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ABSTRACT

MEASUREMENT OF THE NONLINEAR REFRACTIVE INDEX (n 2) AND
STIMULATED RAMAN SCATTERING IN OPTICAL FIBERS AS A FUNCTION

OF GERMANIA CONTENT, USING THE PHOTOREFRACTIVE BEAM
COUPLING TECHNIQUE

By

Ferdinand A. Oguama

One of the greatest challenges in optical communication is the understanding and control

of optical fiber nonlinearities. While these nonlinearites limit the power handling capacity

of optical fibers and can cause noise, signal distortion and cross talk in optically

amplified transmission systems, they have been equally harnessed for the development of

new generations of optical amplifiers and tunable laser sources. The two prominent

parameters that characterize the nonlinear properties of an optical fiber are the nonlinear

refractive index (n2) and the Raman gain coefficient (g R). These parameters are related to

the third order nonlinear susceptibility [x(3)].

In this work, the photorefractive beam coupling technique, also called induced

grating autocorrelation (IGA), has been used to measure the nonlinear refractive index

(n2) and the Raman gain coefficient (g R) of short lengths ( z 20 m) of optical fibers. In

the IGA experiment, a transform limited Gaussian pulse is propagated through a short

length of an optical fiber, where it undergoes self-phase modulation (SPM) and other

nonlinear distortions, and the output pulse is split into two. The two-excitation pulses are

then coupled into a photorefractive crystal, where they interfere and form a

photorefractive phase grating. The IGA response is determined by delaying one beam

(the probe) and plotting the diffracted intensity of the probe versus the relative delay (t).



Analysis of the IGA response yields information about the nonlinear phase distortions

and other calibration parameters of the fiber. Using the IGA technique the author has

measured the nonlinear refractive index in several types of fibers, including pure silica,

Er-Al-Ge doped fibers, DCF (dispersion compensating fiber) and the recently developed

TrueWave Rs fiber, and investigated the dependence of n2 on the doping profiles of Er,

Al, and Ge in optical fibers.

The standard IGA model for n2 measurements was derived from the solution of

the nonlinear wave equation for pulse propagation in the limit of pure self-phase

modulation. This model assumed that GVD (group velocity dispersion) and other

nonlinear processes such as SRS (stimulated Raman scattering) are negligible. This

model has been successfully used to fit the experimental data and determine the n2 of the

fiber from the time dependent phase shift. However, SRS has been observed to distort the

IGA trace, thus leading to a breakdown of the standard IGA model. A new IGA model

has been developed in this study from the solution of the coupled-amplitude nonlinear

Schrodinger equation, using both analytical and numerical approaches. This new model

successfully accounts for the SRS effects on the IGA trace, in the limit of zero GVD, and

allows the direct determination of the Raman gain coefficient from the fit of the SRS-

distorted IGA trace. The measured nonlinear refractive index and Raman gain

coefficients are in good agreement with published results. It was also shown that in the

limit of zero GVD and no Raman, the IGA technique reduces to the widely accepted

spectral domain SPM technique pioneered by Stolen and Lin, but is readily applicable to

shorter lengths of fiber and is sensitive to smaller phase shifts.
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CHAPTER 1

INTRODUCTION

1.1 Background

The ability to communicate worldwide on demand would not have possible without the

development of low loss silica fiber as a broadband medium for transporting voice, video,

and data traffic. At the time the laser was invented in 1960 [1] following an earlier

suggestion [2], it was already recognized that communication using lightwaves offered

immense potential but it took over ten years before a practical medium capable of

effectively transporting light pulses around the world was developed.

The manufacture of low loss optical fibers began in the 1970s [3-5], and

continuous improvements on fiber fabrication technology resulted by 1979 in the

reduction of fiber loss to only about 0.2 dB/km near 1.55 Alm wavelength [6]. The

availability of such low loss fibers represented a critical milestone in the global

telecommunication and information technology revolution. Added to its low loss is its

enormous bandwidth, which makes it possible for large amounts of different information

to be transmitted simultaneously through the same fiber in a process referred to as

wavelength division multiplexing (WDM).

Another major revolution in the optical communication industry occurred in the

early 1990s when erbium doped fiber amplifiers (EDFAs) invented in 1987 [7-9]]

became commercially available. Prior to the advent of EDFAs, the standard way of

coping with the effect of attenuation and dispersion in long-haul fiber optic

communication was to use periodically spaced electronic repeaters. Such repeaters

consist of a photodetector to detect the weak incoming light, electronic amplifiers, timing

1
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circuitry to maintain the timing of the signals and a laser along with its driver to launch

the signals along the next span. Thus the input optical signal is first detected and

converted to electrical signals. The electrical signals are processed (reshaped and

retimed) to remove the effect of pulse dispersion and then amplified to drive an optical

pulse, hence regenerating the pulse train. The emerging optical signal is then sent again

through the next segment of the link.

The use of EDFAs permits the direct amplification of optical signals without the

optical-to-electrical-to-optical conversion associated with electronic repeaters. These

optical amplifiers are now referred to as optical repeaters. Transmission systems with

tens of thousands of kilometers of fibers are now possible using EDFAs for periodic

optical amplification (typically every 40 to 80 km) to compensate for fiber loss. A major

advantage of EDFAs is they operate independent of data rate, format and wavelength

(within the erbium gain spectrum), and this paves the way for dense wavelength division

multiplexing (DWDM). The DWDM technology utilizes many independent lasers, each

operating at evenly spaced wavelengths and each carrying its own stream of data or

information and all propagating down a single optical fiber. For example, in DWDM

technology, one could have 100 lasers, each operating at a data rate of 10 Gbits/s

resulting in an aggregate data rate of 1 Tbit/s. The introduction of a two-band

architecture, which includes amplifier sections for the C-band (1530 nm — 1560 Om) and

L-band (1570 nm — 1620 nm), resulted in a further increase of the bandwidth. In addition,

these amplifiers provide high output power and low noise figure to support the ever-

increasing capacity demand on lightwave systems.
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All these attempts to fully utilize the capabilities of silica fibers will ultimately be

limited by nonlinear interactions between the information bearing lightwaves and the

transmission medium. These optical nonlinearities can cause noise, signal distortion,

crosstalk, and excess attenuation of the optical signals, resulting in system degradation

[10-12]. Thus, as the world continues to push for ever higher data rates, continued

progress in research and understanding of the impairments caused by optical

nonlinearities is critical. There exist a collection of nonlinear effects in optical fibers [13-

31] each of which manifests itself in a unique way and affects specific lightwave systems

in different ways. The majority of the fiber nonlinearities arise from the dependence of

the refractive index on light intensity. This intensity induced refractive index change

referred to as the nonlinear refractive index (n2), is responsible for self-phase modulation

(SPM) [13,14]; cross phase modulation (XPM) [15]; four wave mixing (FWM) [16,17],

and soliton formation [18,19].

Self-phase modulation can lead to a shift in the frequency of the pulse (self-

chirping), which influences the pulse shape via its interaction with the fiber dispersion. It

is possible for self-chirping and dispersion to cancel each other. If this happens, solitons

can form [18-20]. However, when the cancellation is not complete, self-chirping leads to

broadening of the optical spectrum and can cause additional pulse distortion. XPM results

from the intensity variation in one channel modulating the phase of all the other channels

in the fiber. In FWM, two or more optical waves (signals) at different wavelengths mix to

produce new optical waves at other wavelengths. This depletes certain waves and by

means of frequency conversion, generates interfering signals for other channels in

wavelength-multiplexed systems. This leads to both noise and crosstalk, thus degrading
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the quality of the transmitted signals. Another class of optical nonlinearities that occur in

optical fibers is stimulated (Raman and Brillouin) scattering [21-28]. Stimulated Raman

scattering [21-23], an interaction between light and vibrations of silica molecules, causes

frequency conversion of light and results in crosstalk, and attenuation of short-

wavelength channels in wavelength multiplexed systems. Stimulated Brillouin scattering

[24-28] arises from the interaction between light and sound waves in the fiber. This

causes frequency conversion and reversal of propagation direction of light and can lead to

depletion of signal power and modulation instability [29].

Therefore, accurate measurement and characterization of these fiber nonlinearities are

crucial for predicting and improving the performance of optical communication systems.

In as much as it is crucial to control the adverse effects of fiber nonlinearities, it is

equally pertinent to note that nonlinear effects in optical fibers are also useful in some

aspects [30-49] and this creates additional incentives to the study of fiber nonlinearities.

For example the nonlinear phenomenon of SPM has been used in optical pulse

compression [30-34] by taking advantage of the SPM-induced chirp and spectral

broadening. Soliton based optical communication systems have been developed [35-40].

Optical solitons result from the interplay between SPM and GVD in the anomalous

dispersion regime. The development of the Raman fiber amplifier (RFA) [41-43] and

Raman fiber lasers (RFL) [43,44] are also other positive rewards stemming from fiber

nonlinearities. The RFA has been used as discrete, analog, and digital amplifiers at both

1.3 t1111 [45] and 1.5 gm [46,47] and as remotely pumped amplifiers in the repeaterless

optical communication systems [48,49].
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It is in recognition of all these effects that considerable attention has been given to

the study of optical fiber nonlinearities. Stolen and Ippen measured the gain coefficients

for SRS and SBS in single mode silica fiber as early as 1972 [50,51]. Measurements of

the nonlinear index of refraction in silica fibers have also been reported by a number of

authors, using different techniques [13, 52-62]. The most widely used of all these

techniques is the self-phase modulation method developed by Stolen and Lin [13]. In this

technique, a transform limited optical pulse is coupled into a fiber of appreciable length

(z ~ 100 m to 2 km) where it suffers self-phase modulation as it propagates. The output

spectrum is measured as a function of the input power using a scanning Fabry-Perot

interferometer. The frequency broadening is proportional to the spectral phase shift,

which is in turn proportional to the input power. As the input power is increased, maxima

and minima peaks occur in the frequency spectrum when the phase shift is in integer

multiple of 7t12. The number of peaks in the spectrum reveals the magnitude of the

spectral phase shifts. From the analysis of the phase shifts versus peak power, n 2/Aeff can

be precisely deduced. However, in this technique and other known approaches, one

would typically require several hundred meters of fiber and sometimes several kilometers

for experiments utilizing cw lasers [57].

The investigation embodied in this thesis utilizes a new technique — the

photorefractive beam coupling technique (also called induced grating autocorrelation-

IGA) to measure n2 and stimulated Raman scattering in short lengths (Z 20m) of Er-Al-

Ge doped single mode fibers. IGA was originally developed for characterization of

ultrashort pulses [63,64]. The use of the photorefractive beam coupling technique for

measuring n2 relies on the fact that the IGA can detect the time dependent phase change
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acquired by an optical pulse after propagating through a nonlinear medium, such as

optical fiber. It is the SPM induced phase change that is used to characterize the nonlinear

medium. Generally, because of the short length of fiber needed to generate SPM in IGA

experiments, GVD (group velocity dispersion) can be neglected. The first application of

the IGA technique for n2 measurement in optical fiber was carried out in previously

characterized pure silica fibers and Er-doped fibers [66] and a good agreement with

earlier published results confirmed the accuracy of the this technique. This technique has

also been utilized to measure the magnitude and sign of n2 in 1 mm thick GaAs, ZnTe

and CdTe films and proved to be within 5%s of published values as determined by Z-

scan [67]. The main goal of this thesis is three-fold: (1) A systematic study of the n2/Aeff

as a function of Er, Al and Ge contents. (2) To establish the ultimate sensitivity of the

IGA technique and relate it to other known techniques, and (3) To modify the existing

IGA model which is based on the simple theory of SPM, include the Raman contribution

to the nonlinearity (in the limits of zero GVD). This modified model was successful in

explaining the observed deviation in IGA model and has paved the way for the use of

IGA technique for the measurement of the Raman gain coefficient in optical fibers. These

outlined objectives have been achieved and the details of the work are reported in this

thesis and in conference presentations that the author has delivered [68-71].
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1.2 Overview of the Dissertation

The dissertation consists of eight chapters, including this introduction that forms Chapter

1. In Chapter 2, the basic nonlinear effects in optical fibers are discussed, together with

the conditions under which they occur. The relation between the nonlinear refractive

index and the third order nonlinear susceptibility was derived for linearly polarized

optical field. The simple theory of SPM was presented, and the nonlinear wave equation

was solved for a self-phase modulated Gaussian pulse in the zero GAD regimes, to show

the nonlinear phase shift and frequency broadening associated with SPM are determined.

Stimulated Brillouin and Stimulated Raman scattering are briefly explained. Pulse

dispersion in optical fibers is discussed, and the role of GAD in the nonlinear interactions

in optical fibers at different propagation regimes is explained.

Chapter 3 contains a survey and description of the different measurement

techniques that have been used to measure the nonlinear index of refraction (n2) in optical

fibers, including the "famous" spectral domain SPM method pioneered by Stolen and Lin

[13]. The levels of performance of these techniques as well as their limitations are

discussed, and the need for a new approach, such as the IGA technique was highlighted.

In Chapter 4 the basic theory and principles of the IGA technique is discussed.

The concept of photorefractive effect and photorefractive two beam coupling are

explained. The simple model of the IGA technique is presented in the limit of pure self-

phase modulation for a propagating Gaussian beam, in the regime of negligible GVD

(group velocity dispersion) of the fiber. The experimental set-up and procedures to for

taking IGA measurements are explained.



8

In Chapter 5, the author reports the results of several n2 measurements he has

done in different fibers using the IGA technique. Of particular interest in this chapter is

the result of the dependence of the nonlinear coefficient (n2hkeff) on the doping profiles in

Er-Al-Ge doped single mode fibers. Results of the measurement of n2hkeff in DCF

(dispersion compensating fiber) and in True-Wave fiber are also presented. These results

are compared with published values.

Chapter 6 contains the new modification of IGA model, which takes into account

the stimulated Raman scattering as an additional nonlinear process to SPM, for a

propagating Gaussian pulse in the zero GAD regime. The initial observation of the

break-down of the pure-SPM IGA model in high Ge02-doped fibers is outlined, which

necessitated the modification. As a result of the new model, IGA can be used to measure

another crucial parameter in optical fibers, known as the Raman gain coefficient. The

results of the Raman gain coefficient measurements in four different fibers including pure

silica core fiber, dispersion compensating fiber (DCF), and highly Ge02 doped fibers are

outlined in this chapter. A numerical modeling of IGA, in the presence of pump depletion

during SRS is also presented.

In Chapter 7, the author relates the IGA technique to the widely accepted spectral

domain n2 measurement technique. It is shown that, in the pure SPM limit, IGA results

converge with the results of the Stolen's method [13,52], through a direct mathematical

relation. The measured sensitivity of IGA is also discussed in this chapter and it is shown

that IGA could detect phase shifts as small as 0.14n.

Chapter 8 contains the conclusion and the recommendations for further research

in this field.



CHAPTER 2

NONLINEAR EFFECTS AND PULSE DISPERSION IN OPTICAL FIBERS

2.1 Nonlinear Susceptibility and Index of Refraction

The nonlinear effects in optical fibers originate from the polarizability of the molecules

under applied optical field. The polarizability of a molecule is affected on two time scales

during pulse propagation in optical fiber. The first is an essentially instantaneous time

scale associated with the electronic response and leads to an intensity-dependent

refractive index (Kerr nonlinearity). This effect arises from an optically induced

distortion of electronic charge distribution within the medium. Typical response time of

electronic nonlinearity is approximately 1 fs. [72]. The second time scale is associated

with molecular vibrations with response time in order of 50-100 fs [73], which is

regarded as a non-instantaneous time scale. The later is responsible for SRS in fibers.

When light passes through a dielectric medium such as an optical fiber, there is

induced electric polarization arising from the influence of the applied field on the electric

dipoles:

Where co is the vacuum permittivity, E is the electric field of the optical pulse, and x is

the susceptibility. If the laser beam is of high intensity, the response of the medium

becomes nonlinear and the induced polarization P can be expressed as a perturbation

expansion in successive higher orders of the optical electric field:

9
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where x(n (n = 1,2,...) is the nth order dielectric susceptibility. In general, the third order

susceptibility is a fourth-rank tensor (i.e. z (3) ). To simplify the problem, one

normally assumes a linearly polarized optical field, which ensures that only one

component x (3) contributes to the refractive index, and the problem can be treated using

scalar approach. This assumption is justified in the present circumstance as well,

considering the short length of single mode fibers utilized in this work. In practice, the

tensorial nature of x (3) can affect the polarization properties of the optical field through

nonlinear birefringence [77,78]. The linear susceptibility x (1) represents the dominant

contribution to P. Its effect is included through the linear refractive index (n) and the

attenuation constant a. The second order susceptibility X(2) is responsible for such

nonlinear effects as second harmonic generation (SHG), sum-frequency generation,

parametric fluorescence and optical rectification [74]. It is nonzero only for media that

lack inversion symmetry. As a result, since Si02 is a symmetric molecule, X(2) vanishes

for silica fibers. Thus optical fibers do not normally exhibit second-order nonlinear

effects. However, electric-quadrupole and magnetic dipole moments can sometimes

generate weak second-order nonlinear effects. Defects or color centers inside the fiber

can also give rise to SHG, under certain conditions [75,76]. The lowest order nonlinear

effects in optical fibers therefore originate from the third order susceptibility X(3) which
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gives rise to nonlinear refraction. Nonlinear refraction refers to the intensity dependence

of the refractive index resulting from the contribution of x (3) .

The relationship between x (3) and the nonlinear refractive index (n2) will be

derived in the following analysis:

Assume a plane optical wave with electric field of the form:

with the real part given simply by:

Equation (2.2) can now be re-written as:

Using the trigonometric identity [79] cos 3 8 = —41 (cos3 + 3 cos8 ), equation (2.5) can be

written as

The intensity of an optical field is related to the electric field by the expression [20] :

where no is the low field refractive index of the medium. Equation (2.7) can thus be

written as:



12



13

In the above Equation, n2 is the nonlinear refractive index, no is the linear refractive

), c is the velocity of light in

vacuum (c = 2.998 x 10 8 mis) and no is the low field refractive index.

To have a feeling of typical values, note that for silica fibers n o k--. 1.46 and n2 ~

Thus for a laser beam with peak power of 30W

propagating through a single mode fiber with effective core area (Aeff ) of 50 utm2. The

and the change in

refractive index due to nonlinear effects is An = n2 =1.5 x 10-8. This change in refractive

index seems very small, but due to very long interaction lengths in optical fiber

communication (typically 10,000 km in long haul systems), the accumulated effects

become significant and can result to severe penalty. In fact, it is this small nonlinear term

that is responsible for SPM, XPM, FWM and for the formation of solitons in optical

fibers.
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2.2 Self-Phase Modulation

Self-phase modulation (SPM) is a phenomenon in which a laser beam propagating in a

medium interacts with the medium and imposes a phase modulation on itself. The

physical origin of SPM lies in the fact that the strong field of a laser beam is capable of

inducing an appreciable intensity-dependent refractive index change in the medium. The

medium then reacts back and inflicts a phase change on the incoming wave, resulting in

self-phase modulation. This phase modulation is associated with frequency broadening of

the optical pulse. The first observation of SPM was made in the context of transient self-

focusing of an optical pulse propagating in a solution of a CS2-fihled cell [81]. Alfano and

Shapiro observed SPM in solids and glasses by using picosecond pulses [82]. The first

observation of SPM in optical fibers was made by Ippen et al [83] in a fiber whose core

was filled with CSC. This work led to a systematic study of SPM in optical fiber by Stolen

and Lin [3].

To describe the process of SPM of light in optical fibers, the author starts with the

nonlinear wave equation for the electric field:

where 13(3) is the third order polarizability and can given by:

0ne can assume a plane wave of the form:
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In the simple theory of SPM [84-86], it is normal to use the slowly varying

amplitude approximation by neglecting the a22.-VatC term in the equation. Also assume an

instantaneous response of x (3) . The assumption of instantaneous response amounts to a

neglect of the contribution of molecular vibrations (Raman effect) to x (3). Thus, from

Equations (2.15), (2.16) and (2.17) together with the assumptions, one obtains,

Equation (2.18) will yield two sets of

equations for the electric field amplitude and the phase:

These equations have the following solution:
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Equation (2.20a) implies that the laser pulse propagates in the fiber without

distortion of the pulse shape. Equation (2.20b) on the other hand shows that as the optical

pulse propagate along the fiber from 0 to z, it acquires an induced phase change AC

given by:

The SPM induced spectral broadening can be deduced from the time derivative of the

phase.

The spectrum of the SPM broadened pulse can be calculated from the Fourier transform

of the electric field:

where E is the field amplitude which is assumed to be normalized such that 1E(0,0) I = 1

and I E(z,t) 1 C represents the optical power. Such a spectrum calculated from Equation

(2.23) is called the power spectrum.
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2.3 Cross-Phase Modulation

Cross-phase modulation (XPM) refers to the nonlinear phase change of an optical pulse

induced by another pulse, co-propagating with it at a different wavelength. The XPM-

induced coupling among optical waves can give rise to spectral broadening, nonlinear

birefringence and modulation instability. A detailed discussion of XPM and its effects on

pulse propagation can be found in the following references [20, 87-90]. An important

characteristic of XPM is that for equally intense optical fields (copropagating), the

contribution of XPM to the nonlinear phase shift is twice compared with that of SPM.

However, the XPM interaction between counter propagating optical pulses is generally

weak and contributes little to the nonlinear phase shifts. This is because the group

velocity mismatch is so large that the two pulses have little time to interact with each

other.

2.4 Four-Wave Mixing

This is a process in which three optical wave interact to generate another wave at

different frequency.

The intensity of the generated wave is proportional to the product of the

intensities of the incident waves. FWM is a X(3) process and originates from the response

of the bound electrons of a material to an applied optical field. 0ne important property of

four-wave mixing is that it requires phase matching. The phase matching condition

required for the process shown in Equation (2.24) to occur is that Aka = 0 , where:



The four wave mixing process can also be defined as an interaction between four photons

— a photon of frequency co combines with a photon of frequency (04 to produce a photon

of frequency Doi and another of frequency 0)C-

This can be written simply as:

with the phase matching condition:

A special case is obtained when (Di = (oC = co = (04. The process is then called

degenerate four wave mixing [91]. FWM processes in optical fibers have been studied

extensively [16-17,20, 92-94].

2.5 Stimulated Raman Scattering

Raman scattering describes the interaction of light with molecular vibrations. Incident

light scattered by molecules experience a downshift in optical frequency. The change in

optical frequency is equal to molecular vibrational frequency (called the Stokes

frequency). This process is called Raman effect. In silica fibers, this frequency shift is

about 13.2 THz (1 THz = 10 1C Hz). If two optical waves separated by the Stokes

frequency co-propagate in a Raman active medium, such as an optical fiber, the lower

frequency (probe) wave will experience optical gain generated by, and at the expense of,
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the higher frequency (pump) wave. This process is called stimulated Raman scattering

(SRS). The growth of the Stokes wave in optical fibers can be describe by the following

expression [12]:

where Pp(0) is the initial power of the Stokes wave, P S(L) is the final (output) power of

the Stokes wave after traveling a length (L) in the fiber. P p(0) is the initial injected power

of the pump wave, Leff is the effective length. The effective length is introduced to

account for the exponential decay with length of the pump power due to fiber loss. It is

given by:

where a is the loss coefficient for the fiber (for a << 1, Leff = L). Jeff is the effective area

of the fiber [18]. The factor b accounts for the relative polarizations of pump and probe

waves and the polarization properties of the fiber. In a polarization maintaining fiber,

with identical pump and probe polarization states, b = 1. In a conventional fiber that does

not maintain polarization, b = 2. The quantity gm is called the Raman gain coefficient.

The gm for silica fiber was measured by Stolen et al, in the early experiments on SRS in

single mode fibers [50,95]. In general, g R  scales inversely with wavelength. The value of

gm for silica fibers is about 1.5 x 10 -11 cmiW [50] in the visible and at 1064 nm, gm = 0.92

x 10-11 cm/W [96]. It also depends on the composition of the fiber core and can vary

significantly with the use of different dopants [97,98].
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In general, the Raman gain coefficient is related to the imaginary part of the third

order susceptibility [xi(3 through the following expression [91]:

where Trio is the impedance of free space {no= (.10/60) 1/C }, P is the optical power, X.0 is the

laser wavelength and A is cross-sectional area (for optical fibers, A E.- A 4f) .

The Raman threshold is defined as the input pump power at which the Stokes

power becomes equal to the pump power at the fiber output [99]. This implies that:

where a1  is the fiber loss coefficient at the pump wavelength and the rest of the symbols

have their usual meanings as earlier defined. Smith [99] has shown that the threshold

power (Pth) for this condition to occur can be given in terms of the Raman gain

coefficient and the fiber length as follow:

where Leff is the effective fiber length defined by Equation (2.29) and J eff is the effective

core area of the fiber. The factor b accounts for polarization (b = 2 if polarization is

completely scrambled and b = 1 if polarization is maintained). Thus for a typical silica

fiber with Jeffs = 50 Ai,mC and Leff = 20 m and b = 1, the SRS threshold power is about

the threshold power can be as low as 3 W for a
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25 utm2 core fiber. An important feature of the Raman gain in silica is that gR extends

over a large frequency range (~ 40 1Hz), with a broad peak near 13.2 1Hz [20,50,100].

Figure 2.1 shows typical Raman gain spectrum for fused silica.

Figure 2.1 Raman gain spectrum for fused silica at a pump wavelength of 1.0 um [100].

A few words needs to be mentioned about the formation of a higher frequency

photon during SRS. The optical wave associated with the high frequency photons is

called anti-Stokes and is generated when a phonon combines with the pump photon to

generate a high frequency photon at frequency w a = cop + Act) for a Stokes wave of

frequency cos = cop - Act), where cop is the pump frequency and Act) is the Raman

frequency shift. The anti-Stokes waves are typically much weaker than the Stokes
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intensity. Since 2wp  = cos + wpm the formation of anti-Stokes during SRS leads to four-

wave mixing — a process where two photons annihilate themselves to produce Stokes and

anti-Stokes photons, provided that the total momentum is conserved. The momentum

conservation requirement is associated with the phase matching condition

that must be fulfilled for four-wave mixing to take place. This

phase matching condition is not easily satisfied in single mode fibers for Awe — !O 1Hz

[20]. Thus, the anti-Stokes wave is rarely observed during SRS in single mode fibers.

2.6 Stimulated Brillouin Scattering

Stimulated Brillouin scattering (SBS) is similar to SRS except that SBS involves the

interaction of light with sound (acoustic) waves rather than molecular vibrations. Part of

the incident (pump) light is converted into Stokes light of lower frequency with a

concomitant excitation of an acoustical phonon. The Stokes shift in SBS (~10 GHz) is

smaller by three orders of magnitude compared with that occurring in SRS. In addition,

the SBS generated Stokes wave propagates in the backward direction. The peak SBS gain

coefficient (gm) in silica fibers (gr ~ 4.0 x 10 -9 cmiW [51 ]) is over two orders of

magnitude larger than the gain coefficient for SRS, but the bandwidth of the Brillouin

gain spectrum is very narrow, typically 20 MHz [101]. The threshold power for SBS is

given by [99]
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Although SBS can occur in optical fibers at input power levels much lower than those

needed for stimulated Raman Scattering, SBS only occurs for a continuous wave (cw)

pump or when the pumping is in the form of relatively wide pulses (with pulsewidth in

the range of nanoseconds and higher). For short pulses in the picosecond range SBS is

negligible. As a result, the author would not consider SBS in his measurements and

analysis in this work.

2.7 Optical Solitons in Fibers

0ptical soliton refers to optical wave that preserves its pulse shape and velocity as it

travels over long distances. Solitons can form in optical fiber if there is an exact balance

between the effects of non-linearity and the dispersion in the fiber material. The condition

can be fulfilled in the anomaous dispersion regime, with f3C < 0, where 0C is the GAD

parameter. Therefore, for single mode fibers the operating wavelengths for solitons are

usually about 1.3 p.m or longer. The work discussed in this thesis has been carried out

below the soliton regime. For more detailed discussion on soliton propagation, readers

should consult the following references [20, 56-59]

2.8 Two-Photon Absorption

This is a process in which an atom makes a transition from its ground state to an excited

state by simultaneous absorption of two laser photons. Thus in this process when two

low-energy photons strike a molecule at almost the same time and get absorbed, they

have approximately the same effect as one photon of half the wavelength (twice the

frequency). This process is related to the optical absorption property of the materials and
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is generally observed at high intensities. At high optical intensity, the absorption

coefficient (a) of a nonlinear material becomes intensity dependent and can be written

as:

where I is the optical intensity ac, is the linear (low field) absorption coefficient and a C

is the two-photon absorption coefficient. The two-photon absorption is related to the

imaginary part of the third order nonlinear susceptibility in the following manner [20]:

where coo is the central angular frequency of the laser, n is the linear refractive index of

the material and c is the speed of light. In optical fibers, two-photon absorption can lead

to intensity dependent loss and sometimes cause color center formations that degrade the

quality of an optical fiber. It has been reported that two-photon absorption also leads to

modulation instability [102]. It should be noted however that two-photon absorption can

only occur in silica fibers for laser wave lengths of about 320 nm or less, because the sum

of the energy of two photons at this wavelengths is typically greater than the band gap of

fused silica (-8.3 eV). Typical value of a C measured in silica fiber at 260 nm is 3.0 x 10 "5

[103]. Because of the long wavelength (1064 nm) of the laser used in this work, two-
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photon absorption is not expected to occur and as such it will not be taken into account in

analyzing the data obtained in the present work.

2.9 Pulse Dispersion and GVD in Optical Fibers

Pulse dispersion refers to broadening in time of an optical pulse as it propagates through

the fiber. There are three types of pulse dispersion in optical fibers namely: intermodal

dispersion, material dispersion and waveguide dispersion. Intermodal dispersion arises

due to different group velocities of different modes in the waveguide. This form of

dispersion is dominant in multimode fibers and negligible in single mode fibers. Both

material dispersion and waveguide dispersion are called intramodal dispersion and arise

due to the different transverse times taken by different wavelength components of the

source.

In single mode fibers, material dispersion and waveguide dispersion are the

dominant dispersion mechanisms. Material dispersion results from the dependence of the

fiber material on wavelength. 0n the other hand, waveguide dispersion is purely a

geometric effect resulting from the waveguide structure. Both material and waveguide

dispersions depend on the spectral width of the source and form what is known as

chromatic dispersion in single mode fibers. Chromatic dispersion plays an important role

in the propagation of short laser pulses because different spectral components associated

with the pulse travel at different speeds given by dn(co). Mathematically, the effect of

fiber dispersion can be accounted for by expanding the mode-propagation constant f3 in a

Taylor series (since the propagating pulse is assumed to have a relatively narrow

frequency spectrum) about the frequency (coo) at which the pulse spectrum is centered:
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The parameters 131 and 0C are related to the linear refractive index n and its

derivative in the following manner:

where kg  is the group index and vg is the group velocity and (3 1 is the group velocity

parameter. In principle, the envelope of an optical pulse moves at the group velocity (vg)

while the f3C represents the dispersion of the group velocity. For this reason, this

phenomenon is called the group velocity dispersion (GVD) and 13C is referred to as GADS

parameter and represents the lowest order dispersion term. The term 133 appearing in the
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Taylor expansion is called the third order dispersion parameter and is usually generally

negligible except in the vicinity of zero dispersion wavelength of the fiber, where 13C

vanish. For ultrashort pulses in the femtoseconds regime, it may be necessary to include

the effect of 133 even if f3C # 0, because the expansion of Aa/o is no longer small enough

to neglect it. Typical value of 13 3 is 0.1 ps3/km [20]. The quantity 13C is measured in

psCikm. Typically f3 C is of the order 50 psCikm in the visible region, while at 1550 nm it is

about —20 psCikm. In the literature, the dispersion D (also called dispersion coefficient) is

sometimes used in place of 0C, and the two are related by:

The dispersion coefficient D is defined as the time delay per unit length of the

propagating distance per unit spectral width of the source. The commonly used unit for D

is (psikm.nm). Figure 2.2 shows a typical dispersion curve for conventional single mode

fibers [104] with contributions from material and waveguide dispersion to the total

dispersion in the fiber.
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Figure 2.2 Variation of material, waveguide and total dispersion (D)
with wavelength [104].

The material dispersion curve passes through zero around 1.27 um and changes

sign, while the waveguide dispersion is continually negative. The combined effect of the

two results to a total dispersion curve that passes through zero around 1.3 gm. This is the

so-called zero dispersion wavelength, denoted by XD. It should be noted however that

dispersion does not completely go to zero at X = XD, because in the vicinity of zero

dispersion wavelength higher order dispersion terms (such as the cubic term) become

important and the pulse will still undergo dispersion although by a much smaller amount.

The slope of the total dispersion in Figure (2.2) is called the dispersion slope, and is

related to the cubic dispersion term (j3 3). Figure (2.3) shows the variation of GVD

parameter 13C with wavelength for fused silica [20].



Figure 2.3 Variation of 13C and d1C (walk-off parameter) with wavelength for fused
Silica [20].
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Figure 2.4 Variation of dCnidX.C with X for pure silica and doped fibers. Dopant
concentration is in parenthesis [105].
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It needs to be mentioned that the dispersion behavior of some telecommunication

fibers may deviate from the that shown in Figures (2.2) and (2.3) because the fiber core is

sometimes doped with Ge02, PC05, or other dopants which changes the refractive index

of the fiber and modifies the dispersion curve. Figure 2.4 shows the variation of d CnidXC

with X for doped silica fibers. This shows that dCnidX2 depends significantly on dopant

concentration and varies also with wavelength.

The dispersion coefficient due to material dispersion (Dm) can be written:

where At is the time delay in the arrival of the fastest and the slowest wavelength

component in a material with refractive index n(X). AX is the spectral width of the source

and L is the propagation distance. For single mode fibers, the total dispersion is given by

a similar expression, except that the refractive index n is replaced with the effective index

of the mode (nee) thus:

This expression

contains contributions from both material and waveguide dispersion. The parameter n e is

called the effective index of the mode (n e = (3/1(0), where 13 is the propagation constant of
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the mode and k0 = 27ciX. In the case of waveguide dispersion alone, the parameter D B  can

be written in terms of the normalized frequency (V) thus:

where noel is the cladding index, A is the relative refractive index between the core and the

cladding, b is the normalized propagation constant. The normalized frequency (A) is

given by A = (2na/X.)(ne2-ne
12) 1/2 where Inc is the refractive index of the fiber core and a is

the core radius. Thus waveguide dispersion can be changed considerably by varying the

operating A-value and the value of A. By changing the magnitude of the waveguide

dispersion, one can locate zero dispersion at a desired wavelength. This feature is used in

the telecommunication industry to shift the zero dispersion wavelengths in the vicinity of

1.55 lam where the fiber loss is minimum. Such fibers are called dispersion-shifted fibers

(DSF). If the GAD is shifted beyond 1.6 p.m, then the fiber is called dispersion

compensating fiber (DCF). It is also possible to design a fiber with relatively low

dispersion over the wavelength region 1.3-1.6 1.1m. Such fibers are called dispersion-

flattened fibers. Figure (2.5) shows a combined plot of dispersion curves for standard

silica fiber, dispersion shifted fiber and dispersion flattened fiber p on the same scale.
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2.10 The Role of GVD in Nonlinear Interactions in Optical Fibers

Pulse dispersion plays an important role in nonlinear interaction in optical fibers because

nonlinear effects can manifest qualitatively different behavior depending on the sign of

GVD. For wavelengths less than the zero-dispersion wavelength (A, > XD), GAD is

positive (132 >0) and the fiber is said to exhibit normal dispersion. In the normal

dispersion regime, the red shifted (low frequency or long wave length) component of an

optical pulse travel faster that the blue shifted (short wavelength) component. In the

wavelength region beyond the zero-dispersion wavelength, GAD is negative (132 < 0) and

the fiber exhibits anomalous dispersion. In this regime, the blue shifted component of the

pulse now travels faster than the red-shifted component. It is in this regime that optical

fibers can support solitons through a balance between dispersion and self-phase

modulation. Because of GVD effects, two different pulses at different wavelengths would

travel at different speeds in the fiber.

The nonlinear interactions between the two pulses would cease to occur when the

faster moving pulse has completely "walked" through the slower moving pulse. The

separation between them is governed by the walk-off parameter d defined by d = (1Ivg i

— 11vg2) . Here, vgl and vgl represent the group velocities of the two pulses. 0ne can

define a walk-off length L,„ as the distance within which the faster moving pulse walks

through the slower moving pulse. The walk-off length can be given in terms of the walk-

off parameter thus:



35

In order to properly analyze experimental results involving pulse propagation in

optical fibers, it is necessary to classify the experimental fiber length (L) in terms of two

length scales, (depending on the laser pulsewidth and peak power used), namely: the

nonlinear length (LNL) and the dispersion length (LD). The nonlinear length represents the

length scale over which the effect of nonlinearity (both SPM and XPM) becomes

important. In terms of the pump peak power (P0) this length can be is given by:

where y is the nonlinear coefficient (y = n2co0/cJeff), AAeff is effective core area of the

fiber and c is the speed of light. Similarly, the dispersion length, LD represents the length

scale over which the effect of GVD becomes important. In terms of the laser pulsewidth

and the GVD parameter (j32), this length can be given by:

Generally, when the experimental fiber length (L) is such that L << LD, but L — LNL,

GAD can be neglected and the pulse propagation is governed by nonlinear effects. If on

the other hand, (through the choice of pulsewidth, laser power and experimental length) L

is comparable to both LNL and LD the GVD will no longer be negligible and must be

included in the analysis of experimental results. As a check, the author would like to run

through some numbers and establish valid experimental and theoretical conditions for the

work. Typically y ~ 3 Wikm-1  for standard silica fibers and 132r'z 24 ps2/km at 1.064 limp.

Thus, for 50 As pulses with a peak power of 36 W, LNL is approximately 10 meters while



36

LD is about 100 km. In practice however, dispersion may set in at a length shorter than

this (100km), since there are other factors than 132 that contribute to dispersion in fibers

(see Section 2.8). However, the above estimate gives a justification as to why GVD in

neglected in analyzing the results presented in this thesis. Most of the fibers used are in

the range of 10 - 20 m, except in few cases where 100 m was required for SRS

measurements. Even at that, this length is still far below the dispersion length for silica

fibers.



CHAPTER 3

OTHER TECHNIQUES FOR MEASURING n2 IN OPTICAL FIBERS
AND THE NEED FOR A NEW APPROACH

3.1 Introduction

It has been realized over the years that most of the nonlinear effects in optical fiber are

associated with the nonlinear refractive index (n 2) and that these nonlinear effects can

have a relevant impact on the performance of optical telecommunication systems [10-12].

As a result, n2 is a crucial parameter whose value in the fiber must be known precisely in

order to perform calculations for predicting system performance. A variety of techniques

[13, 15, 54-59, 107-113] have been developed since the pioneering work of Stolen and

Lin in 1978 [13]. Some of these include spectral domain self-phase modulation method

by use of pulsed lasers [13, 53-54, 56, 62, 107], cross phase modulation [15, 55, 108-

109], four wave mixing [110] and modulation instability [111]. A technique based on

LPG (long period fiber grating) pairs, utilizing enhanced absorption of rare earth ions has

also been developed [61]. In this chapter the author wishes to discuss briefly some of

these techniques and point out their utility and limitations.

3.2 The Spectral Domain SPM Technique

This is the most widely used method for n2 measurement in fibers [13, 53, 62, 66, 107].

The method utilizes pulsed lasers and typical pulsewidths reported ranges from 50-120

picoseconds. In this technique, the laser pulses are launched into the test fiber whose

length is typically 100-250 meters or more [13,107] and sometimes kilometers [62].

Spectral broadening occurs due to SPM because of the phase delay at the pulse maximum
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relative to the wings. The output is passed through a scanning Fabry-Perot interferometer,

which resolves the spectrum. The spectrum assumes readily identifiable shapes

characterized by maxima and minima peaks at maximum phase shifts given by:

One measures the power after adjusting the input power to produce these

identifiable shapes. As the input power is increased, the number of peaks increases. The

number of peaks is proportional to the spectral phase shift which is in turn proportional to

n2/Aeff (where Jeffs is the effective core area of the fiber).

The fiber length L and the vacuum wavelength (X) are usually known, so that the

slope of a plot of Om versus P. produces the nonlinear coefficient in the form of n2/Jeff.

If Jeffs is known, n2 can be deduced . The experimental setup is shown in Figure 3.1.



Figure 3.1 Experimental setup and analysis procedure for the spectral domain
SPM technique [107].
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This technique is relatively simple (because one can deduce the phase shift simply

by counting the number of nodes in the spectrum) and yields accurate results. The

pioneering work on this performed in 1978 at 514.5 nm gave the well-known value of n2

However, this technique requires long fibers in order to generate some orders of

icI2 phase shifts. It may therefore not be suitable for use in measuring n2 in standard

EDFAs (Erbium-Doped Fiber Amplifiers) which are typically between 15 to 25 meters.

In addition, because the technique relies on counting of the number of nodes that appear

at integer orders of 7t/2 phase shift, the minimum detectable phase shift is limited to 7t/2.

3.3 Cross-Phase Modulation Technique

The cross-phase modulation (PM) technique has been used to measure n2 as early as

1987 [54] using interferometfic method. In a 1995 experiment Kato et al [15] used a

pump and probe configuration utilizing two independent cw laser sources from laser

diodes (LDs) at the same wavelength (1550 nm) as the pump and probe signals. The

probe signal was made relatively weaker than the pump, so that the phase shift in the test

fiber was caused principally by the pump, through XPM. The two were coupled into the

fiber where they interact as shown in Figure 3.2.
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Figure 3.2 Measurement system of the nonlinear refractive
index by the XPM method [15].

When the pump light was modulated in its intensity at low frequencies (7.36

MHz) with the electrical oscillator, the probe signal developed FM sidebands because of

the XPM induced phase modulation. To ensure that the relative polarization between the

pump and the probe varied randomly, the pump light was depolarized before entering the

fiber. Typical fiber length used ranged from 5-15 km. The n2 values obtained here ranged

from 2.48 x 10 -16 CM2/W for silica core fibers to 3.95 x 10 -16 cm2fW for DCF (dispersion

compensating fibers). Measured n2 values in these experiments are in many cases higher

than that obtained using SPM-based techniques. This is due to the fact that there is

electrostrictive contribution to n2 that occurs for pulsevvidths greater than 1 ns or

modulation frequency less than 1 GHz. The electrostrictive process results from the

density change of an optical material due to the stress caused by intense electromagnetic
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waves. This change in density alters the index of refraction of the material. The speed of

response is however very slow, since the growth of the density change is governed by

acoustic propagation. The XPM technique has also been used to study the frequency

dependence of the electrostrictive contribution to n2 by changing the pump modulation

frequency from 10 MHz to values over 1 GHz [109,112].

Apart from the electrostrictive contribution that is known to occur for

measurements with this technique, another drawback is that it requires very long fibers

and two laser sources and therefore appears to be an expensive venture.

3.4 Four-wave Mixing Technique

In the four-wave mixing technique one uses two cw laser sources [110]. When two pump

waves of frequencies v1 and v2 are launched into a single mode fiber, the nonlinear Kerr

effect is responsible through FWM process for the creation of new beating frequencies at

(2v2 — vi) and (2v1 — v2) which give rise to sidebands on the output spectrum, whose

amplitude and frequency depend on n2. In an experiment performed by Prigent and

Hamaide in 1993 [110] using this technique, two cw laser sources operating near 1550

nm with a wave length separation of 0.8 nm were used. The output of the two lasers was

amplified using fiber amplifier and then injected into 12.5 kilometers of the test fiber.

Figure (3.3) shows a sketch of the experimental setup. The powers in the FWM sidebands

were fitted numerically and used to estimate the n2 value. A value of n2 = 2.25 x 10 46

cm2/W was reported in that measurement [110].

This technique requires very long fibers (-12 km) and in addition, the use of two
lasers.



Figure 3.3 Experimental setup and typical spectra for the four-wave mixing n 2

technique (a) represents the spectrum of the fiber input and (b) represents the
spectrum of the fiber output [110].

43



44

3.5 Modulation Instability Method

The technique based on modulation instability is similar to FWM technique except that

only a single pump beam is needed at the fiber input. The method relies on the

measurement of the modulation instability peak gain as a function of pump power.

Modulation instability originates from the interplay between Kerr effect and anomalous

dispersion, and gives rise to two spectral gain bands symmetrically located with respect

to the pump frequency. The frequency shift and the amplitude of the sidebands depend on

n2 and can be used to deduce it.

In a recent experiment, Artiglia and co-workers [111] utilized a DFB (distributed

feedback) laser operating at 1553 nm, which was modulated externally to produce 25 ns

pulses at a repetition rate of 4 MHz. The pulses were amplified using two cascaded fiber

amplifiers and then coupled into the test fiber. The test fiber consisted of a 10.1 km DSF

(dispersion shifted fiber). The experimental setup is shown in Figure 3.4. The spectrum of

output of the fiber was measured by means of an optical spectrum analyzer. The spectral

gain due to modulation instability was obtained by normalizing the spectrum of the light

exiting the fiber to that of the input light, which consists of the amplified laser signal

superimposed onto the ASE (amplified spontaneous emission) of the optical amplifiers.

The amplitude of the modulation instability sidebands was used to determine n2 for the

fiber. They reported a value of n2 = 2.64 x 10 "16 cm2/W [111]. This value must include

electrostrictive contribution because of the wide pump pulses used in the experiment,

which explains why it appears larger than typical values obtained from the SPM

technique.
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In this technique however, the major drawback of long fiber resurfaces, and the

electrostrictive contribution that tends to exaggerate the n2 values. One cannot also apply

this technique for measuring n2 in typical EDFAs, for the same reason of fiber length

requirement.

Figure 3.4 Experimental setup and typical output spectrum for the modulation instability
technique for n2 measurement in fibers [111].
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3.6 Long Period Fiber Grating Pair (LPG) Method for n2 Measurement

Recently, Kim et al [61] reported the use of LPG (long period fiber grating) pairs to

measure resonant nonlinearity in short lengths of Yb 3+/A13+ co-doped nonlinear optical

fibers. This technique is based on the changes on the absorption properties of ytterbium

ions on laser pumping. A long period fiber grating (LPG) pair is used as a sensor. In the

experimental arrangement shown in Figure 3.5, the test fiber with lengh L1 is spliced

between the two LPGs with lengths L2. The light sources consist of a signal beam from a

1550 Om broadband source together with a 980 LD (laser diode) pump laser.
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In this technique, the change in refractive index of the fiber core is related to the

shift in wavelength that arises from the interference between the core mode and the

cladding mode of the fiber through the LPG pair [61, 114-115]. When a laser beam (1550

nm) pumped by a LD at 980 nm is lunched into the core of the high-concentration

ytterbium doped fiber, a change in effective refractive index takes place with the pump

power, and this results in a shift of the interference fringes. Because the intensity of the

pump beam decreases exponentially with increasing absorption through the fiber, the

amounts of the effective refractive index is different along the fiber. The total phase shift

induced by the effective index change of the core along the fiber can be deduced from the

shift of the interference fringe pattern, and from the phase shift n2 can be calculated. The

reported value of n2 in this measurement was approximately 5.6 x 10 -11 cm2/W [61]. This

is over four orders of magnitude higher than the n2 reported with the other techniques

described above. This is because the nonlinearity measured here is mainly due to carrier-

enhanced nonlinearity, which differs from the well-known small Kerr coefficient. This

technique works well in very short lengths of fiber (typically 45 centimeters), which is a

good advantage.

Unfortunately however, the use of this technique is only limited to measuring the

nonlinear index of refraction due to the absorption-enhanced nonlinearities resulting from

Kramers-Kronig effect [60] in highly rare earth doped fibers. This type of nonlinearity

although large, is inherently very slow, of the order of milliseconds in comparison to the

known fast Kerr nonlinearity. The technique is therefore not suitable for measuring n2

due to the Kerr nonlinearity in standard telecommunication fibers.
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3.7 The Need for a New Technique for Measuring n2 in Fibers

A reliable determination of n2 in optical fibers is a difficult task. Several methods have

been discussed above, with their corresponding merits and demerits. It is however fair to

say that there is no experimental technique that is at the same time simple, fast, accurate

and applicable to a variety of situations. With the spectral SPM technique using pulsed

lasers [13, 56, 62, 107], one avoids electrostrictive contribution but it still needs a long

fiber. The long fiber requirement is also a general problem to the other techniques except

in the case of the LPG method, which however fails to meet the general applicability as

seen in Section 3.6.

A major problem with n2 measurements in long fibers is the fact that parameters

such as effective area and dispersion are not constant along the entire length of the fiber.

Generally, the accuracy of n2 measurement depends strongly on how accurately one can

determine the effective area of the fibers and the laser power. A variation in effective area

along the length of the fiber during measurements would lead to additional uncertainties

in the measured n2 values. The effect of dispersion introduces pulse broadening which

reduces the peak power along the fiber in a non-uniform way. Even for measurements at

1550 nm, which is near the zero dispersion wavelength of DSF (dispersion shifted fibers),

dispersive broadening is still a problem, because of the incredibly long length (-20 km)

of fibers required [62] in such circumstance, to obtain the necessary phase shifts with the

relatively low power lasers available. In a recent report [62], Stolen et al have shown that

in order to improve the accuracy of n2 in measurements in long fibers, one would need to

fit the experimental spectrum with a computer program that simulates the variation of the

power, pulse shape, and fiber properties along the length of the fiber. This is necessary to
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properly account for the fiber loss and the pulse spreading. This is certainly a tedious

exercise.

Another problem in measuring n2 in long fibers is the effect of polarization. The

nonlinear refractive index depends on the state of polarization of the field. In isotropic

glass fibers, the nonlinear refractive index is maximum for linear polarization and drops

to 2/3 of maximum for the circular polarization state [59]. In long non-polarization

maintaining fibers, the polarization state wanders over all values from linear to circular

and it is practically impossible to map the evolution. These polarization changes have

been shown to produce significant variations in n2 values with the result that an

approximate factor [59, 116-117] of 8/9 of the value for linear polarization is needed to

correct the values of n2 obtained in such measurement.

An accurate method for measuring n2 in short lengths of fibers is therefore highly

desirable to overcome these problems associated with n2 measurements in long fibers. In

addition, with the increasing use of erbium doped fiber amplifiers (EDFAs) in long-haul

optical communication and in DWDM (Dense-Wave Division Multiplexed) systems, it is

crucial that a technique capable of measuring n 2 in commercial available EDFAs be

developed, in order to accurately predict the performance of the systems. The standard

length of EDFJs is between 15 to 25 meters.

Therefore, in this thesis, a new method [66-68] for measuring n 2 (due to Kerr

nonlinearity) in short lengths of fibers has been used. This technique is based on

photorefractive two-beam coupling also known as induced grating autocorrelation (IGA).

The use of the photorefractive beam coupling technique for measuring n 2 relies on the

fact that the IGA can detect the time dependent phase change acquired by an optical pulse
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after propagating through a nonlinear medium, such as optical fiber. It is the SPM

induced phase change that is used to characterize the nonlinear medium. Generally,

because of the short length of fiber needed (typically 10-20 m) to generate SPM in IGA

experiments, GVD (group velocity dispersion) is negligible and the effect of polarization

scrambling is highly minimized. In the next chapter, the author will describe the basic

principles, modeling and the experimental setup of the IGA technique.



CHAPTER 4

THE PHOTOREFRACTIVE BEAM-COUPLING TECHNIQUE
[INDUCED GRATING AUTOCORRELATION (IGA)]

4.1 Introduction

In Chapter 3, the need for a new technique capable of measuring n2 accurately in short

lengths of fibers was made obvious. It is in recognition of this that the photorefractive

two-beam coupling technique (also called induced grating autocorrelation) was

developed [65,67,68] for measuring n2 in short lengths of fibers (z ~ 10 to 20 meters),

with pulses as short as 50 to 75 picoseconds. In this chapter the author would discuss the

basics of the photorefractive beam coupling technique, the mathematical formulation and

modeling as well as the experimental realization. A general overview on how the self-

phase modulation strength is determined from the fit of the experimental data to the IGA

model based on pure SPM will be given together with the final steps for calculating n2

from the data.

4.2 The Photorefractive Effect

The concept of photorefractive effect is well established [119-130]. It can simply be

defined as the change in refractive index of an optical material that results from the

optically induced redistribution of charges (electrons and holes). The processes involved

are explained below. When two mutually coherent beams intersect inside a

photorefractive crystal, as shown in Figure 4.1, a light intensity pattern is created due to

the beams' interference. Free charge carriers are generated within the bright region by
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photo-excitation from impurity energy levels to an energy band at a rate proportional to

the optical intensity. These carriers then diffuse away by concentration gradient or drift

from the position of high intensity where they are generated to the dark region, leaving

behind fixed charges of the opposite sign. These free carriers are then trapped by ionized

impurities within the dark region, depositing their charge as they recombine. The result is

the creation of an inhomogeneous space-charge distribution that can remain in place for a

period of time after the light is removed. The charge distribution creates an internal

electric field pattern that modulates the local refractive index of the material by virtue of

electro-optic effect. The change in refractive index corresponds to a phase grating. The

entire process is illustrated in Figures (4.2) and (4.3). The refractive index change (An) is

related to the space-charge electric field (E) by the following expression:

where n is the background refractive index and ref is the effective electro-optic

coefficient.
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Figure 4.3 Creation of space charge field and photorefractive gratings in photorefractive
material. The space charge fleld is 90 ° out of phase with the space charge.
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In the two-beam coupling configuration (two wave mixing), the photorefractive

grating resulting from the refractive index modulation causes energy transfer (by

diffraction) from one of the beams (the probe) to the other (the pump) beam. Kukhtarev

and co-workers [127] have worked out the mathematical details for two-wave mixing. In

the absence of an external field, the amount of energy transfer is determined by the gain

coefficient (I):

where 8 is the Bragg angle inside the crystal, X.0 is the vacuum wavelength of light. For

negligible depletion of the signal beam, the transmitted signal intensity, I sm is given by:

where L is the thickness of the photorefractive crystal and I s(o) is the incident signal

intensity. The response time of an elemental grating (for either writing or erasure) is

determined by the rate at which space-charge fleld is created or decays. This is

proportional to the dielectric relaxation time td = s/4716 of the material, where s is the

dielectric constant and a is the conductivity. The grating period (spacing) A is a function

of the wavelength of the laser used and the incident angle 4 of the beams, thus:

The importance of refractive effect in this work lies with the fact that the

photorefractive gratings (An) contain the information about the phase of the writing

pulses. This allows one to use photorefractive crystal as a phase-detection tool for self-
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phase modulated pulses through the induced grating autocorrelation, provided that the

decay time of the gratings in the medium is long compared with the pulse length of the

laser to be measured and with any delays used in the interaction. In this experiment, the

author uses semiconductor CdMnTe:V and GaAs:Cr as the photorefractive medium

because semiconductor photorefractive materials have the advantage of significantly

faster response time, longer recombination time and better sensitivity in both visible and

near infrared wavelength regions compared to conventional oxide based materials (such

as BaTi03) [128-130]. At 1064nm, both CdMnTe:V and GaAs:Cr provide excellent

measurement capability.

4.3 IGA Modeling Based on Pure SPM in the Absence of GAD and SRS

The basic idea behind IGA is the splitting of a pulse and the interference in a

photorefractive medium of the resulting two excitation pulses. The resulting interference

fringes may then induce a modulation of the medium's refractive index (i.e. a grating).

The modulation is then probed by one of the excitation pulses and the diffracted light is

detected. Different geometries of IGA configuration exist [64], but only the two-beam

geometry is relevant to this technique. In this section, IGA will be modeled with the

assumption that the effective nonlinear interaction during the pulse propagation in the

fiber is the self-phase modulation that leads to nonlinear phase shift of the propagating

pulse. Through the choice of fiber length and input power, GAD and SRS are neglected.

In the two-beam coupling geometry (Figure 4.1), one of the excitation pulses also

acts as the probe. A small portion of the probe field gets diffracted into the pump beam

and co-propagates with it. It is this diffracted beam that is measured in IGA experiments.
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The detected IGA signal (Wde .) is proportional to the squared magnitude of the electric

where Eo is the field amplitude, rp  is the pulse width and 4) is the phase. The

propagation of the pulse in the fiber can be accurately described by the nonlinear wave

equation for the electric field given in Equation (2.15). The solution of the nonlinear

wave equation (see Section 2.2 for details) showed that in absence GAD, the pulse

propagates though the medium without distortion. This is the underlining principle of the

simple theory of SPM [84-85]. Shen and Yang have used this theory [84] to show that

when a Gaussian pulse propagates through a nonlinear medium of length z, and

undergoes SPM (without GAD), the intensity of the pulse retains its Gaussian form and

acquires a time-dependent phase-shift A4 (t) which is also Gaussian in nature. The phase

shift can be written as [see Equation (2.21), Section 2.2]:

Substitute Equation (4.6) into (4.7) one obtains:



This equation can be reduced to the following expression:

where

In the above equations, Q is the spectral broadening parameter, Doo is the central

(angular) frequency of the laser, z is the propagation length in the fiber and x (3) is the

third order susceptibility. The quantity coot pQ is termed the self-phase modulation

strength (SPMS) — this defines the magnitude or strength of the self-phase modulation

experienced by the propagating pulse in the nonlinear medium and provides a direct

measurement of the temporal phase shift imparted on the pulse. From Equations (4.6 &

4.9), the electric field of the self-phase modulated Gaussian pulse can be written as:

This can be substituted into Equation (4.5) to obtain the explicit expression for the

detected IGA signal (Wad.):
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where the author has introduced a normalized time u = Shp and normalized delay x = tipto p

and has normalized the correlation function K(x) such that K(0) = 1. A numerical

evaluation of the complicated integral shown in Equation (4.12) generates a theoretical

time-domain IGA trace. Simulated traces for different values of worpQ are shown in

Figures (4.4), ( 4.5) and (4.6).
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Figure 4.5 Simulated IGA traces for a Gaussian pulse that has been moderately
self-phase modulated at two different values of SPMS.
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As the value of the SPMS is increased to 4.72, two-well established sidelobes are formed,

symmetrically located on either sides of the central peak. With increasing value of coorpQ

the number of oscillations (sidelobes) increases accompanied with increased narrowing of

the central peak.

These oscillations can be explained as follow: The self-phase modulation induces

a time dependent phase shift on the pulse, whose magnitude is determined by self-phase

modulation strength (a Q) as described above. Delaying one signal by an appropriate

amount can force the relative phase delay either to add-up or to cancel, which gives rise

to the peaks and valleys (zeros) in the trace. The number of specific delays for which

exact cancellation (zero) is observed depends on the magnitude of the SPMS. The width

of the central peak of the IGA trace is a measure of the bandwidth of the IGA writing

pulse — as the bandwidth increases (i.e., by SPM) the narrower the central peak of the

IGA trace. Thus the narrowing and oscillations are clear signatures of self-phase

modulation on IGA traces.

It should be noted that these oscillations do not exist in the presence of significant

GVD. This is because GVD imposes non-uniform chirp (frequency shift) on the self-

phase modulated pulse. Thus, nonzero delays result in a frequency difference between

pulses. This frequency difference leads to a moving (interference) fringe pattern, which

washes out the gratings. As a result, no oscillation can form on the wings of the resulting

IGA trace. Hence GVD would cause narrowing of IGA traces without the oscillations.

Care must therefore be taken when performing IGA experiments to operate within short

lengths of fibers where GADS is negligible.
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4.4 Experimental Details and Measurement
Procedure for the IGA Technique

4.4.1 Laser Source and Pulse Characterization

4.4.1.1 The Laser Source. The laser source consists of a Quantronix made cw

(continuous wave)-modelocked Nd:YAG laser model 116. The laser operates at a

wavelength of 1064 nm with a modelocked frequency of 100.486 MHz, which produces

pulses every 10-nsec. The Nd:YAG model 116 is a solid state laser. The active lasing

material consists of Neodymium-doped yttrium aluminum garnet (YAG) crystal, with

chemical formula Y3A15O12. Enclosed in the laser pot with the crystal rod, and parallel to

it is a high-pressure Krypton lamp that runs on 30 A power supply. Both the crystal rod

and the lamp are surrounded by a cylindrical gold reflector which ensures that most of the

energy radiated by the lamp is focused on the rod to provide the optical pumping. 0ptical

pumping refers to the excitation of electrons to a higher energy level from which they

rapidly relax into the upper level of the lasing transition. In Nd:YAG laser operating at

1064 nm, the upper level has a relatively long life-time (250 ns). Most of the energy in

this laser is converted into heat, which is removed through water-cooling.

The mode-locking process is achieved with model 352 Quantronix mode-locker.

This is an acousto-optic mode-locker acting as a fast optical gate. The mode-locking

technique ensures that laser resonator modes will have coherent phase relationship. The

proper modulation frequency for the laser to generate pulses that grow to a stable value is

given by [131].
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where f, is the modulation frequency, L is the total length of the resonator, c is the speed

of light and T is the transit time. The width of the output pulse depends on the number of

resonator modes that are phase coherent (mode-locked) or equivalently, the bandwidth of

the oscillation. For a Gaussian pulse, the pulsewidth-bandwidth product is given by:

4.4.1.2 Pulse Characterization. IGA experiments require a well-characterized input

pulse. This implies that the pulsewidth and the peak power must be precisely known. If

the pulsewidth of laser source is known together with the repetition rate, then the peak

power can always be determine for any given average power. Thus the pulsewidth of the

laser is usually measured before and after a set of IGA measurement. A set of IGA

measurements (in this case) consists of about four to five different IGA traces taken

successive at different powers. For the pulsewidth measurement, the author uses the well-

known [132] noncollinear, background-free, second harmonic generation autocorrelation

(SHGA). The experimental set-up is shown in Figure (4.7).
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Figure 4.7 Experimental setup for the noncollinear background-free SHG
autocorrelation.

In the arrangement shown above, the output of the Nd:YAG laser (at 1064-nm,

100 MHz) is split into two with one beam chopped at a frequency of 2 KHz, to provide a

detection reference to a lock-in amplifier. One arm is delayed with respect to the other.

The delay time (t) is varied by mechanically changing the path length transversed by one

of the beams using a computer controlled retroreflector/stepper-motor combination. The

two beams are spatially overlapped in an instantaneously responding nonlinear-optical

medium, such as a second-harmonic-generation (SHG) crystal (in this case KTP crystal).

The SHG crystal produces the detected "signal light" at twice the frequency (half the

wavelength) of the input light. With 1064 nm, the autocorrelation signal has wavelength
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of 532 nm. In this case, the detection system consists of Thorlabs amplified (Model

PDA5O) photodetector connected to a lock-in amplifier with the reference frequency

provided by the chopper. The autocorrelation signal is automatically collected and plotted

by the computer using a Labview program with IEEE-488 bus.

The detected SHG signal is proportional to the product of the intensities of the

two pulses:

In practice, because detectors are typically too slow to resolve the beam in time,

what is actually measured is the integrated (correlation) function G 2 (S) defined by:

which is sometimes written as:

where E(t) and E(t-'r) are the electric fields of the two pulses, 1(t) and /(t-T) are their

intensities and S is the delay. Equation (4.16) is the so-called second harmonic intensity

autocorrelation function.

The pulsewidth (Sp  ) of the laser is determined from the FWHM (full width at

half-maximum) of the SHAG intensity autocorrelation trace (tAuro) using the relation:
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The measured pulsewidth ranges from 50 psec. to 75 psec. The experimental

autocorrelation trace is fitted to a Gaussian of the form shown in Equation (4.6):

A typical SHG autocorrelation trace used to determine the pulsewidth is shown in Figure

(4.8). The smooth red curve is a Gaussian curve that fits the data shown by blue square

dots. The fit is excellent, even in the far wings of the pulse.

Figure 4.8 Experimental SHG autocorrelation trace fitted to a Gaussian.

4.4.1.3 Analysis of Goodness of Fit for the Autocorrelation Trace. 	 In order to

establish further evidence that the pulse used in this work is truly Gaussian, the author

has carried out a statistical analysis on the goodness of fit. One of the best-known

procedures to evaluate how good experimental data fits a theoretical model is to calculate

the residual of the fit defined by:
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and evaluate its standard deviation. The smaller the standard deviation of the residual,

the closer the data to the model. The residual of the fit in Figure 4.8 has been calculated

and the scatter plot shows its distribution about the mean (Figure 4.9). The residual

distribution shows that the experimental trace fits excellently to the theoretical Gaussian,

including at the wings. The standard deviation (a) of the residual was calculated using

the well-known relation:

where N is the weighting factor, r ib is the jth residual and r is the mean. The standard

deviation has been calculated to be a 4.O X 1O -6 (for a perfect fit, a -4 0). .This

justifies the assumption made in the theoretical derivation of the IGA model that the

pulses have a Gaussian nature.
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4.4.2 Experimental Setup for IGA Measurement

The experimental set-up for the photorefractive beam coupling technique is shown in

Figure 4.10. A train of pulses (with pulsewidth in the range of 50-70 picoseconds) are

generated by a cw mode-locked Nd:YAG laser operating at 1064 nm wavelength and 1OO

MHz repetition rate (described in section 4.4.1.1). These pulses are launched into the test

fiber by free-space coupling using a 1OX microscope objective focusing lens, mounted on

the Newport's model 562 XYZ stage. The test fiber is typically 10-20 meters long. As the

pulses propagated through the fiber (a nonlinear medium) they undergo self-phase

modulation. The output pulses from the fiber are split in a modified Michelson

interferometer, with one arm of a fixed optical delay and the other delayed by a stepper

motor-retroreflector combination. The two beams are focused into a photorefractive

Cadmium Manganese Telluride crystal doped with Vanadium (CdMnTe:V) or GaAs:Cr

by 15-cm focal length convex lenses at an intersection angle of 20 = 64 °. The beam

geometry follows the standard pump-probe configuration in two wave mixing. One beam

designated as the probe beam is mechanically chopped at a frequency of about 2 KHz and

the transfer of modulation from the probe to the pump is detected in the path of the pump

beam with Thorlabs amplified InGaAs high-speed photodetector (model PDA50)

connected to a lock-in amplifier (EGG 1510).

The IGA response is determined by measurement of the lock-in amplifier output

as a function of delay between the pump and probe beams. The data is collected

automatically using a 1EEE488 bus and LJBView software package. Typical

experimentally measured IGA traces are shown in Figure (4.11).



Figure 4.10 Experimental set-up and beam geometry for the photorefractive beam
coupling technique.

69



70

As can be seen from the recorded traces, as the input power in the fiber is

increased there is increased narrowing of the central peak and increased number of

sidelobes. This is expected since increasing the input power implies more SPM and hence

increasing cootpQ. The dependence of the narrowing and oscillations on the magnitude of

worpQ has been explained in Section 4.3. The value of worpQ is determined for each trace

by fitting the experimental data to the IGA model. This will be discussed in the next

section.

Figure 4.11 Experimental IGA traces at different power levels
in 20 m erbium doped fiber.
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4.4.3 Analysis of IGA Data and n2 Determination

In order to extract the nonlinear refractive index from IGA measurements, the

experimental data must be fitted to the theoretical model developed in section 4.3. What

is actually measured in IGA is modeled after Equation (4.5) whose full expression is

given in Equation (4.12). By numerically evaluating this integral and fitting the resultant

trace to the experimental data, one obtains the exact value of the self-phase modulation

strength (cootpQ) for the given input power. As an illustration, Figure (4.12) shows the

two experimental traces fitted to the model with the resulting co otpQ values.
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The process of calculating the nonlinear index (n2) from the data involves the use

of a direct relationship between the average power, n 2 and cootpQ. This relationship will

be derive in the following analysis.

The self phase modulation strength can be expressed as [56,57]:

where Eon is the peak electric field amplitude, n2 is the nonlinear refractive index, L is the

length of the fiber, coo is the angular frequency [coo = (27cc)/X0], and c is the speed of light.

The peak electric field amplitude E0 can be deduced from power measurements and the

effective cross-sectional area (Jeffs) for the mode propagation in the fiber. The

relationship is given (in cgs units) by [10]:

If /peak denotes the peak intensity [peak power per unit area] averaged over the optical

period, then for a Gaussian pulse one can write:

where Pan. is the average power, tm is the laser repetition rate, Sp is the laser pulsewidth

and the rest have their usual meanings as earlier defined. One can replace (PpealdJeff) in

Equation (4.21) by Speak as given in Equation (4.22) and substitute the entire expression

into Equation (4.20) to obtain the following result

This equation can be written in a more compact form thus:
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The parameters appearing in Equation (4.25) are usually known, so that Equation

(4.24) can be used to calculate n2/Aeff or n2 (if A Jeff is known). In this technique, it is a good

practice (for improving the accuracy of measurement) to measure a series of IGA traces

at different powers and plot the resulting w otpQ versus the average powers as determined

from power meter readings after correcting for losses in the focusing optics. The slope of

the linear plot can then be used in Equation (4.24) to calculate n2/J eff. This reduces the

uncertainties due to the power and pulsewidth measurements.

It should be noted that the n2 calculated from the above equation is in units of esu

(electrostatic units). It is common to quote n2 in units of cm 2IW, where n2[cm2IW] =

(n2[esu])/348. 7.



CHAPTER 5

MEASUREMENT OF THE NONLINEAR REFRACTIVE INDEX OF Er-Al-Ge
DOPED SINGLE MODE FIBERS AS A FUNCTION OF THE DOPING

PROFILES, USING THE IGA TECHNIQUE

5.1 Introduction

5.1.1 Why Measuring the Nonlinear Refractive Index in Er-Al-Ge Doped Fibers?

The recent increase in the use of Erbium-Doped Fibers for optical amplification in long

haul optical transmission systems has given rise to an overwhelming interest in the study

of the optical properties of such fibers [133-137]. Erbium doped fibers are used in

modules known as erbium-doped fiber amplifiers (EDFAs) which have rapidly replaced

electronic repeaters in transoceanic cable networks [133-134]. The use of EDFAs permits

direct amplification of optical signals without the optical-to-electrical-to-optical

conversions associated with electronic repeaters.

Optical amplifiers amplify incident light through stimulated emission, the same

mechanism used by lasers. Its main ingredient is the optical gain realized when the

amplifier is pumped (optically) to achieve population inversion. The two commonly

pumping wavelengths for EDFAs are 980 nm and 1480 Om. These erbium ions absorb

light at 980 or 1480 nm and store this energy to amplify signals at wavelengths near 155O

nm. Figure (5.1) shows typical absorption and gain profiles for an erbium-doped silica

fibers [138]. The key success to erbium is the fact that the amplification band coincides

with the minimum loss wavelength of optical fibers [139]. Figure (5.2) shows the

variation of fiber loss with wavelength.
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There are two main mechanisms for losses in optical fibers — radiative losses and

absorption losses. The radiative losses are due primarily to Rayleigh scattering, which is

caused by small scale (small compared to the wavelength of the light wave)

inhomogeneties in the fiber. As a result, a guided mode can sometimes get coupled to a

radiation mode. Rayleigh scattering is proportional to X"4 and thus falls rapidly with

increase in wavelength. At 1.064 pm, the value is approximately ldB/.km and at 1.55 pm

it is about 0.15 dB/km, which represents the ultimate loss limit of optical fibers. On the

other hand, the absorption loss arises from the interaction of the propagating wave with

the major components of glass that constitute the fiber, such as the infrared absorption

band of Si02 and also due to the presence of the OH ions in the fiber.

Another success of erbium as an amplifying dopant is that the energy level

structure of Er3  ions in silica host is such that all transitions are nonradiative except the

last transition between the 4113/2 and 4115/2, which is almost 100% radiative. The lifetime

of the 41 13/2 is also very long (— 10 ms) [134]. This long lifetime permits the inversion of

the population between the 4113/2 and 4115/2 with a relatively weak and practical pump

source. A simplified energy level diagram of Er3  is shown in Figure 5.3. A three level

model can be used for the 980 nm pumps, while a two-level model usually suffices for

the 1480 nm pumping [133,134].



Figure 5.3 Energy level diagram of erbium ions in a silica matrix. Population
inversion between 41 13/2 and 4115/2 levels leads to amplification in the 1.55 lam
band [139].

In spite of the numerous research work done on the optical properties of erbium

doped fibers and EDFAs [133-144], the nonlinear index of refraction remains the least

studied parameter in this class of fibers. Yet this single parameter (n2) controls the

majority of the nonlinear optical effects that have relevant impacts on optically amplified

signals. The nonlinear index has been studied extensively in other types of (non-erbium

doped) silica fibers using different measurement techniques [13, 15, 54-59, 107-113] but

only few reports are available [136-137, 145] on n2 measurements in erbium-doped

fibers. The situation is further worsened by the fact that some of the few available

reports dwelled on the measurement of absorption-enhanced nonlinearity [137, 145]

rather than the Kerr nonlinearity. The absorption enhanced nonlinearity in erbium-doped

fibers are based on the principle that the refractive index of a material depends on the
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electronic population distribution between energy levels and this dependence is enhanced

near an electronic absorption transition [146-148]. By applying an optical pump, the

population distribution can be modified, which results in a change in refractive index.

This is similar to the mechanism responsible for optical nonlinearity present in

semiconductors [149]. This type of nonlinearity has been investigated in erbium-doped

fibers primarily for switching applications [137, 146-148]. On the other hand, the only

known report that considered Kerr nonlinearity in erbium-doped fibers merely estimated

[136] n2 value based on known result for pure silica fibers.

In order to accurately predict and improve the performance of optical

transmission systems, it is important for system designers to know the numerical values

of n2 (due to Kerr effect) for all types of fibers used especially the optical amplifiers.

Therefore, an accurate measurement of n2 in erbium-doped fibers has become ever more

crucial. As a contribution towards this (part of which is contained in this thesis), the

author in collaboration with other workers has recently reported [66] an accurate

measurement of n2 (due to Kerr nonlinearity) in erbium-doped fibers and found that the

value of n2 is higher in erbium-doped fiber than in pure silica fiber. A systematic study of

how n2 would vary with erbium concentration still remains open. This open question

would also be answered in this chapter. In addition, present-day telecommunication fibers

(including erbium-doped fibers and EDFAs) are doped with varying amounts of

aluminum, germanium or phosphorus to modify the structural and transmission properties

of the fibers. These dopants (for example GeOC and P2O5) are particularly used to

increase the linear refractive index of the fiber core above that of the cladding to provide
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a better guiding structure. Mostly, Al203 is used to enhance the solubility of rare-earth

dopants and to suppress excited state absorption in EDFAs [134,1501

In a recent report, Boskovic et 'al and Kato et' al have independently measured n2

in germania and fluoride co-doped silica fibers and showed that while fluoride reduced

n2, germania did increase n2 of the fibers. In this chapter, the author has used the IGA

technique to measure n2 of several Er-Al-Ge doped single mode fibers and investigated

the dependence of n2JAeff on the doping profiles of the three dopants. This appears to be

the first known systematic study of n2 as a function of the dopant contents in erbium-

doped fibers. The result would provide system designers with a better understanding of

the nonlinear properties of erbium-doped fibers, needed for a more accurate design and

evaluation of EDFAs.

5.1.2 TrueWave Rs and Dispersion Compensating Fiber (DCF)

The TrueWave Rs fiber is one of the special new-generation transmission fibers

developed by Lucent Technologies in 1998 [1561 An important characteristic of this

fiber is that the dispersion slope (the rate of change of dispersion with wavelength) is

very small, hence the name "reduced slope". Because of this reduced slope, it is used for

extending high-powered long distance networks for operation in both the third and forth

communication windows. This fiber is also called Non-zero dispersion fiber (NZDF) and

it has zero dispersion around 1450 nm.
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Figure 5.4 shows the dispersion slope of the TrueWave Rs fiber in comparison to

other standard telecommunication fibers. Because of the overwhelming choice of this

fiber over other standard transmission fibers, it is very important that its nonlinearity be

characterized. The Raman gain efficiency in this fiber has recently been measured by

Bromage [157]. Research on other nonlinear optical properties of this fiber (especially n2

measurement) is relatively unexplored. Thus, this measurement will serve to provide the

much-needed data on the nonlinear index coefficient of this fiber.

Also of equal importance is the measurement of n2 in DCF (dispersion

compensating fiber). The DCFs are fibers specially designed to compensate for

dispersion in the transmission fiber lines. For example, a DCF can be designed to have

large "normal dispersion" D ~ -100 ps/km-nm in the region in which standard

transmission fibers have anomalous dispersion (D ~ 16 ps/km-nm). A small length of

DCF can then be inserted along the line to compensate for dispersion incurred by the
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optical pulse in propagating through about 8-10 km of transmission distance. Generally

DCF has relatively small core diameter, and this increases the intensity of the information

bearing lightwave in the DCF core, which increases nonlinear interactions. Therefore, the

understanding the nonlinear properties of DCF has always been a crucial issue. This

investigation is expected to provide useful data that will help in this understanding.

5.2 Experimental Details

5.2.1 Fiber Properties — Effective Area and Mode-field Diameter Measurements

Nine different fiber types were investigated. These include a polarization maintaining

(PM) silica core fiber with no dopants, True-Wave fiber, DCF, and six other Erbium

doped fibers with varying amounts of Ge02 and Al203 content. This measurement will

investigate how the nonlinear coefficient changes as a function of the dopants' contents

in these fibers. Fiber properties are listed in (Table 5.1).

The effective area and mode field diameter (MFD) of the fibers were determined

through the transmitted near-filed scanning technique. The measurement was done using

EXFO high-resolution optical fiber analyzer, model NR-9200 at 1314 nm and 1552 nm.

The fiber effective area is defined from the near-field intensity distribution by [151-152]:

where Ea(r) is the amplitude and /(r) is the near-field intensity distribution of the

fundamental mode, r being the radial distance from the center of the mode profile.

The modified diameter is defined in the near field by [151, 153]
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In conventional step-index fibers, the mode-field diameter is well approximated

by a Gaussian function of radius w at 1/e amplitude points. In this case, the effective area

may be given by

where 2w(A,) is the so-called "Peterman-II mode-field diameter" of the fiber at

wavelength X. For fibers that do not share the step-index geometry, such as dispersion

shifted fibers and dispersion flattened fibers, the mode-field cannot be approximated by a

Gaussian function, and Equation (5.3) no longer holds. It has been proposed [154] that

the effective area of various types of standard fibers can be calculated using Equation

(5.3) but including a correction factor Nam , that depends on wavelength and type of fiber.

This has led to the so called "Namihira relation", given by:

The refractive index proflle was measured through the refractive near field (RNF)

[155] scanning at 673 nm. The measured refractive index profiles for six of the fibers are

shown in Figures (5.5) through (5.7). The core-cladding refractive index difference (An)

is obtained from the plotted index profile and can also be estimated from the germania

concentration in the fiber (see appendix B).

The delta parameter (A), defined as the relative refractive index difference

between the core index and the cladding index is given as:
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Figure 5.6 Measured refractive index profiles for two Er-Al-Ge doped fibers
with different dopant contents.
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Figure 5.7 Measured refractive index profiles for two fiber with different
doping profiles.
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5.2.2 Measurement of n2 using IGA

The IGA measurements were taken on the fibers listed in Table 5.1. The experimental

set up was arranged in the usual form described in Chapter 4 (Figure 4.10). The

experiments were carried out on the fibers one at a time. The laser pulses (with

pulsewidths 49-56 picoseconds) were coupled into the test fiber using 10X microscope

objective. The average power coupled into the fiber ranged from 20 mW to 800 mW,

depending on the fiber effective area and the level of SPM desired. . In each case, these

pulses undergo self-phase modulation as they propagate through the fiber. The IGA

traces of the out pulses from the fiber were recorded at different power inputs by

following the procedure described in Chapter 4, Section 4.4.2. In measuring the power,

attention was paid to the losses encountered within the focusing optics and these were

corrected for. Losses within the fibers were negligible because with L ~ 20 m, Leff ~ 19.9

m. Therefore, Leff L for L 20 m, where L is the experimental fiber length and Leff is

the effective length.

5.3 Results and Analysis

The IGA traces obtained from the above measurements were fitted to the pure SPM

model (Equation 4.12) as described in Chapter 4. In order to obtain the nonlinear

coefficient (n2hkeff) for each fiber, several traces are fitted, and the resulting SPM

strength is plotted as a function of the average power. The slope of the linear fit to the

graph is proportional to n2hkeff. Typical fitted traces and the linear graphs are shown in

Figures (5.8) through (5.16). The resulting n2hkeff as a function of dopant contents are

given in Table 5.2.
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5.4 Discussion of Result and Comparison with Published Results

The measured n2hkeff and n2 values in this work are given in Table 5.2. The nonlinear

coefficient (n2hkeff) in the Er-Al-Ge is found to increase with germanium content as well

as with the Jluminum and erbium.

An earlier calculation of n2 from the measured nonlinear coefficient (n2hkeff)

using the Jeff at 1.55 for the Er-Al-Ge doped fibers and Jeffs at 1064 nm for the pure silica

indicated that n2 in erbium (only) doped fiber was higher than n2 in the pure silica. This

analysis was done with the feeling that the mode field diameter (used to calculate the

effective area) does not vary significantly with wavelength. The analysis also showed that

n2 in the Er-Al-Ge doped fibers, increased more with Ge02 content and only slightly with

Al and Er concentration in the fiber (6th column in Table 5.2).

It was later found (see Appendix D) that indeed, both MFD and J eff vary

significantly with wavelength. This was noted after the author has made MFD and A Aeff

measurements at 1552 nm and 1314 nm and compared the results. For example, the J effs

for the pure silica at 1552 nm was found to be 78.77 utm2 and at 1314 nm the value

reduced to 60.76 pm2, while the value at 1064 nm (obtained from Roger Stolen [164])

was 5O p.m. This huge variation (and sometimes more) was also observed in all the

fibers measured. It therefore became necessary to evaluate n2 with the J eff at the same

wavelength of measurement (1064 nm). In the absence of the equipment for measuring

MFD and Jeffs at 1064 nm, and lack of readily available scaling equation, the author has

used the measured values at 1314 nm and 1552 nm to extrapolate the value at 1064 nm

(see Appendix D). In doing this, the pure silica fiber whose value is known at these three

wavelengths was used as a yardstick for determining the slope of the extrapolation.
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The last column of Table 5.2 shows the result of n2 obtained using J effs at 1064

nm. Contrary to expectations, it is seen that n2 of the silica is higher that of the erbium

(only) doped fibers and in the Er-Al-Ge doped fibers with little Ge02. Nevertheless, in

the Er-Al-Ge doped fibers where the germania concentration is high (rows 5 and 7), the

n2 is significantly higher than in pure silica, as expected. The n2 in the DCF (dispersion

shifted fiber) in row 8 of Table (5.2) is also higher than in pure silica. These are

consistent with earlier reports [52,57]. However, since one expects n2 to be higher in the

erbium (only) doped fiber and in the E-A1-Ge doped fibers with low Ge02 content than in

pure silica, the observed contrary raises some questions on the actual role of erbium in

the n2 of the fiber. If erbium reduces the n2 of the fiber, this could upset the slight

increase due to the Ge02 and Jl in the Er-Al-Ge with low Ge02 content, thus leading to a

smaller net value than expected. It is also possible that this reduction in the value of n 2 in

the erbium (only) doped fiber and in the E-A1-Ge may have arisen due to polarization

effect. The silica core fiber is a polarization maintaining fiber, while all the doped fibers

are non-polarization maintaining fibers. The value of n2 is usually higher if polarization

is maintained and lower if polarization is scrambled. Although, it is usually assumed in

IGA experiments that polarization scrambling is not effective, because the fiber length is

short, this may not generally hold in the actual experiments. With this observation, it may

be necessary to investigate the role of polarization in IGA experiment for n2

measurements.

The major source of uncertainties in this work is the effective area measurement.

The effective area used at 1064 nm were estimated (as explained in Appendix C) based
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on the measurements done at other wavelengths. An additional source of uncertainty is

the laser amplitude fluctuation of the Nd:YAG (typically 2-4%), which is translated into
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fluctuations in the average power. This is minimized by averaging the results of several

measurements, through a plot of a linear graph of SPM strength Vs average power, and

using the slope to calculate n2. The error in the slope is typically less than 2%.

Table 5.3 shows some reported values of n2 measurements in different fiber, using

obtained with the IGA

technique is in good agreement within 5% with earlier measurement

cm2IW) using SPM in the same fiber [164, 66]. The IGA measured value for the DCF is

also in good agreement with the published results for the DCFs shown in Table (5.3).
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CHAPTER 6

MEASUREMENT OF THE RAMAN GAIN COEFFICIENT IN OPTICAL
FIBERS USING INDUCED GRATING AUTOCORRELATION:

THEORY AND EXPERIMENT

6.1 Introduction

One of the most important nonlinear effects in optical fibers that greatly influence optical

communications is stimulated Raman scattering. While this phenomenon is known to

cause noise and cross-talk in optically amplified transmission systems [12], it is equally

the "key" process that drive the newly emerging Raman fiber amplifiers and Raman fiber

lasers [41-44]. The efficiency of performance of these systems depends on the stimulated

Raman gain through the SRS process. Raman gain is proportional to the Raman gain

coefficient, which is specific to the fiber material among other factors; such as pump

wavelength, effective core area and fiber length. Different experimental techniques have

been used to measure the Raman gain coefficient in optical fiber [158-160]. The use of

IGA technique to measure the Raman gain coefficient is a new development, which is

part of the investigations embodied in this thesis. The incentive to this stemmed from a

recent observation made by the author [70] while performing experiments on n2

measurements in Er-Al-Ge doped single mode fiber with high germania content. It was

observed that the IGA trace was distorted in a fiber with high germania doping, even at

moderate power inputs, and the resulting trace deviated significantly from the theoretical

fit modeled in the context of pure SPM (see Chapter 4). This observation resulted in the

subsequent modification of the original IGA model and its subsequent application in the

measurement of Raman gain coefficient of fibers. These investigations are reported in

this chapter.
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6.2 Observation of Distortion of IGA Trace by Stimulated Raman Scattering
and Initial Breakdown of the Standard IGA Model Based on Pure SPM

6.2.1 The Observed Deviation and Possible Cause(s)

While the author has obtained an excellent agreement between theory and experiment for

IGA measurements on Er-Al-Ge fibers with low germania contents (0 — 13 %M), the

result obtained from high germania doped ( >28 %M) specie showed clear deviations

from the standard IGA model. The standard IGA model (see chapter 4) assumes that

there is no GAD within the typically-used 20 m long fibers, and that there is no

contribution to the nonlinearity from SRS and XPM. The observed deviation is

characterized by the lifting of the base region of the central peak of the IGA trace and

outward shifting of the sidelobes. There is also a gradual depletion of the sidelobes (see

Figure 6.1).
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To investigate this observation further and in attempts to nail down the cause of

this deviation, the author has systematically performed IGA measurements in two well-

characterized fibers: (a) silica core fiber [164 (of lengths 20 m & 100 m), and (b) a DCF

(dispersion compensating fiber) [165 , whose Raman proprieties have been previously

studied [157, 163]. IGA measurement performed on the 20 m long silica core fiber from

low (< 20 W peak power) to high (>70 W peak power) showed no deviation. With the

100 m long fiber, GAD is negligible because this is still far below the dispersion length

of silica fiber. However, fiber loss may not be neglected. Thus, with a loss of 1.2 dB/km

(at 1.064 pm), the effective length (see Equation 2.29) was calculated to be 98.63 m.

Normal IGA trace that fit the standard pure SPM model were obtained with this fiber at

moderate powers but at high power (typically 40 W), deviations were observed similar to

the case of high germania fibers. The IGA traces measured in the DCF also showed good

fit with the standard IGJ model at low powers but deviated as the power was increased.

Although, DCF fibers are known to have high negative dispersion [105], the occurrence

of normal IGA traces (with sidelobes) at low powers has ruled out the effect of

dispersion, so that one is safely working in the limit of zero GAD. In the presence of

dispersion, IGA does not exhibit sidelobes [63-64].

Since this deviation appears to be intensity dependent, it must be associated with

additional nonlinear process. The other commonly encountered nonlinear processes (apart

from SPM) for a single propagating pulse in optical fiber, are stimulated Brillouin

scattering (SBS), stimulated Raman scattering (SRS), intra-pulse Raman scattering, self-

steepening and two-photon absorption. Some of these processes and the conditions under

which they are observed have been explained in details in Chapter 2 of this thesis.
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The SBS is known to occur in optical fiber only for cw (continuous wave) beams

and for pulses with pulsewidth in the range of nanoseconds and higher [20]. As a result

SBS is not a possible suspect, since these experiments were done with short pulses (— 50

to 70 picoseconds). Stimulated Raman scattering is a prime suspect because it is usually

effective in both long and short pulses if the appropriated threshold is reached (see

Chapter 2, Section 2.5). In addition germania doping is known to increase the Raman

gain coefficient in silica fibers [163].

On the other hand, intra-pulse Raman scattering is a process where the Raman

gain amplifies the lower frequency component of a pulse by transferring energy to it from

the high frequency component of the same pulse. As a result, the pulse spectrum shifts

toward the low frequency side as the pulse propagates. This is sometimes referred to as

self-frequency shift [166]. However, this phenomenon occurs for ultra-short pulses, with

pulsewidth less than 1 picosecond [166]. Thus, because of the fact that the pulses used

here are far from this range, the process has to be ruled out. Self-steepening is also

another phenomena that occur with ultra-short pulses (< 1 psec) and arises from the

intensity dependence of group velocity. In this case, the center of the pulse (which is

more intense) moves at a lower speed than the wings. Therefore as the pulse propagate

through the fiber, it becomes asymmetric with its peak shifting toward the trailing edge.

As a result, the trailing edge becomes steeper and steeper with increasing propagation

distance and eventually this leads to the formation of an optical shock [20]. Since the

pulsewidth used here is much longer than that for which self-steepening occurs, it is not

expected to contribute to the above-observed deviation.



105

Two-photon absorption has been previously explained in Chapter 2. This effect is

automatically ruled out when one considers the long wavelength of the laser used in this

work. The band-gap of silica is about 8.3 eV, while the photon energy at 1064 nm is only

about 2 eV.

With the exclusion of all the nonlinear effects listed above except SRS, one needs

to examine the spectrum, since the Raman has a characteristic frequency shift. Bromage

et al [163] has shown that the Raman spectrum of Ge02 and Si02 sufficiently overlap in

a germania doped silica fiber and exhibits a peak value at about 430 cm"1. On the same

scale, the peak for pure silica fiber (containing no Ge02), is shown ( Figure 6.2A) to

occur at about 445 cm1  [163]. This is not surprising, since in the bulk, GeOC and Si02 are

known to exhibit Raman peak values at 420 cm -1 and 440 cm"1 respectively [98]. In silica

fibers, the Raman gain increases with increase in germania concentration [97,163]. This

is because it reduces the effective core area of the fiber thereby increasing the pump

intensity in the core. Secondly it increases the Raman gain coefficient. The Raman gain

coefficient of Ge02 is about one order of magnitude higher than that of Si02 [168]. In a

recent experiment, Torres et al [167] has obtain very high Raman conversion with only 6

meters length of high Ge02 doped (-20 %M) silica fiber, using 120 ps pulses from mode-

locked Nd:YAG laser operating at 1064 nm(82.5 MHz repetition rate). The Raman peak

of Si02 were indistinguishable, and appeared at 1117 nm, corresponding to a shift of

about 53 nm from the 1064 nm pump, as expected (see Figure 6.2B).
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6.2.2 Measurement of the Pulse Spectrum and Further Evidence of the Role of SRS

The output spectra from different fiber samples were measured using an optical spectrum

analyzer (Advantest model Q83 81A) with 0.1 nm resolution and also with a McPherson

(0.06 nm resolution) spectrometer (model 207). The auxiliary detection system for the

spectrometer includes a Judson Technologies' J16 germanium photodiode, coupled to a

lock-in amplifier. Typical measured spectra for pure silica core fiber and high germania

doped fibers are shown in Figures 6.3 and 6.4. From the spectra, it was noted that the

fiber with high germania content revealed a significant conversion of the pump (1064

nm) into stokes pulse (1117 nm) while the pure silica fiber of the same length (20 m)

showed no Raman peak, even at much higher peak power. In the 100 m silica fiber

Raman conversion was appreciable at 48 W peak power, but even below this power, the

high germania fiber has already produced well-developed second Stokes at 1174 nm.

These are indicators that germania enhances stimulated Raman scattering in silica fibers

and that the observed distortion on the IGA trace results from the influence of SRS on the

pulse. The reduction in the core size of the Ge02 doped fiber helps it to develop high

power density in the core, which favors the SRS process. In addition Ge02 increasing the

Raman gain coefficient of the fiber [98].
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Figure 6.4 Spectrum of the out put pulse from pure silica fiber, containing
no germania. 20 m and 100 m were examined.
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6.2.3 Raman Gain Coefficient of Highly Ge02 Doped Fibers

The Raman gain coefficient of a high germania doped silica fiber can be predicted from a

knowledge of the germania concentration in the fiber. The Raman gain in a germania

doped fiber is shown to depend on the relative index difference between the core and the

fiber cladding [97]. The core-cladding relative refractive index is proportional to the

Ge02 contents. The Raman gain coefficient can be expressed as [98,167]

where is the pump wavelength, measured in p.m, and A is the relative refractive index

between the core and the cladding. Thus the Raman gain also scales inversely with

wavelength. The above equation assumes that polarization is maintained in the fiber in

the fiber. If the polarization is completely scrambled (as seen in long non-polarization

preserving fibers), the Raman gain decreases by a factor of 2.

One can now estimate the Raman gain coefficient of the two high germania doped

fibers listed in Table 6.1, which gave the enhanced SRS signal in the spectrum. For fiber

#6B, with An = 0.041, A,' ,0.0275. Taking X, = 1.064 gm, the Raman gain coefficient is

calculated from Equation (6.1) to be gR = 2.83 x 10"llcm/W. For the other fiber #6C, An =

0.044 and A N 0.0293. The calculated Raman gain coefficient is gR = 2.98 x 10 -11 cmIW.

The calculated values of gR in these fibers suggest that the Raman gain coefficient in the

two high germania doped fibers are about three times higher than the valued for pure

silica - the value of gR reported by Lin et al [96] for silica fiber is 0.92 x 10 "11 cm/W.

Such high values of gR in the doped fibers are expected, since Ge02 has high Raman

gain coefficient, about an order of magnitude higher that Si02 [168]. In the next section,
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the IGA technique will be modified and used to measure the gain coefficient in these

fibers to confirm the above-predicted results.

6.3 Modification of the IGA Model and Measurement of
Raman Gain Coefficient in Optical Fiber Using IGA

6.3.1 Modification of IGA Model in the Undepleted Pump Approximation Through
the Analytical Solution of the Coupled Nonlinear Schrodinger Equation

One way to take into account the effect of SRS in pulse propagation in optical fibers is to

solve the coupled nonlinear Schroedinger equation (NLSE), which is typically written for

the pump and the Stokes pulses as simultaneous, coupled-amplitude differential equation.

In the absence of SRS (when only the SPM is the sole nonlinear process in the fibers), the

simple NLSE suitable for describing picosecond pulses can be written as [20]:

where A = A(z,t) is the envelope of the electric field, 13 1 is the group velocity dispersion

term W I = 1/vg vg is the group velocity ), 132 is the dispersion parameter{ = di31/do In

the literature, D is sometimes used [22] in place of 02 and the two are related by:

where D is measured in psl(km-nm) and 132 is in ps 2/km, y is the nonlinear coefficient (y =

n2coo/cJeff), and a represents the fiber losses. In principle, the NLSE can be derived from

the wave equation, but this derivation will be omitted. Such derivation has been treated in

details elsewhere [20]. It should be noted that the NLSE is (conventionally) written for

the pulse envelope. The electric field, E(z,t) of an optical pulse is related to the pulse

envelope A(z,t) by the following expression [20, 105]:



where expi(oot — kor) is the phase term and F(x,y) represents the spatial modal

distribution (which is unimportant in this case, since single mode fibers have a confined

mode). Therefore, for the analysis here, one can assume that for single mode flbers, A(z,t)

E(z,t). It is sometimes more convenient to write the Schrodinger equation with the time

measured in a frame of reference moving with the pulse at group velocity v g (this is

called the retarded frame) by making the following transformation:

Equation (6.1) therefore reduces to:

representing the pump and Stokes

respectively) is the slowly varying amplitude of the pulse envelope; ye = n20ojicJeff is the

nonlinear parameter; /32j is the dispersion parameter and fa represents the fractional

contribution of the delayed Raman response to the nonlinear polarization [20]. Typically,

fa  is about 0.18 [20,53,173-174]. The nonlinear parameter yid and the Raman gain

coefficient gj for the pump and Stokes are related through the wavelengths as follow:
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The walk-off parameter d is introduced to account for the group velocity

mismatch between the pump and the Raman pulses (d=11vgp — l/vgs). One can define a

walk-off length (L,,) as the distance in which the Stokes pulse passes through one pump

pulsewidth. This is effectively the distance over which the pump and the Stokes pulses

overlap. This distance can be given in terms of the walk-off parameter (d) and the pump

pulsewidth (Cps) and as follow:

The walk-off length depends on both the pulsewidth and the wavelength of the laser as

well as the relative refractive (A) difference between the fiber core and the cladding.

Typically, L, ~ 6 m in silica fibers at 532 nm for a pump pulse of width 36 Cps [30] while

at 1064 nm, the author has calculated LW to be 38 ps in silica fibers for a 5O Cps pump

pulse. For typically high Ge02 doped flber (with A ~ 0.025), L W ~ 20 m at 1064 nm for

5O Cps pulses, since the d = 2.5 ps/m for such a flber [167]. One can further introduce The

Raman gain length (LG) which represents the length scale over which the Raman gain

becomes important. This length can also be given in terms of the pump peak power and

its Raman gain coefficient gp [actually, gp looks like "pump depletion coefficient" since

its sign in Equation (6.6) is negative] and it predicts accurately how energy is transferred

to the Stokes.
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The solution to Equation (6.6) is generally obtained by numerical procedures, but

analytical solution is also possible by making some few approximations [169]. Analytical

solution is advantageous because it allows one have an expression for the pulse envelope,

which can be fitted directly to the experimental data. The author has used the undepleted

pump approximation to obtain the analytical solution to Equation (6.6) by following the

framework developed in [20] and elsewhere [169]. First, one neglects GAD (/62p = =

0) and fiber loss (ap = as = 0). This assumption is justified in the present circumstance

due to the short lengths of fibers typically used in IGA experiments. Equation (6.6)

therefore simplifies to:

Second, one makes further simplification by assuming that the Stokes' amplitude

is small compared with the pump such that

undepleted pump approximation). Thus all terms containing I AsI 2 in Equation (6.12) can

be dropped, so that we have
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The Stokes pulse changes both its shape and spectrum as it propagates. The

change in shape (temporal change) results from the Raman gain, while the spectral

change results from the cross-phase modulation. Because of pulse walk-off, the extent of

these changes would depend on the overlap factor w(z,T), which takes into account the

relative separation between the pump and the Raman pulses along the fiber. This overlap

factor depends on the shape of the pulse [20] and thus the integral given in Equation

(6.15) needs to be evaluated for a given pulse shape. For the particular case of a

Gaussian pump pulse of the form used in this work:

has introduced the normalized time t = Bhp  and normalized propagation distance 45 =

zditp, d being the walk-off parameter (in units of pslm).

At this point, it of interest to examine what happens in the photorefractive crystal

with the presence of the pump and the Raman pulses. In the present analysis, one



116

considers the interference of four beams in the photorefractive crystal in the geometry

shown in below (Figure 6.5).

This is because each arm of the two arriving beams contains the pump (1064 nm)

and the Stokes (1117 nm) pulses, If one designates the amplitudes of the pump and

Stokes parts of the signal beam by A l and AC respectively, while the pump and Raman

part of the probe beam are designated A3 and A4. The above configuration is similar to

four-wave mixing and can be analyzed within that context. The general problem of four-

wave mixing in photorefractive crystal is very complicated because the material response

consists of four distinct gratings, namely, one grating due to the interference of beams 1

& 2 with 3 & 4, one grating due to the interference of beams 1 & 3 with 2 & 4, one

grating due to the interference of beam 1 with beam 3 and one grating formed from the

interference of beam 2 with beam 4. If the phase matching conditions are satisfied:
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then the problem can be simplified by assuming that of all the gratings present in the

system, only one grating (in our case the one created by the interference of beams 1 &2

with 3 &4) gives rise to strong beam coupling. This predominance of one grating is

common in many practical situations and is due to the direction, polarization, and

coherent relationships of the four beams relative to the photorefractive crystal [170]. If

one further assumes that the rise time of the grating is fast compared with the pulse length

and that the decay time of the grating is long compared with the pulse length and all

delays between pulses in the experiment, then it can be shown that the detected IGA

signal can be given by the following expression:

where t is the delay in units of pulse length and Ad  and As are the pump and Raman

pulses. The first term in this expression is just the contribution from pure SPM while the

rest of the terms are contributions from the SRS effects through the Raman gain and

cross-phase modulation. The above equation is then numerically integrated and the

resulting trace fitted to the experimental data. In doing so, Equations (6.14a) and (6.14b)

together with Equation (6.17) are substituted and the fitting parameters are factored from

the values in the exponents of these equations. These parameters are for convenience

identified in dimensionless quantities and represented by:

(a) The self-phase modulation parameter (SPMP) given by:



where d is the walk-off parameter and tp is the laser pulsewidth. The first parameter

(SPMP) is usually supplied exactly, or guessed approximately from the self-phase

modulation strength (SPMS)of an equivalent undistorted IGJ trace. The last two

parameters are randomly supplied and the fitting routine returns the appropriate values

upon convergence. Typically fitted traces using Equation (6.19) are shown in Figure

(6.7).
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There is excellent agreement between theory and experiment, especially in the

region where the Raman conversion is less than 25%. At increased Raman conversion,

the distortion is severe and the fit deteriorates (Figure 6.7). This is expected, since the

assumption of undepleted pump was made in arriving at the solution. In the expression of

Equation (6.21), all the parameters except gm are usually known from the experiment.

Thus, in the region where the fit is good, one may use this to estimate the Raman gain

coefficient of the fiber. This will be examined in the next section of this chapter.

Meanwhile, one can now understand the reason for the lifting and depletion of

the IGA sidelobes. The SRS gives rise to two different frequency components, which

make their way into the photorefractive crystal. The presence of the two frequencies

affects the stability of the photorefractive gratings, since interference of difference

frequencies usually leads to a moving interference fringes and dynamic grating [171]. A

moving grating usually does not support the formation of sidelobes in IGA. At low

Raman conversion, the gratings are partially stable since the Stokes pulses are very weak

compared to the pump, and few lobes still get formed. As the strength of the Stokes

pulses increase, the potential to transform into moving grating intensifies, and lobes

deplete. At sufficiently high enough Raman conversion, the contribution of the Stokes in

the interference process becomes sufficient to upset the "semi-stable" interference pattern

and the grating becomes completely dynamic. At this stage the IGA sidelobes are

expected to be completely washed out. In fact, close to this has been experimentally

observed in this work (see Figure 6.8).
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Figure 6.7 Measured IGA trace at about 30 % Raman conversion indicating the
breakdown of the undepleted pump IGA model. Fiber length 100 m. (silica core),
Peak power = 46 W. The same effect was observed in high Ge doped fiber #7C at
peak power of < 36 W.



6.3.2 Determination of the Raman Gain Coefficient from IGA Data

One of the fitting parameters shown in Equation (6.20) contains the Raman gain

coefficient. The rest of the quantities lumped together in the dimensionless fitting

parameter are usually known from the experimental apparatus, except the Raman gain

coefficient. One can therefore estimate Raman gain coefficient (gi) this. Writing the gib,

in terms of the other quantities, one obtains:
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Recognizing that the quantity 1A(O.T)1 2 is just the peak power while z is the propagation

distance in the fiber, which is the same as the effective length (Leff). This equation can

then be written as:

where Aff is the effective core area of the fiber. The fitting routine returns RGP, and

with the knowledge of the laser parameters, the peak power can be calculated from the

average power. Thus gi can be calculated. It is recommended (for improving the

accuracy) to take several IGA traces of the same fiber (with the same length) and plot the

resulting RGP versus the peak power. The slope can then be used to estimate gR. In such

a case

It is also possible to estimate the walk-off parameter d from the fit using Equation (6.21).

As an initial test, the author has used this technique to determine the gi and d in

four different fibers, including two well-characterized fibers. Fiber properties are listed in

Table 6.l. Typical IGA traces from some of the measured fibers are shown in Figures 6.6

through 6.11. The measured gR and d values as determined from the fit are shown in

Table 6.2
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6.3.3 Comparison with Published Results

It will be useful at this point to compare the results obtained here with reported values

[50,96,157,158,163,167]. In doing this it should be noted that some of these

measurements and estimates reported in the literature have been done with different

ranges of wavelength. Raman gain coefficient scales inversely with wavelength. For a

meaningful comparison, one must scale values measured at other wavelength to 1064 nm,

used in this measurement. The scaling equations have been derived by Newbury

[160,161] and by Cordina and Fludger [162 ]. In frequency terms, this equation can be

written as [161]
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where g+ is the Raman gain, and the plus sign indicates gain on the Stokes side. co d is the

pump wavelength, AG) = Dop - ci p is the frequency difference between the pump frequency

and the signal (Stokes) frequency co,. The exponent k describes the power law scaling of

the Raman gain with pump wavelength and condo is an arbitrary chosen reference pump

frequency. This factor k generally ranges from 2 to 4, and have been determined for a

host of fibers [161]. Typical values are 2.3 for SM1F-28, and 4.2 for LEJF (large effective

area fiber).

In terms of pump and Stokes wavelengths, a similar equation can be written [162]

where CR is the Raman gain efficiency coefficient of the fiber as a function of the signal

wavelength Xp, X, is the new pump wavelength. X, is the pump wavelength at which the

measurement was taken ands is the scaling coefficient. Therefore, once CR is known at a

given wavelength, its value at any wavelength can be determined from Equation (6.26).

Values of the scaling coefficient c typically range from 2-5 [162 ]. Its value for "All

wave" fiber (silica core) is 2.8 [162] and this can be used for SM-28, since they have

similar properties. The Raman gain efficiency CR in units of (Wm) -1 may be

approximately related to the Raman gain coefficient in units of mIW by multiplying CR

by the effective area of the fiber . Table 6.3 shows some reported Raman gain coefficient,

which are compared with the measurement done with this technique.
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Table 6.3 Comparison of the Raman Gain Coefficient Measured in this Work with
Publishedvalues. Scaled Values at 1064 nm were Deduced from the Original Wavelength
of Measurement Using Equation (6.26)
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Js seen from the table, reported values of the Raman gain coefficient vary widely. The

variation is due some differences in the fibers, Fibers supplied by different manufactures

may have some slight differences in the composition and on the wave-guide structure.

Another reason for this variation is polarization effect. The Raman gain coefficient

depends on the state of polarization of the pump and the Stokes (signal) and also on the

polarization property of the fiber. The value of gi is higher if pump and Stokes have the

same polarization state, and if polarization is maintained in the fiber. If polarization is

completely scrambled as is the case in long non-polarization preserving fibers, the value

of gm can fall as low as half its actual value in polarization maintaining fiber.

The highest reported gib is in pure silica in the table is 9.2 x 10 12 cm/W [ 96]

while the least value is 2.1 x 10 -12 cmIW. The value obtained with the IGA technique is

6.13 x 10 -12 cmIW, which is within the accepted range. Jn interesting comparison is the

measurement made on the same fiber that has been previously characterized. The

accepted value [163] of the Raman gain efficiency of 3.2 (W-km) -1 at 145O nm, which

corresponds to gR = 11.41 x 10 -12 cmIW at 1064 nm was measured in the same DCF used

in this work. The value obtained from this work for this fiber is 11.85 x 10 -12 cm/W. This

is in agreement within 4% of the accepted value. The main source of uncertainties in the

measurement with this technique is the effective area. The effective area used in the

calculations was obtained from interpolation (see Appendix D) from measurements done

at other wavelengths (1552 nm. 1459 nm and 1314 nm). Another possible source of error

is the laser amplitude fluctuations, which is translated into fluctuations in the average

power. The amplitude fluctuation of the Nd:YAG laser used is between 2 - 4%. However,

this power fluctuation was minimized by averaging.
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For the high germania doped fibers, the calculations using Equation (6.l) predicts

that the Raman gain coefficients for the two fibers #6B and #6C should be 2.83 x 10 "11

cm/W and 2.98 x 10 1 cmIW respectively, based on the known germania contents. The

IGA technique yielded 2.56 x 10 -11 cm/W and 2.77 x 10 1 cm/W respectively. These are

in close agreement with the prediction within 8%. The slight difference arises from

experimental uncertainties mentioned above, and perhaps also from polarization effect.

The IGA analysis assumed that polarization is maintained in the fiber, which is a

reasonable assumption considering the short fiber length used, but this may not generally

hold in practice.
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6.4 Numerical Modeling of IGA in the Presence of Pump Depletion

One limitation of the analytical solution with the undepleted pump approximation is its

failure to predict the IGA traces when the Stokes pulse becomes comparable in strength

to the pump (see Figures 6.7 and 6.8). To have an insight into the behavior of the IGA

signal in this regime, one has to solve Equation (6.6) numerically.

In solving these equations, fiber loss and dispersion have been neglected but all

other terms were retained, so that the appropriate equation now becomes:

where the parameters have their usual meanings as earlier defined.

This equation has been solved numerically, using the split step Fourier algorithm

[20], and used to simulate the IGA trace of the output pulse. In the simulation, the Raman

gain coefficient of pure silica is assumed (9.2 x 10-12 cmIW). It is then used as a base

value to calculate the Raman gain for a given input power, fiber properties and the SPM

strength, with reference to an undistorted IGA trace.. The input power and the Raman

gain are then varied until the resulting IGA trace becomes identical to the observed

experimental trace. The Raman gain folds at this point are then used to deduce the gain

coefficient of the fiber in relative term. Raman gain coefficient five times higher than

the gain coefficient for silica fiber was estimated for the high germanium doped fibers..

Typical simulated IGA traces are shown in Figures 6.13 and 6.14. The simulated traces

are in qualitative agreement with the experimental observation. By dropping the
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6.5 Discussion of the Result of the Numerical Simulation

It should be mentioned that the aim of the numerical solution is not to provide a direct

fitting process with the experimental data, rather, it is to stimulate IGA traces with known

input parameters whose shapes are then compared with the experimental IGA trace to

establish a qualitative agreement with the observed trend. Such numerical simulation

method has been used by Weiner et al [172] to study the influence of stimulated Raman

scattering on optical pulse compression and by Genty et al [175] to investigate spectral

modulation due to pulse reshaping in photonic crystal fibers. In all of the above cases,

important parameters concerning the experiments have been deduced by comparing the

simulated spectra with the experimental data without necessarily performing a fit.

The numerical simulation predicted Raman gain coefficient five times higher than

in pure silica for the highly doped germania fibers. If the value of gp for pure silica fiber

is take as 9.2 x 1042 cmIW, the actual value for gib predicted is 4.6 xl0 -11 cmIW. This is

about 35% higher than the value obtained from calculations (2.98 x 10 41 cm!W), using

the refractive index difference in one of the highly germania doped fibers and about 40%

higher than the measured value of 2.77 x 10 -11 cmIW. This increase in the result obtained

from the numerical approach may be associated with the condition of pump depletion

assumed in the numerical simulations. The inclusion of pump depletion increases the

contribution of cross-phase between the pump and the Stokes. This implies increased

nonlinear interaction, including the Raman gain. It is therefore not too surprising that the

simulation over estimates the Raman gain coefficient. Added to this is the fact that linear

polarization of the optical field was assumed to be maintained in the simulation, which

may not necessarily be the case in the actual experiment.
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One advantage of the numerical approach in this analysis is that it can be used to

solve the NLSE and simulate IGA traces when both pump depletion and walk-off effect

are both taken into account — a situation that does not lend itself to analytical solution.

The Numerical simulation predicts IGA trace even at very high Raman conversion,

including in the region where IGA sidelobes get completely washed out as seen in Figure

6.14.



CHAPTER 7

DETERMINATION OF THE SENSITIVITY OF IGA MEASUREMENTS,
AND THE RELATIONSHIP BETWEEN IGA TECHNIQUE AND THE

SPECTRAL DOMAIN SPM TECHNIQUE

7.1 Introduction

The level of acceptance of any new experimental technique depends on how well its

performance and the interpretation of its data relate to other known techniques in the

field. Among all the n2 measurement techniques (see Chapter 3), the spectral domain

SPM technique pioneered by Stolen and Lin [13,62], is the most widely used method for

measuring the n2 in optical fibers, and it has a well-established measurement accuracy.

The relation between this technique and IGA will be discussed in Section 7.2. A

mathematical formulation is derived to establish the link between the two techniques, and

it is shown that one can in certain cases predict the results of the spectral domain SPM

technique from IGA measurements.

The sensitivity of the IGA, defined by the least detectable phase shift has also

been determined and the result is presented in Section 7.3.

7.2 Derivation of the Relationship Between IGA
and the Spectral Domain SPM Technique

It is known that SPM causes pulse broadening in the spectral domain that leads to a

periodic structure in the power spectrum of the broadened pulse [13,20,176-177]. It was

shown by the stationary phase method [176] that the maximum nonlinear phase shift of a

modulated pulse can be written as:

137



138

where m is the total number of minima of the spectrum at the Stokes side. The quantity

ygnp represents the peak (maximum) nonlinear phase shift, y = cooz/c, and Snp  is the

nonlinear refractive index change induce by the field, coo is the laser angular frequency,

where the subscript p implies the peak value. The above equation can be written as [179]:

where Om is the maximum phase shift (Om --:: yen p ), m is the number of minima that appear

on either the Stokes side or the anti-Stokes side of the power spectrum [2]. The

corresponding maximum frequency shift, disregarding variation in amplitude should

occur at the inflection point of the phase profile and it is obtained from the time-

derivative of the phase. If the inflection point occurs at a time ti, for a fixed point in space

then the maximum frequency shift can be written as [179]:

where 0(t) is the time-dependent nonlinear phase shift profile of the pulse.

Now, assuming a Gaussian phase shape of the form:
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Equations (7.lb), (7.6) and (7.8) can be substituted into equation (7.4) to obtain the

following result:

where fm is the frequency bandwidth of the spectrum.

In the Stolen's spectral domain SPM technique [13,52,62] the total spectrum is

counted (Stokes and anti-Stokes sides) and the result must be divided by two. His

expression for the maximum phase shift measured is therefore given by [52]
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It was shown previously that the frequency bandwidth (4t) of a SPM broadened

spectrum can be given approximately by the relation [64]:

where Q is the spectral broadening parameter and co0 is the central angular frequency of

the laser. Recognizing that, both Rif and fm are the same, (a measure of the frequency

bandwidth of SPM broadened spectrum) Equation (7.13) can then be substituted into

Equation (7.12) to have:

Interestingly, the parameter o.)S pH is what is actually measured in the IGA

technique [65-68] called the "self-phase modulation strength", while. AO
m 

is the

parameter measured in the spectral domain SPM technique [13,52-53,62], called the

"maximum spectral phase shift". Thus equation (7.15) relates the IGA to the spectral

domain SPM technique. Re-writing the above equation in the conventional notation, one

has:
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where N is the number of peaks in the power spectrum for N 2 (readily identifiable

spectral shapes exist for phase shifts of n/2 and 7c). Qm is the value of the spectral

broadening parameter at the maximum phase shift.

Equation (7.15) relates the IGA technique directly to the spectral domain. At Q =

Qm  the IGA trace should have well defined lobes (zeros) on either side of the central

peak. For a typical IGA trace with three well defined lobes on either side of the central

peak, cootdQm = 11.13 and the corresponding AOm = 3.57t. This should yield a spectrum

with 4 peaks in the spectral domain SPM measurement. J limitation on the sensitivity of

the spectral domain SPM measurement is the fact that it allows one to determine the

phase shift only in (2N-l) multiples of n/2. This limits the lowest measurable phase shift

to 0.57t. In the IGA technique however, one can measure continuous values of o)ot pQ at

values of Q other than Q m .

One significant advantage of the continuous value measurement of the phase in

the IGA technique is that it is possible to detect values of phase shift lower than 0.5n,

which is the current limit of the spectral domain SPM technique. The sensitivity of IGA

technique to the measurement of small phase shift will be discussed in the next section.
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7.3 Determination of the Sensitivity of the IGA Technique

7.3.1 Definition and Measurement

The sensitivity of the IGA technique is the lowest value of phase shift that can be

detected experimentally with this technique. The IGA technique is a useful tool for

accurate measurement of pulsewidth just like the famous noncollinear background-free

second harmonic generation intensity autocorrelation (SHGA), discussed in chapter four.

However, while the SHGA is not sensitive to the phase, IGA is. For a non-phase

modulated Gaussian pulse, the IGA trace is identical to the SHGA trace. A self-phase

modulated Gaussian pulse would appear the same and exhibit its original pulsewidth

under SHGJ trace but its IGA trace would show narrowing and sometimes oscillation,

to reflect the level of the change in phase of the pulse. This property can be used to

determine the smallest level of phase shift imparted onto a pulse that has propagated

through the fiber, by comparing the resulting IGA trace with the SHGA trace.

For a Gaussian input pulse in the zero GAD regime, the minimum detectable SPM

strength cootQ occurs near the limit where the width of the IGA trace approaches the

non-collinear background-free intensity autocorrelation width (tAuro - RIGA --> 0). Here

TAIGA is the FWHM of the central peak of the IGA trace and TAUT() is the FWHM of the

SHGA trace. For a Gaussian input pulse, the pulsewidth is given by -u p = AUTO h12.

A prediction was made earlier [ 66 ] through simulation that IGA can detect phase

shift as low as cooTpQ fe:i 0.6, by assuming a laser amplitude fluctuation of 5%. This

corresponds to AO,:,' 0.19n. Careful and systematic measurements were performed to

match this prediction and to establish the ultimate sensitivity of the IGA technique.
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The measurements were performed in a 20 meters long silica core fiber and at

very low power. A variable attenuator was used to attenuate the laser beam before

coupling into the fiber. The laser was optimized for stability. The amplitude fluctuation

was below 4%. A sensitive digital power meter (Newport model 835, which is good to

sub microwatts) was used for the power measurement. IGJ traces were taken in the

usual procedure earlier described (Chapter 4). The resulting IGA traces are fitted with the

IGA model. The autocorrelation trace of the input pulse was also measured.

Figures (7.l) to (7.4) show the series of low power IGA traces plotted in the same

scale with a Gaussian fitted SHGA trace of the input pulse, to show the onset of

narrowing and how it progressed with slight increases in the power in the fiber.
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7.3.2 Discussion of Results

From Figure (7.l), it is clear that one has approached the ultimate limit of phase shift

detection using this technique. The minimum SPM strength is shown to be co otpQ =

0.451, which corresponds to 64 = 0.147E. Due to laser amplitude fluctuations, one can

barely resolve the difference between the IGA trace and the SHGA trace. Any further

attempt to reduce the power leads to a total overlap between the IGA and SHGA. As the

power increases, the difference becomes more resolved between IGA trace and the

SHGA trace. In Figure 7.2, the two traces are clearly separated and the corresponding

self-phase modulation strength is 0.644, which corresponds to A4) = 0.207E. The result

obtained here is remarkable because it appears to be the most sensitive measurement of

the nonlinear phase shift in optical fiber. Although, a comprehensive data on the

sensitivity of detection of the different n2 measurement techniques is not available, one

can compare with the spectral domain SPM method, which is currently the most popular

technique. The reported minimum measured phase shift with this technique to date is

0.57E. This is so limited primarily due to the fact that one relies on counting of nodes in

the spectrum to determine the phase shift, which appear only at integer orders of 7E/2.

Comparing this with the current result of 0.147E reported here, it is seen that the

sensitivity of IGA is over a factor of three better. One may in principle improve the

sensitivity of the spectral domain SPM technique by evaluating the integral listed in [13]

and fitting the resulting spectrum to the experimental data. In this case, one can obtain a

continuous value measurement of the phase.
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It should be mentioned that the minimum phase shift theoretically predicted [66]

for the IGA technique was A(I = 0.19, which is about 30% higher than the lower limit of

the measured sensitivity ( 0.14n) the measured value, implying that the measured value
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has pushed further the sensitivity by 30%. The prediction assumed 5% amplitude

fluctuation in the theoretical simulation. This is slightly higher than the amplitude

fluctuation of the laser at the time of the measurement. Fluctuation in laser amplitude

limits one's ability to resolve the difference between the IGA trace and the SHGA trace

when the narrowing is substantially low, and reduces the accuracy of the fitting routine.

The fitting routine yields the cooi pQ value by establishing a convergence between the

experimental data and the IGA model. With a more stable pulse, better resolution and

convergence accuracy is obtained, which improves the sensitivity of detection.

At this juncture, it may be useful to specify the power-length product used for this

measurement and mention some important numbers. The corresponding laser power that

propagated into the 20 m long silica core fiber used in the experiment was approximately

0.82 W of peak power. This implies a power length product of 16.4 W-m. (or 1640 W-

Om). The fiber has an effective area of 5O utm2. This gives a peak intensity of l.64 x 10 1°

Wcm-2  (l.64 x 106 Wcm"2 ) and intensity-length product of 3.28 x 10 11 Wcm-1 (3.28 x 109

Wcm"1).



CHAPTER 8

CONCLUSION

8.1 Summary

In this study, the photorefractive beam coupling technique, also called induced grating

autocorrelation (IGA), has been used to measure the nonlinear refractive index (n2) and

the Raman gain coefficient (gi) in short lengths ( z 20 m) of different types of optical

fibers, and the dependence of n2 on the doping profiles of Er-Al-Ge has been

investigated. A detailed review of other available techniques [13,15,54-59,107- 113] for

n2 measurements given in Chapter 3 has shown that all these techniques typically require

hundreds of meters and sometimes, kilometers of fibers for n2 measurement setup. In

measuring n2 in long fibers, one has to deal with the problems of pulse dispersion and

polarization scrambling, which amounts to additional uncertainties in the n2

measurement. The IGA technique has the advantage of measuring n2 accurately in short

lengths of fibers, thereby avoiding the above mentioned problems, in addition to cost-

saving.

In the IGA experiment, a transform limited Gaussian pulse is propagated through

a short length of an optical fiber, where it undergoes self-phase modulation (SPM) and

other nonlinear distortions, and the output pulse is split into two. The two-excitation

pulses are then coupled into a photorefractive crystal, where they interfere and form a

photorefractive phase grating. The IGA response is determined by delaying one beam

(the probe) and plotting the diffracted intensity of the probe versus the relative delay (t).

Analysis of the IGA response yields information about the nonlinear phase distortions

and other calibration parameters of the fiber. The standard IGA model for n2
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measurements as discussed in chapter four was derived from the solution of the wave

equation for pulse propagation, in the limit of pure SPM. This model assumed that GAD

(group velocity dispersion) and other nonlinear processes such as stimulated Raman

scattering (SRS), are negligible. This model has been successfully used to fit the

experimental data and determine the n2 of the fiber from the time dependent phase shift

imparted on the pulse..

The breakdown of the standard IGA model was initially observed [70-71] in high

Ge02 doped fibers, where it was noted that the measured IGA trace was distorted and

showed clear deviations from the standard IGA model. Investigations into the cause of

this deviation revealed that stimulated Raman scattering was responsible. Measurement

of the spectrum of the output pulse from these highly Ge02 doped fibers showed a strong

Raman peak (including second Stokes signals), in some cases exceeding 50% conversion

at moderate power input.

To account for this deviation, a new model of the IGA has been developed, from

the solution of the coupled-amplitude nonlinear Schrodinger equation using both

analytical and numerical approaches. The analytical solution was obtained using the

"undepleted pump approximation", in which the Stokes signal is treated as a perturbation

on the pump. The IGA model developed from this solution accounted for the SRS effects

on the IGA trace and allowed the direct determination of the Raman gain coefficient from

the fit of the SRS-distorted IGA trace, provided that the Raman conversion does not

exceed 25% of the pump. Measurement of Raman gain coefficient was made in four

different fibers including pure silica fiber, Er-Al-Ge doped fiber with 28% Ge, a Ge02

doped fiber with 30% germania and a DCF (dispersion compensating fiber). The results
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obtained in all these cases are in good agreement with published results. The numerical

approach extends the IGA model further into the region of pump depletion and predicts

IGA traces quite well even when the Stokes signal exceeds the pump. This numerical

procedure also allows the determination of the Raman gain coefficient of high germania

doped fiber, on a relative term with pure silica..

It has also be shown in this work (Chapter 7) that, in the limits of pure self-phase

modulation, the IGA technique reduces to the widely accepted spectral domain SPM

technique pioneered by Stolen and Lin [13], but is readily applicable to shorter lengths of

fiber and is sensitive to smaller phase shifts.

8.2 Scientific Value and Practical Applications

The development of IGA as a new technique for measuring Raman gain coefficient in

short lengths of fibers, will have a strong positive impact on scientific research in this

field because it is both economical and simple. With the exception of few cases [50],

available techniques for measuring Raman gain coefficient in optical fibers have always

required the use of very long fibers, z >10 km [159,160,162], while some require the use

of two independent laser sources [158,160]. This makes the Raman gain coefficient

measurement quite an expensive venture. With the IGA technique, one can measure

Raman gain coefficient in 20-100 meter lengths of fiber, using 50-70 picosecond pulses

at a single wavelength (1064 nm). In addition, one minimizes the effect of polarization

scrambling, since the fiber length is short. These advantages that results from gi

measurement with the IGA technique is also true in the case of n2 measurements.
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System designers require n2 data of different telecommunication fibers for predicting and,

improving the performance of optical communication systems. In today's

telecommunication market, fiber manufacturers are sometimes required to specify the

numerical value of the n2 of their fibers. The results of the n2 measurements obtained in

different fiber types in this work will serve to provide these much needed data. The IGA

technique, combining its accuracy with its ability to measure n 2 and gi in short fiber

lengths, will now make it possible for these parameters to be measured directly in

standard EDFAs. The typical lengths of EDFAs are about 15-25 m.

8.3. Recommendations for Future Studies

There are many new challenging areas in which IGA can be of use. For example, the

study of nonlinear optical properties of holey fibers [HFs] is an emerging area of research

interest in which IGA can be applied. Unlike conventional fibers, which use different

core and cladding materials, HFs can be made from a single material. Light is guided in

holey fibers owing to an effective volume average index difference between the center,

which forms the core, and the surrounding region, which contains air holes that act as the

cladding. One of the pioneering attempts [179] to measure the nonlinearity in this fiber

has indicated that the nonlinear coefficient (n 2hkeff) in this class of fibers is about four

times higher than that of DSF (dispersion shifted fiber).

Measurement of the Raman gain coefficient and n2 in tellurite glass fibers is still

an open challenge. Measurement of the Raman gain coefficient has only recently been

reported [180] in the bulk sample of tellurite glasses, which showed that the gi is about
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30 times higher than in fused silica. This indicates that tellurite fibers would be a good

candidate for Raman amplification.

Another very interesting research opportunity would be to extend the IGA

technique into the femtosecond regime. With such short pulses, the IGA would require

even much shorter fiber lengths and low average power. However this may not be all that

simple as it sounds, because with femtosecond pulses, additional nonlinear effects such as

intra-pulse Raman scattering and self-steepening may become important. In addition, the

pulse shape would no longer be Gaussian, and the IGA model must be modified for

hyperbolic secant pulses.

Finally, the author recommends that polarization dependent measurements of the

nonlinear refractive index and the Raman gain coefficient in optical fibers be performed

using the IGA technique. This is necessary in order to confirm that the assumption of

non-polarization scrambling in IGA experiments, owing to short fiber lengths is not an

over simplification.



APPENDIX A

DIFFERENT MECHANISMS THAT CAN PRODUCE
NONLINEAR REFRACTIVE INDEX (n2) IN OPTICAL MATERIALS

A.1 Introduction

Although, the nonlinear refractive index (n 2) studied in this work is known to arise from

the so called "electronic Kerr effect" (which results from the nonlinear electronic

polarizability), it is important to note that there are other physical mechanism that can as

well lead to nonlinear refractive index (n2), with different response times. In this

Appendix, the different mechanisms that can contribute to the nonlinear refractive index

(n2) in optical materials are briefly described, together with their relative magnitudes and

response times.

A.2 Electronic Kerr Effect

One of the most important mechanisms that produce the nonlinear refractive index is the

electronic Kerr effect, which results from the nonlinear electronic polarizability. This was

the case discussed in Section 2.l. This effect which arises from an optically induced

distortion of the electronic charge distribution, is essentially instantaneous with response

time 'I - 10 15 seconds, and it is in general considerably small in magnitude. Typically,

n2(electronic) ~ 10 "13 (esu) 10 -16 cm2W-1  (see Chapter 5). This effect occurs in solids

and in fluids composed of isotropic molecules [72,182-183].
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A.3 Orientational Kerr Effect

The orientational Kerr effect occurs in fluids (liquids and gases) composed of anisotropic

molecules, whose optical polarizabilities in different coordinate directions are unequal. A

good example is a symmetric top molecule whose polarizability along its axis (Mx) is not

equal to its polarizability perpendicular to its axis (ax).

In the absence of an electric field, the molecules are oriented in random

directions, so that the index of refraction is isotropic (has the same value in different

directions or axis). When an optical field is applied, it induces a dipole moment in the

direction of the field. The field can further interact with this induced moment to exert a

torque on the molecules proportional to (ocz -a, )E2 . Since the induced moment and the

field has the same frequency and phase, this torque will have a dc component which will

tend to rotate the molecules into alignment with the field. The incremental rotation of a

molecule produces a change in index of refraction parallel to the electric field. This index

change is given by [72,184] :

N is the density of molecules, 8 is the angle between the molecule and the electric field,

and n0 is the linear index of refraction. The average is over all orientations with a

weighting factor of a Boltzmann distribution which reflects the interaction energy:



Typically, n2 is of the order of 10 -11 (esu) ~ [10 -14 cm2W1 ], with a response time of the

order of 10-12 seconds. Note that if the optical field is circularly polarized instead of

linear, the change in index of refraction is only one fourth as large.

A.4 Electrostriction

Electrostriction is the density change of an optical material due to the stress caused by

intense electromagnetic waves. This change in density alters the index of refraction of the

material. The magnitude of the steady state nonlinear refractive index due to

electrostrictive process can be given by [72]:

where p is the density and 13 is the bulk compressibility. The magnitude of n2 is typically

large (~ 10 -14 cm2W"1). The speed of response is however very slow (— 10 -9 s) [185], since

the growth of the density change is governed by acoustic propagation. In deed, the

response time is approximately given by the beam cross section divided by the speed of

sound.
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A.5 Thermal Effect

Nonlinear index change can also result from thermal effect. There are two components to

the thermal induced index change, one arising from purely thermal effect at constant

volume (such as entropy change) and the other arising from thermal expansion. The two

contributions can be represented by [72]:

where T is temperature and p is the material density. The first term is due to change in

entropy, and occurs very fast, but it is usually very small in magnitude. The last term

represents the contribution form thermal expansion, which can be quite large, but has a

slow response time. The relaxation of both contributions is determined by the diffusion of

heat away from the optical beam, and it is generally slow (~ 10 -3 to 1 s). Thermal induced

n2 is usually not important for picosecond pulses except where the effect is integrated

over the entire pulse train. Generally, thermal n 2 is negative and produces self-defocusing

effect.

A.6 Other Mechanisms

J contribution from nonlinear index can also arise from several other mechanisms. For

example, in gases composed of spherically symmetric molecules (such as argon. Krypton

etc) molecular collisions can give rise to nonlinear index. Collision between two

molecules can lead to a distortion in their electronic distributions such that the

polarizability of the pair may have a small anisotropic component. The can result to a

nonlinear index analogous to the molecular orientational Kerr effect. The relaxation time
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Photorefractive effect can also produce a change in index of refraction in electro-

optic materials under an applied optical field. The photorefractive effect often leads to a

strong nonlinear response, which usually cannot be described in terms of the third order

nonlinear susceptibility, because the nonlinear polarization does not depend on the

applied field strength in the same manner as the other mechanisms listed. In addition, its

response time depends on the intensity of the optical field. A contribution to n2 can also

arise from an optically induced polarization in absorbing polar materials, in which the

dipole moment of an excited state differs from the ground state [186].



APPENDIX B

VARIOUS UNITS FOR EXPRESSING TILE CONCENTRATION
OF DOPANTS IN OPTICAL FIBER

In this appendix the author whishes to explain the different units that are used to specify

the quantity of dopants in an optical fiber and how they are calculated. The concentration

of dopants in optical fiber is usually expressed in various units [133], such as parts per

million mole (ppm), percentage molar concentration (%M), ions/cm 3 etc. Most of these

dopants are available in the form of the compounds of the oxides or chlorides. Silica itself

consists of as silicon oxide (Si02). Table (B.l) shows these compounds with their

molecular weight.
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(i) Percentage molar concentration (%M): This indicates the molar fraction of a given

dopant in relation to one mole of the total combination as contained in the glass fiber. Let

x(d) be the fractional molar concentration of a given dopant (oxide or chloride)

composing the glass and x(s) the fractional molar amount of silica, then

If Z is the molecular mass (or atomic mass) of the constituents, the total weight of the

composite glass is given by:

(ii) Number of molecules per cc or ions per cc (cc = cubic centimeter).

Let D be the density of the composite glass and Nay = Avogadro's number (N.

= 6.02 x 1023), the number of molecules per cubic centimeter for each dopant is given by:
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(iii) Parts per millions in molar concentration (ppm): This is defined for a given
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(iv) Density of molecules in grams per cc (g/cm3):

For each constituent compound or ion, one can obtain the concentration or density of the

molecules in grams per cc as follow:
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where the absorption is usually expressed in dBim and the absorption cross-section is in

M-2. The overlap factor is a parameter that specifies the overlap between the mode

intensity and erbium ion distribution in the fiber. It is a dimensionless number. Typical

values of overlap parameter for Er-Ge-Al doped fibers are 0.64 at 980 nm pumping, 0.46

and 0.4 at 1480 nm and 1550 nm pumping respectively [134].

Example:

For a Er-Al-Ge doped silica fiber with absorption a = 10dBim at 1530 Om. The erbium

concentration in this fiber can be estimated as follow: Use published overlap value closet

to 1064 nm. Published data on overlap parameter.
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...for 10dB/m, cc(np/m) = 10 x 0.23 = 2.3/m

Use published cross-section for Ge02-Al203-Si02 fiber [135] ~ l.7 x 10 -25 m-1 ( at

980 pumping)

...Er3  concentration (m -3) = 2.3/(4.7 x 10 .25) = 4.82 x 1024 M-3.



APPENDIX C

DEPENDENCE OF An ON Ge02 CONCENTRATION

In this appendix, the author displays a plot of refractive index difference between the core

and cladding versus the germania concentration. The plot shows that An is directly

proportional to Ge02 concentration [181] and can be used to estimate An from known

Ge02 concentration or to obtain Ge02 concentration when An is given. The intercept

represents the refractive index of silica glass.
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APPENDIX D

ESTIMATING FIBER MODE-FIELD DIAMETER (MAD) AT 1064 nm FROM
MEASURED VALUES AT 1314 nm, 1450 nm AND 1552 nm

In this appendix, the author discusses the process used for estimating the MFD at 1064

nm from measurements made at 1552 nm and 1314 nm. The MFD and J effs for the fibers

were measured at 1314 nm and 1552 nm, at OFS laboratory (with the help of Dr. Bill

Reed), because these are the operational wavelengths of the available equipment for the

measurement (Section 5.2.l). Some MFD and J effs values at 1450 nm for some of the

fibers were also supplied [157,165].

Since the n2 and gi measurements in this work were performed at 1064 nm (see

Chapters 4 to 6), the MFD and Jeff of these fibers need to be known at 1064 nm since

these parameters (Jeff and MFD) have been observed to vary significantly with

wavelength. Attempts made to obtained some few references that appeared to have

discussed direct empirical formula for this was not successful within a reasonable time

frame. The author has thus used the measured values of MFD at the above wavelengths to

estimate its value at 1064 nm for each fiber. In doing this, a typical case where the Jeffs

and MFD are known at 1552 nm, 1314 nm and 1064 nm [fiber #l(pure silica)] was used

to determine the variation trend, which was found to fit well with a second-order

polynomial of the form:

where A is the intercept on y at x = 0 and B1 and BC are constants. Typical fitted results

are shown in Figure (D.l).
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APPENDIX F

MATLAB FITTING PROGRAM FOR THE
MODIFIED IGA MODEL (SPM & RAMAN)

This is the computer program for solving Equation (6.19) in the modified IGA model,

and for fitting the model to the experimental data. The program is written in MATIab

codes and it uses the function called "fminsearch" to locate the point of minimum the

difference between the theoretical IGA trace and the experimental trace. At this point of

convergence, the program returns the corresponding Raman gain parameter (RGP) and

the walk off term (WOT).
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x----t- *t;
sampling[i+1]=exp(-0.5 * x);
fprintginPulsefileP, "%fan", sampling[i+1 ]);

}
fclose(inPulsefileP);

for(i= 1 ;i<N+1 ;i++)
{
pulseP[2*i-1]=sampling[i];
pulseP[2*i]=0.0;

)
/* At this point: Input Pump-Pulse completely defined! */

for(i=0;i<N,i++)	 {
sampling[i+1]=sqrt(Peff);
fprintginPulsefileS, "%fin", sampling[i+1 ]);
}

fclose(inPulsefileS);

for(i ; i<N+ 1 ;i++)
{
pulseS[2*i-l]=sampling[i];
pulseS[2*i]=0.0;
}

/* Jt this point: Input Stokes-Pulse completely defined! */

df=2*WiN; /* frequency step */
printf("ananThe frequency step is df—J%fi,df);

for(j=0;j<N/2j++) /* Frequencies are defined */
{
freq[j]=j*df;
}

for(j=N/2+l,j<N,j++)
{
freqffi=j*df-2*W;
}
freq[N/2]=W;

printf("\nan Please, enter the step size h: ");
scang"%f',&h);
z=Fiber_Length/h;
nn=z;

printg"\n%d iterations (%f in float) have to be performed!", nn,z);
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printf"\n enter a number to continue (JND WAIT FOR RESULTS)!");
scang"%d",&num);

/* Loop: IMPLEMENTATION of symmetric split Step method (Pump & Stokes) */

for(j=0;j<mr,j++) /* NUMBER of STEPS to be performed is nn */
{

hNL(pulseP,pulseS, N,h,LGW,LNW, Ratio); /* NL & Raman over h */
hStep(pulseP,dispersionP, N); /* PUMP DISPERSION over h/2 */
hStep(pulseS,dispersionP, N); /* STOKES DISPERSION over h/2 */

}

for(i=1 ;i<N+1 ;i++)	 /* Store output PUMP pulse envelope in two files */
{

fprintf(outfileRealP, "%fin", pulseP[2*i-1]); /* Real part *1
fprintf(outfileImP, "%fin", pulseP[2*i]); 	 /* Imaginary part */
}

fclose(outfileRealP);
fclose(outfilelmP);

/* Intensity of the Output PUMP Pulse is computed */
for(i=1 i<N+1 ;j++)

{

intensity[j]=pulseP[2*j-1]*pulseP[2*j-1]+pulseP[2*j]*pulseP[21];
43rintgoutfileP,"%fin",intensity[j]);
}

fclose(outfileP);

for(i=1 ;i<N+1 ;i++)	 /* Store output STOKES pulse envelope in two files */
{

fprintf(outfilelmS, "%f\n", pulseS[2*i-l]);
fprintgoutfilelmS, "%fin", pulseS[2*i]);	 }

fclose(outfileRealS);
fclose(outfilelmP);

/* Intensity of the Output STOKES Pulse is computed */
for(j=1 j<N+ 1 j++)

{

intensity[j]=pulseS[2*j-l]*pulseS[2*j-l]+pulseS[21]*pulseS[2* .j];
fprintgoutfileS,"%fin",intensity[]]);
}

fclose(outfileS);

/* PUMP Power Spectrum */
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