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ABSTRACT

OPTIMIZATION FOR SOURCE LOCALIZATION AND
GEOACOUSTIC INVERSION IN UNDERWATER ACOUSTICS

by
Urmi Ghosh-Dastidar

Matched-field inversion techniques are widely used for source localization and geoaco-

ustic parameter estimation. These inversion methods correlate the received data with

modeled data and find the model parameters which provide the maximum correlation.

However, when a large number of unknown parameters is involved, many modeled

data need to be generated and correlated with the observed data and thus, matched-

field inversion can be computationally intensive. An optimization process applied to

matched-field inversion is often required to accelerate the inversion process.

In this work, tabu is applied to matched-field inversion for source localization and

environmental parameter estimation. Tabu is a global optimization technique which

proceeds by finding the best model in a local neighborhood, where a best model is

defined as the set of parameter values that provides the maximum correlation in a

given neighborhood. However, the search moves beyond local areas by maintaining

records of past moves. Using historical information, the approach avoids certain

paths. Thus, tabu limits the search space and redefines neighborhoods in each

iteration. Tabu is evaluated through a comparison to fast simulated annealing.

To improve efficiency, a tabu approach is also developed for parameter estimation

in a rotated coordinate system. Rotation is achieved through the identification of

combinations of parameters that affect acoustic field computations.
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CHAPTER 1

INTRODUCTION

An inversion scheme is a process which predicts values of unknown parameters

using a decision rule together with a search algorithm, given a set of observed data.

Inversion plays a significant role in underwater signal processing for source localization

of acoustic sources and estimation of geoacoustic parameters such as bottom depth,

sediment thickness, attenuation, and bottom sound speed among others.

Matched field processing (MFP) [1, 2, 3, 4, 5, 6] is widely used as an inversion

technique for source localization and environmental parameter estimation in the

ocean. This scheme solves the Helmholtz equation (forward modeling) by using

different values for the unknown parameters repeatedly and generates many replicas

(solutions of the Helmholtz equation) at the receiving hydrophones. MFP then

correlates replicas to the received data and determines the parameter values which

maximize the data-replica correlation.

A grid-based exhaustive search applied to MFP provides the most accurate

estimates. However, when several parameters are unknown, many replicas must be

generated and matched to the observed data, making an exhaustive search computati-

onally inefficient. An optimization method together with MFP is needed to accelerate

the search in the parameter space, by exploring more heavily probable solutions rather

than the whole space.

There exist several optimization approaches. Simulated annealing (SA) [7, 8,

9, 10] and genetic algorithms (GA) [11] are the most widely used global optimization

processes for localization and geoacoustic inversion. The SA approach is a Monte

Carlo process which randomly perturbs the current model, where a model is defined as

a multi-dimensional vector, consisting of possible values of the unknown parameters.

The process accepts all models which improve the optimizing function; some downhill

1
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steps which lower the objective function value are also accepted probabilistically.

SA ensures convergence to the global maximum if the temperature schedule, the

initial temperature, and the parameter perturbations are appropriate. However, this

approach takes a substantial amount of time to converge and, also, the appropriate

annealing schedule is, in practice, found by trial and error. The fast SA [12] method,

where the cooling rate is inversely proportional to the iteration number, provides

faster convergence than the traditional SA method. However, again, the performance

of the process depends strongly on the temperature schedule and other factors that

can be determined only empirically. Gerstoft uses GA for localization and geoacoustic

parameter estimation [11]. The GA technique is based on simulating the evolution

of population models based on a set of stochastic criteria. This process imitates

genetic crossover and mutation (random perturbations) in favor of higher correlation.

Although this approach often identifies a wide area around the global maximum,

the method does not always perform well locally [13]. Gibbs sampling [14] is another

global optimization process which involves the estimation of multi-dimensional integr-

als of the posterior probability density of the unknown model parameters, typically

performed by using a sampling procedure. However, this process is also computation-

ally intensive when several unknown parameters are involved; its performance also

depends on the validity of prior assumptions. Chapman and Lindsay [15, 16] developed

a scheme which they refer to as "adaptive simulated annealing," which does not need

a predetermined temperature schedule like traditional SA. Instead, the temperature is

related to the sensitivity of the acoustic field to each parameter during the inversion.

This method uses matched field correlation information to guide the search adaptively

towards models which are associated with high values of the optimizing function.

Thus, this method has the ability to learn and guide the search during inversion.

Unlike SA, where one searches for one final highest correlation value, Jaschke and

Chapman [17, 18] developed a freeze bath approach which generates a set of different
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models all of which match the data well. The main difference of the method with

conventional SA is the usage of temperature. The freeze bath method involves

sampling new models at a fixed temperature during the search, whereas SA involves

decreasing the temperature stepwise. Fallat and Dosso [19] developed a simplex

simulated annealing (SSA) approach which takes advantage of the local downhill

simplex method, where downhill corresponds to moving down into a valley in the

optimizing function space when one searches for the global minimum. Since we are

interested in maximization, instead of moving downhill, the search needs to move

uphill in the optimizing function space. Although SSA uses the local downhill simplex

method, the search can escape a local minimum (maximum in our case) by accepting

uphill steps based on a stochastic component.

Tabu [20, 21, 22, 23] is a relatively novel optimization process which, to the

best of our knowledge, has not been used in underwater acoustic signal processing.

While most other existing optimization methods rely on stochastic criteria, the key

feature of tabu is to de-emphasize randomness and rely, instead, on memory. In

tabu, a move is defined as a parameter change from a set of old parameter values to

a set of new parameter values. The method uses several prohibition lists based on

different criteria; the process updates the lists in every iteration and forbids moves

which are contained in the prohibition lists. In every iteration, the search creates a

local neighborhood, scrutinizes each model in that neighborhood by inspecting the

lists, and proceeds to search the parameter space by accepting the best possible move.

Since, in each iteration, tabu redefines the neighborhood, this method is also referred

to as a variable neighborhood method [20]. The current work is different from previous

work on tabu in the following way. Here, we introduce three different lists based on

three different criteria: the first list is generated to prohibit exploration of unlikely

solutions by forbidding a move from a better solution to a worse solution, the second

list is used to avoid cycling, and the third list is introduced to improve efficiency.
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While searching the parameter space, if all the moves in the current iteration are

forbidden, the current neighborhood becomes empty and the search gets trapped.

Therefore, an escape mechanism based on the first two lists mentioned above is also

defined for better exploration of the search space. This new mechanism, which is

introduced here, helps tabu to escape from such "traps".

First, we apply tabu for inversion in a conventional coordinate system. Next,

we reparametrize the parameter space and implement tabu in a rotated coordinate

system. If the most prominent hill in the optimizing function space (associated with

the global maximum) is obliquely oriented to the original coordinate axes, navigation

could be inefficient if the search is performed by using the regular coordinate system.

Instead, if the coordinates are rotated so that the new axes become parallel and

perpendicular to the most significant hills of the optimizing function space, efficiency

can be attained. Lately, a coordinate rotation in searches has attracted a lot of

attention [24, 25, 17, 18]. We implement such a rotation by finding mutually orthogonal

eigenvectors of the covariance matrix of the gradient of the optimizing function.

Tabu is also applied to inversion with real data. Specifically, source location and

environmental parameters are estimated using the SWelIEX-96 experimental data.

The work presented in this dissertation is structured as follows: the basic

elements of MFP are described in Chapter 2. Tabu, as developed here, is presented in

Chapter 3. Tabu is evaluated on parameter estimation through a comparison to fast

SA in Chapter 4. The principles and mechanics of coordinate rotation are discussed

in Chapter 5; tabu is, then, implemented in rotated coordinates and compared

to regular tabu. In the same chapter, the performance evaluation includes SA in

regular and rotated coordinates. A comparison is, then, performed between tabu

in rotated coordinates and SA in the same coordinates. Real data inversion is also

performed, and the corresponding results are discussed in Chapter 6. Finally, the

work is summarized in Chapter 7.



CHAPTER 2

MATCHED FIELD PROCESSING, NORMAL MODE METHOD

In the process of localization and geoacoustic parameter estimation in underwater

acoustics, three issues need to be addressed: the selection of a suitable forward

model for calculating replica fields, the selection of a decision criterion, and the

design of an optimization procedure for efficient inversion.

2.1 The Forward Model Component: Modeling Sound Propagation

with Normal Modes

There exist several numerical forward modeling schemes for sound propagation based

on ray theory, normal mode theory (NM), the fast field program (FFP), the parabolic

equation (PE), and the finite difference method among others [26, 6]. Ray theory

involves obtaining a high-frequency asymptotic solution of the Helmholtz equation.

Thus, this method is more suitable for high frequency sound propagation modeling.

The fast field program (also referred to as the wavenumber integration technique)

obtains an integral transform solution of the Helmholtz equation in a horizontally

stratified medium. Although this method provides almost exact solutions for all

frequencies, the method is computationally expensive. Starting with the Helmholtz

equation and then using an asymptotic Hankel function in its solution, the PE method

obtains a parabolic wave equation. This method is mostly used for inversion in

range dependent propagation problems. The finite difference method uses a direct

discretization technique to solve the wave propagation equation. This method is

difficult to implement computationally, but is particularly useful when boundary

scattering effects need to be considered in the sound propagation model.

We have used the NM approach for our work [27, 28, 26]. This approach provides

fast results for low frequencies since few modal calculations are needed in such cases,

making the method computationally attractive. Moreover, this method is suitable

5
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for long range propagation. Since we have chosen to work with low frequency and

relatively long range, the NM method is appropriate for our environment. The NM

model is briefly presented below [26].

For a point source in a two-dimensional space in frequency domain, the Helmholtz

equation can be written as:

where the range x is the distance between the source and the receiver, z s is the

source depth, p is the density, p is the pressure of the water particle, C(z) is sound

speed, and w is the angular frequency.

Let p(x, z3 )	 φ(x)χ(zs). Using separation of variables we obtain the modal

equation. Finally, assuming a pressure release surface and a perfectly rigid bottom,

and using an asymptotic approximation we arrive at the following solution [26]:

where lcm is the eigenvalue of the modal equation, χ(z s ) is the eigenfunction, and M

is the number of propagating modes. This solution is derived for range independent

environments. However, the normal mode method can be easily extended to range

dependent cases using the adiabatic approximation [20.

2.2 Matched Field Processing for Inversion

Matched field processing correlates the data vector d with the replica vector r, where

each element of r is the solution p obtained by solving the Helmholtz equation for

each receiving hydrophone. MFP then finds values of the unknown parameters that

maximize the correlation.
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To summarize, the whole process can be described as follows:

1. Collect d (data) at receiving hydrophones.

2. Decide N, the number of parameters to be estimated.

3. Decide DN, the search domain for the N parameters.

4. Select models m from DN by using a search process, where a model is a

vector of values for the unknown parameters.

4a. Create many replica vectors r (as mentioned above, each element of the

replica vector corresponds to the solution p in Equation 2.2) by calculating the field

for the parameter values of m.

4b. Match replica vectors r to the observed data d by using a correlation

criterion.

5. The estimates of the unknown parameters are those which are associated

with the best match between replicas and data.

There are several processors that match data and replicas for matched field

inversion. The minimum variance processor [6] is very sensitive to modeling errors.

Thus, a very accurate and detailed environmental knowledge is necessary. The

optimum uncertain field processor [29] is based on modeling an unknown or inaccurat-

ely modeled environment. This processor requires a multi-dimensional integration

over all unknown environmental parameters, which is computationally expensive. The
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Bartlett processor [6] is well known for its simplicity and insensitivity to environ-

mental mismatch. This processor calculates an inner product between observed

and replica fields in the frequency domain. For its simplicity and robustness, we

have chosen the Bartlett processor for MFP, This processor computes correlation or

ambiguity function F, where:

where r is the replica vector and d is the received acoustic field. Symbol t means

conjugate transpose.

The estimates of the unknown parameters are those which are associated with

the maximum value of F.



CHAPTER 3

TABU

3.1 Tabu: Background

Tabu is a global optimization method which makes extensive use of memory [20,

21, 22, 23]. The search creates a local neighborhood in each iteration and selects

the best model from this neighborhood, where the best model is associated with the

maximum correlation found in the given neighborhood. In the next iteration, tabu

starts searching from the neighborhood of the model selected in the current iteration,

However, selection of new models is subject to restrictions. These restrictions are

placed by tabu through the creation of lists. In every iteration, the process updates

the lists with new information obtained from the current selection of the best model

and discards the oldest information from the lists. If a move between models is

contained in a list, then the move has tabu status, which means that the move cannot

be accepted. In this situation, tabu rejects the move, reduces the size of the local

neighborhood by eliminating the model associated with this move, and proceeds by

searching for the best model in the reduced neighborhood. If a move is not contained

in the lists, then this move is acceptable.

Glover has done extensive work on tabu search and provides many examples to

illustrate how tabu searches the space intelligently by learning from the past history

[20]. Numerous examples of discrete optimization problems are provided and different

tabu strategies in these contexts are discussed [20]. Vinther and Mosegaard implement

tabu search in seismic inversion [22]. They suggest the use of a non-random strategy to

solve these highly nonlinear problems. According to them, tabu, as they implemented

it, is primarily a natural process, similar to the way one might use to solve a problem

manually by using common sense. At each iteration of this inversion process, the

method generates a new neighborhood, selects the best model from the non-tabu

9
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neighbors, and remembers the reverse of the current parameter change. The search

also stores the solution obtained by the best model, found in the previous iteration.

From now on, if a parameter change from the old model to a model in the current

neighborhood is enlisted and the old model has higher solution quality than the

current one, then the parameter change from the old model to this current model

cannot be accepted. Dervis and Duc also provide an extensive discussion on tabu [23],

In their work, an adaptive mechanism is used to produce neighbors in each iteration.

The neighbors are generated based on a criterion which uses the information of the

iteration number when the latest improvement is obtained. They develop two different

tabu restrictions which are built on recency and frequency memory conditions. Failure

to satisfy either one of these two restrictions by an element of a model imposes tabu

status on this element. In each iteration, the performances of non-tabu neighbors are

estimated and the search selects the neighbor which provides the highest improvement

from the current solution. However, if none of these neighbors is able to produce an

improvement, then the performance of the i-th neighbor is again estimated by using a

criterion based on improvement, recency, and frequency. This time, the improvement

is a measure equal to the difference between the performance of the current solution

and that of the i-th neighbor. The existing work on tabu essentially describes that

use of memory is a key factor for efficient searches.

We may say that Chapman and Lindsay first introduced a global search method

in underwater inversion similar to tabu [15, 16]. For each field replica, the received

data and the replica field are correlated. The models which produce higher correlations

are accepted unconditionally; the models with lower correlations are accepted conditi-

onally with a Boltzman probability distribution similarly to SA. However, this process

does not use a predetermined annealing schedule like traditional SA. Instead, this

adaptive technique uses correlation information in each iteration and guides the search

towards models which have above average correlation. Thus, in a sense, as tabu does,
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Figure 3.1 Cycling occurs for 2-D inversion.

this procedure learns and acts while searching the parameter space and restricts

the search space to save computational time by discouraging exploration of unlikely

solutions.

3.1.1 Tabu Lists

Lists are essential elements of tabu. One of the primary roles of the lists is to prohibit

cycling: cycling is the repeated visitation of the same local neighborhood or repetition

of the same search path. This situation could arise if a search accepts a model

which was recently visited and follows the same search pattern thereafter. By using

historical information from the lists, tabu attempts to avoid cycling by discouraging

visitation of recently explored models. However, cycling could still occur, even under

the restrictions of tabu lists. Figure 3.1 shows an example of cycling. The process
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employed to illustrate cycling in Figure 3.1 uses a list according to which the changes

of parameter values which are accepted cannot be reversed for a certain number of

iterations. Therefore, if tabu moves from a model mc to a model md , the process is not

allowed to move in the reverse direction, that is, from an d to mc . In Figure 3.1, tabu

starts searching from 1.7 km of range and 75 m of the source depth. Each circle in

this figure represents the best model found by tabu in every iteration. Although from

this figure one might think that the process stops when the search reaches either one

of the points (1.64,65) or (1,66,65), actually the search never stops. Tabu follows the

same search path and keeps repeating it. Therefore, if the list type is not appropriate,

cycling could occur. List size is also important for the prevention of cycling. The

appropriate size depends on the dimensionality of the problem and is usually found

empirically.

3.2 Tabu Search in Underwater Acoustic Signal Processing

Implementing a prohibition policy by using memory, we build a tabu approach suitable

for matched-field inversion. In each iteration, the neighborhood size is chosen to

be 2(unk — par), where unk — par is the number of unknown parameters. This

neighborhood is chosen so that each parameter is perturbed in both positive and

negative directions in each iteration. The parameter perturbations are fixed. Theref-

ore, in a two-dimensional search, a neighborhood contains all four center points of

the sides of a square, in a three-dimensional search a neighborhood contains all six

center points of the sides of a cube and so on. In summary,
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where x i is the i-th perturbed parameter value, x i is the current value of the i-th

parameter, and Δxi  is the fixed perturbation for the i-th parameter.

Lists: We use two different tabu lists, based on two different criteria:

List 1: While performing inversion with tabu, we notice that there are situations

when none of the neighboring models in the current neighborhood offers better

solution (higher correlation) than the previously accepted model. In such cases, if

tabu accepts the best model (from the neighborhood) which has a lower correlation

than that of the previously found best model, there could be situations when tabu

proceeds downhill for several iterations. This behavior sometimes forbids tabu to

explore models associated with high correlation. To avoid that, a list that maintains

a history of recent improvements is introduced; the list is referred to as the reverse

improvement list. If the best model found in the current neighborhood provides a

better solution than the previous model, the change of parameter values from the old

model to the current one leads to an improvement. In such a case, the reverse of the

change (reverse of the improvement) is stored in the reverse improvement list. Since

all moves contained in the reverse improvement list provide worse solutions, accepting

these moves leads the process to lower correlation regions. For this reason, the moves

contained in this list are prohibited and all of these moves are considered tabu. For

the reverse improvement list, we need to have a list size of at least 2(unk — par).

Since in each iteration, tabu creates a neighborhood of size 2(unk — par), there are

4(unk —par) number of forward and reverse moves associated with each neighborhood;

having a list size smaller than 2(unk — par) might allow tabu to accept a model

(whose neighborhood has already been explored) with worse correlation than that of

the current model.

List 2: If unrestricted, tabu might sometimes repeat a search path by accepting

forward moves which have been previously explored. To avoid repetition, a second

list, referred to, here, as the forward list, is introduced; the forward list contains all
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recent forward moves. The moves contained in this list cannot be repeated for several

iterations to prevent repeated occurrence of the same search pattern. A list size of

enables the process to avoid cycling for l iterations. However, there are no rules for

accurately choosing the optimal list size. The size has to be chosen by trial and error.

Jump Condition: If a move is contained in either one of the lists mentioned

above, then this move is prohibited. When all moves are prohibited by tabu lists,

tabu cannot proceed further and the process gets trapped. In Figure 3.2, an example

of trapping is shown. Here, we have used the two lists which were mentioned above.

The search starts from 1.7 km of range and 75 m of source depth. The search reaches a

local maximum at 1.66 km of range and 67 m of source depth. By using information

from the reverse improvement list, tabu learns that all neighborhood points have

lower correlation than the local maximum. Thus, tabu cannot move back from the

maximum to any neighbors, since that would mean reversal of improvements. Unless

forced to continue, the process will then stop.

To avoid such an occurrence, we introduce the concept of a random step jump.

When moves to all neighbors are prohibited, the search generates a random integer

k which provides modified step sizes for the current iteration. For exploring the

search space better, a bigger neighborhood size is chosen by using three different

steps (k, 2k, 3k). Tabu, then, creates neighborhoods using these step sizes, selects

the best model in these neighborhoods, and jumps out of the local neighborhood by

starting a new search from the best model found. The perturbations in case of a jump

are performed diagonally by perturbing all parameters at a time as follows:

where j=1,2,3, k 1 = k, k2 = 2k and k3 = 3k, X i is the i-th perturbed parameter value,

x i is the old value of the i-th parameter, and Δx i is the i-th parameter perturbation.

In a diagonal perturbation, a neighborhood contains four vertices of a square in



Figure 3.2 Trapping occurs for 2-D inversion.
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two-dimensional inversion, eight vertices of a cube in three-dimensional inversion and

so on. In other words, for an n-dimensional inversion, we require 2' neighbors. This

diagonal perturbation is performed for diversification of the search process.

Once the search moves out of the trap to the new model, parameter perturbations

follow again Equation 3.1. As an illustration of the trapping and the subsequent

random jump of tabu, the following example is provided. An acoustic source of 150

Hz is placed at 2 km of range and 100 m in depth in a 216.5 m deep ocean. The

signal is received in a noise-free environment at an array of ten vertically separated

hydrophones between 50 m and 140 m. Two-dimensional inversion is performed by

assuming that source range and source depth are unknown. The true values of the

unknown parameters and the bounds on various parameters are given in Table 3.1.

Table 3.1 The True Values of the Parameters and the Bounds on Parameters : x s

= Range, zs = Source Depth

Figure 3.3 shows the complete search starting with an initial model (3.2, 152)

corresponding to source range and source depth. As a comparison, exhaustive search

results (the ambiguity surface discussed in Chapter 2) are superimposed in the same

figure.

The red regions correspond to high optimizing function values, the yellow regions

have lower optimizing function values than the red regions, and the blue regions

correspond to the lowest optimizing function values. This figure demonstrates the

search pattern that tabu follows. When trapped in the vicinity of the initial model,

tabu generates random steps. The search then explores all neighborhood models

created by these random steps and chooses the best model. A new search then



17

Figure 3.3 An example of a 2-D tabu search superimposed on the Bartlett
ambiguity surface.
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starts from the neighborhood of the chosen model. We observe that, as tabu jumps,

it chooses a model associated with a local maximum and, thus, is more likely to

explore high correlation regions more frequently than low correlation regions. Due to

randomness in the jumps, the chance of visiting the same neighborhood repeatedly is

remote. In Figure 3.3, we also notice that, while tabu jumps from the vicinity of the

initial model to (2.6,76), the search does not revisit the starting model. Instead, the

search subsequently jumps to (3.4,116).

Tabu has been so far discussed for two-dimensional inversion for demonstration

purposes. In practice, in a more realistic environment, the receiver location parameters

as well as environmental parameters could be unknown as well. Thus, we extend the

search to nine-dimensional inversion by assuming that the ocean depth, sediment

thickness, bottom sound speeds, attenuation, receiver shifts, and tilt are unknown.

For higher dimensional inversion, the neighborhood size for jumps needs to be carefully

selected. As we increase dimensionality, forming diagonal neighborhoods demands

more forward model calculations, since 2u nk-par becomes large as we increase the

number of unknown parameters. Therefore, we have chosen this size as 3(2 4 ). The

reason for this selection is as follows. Figure 3.4 demonstrates the sensitivity of the

optimizing function with respect to nine parameters. The sensitivity of the optimizing

function to a particular parameter is defined as the pattern of change of the optimizing

function with respect to changes in that parameter. Usually, a small change in a

source location parameter affects the optimizing function more than a change in

other parameters [24]. For this reason, while jumping, the neighborhood is generated

based on the number of important parameters, where important parameters are the

parameters that affect the optimizing function the most. By inspecting Figure 3.4, we

notice that the optimizing function is affected more prominently by source range and

depth. Within the given boundaries of these two parameters, the optimizing function

varies from approximately 0 to 1. The sensitivities of the optimizing function to tilt
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Figure 3.4 Sensitivity of optimizing function to different parameters.
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and ocean depth are almost identical and follow the function sensitivity to range

and source depth. The other examined parameters affect the function less than the

above mentioned four parameters. Since the optimizing function is not expected

to change significantly if any of these remaining five parameters are changed, we

only perturb range, source depth, tilt, and ocean depth when jumping, to avoid

unnecessary forward model calculations.

List 3: Besides having the reverse improvement and the forward lists, we also

create a third list, which we refer to as the neighborhood list. This list contains

all models and the respective values of the optimizing functions which have been

recently explored by tabu. Tabu does not have to recalculate the optimizing function

if a model is contained in the third list, since the value of the optimizing function

is already listed. Since most of the search time is spent on calculating the forward

models, having the third list is beneficial to speed up the inversion process. There is

no optimum criterion for this list size selection. This list is particularly helpful when a

broadband propagation problem is considered. In a broadband inversion problem, to

calculate the optimizing function for a specific model, the forward problem needs to

be solved for each involved frequency. If a particular model has already been visited

and the corresponding value of the optimizing function is enlisted, then numerous

forward model calculations do not have to be repeated.

In each iteration, tabu updates each list and discards old moves (from the

reverse improvement or the forward lists) and old models (from the neighborhood

list). The search stops when the number of forward models exceeds a specified value.

A flowchart of tabu is shown in Figure 3.5.
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Figure 3.5 Tabu flowchart.



CHAPTER 4

COMPARISON BETWEEN TABU AND SA

In this chapter, we present results obtained by tabu and SA with synthetic data.

The environment used to generate the data simulates the SWellEX-96 experiment,

performed in California in the Summer of 1996. The environment is shown in Figure

4.1. The water column is 216.5 m deep followed by a relatively thin sediment layer. A

vertical array of ten receiving hydrophones is located at 2 km away from the source.

The hydrophones have a 10 m vertical spacing, the shallowest hydrophone being at

50 m in depth.

Before the comparison, as a test, we perform a two-dimensional tabu search for

source localization (assuming that the source range and depth are unknown). This

search is performed for ten different initial conditions. The true values are presented

in Table 3,1. The results are shown in Table 4.1. From column two to four of the

table, the estimates of the source range and depth and the corresponding maxima

found by tabu for each initial condition are shown, whereas the fifth column provides

the required number of objective function calculations by tabu to obtain the global

maximum. We observe that tabu locates the source accurately in an efficient manner.

Figure 4.1 Sound speed profile for simulation.

22
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Table 4.1 Tabu Results: 2-D; R = Range, S D = Source Depth, O D = Ocean
Depth, max = Maximum Found, Models = Number of Forward Models Needed to be
Calculated to Reach the Global Maximum

Initial Data R S D max Models

1 1.99 99.93 0.99 79

2 2.00 99.91 0.99 659

3 1.99 99.85 0.99 681

4 2.00 100.43 0.99 291

5 1.99 99.26 0.99 230

6 1.99 100.93 0.99 352

7 1.99 100.82 0.99 1439

8 2.00 100.75 0.99 225

9 1.99 100.34 0.99 580

10 1.99 99.77 0.99 326
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Next, inversion is performed with three, six, seven, and nine unknown parameters

by tabu and SA. The results are, then, compared.

4.1 Simulated Annealing

SA [7, 8, 9, 10] is an optimization process which is widely used for source localization

and geoacoustic inversion. The idea behind SA is essentially obtained from statistical

mechanics. Assume that we expose a solid to a very high temperature, so that the

solid melts and all atoms circulate in a random fashion. Next, the temperature of

the liquid is reduced gradually so that all atoms arrange themselves in the minimum

energy state where crystallization takes place. In optimization, this energy is directly

related to our optimizing function. SA is the simulation of this annealing process;

the method searches for the global minimum energy level of E, where E equals 1— F

(F is the matched field correlation). Notice that minimization of E corresponds to

maximization of F.

Starting with an initial temperature T0 and an initial model mo associated

with an initial energy E0 , the temperature is reduced slowly so that the process

converges to the globally minimum energy state. In each iteration, SA finds a new

model m 1 with energy E 1 by perturbing the current model mo . The perturbation is

generated as m1i  = m0i + Δmiγ), where is chosen randomly in (-1,1), i corresponds

to the i-th element of the model m, and Δmi is a fixed number associated with the

bounds for the i-th parameter perturbation. If the energy E (1-F) is lowered by this

new parameter change (ΔE = E0 — E1 < 0 ), then this new model m1 is accepted

unconditionally. Otherwise, m1 is accepted with probability P = where Ti

is the temperature at the current iteration. This process is repeated until the change

of energy DE becomes negligibly small for several iterations; then, convergence of

the process has been achieved. In 1984, Geman and Geman [30] proved that if the
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temperature cooling schedule follows a logarithmic pattern, then SA in theory could

converge to the global minimum. The logarithmic schedule is given below for i ≥ 2:

This convergence, however, also requires "appropriate" choices for the parameter

perturbations and also for the initial temperature.

4.2 Fast Simulated Annealing

Although the convergence of SA to the global minimum (global maximum in our case)

by using the logarithmic schedule is theoretically guaranteed (if the temperature

schedule and parameter perturbations are appropriate), SA is very slow and takes

a significant amount of time until its convergence to the global minimum. Also,

sometimes, the global minimum is not identified in practice. In 1987, Szu and Harley

[12] presented a fast simulated annealing algorithm, where the temperature schedule

is inversely proportional to the iteration number:

This approach has been used in matched-field inversion with success. Based

on this fact, we have also used a fast SA schedule. Parameter perturbations are

performed as m1i  = m0i + Δm iγ3 [31], where 'y is chosen randomly in the interval

(-1,1). This approach encourages small parameter perturbations, without prohibiting

bigger variability [31].
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4.3 Results and Discussions

4.3.1 3D Inversion

For a comparison between SA and tabu, we perform three-dimensional inversion with

15 sets of initial conditions. The true parameter values are provided in Table 4.2.

For the appropriate annealing schedule, we have experimented with several different

temperature schedules. In order to have a high performance bound for tabu, we tried

to find a schedule so that SA finds the global maximum at the true location most of

the time.

Table 4.2 The True Values of the Parameters and the Bounds on Parameters : xs

= Range, z3 = Source Depth, ods = Ocean Depth

No Parameters True Minimum Maximum

1 xs - km 2.0 0.01 5.0

2 zs — m 100.0 0.0 200.0

3 ods — m  216.5 200.0 230.0

Once the appropriate schedule was found, we performed an efficiency test for

three-dimensional inversion. The value of the global maximum is 1 (perfect match),

and it occurs at the true location. Therefore, for this comparison, we accept that

a method is successful if it reaches within 10% of the global maximum value. In

other words, the maximum obtained by each process in every run needs to exceed

a threshold, which is 0.90 in our case. A process is said to be more efficient than

the other one, if it requires fewer forward model calculations to exceed the given

threshold value than the other method. The number of forward model calculations

is here defined as the number of times normal modes are calculated. The minimum

number of models is fixed for each process. However, if a method does not satisfy this

criterion within the pre-defined number of models, the number of models is increased

until the process is successful or the process exhausts the maximum allowable number
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Figure 4.2 Comparison between SA and tabu for 3-D inversion.

of models. If a process does not find a maximum value which exceeds the given

threshold value, we consider it as a failure. Table 4.3 presents the efficiency test

results for both processes.

Table 4.3 Comparison Between SA and Tabu (3D): Efficiency Test

Process Mean Std Mean(F) Failure

SA 2382 1475 0.97 0

Tabu 1664 1518 0.99 0

For the three-dimensional inversion, tabu is faster than SA nine out of fifteen

times. On average, tabu needs 718 fewer forward model calculations than SA. Also,

as we observe in the table, tabu reaches a higher value of the optimizing function than

SA. Figure 4.2 presents the number of models versus maximum for both methods,

This figure clearly indicates that tabu obtains higher maxima more efficiently than

SA. Tabu obtains maxima higher than 0.98 eleven out of fifteen times within 2000
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forward model calculations, whereas SA reaches this level twice within the same

number of calculations.

We also obtain the mean and standard deviations of the estimates obtained

by each process if the estimates are associated with the true source location. As

we have mentioned in Chapter 3, source range and depth are the most important

parameters. Tilt and ocean depth are the next significant parameters. Since all other

remaining parameters do not affect the optimizing function significantly, obtaining

mean and standard deviations of these parameters do not provide us with substantial

information. Table 4.4 presents the mean and standard deviations of significant

parameters. The numbers in parentheses represent the corresponding standard devia-

tions. Both methods perform similarly.

Table 4.4 Comparison Between SA and Tabu (3D)

Parameter Tabu SA

r 2.01(0.02) 1.99(0.05)

sd 99.97(0.61) 99.93(2.07)

od 217.26(0.93) 216.37(2.44)

4.3.2 6D Inversion

Next, the search is extended by considering sediment thickness, receiver shift, and

array tilt as unknown parameters as well. From the sensitivity plots in Chapter 3,

one can see that tilt is an important parameter affecting the optimizing function

significantly. Shift does not appear to be as significant as tilt; however, both tilt and

shift could be unknown or uncertain in a realistic application. Figure 4.1 shows such

a case. Also, typically, sediment parameters are uncertain in shallow water problems,

and they should, thus, be included in the inversion.
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The environment is the same as the one used for the three-dimensional inversion,

The true parameter values of the six considered parameters are provided in Table 4.5.

Table 4.5 The True Values of the Parameters and the Bounds on Parameters : x s

= Range, zs = Source Depth, ods = Ocean Depth, sedthick = Sediment Thickness, sh
= Receiver Shifts, ti = Array Tilt

No Parameters True Minimum Maximum

1 xs - km 2.0 0.01 5.0

2 .z,, — m 100.0 0.0 200.0

3 ods — m 216.5 200.0 230.0

4 sedthick - m 23.5 5.0 145.0

5 sh - m 0.0 -5.0 5.0

6 ti - degree 0.0 -5.0 5.0

Table 4.6 provides the information for our comparison based on efficiency. Tabu

is faster than SA ten out of fifteen times. On average, tabu needs approximately 6000

fewer forward model calculations than SA. Also, again, higher maxima are identified

by tabu than by SA. The number of models versus maximum for the six-dimensional

inversion is presented in Figure 4.3. We notice that tabu obtains maxima higher than

0.97 ten out of fifteen times within 20000 forward model calculations, whereas SA

exceeds this level only once within the same number of calculations.

Table 4.6 Comparison Between SA and Tabu (6D): Efficiency Test

Process Mean Std Mean(F) Failure

SA 16188 7293 0.94 0

Tabu 10385 7136 0.97 0
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Figure 4.3 Comparison between SA and tabu for 6-D inversion.

The mean and standard deviations of the estimates are provided in Table 4.7.

Although both methods perform well, tabu estimates tilt and ocean depth more

accurately than SA.

Table 4.7 Comparison Between SA and Tabu (6D)

Parameter Tabu SA

r 2.01(0.09) 2.04(0.1)

sd 99.99(2.46) 101.87(2.54)

od 216.88(4.86) 219.15(5.6)

ti -0.02(0.09) 0.27(0.35)

4.3.3 7D Inversion

The dimensionality of the parameter space is extended to seven, by adding attenuation

to the problem. Table 4.8 lists the true parameter values for the inversion.
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Table 4.8 The True Values of the Parameters and the Bounds on Parameters : x s

= Range, zs = Source Depth, ods = Ocean Depth, sedthick = Sediment Thickness, sh
= Receiver Shifts, ti = Array Tilt, att = Attenuation

No Parameters True Minimum Maximum

1 xs - km 2.0 0.01 5.0

2 zs — m 100.0 0.0 200.0

3 ods — m 216.5 200.0 230.0

4 sedthick - m 23.5 5.0 145.0

5 sh - m 0.0 -5.0 5.0

6 ti - degree 0.0 -5.0 5.0

7 att - (dB/m kHz) 0.2 0.0 1

SA and tabu are then compared for the seven-dimensional estimation problem.

Tabu is faster than SA eleven out of fifteen times. On average, tabu needs 9703

fewer forward model calculations than SA to exceed the threshold. Also, as before,

tabu attains a higher optimizing function value than SA (see Figure 4.4). Tabu

obtains maxima higher than 0.97 nine out of fifteen times within 30000 forward model

calculations, whereas, within the same number of model calculations, SA never attains

this level.

Table 4.9 Comparison Between SA and Tabu (7D): Efficiency Test

Process Mean Std Mean(F) Failure

SA 31890 7606 0.96 0

Tabu 22186 15767 0.97 0

Table 4.10 shows that SA obtains slightly better estimates for source location

parameters and ocean depth.



Figure 4.4 Comparison between SA and tabu for 7-D inversion.

Table 4.10 Comparison Between SA and Tabu (7D)

Parameter Tabu SA

r 1.95(0.1) 2.04(0.1)

sd 98.44(2.75) 100.97(2.69)

od 213.6(5.33) 218.73(5.14)

ti 0.06(0.21) 0.07(0.23)

32
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4.3.4 9D Inversion

The search is, then, extended to nine dimensions by adding sound speed at the top

and bottom interfaces of the sediment as unknown parameters. The true parameter

values are provided in Table 4.11.

Table 4.11 The True Values of the Parameters and the Bounds on Parameters : x s

= Range, zs = Source Depth, ods = Ocean Depth, sedthick = Sediment Thickness, sh
= Receiver Shifts, ti = Array Tilt, att = Attenuation, sspl = Sound Speed 1, ssp2
= Sound Speed 2

No Parameters True Minimum Maximum

1 xs - km 2.0 0.01 5.0

2 zs — m 100.0  0.0 200.0

3 ods — m 216.5 200.0 230.0

4 sedthick - m 23.5 5.0 145.0

5 sh - m 0.0 -5.0 5.0

6 ti - degree 0.0 -5.0 5.0

7 att - (dB/m kHz) 0.2 0.0 1

8 ssp1 - (m/sec) 1572.368 1530.0 1630.0

7 ssp2 - (m/sec) 1593.016 1550.0 1650.0

The efficiency test results are shown in Table 4.12. On average, tabu needs

approximately 13000 fewer forward model calculations than SA. Also, tabu provides

significantly higher maxima than SA (see Figure 4.5). For the nine-dimensional case,

SA does not exceed the threshold value once. Table 4.13 shows that tabu obtains

better estimates for source range, depth, and ocean depth.

The following should be noted here. For the seven-dimensional case, we notice

that tabu identifies the main lobe eleven out of fifteen times within 45000 number of

models whereas, SA identifies it fifteen out of fifteen times. However, we find that



Table 4.12 Comparison Between SA and Tabu (9D): Efficiency Test

Process Mean Std Mean(F) Failure

SA 35931 17879 0.93 1

Tabu 22824 14348 0.98 0
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Figure 4.5 Comparison between SA and tabu for 9-D inversion.

Table 4.13 Comparison Between SA and Tabu (9D)

Parameter Tabu SA

r 1.99(0.1) 2.07(0.072)

sd 99.51(2.41) 101.57(1.61)

od 216.19(5.45) 220.31(3.47)

ti -0.06(0.14) 0.02(0.60)
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eight out of fifteen times tabu is faster than SA in locating the source. To further

investigate tabu, we consider more forward models and observe that tabu identifies

the main lobe fourteen out of fifteen times afterwards. Tabu still has a lower average

number of forward models (27013) and higher maxima (0.98) than SA.

Since, for all above mentioned inversion processes, tabu requires fewer forward

model calculations than SA to exceed the optimizing function threshold, we conclude

that tabu is more efficient than SA. In three-dimensional inversion, both methods

estimate the parameters well. However, in six and nine-dimensional inversion, tabu

provides consistently better estimates for the source location parameters and the

ocean depth. Tabu also provides higher average maxima than SA in all above

mentioned examples. Thus, we conclude that tabu, on average, provides better

estimates than SA.

Next, we provide an example of nine-dimensional inversion by tabu (see Figure

4.6). The accumulation of dots almost everywhere in plots, provided for sediment

thickness, shift, attenuation, and sound speeds, show that the optimizing function is

relatively insensitive to these parameters.

Finally, we have generated a surface from source range and depth values explored

by tabu for the nine-dimensional inversion by using interpolation; this is presented

in Figure 4,7. Here, we only consider the source range and depth. This figure

clearly indicates the correct source location. The values of the optimizing function

are significantly higher in this region than the other regions.
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Figure 4.6 An example of tabu search for nine-dimensional inversion.
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Figure 4.7 Surface obtained from source range and depth values visited by tabu
for nine-dimensional inversion.



CHAPTER 5

REPARAMETRIZATION

Recently, rotation of coordinates has received considerable attention in optimization

for underwater acoustic inversion [25, 17, 18, 24]. The idea behind this technique

involves exploiting the correlation between different parameters while performing

inversion. When parameters are correlated, the high energy models (the models

which have high optimizing function values) are often distributed along a line that

is obliquely aligned to the regular coordinate axes. Searching the parameter space

in the original coordinate system by perturbing one parameter at a time is usually

inefficient. Also, since the optimizing function is affected differently by each parameter

(see Figure 3.4), finding reliable estimates of the parameters by using a regular

optimization method is difficult when a large number of unknown parameters is

involved. However, the performance of the search process can be improved by rotating

the coordinates so that the new coordinate axes become parallel and perpendicular

to the prominent hills of the optimizing function space [25, 17, 18, 24].

Rotation involves finding (linearly independent, orthogonal) eigenvectors of the

covariance matrix Coy of the gradient of the optimization function F (see Equation

2.3) where Coy is defined as [24, 25] Coy = ∫ΩV F(VF)tdΩ and Ω consists of

dimensionless bounds of all parameters. Each element of Coy can be written as:

where x i and xj are the i-th and j-th normalized parameters.

The information obtained from this covariance matrix is useful for efficient

inversion. The eigenvectors correspond to the rotated axes of the inversion [25, 24].

The parameter associated with the largest eigenvalue of Coy is the most important

parameter for the estimation process.
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Inversion is performed in rotated coordinates as follows: all parameters x i are

non-dimensionalized by dividing each parameter by the total bound allowed for it.

Coy is calculated by using Monte Carlo integration [32]. For the integration, a set

of discrete points is chosen randomly from the parameter space and for each of these

points, ax estimated as follows:

where Δxi  is the dimensionless step size for the i-th parameter x i . The convergence

of the Monte Carlo scheme for three, six, seven, and nine-dimensional cases is studied

and demonstrated in Figures 5,1 to 5.4. For all cases, Monte Carlo integration is

performed for 120, 320 and 420 points. Parameters 1 to 9 correspond to range, source

depth, ocean depth, sediment thickness, shift, tilt, attenuation, sound speed 1, and

sound speed 2, respectively. In the figures, the uppermost plot shows the convergence

of the most important eigenvector which is associated with the largest eigenvalue, the

next one corresponds to the convergence of the eigenvector associated with the second

largest eigenvalue and so on. For different numbers of random points, the elements

of each eigenvector could differ but usually not significantly. However, the rankings

of the parameters based on their importance remain unchanged. In all of these plots,

the parameters are ranked as follows: source range, source depth, tilt, ocean depth,

sediment thickness, shift, sound speed 1, attenuation, and sound speed 2.

In Figure 5.1, in the first eigenvector we notice that the elements corresponding

to source range and ocean depth have the largest values; this is an indication of

coupling between them. Similarly, in the same figure, we observe that coupling exists

between the range, depth, and the ocean depth (third eigenvector). In all convergence

plots, we notice that coupling exists between range and ocean depth (see the first

eigenvector), between ocean depth and tilt (see the third eigenvector, which is more
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Figure 5.1 Comparison of eigenvectors obtained for three-dimensional inversion
when 120 (circles), 320 (star) and 420 (hat) points are used in the Monte Carlo
integration. The eigenvectors are ranked in terms of significance, the top plot
corresponding to the most significant eigenvector.

prominent in Figure 5.2), between ocean depth, receiver shifts (see the fourth and

sixth eigenvectors), and so on.

A comparison of eigenvalues is also presented in Figure 5.5. Each eigenvalue

e is divided by the largest eigenvalue e l , and, then, these values are presented in

logarithmic scale. We observe that the eigenvalues associated with the source location

parameters are significantly larger than those corresponding to the other parameters.

Once the Monte Carlo integration is performed and the eigenvectors are obtained

for the rotated coordinates, tabu is implemented with reparametrization,

5.1 Tabu in Rotated Coordinates

While searching the parameter space with tabu in rotated coordinates, in each iteration

a local neighborhood is created by perturbing all vectors as follows:
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Figure 5.2 Comparison of eigenvectors obtained for six-dimensional inversion when
120 (circles), 320 (star) and 420 (hat) points are used in the Monte Carlo integration.
The eigenvectors are ranked in terms of significance, the top plot corresponding to
the most significant eigenvector.

Figure 5.3 Comparison of eigenvectors obtained for seven-dimensional inversion
when 120 (circles), 320 (star) and 420 (hat) points are used in the Monte Carlo
integration. The eigenvectors are ranked in terms of significance, the top plot
corresponding to the most significant eigenvector.
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Figure 5.4 Comparison of eigenvectors obtained for nine-dimensional inversion
when 120 (circles), 320 (star), 420 (hat) points are used in Monte Carlo integration.
The eigenvectors are ranked in terms of significance, the top plot corresponding to
the most significant eigenvector.

Figure 5.5 Comparison of eigenvalues obtained for nine-dimensional inversion when
120 (circles), 320 (star), and 420 (hat) points are used in the Monte Carlo integration;
Le = log10(e/e1) where e l = the largest eigenvalue, the eigenvalues e are shown in a
logarithmic scale from the largest to the smallest, from top to bottom, respectively.
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where X is the new dimensionless model, x is the old dimensionless model, k3 is a

scalar multiple chosen in an automated way for the j-th eigenvector. The scalar kj is

selected in such a way that the parameter value associated with the largest value in

the j-th eigenvector does not exceed the original step size that was used for tabu in

the original coordinates. Once the new dimensionless model X is obtained, this model

is transformed to the conventional coordinate system, and the search is performed

using the corresponding values of the unknown parameter.

Only those two eigenvectors which are associated with the first two largest

eigenvalues are perturbed when tabu jumps out of a confinement. To keep the number

of forward model calculations to a minimum, we neglect all other less significant

eigenvectors when a trap is identified. However, once tabu escapes, we perturb all

eigenvectors again, as shown in Equation 5.3.

Next we perform inversion by tabu and SA in original and rotated coordinates.

5.2 Results and Discussions: Tabu in Original Coordinates and Tabu in

Rotated Coordinates.

5.2.1 3D Inversion

Table 5.1 Comparison Between Tabu and Tabu(Rotated) (3D): Efficiency Test

Process Mean Std Mean(F) Failure

Tabu 1664 1518 0.99 0

Tabu(Rotated) 1700 1546 0.99 0

We compare tabu in original coordinates with tabu in rotated coordinates. Table

5.1 provides the three-dimensional inversion results by both processes, when we test

efficiency. We notice that the regular tabu search requires fewer number of forward

model calculations than the reparametrized tabu.
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5.2.2 6D Inversion

Next, the two methods are compared for six-dimensional inversion. Table 5.2 demons-

trates the inversion results for efficiency test. We observe that tabu in rotated

coordinates requires fewer forward model calculations than tabu in conventional

coordinates, Here, both methods attain the same level of maxima.

Table 5.2 Comparison Between Tabu and Tabu(Rotated) (6D): Efficiency Test

Process Mean Std Mean(F) Failure

Tabu 10385 7136 0.97 0

Tabu(Rotated) 10066 7252 0.97 0

5.2.3 7D Inversion

We continue inversion by assuming that seven parameter values are unknown. We

observe in Table 5.3 that the reparametrized tabu needs fewer forward model calculati-

ons than the regular tabu search. Again both methods obtain similar maxima.

Table 5.3 Comparison Between Tabu and Tabu(Rotated) (7D): Efficiency Test

Process Mean Std Mean(F) Failure

Tabu 22186 15767 0.97 0

Tabu(Rotated) 20611 10399 0.97 0

5.2.4 9D Inversion

Inversion is, then, performed for nine unknown parameters. Table 5.4 shows the

efficiency test results for both tabu processes. Tabu in regular coordinates requires

fewer forward model calculations and it also reaches slightly higher maxima.

We notice that tabu in regular coordinates provides higher or same level of

maxima in all cases. Thus, we conclude that tabu, on average, is able to obtain higher
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Table 5.4 Comparison Between Tabu and Tabu(Rotated) (9D): Efficiency Test

Process Mean Std Mean(F) Failure

Tabu 22824 14348 0.98 0

Tabu(Rotated) 24855 13860 0.96 0

correlation than tabu in rotated coordinates. However, this is not surprising. Since

tabu in conventional coordinates searches the space by perturbing one parameter at

a time, the search has the ability to penetrate deep inside a neighborhood. Tabu in

rotated axes searches the space by perturbing all parameters simultaneously. Unless

we use smaller step sizes, tabu in rotated axes could be less accurate than tabu in

regular coordinates.

We also present an example of nine-dimensional inversion by tabu in rotated

axes in Figure 5.6. These results are obtained by using the same initial conditions as

those used for the regular tabu method (see Figure 4.6). The surface generated by

these solutions is presented in Figure 5.7. We observe more high correlation regions in

this figure than what was observed for the case of regular tabu, as previously shown

in Figure 4.7. This is not surprising since tabu in rotated axes is expected to identify

more high peak areas than it does in conventional coordinates.

Finally, to show how tabu in rotated axes provides better estimates for the

less important parameters, we present histograms obtained from solutions by using

both methods for a fixed number of forward model calculations. Histograms for

the three-dimensional case show that both methods obtain good estimates for all

parameters (see Figure 5.8). Histograms for the six-dimensional case (see Figures 5.9

and 5.10) show that tabu in conventional coordinates obtains better estimates for

source range, source depth, and tilt. However, tabu in rotated coordinates obtains

better estimates for ocean depth and sediment thickness. Histograms provided for

seven-dimensional inversion (see Figures 5.11 and 5.12) indicate that although both
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Figure 5.6 An example of nine-dimensional inversion by tabu(Rotated).
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Figure 5.7 Surface obtained from source range and depth values visited by tabu in
rotated coordinates.
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methods perform well in estimation of source location, tabu in rotated axes obtains

better estimates for source range, whereas tabu in conventional coordinates produces

better estimates for source depth. In addition, ocean depth, tilt, and attenuation are

better estimated by tabu in rotated axes. In nine-dimensional inversion (see Figures

5.13 and 5.14), tabu in rotated coordinates provides better estimates for range, tilt

and sound speed 1; regular tabu produces better estimates for source depth. Both

methods perform in a similar manner for estimation of ocean depth. Therefore, it is

observed, that tabu in rotated coordinates provides more reliable estimates for less

important parameters than the regular tabu approach.

However, we were surprised because we did not see a gain in terms of efficiency

with the reparametrized tabu compared to the regular tabu method. Existing literature

informs us that a search in rotated coordinates typically performs better than the

corresponding regular method. After a careful consideration, we realize that using

the normal mode method for forward modeling helps tabu to save many forward

model calculations, which is the reason behind our results.

5.2.5 Savings from Normal Modes

As we have mentioned earlier, the number of forward model calculations is based

on the number of times normal modes are calculated. Using a modal approach, we

are able to use the same modes obtained for a given environment to calculate the

field (p in Chapter 2) simultaneously for all location parameters. In normal modes,

the modal solutions (χ,,, (z) in Equation 2.2) are obtained by using a specific set of

environmental parameter values.

Once these modes are obtained for a specific environment, any solution (p(x, z8 )

in Equation 2.2) can be represented as a linear combination of these modes, provided

the environmental conditions are same. Consequently, if there are unknown parameter

values associated with the source/receiver locations, the normal modes which are



Figure 5.8 Histograms for three-dimensional inversion.
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Figure 5.9 Histograms for six-dimensional inversion.
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Figure 5.10 Histograms for six-dimensional inversion.
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already obtained, can be used to obtain the pressure fields (p in Chapter 2) for all

source/receiver location parameter values (x, z3 , z), provided the environment is the

same; thus, a significant number of forward model calculations could be avoided.

When we use regular tabu, in every iteration each neighborhood model is

different from the previously found best model by only one parameter value. As

an illustration, consider the three-dimensional problem. The true values of the

source range, depth, and water column depth are assumed to be unknown. When

a neighborhood of size 2(unk — par) is created, four models in this neighborhood

have the same environmental parameter values as the best model had in the previous

iteration. Therefore, the modes obtained for the previous model are used for field

calculations corresponding to these four models. As a consequence, four forward

model calculations are saved. Similarly, eight forward model calculations for the six-

dimensional problem (two environmental parameters and four source/receiver location

parameters) and eight forward model calculations for the seven-dimensional problem

(three environmental parameters and four source/receiver location parameters) could

be saved with the regular tabu method per iteration. With tabu in rotated coordinates,

since the eigenvectors are perturbed (see Equation 5.3), all parameter values change

simultaneously. Thus, the search is under-privileged compared to the regular tabu

search when many source/receiver location parameters are among the unknowns.

Consider the three and six-dimensional cases where the number of source/receiver

location parameters is twice the number of environmental parameters. Each time

this method perturbs an eigenvector and converts the perturbed eigenvector in the

regular coordinate system, all parameter values are changed, including those of the

environmental parameters. Consequently, reparametrized tabu needs to recalculate

the normal modes every time an eigenvector is perturbed.

However, if the number of unknown environmental parameter values is higher

than the number of source/receiver location parameter values, tabu with reparametri-



Figure 5.11 Histograms for seven-dimensional inversion.
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Figure 5.12 Histograms for seven-dimensional inversion.
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zation has higher chances, on average, of finding the true location by calculating fewer

number of forward models than the regular tabu method.

To illustrate our reasoning, we compare both processes for three, six, seven and

nine-dimensional problems based on iteration numbers. Tables 5.5 to 5.8 present

the mean and standard deviations of iteration numbers corresponding to the results

obtained from the efficiency test.

Table 5.5 Comparison Between Tabu and Tabu(Rotated) (3D) Based on Iteration
Numbers

Process Mean Std Mean(F) Failure

Tabu 603 537 0.99 0

Tabu(Rotated) 460 425 0.99 0

Table 5.6 Comparison Between Tabu and Tabu(Rotated) (6D) Based on Iteration
Numbers

Process Mean Std Mean(F) Failure

Tabu 3027 2095 0.97 0

Tabu(Rotated) 1338 974 0.97 0

Table 5.7 Comparison Between Tabu and Tabu(Rotated) (7D) Based on Iteration
Numbers

Process Mean Std Mean(F) Failure

Tabu 7273 7659 0.97 0

Tabu(Rotated) 2399 1214 0.97 0

We notice from all these tables that tabu in rotated coordinates requires, on

average, fewer iteration numbers than the regular tabu method. Moreover, small

standard deviations for all cases for tabu in rotated axes show that the variations
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Figure 5.13 Histograms for nine-dimensional inversion.

Table 5.8 Comparison Between Tabu and Tabu(Rotated) (9D) Based on Iteration
Numbers

Process Mean(iter) Std(iter) Mean(F) Failure

Tabu 3607 2241 0.98 0

Tabu(Rotated) 2455 1393 0.96 0
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Figure 5.14 Histograms for nine-dimensional inversion.
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from the mean are small for this process. Also, since in realistic situations broadband

information is involved, all these savings are multiplied by the number of frequencies;

if there are n frequencies involved, to calculate the pressure field (p in Chapter 2) at

a specific receiver location, the normal modes need to be calculated n times.

Once tabu is implemented in rotated coordinates, we compare results with SA in

rotated coordinates as well. However, before we provide the comparison, we compare

the regular SA with SA in rotated coordinates briefly.

5.3 SA in Rotated Coordinates

While implementing SA in rotated coordinates, in each iteration of the inversion

process a single eigenvector is perturbed before the temperature is reduced. The

current value of the dimensionless parameter is obtained as follows [24]:

where 7 is randomly chosen in (-1,1). The fraction 2 is used based on [33]. The

temperature schedule is the one used for fast SA in original coordinates.

5.4 Results and Discussion: SA in Rotated Coordinates versus SA in

Original Coordinates

5.4.1 3D Inversion

The results for testing efficiency are shown in Table 5.9. On average, SA in rotated

coordinates requires more forward model calculations than the corresponding method

in regular coordinates. SA in rotated coordinates provides higher maxima than SA

in regular coordinates.



Table 5.9 Comparison Between SA and SA(Rotated) (3D): Efficiency Test

Process Mean Std Mean(F) Failure

SA 2382 1475 0.97 0

SA(Rotated) 2889 1042 0.99 0

5.4.2 6D Inversion

SA in rotated coordinates requires fewer forward model calculations than the correspo-

nding SA method in the regular coordinate system for six-dimensional inversion.

Table 5.10 presents these results. Also, reparametrized SA finds higher average

maxima than the regular SA method.

Table 5.10 Comparison Between SA and SA(Rotated) (6D): Efficiency Test

Process Mean Std Mean(F) Failure

SA 16188 7293 0.94 0

SA(Rotated) 12110 4297 0.97 0

5.4.3 7D Inversion

As we continue in higher dimensional inversion, we observe that the reparametrized

SA is more efficient than the regular SA method and finds higher maxima than the

corresponding process in regular coordinates. The results of the efficiency test for

seven-dimensional inversion are presented in Table 5.11.

Table 5.11 Comparison Between SA and SA(Rotated) (7D): Efficiency Test

Process Mean Std Mean(F) Failure

SA 31890 7606 0.96 0

SA(Rotated) 20904 7336 0.96 0
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5.4.4 9D Inversion

The efficiency test results for the nine-dimensional inversion are presented in Table

5.12. SA in rotated coordinates requires fewer forward model calculations than the

corresponding method in regular coordinates. Also, as usual, this method obtains,

on average, higher maxima than regular SA. Notice that SA fails once to satisfy the

optimizing function threshold.

Table 5.12 Comparison Between SA and SA(Rotated) (9D): Efficiency Test

Process Mean Std Mean(F) Failure

SA 35931 17879 0.93 1

SA(Rotated) 29277 14380 0.96 0

5.5 Results and Discussions: Tabu in Rotated Coordinates and SA in

Rotated Coordinates

All these results are already obtained and shown previously. However, to compare

tabu and SA in rotated coordinates, we include these results in this section as well.

Here, SA corresponds to SA in rotated coordinates and tabu corresponds to tabu in

rotated axes.

5.5.1 3D Inversion

Table 5.13 provides the efficiency test results for both processes. Tabu in rotated

coordinates needs fewer forward model calculations to have a success than SA in

the corresponding coordinates for three-dimensional inversion. Both methods obtain

same levels of maxima.
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Table 5.13 Comparison Between Tabu(Rotated) and SA(Rotated) (3D): Efficiency
Test

Process Mean Std Mean(F) Failure

SA(Rotated) 2889 1042 0.99 0

Tabu(Rotated) 1700 1546 0.99 0

5.5.2 6D Inversion

In six-dimensional inversion, again tabu requires fewer forward model calculations

than SA (see Table 5.14). The maxima attained by both processes are same.

Table 5.14 Comparison Between Tabu(Rotated) and SA(Rotated) (6D): Efficiency
Test

Process Mean Std Mean(F) Failure

SA(Rotated) 12110 4297 0.97 0

Tabu(Rotated) 10066 7252 0.97 0

5.5.3 7D Inversion

Table 5.15 presents the results obtained by both processes to test efficiency for seven-

dimensional inversion. We notice that tabu requires fewer forward model calculations

than SA. Also, on average, tabu obtains higher maxima than SA.

Table 5.15 Comparison Between Tabu(Rotated) and SA(Rotated) (7D): Efficiency
Test

Process Mean Std Mean(F) Failure

SA(Rotated) 20904 7336 0.96 0

Tabu(Rotated) 20611 10399 0.97 0
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5.5.4 9D Inversion

As the three and seven-dimensional efficiency test results show, tabu requires fewer

forward model calculations than SA for nine-dimensional inversion. The level of

maxima found by each process is similar (see Table 5.16).

Table 5.16 Comparison Between Tabu(Rotated) and SA(Rotated) (9D): Efficiency
Test

Process Mean Std Mean(F) Failure

SA(Rotated) 29277  14380 0.96 0

Tabu(Rotated) 24855 13860 0.96 0

To summarize this comparison, tabu is always able to reach the optimizing

function threshold by calculating fewer forward models than SA, indicating that tabu

is more efficient than SA.



CHAPTER 6

TABU SEARCH WITH REAL DATA

6.1 SWeIlEX-96 Results

The SWellEX-96 experiment [34, 35, 36, 37] was carried out near San Diego, CA, in

May 1996. A brief description of the experiment is presented below.

A source transmits broadband signals with frequencies varying from 200 Hz to

400 Hz. The source is located approximately at 1.1 km in range and 54.6 m in depth.

The acoustic signal from the source is received at a vertical line array (VLA), Data

are available at 21 hydrophones. This environment is described in a simplified manner

in Figure 6.1.

For each frequency, we use the Bartlett processor as it was described in Chapter

2. Since we have broadband information, we average the narrowband ambiguity

surfaces as proposed in [38]:

where Fi is the output from the Bartlett processor for the i — th frequency and nfreq is

the number of frequencies involved. Obtaining a geometric mean of the narrowband

ambiguity surfaces strengthens the main-lobe of the correlations, suppressing the

sidelobes which could lead to erroneous parameter estimation.

We first perform a three-dimensional exhaustive search for 0.01 to 5 km in range,

0 to 100 m of the source depth, and 200 to 230 m in water column depth. This was

also performed in [34]. The global maximum (-0.80) is found at 1.04 km for range,

54 m for source depth, and 208.5 m for ocean depth. Although the global maximum

occurs approximately at the expected source location, the water column depth is

off by 8 m. Due to the complexities involved with the real environment, the global
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Figure 6.1 A simplified environmental description of SWellEX-96 experiment.

maximum may not occur at the expected parameter values. Figure 6.2 provides the

exhaustive search results setting the ocean depth at 208.5 m.

Next, we perform Monte Carlo integration in preparation for three and seven-

dimensional inversion in rotated coordinates. The convergence of Monte Carlo integr-

ation for the seven-dimensional case is presented in Figure 6.3. Parameters 1 to 7

correspond to range, source depth, ocean depth, sediment thickness, shift, tilt, and

attenuation, respectively. The couplings between parameters are different than what

we observed in simulations. In Figure 6.3, we observe that range and source depth are

correlated (see the first eigenvector), ocean depth and tilt are coupled (see the third

eigenvector), ocean depth, receiver shift, and tilt are all correlated (see the fourth

eigenvector), sediment thickness and attenuation are coupled (see the sixth and the

seventh eigenvectors). Some couplings are more prominent than those we observed

in Chapter 5.

The eigenvalues associated with the source location parameters are found to be

significantly larger than those of other parameters, as we anticipated (see Figure 6.4).



Figure 6.2 Exhaustive search results obtained for ocean depth = 208.5 m.
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Figure 6.3 Comparison of eigenvectors obtained for seven-dimensional real data
inversion when 30 (circles), 60 (star) and 120 (hat) points are used in the Monte
Carlo integration. The eigenvectors are ranked in terms of significance, the top plot
corresponding to the most significant eigenvector.

In this figure, we also notice that the first four eigenvalues have the same order of

significance as seen with the synthetic data. However, the receiver shift becomes more

important than the sediment thickness, unlike what we observed in the simulations.

We perform three-dimensional inversion by tabu and tabu in rotated coordinates

followed by seven-dimensional inversion. The expected parameter values are shown

in Table 6.1.

6.1.1 3D Inversion

For three-dimensional inversion, we present the best solutions obtained from tabu and

tabu in rotated coordinates. These results are presented in Table 6.2. We observe

that the estimates for the source location and water column depth by both processes

match the three-dimensional exhaustive search results. Tabu obtains the maximum

earlier than tabu in rotated axes. However, tabu in rotated axes obtains a slightly

higher maximum than the regular tabu method. Both methods arrive at the estimates
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Figure 6.4 Comparison of eigenvalues obtained for seven-dimensional real data
inversion when 30 (circles), 60 (star), and 120 (hat) points are used in the Monte
Carlo integration; Le = log10(e/e1) where e 1 = the largest eigenvalue, the eigenvalues e
are shown in a logarithmic scale from the largest to the smallest, from top to bottom,
respectively.

Table 6.1 Expected Values of the Source Location Parameters and Environmental
Parameters

No Parameters True

1 Source range - km 1.1

2 Source depth - m 54.6

3 Water column depth - m 216.5

4 First sediment thickness - m 23.5

5 Reciver shift - m unknown

6 Tilt - degree unknown

7 Attenuation (in first sediment) - (dB/m kHz) 0.2
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only after a few calculations. The model numbers which are provided in the sixth

column of Table 6.2 represent the number of broadband calculations.

Table 6.2 3D Real Data Inversion

r sd od F model

Tabu 1.03 52.55 207.92 -0.81 103

Tabu(Rotated) 1.08 54.78 209.84 -0.80 150

6.1.2 7D Inversion

We have seen earlier that tabu in rotated coordinates provides solutions faster than

tabu in conventional coordinates, when several unknown parameters are involved.

Therefore, real data inversion is performed here with the reparametrized tabu. Histo-

grams for seven-dimensional inversion are presented in Figure 6.5. We observe that

there is a high concentration of estimates in the proximity of the true source location.

Moreover, 80% of the estimates for tilt lie between —2° to 2.5°. The estimates

obtained for shift, sediment thickness, ocean depth, and attenuation are more disp-

ersed, because of the optimizing function,s relative insensitivity to these four param-

eters. Table 6.3 presents tabu results obtained from the best solution (highest cor-

relation).

In this table, we notice that the seven-dimensional inversion provides a significa-

ntly higher maximum (-0.62) than what we obtained with the three-dimensional

exhaustive search (-0.80). The estimates for the source range and depth are found

as 1.3 km and 72.93 m respectively, which are different than what we obtained with

the three-dimensional exhaustive search. These discrepancies can be explained as

follows: the three-dimensional inversion is performed by assuming that tilt is zero. In

the seven-dimensional inversion, tilt is found to be nonzero and its estimated value



Figure 6.5 Histograms for real data seven-dimensional inversion.

69



Table 6.3 7D Real Data Inversion

r 1.3

sd 72.93

od 221.58

sed 18.66

shift 2.29

tilt 1.83

att 0,99

B -0.62

is 1.83°. Taking tilt into account, a higher correlation is found at the new source

location estimates.

Since inversion in a realistic environment is affected by several uncertainties,

real data inversion often provides estimates of the parameters that differ from our

prior knowledge. Considering such uncertainties, the estimates obtained from our

inversion are quite promising.

Finally, we create a surface using source range and depth points explored by

tabu for the seven-dimensional inversion (see Figure 6.6). Although we observe that

there exists a side-lobe approximately at 1.6 km of range and 40 m of source depth,

the main-lobe at 1.3 km of range and 73 m of source depth is very prominent.
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Figure 6.6 Surface obtained from source range and depth values visited by tabu in
rotated coordinates for seven-dimensional real data inversion.



CHAPTER 7

CONCLUSIONS

Tabu is introduced as a global optimization technique in underwater acoustic signal

processing. We develop three different lists based on three different criteria. Also,

an escape mechanism is introduced here to avoid trapping. We have shown how

this search learns from lists, prohibits moves and, thus, restricts the search space

and continues moving from one search area to another by using random step jumps.

Comparisons are provided between fast SA and tabu for three, six, seven, and nine-

dimensional inversion. On average, tabu requires fewer forward model calculations

than SA to reach higher maxima. Also, tabu finds, on average, better estimates of

the unknown parameters than SA.

Next, coordinate rotation is discussed, and tabu is implemented in rotated

coordinates. The results are, then, compared with the corresponding results obtained

from tabu in conventional coordinates. We have shown that tabu in regular coordinates

obtains always same or higher level of maxima than tabu in rotational axes. However,

as dimensionality increases, tabu in rotated axes is more efficient than tabu in regular

coordinates. Also SA in rotated coordinates is compared to the reparametrized tabu,

We observe that tabu in rotated coordinates is more efficient than SA in rotated

coordinates.

Finally, inversion is carried out with regular tabu and tabu in rotated coordinates

with real data. The optimizing function used here is the geometric mean of Bartlett

surfaces over all frequencies. For three-dimensional inversion, regular tabu and tabu

in rotated coordinates locate the source efficiently and accurately. For the seven-

dimensional inversion, the estimates are slightly different than expected. However,

a higher maximum is obtained from the seven-dimensional inversion than from the

three-dimensional exhaustive search.
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Tabu could be improved by perturbing parameters preferentially. The more

important parameters could be perturbed more frequently than the less important

parameters. This approach might save many forward model calculations since the

neighborhood size would be smaller.
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