE(CComTestView, CView)
BEGIN_MESSAGE_MAP(CComTestView, CView)

//{ {AFX_MSG_MAP(CComTestView)
ON_COMMAND(MY_COM_BEGIN, OnComBegin)
ON_COMMAND(MY_COM_STOP, OnComStop)ON_WM_TIMER()

//I I AFX_MSG_MAP
// Standard printing commands
ON_COMMAND(ID_FILE_PRINT, CView::OnFilePrint)
ON_COMMAND(ID_FILE_PRINT_DIRECT, CView::OnFilePrint)
ON_COMMAND(ID_FILE_PRINT_PREVIEW, CView::OnFilePrintPreview)

END_MESSAGE_MAP()
/////////////////////////////////////////////////////////////////////////////
// CComTestView construction/destruction
CComTestView::CComTestView()
{

// TODO: add construction code here
}
CComTestView::~CComTestView()
1
1
BOOL CComTestView::PreCreateWindow(CREATESTRUCT& cs)
{

// TODO: Modify the Window class or styles here by modifying
// the CREATESTRUCT cs
return CView::PreCreateWindow(cs);

}
/////////////////////////////////////////////////////////////////////////////
// CComTestView drawing
void CComTestView::OnDraw(CDC* pDC)
{

CComTestDoc* pDoc = GetDocument();
ASSERT_VALID(pDoc);
// TODO: add draw code for native data here

}
/////////////////////////////////////////////////////////////////////////////
// CComTestView printing
BOOL CComTestView::OnPreparePrinting(CPrintInfo* pInfo)
{

// default preparation
return DoPreparePrinting(pinfo);

}
void CComTestView::OnBeginPrinting(CDC* /*pDC*/, CPrintlnfo* /*pInfo*/)
1
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// TODO: add extra initialization before printing
}
void CComTestView::OnEndPrinting(CDC* /*pDC*/, CPrintlnfo* /*pInfo*/)
{

// TODO: add cleanup after printing
}
/////////////////////////////////////////////////////////////////////////////
// CComTestView diagnostics
#ifdef DEBUG
void CComTestView::AssertValid() const
1

CView::AssertValid();
1
void CComTestView::Dump(CDumpContext& dc) const
f

CView::Dump(dc);
1
CComTestDoc* CComTestView::GetDocument() // non-debug version is inline
{

ASSERT(m_pDocument->IsKindOf(RUNTIME_CLASS(CComTestDoc)));
return (CComTestDoc*)m_pDocument;

1
#endif // DEBUG
///////////////////////////////////////////////////////////////////////////
// CComTestView message handlers
void CComTestView::OnComBegin()
{

// TODO: Add your command handler code here
GetDocument()->ResetSec();
m_timer = SetTimer(1, 1000, NULL);

}
void CComTestView::OnComStop()
{

// TODO: Add your command handler code here
KillTimer(m timer);

}
void CComTestView::OnTimer(UINT nlDEvent)
1

// TODO: Add your message handler code here and/or call default
CView::OnTimer(nIDEvent);
CComTestDoc* pDoc = GetDocument();
pDoc->PutToCOM();

1

MainFrm.cpp

// MainFrm.cpp : implementation of the CMainFrame class
//
#include "stdafx.h"
#include "ComTest.h"
#include "MainFrm.h"
#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS FILE
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static char THIS_FILE[] = _FILE_;
#endif
/////////////////////////////////////////////////////////////////////////////
// CMainFrame
IMPLEMENT DYNAMIC(CMainFrame, CMDIFrameWnd)
BEGIN_ MESSAGE_ MAP(CMainFrame, CMDIFrameWnd)

//{ {AFX_MSG MAP(CMainFrame)
7/ NOTE - the ClassWizard will add and remove mapping macros here.
// DO NOT EDIT what you see in these blocks of generated code !

ON WM CREATE()
//} }AFX MSG MAP

END MESSAGE_ MAP()
static–UINT indicators[] =
{

	

ID_SEPARATOR,	 // status line indicator
ID_INDICATOR CAPS,

ID _INDICATOR NUM,
ID_INDICATOR_SCRL,

};
/////////////////////////////////////////////////////////////////////////////
// CMainFrame construction/destruction
CMainFrame::CMainFrame()
{

// TODO: add member initialization code here

}
CMainFrame ::~CMainFrame()
{
}
int CMainFrame::OnCreate(LPCREATESTRUCT lpCreateStruct)
{

if (CMDIFrameWnd::OnCreate(lpCreateStruct) — -1)
return -1;

if (!m wndToolBar.CreateEx(this, TBSTYLE FLAT, WS CHILD I WS VISIBLE I CBRS TOP
CBRS GRIPPER I CBRS TOOLTIPS ( CBRS FLYBY | CBRS_SIZE_DYNAMIC) ||

!mwndToolBar.LoadToolBar(IDR_MAINFRAME))
{

TRACE0("Failed to create toolbar\n");

	

return -1;	 // fail to create
}
if (!m wndStatusBar.Create(this) 11

!m wndStatusBar.SetIndicators(indicators,
sizeof(indicators)/sizeof(UINT)))

{
TRACE0("Failed to create status bar\n");

	

return -1;	 // fail to create
}
// TODO: Delete these three lines if you don't want the toolbar to
// be dockable
m wndToolBar.EnableDocking(CBRS_ALIGNANY);
EnableDocking(CBRS_ALIGN ANY);
DockControlBar(&m wndToolBar);
return 0;

1
BOOL CMainFrame::PreCreateWindow(CREATESTRUCT& cs)



{
if( !CMDIFrameWnd::PreCreateWindow(cs) )

return FALSE;
// TODO: Modify the Window class or styles here by modifying
// the CREATESTRUCT cs
return TRUE;

1
/////////////////////////////////////////////////////////////////////////////
// CMainFrame diagnostics
#ifdef DEBUG
void CMainFrame::AssertValid() const
{

CMDIFrameWnd::AssertValid();
}
void CMainFrame::Dump(CDumpContext& dc) const
{

CMDIFrameWnd::Dump(dc);
}
#endif // DEBUG
/////////////////////////////////////////////////////////////////////////////
// CMainFrame message handlers

MyFileDlg.cpp

// MyFileDlg.cpp : implementation file
//
#include "stdafx.h"
#include "ComTest.h"
#include "MyFileDlg.h"
#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = _FILE_ ;
#endif
/////////////////////////////////////////////////////////////////////////////
// CMyFileDlg dialog
CMyFileDlg::CMyFileDlg(CWnd* pParent /*=NULL*/)

: CDialog(CMyFileDlg::IDD, pParent)
{

//{{AFX_DATA _INIT(CMyFileDlg)
m filename = _T("");
//I I AFX_DATA_INIT

}
void CMyFileDlg::DoDataExchange(CDataExchange* pDX)
1

CDialog::DoDataExchange(pDX);
//{ {AFX_DATA_MAP(CMyFileDlg)
DDX_Text(pDX, IDC_EDIT1, m filename);
//I I AFX_DATAMAP

1
BEGIN_MESSAGE MAP(CMyFileDlg, CDialog)

//{ {AFX_MSG_MAP(CMyFileDlg)
// NOTE: the ClassWizard will add message map macros here

//} I AFX_MSG_MAP

136



END_ MESSAGE MAP()
///////////////////////////////////////////////////////////////////////
// CMyFileDlg message handlers

StdAfx.cpp

// stdafx.cpp : source file that includes just the standard includes
//	 ComTest.pch will be the pre-compiled header
//	 stdafx.obj will contain the pre-compiled type information
#include "stdafx.h"

B.2 Header Files

ChildFrm.h

// ChildFrm.h : interface of the CChildFrame class
//
/////////////////////////////////////////////////////////////////////////////
#if !defined(AFX CHILDFRM_H 8EFFlE01 9181 4CF6 AC92 4DF898EE08A7 INCLUDED_)
#define AFX CHILDFRM_H 8EFF1E01_918 1_4CF6_AC92_4Dk98EE08A7 INLUDED_
#if _MSC_VER > 1000
#pragma once
#endif // MSC_VER > 1000
class CChildFrame : public CMDIChildWnd
{

DECLARE_DYNCREATE(CChildFrame)
public:

CChildFrame();
// Attributes
public:
// Operations
public:
// Overrides

// ClassWizard generated virtual function overrides
//{ {AFX VIRTUAL(CChildFrame)
virtual BOOL PreCreateWindow(CREATESTRUCT& cs);
//}}AFX_VIRTUAL

// Implementation
public:

virtual ~CChildFrame();
#ifdef _DEBUG

virtual void AssertValid() const;
virtual void Dump(CDumpContext& dc) const;

#endif
// Generated message map functions
protected:

//{{AFX MSG(CChildFrame)
// NOTE - the ClassWizard will add and remove member functions here.
// DO NOT EDIT what you see in these blocks of generated code!

//}}AFX MSG
DECLARE_MESSAGE_MAP()
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};
/////////////////////////////////////////////////////////////////////////////
//{ {AFX_INSERT LOCATION} }
// Microsoft Visual C++ will insert additional declarations immediately before the previous line.
#endif //
!defined(AFX_CHILDFRM_H 8EFF1E01_9181_4CF6_AC92_4DF898EE08A7 INCLUDED_)

ComTest.h

// ComTest.h : main header file for the COMTEST application
//
#if !defined(AFX COMTEST H 5F36C730 CCCA 469B 9D62 758A5394876D INCLUDED _)
#define AFX COMTEST_H --5F36C730_CCCA_469B_9D -6-2_758--A5394876D IN-ELUDED_
#if _MSC_VER  > 1000
#pragma once
#endif // _MSC VER > 1000
#ifndef AFXWIN H

#error include 'stdafx.h' before including this file for PCH
#endif
#include "resource.h"	 // main symbols
/////////////////////////////////////////////////////////////////////////////
// CComTestApp:
// See ComTest.cpp for the implementation of this class
//
class CComTestApp : public CWinApp

public:
CComTestApp();

// Overrides
// ClassWizard generated virtual function overrides
// {AFX_VIRTUAL(CComTestApp)
public:
virtual BOOL InitInstance();
//I AFX_VIRTUAL

// Implementation
// {AFX_MSG(CComTestApp)
afx_msg void OnAppAbout();

// NOTE - the ClassWizard will add and remove member functions here.
// DO NOT EDIT what you see in these blocks of generated code !

//}}AFX MSG
DECLARE_MESSAGE_MAP()

1;
/////////////////////////////////////////////////////////////////////////////
//{ {AFX_INSERT LOCATION} }
// Microsoft Visual C++ will insert additional declarations immediately before the previous line.
#endif //

!defined(AFX_COMTEST_H 5F36C730_CCCA_469B_9D62_758A5394876D INCLUDED_)

ComTestDoc.h

// ComTestDoc.h : interface of the CComTestDoc class
//
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/////////////////////////////////////////////////////////////////////////////////////
#if
!defined(AFX COMTESTDOC H E27DF2A9 0A79 4327 BFEC 72377A6A3D54 INCLUDED J
#define AFX COMTESTDOC_H _E27DF2A9_0A79 7-4327 1BFEC_72377A6A3D54 —INCLUDED_
#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000
#include <list>
#include <fstream>
#define MAX_COM_DATA 32
class CComTestDoc : public CDocument
{
protected: // create from serialization only

CComTestDoc();
DECLARE_DYNCREATE(CComTestDoc)

// Attributes
public:
// Operations
public:

void PutToCOM();
void ResetSec() {m sec=0;}

// Overrides
// ClassWizard generated virtual function overrides
//{ {AFX_VIRTUAL(CComTestDoc)
public:
virtual BOOL OnNewDocument();
virtual void Serialize(CArchive& ar);
virtual void OnCloseDocument();
//II AFX_VIRTUAL

private:
HANDLE hCom;
char mpComData[MAX_COM_DATA];
DWORD m nByteCnt;
DWORD m_sec;
std::ofstream m_out_file;
std::list<char*> m outdata;

// Implementation
public:

virtual ~CComTestDoc();
#ifdef _DEBUG

virtual void AssertValid() const;
virtual void Dump(CDumpContext& dc) const;

#endif
protected:
// Generated message map functions
protected:

//{ {AFX MSG(CComTestDoc)
// NOTE - the ClassWizard will add and remove member functions here.
// DO NOT EDIT what you see in these blocks of generated code !

//}}AFX MSG
DECLARE_MESSAGE_MAP()

};
/////////////////////////////////////////////////////////////////////////////
//{{AFX_INSERT LOCATION}}
// Microsoft Visual C++ will insert additional declarations immediately before the previous line.
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#endif //
!defined(AFX_COMTESTDOC_H E27DF2A9_0A79_4327_BFEC_72377A6A3D54 INCLUDED_)

ComTestView.h

// ComTestView.h : interface of the CComTestView class
//
/////////////////////////////////////////////////////////////////////////////
#if
!defined(AFX COMTESTVIEW H 06152F9F 0C7B 4694 AC7F 4EB4D6D6AEC5 INCLUDED_)
#define AFX _COMTESTVIEW_H —0. 6152F9F_0C7B_4694_AC7F _4EB4D6D6AEC5-INCLUDED_
#if _MSC_VÉR > 1000
#pragma once
#endif // _MSC VER > 1000
class CComTestView : public CView
{
protected: // create from serialization only

CComTestView();
DECLARE_DYNCREATE(CComTestView)

// Attributes
public:

CComTestDoc* GetDocument();
private:

UINT m_timer;
// Operations
public:
// Overrides

// ClassWizard generated virtual function overrides
// { {AFX_VIRTUAL(CComTestView)
public:
virtual void OnDraw(CDC* pDC); // overridden to draw this view
virtual BOOL PreCreateWindow(CREATESTRUCT& cs);
protected:
virtual BOOL OnPreparePrinting(CPrintlnfo* pInfo);
virtual void OnBeginPrinting(CDC* pDC, CPrintlnfo* pInfo);
virtual void OnEndPrinting(CDC* pDC, CPrintInfo* pInfo);
//}}AFX_VIRTUAL

// Implementation
public:

virtual ~CComTestView();
#ifdef _DEBUG

virtual void AssertValid() const;
virtual void Dump(CDumpContext& dc) const;

#endif
protected:
// Generated message map functions
protected:

//{ {AFX_MSG(CComTestView)
afx_msg void OnComBegin();
afx_msg void OnComStop();
afx_msg void OnTimer(UINT nIDEvent);
II}}AFX	 MSG
DECLARE_MESSAGE_MAP()

};
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#ifndef DEBUG // debug version in ComTestView.cpp
inline CComTestDoc* CComTestView::GetDocument()

{ return (CComTestDoc*)m_pDocument; }
#endif
/////////////////////////////////////////////////////////////////////////////
//{ {AFX_INSERT LOCATION}}
// Microsoft Visual C++ will insert additional declarations immediately before the previous line.
#endif //
!defined(AFX_COMTESTVIEW_H 06152F9F_0C7B_4694_AC7F_4EB4D6D6AEC5 INCLUDED J

MainFrm.h

// MainFrm.h : interface of the CMainFrame class
//
/////////////////////////////////////////////////////////////////////////////
#if !defined(AFX MAINFRM H 0A90CE85 C788 4AE9 A608 107A43B34B20 INCLUDED J
#define AFX MAINFRM _ H 0A90CE85 _ C788 _ 4A E9 _ A608_ 107A43B34B20 INCLUDED _
#if _MSC_VER > 1000
#pragma once
#endif // MSC_VER > 1000
class CMainFrame : public CMDIFrameWnd
{

DECLARE_DYNAMIC(CMainFrame)
public:

CMainFrame();
// Attributes
public:
// Operations
public:
// Overrides

// ClassWizard generated virtual function overrides
/4 {AFX VIRTUAL(CMainFrame)
virtual BOOL PreCreateWindow(CREATESTRUCT& cs);
//}}AFX_VIRTUAL

// Implementation
public:

virtual —CMainFrame();
#ifdef _DEBUG

virtual void AssertValid() const;
virtual void Dump(CDumpContext& dc) const;

#endif
protected: // control bar embedded members

CStatusBar m wndStatusBar;
CToolBar m wndToolBar;

// Generated message map functions
protected:

//{ {AFX_MSG(CMainFrame)
afx_msg int OnCreate(LPCREATESTRUCT lpCreateStruct);

// NOTE - the ClassWizard will add and remove member functions here.
// DO NOT EDIT what you see in these blocks of generated code!

//}}AFX MSG
DECLARE_MESSAGE_MAP()

};
/////////////////////////////////////////////////////////////////////////////
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//{{AFX_INSERT LOCATION} }
// Microsoft Visual C++ will insert additional declarations immediately before the previous line.
#endif //
!defined(AFX_MAINFRM_H 0A90CE85_C788_4AE9_A608_107A43B34B20 INCLUDED J

MyFileDlg.h

#if !defined(AFX MYFILEDLG H CD5C31AB 828B 48E0 A570 43302E9881BF INCLUDED J
#define AFX MYFILEDLG_H —CD5C3lAB_828B_48E0_A570_43302E988lBF INCLUDED_
#if _MSC_VER > 1000
#pragma once
#endif // MSC_VER > 1000
// MyFileDlg.h : header file
//
/////////////////////////////////////////////////////////////////////////////
// CMyFileDlg dialog
class CMyFileDlg : public CDialog
{

/1 Construction
public:

CMyFileDlg(CWnd* pParent = NULL); // standard constructor
// Dialog Data

//{ {AFX DATA(CMyFileDlg)
enum { IDD = IDD_FILENAME };
CString m filename;
//}}AFXDATA

// Overrides
// ClassWizard generated virtual function overrides
//{ {AFX VIRTUAL(CMyFileDlg)
protected:
virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV support
//} I AFX_VIRTUAL

// Implementation
protected:

// Generated message map functions
//1 {AFX MSG(CMyFileDlg)

7/ NOTE: the ClassWizard will add member functions here
//}}AFX MSG
DECLARE_MESSAGE_MAP()

};
// { {AFX_INSERT LOCATION}}
// Microsoft Visual C++ will insert additional declarations immediately before the previous line.
#endif //
!defined(AFX_MYFILEDLG_H CD5C31AB_828B_48E0_A570_43302E9881BF INCLUDED J

Resource.h

//{ {NO_DEPENDENCIES}}
// Microsoft Developer Studio generated include file.
// Used by ComTest.rc
//
#define IDD ABOUTBOX	 100
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#define IDR_MAINFRAME	 128
#define IDR_COMTESTYPE	 129
#defme IDD_FILENAME	 130
#define IDC_EDIT1	 1000
#define MY_COM_INIT	 32771
#define MY_COM_STOP	 32772
#define MY_COM_BEGIN	 32773
// Next default values for new objects
//
#ifdef APSTUDIOINVOKED
#ifndef APSTUDIO_READONLY_SYMBOLS
#define _APS_3D_CONTROLS	 1
#define _ APS _ NEXT_ RESOURCE VALUE	 131
#define _APS_NEXT_COMMAND_VALUE 	 32774
#define _APS_NEXT_CONTROL_VALUE 	 1001
#define _APS_NEXT_SYMED_VALUE 	 101
#endif
#endif

StdAfx.h

stdafx.h : include file for standard system include files,
// or project specific include files that are used frequently, but
//	 are changed infrequently
//
#if !defined(AFX_STDAFX_H 5A9F2227_8435_46CF_ABE2_0C97FCBF0AF0 INCLUDED_)
#define AFX_STDAFX_H 5A9F2227_8435_46CF_ABE2_0C97FCBF0AF0 INCLUDED_
#if _MSC_VER > 1000
#pragma once
#endif // MSC VER > 1000
#define VC_EXTRALEAN	 // Exclude rarely-used stuff from Windows headers
#include <afxwin.h>	 // MFC core and standard components
#include <afxext.h>	 // MFC extensions
#include <afxdisp.h>	 // MFC Automation classes
#include <afxdtctl.h>	 // MFC support for Internet Explorer 4 Common Controls
#ifndef _AFX_NO_AFXCMN_SUPPORT
#include <afxcmn.h>	 // MFC support for Windows Common Controls
#endif // _AFX_NO_AFXCMN_SUPPORT
//{ {AFX_INSERT_LOCATION}}
// Microsoft Visual C++ will insert additional declarations immediately before the previous line.
#endif // !defined(AFX_STDAFX_H 5A9F2227_8435_46CF_ABE2_0C97FCBF0AF0 INCLUDED
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