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ABSTRACT

THE USE OF A WATER QUALITY MODEL TO EVALUATE
THE IMPACTS OF COMBINED SEWER OVERFLOWS

ON THE LOWER HUDSON RIVER

by
Wen-Pin Shu

CSO discharges have long been recognized as a significant source of water pollution.

While many sources of water pollution have been controlled over the past 20 years, CSOs

continue to be a main environmental concern in several areas, especially in old cities. In

the past, most CSO research focused on the CSO control processes, including floatables

and suspended solids removal. Few studies have been conducted in the area of the

impacts of CSO discharge on the receiving water quality. To achieve this purpose, a

powerful water-modeling tool, WASP 6.1, is utilized in this study. The Lower Hudson

River is selected as a case study. Data are collected from the US EPA, USGS, NYC DEP,

and NJ DEP. After calibration, the receiving water quality model can be used to study the

impacts of CSO with a series of scenarios, which include the major factors that would

affect the water quality of the receiving water. DO, BOD, ammonia, fecal coliform, and

mercury are the reference pollutants discussed in this study. The simulation results are

able to predict the effect of various CSO abatement alternatives on water quality and to

be used in the water quality management and planning processes.
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CHAPTER 1

INTRODUCTION

1.1 Background

A Combined Sewer System (CSS) is a wastewater collection system owned by a state or

municipality (as defined by Section 502[4] of the Clean Water Act [CWA]) that conveys

wastewaters (domestic, commercial, and industrial wastewaters) and storm water (surface

drainage from rainfall or snowmelt) through a single-pipe system to a Publicly Owned

Treatment Works (POTW) Treatment Plant (as defined in 40 Code of Federal

Regulations [CFR] 4.03.3[p]) (US EPA, 1994a). During dry weather, combined sewers

send all wastewater to the sewage treatment plants (STPs). Whereas during wet weather,

runoff enters the sewer system and total flows can exceed the capacity of the CSSs or the

treatment facilities. To prevent the STPs from flooding and backing up a mixture of

urban runoff and raw sewage into streets and homes, the CSS is designed to overflow

along with debris washed from the streets directly to surface water bodies, such as lakes,

rivers, estuaries, or coastal waters. These overflows are called combined sewer overflows

(CSOs).

Combined sewer systems were among the earliest sewers built in the United

States and continued to be built until the middle of twentieth century. Currently, CSSs

serve roughly 772 communities with about 43 million people. Eighty-five percent of

CSSs are located in 11 of the 32 states, which have CSSs. Most communities with CSOs

are located in the Northeast and Great Lake Regions, particularly in Pennsylvania,

1



2

Indiana, Ohio, Illinois, Michigan, New York, West Virginia, and Maine. Of the 772 CSO

communities, approximately 30 percent have populations greater than 75,000, and

approximately 30 percent are very small with total service populations of less than 10,000

(US EPA, 2001).

CSOs are point sources subjected to National Pollutant Discharge Elimination

System (NPDES) permit requirements including both technology-based and water

quality-based requirements of the CWA. National projections of annual CSO discharges

are estimated at 1,260 billion gallons per year. CSOs are not subject to secondary

treatment requirements applicable to POTWs. CSOs often contain high levels of

suspended solids, pathogenic microorganisms, floatable debris, toxic pollutants, settleable

solids, nutrients, oxygen-demanding organic compounds, oil and grease, and other

pollutants (US EPA, 1994a). The presence of these pollutants in CSOs and the frequent

large volume of the flows can degrade water quality and adversely impact aquatic

animals, plants, and human health in certain situations. CSOs have been shown to be

major contributors to impairment and aesthetic degradation of many receiving waters and

have contributed to shellfish harvesting restrictions, beach closures, and even occasional

fish kills (US EPA, 1999).

While much has been accomplished over the past 20 years in the area of

wastewater treatment, CSOs continue to be a major environmental concern in many

communities. According to the EPA's 1998 National Water Quality Inventory, CSOs are

a source of impairment for 12 percent of assessed estuaries (in square miles) and two

percent of assessed lakes (in shore miles) (US EPA, 2000). The Natural Resources

Defense Council (NRDC) reported in its 2000 Testing the Waters report that sewage
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spills (combined sewer overflows, sanitary sewer overflows, and breaks in sewer lines or

septic systems) and overflows accounted for 2,230 beach closings and advisories in 2000

(NRDC, 2001). Localized impacts of uncontrolled CSO discharges have been well

documented by some communities. For example, New York City reported that CSOs

caused or contributed to shell fishing restrictions for more than 30,000 acres of shellfish

beds (US EPA, 2001) and the State of New Jersey reported that CSOs caused or

contributed to hundreds of days of ocean beach closings in 1987 (New York-New Jersey

Harbor Estuary Program [NY-NJ HEP], 1996).

To ensure that all wet weather CSO discharge points are compliant with the

requirements of the CWA, the US EPA initiated action to clarify requirements for CSOs

through the publication of the National CSO Control Policy on April 19, 1994 (59

Federal Register 18688). To implement the National CSO Control Policy, there are two

components - Nine Minimum Controls (NMC) and Long-Term Control Plans (LTCP).

The Nine Minimum Controls are measures that can reduce the impacts of CSOs and that

are not expected to require significant engineering studies or major construction. The

primary achievement of this stage is the reduction and control of floatables and debris. It

was reported that the goals of the NMCs had been achieved by 1997. Long-Term Control

Plans will provide for full compliance with the CWA. In this stage, intensive CSO

monitoring and modeling studies are required to characterize CSOs properties and their

impacts on receiving water quality.

In recent years, the application of mathematical modeling techniques has become

an important part of most water quality management and planning processes (Beck, 1985;

Dillaha, 1998; Henderson-Sellers, 1991; Jamal, 1986; Orlob, 1992; Tim and Jolly, 1994).
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The need to understand cause-effect relationships in water pollution, and the desire to

develop a tool that can aid decision-makers in selecting appropriate technologies, are two

important reasons for the construction of river simulation models (Heathcote, 1987;

Thomann, 1982). Water quality models can be powerful tools to determine acceptable

contaminant levels or to test alternative strategies for water quality management (Tim and

Jolly, 1994).

1.2 Research Objectives

The primary purpose of this study is to develop a water quality model to investigate the

impacts of CSO discharges on the Lower Hudson River. Once the model is calibrated and

validated, it will be used:

1) To determine whether the river will meet the water quality criteria after
receiving CSO discharges by comparing receiving water quality with
applicable water quality criteria

2) To reveal the impact of the load on the receiving water quality by simulating
calibrated models under various magnitudes of CSO loads

3) To investigate how the stream flowrate affects the receiving water quality
after CSO discharges by simulating calibrated models under various scenarios
of stream flowrate

4) To understand the CSO spatial distribution in receiving waters by comparing
the simulation results at locations downstream and upstream from CSO
discharge points.

5) To characterize the CSO temporal impacts by comparing simulation results
before, during, and after a storm event.

6) To identify major water quality problems generated by CSO discharges on
receiving waters.

With the same approach, the impacts of CSOs or other pollution sources on the

receiving water quality can be studied in the future studies.



CHAPTER 2

LITERATURE SEARCH

2.1 Combined Sewer Overflows

2.1.1 Introduction

Overflows from combined sewers during storm events result in the discharge of untreated

sanitary sewage to receiving waters. They also may contain pre-treated industrial

wastewaters and untreated stormwater. CSOs contain pollutants that are present in

domestic and industrial wastewaters, as well as those in the urban stormwater runoff that

enters the combined sewer system. However, the quality characteristics of CSOs are not

as easy to define within a referenced range as are those from other pollution sources.

Combined sewer systems with their associated overflow points are relatively complex.

Hydraulic conditions are highly variable due to the intermittent and variable

characteristics of rainfall. The quality characteristics of CSO flows can also vary

significantly from location to location and from storm to storm at a given location (US

EPA, 1993). In other words, CSO water quality is site specific.

Higher pollutant concentrations may be associated with the initial peak flows,

depending on factors such as the size and slope of the piping system, the time interval

between storms, the drainage area characteristics and response, and the solids

accumulation in the collection system (US EPA, 1993).

The initial peak flows, called the "first flush", occur in the early stages of a storm

runoff or combined sewer overflow event, and represent a relative small percentage of the

5
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total flow although containing a disproportionately large percentage of the total pollutant

mass associated with the overall storm event (US EPA, 1993). Significant first flush

effects are most likely to be present with small catchments, flat slopes, low impervious

fractions, relatively simple conveyance system networks, and lines with low dry weather

flow velocities that permit solids to accumulate in the line.

Rainfall, which produces large flows in the combined sewer system, is another

site-specific property that affects the quantity and quality of CSO discharges. It is the

factor that determines when and where overflows will occur, and the rates, volumes, and

durations of the episodes. Rainfall amount varies from year to year, storm event to storm

event, and hour to hour during individual events. Analysis and interpretation of rainfall

records can provide useful information for identifying drainage area. The system

characteristics impose site-specific influences on the flow rates and volumes that will

occur during any storm event.

The length of any dry weather period can also affect the quality of CSOs. Moffa

(1980) indicated that the extent of pollutant accumulation prior to a storm occurrence will

depend on: (a) the residual of pollutants remaining from the previous storm; and (b) the

amount accumulated during the intervening period, commonly referred to as the

Antecedent Dry Weather Period (ADW). Mason and his co-workers (1977) also stated

that the concentration of the first flush appears to be related to the number of dry days

preceding the storm event. The accumulated pollutants will be scoured during the storm

event and the duration over which an intense rainfall occurs will determine the quantity

of available pollutants that are scoured from the system.
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The fact that CSO quality characteristics are site specific limits the confidence

with which data from other sites can be applied. If the study is based on default values

incorporated in the models, the simulation result may generate significant errors (Mueller

and Di Toro, 1981). An extensive sampling program is generally necessary in order to

provide calibration and validation for a specific area. However, because of the technical

difficulty and cost of developing comprehensive performance monitoring data, CSO

modeling represents a situation where the theoretical prediction of flow and quality

(based on models calibrated against limited data sets) may provide a more accurate basis

for estimating CSO discharge characteristics. While many studies of the characteristics of

CSOs have been published in the past, a comprehensive database for CSO simulation

remains incomplete.

2.1.2 Characteristics of CSOs

Pollution issued from CSOs is extremely diverse in composition. Basically it includes

typical wastewater pollution (organic carbon and nitrogen, phosphorus, heterotrophic

bacteria, pathogenic micro-organisms, etc.) as well as typical urban runoff pollution

(metals, polyaromatic hydrocarbons, etc.) (Seidl, Servais, and Mouchel, 1998). CSO

impacts include adverse human health effects (e.g., gastrointestinal illness), beach

closures, shellfish bed closures, toxicity for aquatic life, and aesthetic impairment. The

pollutants of concern and the principal consequences of CSOs are presented in Table 2.1.

For a long time, sampling programs have been developed to characterize the

quality of CSOs for the pre-design of abatement programs. The pollutant values of CSOs

are a combination of runoff pollutant concentrations and sanitary sewage pollutant

concentrations. A tabulation of typical pollutant concentrations in CSOs compared with
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concentrations from other pollutant sources is displayed in Table 2.2. As shown, the

typical values generally fall between the values of urban runoff and sanitary sewage. Site-

specific concentrations that result from this mixture are dependent on the quality of the

two base flows and the proportional mix (US EPA, 1977). A summary of CSO discharges

from several studies is shown in Table 2.3. Highlights of the properties and their

responses during storm events for each pollutant variable are given in the following

paragraphs.

Stormwater runoff, combined sewer overflows, leaking sewer lines, as well as

natural processes, all contribute significant amounts of organic matter to the receiving

water. Organic matter, which refers to anything derived from living organisms, must then

be broken down or decomposed by microorganisms within the river. Depending on the

timing and size of the load, the decomposition of this material can require a substantial

amount of oxygen. Martin (1995) indicated that the concentration of dissolved oxygen,

during the storm runoff, decreased probably because oxygen was consumed by oxygen-

demanding materials from CSOs, urban runoff, and resuspended sediments and because

of the discharge of anoxic water from combined sewer overflows. In other words,

concentrations of BOD in storm runoff generally were higher than those in base flow (dry

weather flow condition).
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Table 2.1 CSO Pollutants of Concern and Principal Consequences

Pollutant(s) Principal Consequences
Bacteria (e.g., Fecal coliform, E. coli, enterococci)
Viruses (e.g., hepatitis, cholera)
Parasites (e.g., giardia, cryptosporidium)

Beach closure
Odors
Shellfish bed closures
Drinking water contamination
Adverse public health effects

Trash and floatables Aesthetic impairment
Odors
Beach closures

Organic compounds, metals, oil, grease
Toxic pollutants

Aquatic life impairment
Adverse public health effects
Fishing and Shellfishing restrictions

Biochemical oxygen demand (BOD) Reduced oxygen level and fish kills
Solids deposition Aquatic habitat impairment

Shellfish bed closures
Nutrients (e.g., nitrogen, phosphorus) Eutrophication, algae blooms

Aesthetic impairment

Source: Association of Metropolitan Sewerage Authorities (AMSA). Modified from Approaches to
Combined Sewer Overflow Program Development: A CSO Assessment Report. (AMSA, Washington, DC,
1994)

Table 2.2 Comparison of Typical Values for Pollutant Discharges

Contaminant Source
BOD5

(mg/L)
TSS

(mg/L)
COD

(mg/L)
Total N
(mg/L)

Total P
(mg/L)

Fecal coliform
(counts/100mL)

Rainfall 1--13 <1 9--16 -- 0.02--0.15 --
Treated Wastewater <5--30 <5--30 -- 15--25 <1--5 <200
Urban Runoff 10--250 67--101 40--73 0.4--1.0 0.7--1.7 103-107
CSO 25--100 1 50--400 260--480 3.0--24 1 .0--1 0 105-107
Sanitary Sewage 1 00--400 1 00--350 260--900 20--85 4.0--15 107-109

Source: Water Environment Federation (WEF). Prevention and Control of Sewer System Overflows.
(WEF, 1999)



Table 2.3 Pollutant Concentrations in Combined Sewer Overflows

Location
Average pollutant concentration (mg/L)

Reference

TSS VSS BOD COD

Kjetdahl 	 Total 	 Total 	 Ortho- 	 Fecal
Nitrogen Nitrogen Phosphorus Phosphate coliformsb

Des Moines, Iowa 413 117 64 ... ... 4.3 1.86 1.31 ... Davis and Borchard, 1974

Milwaukee, Wisconsin 321 109 59 264 4.9 6.3 1.23 0.86 ... Mason et al., 1977

Newtown Creek, NYC 306 182 222 481 ... ••• ••• ... ... US EPA, 1975

Spring Creek, NYC 347 ... 111 358 ... 16.6 4.5 ... ... Feuerstein and Maddaus, 1976

Poissy, Francea 751 387 279 1005 ... 43 17 ••• ... Coyne & Bellier Inc., 1974

Racine, Wisconsin 551 154 158 ... ... ••• 2.78 0.92 201 Clark et al., 1975

Rochester, New York 273 ... 65 ... 2.6 ... ••• 0.88 1140 Lager et al., 1976

Average (not weighted) 370 140 115 367 3.8 9.1 1.95 1 670

Range 273-551 109-182 59-222 264-481 2.6-4.9 4.3-16.6 1.23-2.78 0.86-1.31 201-1140

a. Not included in average because of its high strength of municipal sewage when compared to these obtained in the United States.

b. 1000 organisms/100mL
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Two nutrients, phosphorus and nitrogen, can significantly impact receiving

waters. When present in sufficient concentrations they often trigger algal blooms, which

eventually reduce the dissolved oxygen level of the water as decaying algal and other

organic matter is broken down by microorganisms. Typical sources of phosphorus and

nitrogen include fertilizers, animal wastes, automotive exhaust, organic material, soil, etc.

From the investigation at Fall Creek, Indianapolis, Martin (1995) observed that

concentrations of nutrients in storm runoff increased downstream and that they were

higher than those in base flow except for nitrate plus nitrite.

In most cases, oxygen demand and nutrient parameters will be sufficient to

characterize runoff problems and impacts. However, in recent years there has been an

increasing awareness of a potential danger to receiving waters from low concentrations of

toxicants and pathogens. Toxics refer to a variety of contaminants including trace metals

such as mercury, arsenic, copper, cadmium and lead; and organic compounds such as

PCBs (polychlorinated biphenyls), PAHs (polycyclic aromatic hydrocarbons) and

pesticides and herbicides (e.g., DDT, Chlordane and atrazine) that reach receiving waters

from stormwater runoff, atmospheric deposition and industrial and municipal discharges.

Pathogens are disease-causing microorganisms, such as bacteria, protozoa, and viruses

that are present in untreated or inadequately treated human sewage and domestic and wild

animal wastes (New Jersey Department of Environmental Protection [NJ DEP], 1999).

Typical values obtained for parameters in each category are given in Tables 2.4, 2.5, and

2.6. The values were obtained for a variety of reasons under different conditions and are

presented as representative of ranges that may be expected.
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Table 2.4 Metal Concentrations in Storm Water Runoff

Site
Pollutant concentration, mg/L

ReferenceCadmium Chromium Copper Nickel Zinc Lead
New York City, NY
Durham, North Carolina
Rochester, NY
Drinking Water Standards

	

0.025 	 0.16 	 0.46 	 0.15 	 1.6 	 ...

	

••• 	 0.23 	 0.15 	 0.15 	 0.36 0.46

	

0.0021 	 0.0065 	 0.086 	 0.013 0.24 0.14 .Clark

	

0.01 	 0.05 	 1 	 ... 	 5 	 0.05

Klein et al., 1974
Colston, 1974

et al., 1975
Manning et al., 1977

Table 2.5 Pesticide and Herbicide Concentrations in Storm Water Runoff (Parts Per
Trillion)

Pesticide and herbicide

Racine, Wisconsin b Hayward, California C

Drinking Water
Standards a

1971 1973 1974 1971-1972
Site 11 Site 11 Site 11 Average Maximum

Lindane <1 130 <1 31 150 5000
Heptachlor <1 <10 <1 0 0 100
Aldrin 14 <10 <1 4 70 1000
Heptachlor epoxide 16 <10 23 0 0 100
Methozchlor 58 <15 <1 .. .. 106
Dieldrin <1 <10 14 90 190 1000
Endrin <1 100 <1 0 0 500
Methyl Parathion .. .. .. 0 0 ..
Parathion .. .. .. 0 0 ..
DDT .. .. 89 130 630 50000
DDD .. .. 34 6 80 ••
DDE .. .. <1 16 100 ..
Chlordane .. .. .. 560 2400 3000
Diazinon .. .. .. 195 260 ..
Malath ion .. .. .. 128 540 ••
Silvex .. .. .. 81 560 30000
a. Maximum permissible concentration
b. Clark et al., 1975
c. USGS, 1972

Table 2.6 Microorganisms in Storm Water Runoff

Site

Organisms/100mL

Reference
Total 	 Fecal 	 Fecal 	 P.

coliform 	 coliform streptococci aeruginoea
Salmonella

sp
Baltimore, Maryland Orivieri et al., 1977

Storm Water 120000 24000 170000 1100 0.13
CSO 590000 230000 260000 5900 0.59

Houston, Texas Davis et al., 1976
upstream 258000 1300 650 85 <38

downstream 403000 1800 2020 260 <62
residential area 30100000 22000 13100 7560 <33
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Toxic contaminants typically cling to particles suspended in water and settle to

the bottom, whereupon, they can ingested by bottom feeding organisms and potentially

work their way up the food chain. Because of the high concentration of metals in urban

runoff waters, increases of metal concentrations in organisms are another sub-lethal index

of biological impact (Chebbo et al., 1995). Generally, concentrations of toxicants in

storm runoff are higher then those in base flow. However, the water quality of CSOs is

site-specific, especially for the toxicants and organic compounds. Concentrations of these

contaminants are mainly related to the land use and the properties of the watershed.

Concentrations of fecal coliform bacteria in storm runoff were much greater than

those in base flow (Martin, 1995). However, like concentrations of toxicants, the degrees

of increase of the pathogen concentration are again site-specific. These values are

dominated by the sanitary wastewater rather than the storm runoff.

2.2 Receiving Water Quality Modeling

2.2.1 River Water Quality Models

In the last 20 years, water quality modeling has been used as an important tool for water

quality management and planning (Ambrose and Roesch, 1982; Beck, 1985; Thomann

and Mueller, 1987). Simulation models can be used to assess the detailed and often

complicated interactions among various water quality constituents, biological activities,

and physical characteristics (Heng and Nikolaidis, 1998; Whitehead et al., 1981).

However, the value of any simulation model depends upon the appropriateness of that

model as a means of simulating the specific conditions and problems of the body of water

in question, since there is no existing universal or all-purpose model (Ambrose and



14

Roesch, 1982; Beck, 1985; Stefan et al., 1990). In general, most water quality models are

based on mass balance equations (Atkinson et al., 1998). The equation used in simulation

of the one-dimensional  advection of a pollutant is:

Lateral mixing in a river is usually more rapid than in other waterbodies, thereby,

resulting in approximately uniform conditions over the river cross section (US EPA,

1999) and one-dimensional (longitudinal) models are usually appropriate for simulating

river systems (Lung, 1993; Stefan et al., 1990).

Simulating considerations depend upon the water quality parameters. Basic

considerations and applied equations presented in the following paragraphs are

commonly taken into account in water quality modeling.

In the DO simulation, the complexity of the model can be varied and it depends

upon the purpose of the modeling. Simple spreadsheet models such as STREANDO IV

(Zander and Love, 1990) have recently become available for DO analysis. In general,

screening analysis using classical steady-state equations can examine DO impacts to

rivers as a result of episodic loads. The classic steady-state equation, Streeter-Phelps

equation, which can estimate the DO concentration downstream, can be shown as:
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Where: D = DO deficit downstream (M/V)

Do = initial DO deficit (M/V)

Ka = atmospheric reaeration rate (1/T)

t = time of passage from source to downstream location (T)

W = total pollutant loading rate (Ma)
Q = total river flow (V/T)

Kd = biochemical oxygen demand (BOD) deoxygenation rate (1/T)

Kr = BOD loss rate (1/T)

However, simple models cannot address multiple sources that change over time,

nor can they address the effects of river morphology. When such issues are important,

more sophisticated modeling techniques are necessary. More sophisticated modeling

techniques can also assess the effects of sediment oxygen demand (SOD), plant

respiration, and photosynthesis by aquatic plants (US EPA, 1999).

Nutrient discharges affect river eutrophication over time scales of several days to

several weeks. Nutrient analysis considers the relationship between nutrients and algal

growth. The current Waste Load Allocation Programs (WLA) guidance (US EPA, 1995d)

considers only planktonic algae (rather than all aquatic plants) and discusses nutrient

loadings and eutrophication in rivers primarily as a component in computing DO.

Pathogens and toxics contaminants are primarily a concern in the immediate

vicinity of loading sources. They are controlled by lateral mixing, advection, and decay

processes such as die-off (for pathogens), vaporization (for toxics), and settling and

resuspension (for pathogens and toxics). When stream flow is small relative to loading
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flow, lateral mixing may occur rapidly and a one-dimension model may be appropriate.

The concentration of the pollutant can be presented by the following equation:

Where: C. = max pollutant concentration at distance X from the outfall
(M/L3)

Ce = pollutant concentration in effluent (M/L 3)

Cu = pollutant concentration upstream from discharge (M/L3)

Qe = effluent flow (L3/T)

Qu = stream flow upstream from discharge (L 3/T)

Q = stream flow downstream from discharge, Qu + Qe (L3/T)

X = distance from outfall (L)

u = stream flow velocity (L/T)

K = net decay rate (1/T)

e = 2.71828...

In large rivers, lateral mixing may occur over a large distance. For this

consideration, the estimation of a lateral dispersion coefficient is required, which can be

measured by dye studies or by other methods (Fischer et al., 1979).

The model DYNTOX (LimnoTech, 1985) is specially designed for analysis of

toxics in rivers.

2.2.2 Computer Models for Water Quality Simulation

Many computer models are supported by the EPA's Center for Exposure Assessment

Modeling (CEAM). CEAM maintains a distribution center for water quality models and

related databases. CEAM-supported models relevant to modeling impacts on receiving

water include QUAL2EU, WASP6, HSPF, EXAMSII, CORMIX, MINTEQ, SMPTOX3,
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and DYNTOX. The applicability and key characteristics of the CEAM-supported models

are summarized in Table 2.7.

Enhanced Stream Water Quality Model with Uncertainty Analysis (QUAL2EU)

is a one-dimensional model for rivers. It assumes steady-state flow and loading but

allows simulation of diurnal variations in temperature or algae photosynthesis and

respiration. QUAL2EU can simulate up to 15 water-quality variables, including

temperature, bacteria, BOD, DO, ammonia, nitrate, nitrite, organic nitrogen, phosphate,

organic phosphorus, algae, and additional conservative substances (Brown and Barnwell,

1987). Because it assumes steady flow and pollutant loading, its applicability to CSOs is

limited. QUAL2EU can, however, use steady loading rates to generate worst-case

projections for CSOs to the river. Additionally, in certain cases, experienced users may

be able to use the model to simulate non-steady pollutant loadings under steady flow

conditions by establishing certain initial conditions or by dynamically varying climatic

conditions (Brown and Barnwell, 1987).

Water Quality Analysis Simulation Program 6.1 is an enhancement of the original

WASP. The flexibility afforded by the WASP 6.1 is unique. WASP permits the modeler

to structure one, two, and three-dimensional models (James, 1992; Lung, 1993; Orlob,

1992). It allows the specification of time-variable exchange coefficients, advective flows,

waste loads and water quality boundary conditions; and permits tailored structuring of the

kinetic processes, all within the larger modeling framework without having to write or

rewrite large sections of computer code (Ambrose et al., 1988).



Table 2.3 Pollutant Concentrations in Combined Sewer Overflows

Location
Average pollutant concentration (mg/L)

Reference

TSS VSS BOD COD

Kjeldahl 	 Total 	 Total 	 Ortho- 	 Fecal
Nitrogen Nitrogen Phosphorus Phosphate coliformsb

Des Moines, Iowa 413 117 64 ... ... 4.3 1.86 1.31 ... Davis and Borchard, 1974

Milwaukee, Wisconsin 321 109 59 264 4.9 6.3 1.23 0.86 ... Mason et al., 1977

Newtown Creek, NYC 306 182 222 481 ... ... ••• ••• ... US EPA, 1975

Spring Creek, NYC 347 ... 111 358 ... 16.6 4.5 ... ... Feuerstein and Maddaus, 1976

Poissy, Francea 751 387 279 1005 ... 43 17 ••• ... Coyne & Bellier Inc., 1974

Racine, Wisconsin 551 154 158 ... ... ... 2.78 0.92 201 Clark et al., 1975

Rochester, New York 273 ... 65 ... 2.6 ... ••• 0.88 1140 Lager et al., 1976

Average (not weighted) 370 140 115 367 3.8 9.1 1.95 1 670

Range 273-551 109-182 59-222 264-481 2.6-4.9 4.3-16.6 1.23-2.78 0.86-1.31 201-1140

a. Not included in average because of its high strength of municipal sewage when compared to these obtained in the United States.

b. 1000 organisms/100mL
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Hydrological Simulation Program—Fortran (HSPF) is a one-dimensional,

comprehensive hydrology and water quality simulation package, which can simulate both

receiving water and runoff to CSSs for conventional and toxic organic pollutants. HSPF

simulates the transport and fate of pollutants in rivers and reservoirs. It can study three

sediment types: sand, silt, and clay (Johnson et al., 1984). HSPF has been applied to

various watershed areas ranging from 52 to 7,200 km2 in Central Iowa (Donigian,

Bicknell, and Imhoff, 1995). The limitations of this model are due to its complicated

characteristics and the comprehensive information required to derive it.

MIKE11 is an unsteady one-dimensional model that was developed by the Danish

Hydraulic Institute (DHI). MIKE 11 permits simulation of various characteristics such as

flows, water levels, water quality, transports of sediment and dissolved or suspended

solids (DeVries and Hromadka, 1992). MIKE11 has been used around the world to

simulate a number of rivers and estuary systems, including: the Nepal River in Nepal, the

Paramatta and Georges Rivers in Australia, the Sarawak River in Malaysia, and the Chao

Phraya Tidal River in Thailand (Marco, 1995).

Exposure Analysis Modeling Systems II (EXAMSII) can rapidly evaluate the

fate, transport, and exposure concentrations of steady discharges of synthetic organic

chemicals to aquatic systems. A recent upgrade of the model considers seasonal

variations in transport and time-varying chemical loadings, making it quasi-dynamic. The

user must specify transport fields to the model (Burns, 1982).

Cornell Mixing Zone Expert System (CORMIX) is an expert system for mixing

zone analysis. It can simulate submerged or surface, buoyant or non-buoyant discharges

into stratified or ungratified receiving waters, with emphasis on the geometry and
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dilution characteristics of the initial mixing zone. The model uses a zone approach, in

which a flow classification scheme determines which near-field mixing processes to

calculate. The CORMIX model cannot be calibrated in the classic sense since rates are

fixed based on the built-in logic of the expert system (Doneker and Jirka, 1990).

CORMIX was originally developed assuming steady ambient conditions; Version 3

allows for application to some unsteady environments (e.g., tidal reversal conditions)

where transient recirculation and pollutant build-up can occur (CEAM, 1998).

MINTEQ determines geochemical equilibrium for priority pollutant metals. Not a

transport model, MINTEQ provides a means for modeling metal partitioning in

discharges. It provides only steady-state predictions. The model usually must be run in

connection with another fate and transport model, such as those described above. A

number of assumptions (e.g., equilibrium conditions at the point of mixing between a

CSO and the receiving water) must be made to link MINTEQ predictions to another fate

and transport model, so it should be used cautiously in evaluating wet weather impacts

(Brown and Allison, 1987).

Simplified Method Program-Variable Complexity Stream Toxics Model

(SMPTOX3) is a one-dimensional steady-state model for simulating the transport of

contaminants in the water column and bed sediments in the streams and non-tidal rivers.

SMPTOX3 is an interactive computer program that uses an EPA technique for

calculating concentrations of toxic substances in the water column and streambed as a

result of point source discharges to streams and rivers. The model predicts pollutant

concentrations in dissolved and particulate phases for the water column and bed

sediments, as well as total suspended solids (LimnoTech, 1992).
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Dynamic Toxics Model (DYNTOX) is a one-dimensional, probabilistic toxicity

dilution model for transport in rivers. It provides Continuous, Monte Carlo, or Lognormal

probability simulations that can be used to analyze the frequency and duration of ambient

toxic concentrations resulting from a waste discharge. The model considers dilution and

net first-order loss, but not sorption and benthic exchange (LimnoTech, 1985).

CE-QUAL-W2 is a reservoir and narrow estuary hydrodynamics and water

quality model developed by the Waterways Experiment Station of the U.S. Army Corps

of Engineers (USAGE). The model provides dynamic two-dimensional (longitudinal and

vertical) simulations. It accounts for density effects on flows as a function of the water

temperature, salinity, and suspended solids concentration. CE-QUAL-W2 can simulate

up to 21 water quality parameters in addition to temperature, including one passive tracer

(e.g., dye), total dissolved solids, coliform bacteria, inorganic suspended solids,

algal/nutrient/DO dynamics (11 parameters), alkalinity, pH, and carbonate species (4

parameters) (Brown and Barnwell, 1987; Devries and Hromadka, 1992).

A number of water quality models have been used in non-point source pollution

simulation. In recent years, agriculture and urban runoff are two major types of non-

point-source pollution, which can be simulated by these models. Some of these models

will be reviewed in the following paragraphs.

The Agriculture Non-point Source Pollution Model (AGNPS), an event-based and

continuous model, was developed by the Agriculture Research Service, US Department

of Agriculture, and the University of Minnesota (Young et al., 1989). It can be used to

simulate and predict runoff volume, peak rates, sediment load, erosion, and conventional

pollutant concentrations for a single storm event.
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The Areal Non-point Source Watershed Environmental Response Simulation

(ANSWERS) is a continuous model and uses a grid-cell structure, which represents

watershed information (Dillaha, 1998; Vieux and Needham, 1993). The model simulates

hydrologic processes within each element including interception, infiltration, surface

storage, surface flow, subsurface drainage, sediment drainage, and sediment attachment,

transport, and deposit (City of Austin, 1992; Dillaha, 1998).

Chemicals, Runoff and Erosion from Agriculture Management Systems Model

(CREAMS) is a daily rainfall hydrology model. The major purpose of this model is the

analysis of agriculture pollution control, which is accomplished through an analysis of

hydrology, erosion/sediment yield, and chemistry (nutrients and pesticides). This model

is not applicable to a complicated watershed because it was developed for simulating

field-scale areas homogeneous with a single land-use and soil and management practices

(Crowder et al., 1984).

The Stormwater Management Model (SWMM) was developed by the US EPA. It

is a comprehensive model for the simulation of urban runoff quantity and pollution in

storm and combined sewer systems (James, 1992). The SWMM permits a wide range of

simulation, including simulations of urban hydrology and water quality processes such as

rainfall, snowmelt, surface runoff, subsurface contribution to runoff, routing, storage, and

the treatment of flows (DeVries and Hromadka, 1992; Huber, 1995). However, SWMM

does not include modules to simulate receiving water quality.

Most of these non-point source simulation models only address some water

quality issues with spatial and temporal factor limitations. They have limited applications

in this study.
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Based upon the literature review, the opinions of modeling experts, and the

characteristics of the pollutant source and the receiving water, WASP 6.1 was selected

for this study.

2.3 Applications of WASP 6.1

The Water Quality Analysis Simulation Program — WASP 6.1, an enhancement of the

original WASP (Di Toro et al., 1983; Connolly and Winfield, 1984; Ambrose, R.B. et al.,

1988). This model helps users interpret and predict the water quality response to natural

phenomena and man-made pollution for various pollution management decisions. WASP

6.1 is a dynamic compartment-modeling program for aquatic systems, including both the

water column and the underlying benthos. The time-varying processes of advection,

dispersion, point and diffuse mass loading, and boundary exchange are represented in the

basic program.

The hydrodynamics model of WASP 6.1, DYNHYD5, is an update of

DYNHYD4 (Ambrose, et al., 1988), which was an enhancement of the Potomac Estuary

hydrodynamic model DYNHYD2 (Boesch et al., 1979) derived from the original

Dynamic Estuary Model (Feigner and Harris, 1970). Water quality processes are

represented in special kinetic subroutines that are either chosen from a library or written

by the user. WASP is structured to permit easy substitution of kinetic subroutines into the

overall package to form problem-specific models.

WASP 6.1 comes with four sub-models, EUTRO (eutrophication, conventional

pollutant model), TOXI (organic chemical/simple metals model), Mercury, and

Thermal/Fecal Coliform Models. Earlier versions of WASP, with EUTRO and TOXI
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only, have been used to examine eutrophication of Tampa Bay (Martin, et al., 1996);

phosphorus loading to Lake Okeechobee (James et al., 1998); eutrophication of the Neuse

River and estuary (Lung and Paerl, 1988); eutrophication of the Black River (Pickett,

1997); eutrophication of the Upper Mississippi River and Lake Pepin (Lung and Larson,

1995); eutrophication and PCB pollution of the Great Lakes (Thomann, 1975; Thomann

et al., 1976; Thomann et al., 1979; Di Toro and Connolly, 1980); eutrophication of the

Potomac Estuary (Thomann and Fitzpatrick, 1982); kepone pollution of the James River

Estuary (Ambrose, 1987); and heavy metal pollution of the Deep River, North Carolina

(JRB, 1984). In addition to these, numerous other applications can be found in a review

paper (Di Toro et al., 1983).



CHAPTER 3

APPROACH AND METHOD

3.1 Conceptual Modeling Approach

Wool (2002) indicated that a model is a "conceived image of reality"' or a theoretical

construct, relating some stimulus to a response. In other words, "modeling" is a process

to look for a relationship between loads and responses (water quality). The relationship

can usually be achieved by adjusting transport and transform constants of the parameters

found in the specific system. In this research, in order to investigate the impacts of the

CSO discharge on receiving waters, a receiving water quality model is created. Initially,

the model's load should include all the pollutant sources (e.g., CSO, municipal and

industrial waste water, agriculture and urban runoff, etc.) because the modeler is looking

for the totality of relationships in the receiving water system. After calibration and

validation, CSO discharges can be altered in different scenarios to find out the impacts of

change on receiving water quality by this model.

Generally, there are four primary steps in developing a model: data collection,

model creation, model calibration and validation, and results interpretation. Each of

these steps will be described in detail in the following sections.
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3.1.1 Data Collection

Data collection is a very important and time-consuming step in model development.

Accurate information on the characteristics of CSOs, and the biological and chemical

characteristics of receiving water are critical in identifying CSO impacts on receiving

waters (US EPA, 1999). Most of the time, data availability limits the applications of

complicated models. However, most water quality models are complicated, particularly

when they are linked to hydrodynamic models (Atkinson et al., 1998; Thomann, 1982).

The lack of high quality data for the receiving water is therefore a significant constraint

in model selection and development.

Data information comes from two main sources: existing data and monitoring

programs. Existing data are historical records or local documents, which are available

from the government or private companies. After reviewing the existing data, data gaps

can be identified. A monitoring program is implemented to collect data, which can fill in

these data gaps. Basically, monitoring data is much more reliable than other data sources.

However, the technical difficulty and cost concerns in the field survey and lab analyses

could be problems when implementing a monitoring program for a local project or

research. Existing data may be the only source in some situations to support model

development.

The input data needs for a specific receiving water model depend upon the

hydraulic regime and model used. Three primary sets of data important in creating a

receiving water quality model are: (a) water transport data, (b) water quality data, and (c)

pollutant loads data.
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(a) Water transport data

The water transport data provide information to define how water moves in the

channel. These data include channel segment information, channel hydraulic

characteristics, flow data, and mixing coefficients. Channel segment information provides

geometric measures, such as length, width, depth, and volume of the stream channel.

Hydraulic characteristics include depth and velocities of the stream. Mixing coefficients

are properties of dispersion, such as dispersion coefficients. Among the transport data,

flow records are the most important; they will affect the simulation results significantly.

The primary flow data source is the National Water Information System Web Site

(NWISWeb), which is supported by the U.S. Geological Survey (USGS). Selected water-

resources data for approximately 1.5 million sites across the United States from 1857 to

present are available. Geometric information of the channel could be obtained from the

U.S. Army Corps of Engineers or the mapping system of the U.S. Census Bureau. The

USACE is responsible for reporting the conditions of federally maintained navigation

channels. The Census Bureau developed a system called TIGER (topologically integrated

geographic encoding and referencing), which produces digital maps in collaboration with

the U.S. Geological Survey.

(b) Water quality data

Water quality input data are different types of variables used in different models.

For eutrophication simulation, they include concentrations of ammonia, nitrate, organic

nitrogen, orthophosphate, total phosphorus, CBOD (Ultimate, 5-day), dissolved oxygen,

and chlorophyll-a. For toxicant simulation, chemical and sediment concentrations are

needed.
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Water quality data can be found in state monitoring data, local projects, or EPA's

Storage and Retrieval of U.S. Waterways Parametric Data (STORET) system. STORET

is the EPA's primary water quality database system. It has collected nation wide water

quality data since 1960s. The New York City Department of Environmental Protection

has conducted a water quality monitoring program, namely the Howard Survey, in the

New York-New Jersey Harbor Estuary. It has 53 monitoring stations with water quality

data (e.g., DO, BOD, nutrient, etc.) collected regularly. USGS also provides water quality

data, however, the monitoring stations are few in some areas.

(c) Pollutant loads data

In receiving water quality modeling, pollutant loads come from three sources: (1)

point-source loads, (2) CSO loads, and (3) other non-point-source loads.

The point sources are those inputs that are considered to have a well-defined point

of discharge, which, under most circumstances, is usually continuous and independent of

storm events. Properties and rates of load from these point sources in storm events are the

same as in dry weather. The two principal point source groupings are municipal

wastewater and industrial discharges. They are usually the major sources of the nutrients

and BOD loading in the receiving waters. Most of the pollutant discharge information can

be found from federal or local government documents. The National Pollutant Discharge

Elimination System (NPDES) permit program controls water pollution by regulating

point sources that discharge pollutants into waters of the United States. By connecting to

its web site (http://cfpub.epa.gov/npdes/),  technical and regulatory information about the

NPDES permit program can be found.
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CSO load data may be found in local government monitoring program or state

Discharge Monitoring Report (DMR) data. Most local governments have contracted the

CSO monitoring program to consulting firms, and some of the monitoring reports can be

obtained from the state government. DMR are used to report self-monitoring results by

NPDES Permittees.

Other non-point sources include agriculture, groundwater, and urban runoff. In

each case, the distinguishing feature of the nonpoint sources is that the origin of the

discharge is diffuse. In the other words, it is difficult to relate the discharge to a specific

well-defined location. However, comparing these discharges with other sources, they

usually have a relatively small amount of flowrate, and can be neglected unless some

specific toxicants are contained in these sources that raise concerned.

Since there is a great deal of information involved in a model, data must be

organized after it is collected. Usually, a spreadsheet software is used to document the

data. If the database is too large, a software called Water Resources Data Sources can be

downloaded from the internet for free (Georgia Environmental Protection Division, 1993)

to manage the data. It is also easier to check and copy data by using this software.

3.1.2 Model Creation

The choice of the appropriate modeling level or complexity depends upon the problem

under investigation. Generally, the model complexity could be controlled by spatial

variability, time variability, transport patterns, loading patterns, and chemical

interactions. However, increasing model complexity does not usually result in an increase

in model credibility because the ratios of model credibility and complexity would

decrease as model complexity increases (Thomann, 1992). In other words, there may be
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no significant advantage to the use of a dynamic model when a steady state model will

suffice.

Receiving water modeling can involve single events or long-term simulations.

Single event simulations are usually favored when using complex models, which require

more input data and take significantly longer to run (although advances in computer

technology keep pushing the limits of what can practically be achieved). Long-term

simulations can predict water quality impacts on an annual basis.

CSO loads commonly are simulated separately from other loads in order to assess

the relative impacts of CSOs. This is appropriate because the equations that best

approximate receiving water quality are usually linear and so effects are additive (one

exception, however, is the non-linear algal growth response to nutrient loadings).

The basic principle of both the hydrodynamics and water-quality programs is the

conservation of mass. This principle requires that the mass of each water quality

constituent being investigated must be accounted for in one way or another. To perform

these mass balance computations, models must be supplied with the following input data

to define seven important characteristics:

1) simulation and output control,

2) model segmentation,

3) advective and dispersive transport,

4) boundary concentrations,

5) point and diffuse source waste loads,

6) kinetic parameters, constants, and time functions, and

7) initial concentrations.
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More detail about WASP 6.1 model creating will be described in Section 3.2.

3.1.3 Model Calibration and Validation

The model should be run initially to estimate events for which receiving water hydraulic

and quality monitoring were actually conducted, and the model results should be

compared to the measurements. The objective of model calibration is to adjust the input

parameters so that there will be closer agreement between the simulated values and

observed data (Ambrose, 1992; Bierman and Dolan, 1986). Both water quality and water

quantity variables should be calibrated (Dames & Moore Inc. and AScI, 1994). Dilks et

al. (1990) pointed out that hydrodynamic models should be calibrated before they are

used to supply flow and volume data to water quality model. However, as Martin et al.

(1990) stated, calibration processes for the models are still not well developed.

Achieving a high degree of accuracy in calibration can be difficult because:

1) Three-dimensional receiving water models are still not commonly used for
CSO projects, so models involve spatial averaging (over the depth, width or
cross-section). Thus, model results are not directly comparable with
measurements, unless the measurements also have sufficient spatial resolution
to allow comparable averaging.

2) Receiving water hydrodynamics are affected by numerous factors that are
difficult to account for. Those include fluctuating winds, large-scale eddies,
and density effects.

3) Pollutant loading inputs typically are estimates rather than precisely known
values.

4) Loadings from non-CSO sources, such as storm water, upstream boundaries,
point sources, and atmospheric deposition, often are not accurately known.

Validation is a process that estimates the magnitudes of predictive errors without

coefficient adjustments (Heathcote, 1998; Lung, 1986; Ambrose, 1992). Validation

allows researchers to compare a calibrated model prediction with predictions generated
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from a second independent input data set that includes data about both flow and water

quality under different external conditions (Canale et al., 1995; McCutcheon, 1989;

Thomann, 1982). Cheng and Lockerbie (1994) have shown that model validation usually

involves testing of calibrated models using different field data sets.

Inadequate model calibration and verification can result in spurious model results,

particularly when the models are used for absolute predictions. Data limitations may

require that the model results be used only for relative comparisons. Therefore, most

models are more accurate when applied in a relative rather than an absolute manner.

3.1.4 Results Interpretation

Once a model is calibrated and verified, it can be used for following purposes:

1) When used for continuous rather than event simulation, as suggested by the
CSO Control Policy, simulation models can predict the frequency of
exceedances of water quality criteria.

2) The key result of receiving water modeling is the prediction of future
conditions due to implementation of CSO control alternatives. In most cases,
CSO control decisions will have to be supported by model predictions of the
pollutant load reductions necessary to achieve water quality standards. In the
receiving waters, criteria or design water quality conditions might be periods
of low flow and high temperature that are established based on a review of
available data. Flow, temperature, and other variables for these periods then
form the basis for analysis of future conditions.

3) It is useful to assess the sensitivity of model results to variations in
parameters, rate constants, and coefficients. A sensitivity analysis can
determine which parameters, rate constants, and coefficients merit particular
attention in evaluating CSO control alternatives.

It is important to note three factors that may influence the model output and

produce unreasonable data. First, suspect data may result from calibration or verification

data that are insufficient or inappropriately applied. Second, any given model, including

detailed models, may not represent enough detail to adequately describe existing
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conditions and generate reliable output. Finally, all models have limitations and the

selected model may not be capable of simulating desired conditions. Model results must

therefore be interpreted within the limitations of their testing and their range of

application.

3.2 WASP 6.1 Model

3.2.1 Model Selection

The choice of model depends on the nature of data available for the system being

investigated and the detail required in the assessment. Generally, the selection of a water

quality model depends on six criteria (US EPA, 1987):

1) availability of pertinent documentation,

2) ease of application,

3) available time and resources.

4) applicability of model processes and variables,

5) hydrodynamic model capabilities, and

6) evidence of demonstrated applicability to size and type of project

After evaluation, WASP 6.1 was selected for this study. Some of the advantages

of the WASP 6.1 model that render it favorable for this study are as follows:

1) WASP 6.1 has high flexibility in both spatial and temporal options. It can be
used for both steady state and dynamic conditions and simulated under one,
two, or three-dimensional systems.

2) WASP 6.1 can simulate most water quality constituents in almost any type of
waterbodies.

3) The water quality, flow, and loading data required by WASP 6.1 are readily
available for the study river.

4) WASP 6.1 is a free model and is available to the public.
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5) WASP 6.1 is widely used around the world, especially in North America.

On the other hand, WASP 6.1 also has some limitations; it cannot handle floatable

and sinkable materials as well as mixing zone situations. Thus, CSO discharges are

assumed to be instantaneously, completely mixed with the receiving water in this study.

3.2.2 Overview of the WASP 6.1 Modeling System

As introduced earlier, WASP is a dynamic compartment model that can be used to

analyze a variety of water quality problems in diverse water bodies such as ponds,

streams, lakes, reservoirs, rivers, estuaries, and coastal waters. Version 6.1 of WASP,

which was developed in 2002, is an enhancement of WASP 6.0. Basically, it consists of

two stand-alone computer programs, DYNHYD5 and WASP 6, which can be run in

conjunction or separately. The hydrodynamics program, DYNHYD5, simulates the

movement of water while the water quality program, WASP 6, simulates the movement

and interaction of pollutants within the water.

WASP 6.1 is supplied with four kinetic sub-models to simulate several major

classes of water quality problems: conventional pollution (involving dissolved oxygen,

biochemical oxygen demand, nutrients and eutrophication), toxic pollution (involving

organic chemicals, metals, and sediments), mercury (including elemental Hg, divalent

Hg, and methyl-Hg), thermal, and fecal coliform. The linkage of either sub-model with

the WASP 6.1 program gives the models EUTRO, TOXI, Mercury, and Heat,

respectively.

To create a water quality model in WASP 6.1, twelve entry data groups must be

defined. They are model identification and simulation control, systems, segments,

segment parameter scale factors, exchange, flows, boundaries, loads, time step, print
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interval, time function, and constants. These input data, together with the general WASP

6.1 mass balance equations and the specific chemical kinetics equations, uniquely define

a special set of water quality equations. These are numerically integrated by WASP 6.1 as

the simulation proceeds in time. At user-specified print intervals, WASP 6.1 saves the

values of all display variables for subsequent retrieval by a post-processor program.

These programs allow the user to interactively produce graphs and tables of variables of

all display variables.

3.2.3 The Model Network

To define model network is the very first step in the model creating process. It provides

the model with the information about how the water moves. In other words, the

hydrodynamic system must be defined before investigating water quality problems. The

model network is a set of expanded control volumes, or "segments" that together

represent the physical configuration of the water. Concentrations of water quality

constituents are calculated within each segment. Transport rates of water quality

constituents are calculated across the interface of adjoining segments. Segments in

WASP may be one of four types: epilimnion layer (surface water), hypolimnion layers

(subsurface), upper benthic layer, and lower benthic layers. The segment type plays an

important role in bed sedimentation and in certain transformation processes.

Segment volumes and the simulation time step are directly related. As one

increases or decreases, the other must do the same to insure stability and numerical

accuracy. Segment size can vary dramatically. Characteristic sizes are dictated more by

the spatial and temporal scale of the problem being analyzed than by the characteristics of

the water body or the pollutant.
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Time step consideration is used to determine the water quality frequency

distribution that must be predicted. Basically, reducing the model time step allows better

simulation of the frequency distribution. This increase in predictive ability, however, also

entails an increase in the resolution of the input data.

Once the temporal variability has been determined, then the spatial variability of

the water body must be considered. Generally, the most important spatial characteristics

must be homogeneous within a segment. In some cases, this restriction can be relaxed by

judicious averaging over width, depth, and/or length. Other important spatial

characteristics to consider (depending upon the problem being analyzed) include

temperature, light penetration, velocity, pH, benthic characteristics or fluxes, and

sediment concentrations. A final, general guideline may be helpful in obtaining accurate

simulations: water column volumes should be roughly the same. If flows vary

significantly downstream, then segment volumes should increase or decrease

proportionately.

3.2.4 The Model Mass Balance Algorithm

A mass balance equation for dissolved constituents in a body of water must account for

all the material entering and leaving through direct and diffuse loading; advective and

dispersive transport; and physical, chemical, and biological transformation (US EPA,

2000). Generally, mass balance for a one-dimensional model can be calculated by the

following equation (Ambrose et al., 1993a):



Where:

C = Concentration of the water quality constituent, mg/L or g/m 3

t = Time, days

Ux = Longitudinal advective velocities, m/day

Ex = Longitudinal diffusion coefficients, m 2/day

SL = Direct and diffuse loading rate, g/m 3-day
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downstream, benthic andSB = Boundary loading rate (including upstream,
atmospheric), g/m3-day

SK = Total kinetic transformation rate; positive is
g/m3-day

A = Cross-section area, m2

source, negative is sink,

The transformation processes are variable from model to model. It could be as

simple as describing by an equation; it also could be as complex as solving a series of

equations. The transformation process is defined depending on the purpose of the project.

In the EUTRO module, the reaction for each variable (BOD, DO, Ammonia,

Nitrate, Organic Nitrogen, Orthophosphate, Organic phosphate), and its relationships to

the other variables can be written as the following equations.

For BOD:



Where:

aOc: Oxygen to carbon ratio

aNc: Phytoplankton nitrogen-carbon ratio

kd: Deoxygenation rate @20°C

Θd: Temperature coefficient of deoxygenation rate

kBOD: Half saturation constant for oxygen limitation

k12: Nitrification rate @20°C

012: Temperature coefficient of nitrification rate

kNIT : Half saturation constant for oxygen limitation in nitrification

k1 R: Phytoplankton respiration rate @20°C

01R: Temperature coefficient of phytoplankton respiration rate

SOD: Sediment Oxygen demand @20°C

Os: Temperature coefficient of sediment Oxygen demand

For Ammonia:
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Nitrogen to carbon ratio

Organic nitrogen mineralization rate@20°C

Temperature coefficient of Organic nitrogen mineralization rate

Nitrification rate@20°C

Temperature coefficient of Nitrification rate

Half saturation constant for oxygen limitation of nitrification

Denitrification rate@20°C

Temperature coefficient of Denitrification rate

Michaelis constant for denitrification

Fraction of dead and respired phytoplankton recycled to the organic
nitrogen pool

Fraction of dead and respired phytoplankton recycled to the
ammonia nitrogen pool

Preference for ammonia uptake term

Fraction of dissolved organic nitrogen

I



Where:

app: Phosphorus to carbon ratio

Gp1: Specific phytoplankton growth rate

Dpi: Specific phytoplankton loss rate

K83: Dissolved organic phosphorus mineralization @20°C

083 : Temperature coefficient of Dissolved organic phosphorus
mineralization

Kmpc : Half saturation constant for phytoplankton limitation of phosphorus
cycle

fOp: Fraction of dead and respired phytoplankton recycled to the organic
phosphorus pool

fD8 : Fraction of dissolved organic phosphorus in the water column

v83 : Organic matter settling velocity

In the TOXI module, several physical-chemical processes can affect the transport

and fate of toxic chemicals in the aquatic environment. Some chemicals undergo a

complex set of reactions, while others behave in a more simplified manner. WASP 6.1

allows the simulation of a variety of processes that may affect toxic chemicals.

In an aquatic environment, an organic chemical may be transferred between

phases and may be degraded by any of a number of physical, chemical and biological

processes. These include physical processes such as hydrophobic sorption, volatilization,
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and sedimentation; chemical processes such as ionization, precipitation, dissolution,

hydrolysis, photolysis, oxidation and reduction; and biological processes such as

biodegradation and bioconcentration. WASP 6.1 explicitly handles most of these

processes, excluding only reduction and precipitation-dissolution. All processes are

described by rate equations. Rate equations may be quantified by first-order constants or

by second-order chemical specific constants and environment-specific parameters that

may vary in space and time.

In the Mercury model, three forms of mercury can be simulated: elemental Hg,

divalent Hg, and methyl-Hg. These forms can be inter-changed in the environment.

Divalent Hg released from sources such as power plants can be transformed to methyl Hg

(bioaccumulated) or reduced to elemental Hg, which is non-reactive. Element Hg can

oxidize to divalent Hg or vaporize to air. Usually, loss of Hg is due to volatilization and

burial. The model allows for the interaction with three different solids types (sand, silt,

and clay) and allows for the parameterization of the major components of mercury

cycling in an aquatic environment.

The Heat model allows the user to simulate the change of temperature in

receiving water using one of two approaches (full heat balance and equilibrium heat

balance) as well as to model the fate and transport of fecal coliform.

The WASP is designed to provide a broad framework applicable to many

environmental problems and to allow the user to match the model complexity with the

requirements of the problem. After a series of evaluation, the WASP 6.1 was selected for

creating a water quality model in this study.



CHAPTER 4

CASE STUDY: THE LOWER HUDSON RIVER
BACKGROUND AND MODEL CREATION

To understand the impacts of CSOs on receiving waters and to establish an appropriate

water quality model for the CSOs system, the Lower Hudson River, which has 40 CSO

outfalls from New Jersey side, was selected as a case study. Background and historical

water quality issues of the study area are introduced first in this chapter. The steps

described in the previous chapters are followed to create receiving water models by using

WASP 6.1. Three sub-modules were created in this study: EUTRO for DO, BOD and

nitrogen simulation, Heat for pathogen simulation, and Mercury for mercury analysis.

4.1 Study Area

With a length of 306 miles and drainage area of 13,370 square miles in northeastern New

York (93 percent), and parts of Vermont (3 percent), Massachusetts (2 percent), New

Jersey (2 percent), and Connecticut (less than 1 percent), the Hudson River ranks 71st

among 135 U.S. rivers that are more than 100 miles in length (Limburg et al., 1986). On

the basis of mean annual discharge (1941 — 1970), the Hudson ranks 26th (19,500 cfs) of

large rivers in the United States (Iseri and Langbein, 1974). Freshwater tributaries

contribute approximately 81 percent of the total freshwater inflow to the New York

Harbor (Table 4.1). The remainder of the freshwater input is contributed by wastewater

(15 percent); urban runoff (4 percent); CSOs (1 percent); and industrial discharges,

landfill leachate, and precipitation (less than 0.5 percent) (Brosnan and O'Shea, 1996).

42
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Table 4.1 1989 Sources of "Freshwater" Flow into the NY/NJ Harbor

Water Source Total flow (in percent) a
Tributaries 81%
Municipal point sources 15%
Urban runoff 4%
Combined sewer overflows (CSOs) 1%
Others < 0.5%

Source: T. M. Brosnan and M. L. O'Shea. "Long-Term improvements in water quality due to sewage
abatement in the Lower Hudson River." Estuaries. 19(4): 890-900.
a. Values across may not equal 100% due to rounding.

Mean monthly precipitation in the Hudson drainage basin has very little variation

(about 80 mm/month), but monthly surface water discharge to the Hudson can vary by

about an order of magnitude, due to the large seasonal difference in evapotranspiration,

which ranges from about 0.5 mm/day during January to about 5 mm/day during July

(Simpson and Anderson, 2001). Seasonal and interannual variation of streamflow of the

Hudson River recorded at Green Island, New York, near Troy (USES gage station:

01358000) is characterized by high flow during March through May, with the monthly

mean peak flow of 927 m 3/s (32,719 cfs) observed in April. High spring flows are the

result of spring snowmelt and runoff over the mountainous drainage basin. Low-flow

conditions occur during July through September, with the mean monthly minimum of

164 m3/s (5,797 cfs) observed during August.

Based on the data availability, the river section selected for this study is that from

the New York City Limit (boundary between Westchester and Bronx counties) to the

Battery (Figure 4.1). The length of the Lower Hudson River for this study is

approximately 25 km. The width of the channel is approximately 1.5 km. This section is

maintained as a shipping channel, and dredged to maintain a minimum depth of 9 to 11

meters, although portions of the river are much deeper. In this area, there are 40 CSO

outfalls that are located in New Jersey. Most of 40 outfalls are from Jersey City,
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Hoboken, Weehawken, and Edgewater; some of them are from West New York, North

Bergen, Guttenberg, and Fort Lee (Table 4.2). Although New York City is one of the few

large cities with combined sewer systems, there is no CSO discharge point in this section.

A 11 the CSOs  in NYC  arc. discharged  fn +b e% East River and   Jamaica Bay.

Table 4.2 Combined Sewer Overflow Discharge Points in the Study Area

Local Government Unit Number of CSO Points Receiving Waterbody
Fort Lee Borough 2 Hudson River
Edgewater MUA 7 Hudson River
North Bergen Township 2 Hudson River
Guttenberg 1 Hudson River
West New York MSU 2 Hudson River
Hoboken-Union City-Weehawken SA 11 Hudson River
Jersey City Sewerage Authority 15 Hudson River
Total 40 Hudson River
Source: U.S. Environmental Protection Agency (EPA). Report to Congress: Implementation and
Enforcement of the Combined Sewer Overflow Control Policy. EPA 833-R-01-003. Office of Water, US
EPA, Washington, DC.
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Water uses of the Hudson River and New York Harbor include public water

supply, municipal and industrial wastewater disposal, commercial shipping and

navigation, recreational boating, swimming, and commercial and recreational fishing.

Although commercial fishing was once a significant component of the New York — New

Jersey regional economy, the abundance of commercially important fish and shellfish has

declined considerably during the past century. The loss of once abundant fishery

resources has been attributed to disease, over fishing, loss of habitat, and most important,

poor water quality conditions (US EPA, 2000a).

4.2 Historical Water Quality Issues

Historically, water quality problems in the Hudson have included severe oxygen

depletion and closure of shellfish beds and recreational beaches due to bacterial

contamination. More recently, nutrient enrichment, algal blooms, heavy metals, sediment

contamination, and bioaccumulation of toxics such as PCBs in striped bass (Faber, 1992;

Thomann et al., 1991) and bald eagles (Revkin, 1997) have also become areas of concern.

Due to the limited field data available and the model complexity, only four primary water

quality concerns, DO, nitrogen, fecal coliform, and mercury, were simulated in this study.

DO is the most meaningful and direct signal relating municipal and industrial

discharges to downstream water quality response over a wide range of temporal and

spatial scales. In addition to DO's significance as a measure of aquatic ecosystem health,

there are two very practical reasons for choosing DO as the signal for assessing changes

in water quality. These are: (1) Historical records for DO go back as far as the early 20th

century for many major waterbodies; (2) Basic testing procedures for measuring DO have
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introduced few biases over the past century, thereby providing the analytical consistency

needed for comparing historical and modern data (Wolman, 1971).

Long-term summer DO saturation records, collected almost continuously since

1909 at a station in the Hudson River near 42nd street on the west side of Manhattan

(Figure 4.2), clearly document the trend of DO variation in the past century (Brosnan and

O'Shea, 1996). Over a 40-year period from the 1920s through 1960s, summer oxygen

saturation levels were only about 35 percent to 50 percent at the surface and 25 percent to

40 percent in bottom waters. Due to the impact of upgrading water pollution control

facilities to full secondary treatment, which resulted in significant reductions in

biochemical oxygen demand loading, DO saturation levels increased to about 90 percent

at the surface and greater than 60 percent in the bottom waters by 1996 (Brosnan and

O'Shea, 1996). DO concentrations have increased significantly since 1980s harbor wide

(Brosnan and O'Shea, 1996; Parker and O'Reilly, 1991). In many waterways, the greatest

oxygen and BOD5 improvements were recorded between 1968 and 1984, coinciding with

the greatest WPCP (Water Pollution Control Plant) construction and upgrading activity

(O'Shea and Brosnan, 1997).
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Figure 4.2 Long-Term Trends of DO (Summer Average) at 42nd Street in the Hudson
River. Source: M. L. O'Shea and T. M. Brosnan. New York Harbor Water Quality
Survey. Main Report and Appendices 1995. New York Department of Environmental
Protection, Bureau of wastewater Pollution Control, Division of Scientific Service,
Marine Sciences Section, Wards Island, NY.

According to the 2001 New York Harbor Water Quality Report, more detailed

DO concentrations records were obtained for the Inner Harbor area, which includes the

Hudson River from NYC-Westchester line, through the Battery to the Verrazano

Narrows; the Lower East River to the Battery; and the Kill Van Kull-Arthur Kill system

over the past 30 years. Figure 4.3 presents average summer DO values in the Inner

Harbor, which have risen to levels above NYSDEC (New York State Department of

Environmental Conservation) standards for primary contact recreation and commercial

fisheries. Bottom water values have risen from 3 mg/L in 1970 to 5 mg/L at present. The

mitigation of impacts from the WPCPs and CSOs has shown that swings in DO may be

due to natural phenomenon such as weather (NYCDEP, 2001).



Figure 4.3 DO (Summer Average) Concentrations in the Inner Harbor. Source: New
York City Department of Environmental Protection (NYCDEP). 2001 New York Harbor
Water Quality Report. NYCDEP. 

Eutrophication is the excessive growth of aquatic plants, both attached and

planktonic to levels that are considered to be an interference with desirable water uses.

The growth of aquatic plants result from many causes. One of the principal stimulants is

an excess level of nutrients such as nitrogen and phosphorus (Thomann and Mueller,

1987). This problem has become increasingly acute in the mid 20th century due to the

discharge of such nutrients by municipal and industrial sources, as well as from

agricultural and urban runoff. However, the great improvement in nitrogen concentrations

in the harbor seen in Figure 4.4 are attributed to new construction and upgrades of

municipal wastewater plants in the Hudson-Raritan metropolitan region during the 1970s.
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Figure 4.4 Long-Term Trend in Summer Mean Inorganic Nitrogen. Data Represent
Harbor Wide Composite of 40 Stations Monitored Since at Least 1970. Source: M. L.
O'Shea and T. M. Brosnan. New York Harbor Water Quality Survey. Main Report and
Appendices 1995. New York Department of Environmental Protection, Bureau of
Wastewater Pollution Control, Division of Scientific Service, Marine Sciences Section,
Wards Island, NY.

By using historical data collected at 40 stations in the Inner Harbor area from

1973 to 2001, an analysis of harbor wide long-term trends clearly documented more than

an order-of-magnitude improvement in total coliform and fecal coliform (FC)

concentrations (Figure 4.5). The FC levels averaged over 2000 cells/100ml in the early

70's and have declined to below 100cells/100ml currently. The dramatic decline in

bacterial levels is attributed to water pollution control infrastructure improvements that

eliminated raw sewage discharges and upgraded all water pollution control plants to

include disinfection by chlorination (O'Shea and Brosnan, 1997). Year to year variations

have become more apparent with the reduction of FC to levels below standards.



Figure 4-5 Fecal Coliform (Summer Average) Concentrations in the Inner Harbor.
Source: New York City Department of Environmental Protection (NYCDEP). 2001 New
York Harbor Water Quality Report. NYCDEP. 

Past data have indicated that the Inner Harbor is prone to short duration episodic

degradation following rain events due to additional FC loadings from storm drains and

combined sewer overflows (CSOs). It has also been proven that the bacterial levels for

most areas of the harbor could be reduced by approximately 50 percent by increased

surveillance and maintenance of the entire sewer distribution system, including the

capture of combined sewage during rain events (Brosnan and O'Shea, 1996a). While this

continues to be true, the overall impact of such capture has been lessened. The fecal

coliform simulation model could demonstrate this phenomenon mathematically.

According to the project report prepared by the Industrial Ecology for Pollution

Prevention of the Harbor Consortium of the New York Academy of Sciences, whose

objectives were to quantify the sources of past and present emissions of mercury in the
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Hudson-Raritan basin (HRB), mercury inputs to NY/NJ Harbor since the mid-eighties

have decreased by a factor of ten. Prior to 1985, the mercury concentration in Hudson

River was estimated at 0.1 to 0.6 parts per billion (ppb). In contrast, multiple samples of

the Hudson waters in the Harbor, in 1991, showed an average concentration of 0.021 ppb

(Themelis and Gregory, 2001).

A similar improvement has been noted in sediments, a principal conveyor of

mercury into the harbor. Core samples of sediments that were deposited in the past have

revealed average mercury concentrations of 5-10 parts per million. In contrast, a 1993

survey of 84 samples of surficial sediments showed an average concentration of only 0.79

ppm. A similar survey in 1994 indicated an average surficial concentration of 0.70 ppm

(Themelis and Gregory, 2001).

The rapid decrease of mercury into the Harbor by the end of the 20th century is

partly due to the drastic curtailment of mercury use in the U.S., from a peak of 2,800

tons/year in the sixties to less than 350 tons by 2000. It is also due to switching from coal

to gas fired boilers in the Hudson-Raritan basin area and the change from the polluting

incinerators of the past to modern Waste-to-Energy plants (Themelis and Gregory, 2001).

More recent investigations conducted under the auspices of the NY/NJ Harbor Estuary

Program (HEP) indicated significantly lower metal concentrations, with harbor wide

exceedances found only for mercury. Current monitoring and modeling efforts have

greatly reduced the extent of waters suspected to be in violation of standards for nickel,

lead, and copper (US EPA, 2000a).

Over the past several years, state-of-the-art coupled hydrodynamic and water

quality models have been developed for water quality management studies of the harbor,
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including New York City's Harbor-Wide Eutrophication Model and, most recently, the

System-Wide Eutrophication Model (SWEM) (HydroQual, 1995, 1996, 1999). Earlier

models, developed for US EPA's 208 Study of the harbor (Hazen and Sawyer, 1978;

Higgins et al., 1978; Leo et al., 1978; O'Connor and Muller, 1984), have been used to

assess the impact of secondary treatment requirements on DO in the Harbor. The more

recent New York City models, employing improved loading estimates and state-of-the-art

hydrodynamics (Blumberg et al., 1997), are being used to determine the feasibility and

effectiveness of management alternatives for New York City point source of nitrogen.

For example, SWEM will enable New York City to evaluate options as part of the facility

planning for the Newton Creek WPCP. This model is further assisting the New York-

New Jersey Harbor Estuary Program in understanding the complex relationships between

physical transport processes, nitrogen loading, algal biomass, and DO in New York

Harbor (HEP, 1996). Using a steady-state toxics model, the New York-New Jersey

Harbor Estuary Program has also developed mass balance analyses for copper, nickel,

and lead and a preliminary mass balance for mercury (HydroQual, 1995a).

4.3 Data Collection

As mentioned in the previous chapter, three sets of data were needed to create a receiving

water quality model: water transport, water quality, and pollutant loads data.

a) Water transport data

Water transport data include geometric information of the study area and the

stream flow.
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To provide the geometric information for the Lower Hudson River, the width and

length of the channel were measured from the TIGER digital map. The depth of the

channel was estimated from the surface water monitoring data presented in STORET.

The stream flow data of the Hudson River were collected from U.S. Geological

Survey. Since there is no gauge station located in the study area, the data in the nearest

stations were used to estimate the flow rate at the lower section of the Hudson River. Five

stations from Hadley to Green Island, NY were selected (Hadley, Fort Edward,

Stillwater, Waterford, and Green Island). For each station, flow data for the period from

July to October 1995 were used. Table 4.3 summarizes the flow data from these 5

selected stations. Based on the assumption that the flow rate is related to the drainage

area, the flow rate at the up-boundary (NYC Limit) of the study area could be estimated

by the derived relationship of flow rate and drainage area from the 5 monitoring stations.

The relationship was derived by using regression analysis and can be expressed by the

following equation:

Flowrate = 0.3364*(Drainage Area) + 1591 	 R2 = 0.9705

Where: Flowrate = ft3/s

Drainage area = mi2

R = Correlation Coefficient

Table 4.3 Estimation of Flow Rate

Monitoring
Station

Drainage Area Flow rate (7/28)
mi2 cfs m3/sec

Hadley 1664 2000 54
Fort Edward 2810 2500 67.5

Stillwater 3773 3000 81
Waterford 4604 3300 89

Green Island 8090 4200 113
Estimate

U-Boundary 12900 5930 160
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All the point source discharge information is based upon a reference report --- An

Evaluation of the National Investment in Municipal Wastewater Treatment (US EPA,

2000). It provides pollution discharge records (both municipal and industrial discharge)

and discharge criteria after various levels of treatment. Table 4.4 summarizes the water

quantity and quality for the primary point sources in the study area. All the water quality

values, shown in Table 4.4, were estimated from the reference paper based upon the

degree of treatment (US EPA, 2000a).

Table 4.4 Characteristics of the Primary Point Sources in the Lower Hudson River

WTP Location Discharge (m 3/s) CBOD u DO NH3-N 0-N NO3-N 0-P Ortho-P
North River WTP Seg.8 7.46 91.5 6.5 4.4 5.5 1 1.2 1.3
Edgewater STP Seg.9 0.13  91.5 6.5 4.4 5.5 1 1.2 1.3
Woodcliff STP Seg12 0.10 172 2.1 9.6 12.0 2.2 2.6 2.7
West New York STP Seg.13 0.30 172 2.1 9.6 12.0 2.2 2.6 2.7
Central STP Seg.14 0.23 172 2.1 9.6 12.0 2.2 2.6 2.7
Hoboken STP Seg.16 0.58 91.5 6.5 4.4 5.5 1 1.2 1.3

The CSO loads data came from the data monitored in three cities: Hoboken,

Weehawken Township, and the City of Union City, New Jersey (CH2M HILL, 1996).

The CSO load monitoring data of Jersey City were not available in this study, although

Jersey City produced a large amount of CSO loads in this study area. The monitoring data

were collected between July 28 and October 28, 1995. There were 9 storm events during

this period. The pollutant loads for each storm event could be calculated by the measured

flows and event mean concentrations (EMCs) for the tri-city area. Since the concentration

data and the pollutographs (a plot to show the concentration vs. time) expose typically

large variation in the concentration of pollutants within a storm event and from storm to

storm, EMC was used to represent the water quality of CSOs in this study. EMC is the

flow-weighted average concentration of a constituent during a period of storm runoff for
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By using the same method, the flow rate for any location in the study area during

the simulation period can also be estimated. This calculation will be confirmed in the

salinity calibration.

b) Water quality data

Water quality data for the receiving water could be used as an initial condition in

modeling, as well as observed data for calibration. For DO and pathogen simulations,

since the data provided by STORET could not match the data provided by the Tri-City

CSOs monitoring data, additional water quality data were obtained from the Howard

Survey. There are 7 sampling stations in the Howard Survey for the study area. By using

interpolation, water quality data at any location between two stations could be derived.

However, for mercury simulation, due to the absence of any long-term continuous

mercury monitoring record in this area, observed data are not available for the mercury

model. All the initial concentrations and boundary conditions in the mercury model were

taken from similar mercury analyses of other aquatic systems. Absolute mercury

concentration predictions could not be performed in this study due to the lack of

information for calibration and validation. However, the mercury model can still be used

for comparison study in various CSO control scenarios.

c) Pollutant loads data

Pollutant loads came from three sources: point sources, CSOs, and other non-

point sources. As mentioned earlier, since the flow rate of the non-point sources was

relatively smaller than other sources in this area, the loads resulting from non-point

sources were neglected.
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a specific area, which includes the variability of concentration exhibited during a storm

event (Fisher and Katz, 1988). Table 4.5 shows the comparison of maximum and

minimum EMCs in the Tri-City CSO system with the EPA reference data (US EPA,

1977), which is non-weighted average data collected from the northeastern area of the

United States. The table indicates that all the EMCs derived from the Tri-City monitoring

program for each pollutant variable are within the range of values presented by the Tri-

City monitoring data and close to the EPA values. The weighted-average EMCs of the

Tri-City area were used to calculate pollutant loads in this study.

Table 4.5 Comparison of EMCs

EMCs (mg/L) Loading factor
Tri-City Sites

(Max)
Tri-City Sites

(Min) EPA
Tri-City Sites

(Max)
Tri-City Sites

(Min) EPA
CBOD 528 64 367 1.44 0.17 1
BOD5 302 26 115 2.63 0.23 1
DO 8.38 5.91 7.44 1.13 0.79 1
NH3-N 4.21 0.64 2.08 2.02 0.31 1
Total Organic N 4.76 1.07 2.64 1.80 0.41 1
Total Organic P 3.27 1.08 0.95 3.44, 1.14 1
Total Inorganic P 1.39 0.3 1 1.39 0.30 1
Fecal Coliform a 1915.9 197.3 670 2.86 0.26 1
Mercury b 6.39 1.30 --- --- --- ---
a. Unit: 1000cells/100ml.
b.Unit: ppb

The estimates of pollutant load can be expressed by the following equation:

Where: L is load for the storm and discharge point (kg).

V is volume of overflow (m 3).

EMC is the volume-weighted average EMC (mg/L).

10-3 is the conversion factor.
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Table 4.6 shows the calculated results of pollutant load for two monitored cities

(Hoboken and Weehawken) and for one of nine monitored storm events (7/28/1995).

Loads for other storm events were estimated by the same method.

Based on the assumption that all the outfalls have the same load properties in the

study area, the pollutant loads for each segment can be calculated by the Tri-City CSO

load data. After calculating the average load for one outfall in the Tri-City area, CSO

load for each segment could be expressed by the following equation:

CSO load in Segment j = (Avg. load)*(# of outfalls in Segment j)

Table 4.6 Calculated CSO Loads at Hoboken and Weehawken

Date Parameters
Load
Units

Hoboken (6 outfalls) Weehawken (5 outfalls)

Overflows (m 3) EMCs (mg/L) Total Load Overflows (m 3) EMCs (mg/L) Total Load
7/28/95BOD5 Kg 14838.8 101 1488.66 8971.4 65 580

DO kg 14838.8 7.95 117.18 8971.4 7.72 69.25
COD kg 14838.8 168.26r 2480.02 8971.4 163.25 1473.4
TKN kg 14838.8 8.64 127.35 8971.4 9.59 86.02
NH3-N kg 14838.8 1.34 19.75 8971.4 1.8 16.14
NO3-N kg 14838.8 0.38 5.60 8971.4 0.73 6.55
NO2-N kg 14838.8 0.04 0.59 8971.4 0.06 0.54
Total Phosphorus kg 14838.8 2.47 36.41 8971.4 2.06 18.47
Ortho-Phosphate kg 14838.8 0.67 9.88 8971.4 0.51 4.57
Total Hardness kg 14838.8 39.74 585.74 8971.4 34.51 0.31
Fecal Coliform. 10^9cells 14838.8 759,7822 112,447 8971.4 743,4232 6,668
Mercury kg 14838.8 193b 2.86 	 8971.4 3,834b 34.40

a. Unit: No. Cell/ 100m1
b. Unit: ppb
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4.4 Model Implementation

4.4.1 Basic Assumptions

It is not possible to cover all possible factors, such as atmospheric input, biochemical

reaction, etc., due to the data availability and model limitations. To create an appropriate

and reasonable model, the following assumptions were made for this study.

For river modeling:

1) To simplify the model, rapid lateral mixing was assumed. In other words,
lateral dispersion was neglected.

2) All the loads or any other inflows were assumed to be instantaneously,
completely mixed with the receiving water. Both the water quality and
quantity properties of the stream would be the same at any position in each
designated segment.

3) Based on the assumption that the volume of the estuary, on average, remains
constant, a tidally averaged model was used to describe the tide effect. Since
the inflow tide equals outflow tide in this study, the impact of a tidal flow can
be described by using dispersion or a tidal mixing coefficient.

4) Numerous factors, which may affect receiving water hydrodynamics, were
difficult to account for in this study. These factors, which include large scale
eddies, density effects, and leaching from undefined sources, were not
considered.

For Input data:

1) It was assumed that the flowrate was related to the drainage area. A derived
equation based on existing data is used for flowrate estimation.

2) It was assumed that the water quality data at any location could be derived
between two conjunctive sampling stations by using interpolation.

3) The properties of all the point source pollutants remained constant during the
simulation period in this study based on the assumptions that all the point-
source loads were independent for each storm event. The impacts of pollutants
from all the other non-point sources were neglected due to their relativity
small flow rate.

4) In the pollutant loads estimation, CSO loads properties were assumed to be
the same in all outfalls in the study area.



59

4.4.2 River Segmentation

The first thing in model implementation is to design an appropriate segment network. The

river segmentation was based on proximity to water sampling stations, loading locations,

hydraulic geometry, and water quality classification. The study area was divided into 19

segments (Figure 4.6). The water column layer was the only layer considered in each

segment for the EUTRO model and FC simulation in this study. The vertical and lateral

resolutions were not included because the river was assumed to be well mixed vertically

and laterally. All the geometric data are measured from TIGER digital maps. Table 4.7

summarizes the information about the segments. It includes the scale of each segment and

derived values of volume and cross-section area. The volumes of the segments in this

study vary from 15.1 to 32.0 x 106 m3 , and the lengths of the segments are from 1090 to

1750 m. By using the continuity equation, the velocity in each segment was derived from

cross-section area and estimated flow rate.

For the mercury simulations, since the interaction between the water column and

the surficial sediment has major impact in constituent distribution in the aquatic system,

10 cm deep surficial sediment layers were added beneath the water column layers for

each segment.
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Table 4.7 Geometric Information of the 19 Segments

Segment Volume Cross section Area
Segment Length(m) Width(m) , Depth(m) Volume(m 3 ) Boundary Area(m 2)

1 1410 1480 9.2 19198560 0-1 13340
2 1410 1540 9.2 19976880 1-2 13892
3 1410 1610 9.2 20884920 2-3 14444
4 1750 1490 11.4 29725500 3-4 18696
5 1750 1180 11.4 23541000 4-5 15276
6 1090 1050 13.2  15107400 _ 5-6 13596
7 1090 1090 13.2 15682920 6-7 14124
8 1090 1130 13.2 16258440 7-8 14652
9 1090 1170  13.2 16833960 8-9 15180
10 1090 1210 13.2 17409480 9-10 15708
11 1090 1260 13.2 18128880 10-11 16236
12 1440 1270  11.6 21214080 11-12 14848
13 1440 1250 11.6_ 20880000 12-13 14616
14 1440 1240 11.6 20712960 13-14 14384
15 1360 1290 15.3 26842320 14-15 18819
16 1360 1420 15.3 29547360 15-16 20655
17 1360 1540 15.3 32044320 16-17 22644
18 1130 _ 1530 15.6 26970840 17-18 24960
19_ 1130 1390 15.6 24502920 18-19 . 22776 _

19-0 20592

4.4.3 Input Data for the Model

Input data for the WASP 6.1 simulation model are divided into 12 groups. This section

presents an overview for each group. Subsequent sections detail the input data for various

water quality simulations.

1) Model Identification and Simulation control: This data group is used for
model identification and simulation control options.

2) Time step: the model time step can be set by the user or calculated by the
WASP. Time step should be less than residence time in any segment.
Inappropriate time step setting may generate instability and numerical faults in
simulation and the model would be terminated during simulation.

3) Print interval: The print interval is the user specified time function in which
simulation results will be written to the simulation result file.

4) Segments: This data entry allows the user to define the number of segments
that will be considered in the simulation. Segment volume and constituent
concentrations are also placed in this part.



62

5) Flows: This data group allows the user to define how the water moves. There
are two options for flow simulation: one uses external hydrodynamic flows
and another is defined by the user. The latter option is selected for this study.
Input parameters in this group include transport field, advective flows, and
segment routing (upstream and downstream). The flow input data in this study
are estimated using the USGS daily flow records.

6) Systems: The system data entry allows the user to define the system in which
variables (such as BOD, NH3 , etc.) will be simulated in modeling. It also
defines the scale factor and conversion factor.

7) Parameter Scale Factors: This part defines which environmental parameters,
such as temperature, light extension coefficient, salinity, and SOD, will be
considered in the simulation as well as specifies a parameter scale factor. The
environmental parameters used in this study were derived by using the data
from the Howard Survey.

8) Constants: The data entry group includes constants and kinetics for the water
quality constituents being simulated by the particular WASP model. The
kinetic coefficient values used were based upon the results of some
experimental studies (Canale et al., 1995; Heathcote, 1987; Lung and Paerl,
1988).

9) Time functions: The time function data entry forms allow the user to enter
time variable environmental information.

10)Exchange: This data group defines the dispersive flows. Tidal effects can be
described by adjusting the dispersion coefficient in this group.

11)Boundaries: Boundary concentrations must be specified for any segment
receiving flow inputs, outputs, or exchanges from outside the model network.
The boundary segments are automatically determined by WASP 6.1 when the
user defines the transport patterns. Therefore, the user cannot enter boundary
information until the transport information has been defined. In this study, the
upstream boundary for inflow and the downstream boundary for outflow, and
all the point sources inputs were defined during the simulation.

12)Loads: Basically, waste load data can be entered into WASP6.1 for each water
quality variable for a given segment in two different ways. The first method
calculates the waste loads by multiplying the concentration with the
corresponding flow, and the resulting loads are defined in the group of
"Boundaries" along with their related flow functions. Usually, this method is
applied for the load sources with large discharges. In this study, point sources,
such as discharges from WTPs, are entered by this method because their
discharges are larger than those from the other sources, and their impact on
hydrodynamic behaviors is therefore large. The other method, which inputs
the waste discharges directly in the group called "Load" in the WASP model,
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is usually used for the loads of less concern about water quantity because of
their relatively small discharges. In this study, only the CSO loads were
placed in this group and their hydrodynamic impacts were neglected. Usually,
the load is treated as a point source in this method and it has a continuous time
function. However, the combined sewer overflows are non-point sources and
do not have a continuous loading time function. Technically, the input data
can be processed as a point source load by setting the load rate as zero for the
previous day and for the following day of a specific storm event. The Load
input data was derived from the Tri-City CSO monitoring data as discussed
previously.

4.4.4 DO/BOD/Nitrogen Simulation

To simulate dissolved oxygen with WASP 6.1, use the preprocessor to create a EUTRO

input dataset. This section summarizes the input parameters in each group, described in

the previous chapter, which must be specified in order to solve the WASP 6.1 mass

balance equation.

1) Model Identification and Simulation control:

a) Simulation type: EUTRO.

b) Simulation title: DO simulation in the Lower Hudson River.

c) Time Range: 7/12/1995, 12:00AM to 9/19/1995, 12:00 PM.

d) Hydrodynamics: Net flow.

e) Restart option: No restart.

f) Bed Volume: Static.

g) Time step: WASP calculated.

2) Time step:

To maintain stability and minimize numerical dispersion, the WASP

calculated time step was used.
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3) Print interval:

The print interval was kept the same value at 0.5 day for whole simulation

period.

4) Segments:

a) Segments: The study area was divided into 19 segments. All the geometric
data are shown in Table 4.7.

b) Initial concentrations: Water quality data, summarized in Table 4.8, were
obtained from the Howard Survey.

Table 4.8 Initial Concentration of EUTRO Model (Date: 7/12/95)

Sampling
Station

DO BOD Chlorophyl-a Salinity NH3-N NO3-N Organic-P Ortho-PO4

Segment mg/L _ mg/L ug/L psu_ mg/L mg/L. mg/L mg/L
Ni Boundary 5.37 4.8 , 13.54 16.66 0.25 0.63 0.11 0.05

1 5.37 - 	 4.75 11.78 16.62 0.27 0.63_ 0.11 0.06
2 5.37 4.7 10.02 16.59 0.29 0.62_ 0.11 0.07

______ 3 5.36 _ 4.65_ 5.26 16.55 _ 0.3 0.61 0.11 0.08
N2 4 5.36 4.6 6.5_ 16.52 0.32 0.61 0.11 0.09

5 5.19 4.57 5.9 17.8 0.36 0.59_ 0.12 0.07
6 5.03 - 	 4.54 5.3 19.08 0.4 0.57 0.12 0.05

N3 7 4.87 4.5  4.8 20.46 0.45  0.55 0.13 0.04
8 4.92 4.4 5.5 21.1 0.42  0.54 0.13 0.04

N3B 9 4.96 4.3 6.2 21.71 0.39 0.53 0.12 0.03 _
10 4.92 4.3 6.07 22.15 0.39  0.52 0.12 0.03 _
11 4.88 4.3 5.95 22.59 0.4 0.51_ 0.12 0.03 _
12 4.84 4.3 5.83 23.03 0.41 _ 0.5 0.12 0.03

N3A 13 4.8 4.3 5.7 23.47 0.41 0.49 0.12 0.03 _
14 4.85 4.4 5.75 23.13 0.41 0.5 0.12 0.03

N4 15 4.9 4.5 5.8 22.8 0.4 0.5 0.12 0.03
16 5.02 4.68 8 23.33 0.4 0.48 0.12 0.03
17 5.14 4.86 10.2 23.86 0.41 0.46 0.12 0.03

_ 18 	 _ 5 26. _ 5 04. _ 12.4 24.39 0.41 0.44_ 0.12 0.04
19 5.37 5.22 14.7 24.91 0.42 0.42 0.12 0.04

N5 Boundary 5.48 5.4 17 25.43 0.42 0.4 0.12 0.04

5) Flows:

Seven flow functions, one mainstream flow and six point source discharges,

are defined in EUTRO model. The mainstream flow input data were estimated

from the USGS daily flow records. The discharges of six point sources, which
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include North River WTP, Edgewater STP, Woodclift STP, West New York

STP, Central STP, and Hoboken STP, were estimated from the average daily

discharge record reported in 1996 Clean Water Needs Survey (US EPA,

1996a).

6) Systems:

Select "simulate" for all the system, except for selecting "constant" for

Chlorophyl-a system and "bypass" for PO4 and OP. For this implementation,

the BOD system was used to represent ultimate CBOD (CBODu).

7) Parameter Scale Factors:

Specify the environmental condition by a time function or a spatial constant

for each segment. In this module, temperature was set as time function 1,

which was obtained from the Howard Survey. The SOD concentration,

estimated from the reference (Thomann, 1972), was set as 1.5 g-02/m 2day for

all segments.

8) Constants:

Appendix B summarized kinetic constants used in previous similar water

quality modeling studies. The constants, used initially in this study, were

selected from Appendix B and are shown in Table 4.9. Specified values for

constants apply over the entire network for the whole simulation. Some of

these constants were adjusted to fit observed data during the calibration

process.
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Table 4.9 Kinetic Constants Used in the Initial Simulation

Constant Unit Value
Nitrification Rate @20°C 1/day 0.11
Nitrification Temperature Coefficient --- 1.0
Half-Saturation: Nitrification Oxygen Limit mg 02/L 2
Denitrification Rate @20°C 1/day_ 0.0 •
Denitrification Temperature Coefficient --- 1.04
Half Saturation: Denitrification Oxygen Limit mg 02/L 0.1
Dissolved Organic Nitrogen Mineralization Rate @20°C 1/day 0.07
Dissolved Organic Nitrogen Mineralization Temperature Coefficient --- 1.08
Organic Nitrogen Decay in Sediments 1/day 0.0004
Organic Nitrogen Decay in Sediment Temperature Coefficient --- 1.08
Fraction of Phytoplankton Death Recycled to Organic Nitrogen, --- 0.
Mineralization Rate of Dissolved Organic Phosphorus @20°C --- 0.22
Dissolved Organic Phosphorus Mineralization Temperature Coefficient --- 1.08
Organic Phosphorus Decay Rate in Sediments 1/day 0.0004
Organic Phosphorus Decay in Sediments Temperature Coefficient --- 1.08
Fraction of Phytoplankton Death Recycled to Organic Phosphorus ---

---
0.

2.67Oxygen::Carbon Stoichiometeric Ratio
Reaeration Rate Constant @20°C 1/day 4.4
CBOD Decay Rate @20°C 1/day 0.1
CBOD Decay Rate Temperature Correction --- 1.04
CBOD Decay Rate in Sediments 1/day 0.0004
CBOD Decay Rate in Sediments Temperature Correction --- 1.08
CBOD Half Saturation Oxygen Limit mg 02/L 0.
Phytoplankton Maximum Growth Rate @20°C 1/day 2
Phytoplankton Growth Temperature Coefficient --- 1.068
Phytoplankton Maximum Quantum Yield Constant Mg C/mole photons 72
Phytoplankton Self Shading Extinction --- 0.017
Phytoplankton Carbon::ChlorophyII Ratio --- 3
Phytoplankton Optimal Light Saturation Ly/day 35 '

Phytoplankton Half-Saturation Constant for Nitrogen mg-N/L 2
Phytoplankton Half-Saturation Constant for Phosphorus mg-P/L 

1/day
1

0.12Phytoplankton Endogenous Respiration Rate @20°C
Phytoplankton Respiration Temperature Coefficient --- 1.04
Phytoplankton Death Rate Non-Zooplankton Predation 1/day 0.02
Phytoplankton Zoo • lankton Grazin • Rate  L./cell-day

---
0

0.02Phytoplankton Phosphorus : Carbon Ratio
Phytoplankton Nitrogen : Carbon Ratio --- 0.2
Nutrient Limitation Option ---

9) Time functions:

Only one water temperature time function was specified in the EUTRO

model. The data came from the Howard Survey.
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10)Exchange:

The dispersion coefficient was initially set as 600 m 2/s based upon the

reference data in the Hudson estuary (O'Connor and Mueller, 1984). The

value was adjusted in the salinity calibration.

11)Boundaries:

In this study, seven flow functions were defined earlier. The boundary

concentrations for each constituent must be specified for each defined flow

function. The boundary concentrations of the mainstream were obtained from

the Howard Survey. All the water quality data for the point source discharges

are shown in Table 4.4.

12) Loads:

The load input data were derived from the Tri-City monitoring data as

discussed previously. Appendix A summarizes the load input data for each

pollutant in each segment.

4.4.5 Pathogen Simulation

Fecal coliform, a human-health related indicator, was selected in the pathogen simulation.

The HEAT module was used to simulate bacteria in WASP 6.1. For a portion of the

dataset including time step, print interval, segmentations, flow functions, and exchange

coefficients, the FC simulation inputs are the same as those used for the EUTRO model.

Because these parameters have been described in the previous sections, they are not

repeated here. This section highlights the parameters that were added or modified in the

FC balance simulation.
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The Heat model can simulate not only the coliform distribution but also the water

temperature variation. However, to simplify the model complexity, select "simulate" for

coliform, and "bypass" for all the other pollutants in the system.

Temperature, concentrations of salinity and fecal coliform were specified for the

initial condition. It should be noted that the unit of fecal coliform concentration in the

input data is cell/ml, and not the commonly used 100 cells/ml, which is used in the FC

mass balance equation in WASP model.

Fecal coliform was the only pollutant input for the boundary conditions. In seven

defined flow functions, only the concentrations in the mainstream were specified in the

boundary condition. Because of the relatively low fecal coliform concentrations in point

source discharges, the bacteria loads form the point sources were neglected.

Coliform bacteria death rate (day-1 ) was the primary constant specified for the FC

simulation. The reference values of the coliform bacteria death rate were between 0 to 6.1

for New York Harbor (Thomann and Mueller, 1987). It was initially set as 2.0 day^-1 and

later adjusted in the calibration process.

The FC load data, summarized in Appendix A, were derived from the Tri-City

monitoring data. The load unit of fecal coliform is billion cells/day in the HEAT model.

4.4.6 Mercury Simulation

It is more complicated to create a mercury simulation model than to create DO or FC

simulation models. The difficulties come from: (1) The observed data for mercury was

not available for the study area; and (2) The mechanisms of transport or transformation

processes of mercury are complicated and uncertain, and the reference constant values

are limited. Although most of the reaction constants and environmental parameters,
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which include initial and boundary concentrations, were taken from similar mercury

simulation models (Ambrose and Wool, 2002), the model predicted value could only be

used as a reference because of the lack of calibration. However, it can still be useful in

investigating the impacts of CSO loading. For example, the use of the sensitivity analysis

for various parameters in mercury distribution processes can be instructive.

Before creating a mercury model, the following assumptions were made to

simplify the model.

1) The Mercury model can simulate three mercury components --- elemental
mercury [Hg°], inorganic divalent mercury [Hg(II)], and monomethyl mercury
[MeHg]. Because the concentrations of Hg ° and MeHg are much less than that
of Hg(II), inorganic divalent mercury was treated as a single total mercury
component in this study.

2) The loading property of the mercury introduced by atmospheric deposition
and all the other point and non-point sources were kept the same during the
simulation period. The difference between simulated results was only
introduced by the various CSO loading scenarios.

3) Processes simulated in the Mercury model include advection, sediment
exchange, reduction, volatilization, methylation, and demethylation in the
water column; and methylation and demethylation in the sediment. Except for
the sorption, which is represented as equilibrium reactions governed by
specified partition coefficients, all the other transformation processes are
represented as first-order reactions governed by specified rate constants.

4) Two types of solids were simulated --- silt and sand. Silt is suspended both in
the water column and in the sediment. It was assumed that 10 mg/L of silt
entered at the upstream boundary. It was also assumed that sand makes up half
of the benthic sediment compartments. The concentration was set as 50,000
mg/L in sediment for both silt and sand.

Part of the dataset in the mercury simulation, which includes time step, print

interval, and exchange coefficients is the same as those used in DO and FC simulation, so

only those added or modified in mercury simulation are highlighted here.

The segmentation of the Mercury model has been briefly introduced in the

previous sections. In addition to the 19 water column segments, 19 surficial sediment
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layers were added beneath the water layers and the depth of the sediment layer was 10

cm. The volume and cross-section areas, which were used to define the flow function of

pore water, were derived. The cross-section used here is the interface area between the

water column and the sediment layer.

The initial concentrations of mercury were specified in the Mercury model. The

initial Hg(II) concentration was set as 0.3 μg/L (0.3 ppb) in the water column, which was

estimated from the Hg concentration in the Hudson River in 1970, and 6.0 ng/g (6.0 ppb)

in sediment, which was quoted from a similar mercury simulation model (Ambrose and

Wool, 2002). The other two mercury component concentrations were set at zero. Again,

for the mass balance calculation in the WASP model, the units, μg/L and ng/g, were

converted to mg/L and mg/kg, respectively.

In addition to the existing surface water flow functions, two new flow functions,

which describe the silt transport process between the water column and the sediment,

were defined. The settling and resuspension velocities of silt were set as 0.3 m/day and

0.006 m/day, respectively. For pore water exchange, 10 -5 cm2/sec was used for the

sediment-water column diffusion coefficient. To keep all the units the same as those

defined for surface water, conversion factors were also specified.

Several environmental parameters were also specified in the Mercury model.

Changes of temperature and wind speed were set as time functions. The concentration of

dissolved organic carbon (DOC), which has an impact on equilibrium sorption between

mercury components, was set as 5 mg/L based upon the reference values (Thomann and

Mueller, 1987). Some transformation processes, including reduction and demethylation,
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are driven by sunlight. The light extinction coefficient was assumed to be 0.5 m-1 for the

water column layers.

Because of the lack of observed data, calibration processes could not be

performed by adjusting the reaction constants. To represent the worst condition, the

maximum reference values were selected for all the kinetic constants in the mercury

simulation.

The mercury load data, summarized in Appendix A, were derived from the Tri-

City monitoring data. The load unit of mercury used is 10 -3 kg/day in the Mercury model.

A conversion factor 10 -3 was set in input data for converting load unit to kg/day to match

requisition of WASP model in mass balance.

4.4.7 Result Generation

Once the model was successfully executed, the Graphical Post-Processor of WASP 6.1

was used to rapidly evaluate the results of the model simulations and its support

programs. Several options for data output can be applied. ArcView shape file can be used

in the spatial analysis mode to aid the user in displaying the model network with respect

to its geography and surrounding characteristics. The binary model geometry file can be

used to provide the spatial grid geometry information. The x/y plot can be used to display

the distribution of the variables with respect to time, segment, or distance. In this study,

the x/y plot was used to compare simulation results of various scenarios.



CHAPTER 5

MODEL CALIBRATION AND VALIDATION

Model results must be tested against field observed data during calibration and validation.

Generally, receiving water models are calibrated by varying the kinetic constants.

Usually the variation starts with hydraulics parameters and then continues with water

quality parameters. For the EUTRO model, the first two-months collected data, from July

12, 1995 to September 19, 1995 were used to calibrate the model. The remaining data

from September 19, 1995 to October 31, 1995 were used as the second independent field

data to verify the calibrated model. In this study, due to the limited observed data,

validation was not performed for the FC simulation. The same limitation restricts the

calibration and validation in the Mercury model due to the lack of initial and boundary

conditions.

5.1 Calibration Approach

After determination of the water quality and flow data and environmental parameters,

values for model coefficients and process rate constants were selected through calibration

and the results of this process were plotted against the available field data. The

calibration approach used here was to fix the values of as many model coefficients as

possible, based on direct measurement. Subsequently, values for the remaining

coefficients were adjusted within ranges reported in the literature to produce the best fit

between model output and field observations. Model coefficients were not allowed to

assume arbitrary values in order to obtain the best possible curve fit in a strictly

72
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mathematical sense. The principal literature sources used to guide the calibration effort

are summarized in Appendix B.

For convenience in calibration, WASP6.1 has a function to display observed data

versus the predicted model result. However, observed data must be stored in a particular

form, such as in a Paradox 4.5 or other higher database format (*.DB) to be available for

plotting. In this study, Database Desktop 7.0 (Borland International, Inc., 1992), the

software that can create, view, sort, modify, and query data tables in a variety of Paradox,

dBASE, and SQL formats, was used to create observed data files.

Two perspectives of calibration were applied in this study: temporal variation and

spatial distribution. In temporal variation, the model displays the variation of variables

with respect to time in a specific segment. It was used to calibrate the model to match the

field data for the whole simulation period. In spatial distribution, the model displays the

distribution of variables with respect to segments in a specific date. It was used to

calibrate the model to match the observed measurements overall in the study area.

The goal for the calibration was to produce maximum correspondence between

field data and modeling output, which can be evaluated by Correlation Coefficient Square

(R2), and a minimum in difference between predicted and observed values, which can be

examined by Root Mean Square Error (RMSE). The post-processor of WASP provides

both calculation functions for curves defined within the x/y plot window. The RMSE is

calculated by the following equation:

Where: Co: Observed value

Cp: Predicted value

N: Number of measurements
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A high Correlation Coefficient Square indicates that the model is predicted in a

similar variation pattern as the data observed in the field. On the other hand, a low RMSE

presents the condition that the average absolute values between predicted and observed

data for monitoring points during the simulated period are close. During the calibration

process, both criteria must be considered. Good agreement in only the predicted pattern

or only the predicted values alone might not indicate the best fit for calibration.

5.2 Model Calibration

In the EUTRO model, calibration starts with physical parameters such as hydraulics or

salinity, then proceeds with DO/BOD, NH3, phosphorus, and Chlorophyll, preferably in

this sequence. However, for DO/BOD/nitrogen simulation, phosphorus, and Chlorophyll

were not simulated and were not counted in the calibration process. Several parameters

are commonly used to calibrate in the DO/BOD simulation. The primary parameters used

in the calibration process are DO reaeration rate, nitrification rate, BOD decay rate, and

oxygen demand in sediments (SOD). In the FC simulation, the bacteria death rate is the

primary consideration during the calibration process.

5.2.1 Physical Parameters Calibration

Hydraulic parameters should be adjusted before water quality calibration. Stream flows

and longitudinal dispersion are two primary parameters considered in hydraulic

calibration.

Since all the flow data were estimated from USGS and relative reports, no field

data were available for comparison during calibration. The alternative method used in

this study was to use a conservative substance. A conservative substance, such as
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salinity, is one that does not undergo any chemical or biological transformation or

degradation in a given ecosystem. By comparing the concentration of the salinity

between the predicted and observed data, it can determine if the dispersion or flowrate

was overestimated or underestimated.

Longitudinal dispersion is one of the important processes that govern transport of

water quality constituents in an estuary system. The mechanisms controlling the

longitudinal dispersion of dissolved and suspended matter in estuaries are numerous and

complicated (Chatwin and Allen, 1985). The accurate determination of dispersion

coefficients is an essential requirement for the simulation of dispersive transport.

According to the reference report (Hydroscience, 1971), a high value of 600 m 2/s was

used initially for the dispersivity because it was assumed that mixing in the estuary is

very intensive owing to tidal effects. In general, the coefficients should vary from

segment to segment as a result of local geometry and friction, and a slight trend of

landward decrease should be employed. However, in this study, a simplifying

assumption, based upon the fact that the study area was constricted and close to the river

mouth, that the coefficient be kept constant for all the segments was made. In order to

verify the dispersion coefficients, simulation of salinity was performed.

Table 5.1 presents the trial sequence of salinity calibration. Both parameters,

dispersion coefficient and flowrate, were calibrated during the process. The initial input

of flow function and dispersion coefficient, 600 m 2/s, were verified after calibration.

Table 5.2 summarized the final result. In the simulation period, July 12 to September 19,

1995, all the sampling points (Segments 4, 7, 9, 13, 15 and 19) generally show good

agreement, especially for the downstream segments. Correlation Coefficient Squares
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were above 0.90, except in segment 7 (0.8), and RMSE were within 5%, except in

segment 13 (10.1%) and segment 15 (7.5%). Figure 5.1 illustrates the plots of calibration

result for each segment.

Comparing the predicted value with the observed data, salinity calibration results

also show a good match in spatial distribution (Table 5.3). Figure 5.2 indicates that most

observed data points fall close to the predicted trend line, except for the data on 9/19.

This could be due to sampling or sample analysis error or that the sampling date was too

close to the storm events (9/17 and 9/22) to have a stable reading of salinity.

Table 5.1 Trial Sequence of Salinity Calibration (Simulation Period: 7/12/95 -9/19/95)

Trial Correlation Coefficient Square RMSE Dispersion
Coefficient FlowrateSeg9 Seg15 Seg19 Seg9 Seg15 Seg19

1 0.89 0.93 1.00 0.78(4.4%) 1.50(7.2%) 0.17(0.7%) 300 x1
____2 0.90 0.92 1.00 0.87(4.8%) 1.56(7.4%) 0.15(0.7%) 450 x1

3 0.91 0.91 1.00 0.92(5.0%) 1.59(7.5%) 0.15(0.7%) 600 x1
4 0.92 0.91 1.00 0.95(5.2%) 1.61(7.6%) 0.14(0.6%) 750 x1
5 0.92 0.90 1.00 0.96(5.3%) 1.62(7.6%) 0.14(0.6%) 900 x1
6 0.92 0.90 1.00 0.99(5.4%) 1.64(7.7%) 0.14(0.6%) 1200 x1
7 0.88 0.93 0.99 0.78(4.4%) 1.51(7.2%) 0.16(0.7%) 600---300 x1
8 0.91 0.90 1.00 0.96(5.3%) 1.62(7.6%) 0.14(0.6%) 600---900 x1
9 0.84 0.93 0.99 0.66(3.7%) 1.41(6.8%) 0.19(0.8%) 600---200 x1
10 0.91 0.91 1.00 	 0.87(4.8%) 1.56(7.4%) 0.15(0.7%) 600 x1.2
11 0.91 0.91 1.00 	 0.90(4.9%) 1.58(7.5%) 0.15(0.7%) 600 x1.1
12 0.91 0.91 1.00 	 0.94(5.1%) 1.61(7.6%) 0.14(0.6%) 600 x0.9
13 0.91 0.91 1.00 	 0.96(5.3%) 1.62(7.7%) 0.14(0.6%) 600 x0.8

Table 5.2 Statistical Result of Salinity Calibration (Temporal Variation)

Segment Seg4 Seg7 Seg9 Seg13 Seg15 Seg19
0.99R2 0.96 0.80 0.91 0.91 0.96

RMSE 0.43 0.35 0.92 2.03 1.59 0.15
2.8% 2.0% 5.0% 10.1% 7.5% 0.7%

Table 5.3 Statistical Result of Salinity Calibration (Spatial Distribution)

Date 8/8 8/23 8/30 9/19
R2 0.81 0.74 0.94 0.64

RMSE 1.02 1.54 0.77 2.42
% 5.9% 8.5% 4.0% 14.8%
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5.2.2 DO/BOD/Nitrogen Calibration

According to the mechanisms of DO transport and transform processes, the primary

reaction coefficients controlling the DO level in an aquatic system include: DO reaeration

rate constant, nitrification rate constant, BOD decay rate constant, and sediment oxygen

demand. These initial input coefficient values were based upon the reference values of

previous studies. However, they must be adjusted to fit a specific water system through

model calibration.

Table 5.4 presents the trial sequence of DO calibration. During the calibration,

each reaction constant was selected and adjusted individually first, until the best-fit

condition was obtained. The final result was the combination of all the optimum states of

each of the adjusted constants. During calibration, the reaeration rate constant (K 1 ) was

changed from 4.4 day-1 to 0.35 day^-1, the nitrification rate (K2) was increased from 0.11

day' to 0.20 day-̂1, and the BOD decay rate (K3) was adjusted from 0.18 day to 0.25

day'. The concentration of SOD, which was kept at 1.5 g-O2/m ^2, had relatively low



Table 5.4 Trial Sequence of DO Calibration

R2 RMSE (0.22-2) (0.02-0.20) (0.02-1.08) (0-2)

Trial Seg9 Seg15 Seg19 Seg9 Seg15 Seg19 K, b K2 b
K3 b SOD

1 a 0.23 0.53 0.95 0.12(1.3%) 2.71(40.3%) 0.18(2.8%) 4.4 0.11 0.18 1.5

2 0.20 0.42 0.91 4.84(67.6%)2.71(39.3%) 0.21(3.2%) 10
3 0.54 0.49 0.94 0.02(0.3%) 2.71(39.8%) 0.19(2.9%) 6
4 0.20 0.69 0.98 5.80(88.5%) 2.74(42.2%) 0.17(2.6%) 2
5 0.49 0.85 0.99 0.68(10%) 2.75(43.9%) 0.16(2.6%) 1

6 0.45 0.93 0.99 0.78(11.9%)2.76(45.7%) 0.16(2.6%) 0.5
7 0.19 0.94 1.00 6.02(165%)2.77(46.5%) 0.16(2.6%) 0.4
8 0.84 0.95 1.00 0.81(19.4%) 2.76(46.6%) 0.16(2.6%) 0.35
9 0.48 0.95 1.00 0.65(7.2%) 2.76(46.9%) 0.16(2.6%) 0.3 ,
10 0.64 0.96 1.00 2.0(31.4%) 2.78(47.6%) 0.16(2.6%) 0.25

11 0.38 0.59 0.98 2.63(38.4%) 2.82(43.3%) 0.27(4.4%) 10
12 0.50 0.59 0.98 2.50(36.3%) 2.81(43.1%) 0.25(4.0%) 6
13 0.26 0.56 0.96 0.07(0.7%) 2.75(41.4%) 0.20(3.1%) 1

14 0.26 0.55 0.96 0.07(0.6%) 2.73(40.9%) 0.19(2.9%) 0.5 _
15 0.24 0.54 0.96 0.10(0.8%) 2.72(40.5%) 0.18(2.9%) 0.25

16 0.24 0.54 0.95 0.10(0.9%) 2.72(40.4%) 0.18(2.8%) 0.2
17 0.23 0.53 0.95 0.12(1.3%) 2.71(40.3%) 0.18(2.8%) 0.1

18 0.23 0.53 0.95 0.13(1.4%) 2.71(40.2%) 0.18(2.8%) 0.05

19 0.23 0.53 0.95 0.14(1.5%) 2.71(40.1%) 0.18(2.7%) 0.02
20 0.71 0.61 0.95 2.36(35%) 2.87(45.3%) 0.30(4.9%) 5.6

21 0.83 0.59 0.96 0.45(9.4%) 2.85(44.5%) 0.25(4.0%) 2.5

22 0.10 0.56 0.96 5.40(120%) 2.83(43.5%) 0.22(3.6%) 1.1

23 0.10 0.56 0.96 5.40(120%) 2.83(43.3%) 0.22(3.4%) 1

24 0.08 0.55 0.96 5.40(124%) 2.82(43%) 0.21(3.3%) 0.85

25 0.08 0.55 0.96 5.40(124%) 2.80(42.6%) 0.21(3.3%) 0.7

26 0.29 0.55 0.96 0.14(1.5%) 2.77(41.8%) 0.20(3.1%) 0.5

27 0.29 0.54 0.96 0.07(0.8%) 2.76(41.4%) 0.20(3.0%) 0.4

28 0.23 0.53 0.95 0.05(0.4%) 2.73(40.7%) 0.19(2.9%) 0.25

29 0.24 0.53 0.95 0.15(1.6%) 2.71(40%) 0.18(2.8%) 0.15

30 0.30 0.53 0.95 0.42(4.5%) 2.67(39.3%) 0.17(2.6%) 4.4 0.11 0.05 1.5

31 0.27 0.93 0.99 5.43(104%) 3.09(57.3%) 0.24(4.0%) 0.35 0.5 0.4

32 0.33 0.93 0.99  6.01(117%) 3.04(55.2%) 0.23(3.7%) 0.35 0.25 0.4

33 0.17 0.94 0.99 6.01(188%) 3.03(54.8%) 0.22(3.7%) 0.35 0.2 0.4

34 0.44 0.95 1.00 1.64(25.5%) 2.94(52.4%) 0.21(3.4%) 0.35_ 0.5,

0.25
0.25 

0.2535 0.17 0.95 1.00 6.03(180%) 2.89(50.5%) 0.19(3.1%) 0.35
36c 0.80 0.95 1.00 0.43(7.0%) 2.87(49.9%) 0.19(3.1%) 0.35 0.2 0.25 1.5

37 0.83  0.95 1.00 0.54(13.2%) 2.83(48.7%) 0.18(2.9%) 0

38 0.83 0.95 1.00 , 0.50(12.4%) 2.85(49.1%) 0.18(2.9%) 0.5

39 0.82 0.95 1.00 0.47(11.5%) 2.86(49.5%) 0.19(3.0%) 1

40 0.49 0.95 1.00 0.39(6.5%)_ 2.88(50.3%)_ 0.19(3.1%) 2
a. Initial input of DO model.
b. K 1 : reaeration rate constant; K2: nitrification rate constant; K3: BOD decay rate constant.
c. Final calibration result of DO model.
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sensitivity (DO concentration was not changed with SOD variation) in this study. Tables

5.5 and 5.6 summarize the final statistical results of DO calibration.

Table 5.5 Statistical Result of DO Calibration (Temporal Variation)

Segment Seg4 Seg7 Seg9 Seg13 Seg15 Seg19
R2 0.98 0.47 0.80 0.91 0.95 1.00 	 .

RMSE 2.33 0.13 0.43 2.19 2.87 0.19
% 34.5% 2.2% 7.0% 38.4% 49.9% 3.1%

Ave. Conc.(mg/l) 6.8 6.2 6.1 5.7 5.7 6.2

Table 5.6 Statistical Result of DO Calibration (Spatial Distribution)

Date 8/8 8/23 8/30 9/19
R2 0.11 0.08 0.00 0.08

RMSE 2.90 3.59 2.82 3.91
% 54.9% 52.7% 49.7% 47.2%

From the perspective of statistics in temporal variation, the predicted values do

not match the field data well. Some of the segments (Segments 4, 13 and 15) have high

correlation coefficients but the predicted values are away from the observed data. The

predicted values of some segments (Segments 7 and 9) are close to the observed values

but they do not have a similar variation pattern. The worst statistical values are shown in

spatial distribution (Table 5-5). Small R2 (0.00-0.11) and large RMSE (47.2%-54.9%)

are found for all segments. However, according to the plots of calibration, shown in

Figures 5.3 and 5.4, the predicted values are still in good agreement with the field data

because most of the observed data lie close to the predicted trend line. A statistical

agreement, that could not be reached, could be due to the following two reasons:

1. Figure 5.3 shows that the predicted curve is shaped like a series of blocks
between Segment 5 and Segment 13. This severely affects the statistical
results of the calibration. The unstable predicted values are the result of the
large-scale segmentation. Because of the large size of the segment, the
concentration calculated by the model varies considerably and it produces
unstable values during the simulated time step. The situation could be
improved by dividing the segments into smaller grids. However, due to the
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limited data available, it was not practical to further dissect the segments into
many smaller pieces in this study.

2. The predicted DO values obtained on September 19, 1995 are far away from
the field measurement. It could be that the sampling date was too close to the
two consecutive storm events. Furthermore, DO concentration with values
above 10 mg/L in the summer is unreasonable. The statistical result would be
improved if the observed data was neglected or adjusted.
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Along with the DO calibration, BOD was calibrated simultaneously. Different

types of BOD parameters used (for example, BOD 5 and NBOD) would produce different

calibration results. Again, the BOD presented here is CBOD u. Table 5.7 to Table 5.9

present the trial sequence, statistical results of temporal variation and spatial distribution

of BOD calibration, respectively. Table 5.8 indicates that R2 values are above 0.75 for all

the segments in the study area except in Segment 15 (0.08) and most of the RMSE values
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Table 5.7 Trial Sequence of BOD Calibration

R2 RMSE (0.22-2) (0.02-0.20) (0.02-1.08) (0-2)

Trial Seg9 Seg15 Seq9 Seg15 Seg19 Ki b K2 b
K3 b SOD

1 a 0.84 0.11 1.00 1.12(28.0%) 4.77(136%) 0.13(3.6%) 4.4 0.11 0.18 1.5

2 0.84 0.11 1.00 1.12(27.8%) 4.77(136%) 0.13(3.6%) 10

3 0.84 0.11 1.00 1.12(27.8%)4.77(136%) 0.13(3.6%) 6
4 0.84 0.11 1.00 1.14(28.4%)4.77(136%) 0.13(3.6%) 2

5 0.82 0.11 1.00 0.98(23.9%)4.76(135%) 0.13(3.6%) 1

6 0.82 0.11 1.00 0.81(19.7%1_4.76(135%) ,0.13(3.6%) 0.5_ _.
7 0.77 0.11 1.00 1.46(38.2%)4.76(135%) 0.13(3.6%) 0.4_
8 0.88 0.11 1.00 0.65(16.5%) 4.76(135%) 0.13(3.6%) 0.35
9 0.78 0.12 1.00 0.59(13.4%) 4.76(135%) 0.13(3.6%) 0.3

10 0.82 0.11 1.00 1.07(26.5%) 4.77(136%) 0.13(3.6%) 0.25
11 0.84 0.11 1.00 1.12(28.0%) 4.77(136%) 0.13(3.6%) 10

12 0.84 0.11 1.00 1.10(27.1%) 4.77(136%) 0.13(3.6%) 6

13 0.84 0.11 1.00 1.10(27.1%) 4.77(136%) 0.13(3.6%) 1

14 0.84 0.11 1.00 1.10(27.1%) 4.77(136%) 0.13(3.6%) , _ 0.5

15 0.84 0.11 1.00 1.10(27.1%) 4.77(136%) 0.13(3.6%) 0.25

16 0.84 0.11 1.00 1.10(27.1%) 4.77(136%) 0.13(3.6%) 0.2

17 0.84 0.11 1.00 1.10(27.1%) 4.77(136%) 0.13(3.6%) 0.1
18 0.84 0.11 1.00 1.10(27.1%) 4.77(136%) 0.13(3.6%) 0.05
19 0.84 0.11 1.00 1.10(27.1%) 4.77(136%) 0.13(3.6%) 0.02

20 0.02 0.02 0.86 3.95(406%) 6.24(530%) ,0.30(11.2%) 5.6

21 0.09 0.01 0.93 3.55(259%) 6.04(378%) 0.20(6.8%) 2.5

22 0.31 0.00 0.97 2.89(137%) 5.67(257%) 0.09(2.9%) 1.1

23 0.35 0.00 0.97 2.79(125%) 5.62(246%) 0.08(2.4%) 1

24 0.44 0.00 0.98 2.60(108%) 5.53(229%) 0.06(1.7%) 0.85

25 0.54 0.00 0.98 2.38(90.3%) 5.42(211%) 0.03(0.9%) , 0.7

26 0.69 0.01 0.99 1.96(63.9%) 5.23(184%) 0.02(0.5%) 0.5

27 0.75 0.03 0.99 1.74(52.5%) 5.11(170%) ,0.05(1.3%) 0.4

28 0.82 0.08 1.00 1.33(35.1%)4.89(147%) 0.10(2.8%) 0.25

29 0.85 0.13 1.00 0.99(23.7%) 4.71(131%) 0.14(4.0%) 0.15

30 0.83 0.21 1.00 0.58(124%) 4.47(114%) 0.20(5.3%) 4.4 0.11 0.05

31 0.66 0.03 0.99 2.19(66.9%) 5.12(169%) 0.05(1.3%) 0.35 0.5 0.4

32 0.20 0.03 0.99 2.64(85.3%) 5.11(169%) 0.05(1.4%) 0.35 0.25 0.4

33 0.50 0.03 0.99 2.65(101%) 5.11(169%) 0.05(1.4%) 0.35 0.2 0.4

34 0.80 0.07 1.00 1.28(33.9%)4.90(147%) 0.10(2.8%) 0.35 0.5 0.25

35 0.56 0.08 1.00 1.90(56.4%) 4.89(146%) 0.10(2.9%) 0.35 0.25 0.25

36c 0.86 0.08 1.00 0.73(18.8%) 4.88(146%) 0.10(2.9%) 0.35 0.2 0.25 1.5

37 0.86 0.08 1.00 0.73(20.2%) 4.89(146%) 0.10(2.9%) 0

38 0.86 0.08 1.00 0.73(20.2%)4.89(146%) 0.10(2.9%) 0.5

39 0.86 0.08 1.00 0.73(20.2%) 4.89(146%) 0.10(2.9%) 1

40 0.75 0.08 1.00 0.73(18.8%) 4.89(146%) 0.10(2.9%) 2
a. Initial input of DO model.
b. K 3 : reaeration rate constant; K2: nitrification rate constant; K3: BOD decay rate constant.
c. Final calibration result of DO model
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are below 25%, though the values vary widely from a small value of 2.9% (Segment 19)

to the largest 146% (Segment 15). The largest value seen in Segment 15 primarily comes

from the unreasonably high-observed measurement on September 19 shown in Figure

5.5. Spatial distribution, revealed in Table 5.9, shows low R 2 (0.00-0.59) and high RMSE

(25.1%-58.8%). Because of the large size of the segment, several flexuous peaks are

observed between Segment 5 to Segment 12 in the calibration plot (Figure 5.6). Similar

findings occurred as those observed in the DO calibration, the result of BOD calibration

shows low agreement in statistically, but the observed data stay close to the acceptable

predicted trend in plots.

Table 5.8 Statistical Result of BOD Calibration (Temporal Variation)

Segment Seg4 Seg7 Seg9 Seg13 Seg15 Seg19
_ 	 R2 0.74 0.87 0.75 0.97 0.08 _ 1.00

RMSE 1.15 2.52 0.73 0.29 4.88 0.1
oh, 24.7% 61.7% 18.8% 8.5% 146.0% 2.9%

Ave. Conc. 4.5 4.1 3.9 3.4 3.3 3.5

Table 5.9 Statistical Result of BOD Calibration (Spatial Distribution)

Date 8/8 8/23 8/30 9/19
R2 0.11 0.00 0.33 0.59

RMSE 1.44 0.99 0.83 2.70
% 52.4% 25.1% 58.8% 40.9%
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The mechanisms of nitrogen transport and transformation processes will also

affect the DO concentration in receiving waters. Tables 5.10 to 5.12 summarize the trial

sequence and statistical results of temporal variation and spatial distribution of ammonia

(represented by NH3-N) calibration, respectively. Temporal variation, revealed in Table

5.11, indicates that the wide variation of R
2 range from a small value of 0.08 (Segment 9)

to the largest 1.0 (Segment 19). Meanwhile, RMSE values are steadily between 30 to 40

percent, except in Segment 4 (19.9%) and Segment 19 (0.1%). The poor statistical results

are found in spatial distribution, where the R 2 values are below 0.35 (0.13 -0.35) and

RMSE values are higher than 30% (31.9% - 94.9%). However, as mentioned earlier in

the DO and BOD calibration section, the low agreement between predicted and observed

data shown in statistical results primarily comes from the large scale segmentation and

the questionable field sampling data on September 19. This perspective is verified again

in Figures 5.7 and 5.8, which show that the observed data stay close to the acceptable

predicted trend in the plots, except the spatial distribution on September 19, where the

observed data are much lower than the predicted values.

Table 5.10 Trial Sequence of NH 3 -N Calibration

R2 RMSE (0.22-2) (0.02-0.20) (0.02-1.08) (0-2)
Trial Seg9 Seg15 Seg19 Seg9 Seg15 Seg19 K1 K2 K3 SOD
31 0.83 0.21 1 0.58(124%) 4.47(114%) 0.20(5.3%) 4.4 0.11 0.05
32 0.66 0.03 0.99 2.19(66.9%) 5.12(169%) 0.05(1.3%) 0.35 0.5 0.4
33 0.2 0.03 0.99 2.64(85.3%) 5.11(169%) , 0.05(1.4%) 0.35 0.25 0.4
34 0.5 0.03 0.99 2.65(101%) 5.11(169%) 0.05(1.4%) 0.35 0.2 0.4
35 0.8 0.07 1 1.28(33.9%) 4.90(147%) 0.10(2.8%) 0.35 0.5 0.25
36 0.56 0.08 1 1.90(56.4%) 4.89(146%) 0.10(2.9%) 0.35 0.25 0.25
37 0.86 0.08 1 0.73(18.8%) 4.88(146%) 0.10(2.9%) 0.35 0.2 0.25 1.5
38 0.86 0.08 1 0.73(20.2%) 4.89(146%) 0.10(2.9%) 0
39 0.86 0.08 1 0.73(20.2%) 4.89(146%) 0.10(2.9%) 0.5
40 0.86 0.08 1 0.73(20.2%) 4.89(146%) 0.10(2.9%) 1
41 0.75 0.08 1 0.73(18.8%) 4.89(146%) 0.10(2.9%) 2



Table 5.11 Statistical Result of NH3-N Calibration (Temporal Variation)

Segment Seg4 Seg7 Seg9 Seg13 Seg15 Seg19
R2 0.88 0.57 0.08 0.65 0.72 1.00
RMSE 0.04 0.08 0.09 0.09 0.1 0

19.9% 31.5% 36.7% 31.0% 32.3% 0.1%
Ave. Conc. 0.20 0.25 0.26 0.28 0.30 0.32

Table 5.12 Statistical Result of NH 3-N Calibration (Spatial Distribution)

Date 8/8 8/23 8/30 9/19
R2 0.26 0.35 0.19 0.13
RMSE 0.09 0.19 0.09 0.16
% 31.9% 94.3% 33.1% 94.9%
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5,2.3 Fecal Coliform Calibration

The primary environmental constant that controls fecal coliform transport and

transformation in the aquatic system is the coliform bacteria death rate (day -1 ). The

bacteria death rate encompasses the reduction of bacterial numbers as a result of

protozoan predation, sunlight disinfection, and natural death. Re-growth of fecal coliform

in the study was assumed negligible. The rate of bacteria death has been considered by

many to be linearly dependent on temperature, with the organisms being more persistent
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at lower temperatures. However, the bacteria death rate was assumed to be a constant in

this study due to the relatively small variation in temperature during the summer. Table

5.13 presents the trial sequence of FC calibration. According to the Hydroscience study

(1977), the range of the bacteria death rate in New York Harbor was between 0 to 6.1

day 1 . The constant was initially set as 3.0 day-1 and adjusted to 0.25 day ^-1 during the

model calibration.

Table 5.13 Trial Sequence of FC Calibration

R2 RMSE ( 0-6.1 )
Trial Seg9 Seg15 Seg19 Seg9 Seg15 Seg19 Bacteria Death Rate

1 0.01 0.95 0.98 0.01(17.2%) 1.63(130%) 0.15(13.2%) 0.00
2 a 0.14 0.91 0.99 0.04(62.8%) 1.11(125%%) 0.01(1.3%) 0.25
3 0.11 0.86 0.99 0.06(24.2%) 0.79(117%) 0.12(12.6%) 0.50
4 0.23 0.73 0.99 0.07(47.2%) 0.44(100.4%) 0.25(29.6%) 1.00
5 0.18 0.12 0.97 0(2.4%) 0.06(41.0%) 0.46(67.5%) 3.00
6 0.23 0.04 0.96 0(24.2%) 0.02(19%) 0.51(79.9%) 4.00
7 0.11 0.01 0.95 0.01(117%) 0(1.8%) 0.55(91%) 5.00
8 0.08 0.00 0.94 0.01(222%) 0.01(23.2%) 0.58(102%) 6.10

Tables 5.14 and 5.15 summarize the statistical results of FC calibration in

temporal variation and spatial distribution, respectively. In temporal analysis, Correlation

Coefficient Squares vary dramatically from 0.01 (Segment 4) to 0.99 (Segment 19) and

RMSE values also show a wide range from over 100% (Segment 13) to 1.3% (Segment

19). The low agreement in statistical results primarily comes from the poor agreement

between predicted and observed data on 8/23 and 9/19. The measurements or analyses

performed on these two days could be erroneous, because the observed values are much

higher than the predicted values on 8/23 and lower on 9/19. Due to the limited number of

samples, these few errors in sampling data may exaggerate the difference in data

agreement in the statistics. This phenomenon is also observed in the calibration result for
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spatial analysis. The low R 2 (0.00) for the data on 9/19 and the high RMSE (996.9%) for

the data on 8/23 are shown in Table 5.15 and Figure 5.10.

Table 5.14 Statistical Result of FC Calibration (Temporal Variation)

Segment Seg4 Seg7 Seg9 Seg13 Seg15 Seg19
R2 0.01 0.20 0.14 0.24 0.91 0.99

RMSE 0.30 0.01 0.04 1.04 1.11 0.01
"Yo 113.7% 19.8% 62.8% 135.6% 125.0% 1.3%

Table 5.15 Statistical Result of FC Calibration (Spatial Distribution)

Date 8/8 8/23 8/30 9/19
R2 0.09 0.29 0.65 0.00

RMSE 0.34 0.55 0.33 1.37
0/0 57.5% 996.6% 166.2% 126.5%
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In summary, the concentration of bacteria is affected by the local geometric and

environmental condition. According to the plots of the calibration result, the model

predicts FC concentrations that are in good agreement with observed data for most of the

simulation period and segments, except for a few particular periods and segments. More

detailed observed data are needed to create a more sensitive model.
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5.3 Model Validation

To determine if the model assumptions and calibration parameters are applicable for the

study area beyond the calibration period, a 43-days simulation was conducted for the

period from September 19 to October 31, 1995 for the EUTRO model. External forcing

functions for this simulation are specified using a second individual field data set for

stream flow rate, initial concentration, boundary condition, water temperature, and

external pollutant loadings. Segmentation, sediment properties, and all model coefficients

and process rate constants remain the same as those defined in the model calibration

process.

5.3.1 Physical Parameters Validation

Tables 5.16 and 5.17 present the validation result of salinity. High Correlation

Coefficient Square values, especially in temporal variation (0.83 —1.00), indicate that the

calibrated reaction constants and process rate constants are reliable and the calibrated

model can be used to simulate the study water system. Most of the RMSE values were

found to be higher than 15% except in Segment 19 (0.5%). The inaccuracy of the

boundary concentrations could produce the high RMSE values and the limited number of

sample measurements again magnifies the statistical results. Figure 5.11 reveals that the

model predicted values are higher than the field measurements, especially for the data on

October 31, 1995. Figure 5.12, which presents the spatial distribution of salinity, shows

the same trend on that day. It also indicates that the worst condition occurs in segments

downstream rather than upstream.



Table 5.16 Statistical Result of Salinity Validation (Temporal Variation)

Segment Seg4 Seg7 Seg9 Seg13 Seg15 Seg19
R2 0.99 0.98 0.94 0.83 0.83 1.00

RMSE 1.86 2.11 2.4 _ 3.08 3.67 0.09
% 16.5% 16.0% 17.5% 20.3% 21.8% 0.5%

Table 5.17 Statistical Result of Salinity Validation (Spatial Distribution)

Date 9/19 10/11 10/31
R2 0.71 0.81 0.74

RMSE 1.48 1.90 4.04
% 5.9% 10.0% 46.0%
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5.3.2 DO/BOD/Nitrogen Validation

Table 5.18 summarizes the statistical result of the DO validation in temporal variation. It

indicates that the predicted data are in good agreement with the observed data for

Segments 4, 13, 15 and 19. In these segments, the values of Correlation Coefficient

Square are higher than 0.98 and the RMSE values are within 8.0%. Due to the presence

of a wave-like curve in the predicted value plot between Segment 5 and Segment 13, the

statistical results shown in Segments 7 and 9 are poor. The RMSE of Segment 9 is even

higher than 100%. The same situation occurred in the spatial distribution analysis, which

is shown in Table 5.19. The low Correlation Coefficient Square values show poor

correlation between the predicted and the observed values. However, as mentioned earlier

in the DO calibration process, these poor statistical numbers do not present the reality of

the validation result. Figures 5.13 and 5.14 prove that most of the observed data fall close

to the predicted trend lines, especially the data on October 11 and October 31.



Table 5.18 Statistical Result of DO Validation (Temporal Variation)

Segment Seg4 Seg7 Seg9 Seg13 Seg15 Seg19
R2 1.00 0.86 0.87 0.98 0.98 0.98

RMSE 0.33 3.8 4.76 0.62 0.61 0.03
% 3.6% 71.8% 108.0% 7.7% 7.1% 0.4%

Table 5.19 Statistical Result of DO Validation (Spatial Distribution)

Date 9/19 10/11 10/31
R2 0.02 0.02 0.08

RMSE 4.45 2.58 4.35
% 48.3% 50.5% 57.7%
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Statistically, the BOD validation results are much better than the DO's; though

the plots show similar wave-like curves during the simulation. Both the Correlation

Coefficient Square and the RMSE values show that the model predicted data are in good

agreement with the observed data. For each segment, the value of Correlation Coefficient

Square is close to 1.0 and the RMSE value is within 10%. In the spatial distribution

analysis, again, the statistical result is affected by the unstable wave-like curve. The plots

show that the predicted and observed data are closely placed and most of the field

measurements are close to the predicted trend line. Tables 5.20 and 5.21 and Figures 5.15

and 5.16 present the statistical results and plots of BOD validation in temporal variations

and spatial distributions, respectively.

Table 5.20 Statistical Result of BOD Validation (Temporal Variation)

Segment Seg4 Seg7 Seg9 Seg13 Seg15 Seg19
R2 0.99 1.00 1.00 1.00 1.00 1.00

RMSE 0.17 0.39 0.45 0.14 0.20 0.04
% 4.0% 6.3% 9.9% 4.1% 3.3% 1.4%



Table 5.21 Statistical Result of BOD Validation (Spatial Distribution)

Date 9/19 10/11 10/31
R2 0.77 0.07 0.22

RMSE 2.02 0.50 0.49
0/0 27.2% 16.9% 24.7%
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BOD Validation Result (9119195-10/31195, Segment 4)

Figure 5.15(a) BOD Validation — Segment 4 (Temporal Variation).

BOD Validation Result (9/19195-10/31/95, Segment 7)

Figure 5.15(b) BOD Validation — Segment 7 (Temporal Variation).



BOD Validation Result (9119195-10131195, Segment 9)
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Figure 5.15(c) BOD Validation — Segment 9 (Temporal Variation).

BOD Validation Result (9/19/95-10/31195, Segment 13)

Figure 5.15(d) BOD Validation — Segment 13 (Temporal Variation).

BOD Validation Result (9119/95-10131195, Segment 15)

Figure 5.15(e) BOD Validation — Segment 15 (Temporal Variation).



BOD Validation Result (9119195-10131195, Segment 19)
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Figure 5.15(0 BOD Validation — Segment 19 (Temporal Variation).

Figure 5.16(a) BOD Validation — 9/19/95 (Spatial Distribution).

BOD Validation Result (Date: 10/11/95)

Figure 5.16(b) BOD Validation — 10/11/95 (Spatial Distribution).
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Figure 5.16(c) BOD Validation — 10/31/95 (Spatial Distribution).

The statistical validation result of NH 3-N in the perspective of temporal variation,

which is summarized in Table 5.22, shows that the model predicted values are in good

agreement with the field data for Segments 7 and 19. The Correlation Coefficient Square

value is close to 1.0 and the RMSE value is within 7% in these segments. Other segments

have strong correlation between the predicted and the observed data (higher than 0.94)

but the RMSE values for these segments are higher than 20%. The high RMSE values

may be introduced by the limited sampling numbers and the wave-like curve. The similar

poor statistical results also can be observed in the spatial distribution analysis (Table

5.23). The RMSE value on September 19 is even higher than 90% (90.9%). However, as

with other validation results shown in the plots, most of the observed data for NH3-N

validation fall close to the predicted trend lines, except in the plot of September 19. This

indicates that these poor statistical numbers do not present the reality of the validation

result. Figures 5.17 and 5.18 present the validation results in plots for the temporal

variation and the spatial distribution analyses, respectively.



Table 5.22 Statistical Result of NH3-N Validation (Temporal Variation)

Segment Seg4 Seg7 Seg9 Seg13 Seg15 Seg19
R2 0.95 0.99 0.94 0.94 0.95 0.99
RMSE 0.05 0.01 0.05 0.07 0.07 0.01.
% 27.5% 6.9% 25.2% 25.4% 23.8% 2.2%

Table 5.23 Statistical Result of NH3-N Validation (Spatial Distribution)

Date 9/19 10/11 10/31
R2 0.41 0.85 0.69
RMSE 0.13 0.06 0.08
% 90.9% 11.2% 40.0%

NH3-N Validation Result (9119196-10131195, Segment 4)
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Figure 5.17(a) NH3-N Validation — Segment 4 (Temporal Variation).

Figure 5.17(b) NH3-N Validation — Segment 7 (Temporal Variation).



NH3-N Validation Result (9/19/96-10131195, Segment 9)
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Figure 5.17(c) NH3-N Validation — Segment 9 (Temporal Variation).

Figure 5.17(d) NH3-N Validation — Segment 13 (Temporal Variation).

NH3-N Validation Result (9119196-10131196, Segment 15)

Figure 5.17(e) NH3-N Validation — Segment 15 (Temporal Variation).
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Figure 5.17(f) NH3-N Validation — Segment 19 (Temporal Variation).

Figure 5.18(b) NH3-N Validation — 10/11/95 (Spatial Distribution).
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Figure 5.18(c) NH3-N Validation — 10/31/95 (Spatial Distribution).

5.4 Sensitivity Analysis

In order to determine the relative effects of the various parameters on water quality,

sensitivity analyses were performed on several variables. These analyses were performed

by varying critical parameters, which include both water quality transport and

transformation constants, one at a time while the change in the model output was

observed. The transport parameters are variables such as flowrate and dispersion

coefficient. The transformation constants, in this study, are reaeration rate, BOD decay

rate, nitrification rate, and SOD for the DO simulation; bacteria death rate for the FC

simulation; and partition coefficient and DOC (dissolved organic carbon) for the Mercury

model. All the parameters were analyzed individually by the following method.

Hann and Zhang (1996) indicated that the sensitivity of parameters to a specific

constituent in a system could be presented by the relative sensitivity. The parameters with

high relative sensitivity produce larger variation in the specific variable concentration
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than those with low relative sensitivity if the parameters have the same degree of increase

or decrease. The relative sensitivity is calculated by the following equation:

In this equation, 8m is the change of the averaged modeled value; 8/3 is the change

in the input parameter value. P is the parameter estimate in the calibration run, and M is

the mean simulated value in the calibration. Ap is defined as (10% * P). M p+Δp and M p-Δp

are the mean simulated values with P increased by Ap and decreased by Ap, respectively.

Table 5.24 Result of the Sensitivity Analysis

Parameter
Relativity Sensitivity

Salinity DO CBODU Fecal Coliform Mercury
Dispersion Coefficient 0.01 0.08 0.11 -0.02 -0.11
Flowrate -0.01 -0.04 0.05 -0.22 -0.06
Solids Flow --- --- --- --- 0.003
DO Reaeration Rate --- 0.16 -0 --- ---
Nitrification Rate --- -0.02 -0 --- ---
NOD Decay Rate --- -0.07 -0.18 --- ---
SOD --- 0.01 -0 --- ---
Bacteria Death Rate --- --- --- -0.3 ---
Partition Coefficient --- --- --- --- -0
DOC --- --- --- --- -0

Table 5.24 summarizes the sensitivity analysis result. In general, the calculated

relative sensitivities are low, especially for the transformation coefficients in the Mercury

model. In other words, the concentrations of pollutants were not sensitive to the

environmental parameters presented in this study. The low relative sensitivity may be the

result of the high dilution effect caused by the high flowrate in the study area. However,

by comparing the relative sensitivity of parameters, the most important parameter for
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each of the pollutants can still be located. In the EUTRO model, DO level is much more

sensitive to the reaeration constant than the other parameters, and BOD is only sensitive

to the BOD decay rate. For FC simulation, the concentration of fecal coliform is

influenced both by the bacteria death rate and the stream flowrate. In the Mercury model,

the pollutant concentration is controlled by the transport parameters rather than the

transformation coefficients.

53 Summary

The successful development, calibration, and validation of a water quality model require

the synthesis of a large amount of information. Rarely is all of the information available,

which could explain why the development of a model with perfect calibration and

validation for all parameters is rarely reached. Based on the available field data, those

unknown or least known parameters were adjusted to more adequately simulate the

measured conditions within the study area. These parameters included the water quality

transport constants and transform coefficients.

Because of the assumptions made to simplify the model that the system is

homogeneous and that values for most of the environmental conditions are constant; the

model could not be expected to predict accurately the absolute values exactly as

determined by field measurements. However, for a reliable model, one should track the

variation and predict values within the range of the field data. Generally, simulation

results agree with observations for DO simulation and FC model after calibration. The

resulting few of poor statistical values of calibration could come from the large-scale

segmentation and inaccuracy of the sampling program. This model could be improved
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later by dividing segments into finer cells and by employing an intensive sampling

program.

The calibrated environmental parameters were validated for the EUTRO model.

However, the limited field data available constrained the validation process for the FC

model. Increased information on the field data can result in less uncertainty of model

predictions and greater understanding of the aquatic system. Sensitivity analysis can be

used to study the relative effects of the various parameters on water quality, such as the

study of mercury concentration in the river and sediment by using the Mercury model in

this study.



CHAPTER 6

THE IMPACTS OF THE CSO LOADING ON
RECEIVING WATER QUALITY

The calibrated WASP6.1 water quality model, which includes three sub-models:

EUTRO, Heat, and Mercury, was used to investigate the impact of CSO discharge on

receiving water mathematically. The water quality criteria and critical conditions are used

as the reference to evaluate the water quality. The impacts of CSO were studied with a

series of scenarios, which include the major factors that would affect the water quality of

the receiving water. The impacts from the quantity of CSO load were evaluated first by

varying the load input. The flowrate of the receiving water, which exerts a dilution effect

on the water quality, was then examined. The temporal variation and spatial distribution

of the pollutants in the receiving water were tested last.

6.1 Result Interpretation

Since the purpose of this study is to develop a mathematical model to study the effect of

discharge of CSO on receiving water quality, so the result of this study can be used by

water resource managers and scientists to (1) calculate pollutant loads from combined

sewer overflows for monitored storm events; (2) describe temporal variations for

pollutant concentrations in the receiving water from storm to storm; (3) describe spatial

distribution of selected pollutants discharging from combined sewers to the receiving

water; and (4) provide data and information to define appropriate management methods

to reduce or eliminate untreated CSO discharges. A comprehensive control plan

addressing the characteristics of the combined sewer system and overflows, which

122



123

identifies the impact of CSOs on receiving water uses and establishes performance goals

for the CSO control program, will provide the basis for selecting and locating appropriate

technologies (or technology combinations) in the system (US EPA, 1993). To simulate

the impacts of CSOs, the following scenarios were studied.

1) The impact of the load on the receiving water quality: By altering CSO load
scale in the calibrated model, results can simulate the impact of CSO loads on
the receiving water quality.

2) The impact of the receiving water flowrate on the water quality:
High-flowrate in receiving waters may dilute the CSO load.

3) Spatial effect of CSO loading: By setting only one CSO discharge point in the
calibrated model, a check can be made of the spatial distribution of the
pollutants in the receiving water.

4) Temporal effect of CSO loading: By setting only one CSO discharge event in
the calibrated model, an observation of the temporal variation of the
constituents during the simulation period can be made.

Table 6.1 summarizes the scenarios, which were studied in this research.

6.2 Water Quality Criteria and Critical Conditions

Prior to investigation of the impact of combined sewer discharges on receiving water,

the water quality criteria and critical condition for the river studied must be determined

for use in the water quality model. Water quality criteria are the references that can be

used to evaluate the effects on receiving waters and the worst water quality situation can

be produced under the critical condition.



Table 6.1 Summery of Simulation Scenarios and Related Methods
Objective Sub-objective Method Scenario Applied pollutants

DO, BOD, NH 3-N,
FC, Hg

The impact of load
on receiving water
quality

The impact of CSO loads on
receiving water quality

Alter scale factor of load input in the
calibrated model

S1-1: load unit * 0
S1-2: load unit * 1
S1-3: load unit * 5
S1-4: load unit * 10

Effects of the sources of
pollution on water quality

Alter loading source (CSO and WWTP)
in the calibrated model

S2-1: No load DO, BOD
S2-2: W/O CSO
S2-3: Original
S2-4: No treatment

Effects of initial concentration on
predicted concentration

Alter initial concentration in the
calibrated model

S3-1: Original Hg
S3-2: Initial conc. * 2
S3-3: Initial conc. * 0.5

The impact of
receiving water
flowrate on
receiving water
quality

The impact of stream flowrate on
water quality

Alter scale factor of flowrate input in the
calibrated model

S4-1: Original DO, BOD, NH 3-N,
FC, HgS4-2: Flow function * 0.1

S4-3: Flow function * 0.5
S4-4: Flow function * 2
S4-5: Flow function * 10

The impact of geometric data on
predicted concentration

Simulate flowrate scenarios without
modifying geometric data

S5-1: Original BOD
S5-2: Flow function * 0.1
S5-3: Flow function * 0.5
S5-4: Flow function * 2
S5-5: Flow function * 10

Spatial distribution
analysis

The spatial distribution of
pollutants after CSO discharges

Simulate pollutant distribution w/ and
w/o load discharged in a sole location

S6-1: W/O CSO load FC, Hg
S6-2: W/ 	 CSO load

The impact of tidal dispersion on
pollutant spatial distribution

Simulate pollutant distribution w/ and
w/o load under no dispersion condition

S7-1: W/O CSO load FC
S7-2: W/ 	 CSO load

Temporal variation
analysis

The temporal variation of
pollutants after CSO discharges

Simulate pollutant variation with various
magnitude of loads discharged in a sole
location and storm event

S8-1: load unit * 0 Hg
S8-2: load unit * 1
S8-3: load unit * 5
S8-4: load unit * 10

The temporal variation of
pollutants after CSO discharges
under low flowrate

Simulate temporal variation scenarios
under low flowrate

S9-1: load unit * 0 Hg
S9-2: load unit * 1
S9-3: load unit * 5
S9-4: load unit * 10



125

6.2.1 Water Quality Criteria

A water quality criterion is the concentration of a water quality measure that will meet a

specific water use (US EPA, 1979). Unlike a water quality standard, which is the

translation of a water quality criterion into a legally enforceable mass discharge or

effluent limitation, a water quality criterion is based upon the purpose of water use.

Different purposes of water uses have different levels of water quality criteria. For

instance, the water quality criterion for drinking water must have higher water quality

demand than the water for irrigation.

According to the Surface Water Quality Standards of New Jersey (NJDEP, 1985),

surface water is divided into different classifications based upon their applied area, which

includes fresh water, pinelands waters, saline waters of estuaries, and coastal saline

waters. Each classification also defines various designed uses of the waters. For example,

fresh waters are used for maintenance, migration and propagation of the natural aquatic

biota; pineland waters are the source for cranberry bog water supply and other

agricultural uses. Water quality criteria are then established based upon the applied area

and designated uses of the surface water. Table 6.2 summarizes the water quality criteria,

which includes DO, FC, and mercury for various classifications.

This approach for water quality criteria classification is not generally feasible

because of the apparent difficulty in identifying natural background conditions.

Therefore, in DO evaluation, the US EPA suggested a single minimum concentration of 5

mg/L at any time, instead of the use of a complicated classification, which would be

enough to protect the diversity of aquatic life. In this study, 5 mg/L was used as a primary

criterion to evaluate the DO condition in the surface water.
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Table 6.2 Surface Water Quality Criteria of New Jersey

Substance Criteria Classification a

1.Dissolved Oxygen (mg/L) i. Not less than 7.0 at any time

ii. 24 hour average not less than 6.0. Not less
than 5.0 at any time.

iii.24 hours average not less than 5.0. Not less
than 4.0 at any time.

iv. Not less than 4.0 at any time.

v. Not less than 5.0 at any time.

vi. Not less than 4.0 at any time.

Vii. Not less than 3.0 at any time.

FW2-TP

FW2-TM

FW2-NT

Tidal portions of FW2-NT

SC

SE2

SE3
2.Ammonia (mg/L) i. 0.5 FW2-TP
2.Fecal Coliform (cell/100ml) i. Fecal coliform levels shall not exceed a

geometric average of 50/100m1.

ii. Fecal coliform levels shall not exceed a
geometric average of 200/100m1 nor should
more than 10 percent of the total samples
taken during any 30-day period exceed
400/100m1.

iii.Fecal coliform levels shall not exceed a
geometric average of 770/100m1.

iv. Fecal coliform levels shall not exceed a
geometric average of 1500/100m1.

Within 1500 feet of shore-
line in SC Waters

FW2, SE1, and SC 1500
feet to 3 miles from the
shoreline.

Tidal portions of FW2-NT,
SE2

SE3

3. Mercury, Total (ug/L) i. 2 FW2

Source: New Jersey Department of Environmental Protection (NJDEP). Surface Water Quality Standards,
N.J.A.C. 7:9-4.1 et seq.  Division of Water Quality, NJDEP.
a. FW: fresh waters. SC: coastal saline waters. SE: saline waters of estuaries. TP: trout production. TM:

trout maintenance. NT: nontrout waters.
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6.2.2 Critical Conditions

The critical environmental conditions must be determined first before their use in the

model interpretation. These conditions include background water quality, flowrate, wind

speed, incident light, and temperature. Depending on the parameter of concern, the

environmental conditions that are critical vary considerably. Table 6.3 outlines the

critical input conditions required for each model. Even though the same input factors may

be critical for two or more water quality parameters, they can act on those parameters in a

different manner. For example, dissolved oxygen parameter is most adversely affected by

high temperatures when biochemical rates are maximal and reaeration is minimal at low

wind speed. The impact of fecal coliform on water quality, on the other hand, is most

severe under the conditions of low temperature, which would cause minimal die-off, and

high wind speed, which could result in rapid transport to a sensitive area in the water

system (Moffa et al., 1980).

Table 6.3 Critical Environmental Conditions for Water Quality Models

Critical Input

Condition
Type of Water Quality Model

DO FC Mercury

YesTemperature Yes Yes
Fiowrate Yes Yes Yes
Wind Speed Yes Yes Yes
Light Intensity No Yes No
Initial Concentration Yes Yes Yes

Critical water temperature depends on the locale as well as the parameter of

concern. Information regarding critical water temperature in this study was obtained from

USGS. It should be noted that for some parameters, low temperature is critical, but for

others, higher temperatures will have a greater water quality impact. 20°C and 26°C were
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used as low and high critical temperatures during the summer period (July to October) in

this study.

The volume of streamflow (the dilution factor) is another critical variable in

determining the concentration of pollutants in receiving water. Basically, the worst-case

conditions are observed at the period of low flow in the stream channel. For the lower

Hudson River section, according to the USGS surface water data, 24.3 m 3/s was the

critical low flowrate during the summer period.

6.3 The Impacts of CSO Load

The first goal of the study is to determine the impact of CSO loads on receiving water. At

the same time, the predicted result can predict whether this load violates water quality

criteria. Based on the previous studies, CSO loads vary from storm to storm and site to

site. In other words, they are site specific and highly variable. CSO load could also be

affected by the technologies employed in CSO control. Lack of a sufficient CSO control

system would discharge the CSO into the receiving water and impair the water quality.

Other conditions that may cause unexpected CSO loads discharge include insufficient

treatment capacity or non-treatment conditions. Since the presence of CSOs occurs at the

time that the flowrate exceeds the capacity of the combined sewer systems or wastewater

treatment facilities, how much a CSO will discharge is related to the capacity and

operation of the corresponding control facilities. This could happen during heavy storms,

power failures, or when the wastewater water treatment facility is out of order. If these

should happen, the receiving water quality will deteriorate accordingly. Meanwhile, the
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critical capacity of wastewater treatment in treating CSO could be simulated in different

CSO load scenarios.

Based on the calibrated water quality model, the CSO loads were changed

through four levels: no CSO load, original CSO load, and 5 times and 10 times the

original CSO load. All the other parameters and variables were kept the same as the

calibrated model. Other than the FC model, which was simulated for only two months

(7/12/95 ~ 9/19/95) due to limited field data, both the EUTRO and Mercury models were

simulated three and half months (7/12/95 ~ 9/19/95). The simulation of the mercury

model is used for sensitivity analysis only.

Figure 6.1 presents the load impacts on DO concentrations. In general, the change

of CSO load has little effect on the DO level. Figure 6.1 shows that roughly the same

predicted DO concentrations were observed for all the load scenarios. From mid August

to mid September, the DO concentration rises gradually from 5.1 mg/L to 6.5 mg/L.

After that, the DO level drops back to 5.1 mg/L in the following month, from mid

September to mid October. At the late simulation period, DO dramatically increases 2.4

mg/L in concentration to 7.5 mg/L in half a month.

The Impact of CSO Loads on DO Concentration

Figure 6.1 The Impact of CSO Loads on DO Concentration.



130

Figure 6.2 The Flowrate of the Mainstream.

The variation of the DO concentration during the simulation period is affected by

several factors, which include reaeration of the river, dispersion caused by tides and the

stream flowrate. Among these, flowrate is the probably most significant factor in this

study. Figure 6.2 shows the variation of the mainstream flowrate. The flowrate increased

slightly from 150 m 3/s to 200 m 3/s during mid August to late September. After

fluctuating for a short period of time, the flowrate rose significantly to a value over 1800

3/s  in the next 15 days. It is observed in Figure 6.2 that the stream flowrate has a

similar pattern as the DO and the DO changes are roughly proportional to the stream

flowrate.

Comparing the predicted curves with and without CSO loads, the concentration of

dissolved oxygen drops slightly when the combined sewer overflows discharge into the

river, which started in mid September. The same phenomenon is seen when the

discharges are 10 times that of the original. In addition, the modeling result shows that

the DO levels vary between 5 mg/L to a value close to 8 mg/L. Based on the water
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quality criteria for DO for the surface water, 5 mg/L, the DO level is not a water quality

concern for the study area. This means either that the load is too small to have any effect,

or the reaeration of the Hudson River is large enough to replete the DO depletion.

Unlike the DO curves, the concentration of CBODu (represented as BOD in the

following paragraphs) varies much more in response to CSO discharges. Figure 6.3

shows the simulations for the river with and without the introduction of CSO. The

appearance of peaks under CSO load conditions in Figure 6.3 reveals that these peaks are

the result of CSO discharges by comparing the curves with no CSO load and with CSO

load. In addition, by inspecting these curves with input load data, the peaks occur at

exactly the same time when the CSO loads were introduced. These peaks also indicate

that the variations of BOD level are proportional to the magnitude of the CSO load. BOD

concentration would increase with a value of 1.0 and 0.5 mg/L if 10 and 5 times the

original CSO load were discharged into the river, respectively. However, this occurrence

is temporary. These peaks would show only in a short period of time. The BOD

concentration will go back to the original level once the CSO load stops. This

phenomenon will be discussed more later in following section.

The Impact of CSO Loads on BOD Concentration

Time - August 1995 - October 1995

Figure 6.3 The Impact of CSO Loads on BOD Concentration.
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Figure 6.4 shows the impacts of CSO load on NH3-N concentration. Similar to the

DO curve, the change of CSO load has little effect on the ammonia curve. It can be

observed from the figure that the predicted NH3-N concentrations for all the load

scenarios are almost the same. The ammonia concentration rose to a value close to 0.5

mg/L during the period from late September to mid October primarily due to the low

stream flowrate during that period. According to the water quality criteria of ammonia in

fresh water in the tidal portion, 0.5 mg/L, the ammonia concentration is lower than the

water quality criteria during the simulation period even when 10 times the original CSO

load introduced.

The Impact of CSO Loads on NH3-N Concentration

Figure 6.4 The Impact of CSO Loads on NH3-N Concentration.

According to the simulation results, the CSO loads have little effect on the

BOD/DO/NH3-N system in the study area. In other words, CSO discharge is not a

dominant source of the conventional pollutants in the Lower Hudson River. This finding

is in agreement with another Hudson River water quality investigation report (Brosnan

and O'Shea, 1996a). Table 6.4 presents the sources of the pollutants in the Hudson

Estuary considered in that report. It illustrates that the relative significance of pollution

sources is dependent on which pollutant is considered. The dominant load source of BOD
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and nitrogen is municipal effluents, which contribute 58 and 63 percent of the total load

of these two pollutants, respectively. The DO and BOD levels have improved

considerably after the wastewater treatment processes were upgraded during the period

from 1979 to 1994. Since CSO only discharges 19 % of the BOD load and 2 % of the

nitrogen load, after interception and treatment, it does not change the DO and NH 3-N

level enough to be of concern.

Table 6.4 Pollutant Loadings to the Hudson Estuary (in Percent) a

Parameter Tributary Municipal Effluents CSO Storm water Other b Total Load
'Flow 81 15 1 4 < 0.5 765 m 3s -1

Fecal coliform 2 < 0.1 89 9 < 0.1 2.1x10 16 d -1

BOD 16 58 19 5 2 kg d -1 

2.4x106 kg d^-1
_5.7x105

TSS 80 11 5 3 1
Nitrogen 29 63 2 2 4 2.8x105 kg d -1

Phosphorus 16 75 4 4 < 0.5 2.3x105 kg d-1
Source: T. M. Brosnan and M. L. O'Shea. "Sewage abatement and coliform bacteria trends in the Lower
Hudson-Raritan Estuary since passage of the Clean Water Act", Water Environment Research. 68(1): 25-
35.
a. Modified from HydroQual (1991) based on data from the late 1980s. Values across may not equal

100% due to rounding.
b. Other = industrial discharges, landfill leachate, and direct atmospheric deposition combined.

To further study the DO/BOD concentration in the study area with emphasis on

loading sources, additional simulations, using the calibrated EUTRO model with various

pollutant loads, were performed. The first condition, called the no load condition, is

defined as a state where no pollutant is released during the simulation period. Under this

condition, no loads from CSO and WWTP are discharged if sufficient control technology

and advanced treatments were used. The second condition, called the CSO controlled

condition, assumes that the municipal WWTP effluent is the only pollution source. No

CSO is discharged if a good CSO control program were implemented. The original

condition is set as the third condition, in which both CSO and WWTP contribute
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pollution in the calibrated model. The last one is the no treatment condition, which

assumes that WWTPs are out of order under unexpected conditions, such as power

failure, and all the sanitary wastewater and CSO discharge into the receiving water

without any treatment. These four different pollution load conditions were run and the

results are compared in Figures 6.5 and 6.6.

The purpose of this simulation scenario is to find the impacts of the sources of the

load. Figure 6.5 shows that the curve under the no load condition has the lowest BOD

concentration since there is no pollution discharge in the study area, as expected. The

difference of the simulation results between the first two conditions represents the impact

of the municipal WWTP. A gap, with an average value of 0.4 mg/L BOD, is found

between the curves under the no load condition and the CSO controlled condition. This

gap shows how much the municipal WWTP would affect the BOD level in receiving

water.

Figure 6.5 Effect of the Sources of BOD on Water Quality.

The original condition has the same input data as the CSO controlled condition

except that there are additional CSO loads during the simulation period. Figure 6.5 shows

that the curves with the original CSO load and no CSO conditions are almost identical,
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which indicates that the CSO discharge has very small impact. The simulation result

shows that the highest BOD concentration occurs under the 4th condition. When the

WWTP is out of order, an average BOD concentration value of 0.6 mg/L and 1.0 mg/L is

higher than the original and no load condition, respectively. Meanwhile, the difference

between the no treatment and the original condition shows the improvement in water

quality as far as municipal wastewater treatment is concerned.

Figure 6.6 shows the DO variation with various load conditions. DO

concentration decreases with an average value of 0.2 mg/L when municipal effluent is

introduced. This figure also shows that a small difference is observed when CSO loads

are present. This confirms the previous finding that the WWTP load has more influence

on water quality than the CSO load in the study area.

Figure 6.6 Effect of Pollution Sources on DO in River.

The worst water quality condition occurs when there is no wastewater treatment.

Because of the presence of large amounts of untreated wastewater, the DO concentration

drops an average value of 0.3 mg/L below the original condition. Furthermore, it is

observed that DO level was less than 5 mg/L during late August and a short period of

time in October under the no treatment condition. The low DO concentration is primarily
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caused by these unexpected pollutant loads which exceed the repletion capacity from the

reaeration of the Hudson River. According to EPA's DO criteria, 5 mg/L of DO is the

minimum concentration that should be maintained at any given time to protect the

diversity of aquatic life. This indicates a threat to the ecosystem and should be a concern

if this situation occurs often. There are several engineering technologies that can be

utilized to improve the DO. These control measures can be grouped as follows (Thomann

and Mueller, 1987):

1) Point and non-point source reduction of BOD through reduction of effluent
concentration and/or effluent flow.

2) Aeration of the effluent of a point source to improve the initial value of DO.

3) Increase in river flow through low flow augmentation to increase dilution.

4) Instream reaeration by turbines and aerators.

5) Control of SOD through dredging or other means of inactivation.

6) Control of nutrients to reduce aquatic plants and resulting DO variations.

Unlike BOD and nitrogen loading, the pathogen in CSO discharges is the primary

pollutant source. Table 6.4 indicates that combined sewer overflows account for only 1

percent of the total freshwater flowrate but they contribute 89 percent of the total loading

of fecal coliform bacteria. In other words, fecal coliform in the Lower Hudson River

mainly comes from CSOs and the amount of CSO discharges would affect the FC level

considerably. The simulation result from the water quality model, shown in Figure 6.7,

also reflects this condition. Even though there was only one storm event, occurring on

September 19, during the simulation period, a peak showing a drastic increase of FC

concentration is seen in the plot.
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Figure 6.7 The Impact of CSO Loads on FC Concentration.

This figure also shows that since there was no other point and non-point source

pollution in the river, the FC concentration kept a constant value of less than 100

cell/100ml until the CSO discharges into the river. Similar to the BOD plot, the

concentration of fecal coliform increases during the time when the CSO discharges and it

increases proportionally with the quantity of the CSO load. With the original CSO load,

the FC concentration increases to a value close to 250 cell/100ml. When the CSO load

rises 5 times the original, the FC concentration increases from 250 to 1,250 cell/100ml.

If 10 times the original CSO load were let in, the FC level increases to a concentration

close to 2,500 cell/100ml. Compared with the BOD simulation result, which has only 33

percent concentration increase when 10 times the original CSO load was admitted, the FC

response is more severe. It is found that 10 times the original FC concentration can be

achieved if 10 times the original CSO load were added.

Bacterial pollution of water has been a factor in relation to aquatic life, not

because of its effects on the organisms themselves but rather because of the danger to

human beings from eating raw shellfish or by contaminating the food or drink through
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careless actions. Different levels of FC show various degrees of impairment on water

quality. The stringent condition in the allowable concentration for shell fishing (FC < 14

cell/100ml) is aimed at protecting the consumer of clams and oysters from communicable

diseases such as hepatitis and gastrointestinal disorders. Since shellfish filter the

overlying water and concentrate bacteria as part of the feeding process, the low

concentration of bacteria in the water column is intended to result in an acceptable level

in the organism itself. The simulation result shows that the FC concentration in the base

flow condition (without CSO), which is between 20 to 100 cell/ml, is much higher than

this criterion, and shell fishing should be limited in this area. On the other hand, this

concentration is allowable for primary contact recreation such as bathing and water

skiing, since it is lower than the criteria 200 cell/100ml. However, the FC concentration

rises to 250 cell/100ml under the original CSO load condition and only secondary contact

recreation such as boating and fishing is permitted. According to the water quality criteria

with respect to fecal coliform, the FC concentration should not exceed 770 cell/100ml

(7.7 cell/ml) in freshwater in the tidal portion of the water for all the contact reactions.

This did not happen during the original CSO load condition. However, based upon the

simulating result, the FC concentration is expected to be higher than the FC criteria when

3 times of the original CSO load discharges in the water system if all the other

environmental parameters remain the same.

In the case where bacteria reaches to an actionable level, caused by CSO

discharge, disinfection will become a necessary component in a CSO control system.

Disinfection, which inactivates or destroys microorganisms in overflows, can be

accomplished most commonly through contact with chlorine, although a variety of other
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disinfection technologies are available without chlorine. For disinfection of CSOs, liquid

sodium hypochlorite is the most common technology. Other alternative technologies

include gaseous chlorine, liquid sodium hypochlorite, chlorine dioxide, ultraviolet

radiation, and ozone. A comprehensive CSO control program is likely to incorporate one

or more technologies. In reality, disinfection of CSOs often requires some level of solids

reduction by one of the other technologies, such as coarse screening and swirl/vortex, for

maximum effectiveness and reliability.

Figures 6.8 and 6.9 show the simulation results for the study of the impact of

mercury in CSO in both water layers and sediment layers. It should be noticed that,

except for the CSO loading data presenting the real condition in Hudson River, the

mercury model in this study was created based on the pseudo initial and boundary

concentrations, which were taken from historic water quality data of the Hudson River

and a similar mercury simulation model (Ambrose and Wool, 2002). The initial Hg

concentration was set at 0.3 μg/L (0.3 ppb) in the water column and 6.0 ng/g (6.0 ppb) in

the sediment. The model predicted value should only be used as a reference because of

the lack of calibration.

Similar to the FC simulation result, the Hg concentration responses to the CSO

loads in both the water and sediment layers with respect to the time of discharge and the

magnitude of the load. There are seven peaks shown in the plots. Each peak corresponds

to a storm event during CSO discharges. Since CSO is the only mercury-loading source

in this study, the Hg concentration in the water layer maintains a value of less than 500

ng/L (0.5 ppb) without much variation before CSO discharges. When the original CSO

load is applied to the system, mercury concentration increases, depending on the quantity
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of CSOs discharged in the storm event, to a value in a range of 1,000 to 2,500 ng/L (1.0

to 2.5 ppb), which is a 0.5 to 2.0 ppb increase in concentration compared with the no

CSO load condition. It was found that the Hg concentration increment is proportional to

the magnitude of the CSO loads. When 5 times the original CSO loads discharges into the

river, the Hg concentration increment will rise to approximately 5 times, too, with

mercury concentration between 4,000 to 10,000 ng/L (4.0 to 10.0 ppb) in the water layer.

If CSO loads increase to 10 times the original load, the mercury concentration increment

would also increase 10 times, and the Hg concentration in the water layer could be higher

than 20,000 ng/L (20 ppb) in the largest storm event during the simulation period.

The Impact of CSO Loads on Hg Concentration (Water Layer)

Figure 6.8 The Impact of CSO Loads on Mercury Concentration (Water Layer).

After pollutants enter the water body, part of the contaminants may settle in the

sediments. Although many of the organic contaminants do degrade with time, the rates of

degradation are generally slow and these toxicants tend to remain in the sediments for

long periods of time, thus increasing their impact on the environment. Metals, as

elements, do not degrade (US EPA, 1991). By comparing simulation plots of water layers
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and sediment layers (Figures 6.8 and 6.9), flatter peaks over longer periods of time are

observed in the sediment layer, but not in the water layer. This observation reveals that

metals such as Hg and other toxic substances are easier to dilute or transport in the water

phase than in the sediments. Furthermore, unlike the fluctuation of Hg concentration in

several peaks in the water layer plot where the Hg concentration goes back to the original

level once the CSO is removed, the Hg concentration in the sediment layer plot increases

gradually and consistently from 20 to 45 ng/g (20 ppb to 45 ppb) after a series of CSO

discharges. This indicates that mercury would stay in the sediment layer with

accumulated concentration. This reveals that water quality is affected by Hg in a short

term, but the sediments will be contaminated for much longer periods of time. Since

some pollutants, including organic chemicals (pesticides, volatile and semi-volatile

compounds) and toxic metals, are conservative in the sediments, they have been used to

link with pollution load data to investigate the primary pollutant source by spatial

distribution analysis recently (Iannuzzi et al., 1997). This application will be discussed

further in the spatial distribution analysis later.

Impact of CSO Loads on Receiving Water Quality (Sediment Layer)

Figure 6.9 The Impact of CSO Loads on Mercury Concentration (Sediment Layer).
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The toxic substance water quality problem can therefore be stated as the discharge

of chemicals or metals into the aquatic environment with concentrations in the water or

aquatic food chain at levels that are determined to be toxic, in a public health sense or to

the aquatic ecosystem itself, and thus may interfere with the use of the water body for

water supply or fishing or contribute to ecosystem instability (Thomann and Mueller,

1987). The water quality level of concern for mercury, resulting mainly from industrial

activities such as electroplating, battery manufacturing, mining, smelting, and refining, is

2.0 ppb for the fresh water in New Jersey. The simulation result shows that the Hg

concentration exceeds the level of concern when CSO discharges during the storm

events. Since the Hudson River has been contaminated by toxic chemicals and metals,

New York and New Jersey have issued fish and crustacean eating advisories and

prohibited the sale, consumption, and/or harvesting of other fish, crustacean, and shellfish

(NY/NJ HEP COMP, 1996).

According to the simulation result, the Hg concentration in the Hudson River

violates the water quality criteria only when CSO discharges during the storm events. The

most efficient way to remedy the high Hg concentration contaminating the Hudson River

is to reduce the magnitude of CSO discharges. For example, under the original CSO load

condition, the Hg concentration will not violate the Hg criteria if only 85% of the original

CSO is discharged into the river. To minimize the quantity of CSOs discharging to the

receiving water, a variety of control technologies, such as in-system controls/in-line

storage, near-surface off-line storage/sedimentation, deep tunnel storage, and swirl/vortex

technologies, can be utilized to achieve the purpose. However, there is no standard for

selection and design control programs for all the CSO conditions. CSO control
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technologies are site specific due the various factors that will affect the selection of these

technologies. These factors include system characteristics, performance goals, and CSO

quality and treatability.

However, since the initial Hg concentrations in both water and sediment layer in

this model are estimated values obtained from other reports, they may not represent the

real Hg concentration in the Hudson River. To improve the applicability of the mercury

model, two more scenarios with various initial Hg concentrations are simulated. Other

than changing the initial Hg (II) concentration in the receiving water, which was 0.3 ppb

in the water column and 6.0 ppb in sediments, to 2 times and one-half of the original

concentration, all the other input data remain the same. Figures 6.10 and 6.11 show the

effects of the initial Hg concentration in the receiving water on water quality.

It is seen in Figure 6.10 that concentration gaps exist between predicted curves

and that these gaps are proportional to the initial Hg concentrations. For example, a

concentration difference exists with an average value of 0.3 ppb and 0.15 ppb, between

the original initial concentration condition and 2 times and one-half of the original

condition, respectively. However, the predicted Hg concentrations all have the same

variation patterns under all three conditions in both the water and the sediment layer. This

means that the model still reflects the water quality conditions in response to the pollution

loads, though it lacks calibration.



Figure 6.10 Effect of the Initial Hg Concentration on Water Quality (Water Layer).
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Figure 6.11 Effect of the Initial Hg Concentration on Water Quality (Sediment Layer).

Sediments are a very important part of aquatic ecosystems and they can become

problematic under conditions where contaminants can accumulate in sediments to the

point where they endanger human and/or ecosystem health. Contaminated sediments

threaten human health when humans drink water contaminated with sediments, eat

organisms contaminated through bioaccumulation in the food chain, or come into direct

dermal contact with contaminated sediments. Contaminants impact ecosystems by

increasing the mortality rates and/or by decreasing the growth or reproductive rates of

susceptible populations. These impacts can be transferred throughout the ecosystem via

food chain links and other ecological mechanisms (US EPA, 1991).
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Typical trace and toxic metal contaminants, which may be seen in CSO, include

copper, zinc, cadmium, lead, chromium, nickel, arsenic, selenium, mercury, and

sometimes others. According to the New York-New Jersey Harbor Estuary Program Final

Comprehensive Conservation and Management Plan (NY/NJ HEP CCMP), the primary

toxic metals loaded in the Hudson River are copper (1342 kg/day), nickel (526 kg/day),

lead (1029 kg/day), and mercury (9.5 kg/day). The plan also states that CSO is one of the

primary pollution sources of these contaminating metals. CSO contributes 14%, 4 %,

12%, and 11% in total copper, nickel, lead, and mercury load in the Hudson River,

respectively. These elements are usually present in soils and sediments at low

concentrations from natural sources. It is when one or more of these contaminants is

present at an elevated concentration that they pose a potential problem. Real problems

exist if these excess levels of metals are released to the water column or are present in

forms readily available to plants and animals that come in contact with the sediment

material.

Metals may be mobilized or immobilized if the environment of the sediment or

dredged material changes. Therefore, understanding these changes and interactions

between sediments and contaminants are important to the selection and management of

remediation alternatives, which may include no action, treatment, containment, and

disposal, to minimize contaminant release. Thus, when people try to solve the problem of

excessive sedimentation disrupting shipping in the Hudson River by use of maintenance

dredging, the potential problem of released contaminants from the sediment should be

considered in weighing the pros and cons of remediation decisions.
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In summary, the pollutant concentrations in water are affected by the quantity of

the CSO load and they change proportionally. However, due to the relatively smaller load

compared with other pollution sources and the large stream flow, the concentration of

conventional pollutants, which include DO and CBODu, do not change much with

increasing CSO load. On the other hand, CSO is the dominant source of FC

contamination based on the simulation result. The FC concentration can increase to 10

times the original concentration if 10 times the baseline CSO loading is introduced. It is

also calculated that water quality criteria for FC will be violated if 3 times the original

CSO loads are placed in the river. In the Mercury model, the concentrations of mercury

in both water and sediment layers are proportional to the CSO loads entering the system.

The result also reveals that mercury, discharged along with the CSOs, will be diluted or

transported in the water layer after a short time but it will accumulate in the sediment

layer over a longer period of time.

6.4 The Impact of Receiving Water Flowrate

"Dilution factor", the ability to minimize the impacts on the receiving water system, is

an important element when investigating water quality in a river or estuary system, where

the water volume has relatively larger variations than other water systems, such as lakes

or ponds. Based on the perspective of mass balance, the pollutant concentration in the

receiving water is related to the corresponding water volume in the segments. A small

river and a high-flowrate stream would not show the same effect when the same pollutant

load is being discharged as seen with the Lower Hudson River model. By the same token,

same discharge loads will have more severe pollution problems in drought than under
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normal conditions. In this section, the effects of river flowrate were investigated by the

following approach.

Four models with various flowrate conditions were modified from the calibrated

models for each module. The mainstream flow function of the calibrated EUTRO model

was set as the original condition. Four degrees of scale factors, which include 0.1, 0.5, 2,

and 10, are used for fraction or multiplication of the original flow function to represent

four degrees of flow conditions: very low, low, high, and very high flowrate,

respectively. The segment geometric input data, which include depth, volume, cross-

section area, and stream velocity, were modified in accordance with the various

flowrates. The method to define the relationship among velocity, depth, and stream flow,

WASP6.1, follows the same implementation in QUAL2E (Brown and Barnwell, 1987).

The velocity (v) and depth (D) are related to stream flow (Q) through power functions,

for instance, v = aQb and D = cQd . Since the hydraulic radius is approximately equal to

the depth for wide streams, the exponents (b and d) for rectangular cross sections can be

approximated to be 0.4 for velocity and 0.6 for depth, and the discharge coefficients (a

and c) can be calibrated by the original flow function. New segment volume was derived

by multiplying the new depth with the original width and length. In the "Exchange"

group, cross-section area was calculated by multiplying the new depth by the original

width. Except for the mainstream flowrate and geometric data, all the other boundary

conditions and environmental parameters were kept the same as the calibrated model.

Figure 6.12 shows how the flowrate will affect the DO level in the receiving

water under five different stream flows. It has been discussed in a previous section that

the effects of CSO loads on the receiving water are represented by the appearance of
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peaks in predicted curves. From the plot, no isolated peak is observed in any flowrate

conditions as shown in Figure 6.8. This validates the fact that CSO loads have only small

effects on the DO levels in the Lower Hudson River. Comparing the five curves in Figure

6.12, four of five scenarios have similar values and variation patterns, except for the very

low-flowrate condition (one-tenth of the original flowrate). Despite the similar variation

pattern as other scenarios, DO under one-tenth of original flowrate condition drops 0.5 to

1.0 mg/L in concentration compared with the other flowrate conditions. In addition,

during most of the simulation period, the concentration of dissolved oxygen is less than 5

mg/L under this very low flowrate condition. According to the US EPA's DO criteria, 5

mg/L is the threshold concentration, which normally might not be deleterious to fish life.

Waters that do not exceed this value should be suitable habitats for mixed fauna and

flora. This means that low DO concentration, which may occur during drought, will have

the potential for harming fish. Figure 6.12 also shows that the DO concentration in the

Hudson River remains approximately the same with a value above 5 mg/l, when the river

flowrate varies from half to 10 times the present flow.

The Impact of Stream Flowrate on DO Concentration

Figure 6.12 The Impact of Stream Flowrate on DO Concentration.
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Figure 6.13 shows the impacts on BOD level due to change of the stream

flowrates. In general, the BOD concentrations in the river are approximately the same for

most of the flowrate conditions except for the very low flowrate scenario. The BOD

concentration under the very low flowrate condition is much higher than those under the

other conditions considered. This figure shows that even when the flowrate drops to half

of its original, the BOD concentration will not change much. Only when the flowrate

drops to one-tenth of the original, then the BOD level increases. The dilution of CSO

loads by the river flowrate can be seen from Figure 6.13. The peaks, which occur due to

the presence of the CSO loads, appear only under the very low flowrate condition. Since

the stream has enough capacity to dilute the pollutant under other flowrate conditions, the

peaks do not appear under other conditions.

The Impact of Stream Flowrate on BOD Concentration

Figure 6.13 The Impact of Stream Flowrate on BOD Concentration.

According to the simulation results of DO and BOD, receiving water quality is

affected by the stream flowrate only at very low flowrate condition. A similar finding has

been reported in other studies. USGS and the Indianapolis Department of Public Works

began a study to evaluate the effects of combined sewer overflows to Fall Creek on the

White River in 1986. They describe the effects of CSO on the water quality of Fall Creek
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during the summer of 1987 by comparing the water quality during base flow with that

during storm events. Fall Creek, compared to the Hudson River, is a relatively small

stream, with an average monthly flowrate of 1.13 m 3/s during the summer period.

According to the investigation report (Martin, 1995), concentrations of dissolved oxygen

in Fall Creek were less than the Indiana minimum ambient water quality criteria of 4.0

mg/L during all storm events, although only about 36.6 percent of the typical Lower

Hudson River CSO loads were discharged.

Figure 6.14 shows how the flowrate will affect the NH 3-N concentration in the

Lower Hudson River under various flowrate conditions. In general, the ammonia

concentration is inversely proportional to the stream flowrate. The highest concentration

occurs when the stream flowrate drops to one-tenth of the original. Under such a

flowrate, the NH 3 -N concentration rises to a value over 0.6 mg/l, and it violates the water

quality for ammonia, 0.5 mg/l in early October. This means that the low flowrate will

increase the probability for eutrophication. Since municipal effluent is the dominant

pollution source of nutrients, WWTPs should provide a higher degree treatment for

ammonia during the drought, if possible.

The Impact of Stream Flowrate on NH3-N Concentration

Figure 6.14 The Impact of Stream Flowrate on NH3-N Concentration.
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Another interesting point was found while simulating various flow conditions. As

mentioned in an earlier part of this section, the segment geometric parameters were

modified in accordance with the flowrate when different flow conditions were simulated.

Since the quantity of the initial contaminants in the receiving water is related to the water

volume in the segments, using the model without modifying the geometric data will cause

fallacious predictions for pollutant concentrations. Figure 6.15 shows the simulation

without modifying the geometric data. Comparing with Figure 6.13, the BOD

concentration responses differently to the flowrate. When flowrate increases, the BOD

concentration increases proportionally, which is contrary to common sense. This example

shows the importance of modifying geometric data when conducting simulation with

various flowrates.

Figure 6.15 BOD Concentration Simulated Without Modifying Geometric Data.

Figure 6.16 illustrates the effect of stream flowrate on fecal coliform

concentration. The peaks present on September 18 are the result of CSO discharge. This

figure shows that FC concentration maintains a value of less than 100 cell/100ml before

the appearance of the peak. The peak appears in all five simulated conditions and the

height of the peak is related to the stream flowrate. For instance, FC concentration



increases from 100 cell/100ml to 330 cell/100ml under the original flow condition. When

the flowrate is one half of its original, it rises to a concentration of close to 500

cell/100ml, which, though high, is still below the FC water quality criteria, 700

cell/100ml. If the flowrate drops to one-tenth of the original flow, the FC concentration is

over 1000 cell/100ml and exceeds the criteria. On the other hand, high stream flowrate

shows its ability to "dilute" the negative effect from CSO discharges. With the same

amount of CSO load, the concentration of FC decreases from 330 cell/100ml to 230

cell/ 100m1 and 130 cell/100ml when the flowrate is twice and ten times the original

flowrate, respectively.

Figure 6.16 The Impact of Stream Flowrate on FC Concentration.

Figures 6.17 and 6.18 are the plots that show the stream flowrate affects the

mercury concentrations in the water layer and the sediment layer, respectively. Figure

6.17 shows seven peaks, which represent seven individual storm events that occurred

during the simulation period. Before CSO discharges, the mercury concentration

maintained a value of less then 2,000 ng/L (2 ppb), which is the surface water quality

criteria for Hg. A condition similar to the FC simulation is observed here in that the Hg
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concentration increases with decreasing stream flowrate. In the original flow condition,

the mercury concentration increases from a value of less than 500 ng/L (0.5 ppb) to 1,000

to 2,300 ng/L (1.0 to 2.3 ppb) depending on the quantity of CSO loads during storm

events. When the flowrate is one half of the original, the concentration of mercury rises

to values between 1,400 and 3,500 ng/L (1.4 and 3.5 ppb). If the flowrate drops to one-

tenth of the original, the mercury concentration increases to values between 3,100 to

8,600 ng/L (3.1 to 8.6 ppb). Unlike the response to the CSO loads, the Hg concentration

increment is inversely proportional to the stream flowrate. Under each condition, the

mercury concentration is higher than the water quality criteria for mercury. The flow

conditions that keep the Hg concentration under 2 ppb are when the stream flowrate is 5

and 10 times the original flow. This shows that the loaded mercury from CSO can be

diluted by high stream flow.

The Impact of Stream Flowrate on Hg Concentration

Figure 6.17 The Impact of Stream Flowrate on Mercury Concentration (Water Layer).

Figure 6.18 shows that the Hg concentration in sediment increases gradually after

CSO is introduced and most Hg is accumulated in sediment. Comparing the mercury
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concentration in sediment and water layers, the variation of stream flow has a similar

impact on Hg concentration in sediment as in water. By reducing the stream flow to one-

tenth of the original flow, the Hg concentration in sediment increases to a value between

45,000 ng/L to 150,000 ng/L (45 ppb to 150 ppb), which is the same rate of Hg

concentration increment predicted for water layers.

Figure 6.18 The Impact of Stream Flowrate on Mercury Concentration (Sediment
Layer).

The simulations show that stream flowrate plays a much more important role for

unconventional pollutants such as Hg, than it does for DO and BOD. According to the

model results, the concentrations of FC and DO would exceed the water quality criteria

only under the very low flowrate condition. The average flowrate during the simulation

period was 246 m 3/s, thus, the average one-tenth of the original flowrate condition is 24.6

m3/s. Based on the USGS flowrate record of the Hudson River, the lowest monthly

flowrate during the summer (July to October) was 24.3 m 3/s, which is even lower than

the very-low flowrate condition run in this study. Such a low flowrate condition has

occurred occasionally in the past, however, it may happen more frequently in the future

due to greater water demand and drought. Water demand and consumption in industry
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and agriculture usage has increased steadily in the past 20 years. Drought has also

become a common phenomenon in the last few years, perhaps because of the greenhouse

effect. The low stream flow may well become more common in the future. The discharge

of CSO to a low flow stream may be a serious concern in the near future.

The simulation results show that the stream flowrate does have an effect on the

receiving water quality. In general, water quality is deteriorated under the low flowrate

condition, while the high flowrate stream provides some degree of dilution. The DO

level is under 5 mg/L for some of the time when the flowrate is reduced to one-tenth of

the original flowrate. In the meantime, the BOD concentration increases approximately

1.5 mg/L only under the very low flowrate condition. The stream flowrate affects the FC

concentration more than it does DO and BOD. The concentration of FC under the very

low flowrate concentration is 1000 cell/100ml, which exceeds the water quality criteria

(700 cell/100ml). Mercury concentration in water is over the surface water quality criteria

for Hg, 2 ppb, when a CSO discharges. Water quality will get even worse when the

stream flowrate gets smaller. Hg concentration is below the water quality criteria when

the flowrate increases to five and ten times of the original. It was found for mercury that

the variation of stream flowrate has similar impacts on both water and sediment. Under

the same load condition, Hg concentration can increase to 500 percent of the level under

the original flow condition in both layers when the flowrate drops to one-tenth of the

original flowrate.
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6.5 Spatial Distribution Analysis

The purpose of the spatial distribution analysis is to investigate the distribution or

transport pattern of the pollutants in the receiving water after CSO discharge.

Furthermore, the mathematical model can also reveal any correlation between the

pollutant concentration and the distance to the location of the CSO outfall, and the result

can be used to support other related CSO research, such as identification of primary

sources of contamination.

Fecal coliform and mercury were selected as the indicator pollutants for the

spatial distribution analysis, since DO / BOD does not response to CSO discharge as

much as FC and Hg in the study area. To investigate the pollutant distribution after CSO

discharge from a specific location, Segment 15 was selected as the sole discharge point in

the created models, which has been modified from the previous calibrated models. All the

hydraulic and water quality data were the same as those used in the calibrated models

except for the loading data. For the convenience of comparing the impacts of CSO load,

two individual cases, 10 times of the original CSO load and no CSO load conditions,

were simulated. After running the model, the difference of concentration between the two

curves will be the pollutants discharged from CSOs. In the spatial distribution analysis,

the predicted curves are plotted with pollutant concentration versus segments for a

specific date. In this study, September 18 and October 6 were selected as the output dates

for the FC and Mercury models, respectively. The reason for selecting these dates is

because the highest pollutant concentration was obtained on these two dates and they are

the dates right after the largest storm events that occurred during the simulation period.
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The result of spatial distribution analysis of fecal coliform is shown in Figure

6.19. The largest difference of FC concentrations between the two curves is close to 250

cell/100ml. This simulation shows that the FC concentration decreases gradually and

symmetrically from the discharging point (Segment 15) to both the upstream and

downstream of the river. In Segments 14 and 16, the concentration difference between

the two curves is 230 cell/100ml, which is 20 cell/100ml less than that predicted in

Segment 15. In Segments 13 and 17, the concentration difference drops to 200

cell/100ml, which is 50 cell/100ml less than the concentration at the discharging point.

The large amount of pollutant moving upstream suggests that transport by tidal dispersion

affects the spatial distribution of pollutants significantly in this estuary system.

The Spatial Distribution of FC Concentration After CSO Discharges

Figure 6.19 The Spatial Distribution of FC Concentration After CSO Discharges.

To investigate this perspective further, a scenario without dispersion was

simulated. To study tidal effect in WASP models, as mentioned in Chapter 4, a tidally

averaged model was used in this study. This aspect of the model assumes that the inflow

of the tide equals the outflow of the tide within the control volume and that the mixing

caused by the tide can be described by using a dispersion coefficient. To achieve a model
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without dispersion, all the input data were kept the same as in the previous scenario

except that the dispersion function in the "Exchange" group was not used. The

simulation result is shown in Figure 6.20, Comparing Figure 6.20 with Figure 6.19,

reveals two interesting discoveries from the plot. First, unlike the simulation with tidal

dispersion, in which the spread of fecal coliform in both upstream and downstream

directions are the same, the FC concentration drops back to its original level quickly in

Segment 14 (upstream) if transport by dispersion is disabled. This is because

transportation of the pollutant upstream primarily comes from the tidal effect. Without

tidal dispersion, the amount of pollutant transported upstream would decrease

considerably. Second, the FC concentration increases from 3.5 cell/ml in the case with

dispersion to 20 cell/ml in the case without dispersion at the discharging point. This

shows the dilution effect exerted by the tide in the estuary system. This reveals that the

estuary system can accept a much higher pollution loading without affecting aquatic lives

when compared with other types of system without much dispersion. This is the reason

why the water quality criteria in an estuary system usually can be less strict than for other

water systems.

The Spatial Distribution of FC Concentration After CSO Discharges

Figure 6.20 The Spatial Distribution of FC Concentration After CSO Discharges.
(Without Dispersion)
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Similar to what is found in the spatial distribution of fecal coliform, mercury also

shows symmetry in concentration distribution in both the water layer (Figure 6.21) and

the sediment layer (Figure 6.22). The mercury concentration increases from 300 ng/L to

2,350 ng/L (0.3 ppb to 2.35 ppb) in the water layer when CSO discharges, and the Hg

concentration decreases gradually in both the upstream and downstream directions. It is

observed from the figure that the Hg concentration decreased in a segment is related to

the respective of distance to the location of the CSO outfall (Segment 15 in this study). In

the downstream direction, the Hg concentration decreases were 0.16, 0.35, and 0.4 ppb

per segment between adjacent segments from the discharging point (Segment 15) to

Segment 18. The same phenomenon can be also found in the upstream direction. The Hg

concentration decreases were 0.1 and 0.35 ppb per segment in Segments 14 and 13.

The Spatial Distribution of Hg Concentration After CSO Discharges

Figure 6.21 The Spatial Distribution of Mercury Concentration After CSO Discharges.
(Water Layer)
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Figure 6.22 The Spatial Distribution of Mercury Concentration After CSO Discharges
(Sediment Layer).

Figure 6.22 shows that the Hg concentration in the sediment is much higher. The

Hg level rises from 15,000 ng/L to 41,000 ng/L (15 ppb to 41) ppb in Segment 34, which

is the sediment layer beneath Segment 15, and it decreases 4 ppb and 6 ppb per segment

upstream and downstream, respectively.

Comparing the decreasing Hg concentration in water and sediment layers, the

decreasing of Hg level in adjacent segment is much higher for the sediment layer than for

the water layer. This observation suggests that most mercury from the CSO is

concentrated in the areas adjacent to the discharging locations and mostly stays in

sediment due to the lack of dilution or transportation ability. This phenomenon has been

reported in some recent research. Iannuzzi and co-workers (1997) collected sediment

samples along the lower Passaic River in New Jersey and analyzed the priority organic

and inorganic chemicals, which include toxic metals, polycyclic aromatic hydrocarbons

(PAHs), polychlorinated biphenyls (PCBs), pesticides, and other organic chemicals. They

evaluated various chemicals permitted to be discharged to the CSOs and have

demonstrated that many chemicals present in sediments adjacent to these CSOs could be
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directly linked to sources that discharge to the combined sewers. This link provides direct

evidence that the CSOs are the primary source of contamination in sediments near these

outfalls. They also stated that any attempts to remediate surface sediment for the purpose

of improving sediment and water quality cannot be effective until CSOs and other point

and non-point sources of chemicals are adequately controlled. This is an issue of

increasing importance because of the regulatory impetus to "clean-up" contaminated

sediments in many of the industrialized waterways of the U.S. like the Hudson River.

In summary, the results show that tides, which produce large dispersion, have

significant impacts on pollutant distribution in their estuary system as evidenced from the

spatial distribution analysis performed. Comparing the spatial distribution of

contaminants in the water system without dispersion, the pollutant concentration

decreases and spreads symmetrically in both upstream and downstream directions. The

results show that total maximum daily loads (TMDLs) for an estuary system can be

higher than other water systems that do not have such dispersion. It is also concluded that

the linkage between the spatial distribution of contaminants in sediments and the

pollution load data can be used to investigate the primary sources of pollutants.

6.6 Temporal Variation Analysis

It is mentioned in the previous discussion that the impacts of CSO loads on receiving

water quality in water layers are temporal. The increased pollutant concentration will

eventually return to the original condition after a short period of time once the CSOs stop

discharging. The next questions will be: How long will take it to go back to the original

concentration? How does the pollutant concentration vary with time? And, does the
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magnitude of the CSO loads affect the temporal variation pattern? All of these questions

can be answered by the use of temporal variation analysis.

The calibrated Mercury model was selected to be used in this analysis due to the

large response of Hg concentration in the receiving water for CSO discharges. Several

modifications were made to facilitate the analysis. Only one storm event that of

September 17 was used in load data, all the other storm events were disabled. In addition,

only the CSO loads discharged from Segment 15 in this very storm event were used. All

the discharges from other segments are also made inactive. To investigate the impact of

the magnitude of CSO loads on temporal variation of pollutant levels, four levels of CSO

loads were simulated: no CSO load, original CSO load, and 5 times and 10 times the

original CSO load.

Figure 6.23 presents the simulation results of temporal variation of mercury

concentration in the water layer. Several phenomena are found from the plot. First, no

matter what the magnitude of the CSO load is, the mercury concentration reaches a peak

concentration within approximately the same period of time, 24 hours after the CSO

discharge. This period of time cannot be explained as the occurrence of the "first flush".

Usually, the first flush does not occur at the same period after the storm. Instead, it

depends on the quantity of CSOs, the properties of CSSs, and the number of dry days

preceding the storm event. CSO in this model is being put into the model as total loads

per day in a specific segment, which is the multiplication of event mean concentrations

(EMCs) and the CSO flowrate. Furthermore, the input CSO loads are calculated without

concern about the properties of the conveyance system, such as slope of the sewers, and

sewer material, etc., and therefore the simulation result from the WASP model cannot



163

describe the variation of pollutant concentration in combined sewers. However, the

properties of combined sewer system can be simulated by other modeling tools, such as

SWMM.

Figure 6.23 The Temporal Variation of Mercury Concentration (Water Layer).

Second, after reaching the peak concentration, the mercury concentration

decreases rapidly. Although it takes at least 10 days for the Hg concentration (simulating

with the original CSO load) to go back to its original condition, the figure shows that the

pollutant concentration would reduce its concentration low enough in a relative short

period of time. By taking the 10 times of the original CSO load case as an example, the

Hg concentration increases from 300 ng/L (0.3 ppb) to the maximum concentration, close

to 1,600 ng/L (1.6 ppb), on September 18, one day after CSO discharge. Then from

September 18 to September 21, the mercury concentration decreases to 440 ng/L (0.44

ppb) in 3 days. This means 89.2 percent of the Hg was diluted in 4 days right after the

CSO discharge and the remaining Hg will need a longer time to be diluted. The same

trend can also be seen under other load scenarios.

The temporal variation of mercury concentration affected by the CSO load in

sediment layers is shown in Figure 6.24. Similar to the simulation result in water layers,
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the mercury concentration increases to the maximal concentration in approximately the

same period of time after the CSO discharge. However, compared to the time of the

appearance of the peak in both water and the sediment layer, the peaks in the sediment

layers, shown in Figure 6.24, reach maximum 3 days after the water layer reaches its

peak concentration. The longer time for Hg to reach its maximum concentration in

sediment is primarily due to the time required for pollutant transportation from the water

layer to the sediment layer.

Figure 6.24 The Temporal Variation of Mercury Concentration (Sediment Layer).

Unlike the rapid decreasing of the Hg concentration in the water layer, mercury

concentration decreases gradually in sediment layers after it reaches its peak

concentrations. For instance, mercury concentration drops from 21,000 ng/L to 18,000

ng/L (21.0 ppb to 18.0 ppb) from September 21 to October 5 for the case of 10 times the

original CSO load. Figure 6.24 shows that 50 percent of the mercury from CSO discharge

still remains in the sediment after 14 days. It also can be observed that over 20 percent of

the loaded mercury still exists in the sediment after 28 days. Similar trends can also be

found in the other CSO load scenarios.
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Comparing the simulation results of temporal variation of the pollutant in water

and the sediment layer validates the conclusion about impacts of CSO loads discussed

earlier in Section 6.3 that immediately after the discharge of CSO, the receiving water

quality will be deteriorated for a short term, but that the sediments will be contaminated

for a much longer period of time.

The next question in temporal analysis would be "how the stream flowrate will

affect the pollutant variation?" In this scenario, the previous models used in temporal

analysis were used except that the flowrate was changed to one-tenth of the original, and

the geometric data were also modified simultaneously according to the flowrate. The

simulation result was performed and the results are shown in Figure 6.25. Comparing the

mercury concentration in Figure 6.23, the mercury concentration was increased

proportionally to the low flowrate. However, the mercury concentration in Figure 6.25

drops to its original concentration in approximately the same time as in Figure 6.23.

Figure 6.25 The Temporal Variation of Hg Concentration under One-Tenth of the
Original Flowrate Condition.

The mercury concentration increases from 300 ng/L to 5,300 ng/L (0.30 ppb to

5.30 ppb) on September 18, one day after CSO discharge, in the 10 times the original
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CSO load condition simulation. After 3 days, the Hg concentration decreases to 890 ng/L

(0.89 ppb) on September 21. This means the mercury was diluted in a approximately the

same rate at both simulated discharge levels, with the low flowrate, 88.2 percent mercury

was diluted in 3 days, compared with the original flowrate (89.2 percent Hg diluted in 3

days). On the other hand, the higher Hg concentration introduced by the very low stream

flowrate needs a longer time to reduce the concentration to acceptable levels, although it

has the same dilution rate. By taking the 10 times the original CSO load case as an

example, the mercury, after reaching its maximum concentration, needs more than 3 days

to decrease its concentration to less than 1 ppb, but it takes only 1 day under the original

flowrate to allow the Hg concentration to drop to that level. In addition, the remaining Hg

will need a longer time to be diluted to its original concentration in both flowrate

conditions.



CHAPTER 7

CONCLUSION AND RECOMMENDATIONS

7.1 Conclusion

To investigate the impacts of CSO on receiving water quality by mathematical water

quality models, a case study for the Hudson River was developed. The Water Quality

Analysis Simulation Program - WASP - 6.1 was used in this study due to its great

flexibility under various simulation conditions. The water quality model was developed

through data collection, model creation, model calibration and validation, and finally

model application in water quality control programs. Three sets of data were used in this

study, namely, water transport data, water quality data, and pollutant load data. Most of

the data sets were obtained from existing sources, such as USGS, US EPA, and local

water quality investigation reports. The remainder were estimated from technical reports

or previous studies, such as CSO loads data. Three sub-models were developed to

investigate various pollution concerns. They are EUTRO for DO/BOD/nitrogen

simulation, Heat for fecal coliform simulation, and Mercury for Hg simulation.

The model was calibrated and validated with field data in the EUTRO model.

However, due to limited field data, the calibration and validation phases were not

performed with the Mercury model, and only calibration was performed in the Heat

Model. The model results without completed calibration and validation were only used in

sensitivity analysis to investigate the degree of impacts on water quality from various

environmental factors. Generally, simulation results agree with observations for the

DO/BOD/ammonia simulation and the FC model after calibration and validation. The

167
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few poor statistical values of calibration and validation could result from the large-scale

segmentation and inaccuracy of sampling and sample analysis. The statistics could be

improved later by dividing segments into finer cells and employing an intensive sampling

program to provide a more robust data set.

The calibrated water quality model was used to evaluate the impacts of CSO with

a series of scenarios. According to the simulation results, the CSO loads have little effect

on the EUTRO system in the study area. This observation was verified by a water quality

investigation conducted in the Hudson River by other researchers, which also indicated

CSOs are not the primary loading sources of BOD and nutrients in the river. Meanwhile,

the simulation results from various loading scenarios also show that CSO can have great

effect on the FC and Hg concentrations in the Hudson River, and how these pollutant

concentrations respond to the CSO loads with respect to the time of discharge and the

magnitude of the load. In the FC simulation, it is observed that water quality criteria for

FC will be violated if 3 times of the original CSO loads are placed in the river. In the

Mercury model, the predicted results reveal that mercury, discharged along with the

CSOs, will be diluted or transported in the water layer after a short period of time but that

the accumulation of mercury in the sediment layer lasts much longer.

The stream flowrate is another factor that will affect the water quality in the

receiving water considerably. In general, water quality is deteriorated under the low

flowrate condition, due to lack of enough dilution ability to minimize the negative

impacts from loaded pollutants. The simulation results show that most of the pollutants

will violate the surface water quality criteria under very low flowrate or drought
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conditions. Higher degree of treatments in pollution control are required during the

periods to avoid water quality problems.

The spatial distribution analysis indicates that the pollutants decrease gradually

and symmetrically from the discharging point in both upstream and downstream

direction. The analysis reveals the importance of dispersion by tide in pollutant

transportation in estuaries. It is also found that the linkage between the spatial distribution

of contaminants in sediments and the pollution load data can be used to investigate the

primary sources of pollutants. The temporal variation analysis shows that the mercury

concentration in the water layer would reduce its concentration low enough in a relative

short period of time. The remained mercury in the water layer needs a longer time to be

diluted to its original condition. Unlike the rapid decreasing of the Hg concentration in

the water layer, mercury concentration decreases gradually in sediment layers. It

validates that immediately after the discharge of CSO, the receiving water quality will be

deteriorated for a short term, but that the sediments will be contaminated for a much

longer period of time.

7.2 Recommendations

Because of the great range and variation of many factors, such as weather patterns,

characteristics of combined sewer systems, and receiving water usage, all of which may

affect the pollutant distribution in receiving waters after CSO discharges, it is unlikely

that any receiving water quality model can be universally adopted for all water systems.

It is necessary and desirable to calibrate the model to assure compatibility with the field

data and apply it under a variety of conditions. Mathematical modeling of receiving water
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greatly facilitates solutions to the need for simulation and prediction. The type of model

employed can be adjusted with the various degrees of flow transportation patterns, the

scope of study area, and other environmental conditions.

WASP is a powerful water quality-modeling tool. However, it needs a large

amount of input information to produce useful results. Data availability was the major

difficulty encountered during their simulation study. Incomplete data included physical

characteristics of study area, constants of transformation processes, flow, and loading

information. Furthermore, these data must be time-related. The difficulties in the

modeling processes discussed earlier are mostly from the lack of sufficient field data. A

well-developed monitoring plan will greatly facilitate success in water quality modeling.

However, due to the limited field data, the models created in this study simplified

or neglected some of the transport and transformation processes that will affect the

pollutant distribution in receiving waters. To improve the model's predictive capability,

the following considerations are important in further studies.

Appropriate segmentation is a foundation to a successful water quality model.

Further dissecting of the segments into smaller pieces is necessary when a more

complicated transport pattern is concerned. For instance, the dispersion introduced by

tides in estuaries is greater in both lateral and vertical directions than in rivers. Thus, for

the purpose of detailed studies of pollutant spatial distribution in estuaries, finer

segmentation in these two directions should be created. In addition, small-scale

segmentation can also prevent the occurrence of unstable predicted concentrations, which

may cause poor statistical results in the model calibration and validation processes.
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However, segmentation corresponds to the available field data. Without enough field

data, more segments do not help.

In this study, except the Mercury model applied to sediment layers, other models

are simulated in one-dimension with water columns only. However, the sediment type

plays an important role in bed segmentation and certain transformation processes. WASP

6.1 can simulate not only benthic layers but also lower benthic layers. Since sediment

monitoring did not address public health risks in the past, they can only be used as

alternatives when bacterial contamination is not a CSO concern. Also, high cost limits the

extent of sediment monitoring in water quality sampling. The limited sediment field data

constrains the model prediction and application. For example, supplemental SOD

(sediment oxygen demand) concentration information and additional sediment

segmentation will increase the accuracy of predicting DO concentration in both water

columns and sediment layers.

Enhancements in transport and transformation processes in the model will

improve the confidence in predicting pollutant variations in receiving waters. For

example, in the EUTRO model, zooplankton and solar effects on DO concentration are

simplified or neglected due to the lack of sufficient field data. However, based on

biological concepts, these factors could change DO concentration in the river

significantly. Furthermore, in the Mercury model, most of the transport and

transformation process of mercury are complicated and uncertain. Further experiments

and research are required to improve understanding of these processes. Minimizing the

number of these unknown factors will improve the accuracy seen in the simulation

results.
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Based on the successful application of the water quality model in revealing the

impacts of CSO on receiving waters, more applications with various other pollutants

from CSO or other pollution sources on receiving water quality can be studied in the

future. For example, nutrients such as nitrite, nitrate, and phosphorus, and chlorophyll-a

can be simulated in the EUTRO model to predict the possibility of eutrophication; the

simulation results for various type of pathogens can be used in the Heat model to study

the sources of bacteria; chemicals such as PCBs, and metals such as lead and copper can

be simulated in the Mercury model since they are the primary contaminants in the

Hudson River. Furthermore these calibrated models can be applied to investigate the

long-term effect from pollutants and also to predict ecological impacts that implicated by

the military actions.

In result generation, more spatial-graphical information data (digital maps) are

becoming available, which allows a better spatial exhibit. WASP 6.1 has a function to

display the simulation results in a spatial grid, in which the model network is color

shaded based upon the predicted concentration. Creating linkages between GIS

(geographic information system) technology with the water quality model can enhance

model applications and result interpretation.

This study has provided an approach to understand the impacts of CSOs on

receiving water quality. With the great flexibility of the model, the water quality of the

receiving water can be predicted easily under various conditions if sufficient data are

provided. These conditions include not only the ordinary pollutants discharges, but also

those unexpected contaminations, which were introduced by the terrorist attack or a spills
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incidence. With more and more robust water quality and quantity monitoring programs

developed in recent years, it was a trend to create water quality models for various water

bodies. Based on the same approach, more water quality issues can be realized by

appropriate receiving water quality models.



APPENDIX A

LOAD INPUT DATA

Appendix A summarizes the CSO load input data that were derived from the Tri-City

monitoring data.

Table A.1 DO Load Input Data
Storm Event 7/28/1995 9/17/1995_ 9/22/1995 9/25/1995 10/5/1995 10/14/1995 10/21/1995 10/27/95A 10/27/95B

Avg. Load per Outfall
(kg)* 17.02 31.47 29.98 36.64 62.98 64.62 78.63 8.01 34.37

Z

.c,0.) S

1	 1 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0 0

6 34.04 62.94 59.96 73.28 125.96 129.24 157.26 16.02 68.74

7 17.02 31.47 29.98 36.64 62.98 64.62 78.63 8.01 34.37

8 34.04 62.94 59.96 73.28 125.96 129.24 157.26 16.02 68.74

9 34.04 62.94 59.96 73.28 125.96 129.24 157.26 16.02 68.74

10 17.02 31.47 29.98 36.64 62.98 64.62 78.63 8.01 34.37

11 17.02 31.47 29.98 36.64 62.98 64.62 78.63 8.01 34.37

12 51.06 94.41 89.94 109.92 188.94 193.86 235.89, 24.03 103.11

13 34.04 62.94 59.96 73.28 125.96 129.24 157.26	 16.02 68.74

14 34.04 62.94 59.96 73.28 125.96 129.24 157.26	 16.02 68.74

15 51.06 94.41 89.94 109.92 188.94 193.86 235.89	 24.03 103.11

16 102.12 188.82 179.88 219.84 377.88 387.72 471.78	 48.06 206.22

17 0 0 0 0 0 0 0	 0 0

18 119.14 220.29 209.86 256.48 440.86 452.34 550.41	 56.07 240.59

19 136.16 251.76 239.84 293.12 503.84 516.96 629.04	 64.08 274.96
Tri-City Data

Load Unit: kg
Load (kg)=Avg. Load (kg)*(# of outfalls)
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Table A.2 CBODu Load Input Data

Storm Event 7/28/1995 9/17/1995 9/22/1995 9/25/1995 10/5/1995 10/14/1995 10/21/1995 10/27/95A 10/27/95B
Avg. Load per Outfall

(kg)* 362.09 669.66 637.94 779.53 1339.99 1374.84 1673.04 170.46 731.19

Z'

La.)S

1 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0 0

6 724.18 1339.32 1275.88 1559.06 2679.98 2749.68 3346.08 340.92 1462.38

7 362.09 669.66 637.94 779.53 1339.99 1374.84 1673.04 170.46 731.19

8 724.18 1339.32 1275.88 1559.06 2679.98 2749.68 3346.08 340.92 1462.38

9 724.18 1339.32 1275.88 1559.06 2679.98 2749.68 3346.08 340.92 1462.38

10 362.09 669.66 637.94 779.53 1339.99 1374.84 1673.04 170.46 731.19

11 362.09 669.66 637.94 779.53 1339.99 1374.84 1673.04 170.46 731.19

12 1086.27 2008.98 1913.82 2338.59 4019.97 4124.52 5019.12 511.38 2193.57

13 724.18 1339.32 1275.88 1559.06 2679.98 2749.68 3346.08 340.92 1462.38

14 724.18 1339.32 1275.88 1559.06 2679.98 2749.68 3346.08 340.92 1462.38

15 1086.27 2008.98 1913.82 2338.59 4019.97 4124.52 5019.12 511.38 2193.57

16 2172.54 4017.96 3827.64 4677.18 8039.94 8249.04  10038.24 1022.76 4387.14

17 0 0 0 0 0 0 0 0 0

18 2534.63 4687.62 4465.58 5456.71 9379.93 9623.88 11711.28 1193.22 5118.33

19 2896.72 5357.28 5103.52 6236.24 10719.92 10998.72 13384.32 1363.68 5849.52

Table A.3 NH3-N Load Input Data

Storm Event 7/28/1995 9/17/1995 9/22/1995 9/25/1995 10/5/1995 10/14/1995 10/21/1995 10/27/95A 10/27/95B
Avg. Load per Outfall

(kg)* 3.28 6.35 6.16 7.38 13.09 12.98 16.25 1.87 7.94

to0.)v)

1 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0 0

6 6.56 12.70 12.32 14.76 26.18 25.96 32.50 3.74 15.88

7 3.28 6.35 6.16 7.38 13.09 12.98 16.25 1.87 7.94

8 6.56 12.70 12.32 14.76 26.18 25.96 32.50 3.74 15.88

9 6.56 12.70 12.32 14.76 26.18 25.96 32.50 3.74 15.88 

10 3.28 6.35 6.16 7.38 13.09 12.98 16.25 1.87 7.94

11 3.28 6.35 6.16 7.38 13.09 12.98 16.25 1.87 7.94

12 9.84 19.05 18.48 22.14 39.27 38.94 48.75 5.61 23.82

13 6.56 12.70 12.32 14.76 26.18 25.96 32.50 3.74 15.88

14 6.56 12.70 12.32 14.76 26.18 25.96 32.50 3.74 15.88

15 9.84 19.05 18.48 22.14 39.27 38.94 48.75 5.61 23.82

16 19.68 38.10 36.96 44.28 78.54 77.88 97.50 11.22 47.64

17 0 0 0 0 0 0 0 0 0

18 22.96 44.45 43.12 51.66 91.63 90.86 113.75 13.09 55.58

19 26.24 50.80 49.28 59.04 104.72 103.84 130.00 14.96 63.52
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Table A.4 NO2-N Load Input Data

Storm Event 7/28/1995 9/17/1995 9/22/1995 9/25/1995 10/5/1995 10/14/1995 10/21/1995 10/27/95A 10/27/95B
Avg. Load per Outfall

(kg)* 0.82 2.25 2.23 2.62 4.8 4.6 5.92 0.76 3.2

c.)c.4

f

1 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0 0

6 1.64 4.50 4.46 5.24 9.60 9.20 11.84 1.52 6.40

7 0.82 2.25 2.23 2.62 4.80 4.60 5.92 0.76 3.20

8 1.64 4.50 4.46 5.24 9.60 9.20 11.84 1.52 6.40

9 1.64 4.50 4.46 5.24 9.60 9.20 11.84 1.52 6.40 

10 0.82 2.25 2.23 2.62 4.80 4.60 5.92 0.76 3.20

11 0.82 2.25 2.23. 2.62 4.80 4.60 5.92 0.76 3.20

12 2.46 6.75 6.69 7.86 14.40 13.80 17.76 2.28 9.60

13 1.64 4.50 4.46 5.24 9.60 9.20 11.84 1.52 6.40

14 1.64 4.50 4.46 5.24 9.60 9.20 11.84 1.52 6.40

15 2.46 6.75 6.69 7.86 14.40 13.80 17.76 2.28 9.60

16 4.92 13.50 13.38 15.72 28.80 27.60 35.52 4.56 19.20

17 0 0 0 0 0 0 0 0 0

18 5.74 15.75 15.61 18.34 33.60 32.20 41.44 5.32 22.40

19 6.56 18.00 17.84 20.96 38.40 36.80 47.36 6.08 25.60

Table A.5 Organic-N Load Input Data

Storm Event 7/28/1995 9/17/1995 9/22/1995 9/25/1995 10/5/1995 10/14/1995 10/21/1995 10/27/95A 10/27/95B
Avg. Load per Outfall

(kg)* 15.28 27.92 26.65 32.47 56.09 57.28 69.98 7.26 31.13

to4., S

1 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0 0

6 30.56 55.84 53.30 64.94 112.18 114.56 139.96 14.52 62.26

7 15.28 27.92 26.65 32.47 56.09 57.28 69.98 7.26 31.13

8 30.56 55.84 53.30 64.94 112.18 114.56 139.96 14.52 62.26

9 30.56 55.84 53.30 64.94 112.18 114.56 139.96 14.52 62.26 

10 15.28 27.92 26.65 32.47 56.09 57.28 69.98 7.26 31.13

11 15.28 27.92 26.65 32.47 56.09 57.28 69.98 7.26 31.13

12 45.84 83.76 79.95 97.41 168.27 171.84 209.94 21.78 93.39

13 30.56 55.84 53.30 64.94 112.18 114.56 139.96 14.52 62.26

14 30.56 55.84 53.30 64.94 112.18 114.56 139.96 14.52 62.26

15 45.84 83.76 79.95 97.41 168.27 171.84 209.94 21.78 93.39

16 91.68 167.52 159.90 194.82 336.54 343.68 419.88 43.56 186.78

17 0 0 0 0 0 0 0 0 0

18 106.96 195.44 186.55 227.29 392.63 400.96 489.86 50.82 217.91

19 122.24 223.36 213.20 259.76 448.72 458.24 559.84 58.08 249.04



177

Table A.6 Ortho-Phosphate Load Input Data

Storm Event 7/28/1995 9/17/1995 9/22/1995 9/25/1995 10/5/1995 10/14/1995 10/21/1995 10/27/95A 10/27/95B
Avg. Load per Outfall

(kg)* 1.32 2.36 2.13 2.75 4.61 4.85 5.78 0.53 2.29

I 1

*a'

eS

0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0 0

6 2.64 4.72 4.26 5.50 9.22 9.70 11.56 1.06 4.58

7 1.32 2.36 2.13_ 2.75 4.61 4.85 5.78 0.53 2.29

8 2.64 4.72 4.26 5.50 9.22 9.70 11.56 1.06 4.58

9 2.64 4.72 4.26 5.50 9.22 9.70 11.56 1.06 4.58 

10 1.32 2.36 2.13 2.75 4.61 4.85 5.78 0.53 2.29

11 1.32 2.36 2.13 2.75 4.61 4.85 5.78 0.53 2.29

12 3.96 7.08 6.39 8.25 13.83 14.55 17.34 1.59 6.87

13 2.64 4.72 4.26 5.50 9.22 9.70 11.56 1.06 4.58

14 2.64 4.72 4.26 5.50 9.22 9.70 11.56 1.06 4.58

15 3.96 7.08 6.39 8.25 13.83 14.55 17.34 1.59 6.87

16 7.92 14.16 12.78 16.50 27.66 29.10 34.68 3.18 13.74

17 0 0 0 0 0 0 0 0 0

18 9.24 16.52 14.91 19.25 32.27 33.95 40.46 3.71 16.03

19 10.56 18.88 17.04 22.00 36.88 38.80 46.24 4.24 18.32

Table A.7 Organic-P Load Input Data

Storm Event 7/28/1995 9/17/1995 9/22/1995 9/25/1995 10/5/1995 10/14/1995 10/21/1995 10/27/95A 10/27/95B
Avg. Load per Outfall

	 (kJ)* 3.69 6.71 6.43 7.81 13.27 13.79 16.6 1.61 6.92

go
E4

1 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0 0

6 7.38 13.42 12.86 15.62 26.54 27.58 33.20 3.22 13.84,

7 3.69 6.71 6.43 7.81 13.27 13.79 16.60 1.61 6.92

8 7.38 13.42 12.86 15.62 26.54 27.58 33.20 3.22 13.84

9 7.38 13.42 12.86 15.62 26.54 27.58 33.20 3.22 13.84 

10 3.69 6.71 6.43 7.81 13.27 13.79 16.60 1.61 6.92

11 3.69 6.71 6.43 7.81 13.27 13.79 16.60 1.61 6.92

12 11.07 20.13 19.29 23.43 39.81 41.37 49.80 4.83 20.76

13 7.38 13.42 12.86 15.62 26.54 27.58 33.20 3.22 13.84

14 7.38 13.42 12.86 15.62 26.54 27.58 33.20 3.22 13.84

15 11.07 20.13 19.29 23.43 39.81 41.37 49.80 4.83 20.76

16 22.14 40.26 38.58 46.86 79.62 82.74 99.60 9.66 41.52

17 0 0 0 0 0 0 0 0 0

18 25.83 46.97 45.01 54.67 92.89 96.53 116.20 11.27 48.44

19 29.52 53.68 51.44 62.48 106.16 110.32 132.80 12.88 55.36
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Table A.8 Fecal Coliform Load Input Data

Storm Event 7/28/1995 9/17/1995 9/22/1995 9/25/1995 10/5/1995 10/14/1995 10/21/1995 10/27/95A 10/27/95B
Avg. Load per Outfall

(billion colonies)* 16282 30184 28783 35234 60468 62089 75229 7699 32927

Z.

E4.)S

1 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0 0 0

7 0 0 0 0 0 0 0 0 0

8 0 0 0 0 0 0 0 0 0

9 0 0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0

11 0 0 0 0 0 0 0 0 0

12 32564 60368 57566 70468 120936 124178 150458 15398 65854

13 16282 30184 28783 35234 60468 62089 75229 7699 32927

14 32564 60368 57566 70468 120936 124178 150458 15398 65854

15 32564 60368 57566 70468 120936 124178 150458 15398 65854

16 16282 30184 28783 35234 60468_ 62089 75229 7699 32927

17 16282 30184 28783 35234 60468 62089 75229 7699 32927

18 48846 90552 86349 105702 181404 186267 225687 23097 98781

19 32564 60368 57566 70468 120936 124178 150458 15398 65854
* Tri-City Data

Load Unit: billion colonies
Load (billion colonies)=Avg. Load (billion colonies)*(# of outfalls)
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Table A.9 Hg Load Input Data

Storm Event 7/28/1995 9/17/1995 9/22/1995 9/25/1995 10/5/1995 10/14/1995 10/21/1995 10/27/95A 10/27/95B
Avg. Load per Outfall

(10 -3 kg)* 3382 8377 8788 9672 19654 16895 23752 3962 16485

to
S

I

1 0 1 0 0 0 0 0 0 0

2 0 1 0 0 0 0 0 0 0

3 0 I 0 0 0 0 0 0 0

4 0 1 0 0 0 0 0 0 0

5 0 1 0 0 0 0 0 0 0

6 0 a 0 0 0 0 0 0 0

7 0 1 0 0 0 0 0 0 0

8 0 1 0 0 0 0 0 0 0

9 0 1 0 0 0 0 0 0 0 

10 1 0 0 0 0 0 0 0

11 0 1 0 0 0 0 0 0 0

12 6764 1675' 17576 19344 39308 33790 47504 7924 32970

13 3382 8377 8788 9672 19654 16895 23752 3962 16485

14 6764 1675' 17576 19344 39308 33790 47504 7924 32970

15 6764 1675' 17576 19344 39308 33790 47504 7924 32970

16 3382 8377 8788 9672 19654 16895 23752 3962 16485

17 3382 8377 8788 9672 19654 16895 23752 3962 16485

18 10146 25131 26364 29016 58962 50685 71256 11886 49455

19 6764 1675• 17576 19344 39308 33790 47504 7924 32970

* Tri-City Data
Load Unit: 10 -3 kg
Load (10 -3 kg)=Avg. Load (10 -3 kg)*(# of outfalls)
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APPENDIX B

REFERENCE VALUES AND SOURCES OF TRANSFORMATION CONSTANTS

Appendix B summarizes Reference Values and Sources of Transformation Constants for

the EUTRO model.

Table B.1 Reference Values and Sources of Transformation Constants

Constant Unit Value Source
Nitrification Rate @20°C 1/day 0.09-0.13 Roesch et al., 1979
Nitrification Temperature Coefficient --- 1.08 Roesch et al., 1979
Half-Saturation: Nitrification Oxygen Limit mg 02/L 2.0 Roesch et al., 1979
Denitrification Rate @20°C 1/day 0.09 Roesch et al., 1979
Denitrification Temperature Coefficient --- 1.045 Roesch et al., 1979
Half Saturation: Denitrification Oxygen Limit mg 02/L 0.1 Roesch et al., 1979
Dissolved Organic Nitrogen Mineralization
Rate @20°C 1/day 0.075 Roesch et al., 1979
Dissolved Organic Nitrogen Mineralization
Temperature Coefficient --- 1.08 Roesch et al., 1979
Organic Nitrogen Decay in Sediments
@20°C 1/day 0.0004 Roesch et al., 1979
Organic Nitrogen Decay in Sediment
Temperature Coefficient --- 1.08 Roesch et al., 1979
Fraction of Phytoplankton Death Recycled to
Organic Nitrogen

___ .0 5 Di Toro &
Martystick ,1980

Mineralization Rate of Dissolved Organic
Phosphorus @20°C --- 0.22 Roesch et al., 1979
Dissolved Organic Phosphorus
Mineralization Temperature Coefficient --- 1.08 Roesch et al., 1979
Organic Phosphorus Decay Rate in
Sediments 1/day 0.0004 Roesch et al., 1979
Organic Phosphorus Decay in Sediments
Temperature Coefficient 1.08 Roesch et al., 1979

Fraction of Phytoplankton Death Recycled to
Organic Phosphorus --- 0 5. Di Toro &

Martystick ,1980
Oxygen::Carbon Stoichiometeric Ratio --- 32/12 Roesch et al., 1979
Reaeration Rate @20°C 1/day 2.0 Di Toro &

Connolly ,1980
CBOD Decay Rate @20c 1/day 0.21,0.16 Roesch et al., 1979
CBOD Decay Rate Temperature Correction --- 1.047 Roesch et al., 1979
CBOD Decay Rate in Sediments @20°C 1/day 0.0004 WASP manual
CBOD Decay Rate in Sediments
Temperature Correction --- 1.08 WASP manual

1 CBOD Half Saturation Oxygen Limit mg 02/L 0.5 Roesch et al., 1979
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Table B.1 Reference Values and Sources of Transformation Constants (Continued)
Constant Unit Value Source

Phytoplankton Maximum Growth Rate
@20°C 1/day

2.0 Roesch et al., 1979

1.3-2.5

O'Connor et al.,
1975,1981

Thomann &
Fitzpatrick ,1982

Di Toro &
Connolly, 1980

Di Toro &
Martystick, 1980
Salisbury et al.,

1983

1.8-2.53
Jorgensen, 1976
Jorgensen et al.,

1978

0.28.0 Baca & Arnett,
1976

0.58-3.0 Jorgensen, 1979

Saturation light intensity for phytoplankton Ly/day

400-700
(latitude 30)

Weast & Astle,
1980

300-350

Thomann et al.,
1975,1979

Salas & Thomann,
1978

Di Toro et al., 1971
O'Connor et al.,

1975
250-350 Scavia, 1980
200-300 Youngberg, 1977

WASP manual

Phytoplankton Half-Saturation Constant for
Nitrogen mg-N/L

0.2

0.2

Jorgensen,
1976,1983

Jorgensen et al.,
1978

0.05 Desormeau, 1978
0.0014-0.007 Jorgensen, 1979

Phytoplankton Half-Saturation Constant for
Phosphorus mg-P/L

0.001 WASP manual

1976,1983
orgensen,Jorgensen,

0 02. Jorgensen et al.,
1978

0.07 Desormeau, 1978
0.0028-0.053 Jorgensen, 1979
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Table B.1 Reference Values and Sources of Transformation Constants (Continued)

Constant Unit Value Source

P/C ratio in Phytoplankton mg/mg

0.025 Di Toro et al., 1971

0.024
Scavia et al., 1976

Scavia, 1980

0.024-0.24
Baca & Arnett,

1976

N/C ratio in Phytoplankton mg/mg

0.17-0.25 Di Toro et al., 1971

0.18
Scavia et al., 1976

Scavia, 1980
0.2 Canale et al., 1976

0.05-0.17
Baca & Arnett,

1976

Phytoplankton Endogenous Respiration Rate
@20°C 1/day

0.125 WASP manual
0.05-0.20 Bowie et al., 1985

0.05-0.15

O'Connor et al.,
1975, 1981

Thomann et al.,
1974,1975,1979

Di Toro
&Connolly, 1980

Di Toro &
Matystick, 1980
Salisbury et al.,

1983

0.088-0.6
Jorgensen, 1976
Jorgensen et al.,

1978

0.005-0.12
Baca & Arnett,

1976
Phytoplankton Respiration Temperature
Coefficient --- 1.045 Di Toro &

Matystick, 1980

Phytoplankton Death Rate Non -Zooplankton
Predation 1/day

0.02
Thomann &

Fitzpatrick, 1982

0.003-0.17 Baca & Arnett,
1976

0.03 Scavia et al., 1976

0.005-0.10 Salas & Thomann,
1978

0.01-0.1
Jorgensen, 1976
Jorgensen et al.,

1978
Phytoplankton Zooplankton Grazing Rate L/cell-day 0.1-1.5 Bowie et al., 1985
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Table B.1 Reference Values and Sources of Transformation Constants (Continued)

Constant Unit Value Source
Decomposition rate constant for
phytoplankton in the sediment @20°C 1/day 0.02 Roesch et al., 1979

Decomposition Temperature Coefficient --- 1.08 Roesch et al., 1979
Phytoplankton Growth Temperature
Coefficient --- 1.068 WASP manual

Phytoplankton Maximum Quantum Yield
Constant

Mg -c/mole
photons

720 Bannister, 1974

Phytoplankton Carbon:: Chlorophyll Ratio --- 20-50 US EPA,
1970,1977,1978

Chlorophyll Extinction Coefficient Mg
chla/m 3

0.01 -0.02 WASP manual
0.016 Bannister, 1974

Half-saturation constant for phytoplankton mg
Carbon/L

0.5-0.6
1978

Jorgensen et al.,

0.5 Jorgensen,
1976,1983
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