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ABSTRACT

PERFORMANCE EVALUATION FOR COMMUNICATION SYSTEMS
WITH RECEIVE DIVERSITY AND INTERFERENCE

by
Debang Lao

Optimum combining (OC) is a well-known coherent detection technique used to

combat fading and suppress cochannel interference. In this dissertation, expressions

are developed to evaluate the error probability of OC for systems with multiple

interferers and multiple receiving branches. Three approaches are taken to derive

the expressions. The first one starts from the decision metrics of OC. It facilitates

obtaining closed-form expressions for binary phase-shift keying modulation. The

second approach utilizes the moment generating function of the output signal to

interference plus noise ratio (SINK) and results in expressions for symbol and bit

error probability for multiple phase-shift keying modulation. The third method uses

the probability density function of the output SINK and arrives at expressions of

symbol error probability for systems where the interferers may have unequal power

levels. Throughout the derivation, it is assumed that the channels are independent

Rayleigh fading channels. With these expressions, evaluating the error probability of

OC is fast, easy and accurate.

Two noncoherent detection schemes based on the multiple symbol differential

detection (MSDD) technique are also developed for systems with multiple interferers

and multiple receiving branches. The first MSDD scheme is developed for systems

where the channel gain of the desired signal is unknown to the receiver, but the

covariance matrix of the interference plus noise is known. The maximum-likelihood

decision statistic is derived for the detector. The performance of MSDD is demonstrated

by analysis and simulation. A sub-optimum decision feedback algorithm is presented

to reduce the computation complexity of the MSDD decision statistic. This sub-



optimum algorithm achieves performance that is very close to that of the optimum

algorithm. It can be shown that with an increasing observation interval, the performance

of this kind of MSDD approaches that of OC with differential encoding.

The second MSDD scheme is developed for the case in which the only required

channel information is the channel gain of the interference. It is shown that when the

interference power level is high, this MSDD technique can achieve good performance.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

In modern commercial wireless communication systems such as code division multiple

access (CDMA) systems and time division multiple access (TDMA) systems, the

cellular concept is widely applied to increase system capacity [1]. Under this concept,

the entire service area is divided into small areas called cells. Several cells comprise

a cell cluster. A cell cluster can use all the available frequency resources. For

TDMA systems, each cell can use a portion of the available frequency channels,

but neighboring cells use different frequency channels. The cells that use the same

frequency channels are at least a cell away from each other. In this way, the limited

precious frequency resource could be reused, hence the system capacity can be increased

infinitely (at least in theory), while at the same time the interference is kept to a

minimum. What should be kept in mind is that, though the interference is reduced,

it still exists due to the fact that the same frequency channel is used by different cells.

In fact, the performance of both TDMA and CDMA cellular systems is interference

limited.

The cellular concept is shown in Figure 1.1. In the figure, A i to Gib (i =0, 1, ...,

6) are cells that form a cell cluster. Cells A i for i =0, 1, ..., 6 use the same frequency

channels, so do cells B ib to Gib. The user si in cells A i (i =1, 2, ..., 6) can interfere with

the user s 0 in cell A0 .

Another factor that constrains the performance of wireless systems is multipath

fading. In the wireless environment, due to reflection, diffraction and scattering,

the transmitted signal may reach the receiving antenna through more than one path

(shown in Figure 1.2) and fade greatly due to the interference between paths. Since

1



2



3

the locations of the transmitter, the obstacles, and the receiver are random, the

transmitting paths are random as well. The total effect of the path's interference is

a random attenuation of the transmitted signal. When the attenuation is deep, the

received signal is so weak that the receiver cannot recover the transmitted signal. To

resolve this problem, diversity is introduced. With diversity, several replicas of the

same information signal are transmitted over independently fading channels. The

probability that all the signal components reaching the receiver fade simultaneously

is reduced considerably.

Three examples of diversity techniques are [2, Chapter IA]:

• Temporal diversity: the same information-bearing signal is transmitted in more

than one time slot, where the separation between successive time slots equals

or exceeds the coherence time of the channel.

• Frequency diversity: the same information-bearing signal is transmitted on

more than one carrier frequency, where the separation between successive carrier

frequencies equals or exceeds the coherence bandwidth of the channel.

• Spatial diversity: more than one transmitting and/or receiving antenna are

employed. The antennas are spaced sufficiently far apart that the multipath

components in the signal have independent fading.

Since spatial diversity does not require the expansion of bandwidth, it is desirable

for bandwidth-limited systems when cost and size permit. And as pointed out in

[3], spatial diversity could be used to cancel interference as well as to combat fading.

Capacity of systems with spatial diversity has been proven to increase with the number

of antennas [4].

It is for these advantages that the performance analysis of communication

systems with spatial diversity has been an appealing research area. In practice receive

diversity has been implemented at base stations. For example, in second generation
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Figure 1.3 Diagram for systems with NA receive diversity branches. Usk is the
desired signal. There could be more than one interferer Sj,k (only one is shown in the
figure).

IS-136 TDMA [5], two receive antennas are deployed at base stations. Technology

has been developed for deploying 4 receive antennas.

Currently much of the research on spatial diversity is focused on space-time

codes ([6], [7], [8]), which employ transmit diversity. While space-time codes can

provide some coding gain as well as spatial diversity, and could be the future application,

this dissertation focuses on a more practical problem for now: performance analysis

of communication systems with receive diversity. The basic system model used in

this work is presented in the next section.

1.2 System Model

Consider a communication system with receive diversity but with a single transmit

antenna. All the signals are represented as lowpass equivalents. As shown in Figure

1.3, there is one transmitting antenna, NA receive branches, and NI interferers in the

system (only one is shown in the figure). The sampled output of the matched filter

for the /-the branch at time k is expressed as
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where the parameters in (1.1) are:

P, : power of the desired signal.

Al : channel gain of the /-the branch for the desired signal.

ski : desired transmitted signal.

PI : power of the interferers (assume all interferers have equal power).

: channel gain of the lath branch for the i-th interferer.

si,k : signal of the i-th interferer.

rik,1 : complex white Gaussian noise.

The signals Usk and si,k could be multiple phase-shift keying (M-PSK) symbols,

differential multiple phase-shift keying (M-DPSK) symbols, or Gaussian distributed

signals. That will be defined more specifically in later chapters.

The received signal model in vector notation is
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1.3 Background

For wireless communication systems with receive diversity, optimum combining (DOC)

is a well-known approach to combat fading and suppress cochannel interference. The

maximum-likelihood decision rule for OC is

where p (rksk, c, R) is the probability of rk conditioned on Usk , c, and R. A simplified

version of this decision rule will be shown in Chapter 2 for BPSK modulation.

One of the efforts in this dissertation is to derive closed-form expressions for

symbol error probability (SEP) and bit error probability (BEP) for OC. These kinds

of expressions have been obtained before but only for some special cases. Some related

work about OC is summarized in Chapter 2.

OC is a coherent detection scheme. To construct the weight vector w, the

following information is required: c, the channel gain (amplitude and phase) of

the desired signal, and R, the covariance matrix of the interference plus noise. For

communication systems where channel phase information is very difficult or impossible

to recover, OC is not practical. Under this circumstance, a non-coherent detection

scheme must be considered.

One such non-coherent scheme is differential detection of differentially encoded

signals. For conventional differential detection, two received signals are used in the

observation interval to make decisions about the transmitted signal. The recovery

of the channel phase is not required. The decision rule for conventional differential

detection is
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conditioned on sk-1 , skiand

R. Conventional differential detection suffers a performance penalty compared to

coherent detection.

Multiple-symbol differential detection (MSDD) achieves better performance than

conventional differential detection (but not as good as coherent detection). In MSDD,

more than two symbols are used in the observation interval. It was shown that with

the increase of the number of symbols in the observation interval, the performance of

differential detection can be improved significantly. The decision rule for MSDD is a

generalization of (1.6)

where s k '-----. [sk_w_i), • • • , sk_1 , skiT is a sequence of K (K	 2) symbols, r k =

[rk_w 
T 

i_i ), • • • , Lk ] is a vector of all the received signals in the observation interval,

and p (rklsk,R) is the probability of L k conditioned on s kiandR.Some related work

about MSDD is summarized in Chapter 5. The channels are assumed to be static

within the transmitted sequence of K symbols.

In this work, MSDD is applied to communication systems with interference. The

only required channel information for that kind of MSDD is the covariance matrix of

the interference plus noise R. By simulation and analysis results, it is demonstrated

that asymptotically with increasing observation block, MSDD achieves performance

close to that of OC with differential encoding.

MSDD is also developed for another kind of non-coherent detection, where the

only required channel information is the channel amplitude of the interference. For

the case where there is only one interference source, the decision rule is



1.4 Outline of the Dissertation

The main topics of this dissertation are:

1. Error probability analysis of OC.

2. Derivation of the decision statistic for MSDD and analysis of its performance.

3. Performance comparison of OC and MSDD.

The first topic is covered in Chapters 2 to 4, while the last two topics are covered

in Chapters 5 and 6. The chapter outlines are as follows:

Chapter 2: The decision metric of OC is used to derive the closed-form expressions

of bit error probability (BEP) for OC. The BEP conditioned on the fading of the

interference is derived first, then the unconditional BEP is obtained. The expressions

are for systems with binary phase-shift keying (BPSK) modulation, multiple interferers,

and multiple receive branches.

Chapter 3: By using the moment generating function (MGF) of the output

signal to interference plus noise ratio (SINK), expressions for both symbol error

probability (SEP) and BEP for M-PSK modulation are derived. The final expressions

involve only a single integration over elementary functions. With these expressions,

it takes less time to evaluate the SEP and BEP than it would take to carry out

Monte Carlo simulations or to evaluate multiple-fold integrals. Simple asymptotic

expressions for BEP of OC for M-PSK modulation are also derived. Numerical results

are used to show how close the asymptotic results are to the exact results.

Chapter 4: The probability density function (PDF) of the output SINK for OC,

which can be obtained from the reliability function (defined as the probability that the
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SINK is less than a threshold), is used to derive an expression for the SEP for M-PSK

modulation. The final expression only involves a single integral with finite limits and

finite integrand. A closed-form expression for the SEP of BPSK modulation is also

derived. The new expressions for both M-PSK and BPSK are the first expressions

that can be used to evaluate the exact SEP of systems with interferers of unequal

power level.

Chapter 5: A detector exploiting MSDD technique is developed. The channel

gain of the desired signal is assumed to be unknown. M-DPSK modulation is

employed. The decision statistic for the detector is derived based on the principle of

maximum-likelihood sequence detection (MLSD). The performance of the detector is

demonstrated by simulation and analysis.

Chapter 6: Another kind of MSDD is presented to suppress cochannel interference.

The channel gain of the desired signal and the channel phase of the interference

are assumed to be unknown, but the channel amplitude of interference is assumed

to be known at the receiver. The interference signal is assumed to have the same

M-DPSK modulation as the desired signal. A maximum-likelihood sequence detector

is developed for detecting both the desired signal and the interference signal. This

receiver can be viewed as a kind of multiuser detector employing MSDD.

Summary and future work are presented in Chapter 7.



CHAPTER 2

BEP ANALYSIS FOR OC WITH BPSK MODULATION

2.1 IntLoduction

As mentioned in Chapter 1, for wireless communication systems with receive diversity,

OC is an efficient approach to combat fading and suppress cochannel interference. It

combines the output of the receive branches in an optimum way and achieves the

maximum output SINK.

Performance analysis of OC has been an active research area. Analysis for the

case of a single interference source can be found in [3, 9, 10i. In [3, 9i, Rayleigh fading

is assumed for the desired signal, but mean values, rather than actual distributions,

are used to represent fading effects on the interference. In [10i, exact expressions

(requiring integration) are developed under the assumption of Rayleigh fading for

both the desired signal and interference. Closed-form expressions of the BEP for this

case were obtained in [11i.

The case of multiple interferers is more challenging. Closed-form expressions

of the BEP for a number of interferers no less than the number of receive branches

and negligible thermal noise with BPSK modulation were developed in [12i. The

performance of systems with multiple interferers has been studied extensively through

Monte Carlo simulations [3i, capacity [13i, upper bound [14, 15, 16i, approximate

expressions [16, 17, 18i, and exact expressions with integral forms [19, 20i. The

performance of OC was compared with that of maximum ratio combining (MKC)

in [21i. Performance of OC in the presence of channel correlations is evaluated in

[22, 23i. A comprehensive treatment of diversity and OC methods can be found in

[24i.

10
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The conventional way of deriving the expression for SEP or BEP often starts

with the PDF or the MGF of the SINKS as will be detailed in Chapters 3 and 4. These

approaches yield closed-form expressions for the BEP of BPSK modulation [25i. In

the present chapter, a different approach is taken by performing the analysis directly

on the decision statistic rather than on the SINK. It is shown that, for BPSK, this

approach allows exact BEP analysis and it requires averaging only over the fading

of the interference. Although the algebra is somewhat cumbersome, at the end this

method provides a closed-form expression.

This chapter is organized as follows: Following the system model in Section 2.2,

the conditional BEP is derived in Section 2.3. In Section 2.4, the conditional BEP is

averaged over the fading of the interference to get the unconditional BEP. Numerical

results are presented in Section 2.5.

2.2 System Model

The system model used in this chapter is similar to that mentioned in Chapter 1,

Section 1.2. For OC, symbol by symbol detection is performed and time does not

affect the analysis. Hence the time index k in (1.1) can be dropped and the system

model is rewritten as

where all quantities are defined similarly to (1.1). The symbol s is assumed to be

BPSK. The channel gains A 1 and Ao are assumed to be independent and identically

distributed (i.i.d.), zero-mean, circularly symmetric, complex Gaussian random variables

(Rayleigh fading), with variance 1/2 per dimension. The signal model in vector

notation is
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where r = [r 1 , r2 , • • • , rNA i T 
, c, cif, and n are defined similarly, z = PIEj=icisi + n

is the interference plus noise vector.

It is further assumed that conditioned on the vectors c if, the interference plus

noise vector z has a multivariate complex-Gaussian distribution with zero mean and

covariance matrix R = E LzZH J ,
NI

R =	 a2INA
	 (2.3)

i=1

where the superscript H denotes the Hermitian transposition, o -2 is the power of the

noise, and INCA is an identity matrix of rank AA.

Define Amax = max(AA , AI ) and Amin = min(AA , AI ) . Diagonalize R as R =

UAUH , where A = diag (A i , A2, • • • , ANA ), A1, A2, • • • , ANA are the eigenvalues of

R listed in descending order, and U is a unitary matrix whose columns are the

eigenvectors of R. Assume that the vectors cif (for i = 1, 2, • • • , Ni) are linearly

independent (a reasonable assumption since the components of these vectors are

realizations of mutually independent random variables). It follows that [20i Al 	 A2

• • • ANnii are random variables, while Am = a 2 for m Amine 1, Am i n + 2, • • • , AA.
id

For later use, denote the vector of non-trivial eigenvalues as A= [A1, A2, • • • Amin •

The inverse covariance matrix of R is R' = UA1UH.

2.3 DeLivation of Conditional BEP

In this section and the next, the theoretical analysis of the BEP of OC for BPSK

modulation is carried out.

As shown in Figure 2.1, for the OC detector, the components of the received

signal vector r are weighted and combined to obtain the output signal. The weight

vector that yields the maximum SINK is w Roc [3i 1 . The output of the combiner

is OHL. For BPSK modulation, the decision rule of the detector is: if Ke(OHr) 0,

'In this report, R is the interference plus noise covariance matrix. Some authors compute
the optimal combining weight vector from the signal plus interference and noise covariance



13

Figure 2.1 Diagram of the OC detector for BPSK modulation.

the decision is made that 1 is transmitted; otherwise the decision is made that —1 is

transmitted. Due to the symmetry of the BPSK constellation and assuming a source

with equal symbol probabilities , it suffices to analyze the case of s = 1. For this case

where "*" denotes complex conjugation. According to the decision rule, when D < 0,

the decision is made that —1 is transmitted and an error occurs. Therefore the BEP

The analysis has two steps. First, the BEP is expressed

conditioned on the fading of the interference. Subsequently, the conditioned BEP is

averaged over the fading of the interference.

Fixing the values of the channels c if of the interference sources leads to fixed

values of the eigenvalues of the interference plus noise covariance matrix R. These

eigenvalues A, form the diagonal of the matrix A. Substituting w = R-1c into (2.4)

and de-composing R-1 as UA_1UH , D can be expressed as

matrix. As shown in [26j and can be readily verified, the resulting weight vectors provide
the same performance as they differ only by a scaling factor.
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where Am 's are the eigenvalues of R defined previously, em's are elements of the

whitened observation vector

and gm 's are elements of the modified channel vector

Conditioned on the eigenvalues Am , the variable D is a quadratic form of Gaussian

random variables. The goal is to evaluate the conditional BEP Pb,BPSK (EPA) =

Pr(D < 01A), where the notation indicates the dependency on the Amin largest

eigenvalues of R (the other (AA — Amin ) eigenvalues are equal to the constant a2).
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where p),(A) is the joint probability density function (PDF) of the eigenvalues. Serendipitously,

the PDF p(A) was developed in [20i for a signal model similar to ours and is given



x
	(Ai - a-2 	— a2 2

PI 	
PI	)	

(2.21)
[1<2<j<Na in

NA-Nmin-1 ( AA — Amine ± 1 — 1
fm (y) + (-1)NA-Nmin

Nmin

Pb,BPSK 	 37) =
m=1 1=0

	 1

by

pa(A) =
Emir, 	 ( Ai 0_ 2 \ (Ai 0.2 Naax — PNain

Ko 	 expo Pain	PI	PI
)i=i
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where

K0 = 
1 

(2.22) 

[PNaini i=1 max — i ) ! ] [11iN=alin (Amin 	 i)!] •

The conditional BEP in (2.15) is a non-rational function of the eigenvalues A m 's.

To facilitate the integration in (2.20), define the following transformation of variables

Om = 	 m,
-I- 1, 	 m = 1, 2, • • • , AminPs

(2.23)

and define the set y = [Yid, Y2, • • • , YNain i
d . Since Am is random, Am, is random as well.

Also define
2a
± 1 = 1I —7 +1. (2.24)

Then

Am = Ps (Orn2 —1) m = 1, 2, • • • , min
	 (2.25)

2 	 ps (77 2	 1)	 (2.26)

By substituting (2.25) and (2.26) into (2.15), and after some straightforward manipulations,

the conditional BEP as a function of the variables ym's is obtained as

PNain

xi
m=1

( 1 ___ ) NA —Name ( 1 )1

(277) NA —Nain± i (2.27)



where the functions f, (y) and hm,l (y) are defined respectively as

	1 _ 2ym (1 71 2)NA —2Nmin 	Nain 

fm (Y) — 0   
H 1 - Br, 

zsYm (On 	72)	
n=1,n0

	A-Nmin 	 2 	 2
Ym2 Frim,

18

(2.28)

(_1)NA-Nain-/ (1 + re BmA-Nain	1

X 

1)NA-Nain
 ((Bm)(B??1,1	 772)NA-Nam-1

Na i n
1 07,

n=1,n^m Yn2 	Ym2 •

and

hni,i (Y)

The function bk (ym ) in (2.29) is in turn defined for 1 < k < AA — Amin as

bk (Ym2) = — (1+ ym) (77 - ym)k + (1- Bm) (77 + Ym)k •

(2.29)

(2.30)

Clearly, the conditional BEP Pb , BpsK (Ely) is a rational function of the elements

of the set y. By using the Jacobian of the transformation from A to y, the joint PDF

of y is

Ay (Y)

{ Nmin
K1 II expo [ — i3 (B2 — 

772) ] (y2  712) Naax —N
am

i=-1

X 	 1-1
1<i<j<Na i n

( y12 	 2
Y1Y2 • • • Ma i n (2.31)   

for Bi 	 Y2 	 • • • 	 YNni,n 	 77, where

Ps

= :1 (2.32)

is the signal to interference ratio (SIK) and

2Nmin

1 = 	
13Naa.Nain.

[Nain  (A
mp

 — i)!1 [nNaiin (Amine — i)!11 li=--1

(2.33)
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The unconditional BEP Pb,BPSK is obtained by averaging the conditional Pb,BPSK (E 1 y)

over the random variables in the set y,

This expression can be used for any number of diversity branches AA and any

Next the terms of (2.34) are evaluated.



in terms of the initial values B0 and B 1 as:

20

The second summation in (2.37) is taken over all sets of indices satisfying the

stated conditions. Substituting B0 and B 1 in (2.36), then Bq (for q > 2) in

closed-form is:



Using the expressions obtained in (2.42) and (2.45), (2.34) can be evaluated to obtain

the exact BEP for any given number of diversity branches AA, number of interferers

AA-,SNR-y = 13,/a2and SIK 0 =Ps/Pi.



22

A simpler expression can be derived for the special case of AA > AI, SNK >> 1

and SIK < 1.

Comparing (2.46) with (2.19), it can be seen that for SNK y >> 1, the BEP of a

system with AA diversity branches and AI (Nib < AA ) large interferers is equivalent

to that of a system with (AA — AI ) diversity branches but without interference. This

is a well-known result for OC [13i.

2.5 Numerical Results

Figures 2.2 to 2.5 show the BEP versus SNK for different SIK O. Figures 2.2 to 2.4 are

for AA = 4 diversity branches, and NT = 1, 2, 3 interferers, respectively. Figure 2.5

is for AA = 8 diversity branches and AI = 5 interferers. Figure 2.6 is for 4 branches,

varying number of interferers, and SIK = 10.

In Figures 2.2, 2.4, 2.5 and 2.6, the interference generated in the simulations

had a Gaussian distribution as assumed in developing the BEP analysis. Simulation

results in Figure 2.3 were generated for two interference sources transmitting BPSK

symbols. Analytical results were calculated using (2.34) and the related expressions

such as (2.42) and (2.45).

In all the figures, the analysis results match the simulation results. This provides

convincing demonstration of the validity of the analytical expression for BEP.
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FiguLe 2.2 BEP versus SNK for AA = 4 branches, A/ = 1 Gaussian distributed
interferer.

As shown in Figure 2.3 for BPSK interference, the Gaussian assumption for

the interference, while necessary for obtaining the theoretical results, is not critical

for the accuracy of the BEP expressions. This can be explained by recognizing that

the system has a sufficient number of degrees of freedom to suppress the interference

sources effectively. The interference suppression is not sensitive to the Gaussian

assumption. In fact, it is well known that OC maximizes the SINK irrespective of the

density function governing the interference.
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CHAPTER 3

SEP AND BEP FOR OC WITH M-PSK MODULATION

3.1 IntLoduction

In Chapter 2, a new method was introduced for deriving the closed-form expression

for the exact BEP for OC with BPSK modulation. The method started from the

decision statistics of OC. This approach is not applicable to systems with M-PSK

modulation.

An expression for SEP for M-PSK was derived in [20i. The expression is

exact, and it applies to any number of interferers and receive branches. It involves

(Armin 1)-fold integration, where Am in is the minimum number of receive branches

or interferers. An effective technique was derived to evaluated the SEP in [28i. A

simpler and more elegant SEP expression was derived in recent work [29i for the same

case. The expression contains integration over an integrand, which incorporates the

incomplete Gamma function, itself an integral form.

In this chapter, expressions for both SEP and BEP for M-PSK are derived,

with any number of receive branches and interferers. The moment generating function

approach is taken to reach the final expressions, which involve only a single integration

over elementary functions. With these expressions, it takes much less time to evaluate

the SEP and BEP than it would take to carry out Monte Carlo simulations or to

evaluate a multiple-fold integral.

The system model and assumption for this chapter are the same as those

described in Chapter 2, with the exception that now the desired signal s is an M-PSK

symbol. The expressions for SEP and BEP are developed in Section 3.2. Numerical

results are shown in Section 3.3.

26
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3.2 ExpLessions foL SEP and BEP

With the OC detector, the components of the received signal vector r are weighted

and combined to obtain the output signal. The weight vector yielding the maximum

SINKS is O = R-1c. The output of the combiner is

The terms VPs cHR-lcs and cHR-1 z represent respectively, the desired signal and

interference plus noise. The latter is Gaussian distributed conditioned on the channel

vectors c and cif. The signal model of (3.1) is similar to that of an AWGN channel

with noise variance Es ,, n [ cHR-1z 2 ] , with the expectation taken over the interfering

signal s 2 and AWGN n.

3.2.1 ExpLession for SEP

For M-PSK signals over the AWGN channel, the SEP Ps, m_psK (Eery) (conditioned on

the SNK -A) can be expressed as [24, Eq. (8.22)i

where M is the number of symbols of the M-PSK modulation, and 7 is the symbol

SNK. Likewise, for OC with M-PSK, the SEP can be written as

where -y etis the SINK at the output of the optimum combiner. The SEP is conditioned

on channel realizations through -A t. In order to get the ensemble average SEP Ps,m_psK

for OC, Ps,M-PSK (E171) has to be averaged over the distribution of -A pt ,
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where p-yt (7t ) is the PDF of the SINK 7t . Let AytIA (')/t1A) represent the PDF of 7 t

conditioned on the non-trivial eigenvalues A = [A i , A2, • • • , ANmi„i 
d 

. The unconditional

PDF p-ytp (7t ) can be obtained by averaging p-ytp (t1A) over A:

P-yt (7t)	 f AMNIA (7t1A)px(A)dA. 	 (3.5)

By substituting (3.3) and (3.5) in (3.4), and after some manipulations similar

to those in [24i, it follows that

1
Ps,M-PSK

7F

(M- 1)7r/M , 	 sin20 (7/M)
Ivi-rt 	 c19

sin 2 0
p › ,(A)dA,	 (3.6)    

where Myt lx (•) is the MGF of the SINK 7t conditioned on eigenvalues A. For the

Rayleigh fading channel, the MGF is given by [24, Eq. 10.52i

( 1 \ NA-Nmin  Nmin 	
1

M-YtIA (S) = 	
1 —(1_ s)	 H 1 - s'Z=1

(3.7)

where
PS

a2

is the symbol SNK.
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3.2.2 Expression foL BEP

For M-PSK modulation with Gray code bit mapping over the AWGN channel, the

BEP Pbx_psK (E17) is ([30i, [24, Eq. (8.30)i)

Pb,m-psx (Eh()

PO (E17)

2 [P1 (Eh') 2P2 (EH') + P3 (E17)i

[P1 (Eh') 2P2 (E17) + P3 (E 7) + 2P4 (E17) +

3P5 (E7) + 2P6 GEM + P7 (E17)i

2 [E 8k=1 Pk (E17) E5k_2 Pk (E 'Y)

P5 (E 'Y) 2P6 (E17) + P7 (E17)i

M = 2

M = 4

M = 8

M = 16

(3.8)

where

Pk (EV) =
1 17*--(2k-1)/M] exp 	sin2 [(2k — 1) I 	d8

27r J0 	sin2

}1 f 7[1— (2k-1-1) M] 

exp 	
sin2  [(2k + 1) g 

27r J0 	sin28 	
d9.	 (3 . 9 )

For M > 32, similar expressions can be obtained [30i.

Adapt these expressions for OC by averaging Pk (E ley) over eyt (similar to the

derivations from (3.2) to (3.6)) so that,

Pk

1 f	 ir[1-(2k -1)/M] mytlx 	sin2 [(2k — 1) 71/Mi)
27r 	 sin2 	

dB} p),(A)dA

1 f 	 f 7[1-(2k+1)/M] 	 sin2 [(2k 	 1) 7r/M1i )
do}net

27r 	
A 	 sin20

xp ›,(A)dA. (3.10)
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The direct evaluation of (3.15) is computationally intensive even for small Amine since

it involves a 1)-fold integration. It will be shown that an expression for

C (0, can be obtained which involves only a single integration form.

By converting the product in (3.15) into a summation,



32



33

The finite integral above is readily evaluated numerically.

An inspection of the terms that make up C (0, ) in (3.19) indicates that the

integration in (3.26) is the only one required to evaluate C (0, ). With (3.13) and

(3.19), the SEP can be calculated. BEP can be calculated with (3.11), (3.14) and

(3.19). Although (3.19) and the related expressions appear involved, they consist

of elementary functions and a single integral form which can be readily computed

numerically using Matlab or similar software.

These expressions are exact. But since the calculation of Ye ,, in (3.26) involves

integration, the actual accuracy of the final result will depend on the accuracy of the

numerical integration.
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3.3 Asymptotic ExpLessions of BEP foL High SNR

In this section, closed-form expressions of BEP for asymptotically high SNK 'y are

derived. The asymptotic expressions provide an intuitive insight and are easy to

calculate. These expressions are needed later to compare the performance of OC

with that of MSDD. The case of no interference (MRC) is discussed first.
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The difference between the MGF for SIR < 1 in (3.42) and the MGF without

interference in (3.27) is the loss of Armin diversity degrees of freedom in (3.42). Therefore

the BEP for SIK << 1 can be obtained by replacing AA in (3.34) and (3.41) with

AA — AI, i.e., for OC in the presence of AAA- interference source, when SNK >> 1 and

SIK < 1,
(2 (AA — AI ) — 1 	 1

Pb,BPSK R'-i (AA AI) 1  (47)NA-NI for BPSK 	 (3.43)

and

2  (2 (AA — AAA-) — 1) 	 1
Pb,M-PSK log2M (AA — NI) — 1 ) [47 sin  (7r/M NA-NI 

for M-PSK. (3.44)

3.4 Numerical Results

In this section, numerical results are used to demonstrate the new exact SEP and

BEP expressions. The interference generated in the simulations had a Gaussian

distribution as assumed in the analysis. Analytical results were calculated using

(3.13) (for SEP) and (3.11) (for BEP) and related expressions such as (3.19) and

(3.14). To facilitate the comparison, both simulation results and analysis results are

presented in all figures.

Figure 3.2 shows the SEP versus symbol SNK = P /a2 for AA = 6 branches,

A/ = 4 interferers and SIK = Ps /P/ = 10 dB. Figures 3.3 and 3.4 show BEP versus

bit SNK = PS/a2/log2 (M). Figure 3.3 is for AA = 6 branches, A/- = 4 interferers and

SIK = 0 dB. Figure 3.4 is for AA = 4 branches, AI- = 6 interferers and SIR = 15 dB.

In Figure 3.4, since there are insufficient degrees of freedom to completely suppress

the interference, the BEP reaches an error floor as SNR increases.

Figure 3.5 shows the BEP versus SIK for AA = 4 branches, AI- = 6 interferers

and bit SNK = 10 dB. Figure 3.6 shows the BEP versus the number of receive branches

AA for NAB = 4 interferers, bit SNK = 10 dB and SIK = 15 dB. It can be seen that

logm (BEP) decreases linearly with the increase in branches.



FiguLe 3.3 BEP versus bit SNR for AA = 6 branches, NT = 4 interferers, SIK = 0
dB.
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Figure 3.6 BEP versus the number of branches AA, Nib = 4 interferers, bit SNK
= 10 dB, SIK = 15 dB.

In all figures, the analysis results match the simulation results. This provides

a convincing demonstration of the validity of the analytical expressions developed in

this chapter.

Figure 3.7 shows that when there is no interference, the asymptotic results

yielded by (3.34) (for BPSK) and (3.41) (for 8-PSK) are very close to the non-

asymptotic results yielded by (3.29) for SNK > 15 dB.

Figures 3.8 and 3.9 show the results for the case with interference. The asymptotic

results are yielded by (3.43) (for BPSK) and (3.44) (for 8-PSK). The exact results are

yielded by (3.11) and related expressions such as (3.19) and (3.14). For SIK = 0 dB

and BPSK in Figure 3.8, the asymptotic results are not very close to the exact results

since SIK is not much less than 1. For all of the other cases shown, the asymptotic

results are very close to exact results for SNK > 15 dB.
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FiguLe 3.8 Comparison of asymptotic results and exact results, AA = 4 branches,
AAA- = 2 interferers, SIK = —0 dB.
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CHAPTER 4

SEP OF OC WITH ARBITRARY INTERFERENCE POWER

4.1 IntLoduction

In Chapters 2, 3 and almost all other literature that focuses on the discussion of

BEP and SEP for OC, the power levels of the interferers are often assumed to be

equal. In this chapter, expressions for the case of arbitrary interference power levels

are derived.

In most of the literature, with some exception such as [32i where the SEP was

derived from the decision metric of OC, the MGF approach is exploited to derive

SEP for systems with multiple interferers. The MGF approach is very popular for

evaluating the SEP since it requires the MGF of the SNK or the SINKS instead of the

respective PDF. In many cases, the MGF has a much simpler form than the PDF.

It turns out that for OC, a simple expression for the PDF of SINK can be

obtained from the reliability function, which is defined as the probability that the

SINK is less than a threshold [33i. Subsequently, the average SEP can be obtained

by using the conventional method, i.e., by averaging the instantaneous SEP over the

PDF of SINKS. In [34i this approach was adapted to analyze the error probability, but

the author used an approximate relation between the SEP and SINKS, and therefore

obtained only approximate expressions.

In this chapter, the exact relation between the instantaneous SEP and the SINKS

is used to derive an expression for the exact SEP for M-PSK modulation. The final

expression involves only a single integral with finite limits and a finite integrand. A

closed-form expression for the SEP of BPSK modulation is also derived.

The system model and assumption for this chapter are the same as those

described in Chapter 2, except that: (1) the desired signal s is an M-PSK symbol;
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(2) the A/ interferers may have unequal power levels. The sampled output of the AA

receive branches is

where P2 is the i-th interferer's power; the definition of other parameters and the

assumptions can be found in Chapter 2.

Define SNK
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The SEP expressions for M-PSK and BPSK are developed in Sections II and

III, respectively. Numerical results are shown in Section IV.

4.2 SEP Analysis for M-PSK Modulation

For OC with M-PSK modulation, the SEP conditioned on the output SINK yt can

be written as [24i

where M is the number of symbols in M-PSK modulation. In order to get the

ensemble average SEP Ps, m_psK, P- PS,M-PSK (EN needs to be averaged over the PDF

P-yt (7t) of 7t,

Substitute (4.6) in (4.8) and use the method of integration by parts. Then
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The above expression only involves integration of a finite integrand over finite limits;

therefore its evaluation is fast and accurate. It can be used for any M, including

M = 2, i.e., BPSK modulation.

4.3 SEP Analysis for BPSK Modulation

Though (4.11) is easy enough to evaluate, it would be more desirable to obtain a

closed-form expression, since closed-form expressions are usually faster when it comes

to numerical evaluation. Up until now, (4.11) is the best that can be obtained for

M-PSK when M 2; whereas for BPSK, a closed-form expression can be derived.
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By using Eq. 3.381.4 and Eq. 8.339 in [31i, T 1 can easily be expressed in the

following closed form:



Hence
1 	 1 

n (7t + On) 	 + 01) B

and

1 k= 1,l=Ar
Ak,i =

0 	 others

= On for L = 1,In this case Oil 	13i for any i 	 j. Hence

NT , Lk 	1 for k = 1, 2, • • • , Np , and

BI1
L.

rin=I 1 (7t 13n) 	 k=1
'At

Aka

Yt=-13k

hit + 13k) 
IINII (rat + 0i)

1
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• All the SIK's are equal

In this case, there is only one unique 0. Therefore Bp 	1, L1 = Nr,i3 = 01.

2, • • • ,

(4.20)

(4.21)

Bp =

(4.22)

(4.23)

(4.24)

• All the SIK's are unique

where

\ •Fr Aria-

— Pk)

4.3.2 Evaluation of the IntegLation in Equation (4.15)

Substitute (4.18) into (4.15),

A
Bp  LkBA -m

m=max(BA-B/±1,1) j=0 k=1 1=1

1
T2 = 2
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To summarize, by combining together (4.13) and the related expressions (4.17),

(4.24), (4.28), and (4.30), the closed-form expressions for the SEP of BPSK can be
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which is the same as Eq. (16) in [14

The SEP of BPSK can be calculated from both (4.13) and (4.35). The evaluation

of (4.35) takes less time for small AA (number of receive branches) and A/ (number

of interferers). For large AA and AAA-, (4.35) is less accurate than (4.13) due to its

complexity and the numerical accuracy of the Matlab software being used.

4.4 NumeLical Results

In this section, both analysis results and simulation results are provided. The analysis

results were calculated using (4.11), and are represented by continuous curves while

Monte Carlo simulation results are indicated by discrete symbols.

Figure 4.1 shows the SEP versus SNK for QPSK modulation, 4 branches, varying

number of interferers, and SIK = 10 dB for each interferer. Figure 4.2 shows the SEP

versus SNR for AA = 8 branches and AAA- = 6 interferers. The SIK'S for the 6
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Figure 4.1 SEP versus SNR for QPSK modulation, NA = 4 branches and SIR = 10
dB for each interferer. The number of interferers varies from NI = 3 to N/ = 6.

interferers are 10 dB, 10 dB, 2 dB, 2 dB, 0 dB, 0 dB, respectively. Figure 4.3 shows

the SEP versus SIR for BPSK modulation, AT/ = 9 interferers and SNR = 10 dB,

with the number of branches varying from 7 to 10. The SIR's of 7 interferers are fixed

to 0 dB, while the SIR's for the other 2 interferers vary from 0 dB to 30 dB as shown

by the x-axis. Figure 4.4 shows the SEP versus the number of branches AA for 32

interferers at fixed SNK = 10 dB. The SIR's for 16 interferers are 0 dB, while the

SIG's for the other 16 interferers are 2 dB.

The analysis results match the simulation results in all figures that cover various

configurations. This proves that the analytical expression can be used to evaluate the

SEP.
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FiguLe 4.3 SEP versus SIK for BPSK modulation, A/ = 9 interferers and SNR
= 10 dB. The number of branches varies from BA = 7 to NA = 10. The SIK's for 7
interferers are fixed to 0 dB. The SIR's for the other 2 interferers vary from 0 dB to
30 dB as shown by the abscissa.
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FiguLe 4.4 SEP versus the number of branches AA for Nib = 32 interferers and
SNK = 10 dB. The SIR's for 16 interferers are 0 dB, while the SIG's for the other 16
interferers are 2 dB.



CHAPTER 5

MSDD WITH KNOWN COVARIANCE MATRIX OF

INTERFERENCE PLUS NOISE

5.1 Introduction

In the previous chapters, the performance of OC was analyzed. OC is a coherent

detection technique which requires information on the channel phase of the desired

signal. In this and the next chapter, the non-coherent detection scheme multiple

symbol differential detection (MSDD) is presented.

Multiple symbol differential detection (MSDD) was first proposed for detecting

M-PSK signals transmitted over an additive white Gaussian noise (AWGN) channel

[35i. The main advantage of MSDD is that it does not require a coherent phase

reference at the receiver. It does require, however, the ability to measure relative

phase differences. MSDD performs maximum-likelihood detection of a block of information

symbols based on a corresponding observation interval. The method was presented

to bridge the gap between the performance of coherent detection of M-PSK and

conventional differential detection of M-DPSK [35i. The channel phase was assumed

to be unknown to the receiver, but constant over multiple symbol intervals. In [35i it

was shown that for a long observation interval, the performance of MSDD (in terms

of the required SNR for a given BEP) approached that of coherent detection (with

differential encoding at the transmitter).

The MSDD scheme was extended to trellis coded M-PSK in [36i. MSDD for

the fading channel was analyzed in [37i and for correlated fading in [38i. MSDD

application to multiuser code division multiple access (CDMA) was considered in

[39i. Performance of MSDD with narrow-band interference over a non-fading channel
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was discussed in [40i. A system with MSDD and receive diversity was formulated in

[41i, while [42, 43i considered MSDD with transmit diversity.

In this chapter, an extension to MSDD is derived for communication in the

presence of interferers. The channel of the desired signal is a diversity Rayleigh

channel with multiple outputs. For an antenna array at the receiver of a communication

system operating over a slow fading channel, any signal source is spatially correlated.

The channel realizations at each output are mutually independent, constant over the

observation interval, and unknown to the receiver. The Gaussian assumption is made

with respect to the aggregate of interference plus noise. The covariance matrix of

the interference plus noise is assumed to be known. The MSDD decision statistic is

derived based on the principle of MLSD. A closed-form expression for the conditional

pairwise error probability (PEP) is derived. A closed-form expression for the BEP is

intractable; however, one is obtained for an approximation to the union bound. The

approximation utilizes only dominant terms in the union bound and is shown to be

a good approximation of the BEP for some cases.

The computational complexity of direct computation of the decision statistic

grows exponentially with the number of symbols in the observation interval. For single

channel MSDD, an optimum algorithm was proposed in [44i. Sub-optimal decision

feedback algorithms for the single channel case were suggested in [45, 46, 47i. No

efficient MSDD algorithm was published for MSDD with diversity. In this chapter,

the sub-optimal decision feedback algorithm in [47i is applied to MSDD with diversity.

The main improvement over published algorithms is the introduction of iterations for

symbol detection.

This chapter is organized as follows: Section 5.2 presents the signal model. The

MSDD decision statistic is derived in Section 5.3. The error analysis is developed in

Section 5.4, while Section 5.5 presents the numerical results.
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5.2 System Model

Since there are some differences and some additional assumptions for MSDD, the

system model that was initially described in Section 1.2 needs to be expanded. For a

wireless communications system with NA independent receive branches, the sampled

output of the matched filter corresponding to time k and the lath branch is



where p(rdsk , R) is the likelihood of the observed data r k given the transmitted

symbol sequence ski and the covariance matrix R.Under the Gaussian assumption

for the aggregate of interference and noise, the observation rk (conditioned on the

transmitted sequence ski, the covariance matrix R and channel c) has a multivariate

Gaussian distribution. The conditional probability p(rk es k , R, c) can then be expressed
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xk _ i is the whitened received signal vector, and g is the modified channel vector.

Note that since U is unitary, the modified channel vector g has the same distribution

as the original channel vector c. Let the components of the modified channel vector

g be expressed as gib=alej01, 1 = 1, ... NA.Likewise, let the lath component of xk_i



Note that y id(ski) is a function of both the transmitted sequence skiand the observed

sequence Lk .

Recall that the components of the modified channel vector g have the same

distribution as the components of the channel vector c. It follows that a l is Rayleigh

with E [an = Ai and 5l is uniformly distributed in the interval [0, 27). To average

the conditional distribution p(rksk, R, g) over the modified channel g, the integral

needed to be evaluated, where K g  (g) is the PDF of g. Assume the channels are

mutually independent, then

where pa,(a i ) and po1(5l) are the PDFs of a l and 5l respectively. For Rayleigh fading

channels,
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Substitute (5.10), (5.14), (5.15) and (5.16) into (5.13), and separate the integrations,
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Figure 5.1 The diagram of a multiple symbol differential detector.
with M symbols, the number of symbol sequences that need to be tried is

The detector searches through sequences s ki and chooses the sequence that has the

largest decision metric 77(s k ). A diagram of the MSDD receiver is shown in Figure 5.1.

It follows that the optimum multiple symbol differential detector for multiple

channel branches in the presence of interference, is a weighted sum of correlations of

whitened observations and hypothesis symbols. Note that this decision statistic does

not require knowledge of the signal channel vector.

The decision statistic in (5.20) provides multiple symbol differential detection

for a MaDPSK sequence transmitted over multiple independent fading channels in

the presence of correlated Gaussian noise.
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The decision statistic is ambiguous with respect to an arbitrary phase 0'. Indeed,

Differential encoding at the transmitter is required to resolve this ambiguity.

5.3.1 Iterative Decision Feedback Algorithm

The complexity of MSDD for MaDPSK with an observation interval of K symbols

increases with MK'. For large K, this complexity makes simulations impractical.

To overcome this difficulty, a practical sub-optimal algorithm that uses decision

feedback is introduced. The basic purpose of the algorithm is to make symbol by

symbol decisions rather than testing the full sequence of symbols simultaneously.

The algorithm proceeds from symbol to symbol along the sequence of K symbols. At

symbol i it maximizes a decision statistic assuming that the other (K — 1) symbols

have been detected and are known. Several iterations can be carried out to improve

performance. The algorithm is implemented in the following procedure:

1. Initialization:



4. If m is not equal to the required iteration number (which is determined empirically),

go back to step 2.

5. Differentially decode sum) to get the final output.

To demonstrate the performance of this sub-optimal decision feedback algorithm,

Figure 5.2 compares the performance of sub-optimal and optimal (based on (5.21))

algorithms. The comparison is for the case of AA = 4 diversity branches, one

interferer, binary PSK (DPSK) modulation, and SIR = —6 dB. For an observation

interval of K = 12 symbols, with just 2 iterations, the performance of the subaoptimal

decision feedback algorithm is within just 0.2 dB of that of the optimum algorithm.

The advantage of the subaoptimal decision feedback algorithm is, of course, that it

takes much less time to run than the optimum algorithm. From the figure, it can also



67

be observed that iterations are beneficial to the performance of decision feedback.

The second iteration provides about 0.5 dB gain relative to that without iteration

(iteration 1). Additional iterations do not seem to improve the performance.

This decision statistic is the same as that in [41, equation (8)i. Indeed (5.20) is the

generalization of [41, equation (8)i to MSDD in the presence of interference.

• NA > NT and Interference >> Noise



The interpretation of this result is that for a system with NI strong interference

sources, the decision statistic is similar to that of MSDD without interference and

AI fewer degrees of freedom. This result will be further demonstrated in the ensuing

error probability analysis.

5.4 Error Probability Analysis

An exact expression for the BEP for differential detection can be obtained only

for DPSK modulation and the special case of K = 2 symbols. The exact error

analysis is intractable in the general case of MSDD with MaDPSK modulation over

diversity channels and in the presence of interference. The alternative approach is

to obtain an analytical approximate upper bound. An expression is derived in this

section for the PEP under the Gaussian assumption for the aggregate interference plus

noise. Then the union bound of the BEP can be derived from this expression. From

the union bound, an approximate upper bound is derived. The approximate upper

bound consists of relatively simple algebraic expressions. Even simpler expressions

are obtained for large SNR and small SIR. In the numerical results section, it is shown

that in many cases, the approximate upper bound is very close to the BEP obtained

by simulation.
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In the derivation of the PEP, assume a uniform flat power profile for the desired

signal channel, Qi = 1, and a flat AWGN profile with a? = a 2 for / = 1, 2, • . , AA.

The PEP is developed for correlated interference plus noise characterized by the

covariance matrix in (5.3).
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As mentioned in [24, p. 441i and [17i, this approximation is valid for AT/ << AA

and SIR < 1. For AI- = 1, the approximation in (5.42) is very accurate. For other

circumstances, such as AA < AI, SIR ,:_,' 1, it is shown in the numerical section that

(5.42) is an upper bound, just as in the case of the OC detector.



72

The forms of both the conditional and unconditional PEP are quite complicated

and do not afford much insight. It is of interest to obtain simpler expressions for

special cases. In the ensuing analysis, the symbol SNR is 7 = P S/2,  and SIR is

For all the cases tried, (5.45) yielded the same numerical results as the PEP developed

in [41i. However, (5.45) has the advantage of providing the PEP in closed form

without the need of integration.

The case of no interference can be further simplified for large SNR 7 >> 1. For
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This expression clearly exhibits the AAaorder diversity of the system. It should be

pointed out that since ( is proportional to K, P (ski -+ sick) does not necessarily increase

with K.

Hence both wig,, and W2 ,m are much larger than co l and w2 . By substituting these

approximate values into (5.38) and keeping only the dominant term, after some

manipulations,

From the comparison of (5.52) and (5.49), it can be seen that the PEP for

systems with diversity NA and N1 large interference sources equals the PEP for

systems with diversity (NA — N1 ) without interference. This result is well known

for interference suppression using OC. This analysis proves that the loss of degrees of

freedom due to interference suppression carries over to MSDD.

5.4.3 BEP Approximate Upper Bound

The sequence ski of MaDPSK symbols corresponds to (K — 1) log2 M information

bits (with differential encoding, the first symbol is known). Let A uk be the sequence

of (K — 1) log 2 M information bits encoded as ski, and let u/k be the sequence of

information bits which results from the detection of si ck. The pairwise BEP associated
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where h(uk , u/k ) denotes the Hamming distance between Auk and auk.

The BEP that ski is transmitted, and an error sequence (any error sequence) is

detected, is upper bounded by the union of all pairwise bit error events. Since s ki can

be any input sequence (e.g., the null sequence ski = [1, 0, 0, • . , 0i d ) , the dependency

on ski can be dropped from the notation. The union bound on the BEP can then be

written as

where the summation is taken over all the sequences u'k 's that are different from the

transmitted sequence of information bits Auk .

Direct application of (5.54) does not shed light on the mechanisms affecting

MSDD performance. A clearer picture is obtained by developing an approximation

to the union bound. Note that the union bound in (5.54) is a function of the PEP'S,

large SNR, the dominant terms in the BEP occur for sequences for which the quantity

v(sk , sik )1 2 is maximum. By carrying over the same approach to the diversity fading

channel, keeping only the dominant terms, and noticing that P (ski ---4 sick) is constant

if Iv (ski, s'k )1 is constant, the following approximation to the union bound can be
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Also, from [35, Appendix Bi, for sequences such that Iv (ski, sik )1= Iv (ski, sick) Lax , the

accumulated Hamming distances are

for multilevel modulation, M 4.

Strictly speaking, (5.55) is not an upper bound of the BEP. Numerical results

however, show that it is very close to, or larger than the BEP obtained by simulation.

Therefore, (5.55) can be used to study the performance of MSDD in the presence of

interference.

Next, the approximate upper bound for differential binary PSK (DPSK) and

M—DPSK (M > 4) modulations will be evaluated.



In this case, from (5.56)

For conventional differential detection, the observation interval is K = 2 symbols,

Iv (ski, sik )I max = 0. In this case, there is only one error sequence; therefore the PEP is

also the BEP,

Substitute P (ski -- s'k ) from (5.45) into (5.60). The exact BEP for DPSK over

NA diversity fading channels without interference can be obtained. For high SNR

>> 1, using (5.49),

This expression is the same as the one in [2, Eq. (14a4a28)i. It demonstrates that

familiar expressions for differential detection can be obtained as a special case of the

general case treated in this report.

For a longer observation interval K > 2, substitute (5.59) and (5.57) into (5.55)

to obtain

This expression is for the approximate BEP upper bound for DPSK over slowafading

Rayleigh diversity channels with interference. Next, some special cases for K > 2

and SNR 7 >> 1 will be computed, resulting in simplified expressions.
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Using (5.49) in (5.62), the approximate upper bound is

77

For MaDPSK, substitute (5.58) and (5.56) into (5.55). The approximate upper
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5.5 Comparison Oith OC

In this section, the BEP of MSDD is compared analytically with that of OCR. Since

the expression of the BEP for the general case is very complex, performance can

be compared analytically only for the cases of small SIR (relative large interference)

and no interference. Since both cases yield similar results, only the case of small

SIR is treated here. Performance comparison of MSDD and OC based on numerical

examples follows in the next section.
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For OC, the exact expression of the BEP for MaDPSK is very difficult to obtain.

But judging from Eq. (4.200) in [48i, the BEP for MaDPSK is about twice that

of MaPSK except for very small SNR. That can be demonstrated by simulation.

Therefore, the BEP for MaDPSK is

This expression holds for AA > AI, SIR << 1 and SNR >> 1. It can be concluded

that for AA > NI , SIR << 1 and SNK >> 1, when the observation interval of MSDD

increases to infinity, i.e., K --+ ooh , the performance of MSDD with nonacoherent

detection approaches that of OC with differential encoding.



Figure 5.3 BEP versus SNK for NA = 4 branches, /V/ = 1 interferer, SIR = —6
dB, DPSK modulation.

According to (5.73), the BEP of OC with differential encoding is about twice

that of OC without differential encoding. Therefore for MSDD of large K, the BEP

is only about twice that of OC without differential encoding.

5.6 Numerical Results

Numerical results presented in this section include Monte Carlo simulation results

and analysis results. In all cases, the channel branches and noise power profiles are

assumed to be uniform, i.e., C -2 / = 1 and a7 = a2 for 1 = 1, 2, ... , NA. The bit SNR

For comparison purposes, BEP curves for OC with differential

encoding is also provided. Except for Figures 5.6 to 5.8, all others figures are for one

interferer.

Figure 5.3 shows the BEP versus SNR for DPSK at SIR = —6 dB. Curves

labeled "Simulation" represent simulation results, while curves labeled "Analysis"

show analytical results as yielded by the approximate upper bounds (5.60) (for K = 2)
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Figure 5.4 BEP versus SNK for AA = 4 branches, AT/ = 1 interferer, SIR = —6
dB, DQPSK modulation.

Figure 5.5 BEP versus SNK for AA = 4 branches, A/ = 1 interferer, SIR = —6
dB, 8aDPSK modulation.



Figure 5.6 BEP versus SNR for NA = 8 branches, NI = 3 interferers, SIR = —10
dB, DPSK modulation.

and (5.62) (for K > 2). In all cases, PEP'S were computed by (5.42) and (5.38). The

interference plus noise term was generated such that its covariance matrix followed

(5.3). The OC curve was generated by simulation. It can be observed that analysis

results are very close to simulation results. It is also observed that the performance of

MSDD approaches that of OC with differential encoding as K (the number of symbols

in observation interval) increases. For example, at BEP = 2 x 10 -3 , when K = 2, the

SNK difference between MSDD and OC is about 2.2 dB. When K = 7, the difference

is about 1.0 dB. At K = 40, the difference becomes an insignificant 0.2 dB.

Figures 5.4 and 5.5 are respectively, for DQPSK and 8aDPSK. The curves in

these figures follow the same trends as in Figure 5.3.

Figure 5.6 is for NA = 8 branches, BI- = 3 interferers, and SIR = —10 dB. The

analysis results are still very close to simulation results since SIR<< 1. In Figure 5.7

where SIR = 0 dB, the analysis results are not close to simulation results. They are

more like the upper bound of the simulation results. In Figure 5.8 only simulation



Figure 5.8 BEP versus SNR for NA = 4 branches, N/ = 4 interferers, SIR = 10
dB, DPSK modulation.
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Figure 5.9 BEP versus the number of symbols in the observation interval K for

AA = 4 branches, NI = 1 interferer, SIR = —6 dB.

results are shown. From Figures 5.6 to 5.8 corresponding to the case of more than

one interferer, it can still be observed that the BEP of MSDD approaches that of OC

as K increases.

The results shown in Figures 5.9 to 5.11 are all analytical results. In these

figures, bit error probabilities are represented by their approximate upper bounds.

The approximate upper bound is computed based on the PEP expressions (5.38) and

(5.42), except for Figure 5.11.

Figure 5.9 shows the BEP of MSDD as a function of the number of symbols in

the observation interval, K. It is evident that for both DPSK (binary modulation)

and for 8aDPSK (M = 8), the performance of MSDD approaches that of OC as the

observation interval increases.

Figure 5.10 shows the BEP versus SIR, for bit SNR = 10 dB, and for the cases

of K = 2 and K = 40 symbols. When K = 40, MSDD achieves performance close to

that of OC with differential encoding regardless of the SIR.



85

Figure 5.11 Comparison of asymptotic results and exact results for AA = 4
branches, AI- = 1 interferer, SIR = —6 dB, DQPSK modulation.
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Figure 5.11 is intended to verify the asymptotic large SNR approximation to the

PEP. The signal modulation is DQPSK. Curves labeled "asymp" represent asymptotic

results computed by applying (5.69) (for K = 2) and (5.70) (for K = 40); curves

labeled "exact" represent exact results from (5.65) (for K = 2) and (5.66) (for K =

40). It is observed that for most SNK of interest (SNK > 10), the approximate upper

bound based on asymptotic PEP is very close to the approximate upper bound based

on the exact PEP.



CHAPTER 6

MSDD WITH UNKNOWN INTERFERENCE PHASE

6.1 Introduction

Two kinds of detectors for communication systems with reception diversity in the

presence of white Gaussian noise and interference source have been discussed thus

far. In Chapters 2 to 4, a detector using OC was discussed. To implement OC, side

information on the channel gain of the desired signal and the covariance matrix of

the interference plus noise must be available to the receiver. In Chapter 5, MSDD

was discussed for the case where the channel gain of the desired signal was assumed

to be unknown, but the covariance matrix of the interference plus noise was assumed

to be known. Both detectors show the ability to suppress interference.

It would be desirable to be able to suppress the interference without requiring

any information about the interference. Unfortunately, that is impossible. In Chapter

2, the interference plus noise is modeled as

If no information about c 2 (which is assumed to be Gaussian distributed) is available,

conditioned on the interference signal sick, the interference term \/PI sick would

be the same as Gaussian noise and could not be distinguished from the white Gaussian

noise Lk . Therefore, at least some information about the interference is required.

In this chapter, a detector is developed for the case in which the only required

channel information is the amplitude of the channels of the interference. The scenario

is similar to that in Chapter 5. But in addition to assuming that the channel gain of

the desired signal is unknown, the phase of the channel of the interference is assumed

to be unknown as well. The channel amplitude of the interference is assumed known.
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Moreover, the interference is assumed to have the same MDPSK modulation as the

desired signal. A maximumalikelihood sequence detector (MLSD) is formulated for

the joint detection of the desired signal and the interference. Simulation is performed

for DPSK modulation. Simulation results in terms of BEP versus SNK are provided

and compared with the results obtained by other detection schemes.

It is shown that when the interference level is high, this MSDD technique can

achieve better performance than detectors using OC (with differential encoding).

6.2 System Model

The system model used in this chapter is similar to that presented in Section 1.2,

except that now it is assumed there is only one interferer. The output of the match

filter is

The definitions of the variables are in Section 1.2. Both the desired signal sk and the

interference source Dick are assumed to be M-DPSK symbols.

The signals in vector notation are

and Lk  are vectors that are similarly defined

Assume both A 1 and A1c1 are zeroamean complex Gaussian random variables

(Rayleigh fading), and that they are mutually independent. For convenience, define

Alb=aiejcbt, AI l = cei,iejOI3,vectora=[al, al, • • • ,aBAi .Vectors4),al-and(/)/are

defined similarly to a. In this chapter, Uzi is assumed to be known, but a, and I

are assumed to be unknown.



Some other assumptions about the signals and channels will be provided in the

derivation of the decision statistic.

6.3 DecisioL Statistic

In this section, the decision statistic is derived for MSDD with known channel gain

for the interference a l-. MSDD is a form of MLSD. The decision is made after K

symbols are transmitted and received. Conditioned on the channels c and c/ , the

coherent decision criterion for sequence detection is given by

Note that both the desired and the interference symbols are detected. The pair

is chosen as the detected symbols. When

the only known channel information is ail , the decision rule for MLSD is
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As mentioned above, the channel c is assumed to be unknown. Eliminate c in
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where

D1c1 =

D1 c 2 =

D1 c 3 =
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Substitute (6.28) into (6.27),
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K I
1-1

x exp { D1c1
a? Lt I 1
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}

(6.32)

In (6.32), the probability of g rk is dependent on 0/c1 (1 = 1, ... , NA) (which is included

in c 1 ). This dependence can be eliminated by integration,

Ark 1 ski , SIB*, ail) = f K(r ekes k, SIck)CI)POI (0I)C140I1	 (6.33)

where p4,1 (01 ) is the probability density function of 0 / . For independent Rayleigh

fading channels,

13 CAI (0k) = 	 1 y,-7r ) BA 0 < 01c17 • • • , Cb I cBA < 27. 	 (6.34)

Substitute (6.32) and (6.34) into (6.33) and carry out the integration,

P(Eksk, Dick, chi)

where
BA

7]MSDD (Sk, Derck) - 	 exp 1 D1c1 + D1c2( 11 c1} 10 (2 1 ,01c31 arci)
	

(6.36)
/.-_1
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and 10 (e) is the zeroth order modified Bessel function of the first kind. Note that

is a function of ski and Sack.MSDD (SkISIc k)

The MSDD detector searches through all possible (s ki, slick) and chooses the pair that

has the largest n IMSDD (Sk,SIck) as the detected output.

To complete this section, the maximum-likelihood (ML) detector is introduced

for the case when both c and c / are known to the receiver. It is used in the simulation

results section for comparison with MSDD. The ML detector is a kind of coherent

detection technique that requires the channel gain of both the desired signal and

interference. It makes symbolabyasymbol detection instead of sequence detection for

MSDD. The ML decision rule is given by

From (6.38) and p(rksk , sli ck, c, cc-) shown in (6.9), the equivalent ML decision rule

can be obtained as

where the decision statistic
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6.4 SimulatioL ReDultD

In the simulations, 4 receive branches and DPSK modulation were used. The channels

of both the desired signal and the interference were assumed to have uniform power

profiles, i.e.,

In the figures SNK = PS/a2 and SIR = PS /Pi . Figure 6.1 and Figure 6.2 were

generated for SIR = 10 dB and SIR = —10 dB, respectively.

The curves labeled "MSDD(K = 2)" and "MSDD(K = 7)" are the results

for the MSDD detector developed in this chapter. It is observed that performance

improves with the increase in K, the number of symbols in the observation interval.

For example, in Figure 6.2, at BEP = 2 x 10', the required SNR for K = 2 is about

8.5 dB; for K = 7 it is 5.5 dB. That means increasing the observation interval from

K = 2 to K = 7 symbols results in a 3 dB SNR improvement.

The curves labeled "OC" are the results for OC. The curves labeled "MSDD

(known cove, K = 13)" are for the MSDD detector discussed in Chapter 5, which was

developed for known covariance matrix of the interference plus noise. MSDD (K = 7)

has about the same computation complexity as MSDD (known cove, K = 13).

In Figure 6.1, the BEP of MSDD (K = 7) is larger than that of MSDD (known

cove,K =13) and OC. In Figure 6.2, the BEP of MSDD(K= 7) is less than that of

MSDD (known cove, K = 13) and OC. It can be concluded that at a high interference

level, MSDD (K = 7) has better performance than MSDD (known cove, K 13) and

OC. This can be explained by the following: MSDD ( K = 7) detects the interference

signal D 1 c k as well as the desired signal sk , but the MSDD (known cove, K = 13) and

the OC detector detect only the desired signal. MSDD developed in this chapter is

a kind of multiuser detection that gets better performance as the interference power

increases. These results are reflected in Figure 6.3 which shows the difference between

the required SNR of MSDD and OC at BEP= 10-3.



In both Figure 6.1 and Figure 6.2, the performance of MSDD (K = 7) is not

as good as that of the maximumalikelihood detector (curves labeled "ML"). But the

difference is small for a high interference level. In Figure 6.2, at BEP = 2 x 10 -4 ,

the difference of the required SNK is about 1.6 dB. These results are reflected in

Figure 6.4 which shows the difference between the required SNR of MSDD and ML

at BEP= 10 -3 . It can be expected that this difference will decrease as K increases.



Figure 6.3 The difference between the required SNR (at BEP= 10') of MSDD
and OC versus SIR.
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Figure 6.4 The difference between the required SNR (at BEP= 10') of MSDD
and ML versus SIR.
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CHAPTER 7

SUMMARY AND SUGGESTIONS FOR FUTURE WORK

7.1 Summary

This dissertation accomplished the following:

• Obtained closed-form expressions of the BEP of OC with BPSK modulation.

• Derived expressions of the SEP and BEP of OC with MaPSK modulation, which

only involve integration over elementary functions.

• Formulated simpler asymptotic expressions of BEP for OC with MaPSK modulation.

• Derived expressions of the SEP of OC with M-PSK modulation. The expressions

can be used for systems with interference of unequal power levels.

• Developed the decision statistic of MSDD. The performance of this detection

scheme was analyzed. Through analysis results and simulation results, it is

proven that with an increasing observation interval, the performance of MSDD

approaches that of OC with differential encoding.

• Evaluated the performance of MSDD for the case when the channel gain information

of the interference is known, but the phase is unknown.

To summarize, for OC, there are three approaches for analyzing the error

probability: the first starts from the decision metric, the second starts from the

MGF of SINK, and the third starts from the reliability function. All approaches lead

to closedaform expressions for the case of BPSK modulation. Since the reliability

function is in simple form and can be used for systems with unequal interference

power levels, the approach presented in Chapter 4 is less complicated than other
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approaches, and its final expressions are relatively less involved and more desirable.

For MSDD, two types of detection schemes have been developed: one for systems

with a known covariance matrix of interference plus noise, and one for systems with

known interference amplitude but unknown phase. Both show good performance with

the increase of the number of symbols in the observation interval. The MSDD scheme

presented in Chapter 5 is practical for long observation intervals after the introduction

of an iterative decision feedback algorithm, which greatly reduces the computational

complexity.

7.2 SuggestioLD for Future Work

Looking into the future, there are three research topics related to this dissertation:

• Evaluate the error probability of OC and MSDD for a more realistic channel

Thus far, all the analyses and simulations are based on the assumption that the

channel information (amplitude, phase, covariance matrix, etc.) is perfectly known

at the receiver. In future work, more realistic channel models and information will be

considered. For example, the channel gain and covariance matrix will be estimated

through training sequences. The MSDD, which was developed on the assumption

that the channel is static within the observation interval, should be evaluated for the

case in which the channel is time-varying at various rates. Work could also be done

for developing MSDD algorithms for other fading channel models (such as Ricean,

Nakagami, etc.), or for applying the algorithms developed for Rayleigh channels to

other channel models in order to evaluate the performance. New expressions may

be derived for OC applying to various channel models. With modifications, some

methods presented in this dissertation may be applied to systems with both transmit

diversity and receive diversity.

• Evaluate the error probability of OC and MSDD for more complicated system

models
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The discussion in the previous chapters focuses on simplified systems with

MaPSK or MaDPSK modulation. Other modulation schemes, such as quadrature

amplitude modulation (QAM), can be evaluated in future work. OC and MSDD can

be incorporated into more complicated systems with coding.

• Evaluate the SINK for MSDD

The SINK of OC has been studied thoroughly and good expressions have been

derived. In some applications, SINK is a more convenient parameter than error

probability, especially when it comes to analyzing the performance of systems with

many modules. For MSDD, all the research until now has been focused on error

probability analysis. The analysis of output SINK of MSDD will facilitate its application

to more complex systems.



APPENDIX A

DERIVATION OF THE CHARACTERISTIC FUNCTION FOR OC

In this appendix, the expression for the characteristic functions (41),(jw) of the test

statistic D of OC is derived.

Define

From the signal model in Section 2.2, and the definition of the whitened interferencea

plusanoise vector x and the modified channel vector g in (2.6) and (2.7), the covariance

matrix of x and g can be evaluated as

To use the results in [2, Appendix Bi, identify the following quantities using
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Substitute the above equations into Eq. (B-6) and Eq. (Ba5) in [2, Appendix B],

together with Am = Bm 0 and Cm Ar7,1 . After some straightforward manipulations,

the characteristic function of dm is obtained as

dm Ow) = 	 Am
[ 	 j (VAS + Am _ GAS)] [chi _ (AS ± Am ± vAs)] • 	 (A.10)
(4.) 

By substituting (A.10) into (1) D1),(jc.o) = flmA 1 I)dm (A)) and using ANmiii+1

• • • = ABA = a2) cl)D1),(jw) is obtained as shown in (2.9).



E Res DDIA(iw) ;Burn DDIA(3W) W2cm + Res rD I A(jw) .	 7 W21w

Amin

Res
k=1Im(com )>0

APPENDIX B

EVALUATION OF THE RESIDUES

In this appendix, the residue shown in (2.8) is evaluated.

By using (2.9), the term (I),0 1 ),(jw)/w in (2.8) can be expressed as

AA —Amin
Amin _ 1 [(w wwirp2 w2) W2,m Wi,k

(B.1)H 	 - wi,m) - wi,m)k_1

Since Imp (w 1 ) < 0, Imp (wl,m ) < 0, Imp (w 2 ) > 0, and Imp (W2cm1) > 0,

(B.2)

The residues are evaluated using the following complex variables theory [49i: if

a function f (w) has a pole w0i of order A, the residue of f (w) at coo is

1 	 d(N-1)
Res [f (W) w0i =  	

F,
(B.3)

(A — 1)! dw(N-1) [ (w — wo) B f (w)]

B.1 EvaluatioL of the ReDidues at Poles Wick

For 1 < m < Ammo , the poles W2cm1 are of order 1, hence

Res DDIA(iw) W2crn

1)DIAOW)
Wick)

C4) (.4-)=w2crn

1	 W1Wi AA-Nmin WicmWick

Wick _(W2cm1 — W1) (Wick — W2)	 (Wick Wick)

Amin

X II 	
W1cnW2cn

n-1cn0k `Wick Wick) (Wick Wick)

AA -Nmin
W1W2 

[ (Wick W1) (Wick, W2)]

Wicks

(Wi,k W2,m )

Amin

X

	W1ckWicn

n-1cn0k (2.)2'k	 Wl,n) (Wick	 W2,n)
(B.4)
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Then by substituting (B.6) into (B.5) and using the following derivation principles
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an expression (which is omitted here to save space) of f fm (y) p(y)dy for each m,

1 < m < Amin is obtained. Expressions for m = 1 and m = A min can be obtained

similarly. It can be shown that the sum of these expressions is

Bain

E f fm (Y) Py(Y)UY
m-1

00 	 t1 	 t N ain —2 Nain -1
Kid	•

—
2

a
°
A—B min 	 H(1_qi)(d_

71 	 71 	 n-1

x exp [-13 (tan — 77 i )] 	 H	 — to) i 1
_1<i< j<Bm in

}

i
) 

Amax -Aain 4_

X f (1 — Amin  ) (2Amin — 77i) Baax{
7/

Armin-1
X	 H (Amin — tn ) expo [—,3 (train

n-1

77i)] Aain UtAmin- 1 • • • Usti Ut 1 .

(C.2)

where 4) = 1 — 7/ i = —1/7. Note that (C.2) consists of only one Nmin-fold integral.

To simplify notation, perform the change of variables: (tn — 7/2) 	 an for L = 1,

2, • • • 	 min — 1. Then (C.2) becomes

Am in

E f fm (Y) Py(Y)Uy
m-1

K1 B—Bain
Amin Z° 	 f: z1

AN a i n —2

f0

Ba in

H Z 0 - an ) Amax  -Bain exP(—/3an )

n=1

1 {

X II	 (ad — ail) i 	 f: (1 — Nmin ) (t2Bmin

1<i<j <Bain —1 
	 —

Amin-1

X 	 fl ( t Aain - 71 i —
n-1

i 1
)
 Baax - B

77 

Amin -1 • • • Uzi  Hai

(C.3)

zn)1 exp [-13 (Amin 77i) UtAm i n
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C.2 ChaLge of ILtegratioL LimitD

Consider the integrations in (C.3). The integration limits for variables H ai(1 < i <

Amin — 1) are (listed in the order of integration starting with the innermost integral):

0 < Amin-1 < Amin--2 • • • 7 0 < z3 < a2, 0 < a2 < a1, 0 < < ooh. Make the following

observations:

(1) The integrand is symmetric with respect to the variables Hai, 1 < i < Am i n — 1

(i.e., for any 1 < i , j < Amin — 1, i 	 j, Hai and a3 can be interchanged leaving the

integrand the same).

(2) There are (Amine — 1)! possible permutations of the integration limits of z ip

for which (C.3) will yield the same result. For example, one such permutation is:

0 < zBinin -1 < Amin--2 • • • , 0 < a 3 < z 1 , 0 < a 1 < z2, 0 < a2 < ooh. In this example,

the order of integration is reversed for a 1 and z2.

(3) These (Amine — 1)! integration limits are disjoint, and their union is the

region: 0 < a 1 < oo, 0 < z2 < ooh, 0 < a3 < ooh, • • • , 0 < Amin < ooh.

It follows that (C.3) is equal to the integrand integrated over 0 < a 1 , a2 , a3, • • • ,

< ooh and divided by (Amin — 1)!:

2Nmin

E f (Y) Py(Y)dY
m=1

1 Kid. AWN .

(Nm in — 1)! Nmin a 	
mm

°
ooh	ooh Mc Nmin

X f0 0f ... EH (zoo An ) AnNmax-Nmin eXP ( -0'4)
71-1

X

	(zip — Zi) 2

[ 	 H 	

00{I (1 — Amin ) (2Nmin — 77 2 )
77 	 Amax1<i<j<Am i n-1 

Am i n -1

X 	 H (Amin — 712 — Zen) eXP [-0 (t2Bmin — 7/ 2 )] Nmin

[

n=1

X UAAmm-1 • • • UZ2dZ1. (C.4)

The integration above is treated differently for Amine = 1 and Amine > 1.



where det Z is the determinant of the matrix Z, whose i-th row, j-th column element

is zi+j-2 . Note that all the elements on the jath column of the matrix Z depend only
j

on variable Hai.



Depend only on variable zip ,

) can be multiplied with all

elements of the j-th column of Z. Then the j-th column is integrated with respect

to zip before the determinant is calculated. In this way, the A minafold integration

is separated into independent integrations. By carrying out these straightforward

integrations and substituting K 1 from (2.33) and zoo = —1/y in (C.9), after some

manipulations, (2.42) is obtained.

When Am i n = 1, if assume det W =1, then it can be shown that (2.42) yields

the same result as (C.5). Therefore (2.42) can be used for Amine = 1 as well as for

Bmin > 1.



APPENDIX D

DERIVATION OF SERIES BQ

In this appendix, the method of calculating the series Be (q = 0, 1, 2, • • • ) is derived.

In the following, the expressions for Bo and B 1 are derived first. Then it will

be shown that for q > 2, Be could be evaluated by Bq_i and Bq-2.
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where [k/2i denotes the largest integer that is less than k/2. And akt  is calculated

differently for when k is even or odd as follows:



[(k — A l — t) (i o 77) — 277 (k — 1 — t)1 ( 271 )k-1-2tak,t = t — 1

117

Assume (nine) = 0 for nib < n or L < 0, (E.16) and (E.17) can be expressed as a

single expression:

for 0 < t < [k/2].
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Separate the summation into two parts according to whether A mine  — k is nonanegative

or negative.

D (Amine) -= ENmin_k 	 A2)

AA 	
Aa 	

1 )k Uk-Nm i n (Al, 2)
	

(F.8)
k=Nm in +1

where

Ern 	AC) =

Um (Ai,A2) =

1 /0 	1 
(singe O k de

7 Jo Sin29 A2
1 /0 	1 	1

k
,	 de.

71 J0 sin28 A2 (sin20 + Aid

(F.9)

(F.10)

F.1.1 EvaluatioL of Ek (A1, A2 )

For m = 0,

E0 (Ai) =
1 fhb 	1
	 d8

71 J0 sin28 A2    

1 	 1
	 arctg

7r VAC (2 + 1)
A2 	 1

C2
tgO)

C2
(F.11)

where the result from [31, Eq. 2.562i is used. For m > 1, it can be shown that

where

Em 	A2) = Fm-i (Al) + (Al — A2) Em-i 	 A2)

Fk (Aij) = 1— 	 (sin28 + 	 c/9.
f

0

(F.12)

(F.13)

By using the binomial expansion and [31, Eq. 2.513.1i, the expression for Fm can be

obtained as shown in (3.22). When (F.12) is expanded further,
k

Ek (A1, AC) =	 (A 	 e2)i-1 	(Aij) + (Al	 e2)m EOM (A2) 7
	 (F.14)

2=1
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Similarly,

E[y (sick) y (sk)111

E [y (DA) Y (sk )111

E [Y (Lk)) Y (sk) 11 1

i

- 

l v(sk, Lk)12 PSINA + KA

- v * (sk, sk ) (PSINA  + A)

- v(Dk, LA ) (PSINA A) ,
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(11.7)

(H.8)

(H.9)

were v (D A , Dick) = D'kli DA •

To use the results in [2, Appendix Bi, identify the following quantities using the

notation in the reference: Xm Ym(SA), Am = Yk (Dk). Then from (H.6) to (119), in

the notation of [2, Appendix Bi,

Lk

Ayycrn

Pxyck

Pyxcm

= Am = 0

—
1 

(KIP, Am)
2

(1v(sA,LA )12 PS + Ak)

1 v*(sk  , silk) (K PS + Ak)
2
1
v(s A ,LA ) (K PS + Ak ) .

(H.10)

(H.11)

(H.12)

(H.13)

(H.14)

Substitute the above equations into Eq. (Ba6) and Eq. (B-5) in [2, Appendix

Bi, together with A = b arn,B—Am, and Cm= 0. After some straightforward

manipulations, the characteristic function of U k is obtained as

W2cm
Odni Ã OW) = (w whim ) (w wpm ) (H.15)

where

	

1 [-V(2 /3",2 + 4 (K PS + Am ) Ak ( — (PS i
	

(H.16)

W2cm	
2
1
( 

[V ( 2 13,2 + 4 (KP, + Am) Am( + (PSi , 	 (H.17)

and

( = K2 —1v(D A ,LA ) 12 . 	(H.18)



It follows that the characteristic function of D is

NA 	 AA

1)D IAOW) = Hcbd,,,A ow) =- H 0„ _ w lcm )— wC,,n) •
m=1 	 m=1

/
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(I-1.19)

Remember that for a system with N/ interference sources, the eigenvalues of

the interference plus noise covariance matrix are A m = aC for m = Amine + 1, Amin +2,

• • • , AA. Define

1 	 /	
= aZ(.- [V ( C 11 + 4 (KIPS aC ) aC ( — (PS ] 	 (H.20)

1A 	
WC	 WCcArmin+1 =	 [V ( C 11 + 4 (KIPS aC) aC( + (Ps] .	 (H.21)

It follows that c.o i c m = c.o 1 , and WC c m = w C for m = Amin + 1, Bm in + 2, • • • , AA. Hence

the characteristic function can be expressed as (5.31).
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