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ABSTRACT

MIGRATION OF AN INTRUDER PARTICLE IN A
BOUNDARY DRIVEN SHEAR FLOW

by Man Liu

This study reports on three-dimensional, discrete element simulations of a single large

spherical intruder in a Couette shear flow composed of uniform sized particles. The

simulation results are useful in providing a numerical reproduction of the experiments for

size segregation and mixing. This in turn has a major importance in many industries

which are concerned with handling of particles and powders, such as pharmaceutical

manufacturing, agriculture, chemical and mineral processing.

Discrete element simulations are carried out using the "soft sphere" model of

Walton, et. al., which provides a method for obtaining the information at a macroscopic

level from multi-body collisions within each computational step. A granular shearing

flow is induced by allowing the upper and lower bumpy walls to move with the same

constant speed in opposite directions. The wall particles are in square arrangements and

have the same size as the regular flow particles. The typical transport properties of this

flow are characterized by the depth profile of granular temperature, mean velocity and

granular pressure which are related to the wall roughness, shear gap height and particle

inelasticity measured by a constant normal restitution coefficient. By means of auto-

correlation and spectral analysis, the vortex-like structure of velocity field has been

revealed, which coincides with the results from the wavelet analysis.

In the micro-gravity study case, an "intruder" with different size ratio has been

added in the uniform shear flow described above. It has been observed to migrate away



from the walls and finally become trapped in the central area with a small fluctuation

around the equilibrium location. The amplitude of the fluctuation has a relation with the

intruder size ratio. Computations indicated that the intruder's motion is induced by the

depth distribution of granular pressure which is higher near the moving boundary and

lower in the center of the gap. The differences of the normal pressure on the depth profile

could be represented by the fluctuation of net force on both sides of the intruder. Also,

the circulation pattern in the velocity field may enhance this trend.

Simulations of the annular shear cell device shows us that the motion of the

"intruder" is very sensitive to gravity. Similar to the experimental studies, the "intruder"

will eventually migrate to the top of the shear flow with a velocity proportional to the size

ratio. A further investigation also revealed that the migration of the "intruder" may have a

relation with the pattern of the velocity field in the cross-section of the shear direction.
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CHAPTER 1

INTRODUCTION

1.1 Overview

One of the most interesting and intriguing features of granular flows is segregation,

which can be described as the evolution of a well-mixed bulk solid to a spatially non-

uniform state. This study focused on understanding the mechanism of size segregation in

the granular shear flow composed of inelastic spheres using numerical simulation. The

Discrete Element Method, which is an outgrowth of molecular dynamics simulations, is

used to investigate the macroscopic information and transport properties of a granular

Couette flow.

The current research is motivated by problems in the solids processing industries,

in which segregation poses a tremendous impediment to the general requirement of

creating and maintaining homogeneous mixtures. An inability to achieve and maintain a

well-mixed condition of a bulk solid throughout its processing history can lead to serious

flaws in the properties of an end product, leading to unfavorable economic consequences.

Because solids handling equipment often includes moving walls to promote or induce

flows, it is critical to understand how the shearing action of boundaries affects the

dynamics of particles with varying properties.

The current study focuses on a model system consisting of a single large intruder

in a flow of uniform spheres that are driven by parallel, moving walls. It has been

remarked that boundary driven granular flows differ considerably from ordinary fluids in

that the pressure depends on the square of the shear rate [1]. This interesting feature has

1
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led to numerous experimental [2-7], theoretical [5, 8-10] and numerical studies [11-14]

on mono-disperse systems in the literature.

Numerical simulation has the ability to provide insights into a number of practical

problems related to the treatment of granular material in several industries. The urgency

of industry's needs and increasingly rapid development of numerical simulation

techniques provide a wide spectrum of simulation software products suitable for

exploring the behavior of granular materials. On the other hand, numerical simulation

also offered the possibility to investigate some transport properties which are not

accessible in experiments. In the context of numerical simulation, "hard sphere" and "soft

sphere" models are the two general approaches that are used in Discrete Element

simulation studies. The "hard sphere" which is the so called "Event-Driven" model, does

not allow interpenetration or deformation during impact. Hence it is restricted to flows in

which enduring contacts are not predominant. Soft sphere models do not have this

restriction since a finite contact time is an inherent feature. In this work, a soft sphere

modified uniform shear code developed by Walton and Braun [15, 16]. Modifications to

the original code [14] were implemented to incorporate moving upper and lower bumpy

boundaries that would drive the shear flow. Diagnostics quantities (i.e., velocity, granular

pressure, collision frequency and net force on a tracer particle) were computed by

partitioning the spatial region into layers or strips parallel to the direction of shearing.

All modifications and changes were validated by comparing numerical simulation results

with existing simulation and experimental data. This included verification of the known

depth profiles of the mean velocity field, granular temperature and normal stress along

the gap height.
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1.2 Literature Survey

A better understanding of the governing mechanism of basic shear flow is of critical

importance to a wide variety of industrial, and scientific applications. Shear flows of

granular materials commonly occur in industrial processes involving transport of bulk

solids such as metals, powders, ceramics and gravel; they also can be observed in

geophysical events such as powder snow avalanches, rock slides and debris flow.

1.2.1 Sheared Granular Flows

Bagnold [1] carried out innovative experiments that allowed him to separate the motion

of granular flows into three major regimes that he termed the "macroviscous",

"transitional" and "grain inertia". In the macroviscous" regime, flow behavior is

determined by both the viscous effects of the interstitial fluid. The typical feature of this

regime is that shear and normal stresses are linearly proportional to the shear rate. At the

other limit--"grain inertia regime", stresses or pressure are dictated by particle collisions

so that the interstitial fluid plays a minor role. In this regime, the relation of the stress to

shear rate is changed from a linear dependence to a square one. The 'transitional regime"

is the transitional state between these two limits. The current study will focus on the grain

inertia regime which has a high solids packing fraction and relatively lower shear

gradients.

In order to model velocity fluctuations, Ogawa [17] introduced the "granular

temperature", which is the representation of mean kinetic energy associated with particle

velocity fluctuations. He proposed a balance law for this term by only considering the

inelastic and frictional interaction between particles while neglecting the rotational part.

Although several assumptions were needed to model the particle-particle collisions while
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averaging the data, his work reduced led to a simple way to quantify the velocity

fluctuation.

Savage and Jeffrey [18] extended the study of Bagnold [1] by considering

identical particles subjected to a rapid mean shear. They assumed that the particles were

smooth, hard, elastic spheres and expressed the stress as an integral containing

probability distribution functions for the velocities of the particles. From their theory, the

relative velocity between colliding particles was allowed to be random. The importance

of the mean deformation was reflected in the anisotropy of the distribution function,

which was proposed to govern the probability of collisions between pairs of flow

particles. They calculated the components of the mean stress that result from the

exchange of momentum in collisions for perfectly elastic particles.

Jenkins and Savage [8] further improved the understanding of shear granular flow

provided in the theory of Savage and Jeffrey [18] by focusing on an idealized granular

material comprised of identical, smooth and nearly elastic spheres. They derived integral

expressions for the stress, energy flux and rate of dissipation due to collisions of particles

using the Maxwellian distribution functions for the velocity of a single particle and for

binary collisions.

Shen and Ackermann [19] also derived constitutive equations for a granular flow

of identical and frictional disks. They obtained stresses as the average rate of momentum

transfer across a surface due to the inter-particle collisions, assuming that binary

collisions would be the major mechanism for momentum transfer.

Lun et al. [20] developed the kinetic theory for a granular flow of uniform,

smooth and inelastic spherical particles by considering instantaneous binary collisions
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between particles. Their results demonstrated that the shear and normal stresses increase

monotonically with increasing solids packing fraction when the contribution from particle

collisions becomes dominant.

Experiments using annular shear cells [2, 4] have also provided valuable

information about the effects on stresses due to shear rates, boundary conditions, material

properties, and solids concentrations. However, problems with measuring depth profiles

of transport properties related to velocity fluctuations (such as granular temperature and

pressure) have hindered progress in understanding the intricacies of these flows.

1.2.2 Size Segregation Experiments

Studies of segregation under a variety of flow situations other than shearing have

appeared throughout the literature on granular systems. When an assembly of uniform

particles is vibrated, a larger "intruder" particle placed at the bottom of a container will

tend to rise to the top surface of the bed. In 1963, Williams [21] carried out some

interesting experiments on this phenomenon. He stated that particle size is the principle

factor in the segregation, although density and shape may play a secondary role. In order

to decipher the causes of segregation under vibration, he repeated the vibration

experiment with a single large particle initially placed at the bottom of a bed of glass

beads [22] He attributed the sphere's rising motion to the "locking" effect of the

overburden pressure that it exerts on the column of materials directly beneath it, thereby

preventing the large intruder from moving down. If this particle does experience an

upward movement during the vibration, smaller ones could easily move beneath it and

become locked.
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Ahmad and Smalley [23] carried out the same type of experiments as Williams.

They measured the time for the large particle to rise to the surface of a sand-filled

vibrated bed. An acceleration range of 1-10g and frequency range of 50-150 Hz was

used. It was observed that acceleration was an important factor affecting the segregation.

Segregation increases with an increase in acceleration for all fixed frequencies, but it was

reduced with increasing frequency at a constant acceleration. It was also confirmed that

the higher the bed depth, the longer the segregation time, while the bigger the size of the

large ball, the greater the tendency to segregate.

With a radioactive tracer, Harwood [24] measured the segregation effect in the

real powder systems. The powder materials were selected to be of different cohesion,

different size and density. The powder properties as well as vibratory parameters had

profound effects on the results. Significantly increased segregation was observed when

the powder was fluidized under sufficient energy.

Recently, Shinbrot [25] repeated the "Brazil-nut" experiment [42, 43] with large

grains of different densities. It was observed that in deep beds under high amplitude

vibrations, the large heavy grains rose to the surface of the bed, but the larger light grains

appeared to sink to the bottom of the bed. In another experiment performed by Brew [26],

a transition from the Brazil-nut effect to its reverse form was implemented with a given

mass density ratio and excitation intensity. Hong [71] proposed a qualitative model for

the crossover from Brazil nut problem (BNP) to Reverse Brazail nut problem based on a

relation between the percolation effect which could be described by the granular

temperature and the respective condensation for different species of hard spheres. His

theory was an attempt to provide a general framework.
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Much of the current understanding of the underlying mechanics for dry granular

materials segregation comes from the fundamental theoretical and experimental studies of

Bridgewater. Drahun and Bridgewater [27] studied the mechanism of free-surface

segregation which occurs when particles are poured onto a heap. Several ,factors such as

particle size, density and shape were studied. With a simple shear cell experimental

device, Foo [28] confirmed that a single large particle in a sheared bulk of mono-sized

small particles will migrate towards the regions of higher shear in which there is a greater

mobility of smaller particles. In 1985, Bridgewater et al. and Foo [29] used another

annular shear cell to investigate particle mixing and segregation over time. A

mathematical model of the occurrence of mixing and segregation in the failure zone of a

free-flowing particle was developed and compared with experimental evidence.

Bridgewater and Stephens [30] continued the inter-particle percolation studies in another

annular shear cell experiment with large particles in a bed of small ones. They

characterized the shear gap with the presence of a concentration plateau in the center

zones, which is similar to the current simulation. They also found the migration of large

particles towards the center of the failure zone. Their results showed that migration

occurs in the direction of a shear rate gradient and is directly proportional to the shear

intensity.

Savage [2] designed an annular shear cell consisting of two concentric, circular,

disk assemblies mounted on a fixed shaft. The bottom disk assembly was driven by a

variable-speed DC motor and the top disk assembly was restrained from rotating by a

torque arm connected to a force transducer. The granular material was placed in an

annular trough between the bottom disk and annular ring on the top. The bottom and top
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surface of the shear cell were lined with coarse sandpaper to increase the wall roughness,

while the vertical walls of the trough were very smooth. Typically, the apparatus was thus

designed to determine shear and normal stresses as functions of solids concentration and

shear rate. In one of the tests, spherical polystyrene beads having a bimodal size

distribution (30% of 0.55mm particles and 70% of 1.68 mm particles) were well mixed at

the beginning of the test sequence.

It was observed that the primary shear flow in the shear cell was accompanied by

a weak secondary flow in which particles moved radially inward at the top of the material

and radially outward at the bottom. Typical shear and normal stresses measurement taken

at the upper annular lid indicated that they were not uniformly distributed in the radial

directions, and are higher at larger radii due to the segregation. A test with a binary
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mixture dry granular material showed the segregation occurred in the radial direction

where the fines migrated and concentrated at the outer radii. Savage explained this

phenomenon as the fine particles percolation through the coarse particles which is driven

by centrifugal force.

Savage and Lun [3] introduced binary mixtures in their chute-flow experiments

where the particles were composed of identical material but with different sizes. In this

inclined chute experiment, the bed surface had a large roughness so that granular flow

was sheared in the presence of a gravitational field. Segregation occurred in which small

particles percolated to the bottom and the larger ones drifted to the top of the shear layer.

In order to collect the size distribution data, splitter pates were arranged to measure

concentration profiles for each species at various points along the stream-wise direction.

It was observed that a concentration difference quickly developed along the stream-wise

direction. Zones of 100% fines grew sharply near the rough surface.

Savage and Lun [3] proposed a model that they termed called "kinetic sieving" to

analytically describe their experimental results on segregation in which large particles are

pushed to the surface and smaller particles percolate to the bed floor. Kinetic sieving

consisted of two components — "randomly fluctuating sieve" and "squeeze expulsion".

The "randomly fluctuating sieve" was devised to account for the fact that for a given

solids fraction, the probability of a small particle encountering a big enough opening was

assumed to be greater than that of a large particle encountering a gap of sufficient size.

In order to maintain a zero mass flux in the direction perpendicular to the bed, a

counterflow mechanism was introduced that allowed particles (both small and large) to

percolate only towards the impermeable bed floor. The second mechanism, "squeeze
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expulsion" took into account force imbalances on an individual particle that could cause a

it to be squeezed out of its own layer into an adjacent one. Savage and Lun [20] proposed

that this mechanism was not gravity driven or size preferential, and that it operated in

either direction, and that the contact forces were more likely to force large particles

upward than small ones. However, if small particles percolate downward more often than

big ones, size segregation will occur regardless of whether the large particles are

preferentially squeezed upward or are equally likely to be pushed either up or down.

Observations of Takahashi [31] showed some interesting phenomenon in small

sized debris flow where coarse particles concentrate at the margins of the flow regime. In

the study, randomly mixed sand and gravel slide down a roughened fifty degree inclined

chute connected with a horizontal section where the gravel segregated to the front and top

after the material came to rest. This observation was similar to the sorting process when

mixtures of coarse and fine sand were used. Takahashi [31] suggested that this inverse

longitudinal sorting occurs because large particles migrated upward owing to dispersive

stress, then move to the front because velocities are faster in upper layers. The particles

reaching the front tumble down and are buried in the flow. But if they are larger than the

surrounding particles, they will again migrate to the surface.

Davies [32] performed experiments where particles flow on a roughened treadmill

adjusted so that the flow front remained stationary. At high enough Froude numbers, the

flow broke up into individual surges where large particles migrated to the front of the

flow and accumulated at the nose. Films of Davies' [32] experiments confirmed that large

particles circulate near the front of the flow, and fine particles migrated toward the tail of

the flow in a circulatory path. In the case where more material was added and the height
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was greater, the shear strain rate in the upper parts of the flow was small. Shear strain is

necessary for the kinetic sieve to operate, and, where it is small, longitudinal segregation

diminishes.

Recently, Khosropour and Zirinsky [33] have investigated the size segregation of

a binary mixture in their shearing cylinders. They observed the migration of the larger

particles coincident with the experimental results of Savage [2]. In their experiments, all

the particles with a larger size ratio than those of the flow medium rose to the top surface

of the Couette shear cell and remained on the top over a wide range of shear rates.

Extensive measurements of the speed of the bigger tracer particles showed the

dependency of size ratio on the motion. They believe that this segregation is a byproduct

of the convection, because the flow medium appeared to go through a convection-like

motion under shearing. They assumed that the convective nature of the flow which is

found in the shearing medium should be the mechanism driving the segregation process.

After measuring the position of a single intruder particle, they determined the convection

pattern of this shear flow. Although the shape and the number of the convective rolls

were not very clear, it is well known that the boundary roughness, and shear rate play

important roles in creating convection. In addition, a peculiar transition, similar to

laminar to turbulent, was noted in their measurement of the segregation velocity. This

transition was marked by a sudden increase in the standard deviation of the vertical

velocity and a deviation from the linear mean velocity field. They believed that this

transition is dominated by diffusion and particle collision which is critical in the forming

of convection rolls. The current DEM simulation study also revealed that the wave length

of convection roll in the ring shear model have the relation with the boundary conditions.
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1.2.3 Size Segregation Theory Analysis

Jenkins and Richman [34] developed a kinetic model for granular flows, by including the

energy dissipation due to inelastic collision. Their theory assumed that the particles

interact via binary collisions, usually using a constant coefficient of restitution to

represent the energy dissipated by the normal impacts between the particles. This method

has been further applied to solve shear flow problems. Jenkins and Richman employed

the averaging technique in kinetic theory of dense gases flow to calculate the energy and

momentum flux transferred between flow disks and boundary walls. With the energy

equation, they established the relations for the shear stress, pressure and flux of

fluctuation energy. Richman [9] extended their theory with smooth spheres, where a

modified Maxwellian velocity distribution was used to analyze shear flow driven by the

bumpy boundaries. He predicted the existence of a relation between boundary roughness

and slip velocity of the shear flow near the boundary.

Jenkins and Mancini [35] formulated a similar theory for granular mixture in

1989. They derived the balance laws and a constitutive relation for plane flows of a

dense, binary mixture of smooth, nearly elastic, circular disks. Their study focused on the

flux of momentum due to binary collisions. The disks referred to their study may have

different radii and masses and collisional properties. In a reduced gravity field, collisional

flows become possible and the segregation is mainly driven by spatial gradients in the

energy of granular velocity fluctuations. After the flow reaches steady state, segregation

is triggered by the momentum balance exchanged in contacts among different species.

This process requires the gradients of particle fluctuation energy to be balanced by

concentration gradients.
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Farrell, Lun and Savage [36] derived conservation equations for the rapid flow of

a binary mixture of spheres. This theory is appropriate for smooth, inelastic spherical

granular particles in a system where collisions dominate the motion. In a simple shear

flow, they predicted that stresses will decrease with increasing concentration of smaller

particles and decreasing diameter ratio of small to large particles.

Willits and Arnarson [37] developed a more precise theory based on the study of

Jenkins and Mancini [35]. The constitutive relations for the binary mixture of nearly

elastic, circular disks are developed by using the Chapman-Enskog procedure and by

incorporating the Revised Enskog Theory derived by Van Beijeren and Ernst [38]. As a

correction to Jenkins and Mancini's work, the viscosity which was calculated by

integrating the shear stress correlation was quite close to the results of their simulations.

1.2.4 Simulation Studies of Segregation

Many investigations of granular Couette flow using the Discrete Element Method have

been carried out. Earlier simulations have focused on the flow mono-sized, inelastic

particles between bumpy walls, such as the studies of Kim and Rosato [14] and Lun [39].

On the other hand, Karion and Hunt [40] introduce mixed systems with different sizes to

check the effect of solid faction ratios between species on the wall stress.

Two-dimensional Couette flow simulations of identical, inelastic, smooth disks

driven by bumpy boundary walls were reported by Louge et al. [13]. Using a two-

dimensional Fourier analysis of the concentration field, they found the relationship

between the size and strength of these microstructures and the magnitude of the stress,

thus showing that there is correlation between the magnitude of the stresses and the

formation of inelastic microstructure. They found that disks tended to remain together
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after collisions when the restitution coefficient was small. They also established that in

the dilute limit of the flow, the kinetic mode dominates, and in the dense limit, the

collisional mode dominates.

Another simulation for Couette flows of inelastic, frictional disks with flat walls

was done by Campbell and Brennen [11]. Distributions of velocity, density and granular

temperature were computed. It was found that the granular temperature was low across

the central portion of the flow and large in the high-shear-rate regions next to each solid

boundary. The high-temperature zones also corresponded to the low-density regions. In

the absence of conduction effects and at constant density, their results showed that the

temperature was proportional to the square of the shear rate.

Campbell and Zhang [41] used a wall model in which the flow-disks could collide

with both the wall disks and the exposed flat area of the wall to study the transition from

fluid-like to solid-like behavior of the Couette flow. Their research identifies a relation

between the fluid-like behavior and Mohr-Coulomb failure criterion in the case where the

particles are in the quasi-static regime. The results show that for a granular flow, the

glassy-solid transition identifies, not the fluid/solid phase-change, but the initiation of the

transition from rapid to quasi-static flow.

Lun [39] used a hard-sphere three-dimensional model to simulate Couette flow

with boundaries composed of half spheres and a flat plate. He showed that there exists

either an optimal wall-particle area fractions V, for which the stresses may be maximized

or the velocity slip may be minimized. At high solids concentrations, the wall-particle

concentration and distribution were shown to have a significant effect on the dynamics of

the flow system.



15

In 1986, a uniform shear flow simulation using smooth, inelastic, monodisperse

disks was developed by Walton and Braun [15]. By means of non-equilibrium molecular-

dynamics methods, Walton and Braun found that the kinetic contribution to the stress

tensor decreases and the potential contribution to the stress tensor increases as the solids

packing fraction increases. By extending the particle collision model to the spheres, they

found the granular temperature generally increased as the solids packing fraction

decreased, and decreased as the coefficient of restitution decreased.

Kim and Rosato [14] examined the effects of boundary properties on slip

velocities and wall stresses in a Couette flow simulation using smooth, inelastic spheres.

They found a dependency of these quantities on the bumpiness of the wall. A large stress

drop occurred in dense flow when the shear gap was only a few particle diameters in

scale, a result also found earlier by Savage [69]. Slip velocity was found to increase as

the effective wall friction became larger or as the flow particles were made more elastic

(i.e., as normal restitution coefficient increases).

Karion and Hunt [40] used inelastic hard-disks in their simulation of binary

mixtures. For both uniform and binary mixtures, the regions of high shear near the walls

exhibited low solid fractions and high rotational and translational granular temperatures.

In mixture flows, the solids fraction of the large particles were negligible in the high-

shear regions, an effect that was more pronounced in flows with larger discrepancies

between the diameters of the two species. In good agreement with the results of

Compbell and Brennen [11], they found normal and shear stresses on the bounding wall

grew with solid fraction in uniform flows due to an increase in collision rate with
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concentration. Also, the wall stresses increased with diameter ratio and decreased with

the solid fraction ratio of small to large particles for fixed bulk solid fractions.

Simulation methods have been further developed to study granular flow and

segregation in vibrating fluidized bed, inclined chutes and pouring heaps. In a vibrating

bed simulation using a Monte Carlo method, Rosato et al. [42, 43] explained that the

upward motion of particles in the bed is related to the higher probability of the smaller

particles filling the voids generated underneath the larger ones. The mechanism has been

referred in the literature as the "Brazil Nuts Effect", signifying the rise of a large particle

to the surface of a vibrated assembly of uniform, smaller particles. Recently, additional

simulations showed that the motion of an intruder to the surface of an energetically

vibrated system can be caused by the development of bulk convection. The situation here

is, however, different from the Brazil Nuts mechanism which is predominant when

convection is absent. [44].

Comparison of physical experiments with DEM simulations [46] suggest that in

dense flow calculations, the simulation results tend to be sensitive to the grain stiffness

where the drag force arising from the interstitial fluid may have an important effect. A

two-dimensional molecular dynamics study for size segregation was conducted by

Hirshfeld and D. C. Rapaport [47] in which the larger grains rise to the upper surface of

an inclined chute flow. Although the quantitative aspects of segregation were only probed

in a preliminary fashion, it clearly shows that segregation is faster for larger differences

in grain size, as well as for greater shear rates. This rate dependence was also seen in

other earlier investigations.
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Baxter and Tuzun [48] demonstrated the effect of impacts for size segregation on

pouring heaps, in a series of granular dynamics simulation. This simulation repeats a

recent experiment [48] and indicates that the stratification of poured mixtures into layers

can be controlled by regulating the impact mode. High impact conditions result in new

entrant particles initially embedding themselves within the heap rather than flowing down

the free surface that occurs under the low impact conditions. From the marked differences

in coarse fractions in the lowermost regions of the heap, they concluded that the heap was

overall relatively well-mixed in a high impact mode.

Shinbrot and Muzzio's [72] experiment re-examined the Brazil-nut problem using

heavy particles. In a deep bed with large vibration amplitudes, they observed that the

large, heavy grains rise, but equally large, light grains sink to the bottom. This means that

density plays a very important role in the phenomenon. Jenkins and Yoon [73] adopt a

kinetic theory for a binary mixture of grains that differ only in size or in mass under

gravity. In their predictions in the absence of temperature gradients, segregation is due to

a competition between the inertia of the particles (through the ratio of their masses) and

their size ratios. They were able to substantiate Hong's heuristic theory.

1.2.5 Motivation, Objectives and Methods

As mentioned above, size and density segregation are commonly observed behavior of

granular material in shaken or vibrating bed [50, 51], and stockpiles [49]. Recent

experiments [33], theories [8] and simulation studies [52] have revealed that in a micro-

gravity field, segregation could be driven by a shearing boundary instead of an oscillating

container. Jenkins and Mancini [35] concluded that in the fully-developed mixture flow,

different species have different concentration gradients in order to balance the
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momentum exchanged in collisional contacts among each species. Louge and Jenkins

[53] constructed a shear cell experiment to observe collisional segregation driven by

fluctuation energy gradients in reduced gravity fields. On the other hand, the shear cell

experiment of Khosropour [33] found the existence of size segregation in a gravitational

field, which suggests the existence of another mechanism for this behavior of shearing

granular material --convection.

The use of discrete element simulations to duplicate this phenomenon, and to

investigate the different responses of small and larger spheres under shearing will be

useful in understanding this phenomenon. The simulation begins by initializing a dense

assembly of particles contained in a cubic cell, with the upper and lower bumpy

boundaries in a micro-gravity field. The bumpy boundaries were made of whole spheres

that are rigidly fixed to parallel walls, while other boundaries are periodic. Shearing of

the particles between the bumpy walls is accomplished by moving them in opposite

directions at a constant velocity.

The phenomenon of interest is depicted in Figures 1.2a and 1.2b which show

configurations taken at t = 0s and t = 20s, respectively from a simulation of a binary

mixtures of uniform density spheres. Initially, the particles are well-mixed along the

shear gap. As shearing begins, the starts to separate so that the larger particles migrate

towards the central region of the flow. After 20 seconds, layers of small particles were

seen to form near the moving boundaries while almost all of the large particles were in

the center and away from the boundaries. Profiles of the solids fraction in Figure 1.2c and

1.2d for both species clearly show the segregation that has taken place.
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Figure 1.2a Initial status at t = Os.	 Figure 1.2b Segregation at t = 20s.

The same phenomenon was reported by Stephens and Bridgewater in their

annular shear cell experiments [30]. The authors observed the migration of larger

particles towards the center of the failure zone. The transition of the concentration depth

profile for each species also confirmed the migration of the larger particles.

With the goal of establishing a 3D dynamics model and comparing the current

Figure 1.2c Packing fraction profile	 Figure 1.2d Packing fraction profile
at t=0s.	 at t=20s.
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simulation results obtained with existing theories, simulations and experiments, this study

will is principally focused on the behavior of an individual intruder particle within a

sheared monodisperse granular medium. The effect of size ratio on segregation is

investigated, and a vortex-like pattern of the velocity field is identified and characterized

through the use of wavelets.

1.3 Outline of Thesis

The remainder of this dissertation is organized as follows. Chapter 2 includes a

description of the geometry of the Couette model, and an overview of the simulation

method. After concisely introducing Walton's molecular dynamic soft-sphere model, a

discussion of the boundary conditions and modification of the code are discussed along

with the relevant parameters used in this investigation. In Chapter 3, the spatial and time

averaging methods used to calculate the transport properties are explained. The

limitations of Autocorrelation and FFT analysis for the fluctuation signal are presented

while the discrete wavelet transform (DWT) method is introduced for use in the case

studies. Chapter 4 includes a discussion of the general features of granular Couette flow

that can be characterized via mean field depth profiles of velocity, granular temperature,

pressure, and solids fraction. Furthermore, the velocity pattern of the mean shear flow

velocity field is examined by checking the time and spatial averages with spectral

analysis and the DWT method. Chapter 5 is concerned with the migration of one larger

intruder for a series of size ratios in the simulation cell. In addition, the behavior of this

single flow particle is analyzed in detail as a point of reference from which to compare

and contrast with the intruder having a different size and/or mass. In Chapter 6, a
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modified shear cell with a gravitational force is introduced for the segregation study, and

by comparing the results from other experiments, the mechanism of the size segregation

in the gravity field is determined. A summary and conclusions are presented in Chapter 7,

together with other comments concerning future studies.



CHAPTER 2

3-D DISCRETE ELEMENT METHOD SIMULATION MODEL

The behavior of the intruder within the flow is examined in detail using the discrete

element method (DEM) that was originally developed by Cundall [54]. The principle of

DEM is to compute the trajectory and rotation of each particle (or particle cluster) in a

system to evaluate its position and orientation. This is done by numerically integrating

the equations of motion of a system of particles that interact via binary collisions. The

forces between colliding particles are based on soft-sphere models, which will be briefly

discussed further on. Other particle simulation techniques, such as cellular automaton

[55] [56] and Monte Carlo methods (insert reference here) make use of random numbers

and probability distributions, in contrast to the discrete element method, which is

deterministic.

The main advantage of DEM is that highly complex systems can be modeled with

basic data without over-simplifying assumptions. Examples include the transition from

static to flowing particles in a complex hoper geometry [57-60] where continuum

equations would not be tractable, or in mixing and segregation problems.

The main limitation for DEM is that it is computationally intensive, since this

method uses an explicit time integration scheme and repeats sequential calculations over

a limited time period with very small time steps. Due to rapid advanced in hardware, the

number of particles that can be simulated within a reasonable time frame has increased

rapidly in recent years. It worth noting that both the simulation size and time steps must

be carefully considered in any rigorous evaluation of run time.

22
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The DEM simulation was actually an outgrowth of molecular dynamics methods

used in the field of statistical physics [61]. A critical distinction between molecular and

granular systems is that energy dissipation is an intrinsic feature in the latter that must be

incorporated into the collisional force models. In contrast to gas molecules, particulates

cannot be modeled by perfectly elastic collisions since, during an a collision, a portion of

kinetic energy is either dissipated in plastic deformation or converted into heat.

The first idea that comes to mind to simplify the level of difficulty in modeling

solids in contact is to treat them as hard spheres. In the context of numerical simulation,

however, the word "hard" does not imply that the collisions are perfectly elastic. It

simply means that there is no interpenetration or deformation during impact. A "soft

sphere" approximation is based on an entirely different principle. Here, friction and

elastic restitution come into play only when spheres penetrate into each other, and the

magnitude of the interaction depends on the penetration depth. In this study, the inelastic

"soft sphere" ratchet contact model of Walton et al. [15] has been used, which correctly

reproduces experimental observations and finite element calculations for plastic

deformation in collisions.

It is important to understand that these simulations are inherently non-equilibrium

in the context of non-uniform "granular temperatures". Results presented herein represent

steady-state averages, which generally require only a few seconds (or equivalently

approximately 30 collisions per particle per second) to achieve. The duration for the

system to reach the steady-state will depend on the system configuration parameters. For

example, shear ratio is critical to the turning point of the steady-state which was

determined by the gap height of the simulation cell and boundary velocity.
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2.1 DEM Algorithm Application

The computer simulations performed in this study uses smooth, inelastic, frictional

spheres migrating in the Couette shear flow driven two parallel bumpy boundaries. These

boundaries are composed of spheres (arranged in a planar square configuration) having

same properties as the flow particles. The simulation begins by first assigning the

coordinates of all flow particles using a random number generator. In order to avoid

overlaps, the initial radii of flow particle are smaller than the input value. The radii are

then slowly expanded to the desired size, where any overlaps that occur during the

process are effectively removed by allowing the resulting forces to push the overlapping

particles apart. Upon completing of the expansion process, all variables are reinitialized.

The motion of two parallel bumpy walls in opposite direction provides the energy

source to drive shear flow. Due to rapid inelastic collisions between particles in the first

few seconds after the initialization, there is a dynamic state which the energy loss from

inelastic collisions cannot be balanced by the energy input provided by the parallel

bumpy walls. Eventually, the shear flow will attain a steady-state situation that can be

determined from the evolution of the mean velocity profile. In the study described in this

dissertation, it is assumed that the coefficient of restitution is constant. However, for soft

particles and/or for very energetic collisions, this assumption may be violated since it is

known that the restitution coefficient is inversely proportional to the one-quarter power of

the relative incident velocity. The parallel bumpy walls are moving with constant

horizontal velocities in opposite directions, that is, the upper wall is moving with U in

positive x-direction and the bottom wall is moving with U in negative x-direction.
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Figure 2.1 Flow chart of simulation algorithm.

The flow chart in Figure 2.1 shows the basic algorithm steps for the simulation:

i. Initializing the system and input the data for all the particles.

ii. Searching the system and referencing all the particles.

iii. Applying interaction laws (normal, tangential force and moments) at inter-particle

and particle-wall collision.

iv. Integration Newton's motion equation to determine particle behavior. (position,

velocity and accelerations)

v.	 Averaging output data with time averaging method or special averaging method,

and updating the link list of particles contacts.
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A more detailed explanation is discussed below by classifying the code's

subroutines into five groups in accordance with these steps.

A.	 System initialization and data input:

i3ds

Assign input data for case studies for the geometric parameters (number of particles,

particle size, computational cell size, running time), boundary configuration (boundary

roughness and boundary particle arrangement and size), material properties (coefficient

of restitution, friction coefficient, density) and shear condition (boundary velocity).

datain . f

This subroutine reads the input data from "i3ds" (unit=2).

bound . f

Assign coordinates, velocities and other properties for boundary particles. Select square

coordinates for boundary sphere assigned on XZ plane at y = 0 and y = H when " bdry =

1", and triangular coordinates for "bdry = 2". The array of boundary particles in X and Z

directions could be changed in i3ds.

init f

This is subroutine initializes general parameters. Initial coordinates and fluctuation

velocities of particles in a system are generated. The number of zones along the y

direction and the time step are also calculated here.

Findrad . f

This subroutine finds the maximum allowable particle radii at time t = 0 and increases

radii each time step thereafter until it reaches a predetermined (input) value. This

subroutine will be actuated every time when the simulation start from t = Os.
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B. Inter-particle force subroutines:

forces . f

This subroutine calculates the inter-particle forces between particles. The force model

used in this routine is a partially latching spring model of Walton and Braun [Walton,

1986 #65; Walton, 1986 #62]. The collisional or potential contribution to the stress tensor

is calculated in this routine. In addition, the net force around the intruder particle is also

calculated in this routine at each time step.

update . f

This subroutine checks all particle pairs and update the near neighbor arrays for all flow

particles.

C. Integration subroutines:

initstep . f

This subroutine initializes the integration step. The zone index needed in calculating zone

diagnostics is established. Using this index, volume fractions of particles which occupy

each y-zone are computed as mass-weighted average quantities.

integ1 . f

This subroutine performs an iterative integration of the velocity equations to solve for vx

and vy at the start of the current time step only. The Verlet leapfrog algorithm is used to

perform the integration.

integ2 . f

This subroutine calculates the coordinates at the end of the current time step. The current

coordinates will be used as the initial input information for the next running step. And

this subroutine will be repeated at the end of each calculation step.
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D. Diagnostic calculation subroutines:

initcum 1 . f

This subroutine initializes the cumulative short-term averages of computed quantities

such as granular temperature, the average velocity in each zone, and stress tensors.

initcum2 . f

This subroutine initializes cumulative long-term averages of computed quantities.

diagnos2 .1

This subroutine calculates all of the diagnostics, both locally and globally. Local volumes

are called y-zones. The kinetic contribution to the stress tensor is calculated in this

routine.

E. Data output and Others:

datasave . f

This subroutine writes output data to the output files:

zzbig1 : coordination of the intruder.

zzvel1 : velocity of the intruder.

zzforce1 : net force around the intruder.

zzdiff: mean square displace of the intruder.

deletem . f

This subroutine looks through all near neighbors in the linked list and deletes near

neighbors that are beyond the maximum distance. It is only used when the maximum

distance has been reduced to save total memory used for the near neighbor.

dumpread . f

This subroutine is called from the main routine and it reads the restart information
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from "D3DS" (unit=4).

rand. f

This subroutine is a pseudo-random number generator to create random numbers from a

uniform distribution. The randomly distributed initial locations and velocities for the flow

particles are generated by this sub-routine.

2.2 Contact Searching and Neighbor Lists

Within each time step of the DEM simulation, the inter-particle contacts must found. For

a of N particles, each update to the linked list of contacts would require an 0(N2) search if

done in a direct manner. To reduce this order and thus increase calculation speed, the

code has a data structure called "neighbor lists" to find new and broken particle contacts.

This structure is used in the evaluation of contact forces (subroutine Forces.f) between

particles. The algorithm searches for all "near" neighbors around a given particle i (of

radius R i) that lie within a user-specified distance denoted at "search". When the

distance between the centers of particle j and i is smaller than R i + search , then particle j

is included with the list of neighbors associated with particle i. The neighbor lists of all N

particles are stored in a large array as a formatted "linked list". It is not necessary to

update the linked list every time step. Rather, updates are done (by subroutine Update.f)

when the maximum cumulative displacement of any particle exceeds the parameter

search. The main advantage of this strategy is that the identification of contacts requires

only local searches within each particle's neighbor list.

There are cases when the algorithm fails to detect collisions so that there are large

and physically unrealistic overlaps between particles. This can occur is the integration
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time step dt is not small enough, or the particles moves so fast that they penetrate into or

through the search area within given time interval. Since the calculation of collision

forces between the contacting pairs contained within in the search area only considers the

change in the last updated time, an error will occur when force model fails to compute the

interactions due to the overlap. In the case when flow velocities are too fast, it is possible

for a particle to pass right through another particle. In order to avoid such problems, care

must be taken selecting particle properties (which dictate the time step), the search

distance and flow velocities.

The subroutine Update.f plays a crucial role since it creates and updates the

neighbor information of each particle's neighbor list. For each particle i, the routine

checks to ascertain if the center of a particle j lies within the search region. If it does, a

further test is carried out to determine if particle j is already in the neighbor list of particle

i. If it's already there, then the next particle is examined. However, if particle j is not

already in i's list, it will be added to the end of particle i's neighbor list. The other

subroutine involved with the maintenance of the linked list is called Deletem.f. The

function of this routine is to remove particles from a neighbor list if it has move beyond

the search distance.

2.3 Computational Force Model

In this section, a summary of the normal force model for inelastic, frictional spheres as

developed by Walton and Braun [15] is given. Complete details on the tangential model

can be found in the paper by Walton [64] and so it will not be repeated here. The

"normal" force lies in the direction connecting the line of centers of the contacting
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particle pair, while the "tangential" forces lie at right angles to this. The net force on a

particle-particle is given as the vector sum of all binary (pair) interactions. The specific

force approximations in the code are an implementation of the "soft sphere" model

developed by Walton et al. [16]. Collisions of a finite duration occur that depend on the

amount of allowed overlap between particles, (generally less than approximately one to

two percent of the particle diameter). Because a soft sphere model is used, flows

admitting enduring contacts can be simulated.

Figure 2.2 Linear normal force loading and unloading with
stiffness K1 and K2, a is the penetration.

The collision process is divided into two parts: deformation and restitution. The

deformation period is the time during which the distance between particle centers

decreases, and hence the interaction force between particles increases to a maximum

value. The restoration period represent the process in which the particle centers move

apart, and hence the interaction force decreases from maximum value to zero. The above

two steps are simplified using conventional linear springs with different coefficients of

stiffness K1 (for deformation) and K2 (for restoration).
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For two colliding spheres, the normal force (i.e., along the line of centers) consists

of loading and unloading paths that are governed by linear springs of stiffnesses K1 and

K2, respectively. (Figure 2.2) In this model, the initial loading force follows the slope K1

from a to d, while unloading is along the line with slope K2 (path from d to f) to a residual

overlap  α0. At this point, the spheres move apart with zero normal force along the path f

to a. In the case that unloading takes place from point b, the normal force follows path b

to c with slope K2. The model can be expressed analytically as,

where a is the normal penetration and  α0 is its value when Funload =0. This force model

has been shown by Walton and Braun [16] to have a good agreement with the

experiments result and calculations from FEM analysis [62] . The normal force model

just described produces energy dissipation governed by a constant coefficient of

restitution given by,

In the tangential direction, the force, which approximates Mindlin's [63] theory,

admits a tangential stiffness that decreases with relative tangential surface displacement

until full sliding occurs at the friction limit with coefficient IA. Full details can be found

in Walton's work [64].

The approximate collision ti duration can be derived from loading and unloading

period as,
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Integration of the equations of motion for the N interacting spheres of diameter d is done

through an explicit Verlet leap-frog difference scheme through a time step At given by

where p is the density of the material. For the simulations in this investigation, n = 30

and e = 0.9.

The procedure to determine the loading spring constant K1 that was given by Lan

[44] is repeated here. For uniform spheres which undergo small deformations of the order

of one to two percent of the diameter, behavior is governed by the Hertzian model given

by,

where KH is the stiffness, E is the Young's modulus, v is Poisson's ratio, d is the

diameter of the particle, and a is the relative displacement or overlap after initial contact.

For this model, the maximum strain energy can be found through a simple integration as,

In the above formula, amax is the maximum overlap suffered during the loading process.

The kinetic energy of two colliding particles is given by

where vmax is the maximum relative incident velocity and m is the mass of the sphere. If it

is assumed that all of this kinetic energy is stored as strain energy, then



For the linear model, the maximum strain energy is found in a similar fashion so that

In the above expression, equation (2.9) may be substituted for Amax to obtain an

expression for K1 only in terms of vmax.

2.4 Data Output

There are several output files that are produced by the code, each of which can be

described as being in one of three categories. In what follows, the name of the output file

with the file unit number in "parentheses" is given.

A.	 Restart Information:

zo3ds (3):

This file describes general information about the simulation such as time step, cell

dimensions, boundary type, material properties, and so on.

zvel (12):

This file stores the deviatoric velocity of each particle.
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zposition (13):

This file stores the coordinates of particles.

B. 	 Computed Transport Properties:

zenergy (14):

The energy corresponding to the particle fluctuation velocities and interactions between

particles is stored in this file.

ztensor (15):

The kinetic and collisional portions of the pressure tensor for the individual layers (or y-

zones) and for the entire computational cell are store in this file.

zpack (18):

The average number of particles occupied in each y-zone is stored in this file.

zxvel (19):

Mass weighted average values of particle velocities in each zone are stored.

zbdot (20):

This file stores the strain rate in each y-zone. This is used in a calculating the piece-wise

linear curve for the mean shear field in a system. Each particle's random motion is then

calculated using this mean shear field.

zbstress (22):

Dimensionless stresses on a boundary are stored in this file.

zgyx (24):

The deviatoric kinetic energy associated with particle fluctuations in x direction is stored

in this file.

zgty (24):
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The deviatoric kinetic energy associated with particle fluctuations in y direction is stored

in this file.

zgtz (25):

The deviatoric kinetic energy associated with particle fluctuations in z direction is stored

in this file.

zdistb (26):

The distribution of particle coordinates in x, y and z direction is stored in this file.

zveldistb (27):

The distribution of deviatoric velocities in x, y and z directions is stored in this file. The

deviatoric velocities are normalized by an initial deviatoric velocity.

C.	 Output File Associate with the Intruder Particle:

zzbig1 (30): Coordination of the intruder.

zzvel1 (31): Velocity of the intruder.

zzforce1 (32): Net force of the intruder.

zzdiff (34): Mean square displacement of all each species.

zcv (90): Short term velocity field in XY plane.

zcvt (91): long term velocity field in XY plane.



CHAPTER 3

DATA ANALYSIS METHODS

In a dynamic simulation of granular Couette flow, it is possible to obtain a substantial

amount of data from the granular flow which is difficult to extract from experiments,

including profiles of mean velocity, granular temperature, pressure, and other transport

quantities. Various other diagnostic computations were incorporated into the code and

several post-processing methods were used to analyze the data. These are described in

detail in what follows.

3.1 FFT Spectrum and Auto-correlation

The Fast Fourier Transforms (FFT) is a powerful tool to generate a spectral analysis of

data generated from the flow simulation. It is possible to obtain the frequency distribution

(in the frequency domain) of the position of a tracer particle. While it may appear that,

for example, the motion of a tracer particle larger than the uniform flow spheres (i.e., an

"intruder") is random, the spectral density function obtained from an FFT analysis

suggests Brownian noise is the case. More precisely, the noise signal has a feature of that

the power spectra P(f) is proportional to 1 / fbeta 
, where beta is approximately 2. Another

interesting feature from the results to be discussed in following chapter is the existence of

a cyclic structure in the velocity field, which has a wavelength that decays with shear

rate.

In carrying out the FFT analysis, data was post-processed using MATLAB to

implement , the Fourier transformation with the optimized algorithm. If P(/) is the Fourier

37
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transformation form of real time function p(t), the power spectral density function S(t)

can be shown to be,

Here, SO is the spectral density function in frequency domain, rp is the mean value of the

period, and P*(f) is the complex conjugate of PO.

Another statistical measure is the correlation function, which is useful in

measuring the "similarity" between two stochastic signals generated in a granular flow.

The correlation between them is determined by multiplying the ordinates of the two

records at each time t and then computing the average value, denoted by (x(t)y(t)) ,

where ( ) denotes the average over the ensemble. In the case where x(t)=y(t)=f(t), the

autocorrelation function is computed,

If the process is ergodic, (i.e., the ensemble average can be replaced by a time average

taken from only a single sample that is representative of the ensemble), then the

autocorrelation can be computed as,

Here, t is the sampling time, and Tmax is the maximum time over which the computation

is performed, usually one-half of the simulation run time. In the current simulation, when

autocorrelation was introduced to check the self-similarity of the velocity field, the

computation always start to pick up the results at the moment when 1' =0.
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3.2 Mean Square Displacement and Diffusion Coefficient

The mean square displacement (MSD) of particles in a simulation can be easily computed

from its definition

where r(0) is the position of the mass center of an individual particle at t = 0, and r(t) is

its position t seconds later. The brackets ( ) denote an average over all the flow particles

(or all the particles in a given sub-region). Care must be taken to avoid considering the

"jumps" of particles to refold them into the box when using periodic boundary conditions

as contributing to diffusion [48].

The diffusivity or diffusion coefficient can be computed as the long-time slope of

the MSD versus time curve. The diffusion coefficient in the context of a

granular flow can be interpreted as an average measure of the dispersive behavior of the

flow particles. Suppose that t = 0, a cluster of particles is concentrated within a small

volume centered at r = 0. After t seconds, denote the solids fraction of the cluster of

particles in the unit volume centered around r by Gs(r, t). This quantity obeys the

diffusion equation given by,

where D is the self-diffusion coefficient. If the system is isotropic, and the initial

condition is given by a delta distribution Gs (r,0) = δ(r), the solution of (3.5) is
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The quantity Gs(r,t)dr represent the probability of finding a particle in a region dr

around origin r at time t when the particle starts from point r at time t--=0. Thus, the mean

square displacement (11-1 2 ) is computed as a weighted average in the usual manner,

Upon substitution of (3.6) into (3.7), one obtains the Einstein expression relating the

mean square displacement to D as,

The self-diffusion coefficient D is computed as the long time limit

3.3 Wavelet Analysis

Fourier analysis is a mathematical technique for transforming the view of a signal such as

the motion fluctuation of a particle in granular flow from the time-based to the frequency-

based domain. The Fourier transform pair is

Hence, a Fourier transform breaks down a signal into constituent sinusoids of

different frequencies. For many signals, Fourier analysis is extremely useful because the

signal frequency content is of great importance. But Fourier analysis also has drawbacks.
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In transforming to the frequency domain, time information is lost, which means that it is

impossible to obtain detailed information about when a particular event took place.

For stationary signals which have properties that do not change much over time,

the results from Fourier analysis are generally acceptable. However, most of the

interesting signals in this granular flow study have non-stationary or transitory features:

drift, trends, abrupt changes, and beginnings and ends of collisions. A complete

characterization of non-stationary signals in the frequency domain must therefore include

the time aspect, resulting in the time-frequency analysis of signal. In this case, Fourier

transformation could not obtain enough information from those important parts of the

signals.

If the spectrum of a signal is time dependent, it is necessary to use sufficiently

short segments of it to compute the spectrum--a technique called windowing the signal.

Dennis Gabor (1946) maps a signal into a two-dimensional function of time and

frequency which is called the Short-Time Fourier Transform (STFT). However, in the

time—frequency analysis of a non-stationary signal, there are two conflicting

requirements. The window width T must be long enough to give the desired frequency

resolution but must also be short enough so as not to blur the time dependent events.

STFT is a compromise between these two requirements--time and frequency information,

while only the information with limited precision can be obtained from this method.

The wavelet transform, similar to the STFT, also maps a time function into a two-

dimensional function of a and r. The parameter a is called the scale, it scales a function

by compressing or stretching it, and r is the translation of the wavelet function along the

time axis. The continuous wavelet transform of s(t) which is assumed to be square



42

integrable, denoted as s(t) E L2 (R) . Thus, the continuous wavelet transformation of s(t)

where ψ(t) is the basic wavelet and ψ((t-τ)/ a) is the wavelet basis functions.
a

The basic wavelet ψ(t) can be real or complex, with the resulting wavelet

transform being real or complex. For some applications, it may be advantageous to use

complex wavelets since the phase of the wavelet transform may contain useful

information. The following are examples of basic wavelets:

Modulated Gaussian (Morlet):

where ω0  is the analyzing frequency.

Complex Morlet Wavlet:

Where fb is a bandwidth parameter and fc is a wavelet center frequency.

The integration operation above computes the inner product, or the cross-

correlation of s(t) with ψ(t/a )/√a with a shift 17a . Therefore, it computes the

`similarity' between s(t) and ψ(t/a)√a,  or the component of s(t) which is 'common' to

ψ(t/a)√a. By choosing different scales a for the define wavelets, the wavelet

transform can achieve any desired resolution in time or frequency.

There are four basic types of wavelet transforms:
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(i) The continuous wavelet transform:

has a parallel in the Fourier transform. The variable t, scale a and shift r are all

continuous.

(ii) The discrete parameter wavelet transform:

where the parameters a, r are discretized to a =a0^m and τ =nτ0a0^m with a0, τ0 the

sampling intervals and m, n integers. Both s(t) and ψ(a0^-mt) are still continuous. The

equivalent is the Fourier series, where only the frequency is a discrete parameter. For

computational efficiency, a0=2 and r0=0 are commonly used, resulting in a binary

dilation of 2^-m and a dyadic translation of 2' n.

(iii) The discrete time wavelet transform:

which is a time discretization of equation(3.15), with t=kT and the sampling interval

T=1. This is similar to the discrete Fourier series, where both time and frequency are

discrete. Note that for a0=2, there is an output only at every 2m sample when 2'k is an

integer.

(iv) The discrete wavelet transform:



44

where the discrete wavelet ψ(k ) can be, but is not necessarily, a sampled version of a

continuous counterpart. It is possible that ψ (k) may not have a continuous time version.

When ψ(k) is a discretization of a ψ(t), the DWT is identical to the DTWT. In this case, a

parallel for the DWT is the discrete Fourier transform.

Calculation of the wavelet coefficients with continuous wavelet transform at

every possible scale requires considerable computational work, and it will generate a lot

of data which is hard to analyze. If discrete wavelet transformation are used in the

calculation, where only a subset of scales and positions based on powers of two—the so

called dynadic scales and positions are introduced in the algorithm, the analysis will be

much more efficient without losing much accuracy.

An efficient way to implement this scheme using filters was developed in 1988 by

Mallat [65]. The Mallat algorithm is in fact a classical scheme known in the signal

processing community as a two-channel sub-band coder. This very practical filtering

algorithm yields a fast wavelet transform-a box into which a signal passes, and out of

which wavelet coefficients quickly emerge.

For many signals, the low-frequency content is the most important part. It is the

part which gives the signal its identity. The high-frequency content, on the other hand,

imparts fluctuation. In wavelet analysis, when mentioning approximation and details, the

approximations are the high-scale, low-frequency components of the signal, and the

details are the low-scale, high-frequency components.

The original signal —S, passes through a discrete wavelet analysis box which is

composed of two complementary filters, while the data has been separated into two

channels which represented the approximations and details in each of them.
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Figure 3.1 Schematic diagram for discrete wavelet transform.

It can be shown that the detail coefficient plot D is focused mainly on the high-

frequency noise of the original signal, and the approximation coefficients A contain much

less noise than the original signal.

The above decomposition process can be iterated, with successive approximations

and details being decomposed in turn, so that one mother signal has been broken down

into many lower resolution components. This is called the wavelet decomposition tree.

Since the analysis process is iterative, in theory it can be continued indefinitely. In

reality, the decomposition can proceed only until the individual details consist of a single

sample or pixel. In practice, one selects a suitable number of levels based on the nature of

the signal, or a suitable criterion. The wavelet analysis for current velocity field has been

extended to 5-6 levels base on the estimation for the wavelength of the convection rolls

revealed in the FFT analysis.
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Figure 3.2 Diagram of wavelet decomposition tree.

The decomposition of signals with wavelet analysis has practical applications in

the experimental study of dynamics of mechanical systems. Since scientists are interested

in estimating the displacement and velocity of components of a system, the displacement

data are a set of discretely sampled points which are processed and recorded by a

computer connected to measurement devices. The velocity, which is defined as the

temporal derivative of the displacement, can be approximated using finite differences of

the displacement data. However, finite differences are very sensitive to noise, so that

velocity estimates are often too inaccurate to be of practical value. Wavelet analysis can

be used to practically eliminate noise and find smooth functions which accurately

approximate the displacement and velocity.

Wavelet noise reduction method is based on the assumption that the displacement

and velocity functions are reasonably smooth. When the wavelet components in the

higher levels of the decomposition tree are discarded, the rest of the signal will reproduce

the original data curve with less noise. This is particularly useful in the data analysis of

the velocity pattern in the granular flow simulation along the shear direction where the
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transition to vortex structures introduces a lot of noise into the major velocity curve.

Using wavelet analysis to essentially remove the noise has several advantages compared

to conventional Fourier or polynomial fitting methods: the associated computations are

simple and inexpensive based on the calculation time, and since wavelet analyses have

the ability to essentially remove the unnecessary noise, they are well suited to the

processing of signals with strong background noise.



CHAPTER 4

GENERAL FEATURES OF GRANULAR SHEAR FLOW

4.1 Simulation Cell Description

The computational Couette cell consists of a rectangular control volume bounded by four

periodic sidewalls as shown in Figure 4.1. The system is driven through collisions

transmitted to the flow particles by upper and lower, parallel, bumpy walls that move in

opposite direction at a constant velocity U. The upper and lower walls are composed of a

square arrangement of spheres that have the same diameter as the flow particles. All the

other boundaries are periodic: when a particle exits from right side, it reenters the

simulation cell on the left at the same vertical position and velocity.

Figure 4.1 Simulation cell for Couette flow with moving bumpy boundaries.
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The shear gap H is defined as the distance between the centers of the boundary

particles, and hence the effective shear rate g. = 2U I H due to the opposite movement of

the bumpy walls with velocity +1-U. The spheres are composed of glass, which has a

mass density p, a normal restitution coefficient e and a coefficient of sliding friction g.

Parameters are listed in Table 4.1.

Table 4.1 Key Parameters for the Material and Simulation Configurations

Name Value
Flow particle diameter ( d) 0.02m
Gap height ( H/ d) 16
Average solid packing fraction ( v) 0.4
Intruder size ratio ( (I) =D / d) 1.0-3.0
Shear rate (2 U / H) 2.0
Material Density ( p) 2700 kg/m3

Coefficient of restitution ( e) 0.9
Coefficient of friction ( g) 0.02

The flow has been examined in a gravity free environment since several of the

preliminary studies showed that the inclusion of micro-gravity caused the system to

eventually collapse, resulting in a loss of contact with the upper wall. However, kinetic

theory suggests that it is possible to generate a fluid-like "grain-inertia" flow regime [3] if

I g is sufficiently large.

Each spherical particle has 6 degrees of freedom with the center of mass being in

the geometric center of the particle. Because of the presence of the bumpy boundary,

there is a limitation to the distance of a flow sphere to the boundary Figure 4.2 portrays a

portion of the boundary where particles of radius r are arranged in a square lattice (S2 =

0) with an area fraction va = 7c/4. The closest distance between an intruder and the

boundary plane (H) increases with the size ratio of the intruder sphere (Table 4.2).



Figure 4.2 Diagram for the smallest distance between intruder and
boundary plane.

At t = 0, flow spheres are randomly packed in the cell with a mean solids fraction

(i.e., fraction of available volume occupied by solids) v = 0.40. The system quickly

attains steady state after approximately 3-4 seconds, which is equivalent to about 90-120

collisions per particle (Figures 4.3, 4.4). Subsequently, data was collected to compute

relevant transport quantities. All results discussed here are for fully developed flows, and

computations represent mass-weighted, spatial, long time averages. However, as will be

described below, the system is not in equilibrium because of the non-uniform profile of

the "granular temperature" [13] in Figure 4.6.

Table 4.2 The Possible Closest Distance Between Intruder and Boundary Plane
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Several of the simulations to be presented in this work indicated that the profile of

the mean steady-state velocity was not symmetric. A similar finding was reported in the

studies of Karion and Hunt [40] and Savage and Dai [66]. The fact that the velocity

profile was not centered at zero implies that there is a net momentum flux in one

direction.

4.2 General Features of Granular Couette Flow

There are several important steady-state depth profiles that can characterize the granular

shear flow, i.e., mean velocity t7 , granular temperature I, pressure P and solids fraction

v . In order to remove the effect of the unstable data from the initial stage, all the averaging

computations are initialized from three to four seconds after the start of the simulation.

Plots of the evolution of both long term (Figure 4.3) and short term averages (Figure 4.4)

show that critical after about 4 seconds, the velocity profiles reach a plateau and

fluctuations are at a minimum. This is the steady-state for which energy input through

collisions with the bumpy, moving boundaries is balanced by collisional energy

dissipation. It should be noticed, however, that the short-term averages appear to show

fluctuations that may be indicative of a secondary flows.

The slip velocity is an important quantity that provides some information about

the ability of the bumpy boundary to transfer momentum into the flow. If v represents

the x-component of the velocity field, then the mean velocity is 7,7 = v/U , where U is the

is the boundary velocity. An important feature of the bounded shear flow is that the mean

velocity and granular temperature depth profiles are not linear, in contrast to a uniform

shear flow [15].
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A typical steady state (i.e., averaged over 100 seconds) depth profile of the

velocity is shown in Figure 4.5 for the case Hid = 16, where the slip can be easily seen at

the moving boundaries. Rosato and Kim [ 14] computed the s lip velocity a t one mean

particle diameter σ m =1/2(σfp+σ wp ) away from the w all-sphere c enter p lane. In the

latter expression, σfp is the diameter of flow particle and σwp is the diameter of wall

particle. Thus, the "slip velocity" at y = am was determined from Uslip = — u(σm)]/U ,
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where Uslip represent the difference between the apparent velocity U of a layer adjacent to

the moving wall based on assumed non-slip linear velocity profile, and the mean flow-

velocity u(σm ) of the same layer.

When the shear gap His larger, the boundary is less able to supply enough energy

for the volume of particles between the walls to shear, and so the curvature of the

velocity profiles becomes more pronounced. Other simulations by the same authors have

shown that particle material properties play an important role on the depth profile of

mean velocity. That is, when the coefficient of restitution decreased, energy dissipation

will be enhanced by the inter-particle collisions, which may change the slip velocity and

gradient of the depth profile. In the current investigation, it was possible to affect the

velocity profile and slip velocity by changing particle sizes and densities. In the current

investigation, when a binary system was modeled, the depth profile of the velocity and

slip velocity was different from that obtained using uniform particles at the same solids

For the current simulation, when H = 16d, shear rate (2U /1/) is about 2.0, the mean

velocity profile has more curvature than the case when H=8d. The slip velocity for

H=16d was approximately 0.75, which is much higher than narrower system (H=8d) with

slip velocity 0.3.

The simulations have demonstrated that the mean flow behavior is sensitive to

shear gap height and other boundary properties. In the study to be presented here, for

each gap height H tested, the arrangement of particles on the walls, friction coefficient

and restitution coefficient were fixed.

The "granular temperature" is a quantity that describes the mass-average kinetic

energy associated with the velocity fluctuations. This concept was proposed by Ogawa
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[17] as an analogy between the usual thermodynamic temperature and the fluctuating

motion of particles in an energetic, collision-dominated granular flow. The normalized

granular temperature is computed as,

where u'=(u,v,w) represents the deviatoric velocity components along each coordinate

direction. The granular temperature T profile (Figure 4.6) has the largest velocity

fluctuations occurred near the wall due to the low solids fraction there (with a

corresponding high s hear r ate) a s w ell a s the presence o f t he bumps. The temperature

exhibits a steep gradient as it decreases towards the center of the sheared region, which in

agreement with the simulation studies of Lun [39]. With a narrower gap height, the depth

profile of granular temperature become flatter because the solids fraction is nearly flat.

The solid fraction for Hid 16 (Figure 4.7) is smaller near the bumpy walls and

higher in the center when compared with other cases with smaller gap height separation.

The depth profile of solids packing fraction the system tends to arrive at fully developed

steady-state for which the density is greater in the center of the channel where the

granular temperature is smallest.
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When only one intruder of a different diameter compared with flow media was

introduced, no change in the computed transport properties just discussed was found. It is

also noted that solids fraction and granular temperature become flat at the same points

along the profiles. This is just a reflection of the coupling between these two transport

quantities.

Another transport property of interest is the granular pressure, which consists of a

kinetic part due to fluctuations in particle velocities Pk , and a potential component Pp as

a result of momentum transfer via collisions. Thus, the pressure can be written

where r; is the vector connecting the centers of particles i and j, 1; is the collision force

on particle i due to j, and is the averaging volume. The pressure is normalized by the

product of the particle density, and the square of the diameter and shear rate [15]



It was observed that the major contributor to the pressure P arose from particle

collisions rather than velocity fluctuations because of the high bulk solids fraction (Figure

4.5) selected for these studies. Results shown in Figure 4.8 indicate that the potential

component is almost an order of magnitude greater than the kinetic component.

Figure 4.9 Total normal pressure with the inset shown the
trend close to the wall.

The potential part of the pressure is very large at the layer close to the boundary due

to the frequent collisional interactions between the bumpy wall and the flow particles. The

kinetic part of the granular pressure (Figure 4.8) has a profile similar to the granular

temperature (Figure 4.7) because this component is derived from the particle velocity

fluctuations. The profile of total normal pressure Pyy in Figure 4.9, which is a mass-

weighted spatial average over 100 seconds, has a sharp gradient within approximately 2.5d

of the walls (see Figure 4.9 inset) where the pressure is higher. In the central region, the

pressure is relatively flat. Due to relative higher pressure in the region adjacent to the

boundary, all the flow particles are pushed by the pressure gradient away from the walls.
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4.3 Velocity Field in the Shearing Plane

Previous work on transport properties revealed that high granular temperature and normal

pressure and low solids fraction occurred in the regions adjacent to the moving

boundaries. A typical long-term velocity field is shown in Figure 4.10 for 8d x 8d

simulation cell. (d represents the flow particle diameter). The superimposed vector array

represents the secondary velocity field in the XY plane (where X is parallel to the shear

direction and Y is along the gap height) in which the mean X velocity has been removed

so that the Y fluctuations are apparent. This is also referred to as the "secondary velocity

field". A careful inspection of the direction of the velocity vectors reveals a weak single

vortex-like structure. The color map indicates the magnitude of the fluctuations, which

are larger near the walls. The distortion of the data in the vicinity of the periodic

boundaries required that it be removed in order to display a meaningful color map.
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The influence of cell width on the pattern was examined by using several channel

lengths from 8d-256d with the boundary conditions fixed. The principal finding is that

the number of vortex-like structures increases. Figure 4.11 shows the computed field for

a computational cell of dimensions 16d x 8d. The principal finding is that the number of

vortex-like structures increases, and results discussed further on provide evidence that the

wavelength of the pattern depend on the shear rate.

Figure 4.11 Color-vector map of velocity field on XY plane for 16d x 8d cell. A
positive value in the color scale are values in the + Y direction, while negative
values are in the negative Y direction.

By carefully studying the color pattern together with the velocity field arrows in

Figure 4.11, it is possible to see alternating regions of upward and downward secondary

motions of the particles. The question arises as to whether or not this pattern remains

fixed when the boundary velocities are changed.
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It is useful to find the wavelength of this velocity pattern to quantify the effect of

the shear rate on the velocity field. In Figure 4.12, the simulation cell has been uniformly

partitioned into Nsub-cells along the shear direction (X) whose sizes are restricted to

have a minimum length equal to the radius of flow particles. The instantaneous value of

the velocity V.y(x,t) assigned for a sub-cell located between x and x+Δx is determined by

averaging the velocities of the Nx(t) particles whose centers occupy the sub-cell through

the depth of the flow (Z direction). Thus,

The long term mean velocity field Vy is computed as a time average of the above

expression given in equation (4.4) as

In the following simulations, three cases have been run with a fixed gap height

H=8 d, by varying the width of the simulation cell under different boundary velocities.
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Figure 4.13a illustrates the normalized long term velocity Vy/U for which the boundary

velocity U=8 R/s, shear rate e = 2U / H =1s - 1 , and the cell width was 128d or 256R; (R

is the radius of flow particle). The auto-correlation of this signal AC(Vy/U) pictured in

Figure 4.13b appears to have a periodic component with somewhat of a constant

wavelength.

This provides support for the existence of vortex-like structures in the secondary

(or fluctuating) velocity field. The power spectrum obtained from a fast-Fourier
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transform (FFT) of the auto-correlation signal shown in Figure. 4.13c reveals dominant

frequency at wavelength X =24 70R = 35d .

When boundary velocity is doubled to U=16 R/s and s = 2 s -1 (Figure 3.14), it

was found that a cell length (= 64d = 128R) was sufficient to because of the formation of

a shorter wavelength X 15R = 7.5d . Results are depicted in Figure 4.14a-c.
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series of case studies illustrates that higher shear rate creates structures in the second

velocity field that have shorter length scales or wavelength.

Figure 4.16 shows the behavior of the wavelength of the secondary velocity field

versus shear rate for the case in which the shear gap was narrow, i.e., H = 8d. Clearly, as

shear rate grows, the wavelengths decrease.



In order to determine if this dimension affects the wavelength results previously

described, three gap distances H = 8d, 16d, and 32d were selected to examine any

influence on the vortex patterns that form under fixed shear rates

ε  m 2U / H =1 / s and 2 / s . The corresponding parameters are U= 8 R/s with H=8d,

U=16R/s with H=16d and U= 32 R/s with H=32d. The results, although not shown here,

are similar to that of Figure 4.16 except at the lower shear rates.
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4.4 Wavelet Analysis the Secondary Velocity Field in the Shearing Plane

In the previous section, a spectrum analysis of the autocorrelation of the secondary

velocity field against the cell width demonstrated the existence of seemingly stable

structures with "measurable" wavelengths that decay with increasing shear rate. The

analysis, however, is somewhat flawed because the Fourier coefficient derived from the

FFT are affected by data over the entire signal domain. This deficiency can be removed

by applying a wavelet analysis for which the spectrum coefficients can depend on local

length scales.

In this section, a wavelet transform is used to decompose a signal into significant

components of activity at different times and at different length scales that are useful in

deciphering the vortex-like patterns observed in the Vy(x) function. Here, the information

of velocity field within the simulation cell with dimension 16d x 64d has been utilized for

the wavelet analysis. The wavelet feature of MATLAB was used for this purpose, and the

code appears in Appendix A. For a selected velocity field function Vy(x), the data series

were wavelet transformed and the decompositions compared and correlated in Figures

4.17a-c. Each scale of calculation gives rise to a set of wavelet coefficients defined by

equation (4.6), which is simply the correlation of original data curve Vy(x) and the

wavelet mother curve y ( x — b
) . The parameter b represents a spatial shift or phase

a

change of the mother curve while a is a scaling coefficient which handles the window

size for the wavelet analysis.
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The figures show the rather complex behavior of the coefficients C for the

different scales a and b. Note that a refers to the size of the "window" through which the

data is processed. The colors are provided to more clearly show the positive and negative

values of C. It is noted that these results were obtained using the discrete wavelet

formulation described in Chapter 3.

To further isolate noise from the real data, only a subset of scales and positions

based on powers of two were introduced into the algorithm using a discrete wavelet

transformation. An efficient method of accomplishing this is to separate the noisy

components from the data using filters called a two-channel sub-band coder developed

by Mallat [65]. The data signal in the secondary velocity field can be decomposed into

two subsignals namely, the low-frequency content gives the signal its approximation in



69

the high scale end (a is large) and high-frequency content yields the details in the low-

scale section (a is small). The details of the method have already been explained in

Section 3.3 of Chapter 3. Wavelet noise reduction method is rooted in the above filter

concept. When the wavelet components at the higher levels of the decomposition tree are

discarded, the remainder of the signal approximates the original data curve with less

noise. The use of wavelet analysis to remove the noise has several advantages compared

to conventional Fourier or polynomial fitting methods: the associated computations are

simple and inexpensive, and since the wavelets have the ability to inspect signals at

different scales, they are well suited for processing signals of finite length.

Figure 4.18 shows the wavelet coefficients based on the filtered signals. The

original signal is denoted as S; the wavelet coefficients for the low pass filtered signal (or

the approximation) are designated as A, while the coefficients of the high-frequency

portion (or details) are labeled as D. The x-axis is in units of particle diameter d. The

subscripts refer to the level of decomposition, which, in the current analysis, was carried

to the 5 th level. In this current case, decomposition proceed are stopped at level 5 based

on the appearance of periodic oscillation on A5 and D5, while the approximation of the

wavelength is about 30-40d in sub-signal D5 for the case with boundary velocity U=8

R/s. Thus, the typical length scale of velocity pattern under this shear rate has same order

of the wavelet coefficient at level 5 which is about 2 5 R. This result is consistent with that

obtained from the FFT analysis for which 35d .

As boundary velocity U=16 R/s in Fig 4.18b, the coefficients for the signal at

level D3 revealed a cyclic pattern that had wavelength of 8-10d, corresponding to the

typical length scale of 23d.
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Further examination with boundary velocity U=32 R/s in Fig 4.18c showed the

same trend occurred at D2 level with a wavelength dropped to 6-9d. As mentioned above,

D2 level has a typical length scale of 2 2d. These results are also consistent with the FFT

analysis, i.e., λU =16 :4. 7.5d and λU=32 4d .

The above wavelet analysis of the time-average secondary velocity field Vy(x)

agrees with the FFT spectrum results. The length scale of the cyclic pattern is reduced as

the shear rate increases. The presence of this secondary flow pattern in the current system

should be one of the critical features for the segregation behavior in poly-disperse

systems.
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Figure 4.18c Diagram of decomposition tree of Vy(x) for Li= 32 R/s.



CHAPTER 5

MOTION ANALYSIS OF THE INTRUDER PARTICLE

In this section, the behavior of a single intruder within the granular Couette flow is

examined. The simulation begins by randomly positioning particles within a cubic

computational cell in which the upper and lower bumpy boundaries move at constant

velocities in opposite directions. For the case studies to be described, gravity was set to

zero. The bumpy boundaries consist of whole spheres similar to flow particles arranged

in a square configuration, while and other boundaries of the simulation cell are periodic.

In order to demonstrate the size segregation phenomenon, a binary system of two

different particle sizes ( 0 = D / d = 2.0) is sheared. (See Figure 1.2a, b). The particle

volume of the large species was 30%. Initially, the particles are well-mixed with the

larger species dispersed across the shear gap.
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During the initial stages of the process, the well mixed small and large particles

begin to segregate along the gap height. In particular, small spheres move toward the

moving boundary while the large spheres migrate to the center zone of the shear flow.

After 15-20 seconds, layers of small particles had formed near the moving boundaries

and almost all the big particles migrate to the center zone away from the boundaries in

this micro-gravity simulation. Further examination of depth profile of packing fraction in

Figure 1.2c-d shows this trend clearly. For both species, the variance of packing fraction

is more pronounced in the middle of the shear zone as compared with the initial status.

The same phenomenon was reported by Stephens and Bridgewater [30] in their annual

shear cell experiments. They observed the migration of larger particles towards the center

of the failure zone.

5.1 General Motion Pattern of the Intruder

In the binary system study just described, large particles moved away from the walls;

after approximately 20 seconds, there was little change in the solids fraction depth profile
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for each species, which suggests that the segregation process had reached a fully-

developed steady-state. In this section, the results of a study of the motion of a single

"intruder", whose diameter or material density differs from other uniform flow spheres is

presented.

The intruder particle was initially placed at the region near to the boundary walls.

A range of operating parameters was examined in a series of preliminary studies to find

the most favorable conditions for the sphere to migrate. In particular, it was observed that

the migration speed of the intruder spheres increased with a decreasing average solids

fraction. For this investigation, the bulk solids fraction v was set to 0.40. In addition, a

series of boundary velocities was selected, i.e., U= +1-16, 32, 64 R/s (R is the flow

particle radius) in a system for which H=16d.

In a series of case studies, the intruder is placed near the wall at t = 0, and then the

flow is initiated by moving the walls at a constant velocity in opposite directions. Results
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were quantified by computing the time Tc required for the intruder to cross the geometric

center of the simulation cell. Figures 5.1a and 5.1b show the evolution of the normalized

y-trajectories for an intruder with size ratio (I) = 1 and (I) = 2, respectively. Although it is

not evident from the plots (since only a 100 second duration is shown), the large intruder

(4) > 1) is eventually "trapped" within a central region of the shear flow.
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that the width of this trapping region depends on the value of 4). Results are summarized

in Figure 5.2, which shows the dependency of TT on 4), as well as boundary speed U. The

curves, which are best fits to a functional form 7', = To (U)e-k(Ø -1) , are included to show

the trend. Here the critical time T, was smaller with an increase of size ratio, which means

a larger intruder will move to the center region of the flow with a higher velocity than the

smaller ones. The shear rate, which is proportional to the boundary velocity, is also an

important factor here since this sets the overall speed of the flow. This effect is visible in

Figure 5.2 from the relationship between the curves at U= 16, 32 and 64 R/s.

The histories of the normalized displacement Y* along the gap for a tracer

(4)=1.0) is given in Figure 5.3a, with its histogram Figure 5.3b and a spectral analysis plot

in Figure 5.3c. In this study, the boundary velocity U = 16 R/s so that the shear 2U/H =

2/s. The displacement of intruder has been normalized by taking into account the

geometric constraints due to the presence of the bumpy wall particles. Let Y„,(4)) denote

the closest distance between the center of the intruder and the boundary plane, as defined

in Table 4.2 of Chapter 4. Then, Y* = (Y — Ym (4)))/(H — 2* Ym (0) .

Power spectral density Y(γ) of its displacement Y(t) is computed in the usual

form, which is S(γ) = lim(1/τ)Ŷ(γ)Ŷ*(γ). Here i is the averaging period, Y(γ) is theT-400

Fast Fourier Transformation of the displacement Y(t), and r (f) is its complex

conjugate. Both of x and y axis are in log scale, where the curve shows a linear relation

between the log(Y(γ)) and log()). With different particle size ratio 4), the curve showes

different slope.
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The log plot of power spectrum versus frequency shows a linear relationship so

that Y(y) a 62.71-±1 for the cases considered ((t• = 1.0-3.0). Here, Y(γ) is the power

spectrum, y is the frequency, H is the Hausdorff (or Hurst) exponent. For white noise, all

frequencies contribute equally to the process, so the power spectrum is not frequency

dependent and thus H = 0. For regular Brownian motion, the power spectrum and the

fluctuation frequency should such that has a value 1/2. When in not exactly equal 1/2,

one has a fractional Brownian motion (fBm). By changing H , fBm displays either

persistence (H>1/2), a trend of motion at any time t is likely to be followed by a similar

trend at next moment t +1, or anti-persistence (If < V2), a trend at t is not likely to be

followed by similar trend at next moment t +1. The difference between fBm and regular

Brownian motion is that the motion increments in fBm are dependent on history while

this relation vanishes in regular Brownian motion.

A comparison of Figures 5.3 —5.5 reveals that the displacement history depends

on the size ratio 4). This is clearer from the histograms in which the largest intruder has



79

the narrowest distribution. An inspection of Figure 5.3a (4) = 1.0) indicates that the

trajectory the tracer is random in nature. The seven peaks of its histogram (Figure 5.3b)

suggest that at this bulk solids fraction (v =0.4), the particle undergoes jumps from one

layer to an adjacent one. As the size ratio 4) increased to 3.0 (Figure 5.5), significant

changes have been taken place with the motion of the intruder as can be seen from its

trajectory Y(t) and histogram that provides information about the fluctuation in the

particle's steady-state position along the gap. The large intruder becomes "trapped" in a

central region of the flow from which is cannot escape because it has settled in a low

energetic region (low granular temperature) of the system. The results presented indicate

that the scale of the trapping region depends on the value 4).

There is an interesting trend of the Hurst number .71 in the power spectrum

relationship Y(y) cc 1/y 2-7141 with size ratio 4), which says something about the dynamical

behavior of the intruder. For 4)=3.0, H=1.0 (Figure 5.5c), for 4) = 2.0, H= 0.9 (Figure 5.3c)

and for the tracer particle (4=1.0), H  = 0.7. These results suggest that the behavior is

governed by a Brownian motion with a persistent trend because in all cases, 5f > 'A. The

growth of the Hurst Number with size ratio suggests that the intruder's dynamics at any

time t is likely to be history dependent.

A description of the trajectory of the intruder from several animations revealed a

close relationship with the y-component of the velocity field. Figure 5.6 shows a trace of

the particle's trajectory placed again a backdrop of the positions of the particle centers

projected onto the XY plane. The particle follows the shear flow as it moves away from the

bumpy boundaries.
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It is conjectured that the secondary flow with a vortex like structure in local velocity field

influences the transverse motion of the intruder. Once the intruder reaches the center region

of the flow, it remains here and simply fluctuates around an equilibrium (steady-state)

location. In addition, this pattern of motion appeared to be independent of the starting

location of the intruder. For example, when the intruder was initially placed near slightly

off the geometric center of the flow, it will quickly moved toward an equilibrium without

reaching the boundaries.

The above behavior is in contrast to that of a typical tracer particle, whose motion

was quite persistent in the sense that does not get trapped. In some typical runs, when the

tracer gets bumped into the zones below than the center, it migrates towards the positive x-

direction for a while. Then, as soon as it finds itself above the center, the direction of its

velocity reverses. This movement suggests a circulation in the XY plane that is the

combined effect of the secondary flow and a depth-dependent net force.
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5.2 Mean Square Displacement and Diffusion Coefficient

In order to better understand the trajectory of intruders of various sizes, mean square

displacement and diffusivity computations are carried out. The cases under consideration

are depicted in Figures 5.3 — 5.5 for which 2U/H = 2/s-1 and v = 0.4. The mean square

displacement is computed in the usual manner, i.e.,

As expected, its value is very sensitive to the size of the intruder relative to the flow

particles as is apparent in Figure 5.7. Within 5 seconds, the mean square displacement of

the largest particle (f = 3.0) increases very rapidly and then flattens out after the intruder

has entered the central trapping region.

Figure 5.7 MSD of each species with different size ratio.

Because the slope in the limit as t 	 00 is constant, it is possible to compute a

diffusion coefficient using the Einstein relation which is expressed as the limiting slope of

the mean square displacement versus time curve,



In the equation (5.2), (|r(t) — r(0)| 2 ) represents the mean square displacement of

the particle and D is diffusion coefficient. These coefficients are shown in Figure 5.8 for

different boundary velocities as a function of the relative intruder size.

Over the three shear rates tested (2U/H = 2, 4, 8 s -1), the results indicate that the

motion of the largest intruder is far less diffusive than the tracer particles, with an order

of magnitude difference. The effect of the shear rate is also apparent as larger values

promote diffusivity.

5.3 Net Force and Velocity

One of the principal advantages of computer simulations is that it is possible to extract

data on the particle level forces that are virtually impossible to directly access in

experiments. One such quantity is the evolution of the net or resultant force on a particle
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as depicted in Figure 5.9. These quantities are non-dimensionalized as follows,

where pp is the density of particle, up is diameter, U is the boundary velocity and H is the

gap size. The force defined above will also be referred to as the diffusion force.

The results presented in Figure 5.10 correspond to the net diffusion force F and

velocity V of the intruder in the Y direction as function of time. The velocity trace in

Figure 5.10b for (I) = 2 is quite different from that of Figure 5.10b for 4 = 1; the large

intruder is clearly weighted towards positive values, while the tracer sphere velocities

appear to be more balanced. Thus, during the time duration of 10s shown Figure 5.10b,

the large sphere is moving in the positive Y direction away from the wall towards the

center of the sheared region. The smaller magnitude of the velocity fluctuations of the

intruder compared with the tracer is in accord with the intruder having a smaller diffusion

coefficient (Figure 5.8).

This is accompanied by a net force history (Figure 5.10d) that has larger values in the

positive Y direction, again indicative of the large intruder's motion away from the wall.
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The results of the spectral and wavelet analyses of the secondary y-component of

the secondary velocity field showed evidence of structures whose length scale (or

wavelength) depended inversely on the shear rate (Figure 4). It is not clear if a correlation

exists between this field and the motion of an intruder. However, it is likely that a tracer

particle (that is, a typical flow particle) follows a trajectory that is in some manner

associated with these structures.
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As indicated in Figures 5.10 c-d, there is a predominantly upward component of F y

on the intruder for the first 10 seconds of its motion. However, as this particle reaches the

trapping region in the center of the shear flow, this net force become balanced between

positive and negative values. (See Figure 5.11c).

A measure of the fluctuations in the velocity and net forces histories is given by the

room mean square (RMS) values computed over the 100 second duration of the flow. Fy_
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RMS and Vy_RMS are normalized in the same manner as shown in equations (5.4) and (5.5),

respectively.

Figure 5.11d Velocity history for a tracer particle
(4)=3.0).

Figure 5.12a reveals a linear relationship between size ratio 4) and Fy-RMS such that

larger intruders experience greater fluctuations in the diffusion force in steady-state.

However, Vy-RMS decreases with the square of the size ratio 41 (Figure 5.12b) within the

tested range (0.5 < < 3). This suggests that in the central trapping region, a more

massive intruder suffers smaller velocity fluctuations because of the inability of the
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lighter surrounding particles to cause it to undergo significant displacements. This

interpretation is further corroborated by the diffusion results in Figure 5.8. It is

conjectured that larger species in poly-disperse systems (such as in Figure 1.2) obey

similar laws that keep them constrained to the low energy (granular temperature) region

(in the center) of the flow.

Figure 5.12b Effect of size ratio on Vy-RMS.

5.4 Size Ratio and Mass Ratio

In the simulations discussed above, all of the intruders were assigned the same material

density so that they were more massive than the uniform flow particles. Therefore, the
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behavior seen for the intruders is due to combined effects of size and mass. In order to

examine which of the two may be more important on the dynamics, two different cases

were designed. In the first, the size ratio was varied while keeping the mass ratio constant

by suitably adjusting the intruder's material density. The second scenario kept the size of

the intruder equal to that of the flow spheres while varying the mass ratio.

ratio.

For the situation where the intruder size was equal to the flow spheres, results are

presented in Figure 5.13b. The RMS value of Vy decreases with mass ratio φm, in

agreement with the investigation of McElwaine [67]. Beyond 4:1„, = 5.0, the curves

appears to flatten out. In contrast, the situation for fixed mass and varying size (I) in

Figure 5.13a shows little influence of 4 on Vy-RMS• Consequently, these results suggest

that the dominant factor affecting velocity fluctuations is the intruder mass.

5.5 Contact Number Analysis

The fact that the intruder tends to migrate away from the bumpy boundaries towards the

low temperature region in the flow center implies that there is an effective force that acts.
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This force is essentially the resultant of the all the nearest (contacting) neighbor

interactions. Hence it is reasonable to examine in detail the nature of these contacts.

The contact or collision angle in the shearing (XY) plane is determined in each of

the four quadrants as diagrammed in Figure 5.14: Quadrant I = 0 — 90 0, Quadrant II =

90 ° — 180 °, Quadrant III =180° — 270°, Quadrant IV = 270° — 360° . The collision-angle

distribution N(0) is defined as the number of collisions occurring in an interval AO

divided b y t he total n umber o f collisions t hat o ccur during the 2 00 se conds p eriod o f

observation. The collision angle 0 itself may fall into one of the four quadrants already

defined, or, with low probability, on an axis. The circle is partitioned into 30 intervals so

that A0 = 12 °. The results of the time-averaged distributions for a tracer particle (1)=1.0

and a large intruder (1)=3.0 are shown in Figure 5.15.
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The first observation from these plots is that the distribution in not uniform. In a

boundary driven shear flow, the distribution is expected to be larger in quadrants II and

IV, corresponding to collisions occurring more frequently in the upper left and lower

right quadrants of the intruder particle. These findings are in agreement with the

simulations of Campbell [17] and Karion [23].

Furthermore, in order to correlate the motion of intruder with mean velocity

profile, the shear gap has been partitioned into M strips parallel to the shearing direction.

The time and spatial average of the number of contacts experienced by the intruder in

each strip k is separated into two terms, i.e., contacts on the top half of the sphere for

collisions in quadrants I and II, denoted by Tup (k) , and contacts on the lower half of the

sphere for collisions in quadrants III and IV, denoted by Tlow(k). The index k ranges

from 1 to M In the investigation, M was between 10 to 20.
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Let N(0, k, t) designates the number of contacts at angle 0 in strip k at time t. The

cumulative number of contacts over (t2 — ti) seconds (N(0, k)) as a function of 0 in strip

k is given by

For the upper and lower halves of the sphere, the total number of contacts is computed by

summing over the appropriate range of angles, i.e.,

The deviations of the quantities in equation (5.8), denoted by Tup ( k ) and Tlow (k), are

computed by subtracting away the mean number of contacts (obtained by averaging over

all of the strips). Thus,

-

Depth profiles of Tip and Tic , of a tracer (if• = 1.0) are presented in Figure 5.16a,

where the ordinate axis represents the index of the strip from the bottom to the top along

the shear gap, while the abscissa are the values of Tup and T10,, defined by equation (5.9).

For 4) = 1.5, profiles were qualitatively similar to the tracer results, but quantitatively the

distribution was narrower and more peaked at the center due to trapping of the intruder in

the central flow region.



The difference between Tup and Tow (Figure 5.16) computed as

A = 2(Tup — Tlow )/(Tup + Tlow ), for the tracer particle, clearly shows that the net number

of contacts on the lower half of the sphere when it is below the center line; conversely,

the net number of contacts on the sphere's upper half is greater when it is above the

center line. This unbalance results in a net force that pushes the tracer away from the

moving boundaries toward the center. Results for an intruder (4) = 1.5) is shown in Figure

5.17 that shows a greater unbalance, from which one infer a larger diffusion force. For

much larger intruders, the computations only make sense for short time periods during

which the particle is on its way to the trapping region. Accumulation of contact number

statistics after it is "trapped" and averages subsequently computed distort the results so

that the unbalance is smeared out.
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CHAPTER 6

MOTION OF INTRUDER IN GRAVITY FIELD

The previous chapter discussed the behavior of an intruder in a zero gravity, boundary-

driven shear flow. In this situation, the particle was driven away from the "hotter" to the

"colder" region of the flow in the center of the shear gap. In the current Chapter, DEM

simulations of a sheared granular mixture under a gravitational field that acts in a

direction perpendicular to the plane of shearing are presented. Results show that an

intruder will rise against gravity to the surface. At the first stage, an intruder with

different size ratio has been mixed with other regular flow particles in order to explain

the role of gravity force on size segregation. Finally, all the big particles will migrate to

the top surface of the shear cell and segregate from other flow particles. Experiments

reported by Savage and Hutter [68] on binary mixtures revealed a similar phenomenon.

6.1 Brief Description of the Simulation System with Gravity

The simulation cell pictured in Figure 6.1 models a small slice of the experimental device

used by Khosropour and Zirinsky [33], which consisted of two coaxial vertical cylinders.

The inner cylinder rotates while the outer cylinder is stationary. The actual slice has an

open top, periodic sidewalls perpendicular to the direction of shear (X), and two bumpy

boundaries along the shear direction (Y). Each of these walls consists of spheres in a

square configuration. In order to drive the particles within the cell, a constant velocity U

in positive X-direction is imposed on the inner wall.
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The gap between two bumpy walls is D =16cm wide, W = 16 cm thick (X

direction) and is a height of H (=16cm) with spherical glass beads of diameter d =2 cm.

Several seconds after initiation of the flow, the depth of the granular assembly

experienced fluctuations between Y2 to 1 cm as a consequence of Reynolds' dilatancy. A

sufficient shear rates, a densely packed granular solid expands so that particle can flow.

The current study is principally focused on the segregation behavior of a single

intruder particle differing in size from all the uniform particles that constitute the bulk

material. In the simulation, the single intruder particle was assigned the bigger ratio

compared with the regular flow particles. Thus, the intruder's mass is greater than the

flow particles since it was given the same density. Initially, the intruder was placed on the

floor of the computational cell. As will be shown, shearing caused it to follow an

interesting trajectory that brought it to the surface. During the course of its motion, a

vortex-like flow is present in the flow.
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Figure 6.2a Initial distribution of the binary mixture with 10 larger
intruders.

An important outcome of the study is that the large intruder particles undergo segregation

that brings them to the surface where they remain upon continued shearing of the

assembly. Figure 6.2a depicts of the locations of sphere centers projected onto the

shearing plane, with ten large intruders exaggerated so that they can be easily seen. The

configuration after 20 seconds of shearing at a rate U/D = 1/s in Figure 6.2b shows that

all of the intruders are at the surface.

What is interesting is that while there is a velocity (and hence granular

temperature) gradient across the cell, the large intruders migrate upward against gravity.

So the prevailing motion is to the surface, although there is a secondary effect of the

temperature gradient.



Figure 6.2b Snapshot taken at t = 20s showing a layer of large
particles (41= 2) on the flow surface. Shear rate (U/D) = 2 s-1 .

Recent experimental observations [24] and simulations [26] in binary systems,

how demonstrated that the speed of migration to the surface depends significantly on the

particle size ratio and shear rate. This dependency is also found in the simulations

reported here. In order to demonstrate and quantify the effect of shear rate on migration,

the flow is simplified by considering only a single intruder of ratio (1)=2.0.

6.2 Migration of the Intruder Particle

Figure 6.3 displays the trajectory of the large intruder in the YZ plane, which is

perpendicular to the shear direction. The velocity of the inner wall U is 32 cm/s which

translates to a shear rate U/D = 2/s. After the first 5 seconds, flow particles tend to

become aligned as can be seen from the projected sphere centers in the figure. The shear
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induced by the moving inner wall produces velocity profiles along the coordinate

directions that ultimately impinge on the movement of the intruder.

The migration of the intruder has a very clear trend where it steadily rises to the

surface in a few seconds. During the entire process, its motion in the horizontal (Y

direction) fluctuated only slightly, following the mean velocity field in the shear direction

(X). After it reaching the top of the bed and getting free from the constraints of other

flow particles, it remains on the top layer of the bed and is never re-entrained.

Figure 6.4 shows a comparison of simulation with the experimental results of

Khosropour and Zirinsky [24] for the vertical displacement of the intruder particle whose

diameter is twice that of the uniform flow spheres (4) = 2.0). Rotation frequencies f (Hz)

reported in the experiments are converted to the velocities of the inner walls (radius R =
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2.85 cm) chosen for the simulations. Table 6.1 lists the parameters and resulting shear

rates ranging from 1 to 2.81 s -1 .

Table 6.1 Relation Between Rotation Frequency, Linear Velocity, and Shear Rate

Rotation
Frequency f (Hz)

Linear Velocity U = 2πRf

R=2.85cm (cm/s)
R - the radius of inner ring

Shear rate e = U/D
(D= 16 cm)

0.89 15.929 1.0
1 17.898 1.12

1.6 28.637 1.79
2.1 37.586 2.35
2.5 45 2.81

The experiments indicate a faster rate of ascent when the frequency is higher, a

trend that is also reproduced in the simulations. The intruder of the simulations reached

the surface more quickly that what occurred in the experiments. The agreement with the

physical data is not very good, which may be a consequence of the selection of particle

properties and the fact the centrifugal forces were not included in the simulation.

Another factor was the lack of information on the roughness of the walls and particle

friction coefficient used in the experiments.
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A comparison of the mean ascent speeds of the intruder with the experimental

data [24] is shown in Figure 6.5. The mean values were obtained by dividing distances to

the surface by the times required for the intruder to reach the surface. The agreement is

actually quite good for the range of shear rates presented in the figure.

6.3 Vortex Pattern on Velocity Field

It is possible that bulk convection within the shear system is, in part, responsible for the

intruder's behavior, as has been demonstrated in vertically vibrated granular beds [9],

where the flow depended on vibration amplitude and acceleration. In the current study, a

complex convective field in the time averaged, secondary velocity field was discovered

as depicted in Figure 6.6. This field was obtained by subtracting the mean field velocity

along the Y direction. Here the shear rate U/D = 1/s. The interesting pattern appears near

the moving wall (on the right side of the figure).
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Figure 6.6 Secondary flow pattern on the velocity field of YZ
plane (U/D = 1/s). In the image, the moving wall is on the right
hand side.



CHAPTER 7

SUMMARY AND CONCLUSIONS

7.1 Research Summary

An investigation of a Couette granular flow in a zero gravity field has been carried out

using discrete element simulations to model the behavior of intruders having different

properties. The general features of this boundary driven flow were quantified through

computations of fully-developed profiles of granular temperature, pressure, velocity and

solids fraction. A principal finding in this investigation is the tendency of the intruder to

move towards the colder (or less energetic) regions of the flow, away from the moving

walls. This simulated trends reproduced the phenomenon observed by Bridgwater and

Stephens [30] in their annular shear cell experiments. In contrast, a tracer particle (or

typical flow particle) did not get trapped, but visited the entire accessible shear gap with a

trajectory characteristic of persistent fractal Brownian motion. The time Tc required for

the intruder to reach the surface decreased with size ratio (1) as T, =T0(U / H)e -k(Ø-1) and it

also appeared to scale with the shear rate as exemplified by the dependence of To on U/H.

Computations of the component of the net force (also called "diffusion force") on

the intruder in the direction perpendicular to the shear showed that it was directed away

from the walls and towards the center. This result was substantiated by calculations

indicating that the half of the intruder closest to the bumpy walls experienced more

collisions (or contacts) on the average than its other half as it advanced to the center of

the sheared region. Furthermore, the amplitudes of fluctuations in the net force and

velocity depended on the size ratio. At a fixed bulk solids fraction, the root mean square
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value of net force on an intruder increases with particle size ratio, while the RMS value

of velocity has the reverse trend.

As the relative size of the intruder grew so that it became more massive, its

velocity distribution became increasingly narrow and peaked, in qualitative agreement

with the Maxwell-Boltzman distribution for molecular particles. The long time slope of

the Y-component of the intruder's mean square displacement yielded its Y-diffusivity. As

the relative size of the intruder increased, its motion became less diffusive.

A spectral analysis of a secondary velocity field (obtained by subtracting out the

mean flow velocity profile) across the simulation cell revealed a pattern having a fixed

wavelength, whose value depends on shear rate. A further examination of the field via

wavelets supports this finding. It is conjectured that the intruder's trajectory is affected by

the cyclic pattern in the secondary velocity. There was evidence that as the shear is made

larger, the pattern becomes less pronounced and decays. This is probably due to the

reduction in the effectiveness of the bumpy walls to induce flow across increasingly

wider shear gaps.

Simulations were carried out to investigate a system in which gravity acts

perpendicular to the direction of the shear, such as that used in the experiments reported

by Khosropour and Zirinsky [331 They found that all large (and more massive) particles

ascended to the surface of the medium under the effects of the gravity field and boundary

driven shearing. In the simulations, the geometry of the experimental system was

approximated by subscribing a velocity U to the inner wall while keeping the outer wall

fixed. Because the cell was planar (in contrast to the physical experiments), body forces

produced by centrifugal acceleration were ignored. Computations obtained from the
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simulation data revealed that a single large sphere rose up in the shearing medium at

different speeds depending on the size ratio. In addition, a steady convection-like

structure was found near the inner moving boundary, which is believed to play a role in

driving the upward motion of the intruder.

7.2 Suggested Future Research Topics

The simulation work presented in this study provided several intuitive ideas and

directions for further studies. These include:

(1) Examination of the role of wall roughness and boundary properties on the

formation of convective patterns in the flow.

(2) A detailed parameter study to examine the affects of particle properties (i.e.,

friction coefficient and elasticity).

(3) Extend the study of the effects of intruder density over a wider range.

(4) Behavior of systems having continuous size distributions.

(5)	 Incorporation of the interstitial fluids (such as air) into simulation.



APPENDIX A

POST PROCESSING CODE IN MATLAB

Following section will attach some of the post processing programs which were compiled

in MATLAB, where the output data from simulations has been investigated and plot.

A.1 Histogram
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A.3 Velocity Field in Depth Direction
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sumNoP(j)=0;

sumNoN(j)=0;

zoneNumber(j)=j;

end 

114

kk=1;

z = PP(:,4); y = PP(:,3); x=PP(:,2);

vz = VV(:,4); vy =VV(:,3); vx=VV(:,2);

%--X,Y,Z coordination

%--VX,VY,VZ velocity 

for P = startframe:framen, 	 %--use 200 to reach the steady state

zoneYNo=0; 	 %--initilization

index1=(P-1)*nu+2; 	 %--start index of flow particle except

the intruder

index2=index1+nu-bnu-1; 	 %--end index of flow particle

X =x(indexl:index2);

Z =z(indexl:index2);

Y =y(indexl:index2);

VX = vx(indexl:index2);

VZ = vz(indexl:index2);

VY = vy(indexl:index2);

for k=l:length(Z) 	 %---find the Y zone No. for each particle

zoneYNo=ceil(zone*(Y(k)-Rlimit)/(H-2*Rlimit))+1;

for L=1:zone+1

if (zoneYNo==L) 	 %--r=(checkzone/zone)*H

if VY(k)>0

sumVyP(L)=sumVyP(L)+VY(k);

sumNoP(L)=sumNoP(L)+1;

else

sumVyN(L)=sumVyN(L)+VY(k);

sumNoN(L)=sumNoN(L)+1;

%--spatial accumulate the Vx in each y zone

end

end

end

end

end
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head=5 ;
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sumVxyl(i)=sumVxyl(i)+sumVxy(i);

%--time accumulation of Vx for each y zone

sumVxy1No (i) =sumVxylNo (i) +1;

%--time accumulation of No.for each y zone

else

sumVxy(i)=0;

sumVxyl(i)=sumVxyl(i)+sumVxy(i);

end

end

end

	 average value in time span

for i=l:zone+l

yindex(i)=i;

suml(i)=sumVxyl(i)/(U*sumVxy1No(i));

end

	 plot section

subplot(3,1,1);

plot(yindex,sum1,'ro');hold on;

plot(yindex,sum1);

axis([0 40 0 1]);

subplot(3,1,2);

plot(yindex,sumNoTotal/(framen-startframe));

axis([0 40 0 30]);

subplot(3,1,3);

TotalVol=(H-Rlimit)*MaxZ*16/(zone+1);

%---total volumn of each zone

for i=1:zone+1

Tota1ballVol(i)=(3/4)*PI*(Rflow) A 3*sumNoTotal(i);

%---Total volumn of all particles in each zone

Rate(i)=TotalballVol(i)/(TotalVol*(framen-startframe));

end
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plot(yindex,Rate);



axis ([0 40 0 1]);
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A.6 Mean Velocity Profile

clear;

load /afs/cad/research/a/2/testdata/fmub/09/zposition;

load /afs/cad/research/a/2/testdata/fmub/09/zvel;

PP=zposition;

VV=zvel;

framen=395; 	 %total number of the frames

nu=484; 	 %Total number of the particles

%location file

%velocity file

bnu=192; 	 %total number of boundary particles

U=36; 	 %boundary velocity

zone=40; 	 %Total zone No

H=16; 	 %gap width

K=0;

Rbdry=1.0; 	 %--the Ridus ratio of the boundary particle

Rflow=1.0; 	 %--the Ridus ratio of the flow particle

Rlimit=sqrt((Rbdry+Rflow) A2-2*RbdryA 2);

for i=l:zone+l

sumVxyl(i)=0;

sumVxylNo(i)=0;

end

z = PP(:,4); y = PP(:,3); x=PP(:,2); 	 %--X,Y,Z coordination

vz = VV(:,4); vy =VV(:,3); vx=VV(:,2); 	 %--VX,VY,VZ velocity

for P = 200:framen,

zoneYNo=0;

for i=1:zone+1

sumVx(i)=0;

sumNo(i)=0;

%use 200 to reach the steady state

%--initilization

end

index1=(P-1)*nu+1; 	 %--start index of flow particle

index2=indexl+nu-bnu-1; 	 %--end index of flow particle

X =x(indexl:index2);
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Z =z(indexl:index2);

Y =y(indexl:index2);

VX = vx(indexl:index2);

VZ = vz(indexl:index2);

VY = vy(indexl:index2);

for k=l:length(Z) 	 %---find the Y zone No. for each particle

zoneYNo=ceil(zone*(Y(k)-Rlimit)/(H-2*Rlimit))+1;

if (zoneYNo<=zone+1)

sumVx(zoneYNo)=sumVx(zoneYNo)+VX(k);

%--spatial accumulate the Vx in each y zone

sumNo(zoneYNo)=sumNo(zoneYNo)+1;

%--spatial accumulate the total particle no. in each zone

end

end

for i=l:zone+l

if sumNo(i)>0

sumVxy(i)=sumVx(i)/sumNo(i);

%--average velocity of each particle in x within each y zone

sumVxyl(i)=sumVxyl(i)+sumVxy(i);

%--time accumulation of Vx for each y zone

sumVxylNo (i) =sumVxylNo (i) +1;

%--time accumulation of No.for each y zone

else

sumVxy(i)=0;

sumVxyl(i)=sumVxy1(i)+sumVxy(i);

end

end

end

	 average value in time span

for i=1:zone+1

yindex(i)=i;

suml(i)=sumVxyl(i)/(U*sumVxy1No(i));

end

	 plot section
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subplot(2,1,1);

plot(yindex,suml,'ro');hold on;

plot(yindex,sum1);

axis([0 50 0 1]);

subplot(2,1,2);

plot(yindex,log(sum1));

axis([0 50 0 1]);

A.7 2D Plot of the Intruder Particle

	animation code to see the motion of the intruder paticle in

	 modified couette flow field with gravity and boundary at z=zero

clear;

load /afsicad/research/a/2/data/expl8D/10big/zposition; 	 %--load file

PP=zposition;

framen=400; 	 %--frames number

nu=484; 	 %--Total particles number

big=1; 	 %--index of the big particles number

No=PP(:,1);x=PP(:,2);y = PP(:,3); z = PP(:,4); 	 %---z-x coordination

for P = 1:framen,

index=(P-1)*nu;

Xl(P)=x(index+big);

Z1(P)=z(index+big); 	 %--big particle Z coordination

Yl(P)=y(index+big); 	 %--big particle Y coordination

axis off

end

for i=1:nu

xx(i)=x((framen-1)*nu+i);

yy(i)=y((framen-1)*nu+i);

zz(i)=z((framen-1)*nu+i);

end
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plot(yy,zz, 1 b0');hold on;

plot(Y1,Z1,'r');

axis ([0 16 0 24] );

axis on;

A.8 3D Animation of the Intruder Particle

%

animation code to see the motion of the intruder paticle in

% 	 modified couette flow field with gravity and boundary at z=zero

% 	

clear;

load /afs/cad/research/a/2/run/test2/zposition; 	 %load file

PP=zposition;

framen=1000; 	 %--frames number

nu=1768; 	 %--Total particles number

big=1; 	 %--index of the big particles number

No=PP(:,1);x=PP(:,2);y = PP(:,3); z = PP(:,4); 	 %z-x coordination

%

M=moviein(framen);

for P = 1:framen,

%P=framen;

index= (P-1) *nu;

indexl=P*nu;

XX=x(index+big);

YY=y(index+big);

ZZ=z(index+big);

W--big particle Y coordination

%--big particle Z coordination

XX1 (P) =XX;

YY1(P)=YY; 	 %--big particle Y coordination

ZZ1(P)=-2;

XX1(P+1)=x(indexl+big);

YY1(P+1)=y(indexl+big);

ZZ1(P+1)=-2;

XX2(P)=16;

YY2 (P) =YY;

ZZ2(P)=ZZ;

XX2(P+1)=16;

%--big particle Y coordination
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YY2(P+1)=y(index1+big);

ZZ2(P+1)=z(indexl+big);

XX3 (P) =XX;

YY3(P)=16; 	 %--big particle Y coordination

ZZ3 (P) =ZZ;

XX3(P+1)=x(indexl+big);

YY3 (P+1) =16;

ZZ3(P+1)=z(index1+big);

	 draw the sphere 	

view(-90,30);

n=64;

plot3(XX1,YY1,ZZ1,'r.');hold on;

plot3(XX2,YY2,ZZ2,'r.');hold on;

plot3(XX3,YY3,ZZ3,'r.');hold on;

[xx,yy,zz]=sphere(n);

shading interp;

colormap(graY);

axis ([-2 16 -2 16 -2 161);

mesh(xx+XX,yy+YY,zz+ZZ);hold off;

xlabel('X');

ylabel('Y');

zlabel('Z');

grid on;

M(:,P)=getframe;

end

movie(M,1,20);

A.9 Contact Angle and Force

	File name:	 ffxy.m

	 Author: 	 Jian Liu

	 Advisor: 	 Dr. Anthony Rosato

	 usage: 	 accumulate the collision force in x & y direction

for each contact around the intruder,



get the force distribution in upper and lower

surface of the intruder

	 input file: 	 zposition has 4 colomns,t,x,y,z

	 output file: 	 1. phi/dist

2. theta/dist

3. hist(phi)

4. hist(theta)

5. n-collision

6. Tupper/Tlower

	 initialization of code

clear;

H=16; 	 %---height of the simulation cell

Zone=10; 	 %---zone number of the gap height

np=484; 	 %---Total number of the particles

startmm=l; 	 %--start time step 0.05s each

endmm=2000; 	 %---end time step

Rlarge=3.0; 	 %--the Ridus ratio of the large particle

Rsmall=l.0; 	 %--the Ridus ratio of the small particle

search=Rlarge+Rsmall;

Rlimit=sqrt((Rlarge+Rsmall) A2-2*Rsmall A2);

PI=3.1416;

for i=1:10 	 %--initialization of contact No. in high/lower

section.high(0--180),lower(180-360)

Tupper (i) =0;

Tlower (i) =0;

p(i)=0;

Tangle(i,1:4)=0;

Displace(i,1:4)=0;

end

k=0;

	 load input data from zposition

load /afs/cad/research/a/2/data/exp18B/04/zposition;

%--each line has t, x, y, z 	 four columns

for m=startmm:endmm
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Displace=zposition((m-1)*np+1:m*np,:);

t=Displace(:,1);

x=Displace(:,2);

y=Displace(:,3);

z=Displace(:,4);

sum=o;

	 initial No. for n-collision=0 at the beginning of each time

	 Sorting section 	

for i=2:np

dx=abs(x(i)-x(1));

dy=abs(y(i)-y(1));

dz=abs(z(i)-z(1));

dist=sqrt(dx A2+dyA2+dz A 2);

xl=x(i)-x(1);

y1=y(i) -y(1);

z1=z(i)-z(1);

if (dist<=search)

sum=sum+1;

zoneNo=ceil(Zone*(y(1)-Rlimit)/(H-2*Rlimit));

	 find the zone No. of this collision

	 cell(10*0.09)=1 is zonel, cell(10*0.99)=10 is zonel0

	 sorting algorithm for phi 	

if zl>=0 	 %----the upper half

phi=180/PI*atan(sqrt(dx A 2+dyA2)/dz);

else 	 %----the lower half

phi=180/PI*(3.14-atan(sqrt(dx A 2+dyA2)/dz));

end

	 sorting algorithm for theta 	

if (y1==0) 	 on the x-axis

if (x1>=0)

Theta=0;

else

Theta=PI;

end



end

if (x1==0) 	 on the y-axis

if (yl>=0)

Theta=PI/2;

else

Theta=3*PI/2;

end

end

	 not on the axis

if (xl>0) & (y1>0)

%----No.1 phase

theta=180/PI*atan(abs(dy/dx));

else if (xl>0) & (y1<0)

%----No.2 phase

theta=180/PI*(2*PI-atan(abs(dy/dx)));

else if (xl<O) & (y1>0)

%----No.3 phase

theta=180/PI*(PI-atan(abs(dy/dx)));

else

%----No.4 phase

theta=180/PI*(PI+atan(abs(dy/dx)));

end

end

end

k=k+1;

Tangle (k, 1) =dist;

Tangle(k,2)=phi;

Tangle(k,3)=theta;

Tangle(k,4)=zoneNo;

save theta in each y zone of intruder particle

if (theta<180) 	 %----belong to Tupper(zone)

Tupper(zoneNo)=Tupper(zoneNo)+1;

else 	 %----belong to Tlower(zone)

Tlower(zoneNo)=Tlower(zoneNo)+1;
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end



end

end
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if ((sum>0)&(sum<=12))

p(sum)=p(sum)+1;

end

end

%----n-collsion in n zone

% 	 plot section

for i=1:15

pp(i)=180*i/15;

end

for i=1:30

ppp(i)=360*i/30;

end

for i=1:10

mm(i)=i;

end

% 	 plot dist & phi

subplot(3,2,1);

plot(Tangle(:,2),Tangle(:1),'.');

lo=search-0.02;

hi=search+0.02;

%axis([0 180 lo hi]);

hold on;

xlabel('phi');

ylabel('dist');

% 	 plot dist & theta

subplot(3,2,2);

plot(Tangle(:,3),Tangle(:,1),'.');

lo=search-0.02;

hi=search+0.02;

%axis([0 360 lo hi]);



hold on;

xlabel('theta');

ylabel('dist');

	 contact No. histogram of phi from 0-180

subplot(3,2,3);

Tl=hist(Tangle(:,2),15)/length(Tangle);

plot(pp,T1, ' bo');hold on;

plot(pp,T1,'r');hold on;

axis([0 180 0 1]);

%hist(Tangle(:,2),15);

xlabel('bins');

ylabel ('frequency of phi');

	 contact No. histogram of theta from 0-360

subplot(3,2,4);

T2=hist(Tangle(:,3),30)/length(Tangle);

plot(ppp,T2, ' bo');hold on;

plot(ppp,T2,'r');hold on;

axis([0 360 0 1]);

	 the above equal to hist(Tangle(:,3),30),

xlabel('bins');

ylabel('frequency of theta');

	 plot over all n-collision No.

subplot(3,2,5);

kk=0;

for i=1:10

kk=kk+p(i);

end

plot(mm,p/kk,'r');hold on;

plot(mm,p/kk,'bo');

axis([0 10 0 1]);

xlabel('n-collision');

ylabel('contact frequency');

	 plot distribution function Tl/T2

subplot(3,2,6);
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plot(Tupper/length(Tangle),mm/10,'ro');hold on;

plot(Tupper/length(Tangle),mm/10,'r');hold on;

plot(Tlower/length(Tangle),mm/10, ' bo');hold on;

plot(Tlower/length(Tangle),mm/10,'b');

xlabel('contact distribution (r-upper/b-lower)');

ylabel('Normalized gap height');

axis([0 1 0 1]);
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APPENDIX B

ZONING INDEX SEARCH METHOD

The following flow chart described the searching algorithm for the closest neighbors

around the tracer particle.

Figure B.1 Flow chart of the zoning index search method.
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