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ABSTRACT

DYNAMIC MULTI-RAMP METERING CONTROL WITH SIMULTANEOUS
PERTURBATION STOCHASTIC APPROXIMATION (SPSA)

by
Jiangtao Luo

Ramp metering was proven to be a viable form of freeway traffic control strategy, which

could eliminate, or at least reduce, freeway congestion. In this study, the development of

ramp metering control strategies, models, and constraints (e.g., meter locations, ramp

storage capacities, lower and upper bounds of ramp metering rates) are discussed in detail.

The pre-timed and demand/capacity metering control strategies were first evaluated, while

the potential metered ramps were determined. A Simultaneous Perturbation Stochastic

Approximation (SPSA) algorithm is proposed to dynamically optimize multiple-ramp

metering control by maximizing the total throughput subject to a number of constraints.

The ramp metering rates subject to dynamic traffic conditions and capacity constraints are

considered as decision variables in the SPSA algorithm. Based on the collected geometric

and traffic data, a CORSIM model was developed to simulate traffic operation for the study

site. The potential benefit of the dynamic multi-ramp metering control model under time

varying traffic condition was simulated and evaluated. The increased total throughput and

reduced total delay were observed, while the traffic conditions suitable for implementing

ramp metering control were suggested. The developed dynamic multi-ramp metering

control with SPSA algorithm has demonstrated its effectiveness to improve freeway

operation.
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NOTATION

SPSA	 Simultaneous Perturbation Stochastic Approximation;

MOEs	 Measures of Effectiveness;

TSM	 Transportation Systems Management;

0/D	 Origin/Destination;

MP	 Milepost;

MAPE	 Mean Absolute Percent Error;

RMSE	 Root Mean Square Error;

7'7'T 	 Total Traffic Throughput;

n	 the sample size;

S 	 the observation i of simulation output;

0, 	 the observation i of field measurement;

d	 the travel distance;

a 	 the vehicle acceleration rate;

V1 	the average speed of vehicles on the mainline at time t;

Von 	the initial speed of a vehicle released by a ramp meter;

t	 the acceleration time from the ramp meter to the on-ramp gore;

m	 the mean arrival rate (vehicles per hour);

La 	the queue length (number of vehicles);

the ratio of vehicle arrival rate m and ramp service rate R1(k);

L(1)	 the objective function for minimization with the vector A.;

g(1)	 the gradient of LAX);



the measurement of LW;

the initial guess of the optimal X;

the optimal solution of X (at iteration h);

the (h+l)tI estimate of X;

the index of iteration;

non-negative coefficient in SPSA;

non-negative coefficient in SPSA;

non-negative coefficient in SPSA;

non-negative coefficient in SPSA;

the parameter in the htI iteration;

the parameter in the htI iteration;

the approximation of g(ii h);

random simultaneous perturbation vector in iteration h;

the itI component of vector eh;

number of segments on a freeway;

the density of link i in interval k;

the flow rate entering link i+1 from link i in interval k;

the metering rate for an on ramp of link i in interval k;

the mean flow rate of link i in interval k;

the on-ramp parameter (= 1 if an on-ramp of link i exists, otherwise = 0);

the off-ramp parameter (= 1 if an off-ramp of link i exists, otherwise = 0);

the turning percentage to the off ramp of link i in interval k;

xvii



the duration of a time interval;

the length of link i;

the number of through lanes of link i.

the weight parameter representing the interaction between flows of links i and
i+1 in interval k;

the mean speed of link i in interval k;

a large positive number;

the minimum metering rate of on-ramp i in interval k;

the maximum metering rate of on-ramp i in interval k;

the total delay;

the value of time for cars;

the value of time for trucks;

the idling cost rate for cars;

the idling cost rate for trucks;

the percentage of cars in the traffic flow;
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xviii



CHAPTER 1

INTRODUCTION

1.1 Background

Motorists traveling on urban freeways often experience heavy congestion in peak periods,

during which demand and delay increases, and the level of service deteriorates.

Congestion delay on freeways is a serious problem because of not only the inconvenience

experienced by travelers but also the increased sideswipe and rear-end accidents

associated with the disturbed traffic flow. The need to implement effective traffic control

has long been recognized by transportation professionals. Starting from the early 1960s, a

variety of congestion control strategies have been proposed (Wattleworth 1967; Masher

et al., 1975; Chang et al., 1994). Ramp metering control is regarded as one of the most

effective freeway traffic management strategies for alleviating congestion.

Ramp metering provides a mechanism to control the rate of traffic entering the

freeway. By releasing traffic from entering ramps to the freeway mainline in measured or

regulated amounts, a single vehicle or a small platoon of vehicles can smoothly merge

into the mainline traffic stream. Thus, the turbulence in the mainline traffic stream caused

by the merging flow can be reduced. Metering control can be pre-timed, allowing

vehicles to enter the freeway every few seconds, or traffic responsive, based on the real-

time traffic information (e.g., gaps, speeds, occupancies and queues) collected from the

freeway and ramps.

In 1963, the first ramp metering facility was installed in Chicago. Since then, over

2,100 meters were deployed on over 2,000 miles of freeways in the USA (Piotrowicz, et

al., 1995). Many new or reconstructed roadways were designed to use ramp meters as a

1
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component of their traffic management systems. A list of existing ramp metering sites

and the corresponding measures of effectiveness (MOBs) in the evaluation are

summarized in Table 1.1 (Piotrowicz, et al., 1995). Various MOBs were used to evaluate

the benefit of ramp metering in freeway systems. Among them, speed, traffic volume,

travel time, accident rate, and density were most widely used (e.g., the freeways in

Denver, CO; Detroit, MI; Long Island, NY; Los Angeles, CA; Minneapolis, MN;

Portland, OR; San Diego, CA; and Seattle, WA).

According to the practice discussed in previous studies (Wattleworth, 1967,

CALTRANS, 1979, ITB, 1989, Minnesota DOT, 1994, Piotrowicz, et al., 1995, Chien,

1998), appropriate implementation of ramp metering control significantly improved

traffic operations, particularly in preventing stop-and-go and erratic traffic conditions and

balancing demand distributions on the mainline. Such improvements were achieved by
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allowing ramp traffic to take advantage of gaps in the mainline traffic stream instead of

merging with platoons and interrupting the congested traffic flow. The benefit of

metering control was classified into various categories listed below: (1) maintaining

freeway capacity, (2) maximizing throughput, (3) increasing travel speed, (4) decreasing

travel time, and (5) reducing auto emissions and accidents due to a smoother mainline

traffic flow (CALTRANS, 1979; Piotrowicz, et al., 1995; Chien, 1998).

As discussed in a report developed by Minnesota DOT (1994), ramp metering

operations in several metropolitan areas (e.g., Minneapolis, MN; San Diego, CA; Seattle,

WA; and Denver, CO) demonstrated that the freeway throughput of the metered sections

during peak period increased by 17% to 25%, while the throughput of the entire highway

systems increased by 5% to 6%. In a survey conducted by Piotrowicz et al. (1995), it was

found that the mainline speed increased by 16% to 62%, while the number of accidents

was reduced by 24% to 50%. In general, the average speed increased by 29% after

performing ramp metering control. Bven considering ramp delays, the average speed was

found to increase by 20%.

Ramp metering control has been considered as one of the most effective methods

to improve freeway operations. It may, however, alter the volume of traffic flow entering

metered ramps. Due to the delays experienced by travelers waiting at metering sites, a

portion of ramp flow might shift to other freeway entries, or adjacent arterials and surface

streets. According to previous studies (Wattleworth, et al., 1967; Masher, et al., 1975;

Chang, et al., 1994), the majority of the diverted trips were short trips (e.g., traveling only

one or two freeway interchanges) since their waiting times spent at metered ramps were

proportionally greater than that of long trips. Some attention has been paid on whether
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the ramp metering control might favor freeway operations at the expense of increased

congestion in adjacent streets.

Bxtensive evaluation of existing metering systems was conducted, and the impact

of potential diversion of freeway trips was also analyzed by Piotrowicz, et al. (1995).

Criteria used in the evaluation included travel distance and time, queue length, and delay

at metering sites while considering the availability of alternate routes. It was found that

there was no significant traffic diversion from freeways to adjacent alternate routes (e.g.,

Portland, OR; Los Angeles, CA; Seattle, WA; Detroit, MI; Denver, CO; Chicago, IL; and

San Jose, CA) where ramp meters were operated. Also, freeway systems with access

control at ramps seldom broke down even if traffic volume exceeded 2,000 passenger

cars per hour per lane (pcphpl). In addition, it was found that diverting short trips from

congested ramps to other under-utilized ramps or alternate routes might be desirable to

alleviate congestion in both freeways and parallel arterials/streets. Several states, as

mentioned above, have had the implementation experience of ramp metering control on

freeways, while the state of New Jersey has considered the potential and benefits of

implementing dynamic ramp metering control on freeways.

As an effective freeway traffic management method, ramp metering control has been

discussed for more than four decades. Many control strategies varying from the simplest

pre-timed metering to traffic responsive metering have been developed and examined. A lot

of work has been done on optimizing metering rates for individual and/or a set of ramps.

However, little research has been done on developing dynamic optimization metering

control models and quantifying their benefits, while considering the impact of short ramps

on local streets, arterials and freeways. Therefore, developing a dynamic ramp metering
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control model that can efficiently optimize ramp metering rates subject to limited storage on

the ramp and developing a sound approach to quantify its benefits are the major objectives

of this study.

1.2 Problem Statement

In many studies, the purpose of utilizing ramp meters was the avoidance of flow

breakdown on the freeway. To meet this goal, the capacity and demand of each freeway

segment were estimated, and then metering rates were imposed such that the freeway

could operate with less congestion. This process was rather straightforward and was

described elsewhere in the literature (Jacobson, 1989). However, the job of optimizing

metering rates is complex due to geometric conditions and dynamic traffic conditions.

Thus, the process of quantifying the benefit of ramp metering control becomes difficult.

It is necessary to study whether an effective algorithm can be utilized for simplifying the

complexity of the dynamic optimization issue, and whether a suitable approach can be

developed to quantify and evaluate the potential effectiveness of dynamic ramp metering

control systems.

Delay reduction is often viewed as the primary benefit of implementing ramp

metering control. Nevertheless, the increased total throughput and decreased fuel

consumption and emissions may also be consequent benefits. In this study, the resulting

throughput and delay after implementing various types of ramp metering control

strategies are analyzed.
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1.3 Objectives and Scope of Work

The goal of this study is to develop a dynamic metering control model and evaluate the

potential of its implementation in a transportation corridor. To achieve this goal, the

following objectives are identified:

1. Develop a dynamic multiple-ramp metering control system.

A dynamic metering control system will be developed to capture the dynamic

traffic characteristics. An effective solution algorithm will be developed for the

control system to determine optimal metering rates in real-time. The algorithm

will focus on dynamically optimizing a set of on-ramp metering rates rather than

the coordination with local surface traffic control systems.

2. Bvaluate MOBs of freeways with and without ramp metering control.

A simulation approach, rather than actual field studies, will be applied in the

evaluation. Simulation can generate various MOBs (e.g., total travel time and

queuing delays) and experiments for testing different metering control strategies.

3. Bvaluate the effects of "short ramps" to determining feasible metering rates.

Short ramps do not purely refer to those ramps short of physical storage area but

depend on both storage area and the queue incurred by the entering flow.

4. Quantify benefits of ramp metering control.

The benefits of metering control under recurrent congestion during the peak

period on a daily basis will be quantified in this study.
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1.4 Organization

The remainder of the dissertation is organized into five chapters. Chapter 2 summarizes

findings from previous studies. A number of ramp metering control strategies and models

are reviewed, while the requirements and guidelines for implementing ramp metering

control on freeway and ramps are discussed. The potential solution algorithms and tools

that might be used to solve a dynamic multi-variant optimization problem are also

investigated in this chapter. In Chapter 3, the development of a Simultaneous

Perturbation Stochastic Approximation (SPSA) algorithm and dynamic ramp metering

control model is discussed. Chapter 4 identifies a study site and illustrates various data

that will be used for analyses. It also emphasizes the importance of the simulation

approach and models the study network with CORSIM. In Chapter 5, the proposed

dynamic metering control model is evaluated. The model developed in Chapter 3 is

implemented at studied ramps, while analyses are performed on the ramp meter location,

ramp storage capacity and various benefits under ramp metering control strategies.

Finally, conclusions, recommendations, and suggestions for future study are presented in

Chapter 6.



CHAPTER 2

LITERATURE REVIEW

There is a great deal of skepticism as to whether the control of metered ramps can be

successfully implemented on a freeway network. Previous studies (Blumentritt, et al.,

1981; Masher, et al., 1975; Piotrowicz, et al., 1995) addressed the success of metering

control systems applied in various locations. However, very broad guidelines with limited

recommended practices were discussed and no national standards were developed. The

major reason was that control decisions were location and time dependent.

The Manual on Uniform Traffic Control Devices (MUTCD, 411.01, 2000) states

that the installation of ramp meters might be justified when the average delay of a subject

freeway corridor was expected to be reduced. MUTCD also suggested that a thorough

analysis of the geometric and traffic conditions of the freeway corridor should be

conducted to determine whether ramp metering control was feasible. It was generally

agreed among various highway authorities that the potential metering sites were those

having poor traffic conditions (e.g., low speeds of 30-48 mph, low volumes of 1200-1500

vphpl) or higher rates of merging accidents (Masher et al., 1975). In a ramp meter design

guideline (CALTRANS, 1991), typical design practices for new or modified ramp meters

were described. In 1996, system operating strategies and user guidelines for the

coordinated operation of ramp metering and adjacent traffic signal control system were

developed (USDOT, 1996). In a study conducted by Taylor and Meldrum (2000), it was

stated that the metering control should be implemented at places where flow breakdown

could be prevented. Besides, special consideration should be given to the feasible range

of metering rates (e.g., the upper and lower bounds), locations of signals and signs, and
8
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ramp geometric condition. Requirements for developing a ramp metering control system

are discussed in Sections 2.1 and 2.2 of this chapter. A review of ramp metering control

strategies and models developed in previous studies has been systematically conducted

and discussed in Sections 2.3 and 2.4. In addition, the review of solution algorithms and

tools are discussed in Sections 2.5 and 2.6. A summary is contained in Section 2.7.

2.1 General Requirements

In this section, the general requirements of metering alternatives, feasible range of

metering rates, signs and signals, and ramp geometric conditions are discussed.

2.1.1 Metering Alternatives

According to the way vehicles are released, two metering control alternatives were

generally discussed: one-by-one metering and platoon metering control (Masher et al.,

1975). One-by-one metering control only allows releasing a single vehicle per lane per

cycle. Since the merging of one vehicle is smoother than the merging of a platoon of

vehicles, one-by-one metering control can greatly reduce the interference of merging

traffic and the associated accidents. Thus, one-by-one metering control was preferred in

many places, where especially a bottleneck was in the vicinity of an on-ramp gore. One-

by-one metering control is used in this study also.

Platoon metering control allows releasing two or more vehicles per cycle. This

can be achieved by increasing the green time at the metered ramps. Platoon metering

control is designed to handle higher ramp metering rates. Based on the operational

experience on two-lane ramps, platoon metering control worked well and was preferred

by practitioners. For single-lane ramps, however, platoon metering required a longer
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cycle that may induce uncertainty in driver behavior and thus increase the probability of

interrupted mainline traffic. Thus, platoon metering control should be applied with

caution.

2.1.2 Feasible Range of Metering Rates

A very general rule for choosing the feasible range of metering rates was recommended

by traffic agencies and practitioners (CALTRANS, 1975; Minnesota DOT, 1994).

Usually, it might take several weeks or even months of data to calibrate the feasible range

of metering rates for a specific metering system based on local traffic operations and

geometric conditions.

Poitrowicz, et al. (1995) found that drivers would lose patience if they wait for

more than 15 seconds before a ramp signal. Beyond 15 seconds, the number of violations

increased significantly. Considering an acceptable queue length on a ramp, the feasible

metering rates should be determined subject to the ramp storage constraint. The minimum

metering rate was determined based on the maximum acceptable queue length.

Considering short ramps, Masher, et al. (1975) developed a method to estimate

the minimum metering rate subject to the constraint of the storage capacity and the traffic

demand entering the ramp. Practically, the minimum metering rate was about 240 vphpl

(equal to 15 seconds/veh), and the maximum metering rate for one-by-one metering

varied from 600 - 900 vphpl (CALTRANS, 1991). The metering rate of 900 vphpl was

based on a cycle length of 4 seconds (2 seconds each for green and red intervals,

respectively). For platoon metering control, the maximum metering rate could be

increased to 1200 vphpl.
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2.1.3 Signals and Signs

Ramp meters should meet all design specifications for control signals. Signal heads of a

ramp meter can be either two-colored (red/green) or three-colored (red/green/amber),

which was discussed by MUTCD (2000). A two-head signal is suggested because it

provides a backup in case of malfunction or damage. The signal can be located on the

left-hand side only or on both sides of a ramp for best visibility. Highway authorities

should choose signal types according to local design regulations, and ensure consistency

throughout the entire system.

Bven if the public is well informed, drivers may not expect to stop before ramp

signals. Therefore, advance-warning signs downstream of ramp meters are required to

alert drivers. Many states have their own standard for the design of warning signs. For

example, CALTRANS suggested using strobe lights with a red lens to reduce accidents at

metered ramps. The locations of advance-warning signs usually depends on ramp

geometry and sight distance. Moreover, supplementary signs with the legend "STOP

HERE ON RED" or "WAIT HERE FOR GREEN" are commonly used to inform

drivers of the existence of a ramp meter.

2.1.4 Ramp Geometric Conditions

The ramp geometric conditions (e.g., adequate sight distance, acceleration distance, and

availability of storage space) should be carefully investigated before implementing ramp

metering control. To prevent vehicles on the metered ramps from spilling back onto the

adjacent local streets, adequate ramp storage is required. Otherwise, a better traffic

diversion plan should be applied for relieving local traffic congestion. CALTRANS

(1979) used an arrival-discharge chart, while Minnesota DOT (1994) used a rule-of-
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thumb for estimating queue length that was 5-10% of the pre-metered peak hour volume.

The estimated queue length could then be used for designing enough storage spaces on

metered ramps.

A commonly used technique to increase the size of ramp storage is to increase the

number of lanes on ramps. Minnesota DOT (1994) required all metered ramps to have at

least two lanes before the ramp signal. In San Diego, a portion of the surface street was

used to store vehicles, and then appropriate lane channelization and signal timing

adjustments were required. Occasionally, the queue might exceed the storage capacity

because of stochastic or unexpected vehicles arrivals. To avoid this situation, an alarm

would be triggered when a long queue is detected before spillback can occur over the

ramp entrance. The metering rate can then be increased to discharge more vehicles. In

addition to the criteria mentioned above, the issues of public acceptance, enforcement

requirements/regulation and availability of suitable alternate surface routes should be

considered before implementing ramp metering control (Masher, et al., 1975; MUTCD,

2000; Poitrowicz, et al., 1995).

2.2 Technical Requirements

Freeway surveillance systems and their elements, ramp metering controller and

constraints for ramp metering control are discussed in this section.

2.2.1 Freeway Surveillance Systems

While applying ramp metering control on a freeway network, various types of data (e.g.,

volume, speed and occupancy) are required for determining appropriate metering rates.

Most freeway surveillance systems can provide such information through the connection
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between detectors installed on freeways/ramps and communication devices (e.g., data

transmission and processing devices). Considering the rapid growth in solid-state

electronics and computer communication technologies, freeway surveillance systems

nowadays have demonstrated desirable performance. A good surveillance system should

be reliable and easily maintained.

As a primary component of a surveillance system, detectors play an important

role in collecting traffic data. The commonly used detectors in freeway surveillance

systems are classified into two types: the embedded detector and the non-intrusive

detector as shown in Table 2.1 (FHWA, 1997).

According to the functions for the use of ramp metering control, detectors can be

classified into (1) mainline, (2) merge, (3) passage, (4) demand, and (5) queue detectors,

as shown in Figure 2.1. Note that all detectors in the figure are shown to be loop

detectors, while functional equivalent detectors, such as magnetometers, sonic or other

detectors can be applied to collect more accurate information (e.g., speed, occupancy,

volume, and queue status).

(1) Mainline Detectors

Mainline detectors installed on the freeway mainline are usually located either

prior to or after the merge area as shown in Figure 2.1. Information collected from the

detectors includes flow rates, speeds and occupancies. Sometimes two sets of detectors

are jointly used for estimating the number of vehicles within the merging area.



Table 2.1 Summary of Traffic Detectors
Detector Type Description Advantages Disadvantages

Embedded

Inductive Loop

Coil of cables embedded in pavement
surface, which recognize the presence of
vehicles through minute changes in
electrical voltage caused by passing of
vehicles.

Flexible Design.
Wide range of application.
Provides basic traffic parameters (e.g.,
vehicle counts and occupancy).

Requires pavement cuts to install.
Subject to stress of traffic. Frequent
maintenance requires lane closure.

Magneto-meter

Small-cylinders contain sensor coils that
operate similar to inductive loops.
Developed as alternative to loop detector
in special situations.

Used in situations where loops are not
feasible. (e.g. bridge decks)
Less susceptible than loops to stress of
traffic

Small detection zone.
Typically used to provide only vehicle
counts and occupancy.

Non-Intrusive

Microwave Radar

Transmits electromagnetic wave to
vehicles on roadway.
Calculate traffic parameters by measuring
the feedback signal frequency.

Generally insensitive to weather
conditions.
Provides day and night operation.

May lock on to the strongest signal (e.g.,
large truck.)

Infrared

Active infrared detectors transmit thermal
radiation, while passive infrared detectors
only measure the changes in thermal
radiation that vehicles emit.

Active detectors emit narrow beam
allowing for accurate determination of
vehicle position.
Provides most basic traffic parameters
during day and night operation.

Operation affected by precipitation (e.g.,
snow and fog).
Difficult in maintaining alignment on
vibrating structures.

Ultrasonic
Transmits sound waves at frequency
ranging 20 and 200 kHz. Detects vehicles
by measuring return waves.

Provides most basic traffic parameters. Weather conditions (e.g., temperature,
humidity, air turbulence) can affect
performance.

Acoustic
Uses microphones and signal processing
technology to detect sounds associated
with vehicles.

Generally insensitive to weather
conditions.
Provides day and night operation.

Relatively new technology for traffic
surveillance.

Video Image processing

Video image processors receive
information from video cameras and use
algorithms to process the video image
input.

Provides basic traffic parameters.
Provides wide-area detection.

Performance may be negatively affected
by harsh weather, shadows, and dim
lighting.
High installation and maintenance cost.

'1■Intc.• The information nfthic fakir De chat-ix/Ad from Farleral T-licrhwali A riminietratinn " Frawarawl\ifortarramarit T-TartrIknnlr" 	 1007•



1G

(2) Merge Detectors

Merge detectors are installed after the on-ramp gore to detect the number of

vehicles merging into the mainline traffic stream and whether the status of the merging

area is jammed. When a jam occurs, the controller may hold the ramp signal in red to

avoid stacking on the merging area.

(3) Passage Detectors

Passage detectors are installed just beyond the stop bar of the metering signal

(e.g., 8 ft), which can register released vehicles during each green interval. As soon as the

anticipated number of vehicles passing the stop bar is sensed, the green signal shifts to

red. Sometimes passage detectors serve both as passage and merge detectors, but with

less accuracy (Masher, et al., 1975).
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(4) Demand Detectors

Demand detectors are installed at a sufficient distance before the stop bar of the

metering signal (e.g., 18 ft), and their function is to register the presence of vehicles

waiting for passage.

(5) Queue Detectors

Queue detectors are usually installed at the entrance of an on-ramp, or sometimes

at the adjacent local street. The main function of queue detectors is to detect the queue

length that may spiliback onto the local street and report this information to the

controller. Thus, adequate control actions can be taken to avoid queuing vehicles

blocking the local street.

Note that the determination of detector locations is highly dependent on the type

of metering control (e.g., pre-timed, traffic responsive) and the geometric condition of the

study site (e.g., length of auxiliary lane, storage capacity, weaving length, etc.).

Characteristics of various types of detectors are summarized in Table 2.2.

2.2.2 Ramp Metering Controllers

The ramp metering controller is responsible for determining metering rates/cycles by

implementing control strategies and tactics. For pre-timed controllers (e.g., dial-and-stepped-

cam controller, digital controller), metering rates or intervals of red, yellow and green lights can
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be set up either with a time clock or by remote control. The duration of each metering interval

determined by such a controller corresponds only to recurrent traffic conditions. Therefore, the

major disadvantage of the pre-timed controller is its limited ability to respond to non-recurrent

traffic conditions and significant traffic variations during a time period. For centralized

controllers, the timing and control operations can be determined by computer software that

optimizes metering rates based on extensive traffic information collected from detectors. The

centralized controller can be supplemented by a backup pre-timed controller that initializes pre-

specified metering rates in case of computer failure during metering periods. The centralized

controller can dynamically change signal timings to adapt to the change of traffic conditions.

The advantages of using a centralized controller are universally agreed as being

flexibility, reliability and capability to adapt to dynamic changes in traffic demand (Masher,

et al., 1975; Piotrowicz, et al., 1995). However, a pre-timed controller may also be used in

some systems if detectors are not available at the control site.

2.2.3 Constraints for Ramp Metering Control Systems

Several constraints are usually considered in the application of ramp metering control to

ensure that the solution metering rates are feasible or workable at individual ramps.

These constraints include: (1) the upper and lower bounds of metering rates allowed for

the metered ramp, (2) the demand-capacity restriction at the vicinity of the metered ramp,

and (3) the storage capacities of the metered ramps, which are described below.

(1) Upper and Lower Bounds of Metering Rates

According to the literature review conducted in Section 2.1.2, traffic engineers

determined the highest and lowest metering rates based on practical considerations. For

example, for one-by-one metering control, the minimum metering rate was about 240 vehicles
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per hour per lane (vphpl), since a rate lower than that might cause high violation rates. On the

other hand, since drivers needed at least four seconds to stop, respond to the ramp signal, and

prepare to merge into the mainline, the maximum metering rate for one-by-one metering

control was generally 900 vphpl (Masher, et al., 1975; Piotrowicz, et a1.,1995,).

The appropriate metering rates were suggested to be within the range between the

upper and lower bounds of 240 and 900 vphpl, respectively. Assume that a general freeway

segment has N links, numbered from 1 through N from the upstream end to the downstream

end of the freeway. The metering rate R s, (t) for the metered ramp located on the ."' link at time

t (see Figure 2.2) should be greater than the minimum allowable metering rate F3 and less than

the maximum allowable metering rate U3 , as formulated in Bquation 2.1. If (t) is greater

than U s, , (t) is set in default and equal to U s, . Similarly, if R ib (t) is less than F., ,

(t) is set in default and equal to Fs, .

FA < R (t) < UAW 	(j=1, . N)	 (2.1)

TRAFFIC DIRECTION

FREEWAY MERGING AREA

LOCAL STREET

Figure 2.2 Configuration of a ramp junction.
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(2) Capacity Constraints

The capacity constraints discussed here are used to determine metering rates if the

freeway capacity C., and the entering volume Vs  (t) at time t can be estimated. The

metering rate R ., (t) should be less than or equal to the difference between Cif and Vi (t).

Thus,

congestion may occur in the ramp junction. In such a situation, the metering rate should

be the minimum metering rate (i.e., 240 vphpl) to secure that the traffic flow is always

less than the mainline capacity.

(3) Queue Constraints

Queue constraints are used to prevent the congestion caused by queuing vehicles

spilling back from the metered ramp to the local street. Usually, short ramps have limited

storage areas because of physical restrictions or large entry demand. Therefore, the

metering rate should be optimized subject to the relationship between the ramp storage

and the entry flow into the ramp.

The function of the queue detector installed at the entrance of the on-ramp is to

monitor the queue length and the duration that the detector has been occupied. If the

duration is greater than a pre-specified threshold duration, the metering rate will be

increased to quickly discharge the queue (Masher, et al., 1975; Poitrowicz, et al., 1995).

In practice, several threshold durations are specified to invoke different metering rates. A

solid-green state will be given when a long queue occurs.
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2.3 Ramp Metering Control Strategies

Over the past four decades, various ramp metering control strategies have been studied.

These strategies were used to determine the optimal metering rates and achieve certain

objectives shown in Table 2.3. In this table, the objectives vary from minimizing travel

time, delay, and number of diversion vehicles to maximizing entry volume and

throughput. Despite of the diversity of these objectives, they can be grouped into two

categories: (1) maximizing total input and (2) maximizing total output (capacity

utilization). The theoretical proof of the equivalence for the objectives under the same

category can be found in previous studies conducted by Wattleworth, et al. (1965 and

1967) and Masher, et al. (1975).

In general, ramp metering control strategies can be classified into four categories:

(1) Pre-timed, (2) Local Traffic Responsive, (3) System-wide and (4) Integrated System

Control, which are discussed in the following sections.

2.3.1 Pre-timed Control

One of the pioneer ramp metering control strategies is pre-timed control. The metering

rate is determined by analyzing historical volume-capacity conditions during a specific

time period for the target ramp. The pre-timed control provides the basic function of
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breaking up platoons by setting an upper flow rate at the metered ramp. Although such a

strategy can not effectively respond to variations in traffic conditions over time (only

historical average volumes for the mainline and on-ramp are considered), it can often be

implemented as an initial operating strategy until individual ramps can be incorporated

into a traffic responsive system. Pre-timed control can be implemented on a number of

ramps to reduce accidents (Pooran, et al, 1996) and travel times (Kang, et al., 1999).

2.3.2 Local Traffic Responsive Control

A local traffic responsive control strategy determines metering rates for a single or a set

of ramps. The metered ramps are considered independent rather than interconnected.

Unlike pre-timed control, local traffic responsive control determines metering rates based

on measured traffic conditions collected from traffic surveillance devices (e.g., detectors

on the ramp and mainline). The commonly used local traffic responsive strategies are

demand-capacity, occupancy, gap acceptance and speed control (Drew, 1967; Wiener, et

al., 1970; Papageorgiou, et al., 1991, and Hadj-Salam, et al., 1995). Among those,

demand-capacity and occupancy-based strategies are operated similarly. In both, the

metering rates are based on the difference between the mainline capacity (or the volume

for a desired service level) immediately downstream of the ramp and the upstream traffic

volume. However, occupancy-based control estimates traffic volume based on detected

occupancy instead of measuring the volume directly. For gap-acceptance and speed-

control, the gap at the merging area and the upstream speed are detected respectively and

applied to determine the proper metering rates.

Although local traffic-responsive control strategies do respond to actual traffic

conditions, they cannot perform very well especially for the upstream metered ramps of a

bottleneck. It is because that the downstream congestion cannot be detected until the
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shock wave reaches back to the metered ramp. The existing practices are ALINEA (to be

discussed later) in Paris, France (Papageogiou, et al, 1991) and in Austin, Texas

(Poitrowicz, et al., 1995).

2.3.3 System-wide Control

System-wide control strategies refer to dynamic control on a series of on-ramps. The

major feature of system-wide control is that all metered ramps are considered to be

interconnected. Therefore, the metering rate at a ramp is influenced by traffic conditions

at other metered locations. System-wide control determines metering rates from both

overall system and local capacity constraints, and real-time traffic measurements. The

strategy usually leads to non-linear optimization programming governed under

centralized computer systems. Bxisting practices are METALINE (to be discussed later)

implemented in Paris, France (Papageogiou, et al., 1990), Seattle, Washington, and

Denver, Colorado (Poitrowicz, et al., 1995; Taylor, et al., 2000).

2.3.4 Integrated System Control

Recently, the concept of integrated system control has attracted considerable interest

(Chang, et al., 1994b). Integrated system control coordinates not only the freeways and

ramps, but also the arterials and local streets to achieve desirable corridor wide

performances (e.g., total travel time and delay). The ramp meters and arterial traffic

signals/signs can be jointly optimized in response of real-time traffic conditions. The

potential advantage of integrated system control is that the corridor wide surveillance and

control can benefit travelers on both freeways and arterials. Projects toward developing

and implementing such integrated control are underway in Seattle, Washington

(Jacobson, 1989 and 1994).
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2.4 Ramp Metering Control Models

Various models have been developed and tested in real-world freeways or in a simulated

environment. According to the optimization method used for the development of ramp

metering control models, the models can be grouped in four categories: (1) Pre-timed

Linear Programming Models, (2) Local Traffic Responsive Models, (3) System-wide

Non-linear Programming Models, and (4) Bmerging Large-scale Heuristic Models.

2.4.1 Pre-timed Linear Programming (LP) Models

Pre-timed linear programming models are static models that search for the optimal

combination of metering rates for a single or a set of ramps. Such models aim at sending

as many vehicles as possible onto the freeway subject to the demand and capacity

constraints on each freeway segment. Because the availability of LP software packages

and only historical data are needed, the LP models are fairly simple to use and implement

(Marsher, et al., 1975). However, such models with pre-specified metering rates could

not respond to significant variation in the traffic stream over a time period.

Wattleworth and Berry (1965) analyzed the theoretical considerations of ramp

metering control during peak periods. In that study, the objective functions (i.e., total

travel time and system output) of the metering control were developed, while the traffic

measurements as well as the locations of the detectors needed for control were discussed.

A LP model was formulated. The pre-timed metering rates were optimized by

maximizing the system output (total exiting volume via the mainline exit and off ramps).

Two linear constraints were considered in the model: the bottleneck capacity constraint

and the upper bound of metering rate constraint. A segment of Congress Street

Expressway in Chicago was analyzed. The optimal ramp metering rates were determined
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based on assumed 0/D demand information. However, the queue constraints on the

metered ramps were not considered.

A similar LP model was developed by Wattleworth (1967). The total input to the

freeway system (including mainline and on-ramps) was maximized for a pre-timed

metering system, while the constraints of bottleneck capacity, the upper bound metering

rate, and the queue length were considered. He found that metering control would be one

of the most effective ways to maintain a stable traffic flow condition on a congested

freeway network. Moreover, he concluded that adequate ramp storage area should be

designed to keep adjacent streets from being adversely impacted. Later, Papageorgiou

(1980) further enhanced Wattleworth's LP model, considering time-varying traffic

fluctuations on the mainline. However, the mainline volume could only change at a pre-

specified frequency (e.g., twice during the peak period), which was still incapable to

respond to situations with significant traffic variations.

Chen, et al. (1974) developed a metering control model that maximized average

freeway throughput when peak demand exceeded freeway capacity. In that model, the

ramp metering rates were optimized subject to the upper bound metering rate and density

constraints. Greenshield's model was applied to define the speed and density of the

studied freeway.

2.4.2 Local Traffic Responsive Models

With local traffic responsive models, ramp metering rates are optimized based on real-

time traffic conditions. The pioneer research on local traffic responsive models was

conducted by Drew (1967) and Wiener, et al. (1970). Statistical gap-acceptance models

were used to analyze vehicle movements in a merging area. Their models could be
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applied to a traffic responsive controller to break up vehicle platoons into single or a

smaller group of vehicles merging into the mainline traffic stream according to the sizes

of detected gaps.

Drew (1967) studied the merging behavior on Gulf Freeway in Houston, Texas.

Factors affecting the critical gap (acceptable gap by half of the drivers when merging

with the mainline) were identified, while the critical gaps were found to follow a gamma

distribution. The vehicle merging delays and the average queue length were formulated

by assuming that the vehicle headways on the mainline followed Brlang distributions. In

that study, the ramp metering rate was optimized based on the queue length and pre-

specified critical gap of the metered ramps.

In a later study conducted by Wiener, et al. (1970), gap-acceptance models were

developed to optimize the critical gap by minimizing the expected queue length and wait

time for a ramp. The stochastic process of queue reduction and regeneration on the

ramps of Gulf Freeway in Houston was studied. The gap-acceptance models for

stationary queue length and wait time were formulated as a function of critical gaps by

assuming that vehicle arrivals at ramps followed a Poisson distribution. The optimal

metering rates could be adjusted based on detected queue length.

Stephanedes, et al. (1993) evaluated a traffic responsive control model for I-35w

developed by Minnesota DOT. For each metered ramp, a rate table was developed

according to the volume-occupancy thresholds and the corresponding metering rates

derived from historical data of the ramp. In real-time operations, the upstream volume

and downstream occupancy of the ramp were compared with the thresholds in the rate

table, and then the proper metering rate could be identified. The MOEs used for
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evaluation included the total entry volume and the total delay experienced by vehicles

traveling under 45 mph. The results suggested that the rate table should consider the

trade-off between increased capacity and increased delay.

ALINBA, developed by Papageorgiou, et al., (1991, 1995), is a local occupancy-

based metering control strategy designed through the application of classical feedback

control law. Only two measurements, occupancies on the ramp and immediately

downstream of the ramp, were used to dynamically adjust the metering rates. ALINBA

was tested on the Peripherique Corridor in Paris (Salem and Papageorgiou, 1995), while

three MOEs (i.e., total travel distance, total travel time and mean speed) were used to

assess the efficiency of the control. Although the results were encouraging, the excessive

queue length on ramps frequently caused the control to be overridden with the maximum

metering rates to discharge the queues.

Banks (1991) analyzed ALINEA and found that the linear controller was more

effective for regulating non-congested traffic when nonlinearities in traffic behavior

were not presented. He developed a local traffic responsive model, within which the

metering rate was determined by the difference between the upstream and downstream

mainline volumes, while the difference between the actual released volume and metered

volume was used to adjust the metering rate dynamically. The model was tested on

WB 1-8 and WB SR-94 in San Francisco, and the results showed that the model was

more applicable when the analyzed freeway had sufficient capacity (i.e., un-congested

traffic conditions).
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2.4.3 System-wide Non-linear Quadratic Programming Models

In view of the deficiencies of local traffic responsive model (e.g., ramps are considered

isolated rather than connected), several system-wide metering control models were

developed (Papageorgiou, 1983; Papageorgiou, et al., 1989 and 1990; Banks, 1990;

Stephanedes, et al., 1993; Chang, et al., 1993 and 1994). The system-wide models could

handle a series of ramps in a traffic responsive scheme, while considering the

interconnections of traffic conditions between consecutive ramps in real-time. The

system-wide models often led to hierarchical non-linear optimization programming

carried by centralized computer systems, which processed traffic data, optimized

metering rates, and executed the control rules through ramp meters in real-time.

System-wide non-linear models were first developed by Yuan, et al. (1971). The

equivalent traffic demand was formulated as the sum of traffic and queue demand in

order to balance the queues on all metered ramps and prevent vehicle spillback onto local

streets. A quadratic programming problem was formulated to determine the desirable

metering rate by penalizing the deviation from the equivalent traffic demand. In the

optimization, three constraints were used: the vehicle conservation constraint, the

Greenshields' speed-density constraint, and the upper bound metering rate constraint.

The model was tested on a hypothetical freeway with only one on-ramp. The results

showed that the optimal metering rate could shorten the queue length on the ramp without

a significant reduction on freeway throughput.

Stephanedes, et al. (1993) presented a non-liner metering control model to

alleviate congestion during peak periods. In his study, the vehicle conservation and

Greenshields' speed-density models were used to describe the traffic flow in a freeway
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corridor, while the total vehicle travel time was used as the objective function to optimize

the metering rates. The optimal ramp metering rates were determined by minimizing the

quadratic objective function using a conjugate gradient search method. The model was

tested on a hypothetical freeway segment with one on-ramp. The results showed that due

to the limitation of the network size, the total travel time was not reduced significantly.

In a real-time traffic control system, the short-term prediction of traffic

information (e.g., speed, volume, density, and occupancy) became a necessity to respond

to traffic variation effectively (Smith and Demetsky, 1995). Thus, prediction was

proposed as a very important component in system-wide metering control models.

Papageorgiou (1983) developed a hierarchical decomposition algorithm that could deal

with large-scale nonlinear problems including optimization, prediction and control. This

algorithm consisted of three functional layers: adaptation layer, optimization layer and

direct control layer. The adaptation layer predicted exogenous parameters to the control

model, including traffic speed, volume, and occupancy. With the predicted parameters,

the optimization layer determined the optimal metering rates for a set of ramps by

minimizing the total vehicle travel time. The direct control layer then implemented a

local feedback control law to maintain the optimal metering rates for individual ramps

despite various disturbances such as traffic incidents in real-time. The model was tested

on a hypothetical freeway network with six on-ramps and six off-ramps.

Later, Papageorgiou, et al. (1989) developed three dynamic traffic flow models

(vehicle conservation, volume-density and speed-density models) while considering the

impact of weaving movements at ramp junctions. The three nonlinear models were

tested using real traffic data collected from the Boulevard Peripherique in Paris. After
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thorough investigation of the mathematical structure, parameter calibration, and

sensitivity analysis, the models were integrated with a system-wide ramp metering

control model and simulated in Paris (Papageorgious, et al., 1990). In that study, a

metering control model MBTAL1NE was developed, within which a Linear-Quadratic

(LQ) control law was implemented. The simulation results showed that MBTALINE

could be activated earlier before congestion formed at the ramp junction and thus

dissolve congestion more effectively than pre-timed control or local control systems,

such as AL1NEA.

2.4.4 Emerging Large -scale Heuristic Models

Because the system-wide ramp metering models usually involve rather complex

nonlinear optimization techniques, which require considerable computation efforts for

obtaining optimal solutions, these models are too time-consuming for real-time

implementation. Besides, these models might result in oscillatory metering rates because

of the difficulty to describe non-linear and time-varying freeway systems, especially

when traffic data are frequently corrupted with noise or transmission errors. Some

heuristic ramp metering models are developed to achieve sub-optimal solutions for large-

scale freeway systems (Goldstein, et al., 1982; Chen, et al., 1990; McDonnell, et al.,

1995; Taylor, et al., 1998), which could quickly respond to dynamic traffic conditions in

freeway operations and efficiently release ramp vehicles.

Goldstein and Kumar (1982) developed a decentralized metering control model to

obtain the sub-optimal metering rates for large-scale freeway systems. They argued that

the widely used centralized control model might require manipulation on large size

matrices, which is fairly time-consuming. In their study, metered ramps were divided
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into overlapping groups (e.g., ramps 1, 2, 3 as group 1, ramps 2, 3, 4 as group 2, and

ramps 3, 4, 5 as group 3, etc.). The centralized model was transformed using a cascading

technique such that a sub-controller could handle the ramps in each group. The

decentralized control model needed less time because of the smaller matrix size, yet the

traffic conditions in both upstream and downstream ramps were considered. The model

was tested by simulating a freeway network in San Diego, California. The results showed

that the model could respond to dynamic changes in local traffic conditions much more

quickly than the centralized controller, while similar improvements in average speed and

delays were achieved.

Chen, et al. (1990) developed an expert fuzzy controller for a ramp metering

control system near the San Francisco-Oakland Bay Bridge. The objectives of the

controller were maximizing system throughput and minimizing adverse impacts on local

streets. Seven rules were designed based on expert knowledge from the bridge operators,

in the form of 1F "freeway condition" THBN "control action". A look-up table was

integrated with the seven rules to determine adjusted metering rates under various traffic

conditions, ranging from heavily congested to extremely light flow in the rule base.

Through fuzzy logic implication, the controller could infer to what degree the condition

was true, thus determining metering rates. The simulation results showed that the

possible saving percentage in person-hours with the expert fuzzy control was 40%.

McDonnell, et al. (1995) presented an evolutionary programming technique for

freeway ramp metering control. The rule-based controller determined metering rates

based on upstream, downstream, and adjacent freeway occupancy levels. Evolutionary
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programming was demonstrated as a viable approach to integrate ramp metering control

strategies to alleviate freeway congestion effectively.

Taylor, et al. (1998) developed a fuzzy logic model to control multiple ramps in a

large-scale freeway network. Seventeen rules, including five rules for occupancy, four

rules for speed coupled with occupancy, six rules for shock waves/acceptable gaps, and

two rules for excessive queues, were developed and integrated with FRES1M, a

microscopic freeway simulation model developed by FHWA. A simulation of

northbound traffic on 1-5 in Seattle was conducted, and three MOEs (total vehicle travel

distance, total travel time, and average delay) were evaluated. The simulation results

showed that the fuzzy logic control outperformed the Local Metering Model and the

Bottleneck Model that were used in the freeway control system in Seattle. The testing

results indicated that the fuzzy logic control algorithm could achieve lower mainline

occupancy and higher throughput than the Local Algorithm (Taylor, et al., 2000).

2.5 Research Algorithms

In the area of ramp metering control, the key issue is to optimize the metering rate over

space and time. Many traffic control theory and optimization algorithms have been

proposed and implemented based on optimization techniques, automatic control, optimal

control theory and artificial intelligence methods such as artificial neural networks, fuzzy

systems, and expert systems (Chu, et al., 2002). Some of these algorithms are discussed

in the following sections.
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2.5.1 Artificial Neural Network (ANN)

Based on the findings in biological neural networks, Artificial Neural Networks (ANNs)

try to mimic interconnected multiprocessor architecture and attain the power and

flexibility. It consists of a multi-layer structure and multiple nodes (e.g., input nodes,

output nodes and intermediate nodes in intermediate layers) that communicate through

their connecting synapses. Bach node is linked to other nodes with varying coefficients of

connectivity that represent the strengths of these connections. The network has learning

ability by adjusting these strengths to produce appropriate output through training

examples fed to the network. ANNs use precise inputs and outputs to train a generic

model that has sufficient degrees of freedom to formulate a good approximation of the

complex relationship between the inputs and the outputs variables (Tsoukalas, et al.,

1996).

Over the past decade, ANNs as a class of learning algorithms have expanded

enormously and applied successfully in transportation research. In ramp metering control,

ANNs are used to track error information, produce ramp metering rates, feed back them

into the traffic system, compare the output (e.g., traffic density) with the target critical

value, generate a new tracking error and complete a feedback cycle until the freeway

system being controlled maintains a desired level of service (Zhang, 1997). ANNs have

the advantage of being capable of modeling non-linear systems, handling a variety of

variables (e. g., symbolic, nominal or categorical variables) and noisy data, and finding

the solution automatically (Mohammadian, et al., 2002). These advantages make ANNs

an attractive alternative to traditional modeling frameworks.
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However, ANNs need substantial data that are representative and cover the entire

range, while substantial time is needed to properly train an ANN (Tsoukalas, et al.,

1996). ANNs having less transparency in processing data do not appear to offer explicit

measures of sensitivity, which limits their ability to analyze alternative policies.

Additionally, ANNs have difficulties to integrate different modeling structures into an

integrated modeling system (Mohammadian, et al., 2002).

2.5.2 Fuzzy Theory

In fuzzy systems, the input and output variables are directly defined with fuzzy sets that

can be expressed in linguistic terms, while their interrelationship takes the form of well-

defined if/then rules. Fuzzy is a methodology for dealing with imprecision, approximate

reasoning, rule-based systems, and computing with words (Tsoukalas, et al., 1996).

Fuzzy logic systems allow far greater flexibility in formulating system

descriptions at the appropriate level of detail. Complex process behavior can be described

in general terms without precisely defining the complex (usually nonlinear) phenomena

involved (Tsoukalas, et al., 1996). Fuzzy logic control is suitable for ramp metering with

complex traffic conditions because it can regulate nonlinear, stochastic, and time delay

systems (Chen, 1990). Fuzzy logic can utilize incomplete or inaccurate data, balance

conflicting objectives and handle nonlinear systems with unknown models. It does not

require extensive system modeling and it is easy to fine tune (Taylor, et al., 2000).

Fuzzy logic is an extremely suitable concept to combine subjective knowledge

(linguistic information) and objective knowledge (Bogenberger, et al., 2002). However,

the rule base (the set of rules) has to incorporate human expertise. In expert systems,

exhaustive rules and databases are required for accurate dynamic model control. When
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this is not possible, special techniques have to be applied for compensation (Chen, 1990).

Human behavior-like factors are involved in fuzzy logic control, which preprocesses raw

data rather than calculates metering rates directly from raw data. These procedures

diminish the attraction of fuzzy logic control to those practitioners who generally are

more comfortable with the greater transparency of statistically-based methods

(Mohammadian, et al., 2002).

2.5.3 Simultaneous Perturbation Stochastic ApproDimation (SPSA)

Recently, Simultaneous Perturbation Stochastic Approximation (SPSA) has attracted

attention from transportation researchers. SPSA is a mathematical algorithm which

searches for an optimization solution starting with an initial guess and then updating it

with iterations until the desired result is approximated.

SPSA does not rely on direct measurements of the gradient (derivative) of the

objective function being optimized. Instead, it relies on measurements of the objective

function, avoiding the difficulties to obtain detailed modeling information describing the

relationship between the parameters to be optimized and the objective function. SPSA is

especially efficient in multivariate optimization problems of minimizing or maximizing

an objective function dependent on multiple variables. Since there are fewer algorithm

coefficients that need to be specified, SPSA will be easier to implement than other

stochastic optimization methods (Spa11, 1998). SPSA is a powerful method for

optimization in challenging nonlinear problems. Theoretical and numerical studies

generally show that SPSA has equal or greater efficiency in terms of the overall cost of

the optimization process (Spa11, et al., 1999; Spa11, 2000). SPSA is quite promising and

an easy-to-use optimization algorithm (Ting, et al., 1998; Kleinman, 1998).
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In this study, SPSA algorithm is proposed to solve the optimization problem in

ramp metering control. The detailed SPSA algorithm will be introduced in the next chapter.

2.6 Simulation Models

Traffic simulation models can be classified as being microscopic (CORS1M, TRANS1M,

M1TS1M, PARAM1CS, V1SS1M, AIMSUN2, etc.), mesoscopic (FREFLO, MBTANET,

AUTOS, V1SUM, etc.), macroscopic (DYNASMART, DYNAM1T, 1NTEGRAT1ON,

MBTROPOL1S, etc.) according to their representation of traffic flow or vehicle

movement (Chu, 2002). In this study, vehicle movement will be analyzed under ramp

metering control. A microscopic simulation mode is required to calculate and measure

the state of individual vehicles (e.g., speed, travel time, delay, etc.). CORS1M is a popular

and powerful simulator that can meet the study needs.

CORSIM, a microscopic corridor traffic simulator developed by Federal Highway

Administration (FHWA), has been applied extensively to a wide variety of areas by both

practitioners and researchers and it is one of the most wildly used traffic simulation

models. It can simulate stochastic individual traffic vehicle operations and control

systems on integrated networks containing freeway and surface streets. The behavior of

each vehicle is represented in the model through interaction with its surrounding

environment including roadway geometry and adjacent vehicles in the traffic stream.

CORS1M can also simulate fairly complex geometric conditions (e.g., curvature, super-

elevation, lane add/drop, acceleration/deceleration lanes, grade section, and interchanges)

and realistic driver behavior after the model is appropriately calibrated and validated
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(Vein der Zijpp, et al., 2001). CORSIM is capable of simulating most freeway geometric,

traffic, and surveillance and control conditions by different card types.

To execute the CORSIM traffic simulation model, the windows version of TSIS

provides an integrated, user-friendly, interface and environment. Specifically, it is

designed to support the CORSIM simulator and CORSIM output processor, TRAFVU

(TRAF Visualization Utility). The user can extend TSIS functionality by adding other

traffic engineering or analysis software tools that have been designed to conform to the

TSIS traffic tool interface. The advantages of operating within the TSIS environment

include an intuitive, user-friendly graphical interface; scrollable screen output; better

memory management for CORSIM; and on-line context-sensitive help that encompasses

the TSIS, TRAFVU, and CORSIM User's Guides. TSIS provides an efficient mechanism

for communicating results from traffic analysis tools, such as simulation systems. TSIS is

evolving into a common repository to support the data requirements of many traffic

models and simulation systems.

The graphics processor TRAFVU deployed in FHWA's Traffic Research Laboratory

(TREL), is a state-of-the-art, object-oriented, user-friendly graphics post-processor for

CORSIM. TRAFVU displays traffic networks; animates simulated traffic, signals, and

Measures of Effectiveness (MOEs). TRAFVU takes full advantage of the processing power

and graphics capabilities of today's computers. The expanded capability of this product (the

ability to animate in multiple windows and to simultaneously process multiple cases) over

previously available graphics processors provides users with an easy-to-use, yet powerful

tool for conducting traffic analyses.
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2.7 Summary

In this chapter, the general requirements for various ramp metering control systems were

discussed, including the freeway surveillance systems, metering controllers and

constraints for previous metering control algorithms. The freeway surveillance systems

were focused on discussing locations of detectors for metering control. Two types of

metering controllers, pre-timed and computer-centralized controllers were described in

detail. Three types of constraints associated with ramp metering control were

investigated, the upper and lower bounds of metering rates, the capacity and the queue

constraints. These constraints are widely used for both localized and system-wide

systems and are critical for developing the real-time ramp metering control in this study.

This chapter discussed various ramp metering control strategies (e.g. pre-timed,

local traffic responsive, system-wide and integrated system control strategies) developed

in previous studies. Four metering control models (pre-timed linear programming, local

traffic responsive, system-wide non-linear programming and emerging large-scale

heuristic models) have been developed in the past and used in practice and through

simulations.

Fuzzy theory, ANNs, and SPSA were discussed as the potential research

algorithms. In this study, SPSA optimization will be implemented based on the

advantages of its properties, while the microscopic simulator CORSIM will be used for

modeling and evaluation proposes.
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METHODOLOGY

3.1 Development of Ramp Metering Control Model

The goal of ramp metering control is to alleviate freeway congestion and improve its

operational performance. Several MOEs (e.g., total delay, total vehicle-miles, total traffic

throughput, etc.) can be candidate objectives to be optimized (Chang, et al., 1994). The

total traffic throughput is relatively more appealing than others, since the number of

discharged vehicles from a freeway system can be easily detected in practice. The total

throughput was thus selected as the objective to be maximized subject to constraints of

link densities, capacities and the boundaries of metering rates in this study. Before

formulating the dynamic metering control model, the following assumptions are made:

1. The traffic flow on the mainline is steady without serious incidents blocking

the freeway, which can represent the steady relationship among flow, speed

and density.

2. Each vehicle passes through a meter separately from other vehicles based on

a first-come first-released discipline.

3. The average vehicle length is 20 feet. This assumption is used to approximate

the storage capacity of the metered ramp.

To develop a ramp metering control model, a freeway including N small segments

with multiple on-ramps and off-ramps was assumed and is shown in Figure 3.1. Bach

small segment contains at most one on-ramp and one off-ramp. The control time period is

a series of equal intervals. Assuming an equilibrium flow-density relationship exists for

each freeway link i, and the traffic status on a segment can be simply described by the

mean link density, the dynamic equation of link density pick) (vehs/mi/ln) can be

formulated as Bquation 3.1 (Chang, et al., 1994).
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the flow rate entering link i+1 from link i during interval k, (vph);

the metering rate for an on ramp of link i during interval k, (vph);

: the mean flow rate of freeway link i during interval k, (vph);

equal to 1 if an on-ramp of link i exists, otherwise equal to 0;

equal to 1 if an off-ramp of link i exists, otherwise equal to 0;

: the turning percentage of traffic to the off ramp of link i during interval k,

(%);

: the volume entering the on-ramp of link i during interval k, (vph);

: the volume exiting the off-ramp of link i during interval k, (vph);

the duration of a time interval, (hours);

: the physical length of link i, (miles);

: the number of through lanes of link i.

39
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In Bquation 3.1, pe(k-1) is the link i mean density during interval k-1. The item

reflects the change of the flow rate entering link

express the expected flow rates entering and exiting link i through on-ramps and off-

indicates the change of the flow rate

at link i as a result of the traffic fed from the on-ramp and released from the off-ramp.

Thus, Bquation 3.1 expresses the dynamic density relationship that the projected mean

density p;(k) of time interval k as the sum of the mean density at time interval k-1 and the

change of mean density at time interval k. The flow rate entering link i, q,(k) can be

approximated with the weighted sum of two segment boundary flows:

where a;(k) is the weighted factor representing the interaction between flows on links i

and i+1 at interval k, which captures the interrelations between adjacent segment flows.

The value of 0.5 set for a,(k) can indicate the same influence to flows of links i and 1+1.

Note that aN(k) is equal to 1 on the last link N.

Thus, by substituting Equation 3.2 into Equation 3.1, Equation 3.3 representing

density functions for links from 1 to N can be derived.
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and 00(k) = 0. Given the parameter value

pi(k), if Qi(k) is a non-linear function of p(k). The density pl(k) calculated by Bquation

3.3 represents a non-linear dynamic system varying with k.

Based on the basic principle of traffic flow theory, a nonlinear relationship

between flow and density can be formulated as

where Si(k) represents the mean speed of link i during interval k, which can be estimated

by analyzing individual vehicle speeds collected by detectors.

The objective total traffic throughput (ITT) is defined as the total number of

vehicles discharging from the freeway section over the control period and formulated as

where K is the last time interval of the control period. By substituting Equation 3.4 into

Equation 3.5, III is

One of the objectives in this study is to maximize (III). However, the Simultaneous

Perturbation Stochastic Approximation (SPSA) technique discussed in the next section,

which will be used to optimize III, was designed to minimize an objective function.

Thus, the objective function LEA) will be reformulated as a very large positive number Z

minus TIT:
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where is a set of variables Rick) and Qi(k) that are considered as optimization decision

variables. Thus, L(k) can be minimized with SPSA. In Equations 3.3, 3.4 and 3.7,

and 1i can be collected from the

study site, while Oink), p i(k-1), q0 (k) and S1(k) can be either detected from sensors or

estimated from historical data.

Considering densities, capacities and boundaries to define the feasible range of

metering rates, the objective function formulated in Equation 3.7 should be minimized

subject to a set of constraints formulated in Bquations 3.8, 3.9, and 3.10:

Equation 3.8 indicates that the density of link i at interval k should be positive and

less than the maximum density Similarly, the flow of link i at any interval k in

Equation 3.9 must be positive and less than the link capacity Qin  . The constraint in

Equation 3.10 indicates that the range of feasible metering rates, where

represent the lower and upper boundaries of metering rates, respectively.

Assuming that vehicles approach a ramp meter with a mean arrival rate m, the

relation between the queue length La (number of vehicles) and the metering rate R, (k)

can be expressed by an M/M/1 queuing model as shown in Equation 3.11.
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where r is the ratio of vehicle arrival rate m and ramp rate Ri (k). Assumptions for the

queuing system and the derivation of the equation can be found in Appendix C.

The maximum storage capacity of a metered ramp can be determined by the total

lane-miles of the ramp divided by the average vehicle length (e.g., 20 feet). The

minimum metering rate Rini" guarantees that the queue length La will not exceed the

storage capacity. Thus, the queuing vehicles on the metered ramp will not spillback to the

local street. Rini" can be derived from Equation 3.11 (for derivation see Appendix C) as

According to previous studies (Masher, et al., 1975, and Federal Highway

Administration, 1996), the maximum metering rate R1nzo is suggested to be 900 vphpl

(based on the minimum metering headway of 4.0 seconds/vehicle), which considers the

driver's reaction and operation time and the time consumed for vehicle acceleration

required by a single vehicle to proceed past the ramp. The feasible range of metering

rates (Erin  , ) for each metered ramp could thus be determined.

3.2 Development of the SPSA Algorithm

In the past, various ramp metering algorithms were designed and deployed. Based on

different considerations, the algorithms were used to find reasonable metering rates

through optimizing linear or nonlinear functions. With the development of real-time

surveillance systems (e.g., various detectors that lead to an improvement in data

collection and processing), and optimization skills (e.g., linear-quadratic optimization

technique and hierarchical decomposition algorithm), solving a large-scale nonlinear

optimization problem is no longer a difficult task. However, explicit relationships
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between adjustable or controllable system parameters and system performance have to be

obtained in order to analyze detailed modeling information. Real-world systems are often

too complex to allow such a detailed description.

In optimization problems, the gradient of the objective function with respect to

the decision variables needs to be attained exactly, while the solution can be optimized by

setting the gradient of the objective function equal to zero and solving it. However, the

process to compute the gradient of a complicated objective function is often difficult. An

efficient optimization method is thus desirable to be developed. The SPSA algorithm has

significant advantages in solving multivariate optimization problems whose gradient of

the objective function is often difficult to be derived. Such advantage makes the SPSA an

ideal candidate methodology to optimize the dynamic ramp metering control problem. In

this study, SPSA was applied to optimize metering rates with the use of the microscopic

traffic simulation model CORSIM. Detailed description of the SPSA algorithm may be

found in Sall (1992, 1998, and 2000), Kleinman, et al. (1998), and Ting, et al. (1998).

The SPSA algorithm, a recursive optimization technique for finding local

optimizers of linear or nonlinear objective functions, was first introduced and developed

by Sall (1992). Based on the measurement of the objective function (not on the

measurement of the gradient of the objective function), SPSA is an easily implemented

and highly efficient gradient approximation algorithm. SPSA computes the positively and

negatively perturbed objective function values in each iteration. SPSA is like other Kiefer

and Bolfowitz stochastic approximation algorithms, such as the Finite Difference

Stochastic Approximation (FDSA), in that SPSA requires only measurements (possibly

noisy) of an objective function to form gradient estimates and converge to a local

optimum. However, SPSA differs significantly from FDSA in requiring only two

objective function evaluations per gradient estimate, whereas FDSA requires 2p



45

evaluations, where p is the number of system parameters being estimated. This gives

SPSA a significant advantage in high-dimensional problems, especially when evaluating

the objective function is expensive or time-consuming (Ting, et al., 1998).

The SPSA algorithm uses objective function measurements to iteratively update

system control parameters until the objective function can reach the local optimization (as

shown in Figure 3.2). Let LAX) with vector X be the objective function to be optimized by

a set of system optimized parameters X (e.g., the ramp metering rates and mainline traffic

flow in the freeway system). If L(1) is a differentiable function with respect to X, y(X)

represents the gradient of L(1) and shown in Bquation 3.13.

Finding the approximate optimal solution of Bquation 3.13 is the major

responsibility of SPSA. Assume that the measurement of the objective function yak) is

represented by Equation 3.14 for any X:

A

equation. The SPSA algorithm gives an initial guess of the optimal X represented by 20

and uses y(X) to update X recursively until the optimal solution £h is approximated. In the

approximation process, SPSA iteratively produces a sequence of estimates

generated by each iteration. The configuration of the developed SPSA

algorithm is shown in Figure 3.2.



A

Set counter index h equal to 0. Pick initial guess 20 and non-negative

coefficients, a, c, (3 and y in the SPSA gain sequences as shown in Bquations 3.15

and 3.16. The initial guess 20 depends on the practical scenario. As a rule-of-

thumb, a large a can enhance performance in the later iterations by producing a

larger step size, while it will be effective to set c at some small positive number.

Choosing 13 < 1.0 usually yields better finite-sample performance through
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maintaining a larger step size. Theoretically valid and recommended values for 13

and Y are 0.602 and 0.101, respectively (Spall, 1998).

Step 1: Generate Simultaneous Perturbation Vector

Generate a p-dimensional random vector Ad where each of the p components of

Ad is independently generated from a zero-mean probability distribution. An

effective (and theoretically valid) choice for each component of Ad is to use a

Bernoulli ±1 distribution with probability of 1/2 for each ±1 outcome. Since

uniform and normal random variables have infinite inverse moments, they are

not allowed for the elements of Ad.

Step 2: Evaluate Objective Function

Obtain two measurements of the objective function L(1) based on a simultaneous
A 	 A 	 A

perturbation around the current 2h (e.g., y( 2h + Ch Ad) and y( 2h - ch Ad)) with

the chi and Ad obtained from Steps 0 and 1, respectively.

Step 3: Approximate Gradient

Generate the simultaneous perturbation approximation to the (unknown) p-



A 	 A

to update 21, to a new value /4+1.

Step 5: Iteration or Termination

Return to Step 1 and increase the counter index from h to h+1. Terminate the

algorithm if the difference between successive iterations is less than a pre-set

A

value that should be small enough to guarantee accuracy. The 211 found in the

last iteration is the optimum, called A. (proof provided in Appendix C).

The SPSA algorithm is very general and can be applied in many different

situations to optimize many different kinds of objective functions. For instance, L(k)

could be the function dealing with total throughput, while k could represent the optimal

ramp metering rates at different segments in a freeway network. The constraints can be

imposed by adding penalty functions in the objective. The flexibility of the algorithm

stems from the fact that only objective function measurements are required, instead of

full objective function or gradient information. The objective function measurements

required by the SPSA algorithm can come from a real system as well as from a computer

simulation of a real world probabilistic system.
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3.3 Dynamic Multi-ramp Metering Control with SPSA

In practice, traffic volumes feeding into a freeway network vary over space and time. The

dynamic ramp metering control with SPSA, which reflects real world traffic and

geometric situations, integrates the developed ramp metering control model and the

developed SPSA algorithm discussed in Sections 3.1 and 3.2. The dynamic ramp

metering control principle is shown in Figure 3.3. Given an initial time interval, the

feasible range of metering rates as discussed in Section 3.1 need to be determined first.

Then, the input data for SPSA calculation are collected from the studied simulation

model. With the application of SPSA, the optimized multi-ramp metering rates are

obtained. To apply the ramp metering control, it should be verified that the optimized

ramp metering rates are in the feasible range. If the optimized ramp metering rates are out

of the feasible range, minimum or maximum ramp metering rates can be set for

implementing ramp metering control. After the optimization achieves ramp metering

control, the control procedure is iterated for the next time interval and it terminates when

the last time interval is reached.

In the dynamic multi-ramp metering control with SPSA, the multiple ramp

metering rates subject to dynamic traffic conditions and capacity constraints (e.g. on-

ramp volumes, mainline capacity and the boundaries of feasible metering rates, etc.) are

optimized by the SPSA algorithm, while the input data for optimizing metering rates can

be obtained from the simulation results. In this study, the simulation result of the previous

time interval will be used as the input data for determining the optimal metering rates in

the next time interval.
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3.4 Summary

The proposed dynamic ramp metering control model was developed based on basic

assumptions (e.g., the steady traffic flow on the mainline, the first-come first-released

rule, and the average vehicle length). The SPSA algorithm can be applied to optimize the

objective total throughput function and iteratively update system control parameters until

the objective function approximated the optimization solution. The procedure of the

recursive optimization technique was introduced in detail. Subject to the constraints

(e.g., the density and capacity of the link, and the feasible range of metering rates), the

ramp metering control model was optimized through the implementation of the SPSA

algorithm.



CHAPTER 4

CASE STUDY

4.1 Site Identification

The case study is designed to demonstrate the benefit of the dynamic ramp metering

control model and the efficiency of the SPSA solution algorithm in approximating the

optimal solutions. The study site for implementing the developed dynamic metering

control model is a 12-mile segment of eastbound I-80 in New Jersey, which starts from

milepost (MP) 29.2 and ends at MP 41.1. The typical segment without freeway-to-

freeway connectors contains seven on-ramps and five off-ramps supporting the entry and

exit flows, which will make evaluation results and recommendation applicable to similar

sites and other corridors without much difficulty. The daily traffic is over 100,000

vehicles. The mainline speed limit is 65 mph, while the speed on ramps ranges from 20 to

40 mph. The configuration of the study site is shown in Figure 4.1.
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Although there are no ramp meters installed on freeways in New Jersey, the

recommended site was selected based on the availability of data. Most of the data for this

study site were provided by NJDOT for developing a simulation model.

4.2 Site Visit

Several field trips were made to get a general overview and observe local traffic

operations. The collected geometric and traffic conditions are shown in Figures A.1

through A.8 of Appendix A. It was found that the traffic on westbound I-80 was very

light during the morning peak period. Heavy congestion was observed on eastbound I-

80, especially at the ramp junction of Route 513/Hibernia Avenue (Figures A.1, A.2 and

A.3). Figure A.4 shows heavy traffic at the ramp junction of Route 661 & Mount Hope,

while conditions at two ramps at the junction of Route 615 & Howard Boulevard are

shown in Figures A.5 and A.6. Figures A.7 and A.8 show the geometric and link-node

diagrams respectively for the study site.

4.3 Data

To develop a comprehensive dynamic ramp metering control model for the I-80, the

required types of data should include:

• Geometric data,

• Mainline volumes and speeds,

• Ramp volumes and speeds, and

• Origin/Destination (0/D) demand or turning percentage.
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NJDOT was the principal data provider while some information was obtained from

reports (Garmen Associates, 1991; Parsons Brinckerhoff Quade & Douglas Inc., 1997).

The collected geometric data include: (1) freeway link lengths and number of lanes, (2)

ramp locations, lengths, and number of lanes, (3) lengths and number of auxiliary lanes,

(4) locations where geometry changes, (5) grades, and (6) radius of the curvature. All

geometric data, summarized in Table 4.1, were collected from construction plans,

provided by NJDOT. All traffic data for eastbound 1-80 were collected during weekdays

in the peak period 6:00 AM - 9:00 AM and are shown in Table 4.2, while

Origin/Destination (0/D) demand distributions are summarized in Table 4.3. These data

will be applied for developing a simulation model to evaluate the benefits of ramp

metering control for the study site. Table 4.2 shows that the average speeds on the

segments from milepost (MP) 34.6 to 39.6 were very low. One of the main reasons that

led to congestion during the peak hour would be the higher merging volumes from on-

ramps (e.g., MP 34.6 and MP 37.9).
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4.4 Simulation

Computer simulation is one of the most important tools in evaluating traffic operations

under different control strategies. It is possible to predict the effect of traffic control and

the performance of Transportation Systems Management (TSM) strategies if a

transportation network can be replicated by means of a simulation model. The prediction

of the effect could be expressed in terms of measures of effectiveness (MOEs), which

include average speeds, number of vehicle stops, delays, vehicle-hours of travel, vehicle-

miles of travel, fuel consumption, and pollutant emissions. While the MOBs provide

insight into the effect of the applied strategy on the traffic stream, they also provide the

basis for optimizing that strategy.

There is a great deal of skepticism as to whether metering can be successfully

implemented. Several previous studies (Lindley, 1988; Blumentritt, et al., 1981; Deepak,

et al., 1978; Hallenbeck, et al., 1991; Nsour, et al., 1995, MNDOT, 1994; and Chien, et

al., 1998) focused on the success of metering control systems in various cities and how

their guidelines and criteria could be modified and potentially applied locally, especially

for short ramps. The goal of this study is to assess the potential effects of implementing

the proposed dynamic metering control model on a segment of eastbound I-80, New

Jersey. To achieve the objectives, a state-of-the-art simulation model CORSIM was

selected for evaluating metering control strategies by quantifying metering impacts on

traffic operations on freeways. A simulation approach, rather than an actual field testing

approach, was chosen for the following reasons.

• Computer simulation is less costly. Some MOEs (e.g., throughput and delay),

while cannot be measured in the field due to time and cost constraints, can be
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easily approximated with simulation. It is relatively inexpensive to obtain data

from simulation outputs.

• With computer simulation, the disruption of traffic operations caused by field

experiments will be completely avoided. For different traffic schemes,

experimentation with various combinations of diverted traffic volumes, ramp

metering rates, and origin and destination demand distributions are impractical

in field study, especially for incident-based congestion.

• When significant physical changes to the facility are required in many

schemes, which are not acceptable for experimental purposes, computer

simulation could be easily used.

• Evaluation of the operational impact of future traffic demand has to be

conducted by using simulation or an equivalent analytical tool. In addition,

many variables can be held constant, and results could be quickly obtained.

• The availability of traffic simulation models greatly expands the opportunity

for the development of new and innovative TSM concepts and designs.

Planners and engineers are no longer restricted by the lack of a mechanism for

testing ideas prior to field demonstration. Furthermore, because simulation

models produce information that allows designers to identify the weakness in

concepts and designs, they provide the basis to identify the optimal form of

candidate approaches. Thus, the eventual field implementation will have a

high probability of success.
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4.5 Network Modeling

The network of the study site begins from MP 29.2 and ends at MP 41.1 of eastbound 1-

80, which contains seven on-ramps and five off-ramps. As shown in Table 4.4, control,

geometric and traffic data are main data required by CORSIM. The geometric

configuration and link-node diagram are as shown in Figures A.7 and A.8, respectively.

The first step of network modeling with CORSIM is to determine the relationship

among links and nodes. A link connects two nodes, which represents a directional

freeway or ramp segment. For entry and exit links, a dummy node is placed between the

entry or exit node and the internal node, which allows for the collection of traffic

statistics on the links.

The network was coded along the mainline considering critical points such as

interchanges, potential ramp meter locations, curvature/superelevation change, and entry

or exit points. The developed simulation model contains eight entry nodes, six exit nodes,

14 dummy nodes and 19 internal nodes, while eight entry links, six exit links and 32

internal links connect the 47 total nodes. The detail link-node identification numbers of

the study network are summarized in Table 4.5.
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4.6 Calibration and Validation

As mentioned before, simulation is a viable approach to conduct a feasibility study for

evaluating various ramp metering control strategies considering time varying demand. To

conduct a credible simulation analysis, one must be confident that simulation results

represent real world traffic operations reasonably well. Therefore, a procedure for

calibrating and validating of the simulation model should be carefully performed.

Before implementing a ramp metering control plan at the study site, it is essential

to demonstrate that traffic engineers have done the best design for the plan. To achieve

this goal, the calibrated and validated simulation model used for emulating traffic

conditions on I-80, plays an important role to evaluate candidate ramp metering control

plans and assess the corresponding impact on the study site.

The impact incurred by implementing different ramp metering control plans can

be assessed by simulated MOBs including volume, total delay, and average speed. Then,

the best plan that achieves the optimal objective can be identified.
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To calibrate the simulation model, the MOBs generated by CORSIM must be

compared with field data to ensure that simulation results can represent realistic traffic

operations of the study site.

4.6.1 Data Collection and Processing

Two data sets collected from the study site during different time periods were

used for calibrating and validating the simulation model. The traffic volume and average

speed data used for calibrating the developed simulation model were collected in the

field. Table 4.6, for example, shows the volume and speed data collected during 7:00 am

- 8:00 am on link 302-303. The traffic volume data used for validating the simulation

model were collected during 8:00 am - 9:00 am from the same data stations. The average

volume and speed on this link was 4260 vph and 47.9 mph, respectively. However, only

traffic volumes were provided by data stations at MP 35.1, MP 35.2, and MP 38.1, as

shown in Table 4.7.
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4.6.2 Model Calibration

The data describing freeway geometry, traffic conditions (volumes, speeds and turning

movement) and facility locations (e.g., locations of ramps and warning signs) were the

major input of CORSIM. Traffic operations during a peak hour (7:OOam-8:OOam) on the

eastbound of I-80 were simulated. After comparing simulation results with field data,

discrepancies were found and reduced by calibrating parameters in CORSIM. The

parameters, such as car-following sensitivity factor (defined by time headway between

vehicles), lane change parameter, minimum separation for vehicle generation, collision

avoidance time period and the percentage of cooperative drivers, were adjusted to fine

tune the simulated driving behavior.

There is no certain way to identify the impact from an individual parameter

change when changing several parameters at a time, due to the interdependent influence

among those parameters and the simulation results. Therefore, the impact of each

parameter on simulation results was investigated. To identify the key parameters

influencing the simulation results, sensitivity analysis for various parameters was

conducted. The calibrated values of parameters are shown in Tables 4.8 and 4.9.
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Figures 4.2, 4.3 and 4.4 shown below demonstrate the sensitivity of calibrated

parameter to the simulation results. Decreasing the values of the car-following sensitivity

factor could achieve larger traffic volumes and higher speeds due to shorter gaps

allowable between vehicles. With more cooperative drivers, traffic volumes on ramps and

their speeds might increase because more vehicles were able to merge into the traffic

stream on the mainline.

Figure 4.2 Traffic volumes on different links for various car following sensitivity factors
(CFF).
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For describing the turning movement of vehicles in the network, card type 25 in

CORSIM gives the turning percentages for every link with an off-ramp. However, the

0/D percentage of vehicles generated based on card type 25 significantly deviates from

the actual 0/D percentage of the network. Thus, card type 74 (0/D) was used to adjust

the turning movements to each off-ramp. After the adjustment the simulation result

shows the same O/D percentage as shown in Table 4.3.

The calibration procedure adopted in this study is composed by the following

comparisons: (1) graphical comparison, (2) aggregate comparison, and (3) statistical

comparison.

(1) Graphical Comparison

The graphical comparison is a subjective validation approach, which is especially

useful for testing the results generated by the simulation model preliminarily. It makes

the comparison easy and visible.

(2) Aggregate Comparison

Aggregated means and standard deviations give a general indication of system

performance in the real world and in simulation. However, they do not present an

accurate trend or an indication of how variables perform over time, what patterns are

created, or how much individual measurements deviate. Aggregate comparison along

with the graphical comparisons of scattered plots, reveals the similarities and

discrepancies of the magnitude and changing pattern for variables.

(3) Statistical Comparison

The statistical analysis is crucial for validating the proposed model based on

sample data collected from the study site and simulation. It can be used for accessing the

accuracy of the model, testing various hypotheses and determining the degree of
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correlation between field data and simulation results. The following indices are used for

statistical comparison.

• Mean Absolute Percent Brror (MAPB)

MAPB measures the percentage error between simulation results and field data

and can be estimated by Bquation 4.1:

where n, Si and Oil are sample size, observation i of simulation output, and observation i

of field measurement, respectively.

• Root Mean Square Error (RMSE)

RMSB denotes the error between simulation results and field data and can be

estimated by Equation 4.2:

where n, Si and Oil have been defined in Equation 4.1.

Figures 4.5 and 4.6 show that both the simulated and the field observed traffic

volumes at various sections on the mainline were quite close to each other. Note that the

field traffic volume on each link was derived based on two data stations on the mainline

(approximately at MP 30.2 and MP 35.2) because the volumes reported from other data

stations were inconsistent with the field data and were not used for calibration.



Figure 4.6 Field data vs. simulated data (on-ramps).
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4.6.3 Model Validation

To insure that the model could produce reliable and accurate estimates of real network

traffic conditions on a system-wide basis, model validation is required. The calibrated

model was validated through comparing simulation outputs with their field counterparts.

It should be noted that the data set used to validate the model was different from that used

to calibrate the model. In this study, volumes on the same links collected during different

time periods were used to validate the model. The preliminary test of traffic volumes was

conducted by graphically comparing the values of field observations and simulation

results.

The statistical analysis was conducted by calculating MAPE and RMSE for the

field and simulated traffic volumes on mainline links. The MAPB and RMSB of traffic

volumes were plotted in Figures 4.7 and 4.8, respectively. Figure 4.7 shows that for 364

simulation outputs, the MAPB ranged from 0% to 1.5%. In Figure 4.8, the RMSE of

traffic volumes ranged from 0 veh to 35 veh. The simulation model demonstrated its

capability to emulate traffic volumes operating on the studied network.

Regarding the speed data, only the station at MP 30.2 provided speed information.

A comparison of actual and simulatied data generate a MAPB of 1.54% and RMSE of

0.97 mph. This indicates that the simulation model could accurately simulate vehicle

speeds at the survey point.
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4.7 Summary

A 12-mile study site with seven on-ramps and five off-ramps along eastbound I-80 from

milepost 29.2 to 41.1 was identified. Field investigation showed that the traffic on

eastbound 1-80 was heavy and led to congestion during the morning peak period. For this

study, geometric data (e.g., link length, auxiliary lanes for on/off ramps, and etc.), traffic

data (e.g., volumes and speeds on the mainline and ramps), and origin/destination

demand were collected.

The advantages of computer simulation were discussed in this chapter. The

network of the study site was modeled by CORSIM. The developed simulation model

was calibrated and validated based on the field data collected from I-80. By comparing

the simulation outputs to the field data, the validity of the simulation model was

demonstrated. Both the graphical and aggregate comparison showed that the developed

simulation model could adequately simulate traffic operations on eastbound 1-80.

Statistical analysis on MAPB and RMSB indicated that the differences between

simulation outputs and data collected from the field were very small. Thus, the simulation

model is capable of simulating traffic operations in the study site and generating reliable

results.



CHAPTER 5

SYSTEM EVALUATION

5.1 Evaluation of Ramp Metering Control

It is necessary to evaluate the performance of ramp metering control on the study

network, and then to determine the ramps where the proposed metering control model can

be applied. As mentioned earlier, ramp metering control can be referred to the control of

vehicles entering a freeway mainline from one or more entrance ramps. For improving

freeway operation, the proposed ramp metering control is to minimize the interference of

entering traffic from the ramp to the mainline traffic. To evaluate ramp metering control,

constraints, such as locations of ramp meters and ramp storage capacities, should be

considered; In addition, the potential ramps suitable for metering control should be

identified. The CORSIM model developed in Chapter 4 is applied here to evaluate pre-

timed and demand/capacity control strategies, since those are the most widely applied

metering methods for static and demand responsive system.

5.1.1 Constraints

As ramp meters restrict the number of vehicles merging into the mainline traffic, queues

may be formed at the metered ramps. Since different ramps have different geometric

conditions and vehicle arrivals are stochastic, it is crucial to ensure adequate storage

capacities at the metered ramps. Therefore, an analysis of ramp meter locations and their

corresponding storage capacities should be conducted before the simulation analysis.

Subject to such constraints, feasible metering rates that do not cause overflow situations

should be estimated at each ramp.

71
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(1) Locations of Ramp Meters

Considering the safety aspects of the merging operation, the location of the ramp

meter should be determined by the minimum distance required for a stopped vehicle to

accelerate along the lane and smoothly merge into the mainline traffic stream. That

minimum distance can be obtained from Equation 5.1.

where V, and Von are the average speed on the mainline and the initial speed of a vehicle

released by a ramp meter, respectively. For a stopped vehicle,

and Von are known, the time t required for the vehicle accelerating from the ramp meter

to the on-ramp gore can thus be determined. By substituting a, t, and Von into Bquation

5.1, d can be obtained.

In this study, the acceleration rates for passenger cars, carpool vehicles, buses,

and trucks were assumed to be 6.8, 3.8, 3.5 and 3.2 mph/sec

respectively. The meter location was determined by the truck acceleration rate (3.2

mph/sec) which is the most constraining. The lengths of the auxiliary acceleration lanes

of the ramps at the study site are listed in Table 5.1, and the suggested ramp meter

locations are summarized in Table 5.2.
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An example for determining the suggested meter locations is discussed next. Link

372-373 had an auxiliary acceleration lane of 640 ft. In order for a truck to accelerate

from a stop at the meter to the average mainline speed (e.g., 65 mph), the required

acceleration time t was

By substituting t into Bquation 5.2, the minimum distance was

Apparently, the auxiliary acceleration lane was not long enough. The ramp meter has to

be located at least 311 feet (951 minus 640 feet) before the on-ramp gore. To insure

safety, the ramp meter at node 376 was located 330 feet away from the on-ramp gore.

The above ramp meter location was determined based on an assumed average mainline
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speed of 65mph. If the average mainline speed decreases, the distance between the meter

location and on-ramp gore decreases.

(2) Ramp Storage Capacity

In general, ramps provide the necessary linkages between freeways and local

streets or arterials. To avoid vehicle spillback onto surface streets from a ramp metering

signal, the ramp storage capacity has to be taken into consideration.

The storage capacities for potential metered ramps are shown in Table 5.3. At

node 306, for example, the maximum queue length of 729 feet was measured from the

entrance of the on-ramp to the meter location. By assuming an average vehicle length of

20 feet, the queue storage capacity was 36 vehicles. The constraint of this ramp was

represented by La 36. The minimum metering rate R,min (k) (370 vph) could be solved

by Equation 3.12, if the mean arrival rate m was 360 vph. Thus, the resulting headway

was 9.7 (e.g., 3600/ 370) seconds per vehicle.

In CORSIM, the suggested minimum metering headway is 4 seconds. Thus, the

maximum metering rate is 900 vphpl (3600/4 = 900). Based on the collected data, the

entry flows at metering nodes 377 and 345 were 1216 and 1080 vphpl, respectively,

while the corresponding vehicle headways were 2.96 and 3.31 seconds per vehicle. Since

the metering headways are both less than the minimum 4.0 seconds, the headway has to

be set at 4.0 seconds and the queues on both ramps would easily extend over the entrance

of the ramp. Thus, ramp metering control was not recommended on both ramps.
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5.1.2 Simulation Analysis and Evaluation

Ramp metering control was evaluated by performing extensive simulation with

CORSIM. The benefits expected from the implementation of ramp metering control are

increasing throughput and/or decreasing delay. To generate unbiased estimates, ten

simulation runs with different random number seeds were performed for each of the three

scenarios: no control, pre-timed control, and demand-capacity control situations. The

benefits of alternate strategies are evaluated and discussed next.

(1) No Control

Without ramp metering control, vehicles entering the mainline stream from ramps

would not be regulated. Under this situation, the network-wide MOEs, such as total

throughput and total delay, were obtained based on one-hour simulation. The total

throughput was 9,613 vph, while the total delay was 17,199 vehicle-minutes, which

would be used as base results for comparing other metering control strategies.
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(2) Pre-timed Metering Control

Although the simulation of the pre-timed metering control strategy was used on

individual on-ramps, the simulated network-wide MOEs were analyzed. The applied

metering rates were selected subject to the storage constraint of each ramp and the

minimum ramp metering rate derived from Equation 3.12. As mentioned earlier, the

maximum ramp metering rate in CORSIM was 900 vphpl. Thus, the upper and lower

bounds of metering rates for each ramp could be determined. If the metering rate derived

from Bquation 3.12 is not in the feasible range, metering control on that ramp at that

moment will not be recommended.

To obtain the optimal pre-timed metering rate, a numerical search method was

applied. A series of simulation runs with different metering rates were performed. The

boundaries of metering headways and all the simulated metering headways at different

ramps are calculated and presented in Table 5.4. It is found that there were feasible

solutions for metering control at nodes 306, 307, 356, 376 and 395. Thus, they are

recommended as the candidate places to implement ramp metering control.

All simulation results are summarized in Table 5.5. The highlighted numbers in

Table 5.5 represent the best metering rates that the minimum network-wide delay could be

achieved. The achieved minimum delays were all less than that under no ramp control. The

benefits of pre-timed ramp metering control on those ramps were thus quantified.
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Ideally, the optimal metering rate was expected to achieve maximum throughput

and minimum delay at the same time. However, this was not achieved and that may be

reasonable and consistent with real world traffic operations.

• At node 306, if the pre-timed metering headway was 9 sec/vehicle the total

throughput increased 0.26%, while the total delay was reduced by 1.38%.

However, if the pre-timed headway was 8 sec/vehicle, the total delay was

further reduced (to 2.25%), but the total throughput was slightly decreased.

• At node 307, if the pre-timed headway was 4.7 sec/vehicle the total throughput

increased, and the total delay was reduced. If the pre-timed headway was 6.3

sec/vehicle, the total delay was reduced, but the throughput did not.
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• At node 356, when pre-time metering control was applied, the total

throughput was always less than that under no control. When the pre-timed

metering headway was at 4.1 sec/vehicle, the total delay was reduced. Node

356 is not recommended for pre-timed meter control if the objective is to

increase the total throughput.

• At node 376, if the pre-timed headway was 6.0 sec/vehicle, the total

throughput could be increased and the total delay reduced. If the pre-timed

headway was 5.0 sec/vehicle, the total delay was reduced, while the total

throughput was reduced.

• At node 395, if the pre-timed headway was 5.0 sec/vehicle, increased total

throughput and reduced total delay were achieved simultaneously.

The simulation results indicated that the greatest benefit in reducing delay and

increasing throughput usually could not be achieved simultaneously (except at node 395).

Future research should give more attention to the analysis of the tradeoff between

increased delay and increased throughput. Figures A.9 through A.16 of Appendix A show

the simulation results for pre-timed metering control at nodes 306, 307, 376, and 359.

(3) Demand/Capacity Metering Control

Demand/capacity control, being a demand responsive control strategy, can respond

to real time traffic conditions to effectively reduce congestion. It requires that the total

traffic volume from both mainline traffic and vehicles released from the metered on-ramp

should not exceed the designated freeway capacity. Therefore, before designing a

demand/capacity metering control system, an evaluation of freeway capacity, immediately

downstream of the metered on-ramp, should be conducted. By definition, the freeway

capacity is the maximum hourly volume at which vehicles can be reasonably expected to
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traverse a point or uniform segment of a lane during a given time period under prevailing

freeway traffic conditions. Traffic counts can be obtained from the surveillance systems

(e.g., detectors, CCTV) installed on the freeway. The maximum metering rate is subject to

the capacity constraint, while the minimum metering rate considered here is to ensure that

queuing vehicles do not spiliback onto local streets. Also, the metering headway is always

set at four seconds or greater according to the suggestion of CORSIM's developers.

To determine the maximum ramp metering rate which will not exceed the

capacity of the freeway, the mainline capacity should be investigated first. According to

the Highway Capacity Manual (CM, 1997), the capacity of the freeway should not be

more than 2200 vphpl when the free flow speed is 65 mph. (Vehicle is used in this

dissertation instead of passenger car equivalent. If heavy vehicles are present, the

indicated numbers should be adjusted.) If the calibrated values of the car-following factor

are from 40 to 130 hundreds of a second, the simulated freeway capacity of CORSIM can

increase up to 2950 vphpl. To analyze optimal metering rates under various freeway

capacities, the maximum ramp metering rates were estimated based on freeway capacities

ranging between 1800 and 3000 vphpl. The metering headways corresponding to various

freeway capacities were calculated based on collected demand data summarized in Table

5.6, where the highlighted values indicate the feasible metering rates. Simulation results

for implementing metering control at every individual ramp are shown in Table 5.7.

As discussed before, metering control would not recommended at nodes 345 and

377 due to possible vehicles spiliback onto local streets. The range (4.0 — 4.2 seconds) of

the metering headway at node 356 was not wide enough for implementing

demand/capacity control, but pre-timed control might be a suitable alternative.

After applying the demand/capacity control strategy at nodes 306, 307, 376, and

395, the simulated network-wide delay was less than that without metering control, while
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After applying the demand/capacity control strategy at nodes 306, 307, 376, and

395, the simulated network-wide delay was less than that without metering control, while

the total throughput increased. Table 5.8 shows that delay could be significantly reduced

under demand/capacity metering control at nodes 307, 376, and 395. However, the

corresponding throughputs were increased at nodes 307 and 395. As shown in Table 5.9,

increased throughputs can be achieved with demand/capacity control at all four nodes.

The corresponding delays were reduced when demand/capacity control was implemented

at nodes 307, 376, and 395, but increased at node 306. Similar to the pre-timed control,

the demand/capacity control could not achieve maximum total throughput and minimum

total delay simultaneously. Again, the tradeoff between the increased delay and increased

capacity should be considered in the future.

Figures A.17 through A.24 in Appendix A show the simulation results on average

delay and total throughput before and after the demand/capacity metering control at

nodes 306, 307, 376, and 395.
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lame 3 . / ivturis under uemanatuapacity uontrot aria IN 0 uontroi 3 nations
Metered

Node
Capacity
(veh/hr.pl)

Controlled
Headway on

Ramp
(seconds/veh)

On-ramp
Metering

Rate Range
(seconds/veh)

Total Throughput
(veb/bour)

Total Delay
(veh-min)

Min Max No Control D/C* No Control D/C

306

2200 4.01

4.0 9.7

9613 9620 17199 17451
2100 4.52 9613 9606 17199 17092
2000 5.15 9613 9593 17199 17303
1900 6.04 9613 9620 17199 17158
1800 7.24 9613 9610 17199 17170

307

2300 4.09

4.0 7.0

9613 9614 17199 16730
2200 4.63 9613 9620 17199 17008
2100 5.29 9613 9626 17199 16587
2000 6.26 9613 9636 17199 16660

376

2400 4.36

4.0 8.7

9613 9611 17199 16461
2300 4.92 9613 9631 17199 17009
2200 5.68 9613 9596 17199 16844
2100 6.84 9613 9588 17199 17715
2000 8.29 9613 9608 17199 16841

395

2600 4.22

4.0 8.0

9613 9583 17199 16878
2500 4.83 9613 9629 17199 16647
2400 5.52 9613 9599 17199 16807
2300 6.52 9613 9592 17199 17274
2200 7.95 9613 9613 17199 17090

*: D/C refers to Demand/Capacity Control.

Table 5.8 Benefits of uemanatuapacity Control (Reduced Delay)....
Metered

Node
Controlled
Headway

(seconds/veh)

Total Throughput
(veh/hour)

Total Delay
(veh-min)

No Control
( l )

D/C*
(2)

[(1)-(2)]/(1)
(%)

No Control
(3)

D/C
(4)

[(4)-(3)]/(3)
(%)

306 4.52 9613 9606 -0.07 17199 17092 -0.62
307 5.29 9613 9626 0.14 17199 16587 -3.56
376 4.36 9613 9611 -0.02 17199 16461 -4.29
395 4.83 9613 9629 0.17 17199 16647 -3.21

*: D/C refers to Demand/Capacity Control.

Table 5.9 Benefits of uemanatuapacity Control (Increased Throughput)
Metered

Node
Controlled
Headway

(seconds/veh)

Total Throughput
(veb/hour)

Total Delay
(veh-min)

No Control
(l)

D/C*
(2)

[(1)-(2)]/(l)
(%)

No Control
(3)

D/C
(4)

[(4)-(3)]/(3)
(%)

306 4.01 9613 9620 0.07 17199 17451 l.47
307 6.26 9613 9636  0.24 17199 16660 -3.13
376 4.92 9613 9631 0.19 17199 17009 -l.10
395 4.83 9613 9629 0.17 17199 16647 -3.21

*: D/C refers to Demand/Capacity Control.
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5.1.3 Summary

In Section 5.1, the ramp meter location and the ramp storage capacity were calculated.

The CORSIM model developed in Chapter 4 was applied for testing and evaluating pre-

timed and demand/capacity metering control strategies. After conducting a simulation

analysis, benefits such as reduced total delay and increased total throughput were

quantified. It was found that in most cases there was no metering rate that could

simultaneously minimize the total delay and maximize the total throughput

simultaneously. The potential ramps suitable to metering control were determined. Future

studies could determine the best situations (the range of traffic volumes) for applying pre-

timed and demand/capacity control.

The analysis conducted in this section demonstrates that ramp metering control is

a potential strategy to improve traffic operations on the study site. In addition, it is

desired to develop an effective multi-ramp metering control algorithm, which will

optimize time-dependent metering rates for multiple ramps.

5.2 Model Testing

Before the developed dynamic multi-ramp metering control model is applied at the metered

ramps in the studied network, testing of the proposed model should be performed. The test

site in the network was identified as shown in Figure 5.1 where a three-lane mainline, a

one-lane on-ramp, and a one-lane off-ramp were included.



5.2.1 Constraints

The developed dynamic multi-ramp metering control model was applied on the test site

where only one metered ramp at node 307 was involved. The suggested ramp meter

location was 400 feet from the on-ramp gore, which guaranteed that vehicles could be

discharged from the ramp and smoothly merge onto the mainline. The ramp storage

capacity was 19 vehicles based on the available space on the ramp of 387 feet and the

average vehicle length of 20 feet.

5.2.2 Testing Cases

Considering dynamic system control for the real-time application, the time dependent

demand of 1-80 over a series of time intervals was simulated with CORSIM. In this study,

the traffic operations (with and without the proposed system control) were simulated

using 16 time intervals with 3-min duration each. To assess the benefits of the developed

metering control model and analyze the range of entry flows that are suitable for applying

metering control, various demand distributions were used and are discussed in the

following three cases.
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Case 1: Base Traffic Condition Collected from NJDOT

Case 1 was designed to evaluate the benefits of the developed multi-ramp

metering control model under existing traffic condition shown in Table 5.10. The entry

and ramp flows both varied over the 16 intervals.

Case 2: Increasing Entry Volume with Fixed Ramp Flow

To analyze the range of entry flows that might benefit from the proposed metering

control, Case 2 was designed to increase the entry flow from 2960 vph to 5960 vph at a

rate of 200 vph per interval, while the flow passing through node 307 was fixed and 489

vph for every interval (Table 5.10).

Case 3: Fixed Entry Volume with Increasing Ramp Flow

Since the demand at the on-ramp changes over time, the optimal metering rate is

also time dependent. This case assumed that the ramp demand approaching node 307

increased from 240 vph to 900 vph, while the entry flow was fixed and 4160 vph over the

evaluation period (see Table 5.10).
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5.2.3 Data Collection

As discussed in Section 3.1, the mainline density pick) can be determined by p icked) and

other parameters presented in Bquation 3.3. According to the Highway Capacity Manual

c1997), the mainline density should not exceed the maximum value of 45 vehs/mi/ln

when the free flow speed is 65 mph. If p ick) is greater than 45 vehs/ln-mile, the R ick) is

set to the default value Riming (k)

A computer program coded in FORTRAN was developed to optimize ramp

metering rates with SPSA by minimizing the objective function of Equation 3.7. The

input data (e.g., Dick), picked), Kock), Sick), Quick) and Rice)) either were initialized at the

beginning time interval, collected in real-time, or estimated from historical data. Using

the SPSA algorithm to search for optimal ramp metering rates, parameters a and c are set

at 100 and 3 respectively for a larger iteration step size. Parameters 0 and y have the

effective and valid values at 0.602 and 0.101 respectively for a steady convergence

during the optimization process. The optimal metering rates over the 16 intervals for the

three cases are summarized in Table 5.11.
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As mentioned earlier, the optimal metering rate obtained in each interval was

based on the simulation output generated in the previous interval. Thus, a shorter interval

could increase the precision of the control, but the computation effort would increase. In

reality, an appropriate interval length should be determined so that the maximum benefit

of ramp metering control can be achieved. In this study, the interval lengths were

identical and equal to three minutes.

The output data ce.g., link volume, accumulated vehicle-mile, and average delay)

for each time interval were collected. Since CORSIM only generated accumulated

statistics, the MOBs in each interval need to be recalculated. A macro in MS-Excel was

developed to efficiently retrieve data from simulation outputs, and then estimate the net

benefit of each interval. Two MOEs, total delay and total throughput were selected for

evaluating the benefit of ramp metering control. The network-wide total delay cveh-min)

was obtained from the total vehicle-miles multiplied by average delay ccmin/mi), while the

total throughput was obtained by summing the exiting volumes in the end of each

interval. The benefit assessment of the dynamic multi-ramp metering control with SPSA

was conducted by comparing total throughput and delay with and without the developed

dynamic ramp metering control model.

5.2.4 Analysis and Evaluation

The total before and after delay and throughput were analyzed for Case 1 and the results

are shown in Figure 5.2. The maximum total throughput benefit was 6.2% at the fifth

interval, while the maximum total delay benefit was 3% at the fourth interval. The

benefits of delay and throughput maximization could not be achieved at the same

metering rate. There were not benefits in some intervals with less demand, which

suggests that the developed model might work well when traffic gets congested.
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In Case 2, after implementing the developed dynamic ramp metering control model,

simulation results showed that the total throughput increased from the 3 rd to the 9th interval

csee Figure 5.3), while total delay was reduced from the 8 tI to the 15 tI interval. The maximum

achieved delay was 6A7% below that under no control. This analysis demonstrated that the

developed dynamic ramp control model could increase the total throughput when the entry

flow ranged from 3360 vph to 4560 vph with fixed ramp flow of 489 vph. The total delay

could be reduced if the entry flow ranged between 4360 vph and 5960 vph. This suggests that

the throughput benefit could be achieved with the developed metering control while traffic

conditions on the mainline were congested but before reaching saturation.

In Case 3, after implementing the developed metering control total throughput

increased in most intervals except the last one with the highest vehicle demand of 900

vph cthe metering control for the upper bound demand on the ramp might not meet the

ramp storage constraint). It was found that the developed control model was more

sensitive to increase throughput when the ramp demand ranged from 373 vph to 579 vph

as shown in Figure 5.4. Meanwhile, a delay benefit was obtained from the 1 st to 12tI

intervals. It indicated that the total delay would decrease before traffic reached saturation.
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5.3 Individual Ramp Control

The analysis and evaluation of Section 5.2.4 indicated that the developed model might

work well when the traffic was getting congested. To evaluate the potential application of

the developed model at an individual ramp or multiple ramps on the entire network and

find the range of feasible metering rates, a traffic distribution as shown in Table 5.12 was

designed corresponding to each of the 16 intervals. The entry flow cat link 300-301)

increased by 200 vph in every interval with fixed demand at all on-ramps.

Under the traffic conditions shown in Table 5.12, the developed model was

applied at metered nodes 306, 307, 356, 376 and 395, respectively. Similar to the test

cases in Section 5.2, the 48-minute simulation period was divided into 16 intervals. The

constraints discussed in Section 5.1.1 are also in effect for individual ramp control. The

optimal metering rates for control at each ramp were obtained and were listed in Table

5.13. The network-wide simulation and analysis were conducted as follows.

With the application of the developed dynamic multi-ramp metering control

model to each individual ramp ce.g., at node 306), simulation results csee Table 5.14)

showed that the total throughput from interval 3 to 9 could increase by 6.63% cgreater

than 5%). However, the increased total throughput for all 16 time intervals was 0.39%

(less than 5%). This analysis demonstrates that the developed dynamic ramp metering

control was efficient, while the entry flow ranged from 3360 vph to 4560 vph.

Table 5.15 shows the total delay with metering control. At node 306 the total

delays were reduced from the 8 th to the 15 tI time interval. With control, the reduction of

the total delay was 8.92% for the 8 intervals and 5.26% for all 16 intervals. Thus, it is

beneficial to use the proposed metering control at node 306 and particularly when the
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entry flow ranged between 4360 and 5760 vph. After considering also the results for the

other metered ramps (nodes 307, 356, 376 and 395), a summary Table 5.16 can be

developed indicating the entry flows for which vehicle metering will be most effective.
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5.4 Dynamic Multi-ramp Metering Control

In this section, the developed dynamic ramp metering control is applied simultaneously

for multiple metered ramps ce.g., nodes 306, 307, 356, 376 and 395). Similar to the

situation of individual ramp control discussed in Section 5.3, the 48-minute simulation

duration was divided into 16 intervals. The constraints discussed in Section 5.1.1 are also

in effect for multiple ramp control. The metering rates were jointly optimized with the

developed SPSA algorithm and shown in Table 5.17. The coordination among the

controlled ramps was considered to achieve the ultimate benefit for the studied network.

Based on an entry flow of 4160 vph on the mainline, the total throughput after

control is 482 vehl3min representing a 9.05% increase over the non-controlled case as

shown in Table 5.18. Comparing the results with and without control from the third to ninth

interval cTable 5.18 and Figure 5.5), the accumulated total throughput after multiple ramp

control increased by 8.07%. However, the accumulated total throughput over all intervals

increased by only 1.16%. Table 5.18 and Figure 5.6 show that after multiple ramp control,

the accumulated total delay from the eighth to fifteenth interval was reduced by 9.73%,

while the accumulated total delay over all intervals was reduced by 5.68%. Thus, multiple

ramp control was more efficient to increase total throughputs when the mainline traffic

entry flow ranged from 3360 vph to 4560 vph, and more efficient to reduce total delay

when the entering volume of the mainline was from 4360 vph to 5760 vph. It was also

found that multiple ramp control was more efficient than individual ramp control in

increasing the total throughput of the network cTables 5.14 and 5.18).
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5.5 Road User Cost

During peak hours, congestion forces traffic to operate under a "queue" situation even

under "Forced Flow" conditions. Queuing situations impose four major related road user

cost components: stopping Vehicle 0perating Cost cV0C), stopping delay, queue delay,

and queue idling V0C. The queue delay and queue idling V0C component accounts for

approximately 90% of the total road user costs associated with the "Forced Flow"

condition. Thus, to simplify the calculations, only queue delay and queue idling V0C

components are recommended to be estimated cNJu0T, 2001).

Queue delay is the additional time necessary to creep through the queue under

forced flow conditions ccongestion situations), while queue idling V0C is the additional

vehicle operating costs associated with "stop and go" driving in the queue. The operating

costs include fuel, engine oil, maintenance, and depreciation. The Road User Cost cRUC)

can be calculated based on delay and vehicle operation as in Equation 5.5.

the total delay;

the value of time for cars c$12.75lhour, NJu0T, 2001);

the value of time for trucks c$21.25lhour, NJu0T, 2001);

the idling cost rate for cars c$0.68lhour, NJu0T, 2001);

the idling cost rate for trucks c$0.78lhour, NJu0T, 2001);

the percentage of cars in the traffic flow;

the percentage of trucks in the traffic flow;

Table 5.19 shows the road user cost and benefit analysis for multi-ramp control.

The total benefit from delay reduction is $196.99 over the control period c16 time

intervals). The annual benefit of road user cost for savings can be approximately
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estimated. Assuming that there are two peak hours cmorning and evening) every weekday

with 4560 vph average entry flow on the mainline, the benefit during each three-minute

interval is $27.67 cTable 5.19), and there are 20 intervals per hour. Thus, the annual

benefit under this assumption is:

5.6 Fuel Consumption and Emissions

The fuel consumption was increased by 34.72 % on ramps after the multi-ramp metering

control cTable 5.20). However, the fuel consumed on the whole network was increased

by just 1.33%. Bmissions of reactive hydrocarbons cHC), carbon monoxide cC0), and

nitrogen oxides cN0x) from vehicles have the potential to adversely impact human health

and the environment. The implementation of multi-ramp control did not lead to

significant increases of HC and NOx c0.44% and 1.20%, respectively) in the study

network, while C0 was reduced by 0.69 %. uramatic increased emissions from vehicles
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on ramps cNC, 226.48%; C0 164.08%; and N0x, 233.01%) were observed after control.

However, these increased emissions contributed minimally to the network since the

traffic volume on ramps is a small proportion of the total.

5.7.1 Short Ramp

When an on-ramp lacks physical storage area, the performance of ramp metering control

will be affected. To verify this and investigate how a short ramp might affect metering

control, the benefits of the metering control under different ramp storage capacities were

analyzed. Ramp metering control at node 307 as shown in Figure 5.1 is used for this

purpose. The maximum queue length on link 207-307 was increased from 387 feet to 987

feet by 100 feet, while the mainline and ramp flows remained the same c4160 vph and

489 vph, respectively).

The optimal metering rates found by applying SPSA for this case are summarized

in Figure 5.7. The optimal metering rate decreased as the ramp storage area increased.

However, when the ramp storage was more than 887 feet, the optimal metering rates

would not change. Figure 5.8 shows the total delay and throughput benefits versus ramp
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storage length over the entire 48-minute simulation interval before and after metering

control. Comparing with the base situation where the ramp storage length was 387 feet, it

was found that total throughput increased when the ramp storage increased, especially

when extending the ramp storage from 387 feet to 587 feet. In addition to the benefit on

throughput, the total delay can be reduced when the ramp storage is longer than 787 feet.

This indicated that increasing ramp storage could improve the efficiency of the developed

dynamic metering control model.

Figure 5.8 The benefit of total delay and total throughput (node 307).
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5.7.2 Control at Different Groups of Metered Ramps

In this section, the developed model was applied to different groups of multiple metered

ramps. The purpose of this analysis is to determine the best control strategy in terms of

the combination of ramps to be controlled camong nodes 306, 307, 356, 376 and 395).

The traffic distribution is shown in Table 5.12. The constraints discussed in Section 5.1.1

are applicable here also. Four cases were designed for this comparison analysis. In Case

A, ramps at both nodes 306 and 307 were controlled with the developed model. Case B

applied the developed model to three ramps at nodes 306, 307, and 356 simultaneously.

Case C involved four metered ramps that were at node 306, 307, 356, and 376. Case D is

as discussed in Section 5.3, where the developed model was implemented on all ramps.

The simulation reults are sunimaized in Tables 5.21 and 5.22.
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As shown in Table 5.21, for Cases A, B, C, and D, the network-wide accumulated

total throughput increased from the third to the ninth interval by 6.92%, 7.51%, 8.01%,

and 8.14%, respectively. The results indicate that the developed model was more efficient

in increasing total throughput by controlling all five ramp simultaneously. Table 5.22

shows that the network-wide total delay accumulated from the eighth to the fifteenth

interval was reduced by 8.80%, 8.15%, 9.00%, and 9.73% for cases A, B, C, and u,

respectively. It also shows that simultaneous metering control at all ramps would reduce

total delay the most.

5.7.3 Optimal Simulation

The developed SPSA was utilized to obtain approximate optimal ramp metering rates,

while the optimal control was simulated with the developed C0RSIM model. When

metering control could not release all arrival vehicles at a ramp in a time period, a queue
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developed on the ramp. This situation frequently took place at ramps with heavy traffic,

or when the metering rates were not high enough to discharge the queue. The sensitivity

analysis was conducted by investigating the optimization performance during simulation.

The simulation analysis for the optimal metering control at node 356 under the traffic

conditions shown in Table 5.12 was used. The focus area mainly included an on-ramp,

Table 5.23 shows simulation results for optimal metering control at the metered

ramp cnode 356). The highlighted numbers carrival plus queue) in the table were greater

than the corresponding optimal metering rates at node 356. Simulation control did not

release all arrived vehicles at intervals 4 through 16. A progressively increasing queue

was formed at these intervals, and it exceeded the SPSA optimal rate at intervals 14, 15

and 16.
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Tto improve this situation, the metering rates that were optimized with SPSA

needed to be adjusted. The relationship between the change of optimal rates and the

change of queues at node 356 is presented in Figure 5.9. As the optimal metering rates

increase, the vehicle departure rate increases, the queue is reduced and the congested

situation at the ramp is alleviated. In Table 5.24, the maximum of the increased

throughput was the highlighted value ci.e., 0.5, 0.6, and 2.3 vehl3min) for the

corresponding optimal rates ci.e., 886, 874, and 862 vph) found by SPSA. The delay was

increased as the ramp metering rate increased. It is suggested that the optimal rates of

886, 874, and 862 vph be changed to 896, 874, and 962 vph, respectively. Under the new

metering rates, the optimization simulation would improve the performance of the

developed dynamic ramp metering control model.
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5.8 Summary

After analyzing the locations of ramp meters and the storage capacity of the metered

ramp, the ramp metering control under different metering control strategies ce.g., pre-

timed and demand/capacity control) was studied. The benefits, such as increased total

throughput and reduced total delay were observed after the application of metering

control. The potential metered ramps thus were determined.

The feasibility to implement the proposed dynamic multi-ramp metering control

model was investigated through simulation of the traffic operation at the study site. The

proposed model could be implemented in individual and multiple ramp control systems to

maximize the total throughput. Bvaluation of the simulated MOBs ce.g., throughput and

delay) indicated that the proposed model could effectively improve the performance of

traffic operations on 1-80 under certain traffic situations. It was found that multiple ramp

control would be more effective than individual ramp control.
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In addition, the road user cost, fuel consumption and emissions cHC, CO, and

NOx) for the joint ramp metering control system were estimated. The sensitive analysis

for the developed model included cases of short ramps, combination control, and optimal

simulation.



CHAPTER 6

CONCLUSIONS AND FUTURE RESEARCH

In this study, the developed dynamic ramp metering control model was applied in a case

study and was shown of a viable way that could efficiently manage traffic operations on

freeways, and capable of eliminating, or at least reducing, congestion at the study site.

The potential benefit of ramp metering control was discussed in detail. The constraints

ce.g., meter signal locations, ramp storage capacities, lower and upper bounds of ramp

metering rates) were formulated based on geometric and traffic conditions. CORSIM was

selected to simulate traffic operations under various metering control conditions. The

proposed SPSA algorithm was developed and applied to optimize dynamic ramp

metering rates by maximizing the total throughput. The total throughput and total delay at

the study site under time-varying traffic conditions and different ramp metering control

strategies were simulated and analyzed. Conclusions and recommendations are presented

next.

6.1 Conclusions and Recommendations

The major findings of this study are:

• Unrestrained merging traffic from ramps at the study site frequently resulted in

bottlenecks during the peak hours. When the sum of mainline volume and entry

ramp volume exceeded mainline capacity, congestion and queues were formed.

Thus, the freeway capacity decreased and delay increased.

105
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• The feasible ramp metering rates were found to be between 240 and 900vph.

Subject to the ramp's storage constraint, the suggested lower bounds of metering

rates on all potential ramps might be higher than 240 vph and were shown in Table

5.3. For example, the suggested lower bounds of metering rates at nodes 306, 307,

356, 376, and 395 were 370, 513, 870, 416 and 448 vph, respectively. If the ramp

storage area increased, the feasible range of metering rates increased and the benefit

of metering control could be further improved.

• A calibrated and validated CORSIM model was developed based on the data

collected on eastbound I-80. The simulation model demonstrated its capability to

mimic realistic traffic operations at the study site. It could be extensively applied

to evaluate traffic operations under various ramp metering control strategies.

• Simulation results indicated that for metering control at a single ramp, the

performance of pre-timed control at node 395 outperformed that at other nodes.

The total delay could be reduced by 5.09%. For demandlcapacity metering, the

control at node 376 outperformed that at other nodes. The total delay could be

reduced by 4.29%. Ramp metering could provide a higher and more predictable

level of service on the freeway. It also improved the efficiency of traffic

operations by smoothing the traffic stream on the mainline.

• The potential metered ramps connecting eastbound I-80 and Howard Boulevard

South cnode 306), Howard Boulevard North cnode 307), Mount Hope Avenue

cnode 356), Hibernia Avenue cnode 376), and B Main Street cnode 395) were

identified as been suitable for metering control at the study site. The ramps on
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eastbound I-80 connecting Route 15 cMP 34.6) and Hibernia Avenue cMP 37.9)

were not recommended for metering control due to insufficient storage space on

the ramps.

• The effectiveness of metering control under a given set of traffic conditions was

increased in terms of the reduced total delay or the increased total throughput.

However, the optimal metering control did not minimize the total delay and

maximize the total throughput simultaneously.

• A dynamic multi-ramp metering control model was developed and applied to

single-ramp and multi-ramp conditions, considering a peak demand of 4160 vph

on the mainline. While optimizing single ramp control, simulation results showed

that the maximum total throughput could be increased by 8.14% ccontrol at node

306 as shown in Table 5.14). While optimizing multi-ramp control, the total

throughput was increased by 9.05% cas shown in Table 5.18).

• Considering time-varying traffic conditions cTable 5.12) and under single ramp

control, simulation results of the developed dynamic multi-ramp metering control

model showed that the total throughput could be increased by 6.63% and total

delay reduced by 9.58% cTables 5.14 and 5.15). Under multi-ramp control, the

total throughput was increased by 8.07%, and a considerable reduction of 9.73%

in total delay was achieved cTable 5.18). Therefore, multi-ramp control

outperformed single ramp control in maximizing total throughput, and reducing

total delay.
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• While developing the dynamic multi-ramp metering control model, the non-linear

relationship among control parameters in a large-scale network increased the level

of difficulty in optimizing the ramp metering control problem. The developed

simultaneous perturbation stochastic approximation cSPSA) algorithm was

demonstrated to be efficient in solving the multivariate optimization problem

formulated in this study.

• The developed SPSA solution algorithm could be applied to jointly optimize

metering rates for multiple ramps in real-time by maximizing the total throughput.

The developed dynamic multi-ramp metering control model could capture

dynamic traffic flow changes over time and space, which was more efficient to

increase total throughput when the range of mainline traffic entry flow was between

3360 vph and 4560 vph, and was more efficient to reduce total delay when the

entering volume of the mainline was between 4360 vph and 5760 vph as shown in

Table 5.18.

• The developed CORSIM model under optimal ramp metering rates control would

not always release all vehicles arriving at the ramp during a time period. This led

to the building up of long queues on the ramp over time. The ideal control result

could not be achieved due to the stochastic and large number of vehicles at the

ramp, or lower ramp metering rates.

• In this study, the optimal metering rates in the current time interval were

determined based on the simulation from the previous time interval. Thus, the

optimal metering rates were derived for the traffic conditions at the previous time
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interval, which could not reflect the real-time condition. To mitigate this, two

methods are suggested to be preformed. The first to shorten the time interval.

Then the change between traffic conditions in the current and previous time

intervals will be minimal. The second is to use real-time and predicted traffic if

sufficient instrumentation and modeling capability is available.

• The choice of parameters ce.g., a, c, (3 and y) is critical to the performance of

SPSA. A large a can enhance performance in the later iterations by producing a

larger step size, while it will be effective to set c as some small positive number.

Choosing R < 1.0 usually yields better finite-sample performance through

maintaining a larger step size. In this study, a, c, p and y were 100, 3, 0.602 and

0.101, respectively.

6.2 Future Research

• The capacity of short ramp storage constraint imposed in this study prevented

queuing vehicles on ramps from spilling back onto local streets, and no vehicle

diversion was assumed. In practice, vehicle diversion will occur when the freeway

becomes congested and should be considered in the future.

• Although the developed CORSIM model simulated traffic operations of

eastbound 1-80, it did not include the traffic on arterials ce.g., NJ State Routes 10

and 46) near the study site and the signalized intersection control that might affect

the traffic flow on the freeway. It is essential that the study should be extended to

cover the whole 1-80 corridor so that the impacts of traffic control at ramps and

intersections can be jointly considered.
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• The analysis of simulation results showed that achieving maximum total

throughput did not always achieve minimum total delay. The tradeoff between

reduced delay and increased throughput should be considered in the future.

• While applying the dynamic multi-ramp metering control with SPSA, the traffic

demand including OlD flow was assumed to be fixed. With the application of ITS,

traffic volumes can be detected in real-time, and may provide a reliable input to

reflect actual traffic variation over time. If such data are available, they should be

incorporated in the model.

• The developed model is a system-wide dynamic multi-ramp metering control

model that can be used to handle a series of ramps in a traffic responsive mode.

To process collected real-time data, optimize metering rates, and execute the

control mechanism through ramp meters, the optimization of ramp metering rates

is often carried by centralized or decentralized computer systems. However, the

system-wide models often lead to hierarchical non-linear optimization

programming. The effectiveness of the centralized control versus the

decentralized control should be evaluated in the future.

• In the dynamic multi-ramp metering control with SPSA, the objective function

was to maximize the total throughput. Other objective, such as total delay, vehicle

emissions and fuel consumption, and local congestion can be considered by

enhancing the developed objective function cBquation3.6) and modifying the

developed SPSA.
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• The MlM/1 queuing model applied in this study assumed exponential vehicle

arrivals and departures with one server. However, vehicles on ramps will more

likely be discharged into the mainline deterministically under metering control.

Thus, the MlDl1 model cexponentially distributed arrivals and deterministic

departures with one server) used in the dynamic metering control model should be

studied.

• The SPSA solution algorithm was successfully applied to search for optimal ramp

metering rates in the developed dynamic ramp metering model. Its efficiency

should be compared with that of other algorithms such as fuzzy logic control and

artificial neural networks.

• In this study, the performance of the control model was evaluated off-line with the

use of simulation data. On-line control analysis and field implementation should be

conducted to enhance the applicability and credibility of the developed model.

• Closure of an entrance ramp represents the most restrictive form of metering but

is the least popular because of considerable public opposition. Closure may

mitigate serious weaving problems. In this study, ramp closure was not

considered as a control strategy. However, it should be analyzed while traffic

diversion on local streets is considered.



APPENDIX A

FIGURES

Appendix A consists of study site photos presenting traffic and geometric situations, the

overview figures of the modeling network, and the analysis figures of simulation results

with and without metering control.
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Main Street,/ \Route 15

J

Figure A.7 Geometric diagram of eastbound I-80 mileposts 30 — 42.

Figure A.8 Link — Node diagram converted from Figure A.7.
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Figure A.9 Average delay and total throughput vs. metering headway (Pre-timed metering
control at node 306).
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Figure A.10 Total delay and veh-miles vs. metering headway (Pre-timed metering control at
node 306).
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Figure A.20 Total delay and veh-miles vs. metering headway (Demand/Capacity control at
node 307).
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Figure A.22 Total delay and veh-miles vs. metering headway (Demand/Capacity control at
node 376).
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Figure A.24 Total delay and veh-miles vs. metering headway (Demand/Capacity control at
node 395).



APPENDIX B

CORSIM INPUT FILES

In this Appendix, two typical CORSIM input files are listed. File 1 is the CORSIM model

without ramp metering control, while File 2 is the CORSIM model with multiple ramp

metering control. uetailed comments about the various components of the files are also

included.
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	8377 2771216 10	 50
8395 295 430 	 9 	 50

Record Type 50 describes the traffic volume (in vehicles per hour)
entering the FRESIM network. Columns 1-4 include the
upstream node number, and columns 5-8 include the
downstream node number. Columns 9-12 show the volume.
The number in columns 13-16 specifies the percentage of
trucks entering from the entry node.

130 120 110 100 90 80 70 60 50 40
	

68

Record Type 68 describes car-following sensitivity factor.
The car-following model in FRESIM (the Pitt Car-Following Model)
is based on the premise that drivers' desire to follow
the car in front of them at a desired separation.
In this example, there are 10 sensitivity factors
from 130 to 40 (in hundredth of a second)for
10 driver types (Types 1 through 10). For instance,
in this example, Columns 1-4 ('130') indicate that
the new factor value is 130 hundredths of a second of
ZFOLK(1) for driver type 1, while the '120' in
Columns 5-8 indicate 120 hundredths of a second of ZFOLK(2)
for driver type 2.

30 12 	 2 60
	

70

Record Type 70 describes lane change parameters, minimum
separation for vehicle generation, and maximum non-emergency
deceleration for FRESIM. The '30' in Columns 1-4 indicates
the time (30 tenths of a second)to complete a lane change.
The '12' in Columns 5-8 indicates the minimum separation (12
tenths of a second)for generation of vehicles. The '2' in
Column 12 indicates that drivers need 2 seconds for
collision avoidance. The '60' in Columns indicates that
there are 60% of drivers desiring to yield the right-of-way
to lane-changing vehicles attempting to merge ahead of them.

MP3O-42 OD Table
300 301 	 6 300 340
302 340 13 302 351
303 340 14 303 351
341 351 	 8 341 371
352 371 	 8 352 381
372 381 12 372 411
373 381 12 373 411
391 411 100

	

11 300 351 	 3 300 371 	 5 300 381 	 6 300 411 69

	

2 302 371 	 5 302 381 	 6 302 411 74

	

2 303 371 	 5 303 381 	 6 303 411 73

	

6 341 381 	 7 341 411 79
8 352 411 84

88
88

74
74
74
74
74
74
74
74

Record Type 74s represent origin-destination.
Columns 1-4 and 5-8 include the link's upstream and
the downstream node number, respectively. All of these
columns are described as follows:

Entry 1:
Column 1-4: origin node number

Entry 2:
Column 5-8: destination node number

Entry 3:
Column 11-12: percentage of vehicles that are

entering through the origin node
specified in Entry 1 and will travel
to the destination node specified in
Entry 2.
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8395 295 430 	 9

MP3O-42 OD Table
300 301 	 6 300
302 340 	 13 302
303 340 	 14 303
341 351 	 8 341
352 371 	 8 352
372 381 	 12 372
373 381 	 12 373
391 411 100

0 	 8
MP3O-34

8300 300 301 100
300 301 302 	 94
301 3058305 100
301 302 303 100
8306 206 306 100
206 306 302 100
302 303 340 100
8307 207 307 100
207 307 303 100
307 303 340 100
303 340 341 88
340 3468346 100

MP34-42
340 341 351 100
341 351 352 	 95
351 352 371 100
352 371 372 	 94
371 372 373 100
372 373 381 100
373 381 391 91
381 391 411 100
391 4118411 100
8345 245 345 100
245 345 341 100
345 341 351 100
351 3558355 100
8356 256 356 100
256 356 352 100
356 352 371 100
371 3758375 100
8376 276 376 100
276 376 372 100
376 372 373 100
8377 277 377 100
277 377 373 100
377 373 381 100
381 3858385 100

8395 295 395 100
295 395 391 100
395 391 411 100

Time Period 15MP3O-34

8300 3005760 	 6
8306 206 360 	 4
8307 207 	 489 	 8MP3O-42

8345 2452159 	 9
8356 256 819 	 8
8376 276 400 	 5

340
351
351
371
381
411
411

305

346

355

375

385

11
2
2
6
8

88
88

6

12

5

6

9

300
302
303
341
352

351
371
371
381
411

3
5
5
7

84

300
302
303
341

371
381
381
411

5
6
6

79

300
302
303

381
411
411

6
74
73

300 411 69

50

74
74
74
74
74
74
74
74

170
210

25
25
25
25
25
25
25
25
25
25
25
25

25
25
25
25
25
25
25
25
25
25
25
25
25
25
25
25
25
25
25
25
25
25
25
25
25
25
25

50
50
50

50
50
50
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FILE 2: MULTIPLE RAMPS METERING CONTROL CORSIM MODEL

	EVALUATION OF THE POTENTIAL FOR USING RAMP METERING 	 00
IN THE ATMS OF THE 1-80 SHOWCASE CORRIDOR 	 00

00

	

SPONSOR 	 00
NEW JERSEY DEPARTMENT OF TRANSPORTATION 	 00

00
A Sample Comment for Multiple Ramps Metering Control CORSIM Model 	 00
This data set introduces basic features of CORSIM and provides 	 00
comments of coding for the study site. This data set reflect 	 00
the real world case of 1-80 	 00

00
00

8300--300--301 	 302 	 303 -340 	 34l--351 	 352-- 	 00
\ 	 / 	 / 	 \ 	 / 	 \ 	 / 	 00
350 	 306 	 307 	 346 	 345 	 355 	 356 	 00

\ 	 / 	 / 	 \ 	 / 	 \ 	 / 	 00
8305 	 206 	 207 	 8346 	 245 	 8355 256 	 00

/ 	 / 	 / 	 / 	 00
8306 8307 8345 8356 00

00
00

--371 	 372 	 373 -381 	 391--351--411--8411 	 00
\ 	 / 	 / 	 \ 	 / 	 \ 	 00
375 	 376 	 377 	 385 	 395 	 355 	 00

\ 	 / 	 / 	 \ 	 / 	 \ 	 00
8375 	 276 	 277 	 8385 	 295 	 8355 	 00

/ 	 / 	 / 	 00

	

8376 8377 	 8395 	 00
00

Record Type 00 must be the first record types. These
records are comment cards that include alphanumeric
information that the user wants to print on the first page
of the output report. To insert comment cards in the data
set, use blank record types (i.e., Columns 78-80 are
blanks).

Record Types 01 through 05 are called control records. These
five records are required for each data set and entered only
in the first time period.

Ramp Metering 	 03 25 01 Inst. of Trans., NJIT
	

1
by Noreen Zayas, Yuqing Ding, Jiangtao Luo and Xiaobo Liu

Record type 01 is the run identification card. It is used
to indicate the use propose (e.g. Ramp Metering), date of
run (3/25/01), name of the agency (e.g., Inst. of Trans., NJIT).
Notice that 4 columns (45-48) are allocated for the year
representation.

1 	 0 	 60 	 7981 	 10 0 	 0 0 	 8 000 	 7781 	 0721 	 2

Record type 02 is the run control card. The '1' in column
8 indicates that a simulation run will be performed. The
'0' in column 12 indicates that off-line incident
detection, point processing and MOE estimation are not
desired in this run. '60' is the maximum number of minutes
of fill time prior to simulation. Simulation starts
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391 411-2 5000 65 20
MP3O-34 Ramp
301 305 500 25 20

8306 206 600 25 20
206 306 600 25 20
306 302 600 25 20

8307 207 25 20
207 307 2500 25 20
307 303 2500 25 20
340 346 500 25 20

MP34-42 Ramp
8345 245 1100 30 20
245 345 1100 40 20
345 341 1100 30 20
351 355 1100 30 20

8356 256 30 20
256 356 30 20
356 352 30 20
371 375 20 20
8376 276 350 20 20
276 376 350 20 20
376 372 350 20 20

8377 277 500 20 20
277 377 500 20 20
377 373 500 20 20
381 385 350 20 20
8395 295 25 20
295 395 25 20
395 391 25 20

Record Type 20 represents freeway link operations. A
Record Type 20 is required for each link specified with a
Record Type 19. Columns 1-4 include the link's upstream
node number, and Columns 5-8 include the downstream node
number. Columns 9-10, 11-12, and 13-16 specify the link's
grade, super elevation, and radius of curvature,
respectively. In this run, those columns were left blank,
which indicates that default values are acceptable.
Columns 21-22 show the desired free-flow speed (in miles
per hour), which ranges from 20 to 65 mph in this run.
Some of the links have an entry in Columns 29-33, which
represents the distance (in feet) to the point at which
drivers begin to react to the off-ramp exiting from this
link. In FRESIM, this point is referred to as a warning
sign. However, it does not mean the location of a physical
sign. There is no entry if the link in question does not
have an off-ramp destination.

MP3O-34
8300 300 301 100 25
300 301 302 94 305 6 25
301 3058305 100 25
301 302 303 100 25
8306 206 306 100 25
206 306 302 100 25
302 303 340 100 25
8307 207 307 100 25
207 307 303 100 25
307 303 340 100 25
303 340 341 88 346 12 25
340 3468346 100 25

MP34-42
340 341 351 100 25
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377 373 381 100
381 3858385 100

8395 295 395 100
295 395 391 100
395 391 411 100

Time Period 3
306 	 1 360 	 55
307 	 1 360 	 47
345 	 1 	 0 	 97
356 	 1 360 	 40
376 	 1 360 	 48
377 	 1 	 0 	 97
395 	 1 360 	 45MP3O-34

	

8300 3003326 	 6

	

8306 206 360 	 4

	

8307 207 489 	 8
MP30-42

	

8345 2452159 	 9

	

8356 256 819 	 8

	

8376 276 400 	 5

	

8377 2771216 	 10

	

8395 295 430 	 9

MP3O-42 OD Table
300 301 	 6 300
302 340 	 13 302
303 340 	 14 303
341 351 	 8 341
352 371 	 8 352
372 381 	 12 372
373 381 	 12 373
391 411 100

0 	 8
MP3O-34

8300 300 301 100
300 301 302 	 94
301 3058305 100
301 302 303 100

8306 206 306 100
206 306 302 100
302 303 340 100
8307 207 307 100
207 307 303 100
307 303 340 100
303 340 341 88
340 3468346 100

MP34-42
340 341 351 100
341 351 352 	 95
351 352 371 100
352 371 372 	 94
371 372 373 100
372 373 381 100
373 381 391 91
381 391 411 100
391 4118411 100
8345 245 345 100
245 345 341 100
345 341 351 100
351 3558355 100

8356 256 356 100

340
351
351
371
381
411
411

305

346

355

375

385

11
2
2
6
8

88
88

6

12

5

6

9

300
302
303
341
352

351
371
371
381
411

3
5
5
7

84

300
302
303
341

371
381
381
411

5
6
6

79

300
302
303

381
411
411

6
74
73

300 411 69

25
25
25
25
25

37
37

37
37

37

50
50
50

50
50
50
50
50

74
74
74
74
74
74
74
74

170
210

25
25
25
25
25
25
25
25
25
25
25
25

25
25
25
25
25
25
25
25
25
25
25
25
25
25
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APPENDIX C

THEORY ANALYSIS

In this Appendix, queuing theory and the MlMl1 model are introduced, and the related

derivations are presented. In addition, the theoretical characteristics and proofs associated

with SPSA are presented.
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C.1 Queuing Theory Application on Ramp Metering Control

The queuing process on metered ramp is assumed the following. Vehicles requiring

service to pass through a metered ramp are generated over time by traffic demand on the

ramp. These vehicles enter the queuing system and join a queue. At certain times, a

vehicle of the queue for service by some rule known as queue discipline ce.g., first-come-

first-serve). The required service is then performed for the vehicle with service time ce.g.,

metering headway) by the ramp meter, after which the vehicle leaves the queuing system.

One of elementary queuing models is the MlMl1 model which assumes that all

arrival times are independently and identically distributed according to an exponential

distribution, that all service times clead to departure times) are independent and

identically distributed according to another exponential distribution, and that the number

of servers is 1. Suppose in a one-meter ramp control system, the mean arrival rate is m,

while the mean metering rate is R; (k) to server vehicles on the ramp. When the

maximum mean metering rate R, (k) exceeds the mean arrive rate m, a queuing system

will eventually reach a steady-state condition. Based on queuing theory, for states of the

queuing system n cn = 0, 1, 2, ...), the steady-state probabilities P„, the expected number

of vehicles in the queuing system L , and the expected queue length cexcludes vehicles

being served) La can be expressed as the following cHillier, et al., 1995).



m )n
where, C = 	

n	
= 

ErnR1ck for n = 0, 1, 2, ...,
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n=0
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= c1– r)ri A (  1 
Az	z.)

= 	 = 	
1–O Ricky) – m

Lab = Ecn-1)Pn

n=1

= L – c1– Po )

M 
2 Om

cderivation for Equation 3.11)
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Therefore, R, ck) =
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m. cderivation for Bquation 3.12) 
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C.2 Theoretical Analysis for SPSA

This section presents the strong convergence of 2h  SPSA. The proposition is proved

based on the definitions, assumptions and lemma presented below.
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Assumption 2: For some a0  , al , a2 > 0 and V h, E4±)2 a0 , ELc2 h ± ChAh )2 < ,

and EcA-h2, ) 2  a2 c/a =1, 2, ...,p).

A

Assumption 3: III 2d II < CO V h.

..
Assumption 4: 2 is an asymptotically stable solution of the differential equation

Axct) / dt = —gcx) .

.	 .
Assumption 5: Let Dc2) = { x0 : lima, xct I x0 ) = 2 } where xct I x0 ) denotes the

solution to the deferential equation of Assumption 4 based on initial

conditions x0 ci.e., Dc2) is the domain of attraction). There exists a

* 	 A

compact S c Dc2) such that 2d E S infinitely often for almost all

sample points.

Assumption 1 and Assumption 2 are typical Stochastic Approximation cSA)

conditions. Assumption 3 is not a restrictive condition and could be expected to hold in

most application cKushner, et al., 1978). Assumption 4 and Assumption 5 are motivated

A

by considering a limiting form of the deterministic version of Equation 3.18, i.e., 2d+1 ="

A 	 A A

Ad- ah gd c2d) as h _> co .

C.2.4 Proposition

Let Assumptions 1 through 5 and the conditions of the lemma hold. Then as h —f co ,

A 	 •

2d ---> 2 for almost all CO E S2 .	 cB.1)
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