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ABSTRACT

DEVELOPMENT OF A MULTIVARIATE LOGISTIC MODEL
TO PREDICT BICYCLE ROUTE SAFETY IN URBAN AREAS

by
Cheryl Allen-Munley

In response to the renewed appreciation of the benefits of bicycling to the environment and

public health, public officials across the nation are working to establish new bicycle routes.

During the past two decades, a number of methods have been endorsed for the selection of

"suitable" bicycle routes. These methods are limited in that they do not explicitly address

bicycle safety nor do they reflect urban conditions.

The purpose of this research is to develop an objective bicycle route safety rating

model based on injury severity. The model development was conducted using a logistic

transformation of Jersey City's bicycle crash data for the period 1997-2000. The resulting

model meets a 90% confidence level by using various operational and physical factors (traffic

volume, lane width, population density, highway classification, the presence ofvertical grades,

one-way streets and truck routes) to predict the severity of an injury that would result from

a crash that occurred at a specific location. The rating of the bicycle route's safety is defined

as the expected value of the predicted injury severity. This rating is founded on the premise

that safe routes produce less severe accidents than unsafe routes.

The contribution of this research goes beyond the model's predictive capacity in

comparing the safety of alternative routes. The model provides planners with an

understanding, derived from objective data, of the factors that add to the route's safety, the

factors that reduce safety and the factors that are irrelevant. The model often confirms widely

held beliefs as evidenced by the finding that highways with steep grades, truck routes and



poor pavement quality create an unfavorable environment for bicyclists. Conversely, the

model has found that increased volume and reduced lane width, at least in urban areas,

actually reduce the likelihood of severe injury. Planners are encouraged to follow the lead of

experienced bicyclists in choosing routes that travel through the urban centers as opposed to

diverting bicyclists to circuitous routes on wide, low volume roads at the periphery of cities.
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CHAPTER 1

INTRODUCTION

Public policy encourages increasing bicycle and pedestrian modes of travel. In contrast to

motor vehicles, bicycles do not have adverse impacts on air quality and road congestion.

Their ability to maneuver in small places allows bicyclists to avoid the delays traffic jams

impose on other motorists. In recognition of these benefits, the National Bicycling and

Walking Study (1999), sponsored by the U.S. Department of Transportation (USDOT),

designed an action plan to: 1. Double the number of trips made by walking and bicycling; and

2. Reduce the number of pedestrians and bicyclists killed or injured by 10%.

While pedestrian and bicycle injury and fatality rates continue to fall each year, the

absolute number of pedestrian and bicycle accidents are rising with the increase in total trips.

In 2001, bicyclists suffered 690 fatalities and 51,000 injuries resulting from traffic crashes.

Bicycle fatalities represented 2% of all traffic fatalities, which is a large percentage when

considering that bicyclists only represent 0.7% of all trips. The fact that bicyclists and

pedestrians as a group are over represented in traffic fatalities is of great concern. In 2000,

bicyclists and pedestrians represented only 0.9% of all trips, but suffered 2.0% of all traffic

fatalities. If the goal of increased non-motorized travel is to be met, safe facilities must be

provided to the walking and bicycling public.

The Institute of Transportation Engineering (ITE) Pedestrian and Bicycle Task Force

(2000) identified "Retrofitting Facilities" as a priority issue. Achieving this goal will require

care in the selection of routes for sidewalks and bike lanes. Poor choices can increase

exposure to accidents causing increased fatalities and severe injuries. A credible model for

1
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use in providing a safety index for bicycle routes would offer state and local officials with

the means to assess the safety of these routes. This rating could be used to compare the

relative safety of alternative bicycle routes, as well as, flag areas which must be improved to

make the route suitable for use by bicyclists. The goal of this research effort is to develop

such a model.

In the past decade, a wealth of research has been conducted on bicycle safety.

Researchers have classified accidents according to events preceding the crash (Hunter, 1990).

Risk factors of various bicycling facilities such as wide curb lane (Hunter, 1990), sidewalks

(Aultman-Hall, 1998), urban main roads (Sharples, 1999), intersections (Wachtel, 1994),

shared-use facilities (Wachtel, 1997) and highway shoulders (Khan, 1995) have been

investigated. Adult bicyclists have been surveyed to understand their characteristics and to

determine their preferences (Aultman-Hall, 1998; Antonakos, 1994; Moritz, 1996). Clarke

(2000) studied bicycle friendly factors from key areas around the country. The injuries

resulting from bicycle crashes were studied Rodgers (1995). To the benefit of the bicycling

commuter, this vast body of knowledge must be distilled into a practical tool that can be used

by local officials for the planning and design of bicycle facilities.

Many attempts have been made to develop models to rate bicycle routes (Landis,

1994; Epperson, 1994, 1997; Sorton, 1994 and Harkey, 1998). These models typically offer

indices that rate roadways based on a group of factors that affect their "suitability" for use by

bicyclists, but do no directly address safety.



3

For commuter bicycle routes, factors that do not pertain to safety should be

considered of limited importance. The location of rest facilities and bicycle repair shops may

be of interest to recreational cyclists, but the commuter bicyclist is known to select his route

to minimize trip time (Aultman-Hall, 1997). Safety is the only valid reason for diverting the

commuting cyclist from his preferred minimum path.

One shortcoming of existing bicycle route selection models is that previous bicycle

route selection models limited their application to highway sections, basing their assessments

on factors that have limited relevance in urban settings. Yet, the majority of bicycle/motor

vehicle crashes occur in urban areas. Cross and Fisher (1977) in their landmark study on

bicycle/motor vehicle crashes found that while 86% of the road system is in rural areas, rural

areas are the location of only 11% of bicycle/motor vehicle collisions. The bicycle/motor

vehicle collision rate per road mile is 42 times higher in urban than in rural areas.

Existing models do provide a good working framework, but the absence of objective

validation limits their widespread application. Some models were developed without

validation. Others were validated by comparing model predictions to independent

assessments by bicyclists despite the fact that bicyclists have been found to misjudge the

safety of routes (Garder, 1994). Objective data is needed for both model development and

validation.

1.1 Problem Statement and Research Objective

The desire of public officials to encourage bicycling as a viable transportation mode choice.

is tempered by the recognition that bicyclists experience both higher rates of accidents and

increase injury severity levels. A problem exists in that there are no route selection methods
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available for officials to use in reducing the accident risk for bicyclists. Methods are needed

to identify both the factors that affect route safety and their relative weight. With such a tool,

officials could not only select safe bicycle routes, they could determine which capital

improvements would offer the greatest improvement and return on investment in terms of

improving bicycle safety.

The goal of this research effort is to develop a multivariate logistic model for use in

rating the safety of bicycle routes based on their physical characteristics. The model will

identify variables to be considered and provide an understanding of the differences in injury

severity/ accident outcomes between urban and rural condition, commuter and recreational

bicyclists and child and adult bicyclists. The model will be fit using objective injury severity

data and will be practical and easy to apply, requiring only data that is readily available.

Overall, the model will provide a rational approach and will meet accepted statistical

performance measures.

1.2 Technical Approach

The development of a multivariate logistic safety rating model involves the application of

mathematical techniques to a series of data points to seek a relationship between a Y, the

response variable, and the Xs, the independent variables, to establish a formula where Y is a

function of X. The logical choice of bicycle crash rates for the response variable is

complicated in the U.S. by the difficulty in obtaining true exposure based rates, i.e. crashes

per vehicle miles traveled. Exposure rates are preferable because they are route specific and

as continuous variables, they may be used as response variables in standard Ordinary Least

Squares (OLS) model building techniques.
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Total crash events is an inferior choice for a model's response variable because it is

not independent of bicyclist route choice (Epperson, 1994). Not surprisingly, due to the very

presence of the bicyclists, popular bicycle routes will report higher crash numbers than other

less traveled and potentially dangerous routes. Crash injury severity is a valid choice for the

model's response variable in that it is reported for each crash and it is independent of route

volume.

Given injury severity as the response variable, the choice ofexplanatory variables must

be addressed. To identify these variables requires an understanding of both the causes of

bicycle crashes and the factors that influence injury severity. The research has been

conducted to explore the impacts of such operational factors as speed and volume, and

physical factors such as lane width and grade. In addition, environmental factors such as

weather, lighting and roadway conditions often act as confounders in predicting crashes for

bicycles as well as motor vehicles (Shankar, 1995).

Injury severity is a categorical response variable, which precludes the use of OLS

methods for model development. Ordinary Least Squares solutions cannot be constrained to

combine the model parameters in such a fashion to generate only responses that are integers

within the specified range. OLS solutions require that the dependent variable be continuous

and able to assume any value between -co and 00.

Nonlinear transformations relax these restrictions. While there are a number of

possible transformations, the logistic form has been historically popular because it is well

developed and mathematically easy to derive. It is formalized as follows:



In the logistic formulation, Y, the probability that the outcome of a crash will produce

an injury with a given level of severity is derived from the logit Z. Z, as described in Equation

1.2, is a linear function of X, the set of physical and operational explanatory variables as well

as temporal and personal confounders. Using historical crash data and standard statistical

software packages, a logistic model will be developed to select parameter estimates to

maximize the model's predictive power.

1.3 Organization

This dissertation consists of seven chapters. This research will be presented in the following

manner. Chapter 1 consists of the introduction, problem statement, technical approach and

dissertation organization.

After this initial introduction, Chapter 2 submits a full literature review to answer the

questions: 1. Why is a bicycle route safety rating model needed? 2. Why are existing models

inadequate? and 3. What is the nature of bicycle crashes with special attention to the factors

that cause crashes and factors which exacerbate injuries?

Chapter 3 presents an understanding of categorical models, explaining why the

ordered logistic form is most appropriate for an injury severity model. Maximum likelihood

equations for standard dichotomous and polytomous forms will be presented.
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Chapter 4 focuses on the data including an explanation of how the data were

obtained. In instances where data were normalized or aggregated for use in the model, an

explanation ofthe methods applied is presented. Statistical distributions and cross tabulations

with injury severities are presented for nineteen explanatory variables and confounders in

addition to Injury Severity, the response variable.

Chapter 5 presents the bicycle route safety prediction model. It will explain the

modeling techniques used to build the model. Statistical measurements of its goodness of fit

and predictive properties will be discussed in detail as well as an understanding ofthe model's

factors including the relative magnitude of these factors and their direction.

Chapter 6 applies the model to a route selection problem: the Jersey City Bicycle Plan

as prepared by the Rutgers Transportation Policy Institute (2000). A series of route

alternatives will be identified. Using data collected for the individual route alternatives, the

model will generate safety ratings. Based on these ratings, a comparison will be made as to

the merits of the candidate routes.

Chapter 7 concludes with a review of the model and a generalized assessment of the

multivariate logistic technique using injury severity to predict route safety. Future research

needs will be considered. Most importantly, recommendations will be made as to the manner

in which this safety prediction factor should be included in currently accepted bicycle

suitability models.



CHAPTER 2

LITERATURE REVIEW

2.1 Purpose

The purpose of the literature search is threefold. Before embarking on a lengthy research

project it is necessary to affirm that: I. A problem exists; 2. There is a need to solve it; and

3. That it has not yet been solved. The problem under consideration is the prediction of

bicycle route safety. Section 2.2 answers the question of whether bicycling is a dangerous

mode of transportation which requires improved safety measures. Section 2.3 addresses the

benefits of bicycling including the reasons why society should encourage this activity. Section

2.4 reviews the previous attempts to solve this problem, i.e. the development of reliable

models which identify safe bicycle routes. This review of existing models will also explain

why further model development work is needed.

Once the first phase ofthe literature search has provided sufficient justification for the

research, the second phase will serve to amass all of the tools available to solve the bicycle

route selection problem. Section 2.5 examines the nature of the accidents in an attempt to

understand the causal factors. This section also explores the interrelationships between the

accident types and the severity of the injury suffered by the victim. Section 2.6 discusses

physical and operational contributing factors. Temporal confounders will be discussed in

Section 2.7. Operator confounders will be discussed in Section 2.8.

Additional reviewed literature discusses the available data for both its breadth and

limitations. Also, a review has been conducted of the theoretical modeling tools available to

the modeler. In the interest of continuity, this material will be presented in Chapter 4, Data

Collection and Chapter 3, Theoretical Approach, respectively.

8
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2.2 Bicycle Safety

According to National Highway Traffic Safety Association (NHTSA, 2000), over 47,000

bicyclists have died in traffic crashes since 1932, the first year since bicycle crash records were

recorded. At that time, bicycle fatalities represented 1.3% of all accidents for a total of 350

fatalities. Today, the bicycle accident rate has nearly doubled. In 2000, bicycle accidents

resulted in 51,000 injuries. The number of fatalities totaled 690 representing 2% of all

fatalities, although bicycle trips accounted for only 0.9% of all trips.

There is no one explanation for the fact that bicyclists are over-represented in both

injuries and fatalities. The most obvious cause for the increase in serious injury is the

vulnerability of the bicyclist. Without the metal shell of a vehicle, the unprotected flesh of the

bicyclist is infinitely more prone to harm as a result of a crash. For this reason, helmet use

has been found to reduce injury by as much as 70% (Rivara, et al., 1996). Unfortunately,

helmet use is far from universal. In their study of bicyclists in Arizona, Cynecki, et al. (1993)

viewed helmets on only 15% of the 480 observed bicyclists.

Although the lack ofpersonal protection explains the increased probability ofan injury

in motor vehicle / bicycle crashes, it does not explain the increased likelihood of a crash

event. One reason for the increased likelihood of a motor vehicle / bicycle crash is that

bicycles are inherently less stable than motor vehicles. Poor pavement quality, catch basin

grates, physical obstructions, pedestrians and other bicyclists can all be sources of falls. In

fact, Forester (1983) found that 44% of all bicycle accidents resulted from falls. This is large

when compared to the 18% of accidents which involve motor vehicles.
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Also, contributing to the prevalence of bicycle crashes is the fact that bicyclists are not

as visible to motorists. Bicycle crashes are particularly prevalent at dusk, during the hours

between 4:00 and 8:00 pm (NHTSA , 2000). Motorists are known to scan the roadways,

searching for potential conflicts with other motorists while ignoring the presence of bicyclists.

Sumala, et al. (1996) when videotaping motorists at two sight obstructed intersections in

Helsinki found that 100% of drivers turning left looked left to avoid conflicts with motorists.

Only 7% of right turning motorists, however, looked right, probably because only bicyclists

not motorists could obstruct their path on the right. This finding demonstrates that not only

are bicyclists smaller and therefore not as visible as motor vehicles, typical motorist behavior

causes them not to anticipate or look for bicyclists.

In addition, a sizeable number of bicycle / motor vehicle crashes arise from operator

error, both bicyclist and motorist. In a study of bicycle crashes for a six-year period in

Hawaii, 83.5% of these crashes were found to be due to motorist error and 16.5 % were due

to bicyclist error (Kim, et al. 1996). Motorists were subject to cause crashes by speeding,

failing to yield and following too closely. Bicyclists, especially young bicyclists without

drivers licenses, disregarded intersection controls, crossed centerlines, traveled in the wrong

direction and made improper turns before an intersection.

Irrespective of the involvement ofoperator error, physical characteristics of the route

such as speed and volume exacerbate these failures of judgement. Considering the magnitude

of these injuries and fatalities, decision makers have sought tools to identify the sources of

risk and evaluate countermeasures. These efforts have been hampered by a lack of exposure

data which would allow analyses based on accident rates. Alternative methods are needed

for safety assessment because the level of harm to the cycling public is too great to ignore.
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2.3 Bicycle Mode Choice - Public Policy

The environmental and personal benefits of bicycling are great, encompassing improved

health, reduction in space needed for parking and travel, and most importantly, reduction in

exhaust from fossil fuels. The reduction in fuel use and consequently, the reduction in air

pollution was estimated by Komanoff, et al. (1993) through an assessment of the bicycle

vehicle miles traveled and a per mile estimate of emissions and fuel consumption for the travel

if the trip had been made with a motor vehicle. Using FHWA's National Personal

Transportation Study of 1990, Komanoff developed estimates of total bicycle trips. He

estimated the total mileage for bicycle and pedestrian trips ranged between 26.3 and 65.4

billion miles per year. Based on the number of trips displaced and the nature of these trips,

the authors estimated that non-motor vehicle trips annually displaced between 1.2% and 5%

of passenger vehicle emission of carbon dioxide (CO 2), nitrous oxide (NOX), carbon

monoxide (CO) and volatile organic compounds (VOC).

In evaluating the high rate of emissions, Komanoff stressed that the vehicle trips

replaced by bicycles are typically of a short duration, high polluting type. Short trips pollute

more than long trips because cold engines at start up emit CO and VOC at higher rates than

vehicles on long highway trips. Then, even after the engine is turned off, vehicles continue

to emit VOCs.

In recognition of these environmental benefits, the Transportation Efficiency Act for

the Twenty-first Century (TEA21) provided flexible funding to increase investment in

bicycling infrastructure in the hopes of increasing bicycling. Some optimistic projections

anticipated as much as a 15% reduction of harmful emission by the year 2000 if walking and

bicycling trips had met projected levels.
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Beyond the air pollution benefits, bicycling and walking have other environmental

benefits. Non-motorized vehicles require less road space because their reduced size and

speed require less headway. Reduction in demand for new roadways reduces loss of open

space, conversion of farm lands, loss ofpermeable land in drainage basins and promotes more

concentrated land use. Bicycle use reduces noise pollution. The amount of land relegated

to parking is also greatly reduced for bicycles.

In consideration of all of these environmental benefits, it is no surprise that public

policy has undertaken programs to increase bicycle ridership. Yet, as stated earlier, the

bicycle accident rate is higher than the motor vehicle accident rate. If the public is to be

encouraged to switch from automobiles to bicycles, public officials must utilize their resources

to identify and address the sources of risk.

2.4 Bicycle Route Evaluation Models

The need to assess the suitability and safety of bicycle routes has long been recognized by

many researchers and government officials. In the past two decades a number of models have

been developed to rate existing bicycle routes or to improve or establish new bicycle routes.

Some models base their ratings on the safety of the route. Others include the quality and

convenience of the bicycle experience to establish a suitability rating. Still, others seek a

level-of-service measurement analogous to the widely accepted Highway Capacity Manual

analyses for roadway operators.

Models vary greatly in the methods used to validate them. Validation criteria have

included gross accident occurrences, expert opinions, and accident severities. Some bicycle

route selection models did not undergo validation. Validation is important because without
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validation, there is no means to evaluate the accuracy of the model's predictions. The

following section presents a historical discussion of the most significant bicycle route

evaluation models.

2.4.1 Bicycle Safety Index Rating

In 1987, Davis, a pioneer in the development of bicycle safety models, developed the Bicycle

Safety Index Rating (BSIR). The BSIR attempts to rate the relative safety of comparative

bicycle safety routes. A BSIR is determined by assigning a Road Segment Index (RSI) to the

individual road segments and an Intersection Evaluation Index (IEI) to the intersections. The

road segment rating, that ranges from 0 (excellent) to 6 (poor), is computed as:

Where the RSI is a function of the speed limit (5), width of the outside traffic lane (W),

pavement condition (PF), a location factor (LF) which reflected geometric and operational

hazards, and the average daily traffic volume per lane (AD) averaged over the segment length

(L). The intersection evaluation index (IEI) is computed as:

This index is a function of the intersection cross street volume (VC) divided by the main route

volume (VR), geometric factors (GF) and signalization factors (SF).

Neither objective nor subjective criteria were used to validate the rating indices

calculated by Equations 2.1 and 2.2. Davis (1994) did apply these ratings to seven routes
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in Chattanooga, Tennessee. He found the rating system to be oversensitive to pavement and

location factors which overwhelmed contributions of speed, lane width or volume. The

intersection factor reflected the impact of individual intersections but disregarded the

frequency of the intersections.

In response to the Chattanooga experience, Davis (1995) modified his BSIR by

dropping the intersection component. He used the revised formula to rate eight routes in

Atlanta, Georgia. After comparing these ratings to the perceptions of twenty-nine cyclists,

he concluded that the calculated ratings differed greatly from the bicyclists' perceptions

because the bicyclists' sensitivity to volume and speed overshadowed all of the other factors.

2.4.2 Roadway Condition Index

Broward County, Florida adopted a bicycle suitability index titled the Roadway Condition

Index (RCI). The RCI is essentially the Davis' BSIR model also modified by dropping the

intersection assessment component from the model. Using this rating system, Broward

County assessed all major county streets and highways. The results of these assessments

were color coded on a Broward County map as shown in Figure 2.1

As an alternative to subjective bicyclist scores, Epperson (1994) used actual bicycle

accident rates as validation criteria. The roadway network of Hollywood, Florida was

evaluated by city planners using a modified RCI. As in the Broward County RCI, the

intersection evaluation index was dropped. Other modifications included adjusting the

location and pavement factors so that they made less of a contribution and multiplying the

lane width term by the speed limit to place a greater weight on narrow road segments with

high vehicle speeds.
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To determine the bicycle accident rate, each motor vehicle / bicycle accident which

occurred within a twenty-month period between 1990 and 1991 was plotted on a map of

Hollywood, Florida. The accidents were weighted according to a severity scale of 1 (no

injury) to 5 (fatality). Accident rates were obtained for each roadway section by dividing the

weighted total by the roadway length resulting in a weighted number of accidents per mile.

The problem with this approach is that it relied on the gross number of accidents,

which is independent of bicycle exposure. Unless the rate adjusts the gross number of

accidents by the volume of bicycles, sections ofroadway with high bicycle usage will naturally

reflect higher bicycle accidents. This result leads to the faulty conclusion that a route

preferred by bicyclists is more dangerous than a route which bicyclists avoid. Furthermore,

the weighting of the injury severity assumed that this value is continuous and possesses a ratio

relationship. Not surprisingly, the correlation between the predicted RCI and the computed

accident rate was low (approximately eighteen percent).
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Figure 2.1 Broward County Bicycle Facilities Network Plan.
Source: Shawn M. Turner, C. Scott Shafer and William P. Stewart, Bicycle Suitability Criteria: Literature
Review and State-of-the Practice Survey, Texas Transportation Institute, July, 1997.

A similar application of the modified BSIR was made by Eddy (1996) to map small

urban areas in Oregon and Washington State. In Table 2.1, Eddy defined five Bicycle Level-

of-Service categories.
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Eddy recommended using these ratings to estimate the effect of improvements,

evaluate bicycle facility networks, provide maps to cyclists, and make comparisons between

different urban areas based on the quality of their bicycle facilities. These ratings place a

heavy reliance on the underlying Davis BSIR model. Considering Davis' earlier findings of

the disparity between the bicyclists' scores and BSIR ratings, caution should be exercised

before implementing any of these recommendations.

2.43 Bicycle Stress Level

Sorton and Walsh (1994) criticized these earlier bicycle route selection models because of

their reliance on ADT instead of peak hour volume, lack of rational basis for validation, and

failure to make distinction between rural and urban routes. The researchers also theorized that

the experience level of the bicyclist was a key factor in determining a route's suitability. They

classified bicyclists into four categories: 1. Child - under the age of ten which should only
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cycle with adult supervision; 2. Youth - secondary school student with some street riding; 3.

Casual - recreational cyclists and/or those making discretionary trips who place a high priority

on low congestion and safe environment; and 4. Experienced - bicyclists who commute and

tour, preferring direct and convenient routes.

Stress Level was stratified from Level 1 which would be suitable for even the most

casual cyclist to Level 4 where no one would wish to bicycle under any conditions. Three

factors determined the Stress Level. Stress Levels were a function of peak hour traffic

volume, curb lane width and speed limit. The three factors were averaged to establish a single

stress level.

An expert judgement model approach was used by showing sixty-one bicyclists, the

experts, videotapes of twenty-three roadway segments. The model was developed by fitting

the experts' ratings (response variables) to the routes' characteristics (explanatory variables).

The bicyclists were asked to rate themselves as to their level of experience and rate the

roadway segments as to the perceived stress levels. Upon examination, the researchers

discovered that most bicyclists overestimated their experience level. The bicyclists' sensitivity

to the stress factors became less pronounced as the bicyclist's level of experience increased.

However, the sensitivity of the bicyclists' perceptions to the stress factors was far less than

expected. Sorton's experience demonstrates the difficulties in relying on the perceptions of

bicyclists for the development of expert judgement models.
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2.4.4 Interaction Hazard Score

To obtain bicycle route selection ratings which would better reflect the preferences of the

cycling public, researchers have used expert judgement models (Landis, 1998; Harkey, 1999;

Jones, 2003 and Noel, 2003) whereby models are fit based on the judgements or ratings of

the experts, in this case the bicyclist themselves. Using the perceptions of bicyclists as the

response variable, the model directly fit the variables defined in Equation 2.3 using standard

regression techniques. The bicyclists' subjective ratings used in these expert judgement

models were obtained by a variety of methods. Some researchers had bicyclist raters perform

field tests, rating roadway sections after actually riding on them. Other researchers collected

bicyclist ratings after showing them video taped or simulated roadway sections. The Highway

Safety Research Center at the University of North Carolina is using virtual reality to simulate

roadway sections for bicyclists to rate.

Landis (1997) developed an Interaction Hazard Score (IHS) using 150 bicyclists who

varied in age, gender, experience levels and geographic origin. He considered using simulated

riding conditions, but opted for real urban traffic and roadway conditions to better represent

all vehicle and operator response factors.

Each of the test sections rated by the bicyclists varied in the amount of traffic volume

in the outside lane, the traffic speed, the mix of vehicle types, interactions with driveways and

intersecting streets, pavement condition and degree of separation between the traffic stream

and the bicyclist. Coefficients for the variables were established using standard multiple linear

regression. The resulting model, with a R2 = 0.73 is stated as:



Where BLOS, the Bicycle Level of Service (the perceived hazard of the shared-roadway

environment) is a function of the volume of directional traffic in 15 minute time period

(VOL 15), total number of through lanes (L), posted speed limit (SPDP), percentage heavy

vehicle (%HV), trip generation intensity of the land use adjoining the road segment with a

stratification of 15 (COM15), effective frequency per mile of noncontrolled vehicular access

(NCA), FHWA's five point pavement condition rating (PC 5), and the effective width of the

shoulder lane (We) calculated as the sum of the curb lane plus any paved section beyond the

lane stripe minus any encroachments.

This model predicts the bicyclists' perception of the route's safety, not the route's

safety. Most models avoid claims of safety prediction by designating their indices as bicycle

route suitability, compatibility or stress level.

2.4.5 Bicycle Compatibility Index

Harkey (1998) also used an expert judgement model to develop the Bicycle Compatibility

Index (BCI), which has become FHWA's standard approach for bicycle route selection.

Model response variables were obtained using twenty-four participants to rate 13 locations

by viewing 40-second video clips which resulted in 312 (24 x 13) data points. Video clips of

roadway sections were used instead of real-time road riding because there were no risks to

the bicyclists, specific variables could be presented to the bicyclists in a controlled

environment, the bicyclists could be exposed to a greater number of operational and

geometric conditions and the same conditions could be evaluated by bicyclists from different
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cities. The BCI model was developed using standard multiple linear regression techniques.

Harkey reported a correlation coefficient of R 2 = 0.89 for the following model:

The BCI includes the presence of a bicycle lane or paved shoulder (BL), bicycle lane or pave

shoulder width (BLW), curb lane width (CLW), curb lane volume (CLV), other lane volume

(OLV), the 85 th percentile speed (SPD), the presence of parking (PKG), the type of roadside

development (AREA), and an adjustment factor that reflects hourly curb lane volume, parking

time limit and peak hour right turn volume (AF).

2.4.6 Accident Severity

Accident prediction models based on injury severity are an objective alternative to expert

judgement models. Injury severity is assigned by the police officer completing the police

accident report. The police officer classifies the level of injury into one of the following

categories: 0 - no injury, 1 - minor injury, 2 - injury, 3 - incapacitating injury and 4 - fatality.

In recognition of the non-continuous, non-ratio quality of injury severity, categorical

regression techniques such as logit and probit models are used to determine the weights of

the coefficients for the physical and operational parameters. Accident severity models have

been applied to predict accidents for motor vehicles (Vogt, 1996) and motorcycle accidents

(Shankar, 1996), among others. These models have been found to be reliable based on their

statistical goodness-of-fit, robustness and stability of injury severity expression coefficients

(Saccomanno, 1996).
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Flop, et al. (1999) applied a probit model to develop an injury severity model for

bicycle accidents on rural roadway segments in North Carolina. Bicycle / motor vehicle crash

data were obtained from FHWA's Highway Safety Information System (HSIS) for the period

between 1990-1993 (N=1,025). Using this method, they developed an accident severity

model based on horizontal curves, grades, Average Daily Traffic (ADT), speed limit,

intersections, right shoulder width, darkness, rain and fog.

The goodness-of-fit for this probit model was measured using a modified p2 as

calculated by Equation 2.5.

The fit of the overall model was low (p 2 = 0.024), but improved slightly for only rural

conditions (p 2 = 0.026). Further improvements may be possible by including additional

parameters, confounders and interactions, improving data and exploring non-linear effects.
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2.5 Contributing Factors

The accurate prediction of the safety of a bicycle route requires an understanding of the

causes of bicycle accidents and the factors which affect the severity of the injury suffered.

This understanding gained from experience and the literature review is essential to the

development of the data collection program. To maintain focus and avoid expending

excessive effort, data should only be collected for those variables that may impact either the

frequency or injury severity of motor vehicle / bicycle accidents.

Forester, in his book Bicycle Transportation (1983), examined accident rates of

various groups of bicyclists. He based his analysis on Planek, Klecker and Driessen's survey

of elementary school children (1975), Schupak and Driessen's survey of college cyclists

(1976), Kaplan's survey of League of American Wheelmen (1984) and S.M. Watkin's study

of cyclists of the British Touring Club (1984). The accident experience of these groups is

shown in Table 2.2. These studies are important in that they include all bicycle accidents, not

just bicycle/motor vehicle accidents. In general they found that accident rates decreased with

experience and that females had a 60% higher accident rate than males. As the individual

ages and obtains a motor vehicle license, he learns safe operating procedures for road use.

Accident rates drop further with cycle club members who are accustomed to riding in heavy

traffic and learn through organized cycling experience. Still, the accident rates for even

experienced cyclists are ten times the rate of motor vehicles.
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Bicycle collisions with moving vehicles are neither responsible for the highest

percentages of total accidents nor serious accidents. Nonetheless, serious injuries are most

prominent in crashes that involve motor vehicles. Table 2.3 shows that serious injuries are

over-represented in bicycle motor vehicle crashes with only 18% of the accidents producing

26% of the serious injuries. Falls, the largest source of single vehicle accidents, result from

either cyclist error, road surface faults or obstructions.

As an outgrowth of the NHTSA's earlier effort to measure and classify bicycle

accidents, Cross and Fisher (1977) developed a bicycle crash typology defined by crash

descriptors, location descriptors, bicyclist characteristics, intersection details, driver

contributing factors, motorist contributing factors, bicyclist contributing factors,

environmental contributing factors and fault of driver, bicyclist or both. Hunter, et al. (1995)
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applied this typology to the NHTSA's General Estimating System's (GES) database which

consisted of three thousand bicycle motor vehicle cases drawn from the states of California,

Florida, Maryland, Minnesota, North Carolina and Utah.

These accidents were distributed as summarized in Table 2.4. In reviewing these

crash distributions, it is appropriate to ask: Did any characteristic of the roadway exacerbate

the condition? Did a crosswalk located too far from the intersection increase right turn

crashes? Did the absence of a shoulder increase over-taking crashes? With such a high

percentage of accidents, as reported in Table 2.4, resulting from crossed paths (57.5%) the

question arises as to the role signalization might play in the frequency and injury severity

produced by such accidents. The interactions between crash type and injury severity need to

be explored in the context ofthe physical and operational characteristics ofthe crash location.
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2.5.1 Bicyclist Left Turn in Front of Traffic

The following diagrams provided by FHWA (1990) illustrate the seven most common

categories of bicycle accidents. By far, the most dangerous type of accident is the "Bicyclist

Left Turn in Front of Traffic " as shown in imoves to the road's center line preparing to

execute a left turn in advance of the intersection The bicyclist is hit from behind by an

overtaking motor vehicle. Factors that may contribute to this type of crash include high

vehicular speed, high roadway volume or no control at the intersection. This type of

accident is responsible for only 4.3% of all crashes. However, 28% of this accident typology

results in serious and fatal injuries.

Figure 2.2 Bicyclist Left Turn in Front of Traffic.
Source: FHWA Bicycle Crash Types: A 1990's Information Guide, FHWA-RD-96-163, 1997.
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2.5.2 Motorist Left Turn in Front of Bicyclist

The second most dangerous bike-car crash occurs when a bicyclist traveling through an

intersection is hit by a vehicle traveling in the opposing direction turning left in front of the

bicyclist. Factors which may contribute to this type of crash include poor signal timing either

providing inadequate clearance for the cyclist or for the left turning vehicle. This type of

crash, as shown in Figure 2.3, results in only 5.9% of all motor vehicle / bicycle crashes of

which 24% result in serious or fatal injuries.
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2.5.3 Riding Out of Residential Driveways

"Riding Out of Residential Driveways," as shown in Figure 2.4, also produces 24% serious

or fatal injuries. This type of accident is most common among children. Physical factors

which can contribute to the risk of this type of crash would include obstructions in both the

motorist or bicyclist's line of sight.
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2.5.4 Riding Out at Stop Sign

"Riding Out at Stop Sign" accidents, as shown in Figure 2.5, produces 23% of serious or fatal

injuries. In this accident either the bicycle does not sufficiently yield to the motorist or the

bicyclists failed to obey stop signs because they did not perceive cross traffic.
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2.5.5 Motorist Making Right Turns

"Motorist Making Right Turns" accidents, as shown in Figure 2.6, at signalized intersections

are also dangerous to bicyclists. These crashes are known to seriously injure or kill 11% of

the bicyclists involved in this type of accident. In this type of crash, the bicyclist may be hit

by the motorist traveling in the same or perpendicular direction.
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2.5.6 Driving Out at a Stop Sign

"Driving Out at a Stop Sign" accidents as depicted in Figure 2.7, occurs when the motorist

fails to yield to the bicyclist. This type of crash results in serious or fatal injuries in 10% of this

type the crashes. As in the previous type, visual obstructions may be a factor. Alcohol

consumption by the vehicle driver may also be a factor.
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2.5.7 Drive Out at Midblock

The final type of bicycle crash is "Drive Out at Midblock" as depicted in Figure 2.8. In this

case a bicyclist traveling either on the street or sidewalk is struck by a vehicle driving out of

a driveway at midblock. This type of accident results in less than 7% serious or fatal injuries,

probably due to the lower speed of the motorist.

Figure 2.8 Drive Out at Midblock

Source: FHWA Bicycle Crash Types: A 1990's Information Guide, FHWA-RD-96-163, 1997.

2.5.8 Typology Review

A review of these seven accident typologies which have been found to produce the most

severe accident injuries yields a number of clues as to the reasons why some accident produce

higher injury severity than others. In all of the typologies, the bicyclist is hit by the motorist

as opposed to situations where the motorist is struck by the bicyclist. They all occur when the

bicyclist and motorist cross paths. The conflict is typically not anticipated because of failures
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to signal, to obey traffic controls or to observe the other vehicle. These considerations stress

the need to consider to presence of signalization, lane width, lighting conditions and age as

explanatory variables.

2.6 Physical and Operational Route Characteristics

Bicyclists have been found to take geometric and operational factors into consideration when

choosing their routes (Aultman-Hall, 1998). In a study of bicycle commuters in Ontario,

Canada, GIS was used to compare shortest path routes with actual routes. A large portion of

the bicyclists surveyed preferred the shortest path route. A total of 14.6% preferred the

absolute shortest path and 37.5% were within 0.1 m of the shortest path. Table 2.5 reports

the difference in the actual route used with the shortest route. The difference in the values of

specific factors where bicyclists deviated from the shortest available path to an alternate path

provides insight into the importance of these factors to bicyclists and the possibility that the

bicyclists recognized the impacts of these factors on accident severity.

The means of each of these factors are calculated by summing the variable over both

the actual and shortest routes, then averaging it for all reported trips. Those factors which

are deemed significant to a 0.05 level are indicated on Table 2.5 with an asterisk to the left of

the variable name. In the subsequent discussion, the first term of the pair refers the variable

mean from the preferred path and the second term refers to the variable mean from the shortest

path.
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For example, to calculate the mean of Travel on Grades (km), the total lengths of

sections with steep grades in kilometers were measured for both the preferred and the shortest

routes. The mean length of steeply graded section in the paths the bicyclists actually rode was

0.09 km. This was 0.03 km lower than the 0.12 km of steeply graded sections that would have

been found on the shortest section. In examining the relative means of these factors reported

in Table 2.5, it can be deduced that bicyclists prefer flatter grades (0.09, 0.12) because the

shortest routes have on average 25% more steeply graded section than the preferred routes.

Table 2.5 reports that bicyclists avoid turns, the mean of the number of turns on the actual

route was 1.8 versus 1.9 on the shortest path. This preference for straight sections reverses

when a traffic signal is presence. The mean number of turns at traffic signals for the preferred
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paths is 1.2, almost twice as high as the 0.7 mean number of turns at traffic signals for the

shortest path. Clearly, bicyclists are traveling out of there way to make turns at traffic signals.

Overall, they liked signals (3.9, 3.4). They disliked bus routes (0.29, 0.35), road bridges (0.5,

0.6) and railroad tracks (0.61, 0.55).

The preceding demonstration of bicyclists' preference for routes, which either include

or avoid certain physical factors, justifies the need to explore these factors. An effort will be

made to collect the data to determine whether and to what extent these factors affect injury

severity.

The following provides a discussion ofthe candidate explanatory variables as examined

in the literature. The findings from previous research will be used to assess the potential of

these factors to contribute to or mitigated the severity of an injury resulting from a bicycle /

motor vehicle accident.

2.6.1 Facility Width

The width of the curb lane, the lane in which the bicycle operates is critical because it defines

the interrelationship between the bicyclist and the adjacent traffic. Curb lane width in urban

areas is calculated as the distance from lane marking to curb minus any obstruction.

Obstructions may include parking, gutters without bicycle safe grates, bus stops, rumble strips,

etc. According to the Highway Capacity Manual (2000), curb lanes that are wider than 14 feet

allow the bicyclists to share the lane without compromising either the motorists' or the

bicyclists' operations. Harkey (1998) found that on average, motorists positioned themselves

between 5.9 feet and 6.4 feet away from the bicyclist when passing, although they will accept

a slightly smaller separation if a striped bicycle lane is present. When the curb lane width is
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less than 11 feet, the bicyclist becomes equivalent to a passenger car because he forces the

motorist to move into the adjoining lane to pass. Narrow streets may in fact be safer for

bicyclists as they do not have sufficient width to allow the "Car-overtaking Bicyclist" accidents

that Cross and Fisher (1977) found to produce the highest fatality rate. A narrow width or

the inclusion of a bike lane may also act to calm traffic and reduce operating speeds.

2.6.2 Grade and Curve

The presence of horizontal and vertical curves increase the likelihood of an accident in two

ways. For the motorist, both horizontal and vertical curves reduce his sight distance,

(AASHTO, 2000). In the presence of high posted speeds, the motorist may find himself

bearing down on a bicyclist without advance warning. For the bicyclists, vertical curves are

especially dangerous. Downhill stretches increase speeds to unsafe levels. Sudden braking,

particularly of the front wheel, can cause fly overs. Uphill, the bicyclist must strain to maintain

momentum, possibly dismounting, swerving or peddling while standing. This additional effort

can also distract the bicyclist from paying attention to the actions of the motorists passing him.

As evidenced by Aultman-Hall (1998), bicyclists will travel longer distances to avoid grades.

2.6.3 Road Division

A number of options exist for separating two way traffic that protect drivers traveling in

opposing directions from head on collisions. The simplest and least expensive is a double

yellow line. In areas where accident experience is high, especially due to head-on collisions,

travel directions may be separated by a grassy median if a generous right-of-way exists, or a

Jersey barrier if not. The presence or absence of road division may have a direct impact on the

severity of a bicyclist's accident. Medians can serve as safety refuges for bicyclists when
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making turning movements. However, care must be taken in including both the road division

and highway classification variables into the model to be developed as the two variables may

be correlated. Most state highways which operate at higher speeds provide some road

division. Most local and county roads do not.

2.6.4 Pavement

Pavement quality can impact the severity of an accident in a number of ways. Poor pavement

surfaces may cause bicyclists to fall. Collisions can occur when bicyclists and/or motorists

swerve to avoid potholes. The frequency of roadway paving can be used as an estimate of the

roadway's condition. It has the potential of predicting both pavement quality and other civil

improvement such as bicycle-safe inlet grate, good drainage, lane markings and striping. All

of these factors should improve bicycle safety. Conversely, there is also the chance that

recent paving may be necessitated by high traffic volumes, particularly heavy vehicle volumes.

Furthermore, poor roadway surfaces may have the unanticipated benefit of actually

discouraging motorists from speeding.

2.6.5 Highway

The road system type as provided in NJDOT accident reports, is determined by the entity

which has jurisdiction over the roads. The roadway system can be classified as an interstate,

state highway, state/interstate authority, county, municipality and other categories. Many

operating characteristics which may vary with road classifications such as operating speed,

frequency of access points, restrictions on non-motorized vehicles may affect the severity of

an accident.
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The results of Wessels' (1996) review of six years of bicycle accident data from

Washington State are shown in Figure 2.9. The figure shows that the total number of

accidents is higher on city streets, yet, the severity is much greater on County and State Roads.

2.6.6 Speed

High motor vehicle operating speeds and consequently high momentum are frequently

associated with higher injury severities for bicyclists . High speed limits and consequently high

operating speeds increase a vehicle's safe stopping distance (AASHTO, 2000) and is thus more

likely to cause serious accidents. Furthermore, the increased momentum of a faster vehicle

produces more severe injuries. Garder (1994) analyzed four years of bicycle accidents from
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1988-1991 in Maine. Of the twelve fatal accidents, nine involved motor vehicles of which six

took place on roads with speed limits higher than 40 mph. Garder calculated a "most likely

ratio" as the ratio between the number of fatal bicycle accidents divided by the total bicycle

accidents for a given speed limit. As indicated by Figure 2.10, the likelihood of a fatality rises

sharply with speed.

2.6.7 Volume

Motor vehicle volume (ADT) has historically been included in many bicycle route suitability

models (Turner, 1997). Sorton (1994) wrote that excessive traffic volume, greater than 450

vphpl is stressful for the bicyclist because the bicyclist must shift his focus from the roadway

to the passing car. The bicyclist must exercise caution to prevent any sudden swerving.

Traffic volume is especially problematic for bicyclists in the presence of narrow curb lanes on
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two lane roads as the bicyclist does not have the option to shift onto a shoulder to avert

impact. If the traffic volume is dominated by a single flow direction, the motorist can move

into the lane for opposing traffic, however, if traffic volume is high and bi-directional,

motorists can find themselves stuck behind a bicyclist. The resulting frustration may lead the

motorist to take chances and exhibit unsafe behavior.

Garder's (1994) study of Maine bicyclists did not show a higher accident rate on higher

volume roads. Figure 2.11 shows higher rates at low volume roads for non-intersection

accidents. At intersections, however, roads with moderate volume (15,000 ADT) produce the

greatest number of accidents. European studies (Linderholm, 1992 and Brundell-Freij, 1990)

revealed that risk, measured as bicycle accidents per mile ridden, actually decreased with

increased ADT. This paradox may exist because bicyclists may become more careful when

they ride on high-volume roads. In congested urban areas a relationship may exist between

traffic volume and operating speed.
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2.6.8 Bus

The presence of buses on a route may pose visibility problems for the bicyclist because buses

are larger than passenger vehicles and they reduce the lateral space available for through

traffic. Buses stopping in traffic force riders to cross the bicyclist's path as they enter or

depart the bus. Bus stops in advance of an intersection can obscure the presence of a bicyclist

from a right turning motorist. Pedestrians attempting to "catch" the bus, may execute

dangerous and erratic maneuvers. Furthermore, since most bus stops are at intersections,

bicyclists passing on the right may collide with turning buses. Motorists, frustrated by the

slow travel speed of buses may undertake risky passing maneuvers and collide with bicyclists

hidden by the bus. There is also the possibility that bus routes are primarily located on

through arterials, which probably operate at higher speeds than do the short local streets

which are not serviced by buses. Conversely, as in the cases of a number of the variables

discussed earlier, the presence of buses may ultimately slow traffic down and thus reduce the

severity of the accident. Aultman-Hall (1998) found that commuting bicyclists diverted to

longer routes to avoid bus routes. The mean travel length on route sections containing bus

routes was 0.29 km for the preferred route versus 0.35 km for the shortest path route.

2.6.9 Parking

Parking maneuvers affect bicyclists in a number of ways. Motor vehicles moving in and out

of parking spaces may either collide with bicyclists or may obscure the vision of both the

bicyclists and other vehicles in the traffic flow. To avoid the parking vehicle, bicyclists as well

as other vehicles may swerve to avoid the packers. Conversely, numerous parking maneuvers

may serve to slow down vehicle speeds and thereby reduce the severity of an accident.
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Bicycle accidents with parked cars come into two forms. In the fist case, a motorist

opens a door into the bicyclist's path. In the second case, an unobservant bicyclist rides into

the rear of a parked car. These types of accidents have caused injuries and even fatalities.

At a minimum, parked cars function as a transverse obstruction and effectively narrow the

width of the roadway. Cross and Fisher (1977) attributed 8% of non-motorist accidents to

parked cars.

2.6.10 Signalization

For motorists, traffic signals have the potential to reduce certain types of accidents such as

broadsides, while increasing others such as rear end collision. In the same manner,

signalization could be a benefit or a deficit to a bicycle route. By their basic function, signals

slow the speed of vehicles approaching and departing the intersection. Yet aggressive drivers

may actually speed up on an amber in their hurry to "make the light." Bicyclists, are also

guilty of red light running, operating on the questionable assumption that police officers will

not issue traffic violations to bicyclists. Traffic signals do provide gaps for safe crossing of

heavy volume roads.

Controlled intersections, provided they are properly designed, offer bicyclists

many benefits. They establish clear right-of-way between opposing directions, provide gaps

for bicyclists proceeding through high volume intersections and facilitate turning movements.

Motor vehicle drivers are more likely to see the bicyclist because they are more likely to be

attentive at intersections.
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Aultman-Hall (1998) found commuting bicyclists actually seek routes which included

signalized intersections, increasing their travel path, especially if they needed to make turns.

The actual paths chosen contained 1 signal versus 0.9 signals in the shortest path route. This

preference for signals was even more pronounced at turns where the bicyclist selected paths

that included 1.2 signals at turns as opposed to 0.7 signals at turns for the shortest path

option.

2.7 Temporal Factors

Conditions which are temporal in nature such as weather and lighting also impact the

likelihood and type of the accident as well as the severity of the injury. Similar to operator

characteristics, temporal factors are included in the model as confounders lest these effects

cloud the impact of the true variables such as the route's physical and operational

characteristics.

A confounder is a pseudo variable that may affect the outcome of an event although

it is not a decision variable. For example, wet roads may increase the severity of an accident,

yet there is no intent to create a model that selects routes for a specific weather condition.

Instead, if weather were found to be significant the model would be fit using weather as a

confounder in order to capture the variance that results from weather. During

implementation, confounder values are set at one level e.g. weather is dry to allow for

unbiased comparisons of bicycle routes under identical weather conditions.
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2.7.1 Lighting

Most bicycle accidents occur in the daylight. Garder (1994) found 83% of the accidents in

his Maine study occurring during daylight conditions. Of the remaining 17%, half occurred

during dawn or dusk, an additional 40% occurred on streets where lighting was present.

Accidents where the motorist simply did not see the bicyclist tend to be the most serious.

Forester (1983) estimates that ten percent of urban car-bike collisions occur during darkness

and that the rate of car-overtaking-bike collisions is thirty times higher at night than during

the daytime. This accident typology, however, is largely a problem of rural, unlit roads.

The USDOT Crash Outcome Date Evaluation System (CODES) Project has been

funded to correlate police report injury data with hospital records. By comparing the total

bicycle accidents to the percentage to that of severe outcomes, inferences can be made as to

whether a factor is likely to increase or reduce the injury severity of the outcome.

For example, confirming earlier statements that speed increases severity, CODES data

in Table 2.6 shows that while only 10% of all accidents occurred on roads posted with speed

limits greater than or equal to 45 mph, these accidents were responsible for 22% of all serious

injuries and deaths. No strong relationship exists for time of day. Although the morning

seems to be somewhat safer (26% accidents versus 21% serious injuries) than afternoon or

nighttime accidents, the difference is not significantly pronounced to make definite

conclusions.

Hunter (1995) did find injury severity linked to lighting conditions. Almost 80% of

the bicycle-motor vehicle crashes occurred during daylight conditions. Serious and fatal

injuries to the bicyclist were heavily overrepresented during conditions of darkness with no

streetlights.
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2.7.2 Weather

Weather indicated in the accident report is determined by the presence of precipitation and

visibility, i.e. rainy, snowy or snowy. Bicyclists typically avoid poor weather both because

of physical discomfort and because of the impairment to their bicycle's operating

performance. Wet brakes are slow to stop bicycle tires. Wet roads cause skids and

consequently falls (Forester, 1983). Spray from passing vehicles obscures visibility. In their

hurry to get out of the rain, bicyclists may take risks such as red light running in order to

arrive at their destination as soon as possible.

Bad weather affects a bicycle's handling ability. Wet road surfaces lengthen the

braking distance for both motor vehicles and bicycles. Precipitation reduces visibility. In their

haste to seek shelter, bicyclists may take more risks during bad weather. Hunter, et al. (1995)
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found fatal injuries over-represented during winter months. Fortunately, bicyclists clearly

recognize the danger of riding in icy and snowy conditions. Garder (1994) reported only

0.6% of accidents occurring under those conditions. However, 6% of accidents in the Maine

study did occur during wet weather. As with lighting, weather will be explored as a potential

confounder for the accident injury model.

2.8 Bicycle Operator Characteristics

A number of factors pertaining to the bicycle operator have been found to be significant to

the likelihood and severity of a serious bicycle crash. Although such factors as age, gender,

alcohol use and helmet use are not specific to the bicycle route chosen, they must be included

in the model as controls or confounders in the same manner as temporal factors.

2.8.1 Age

A number of reasons exists as to why a victim's age may affect the outcome of an accident.

A child's lower body mass may be less able to resist the force impact. Also, the child's height

places his head and vital organs at the level of the vehicle where an adult would be struck

below the thigh. The National Center for Statistics and Analysis reported that in 2000, the

fatality rate for children between the ages of 5 and 15 was twice the rate of older bicyclists.

Kim (1996) found that while 35% of all riders were over 40, this group experienced only 9%

of the reported accidents. The CODES data in Figure 2.12 shows children of ages 5-9 are

more likely to die as a bicyclist or pedestrian than while riding in a motorized vehicle.
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Age may also reduce the severity rate. Children get in numerous accidents. To a

child, the bicycle represents entertainment in addition to transportation. They use their

bicycles as toys performing "wheelies", etc. Such behavior causes frequent falls, collisions

with fixed objects and other accidents less likely to cause severe injury. Children under 16

have no experience operating motor vehicles and are not acquainted with traffic law and

performance limitations ofmotor vehicles such as braking distance. Because ofthese reasons,

children may exhibit risky behaviors that make them more vulnerable to accidents than mature

bicyclists who possess motor vehicle licenses.
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The age of the bicyclist also affects the type of accidents which are likely to occur as

shown in Figure 2.13 (Cross and Fisher, 1977). This relationship affects the type of crash and

the injury severity, as discussed in Section 2.5. Young children are the most likely to crash

riding out of residential driveways, on sidewalks and over curbs. As the cyclist ages and he

becomes skilled in handling the bicycle, he begins to cycle in the roadway. Risk-taking and

bicyclist error such as wrong way cycling and running stop signs, dominate the crashes which

involve older children and teenager. These types of crashes are less frequent amongst adult

bicyclists who have learned the rules of the road from driving motor vehicles. Motorist error

is a dominant cause of accidents involving adult riders.



50

Wachtel (1994) found that adult bicyclists were 1.8 times more likely to have an

accident with a vehicle than children. He theorized that this increased risk may be due to

greater exposure of bicyclists to motor vehicle errors. Rodgers (1995) also found adult

bicyclists to be over represented in fatalities.

2.8.2 Alcohol Use

NHTSA (2000) reported that alcohol was involved - either for the bicyclist or motorist in

one-third of all bicycle fatalities. Excessive blood alcohol levels were present in 26% of the

bicyclist fatalities. Alcohol impairs the abilities of bicyclists in much the same way

as motor vehicle drivers. Perception is dulled, reaction time is slowed and the potential for

driver error is increased. These results combine to increase the likelihood of a crash

irrespective of the location.

Drunk drivers are a special threat to nighttime bicyclists operating with insufficient

illumination, especially in car overtaking bike accidents (Forrester, 1983). This type of

accident is especially dangerous as it is the only class whose proportion of fatal collisions

significantly exceed its proportion of nonfatal collisions. The involvement of alcohol is

evidenced by the disproportionate amount of car overtaking accidents which occur on Friday

and Saturday evenings.

2.8.3 Helmet Use

Wearing a bicycle helmet reduces the risk of head and brain injury among cyclists by about

70% (Rivara, 1996). The use of this safety equipment is reported on the police accident

report. Since its effect on the severity of the injury is so overwhelming, helmet use should be

included as a confounder in the model.
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2.8.4 Gender

Females experience lower fatality and serious accident rates than their male counterparts.

Rodgers (1995) found that while just under half of all cyclists were female, only 15% of

bicycle fatalities were women. In Kim's (1996) study, over 78% of the injuries occurred to

male cyclists. In Wachtel's (1994) exposure based study, he found that among all cyclists,

male cyclists were 1.2 times as likely to be injured as female cyclists. This behavior is even

more pronounced among children where boys are 1.7 times as likely to have accidents as girls.

This difference is probably due to greater risk taking behavior amongst boys and not due to

any increased resistance to injury by females. This distinction is important in that while

gender would probably be a factor in a frequency-based accident prediction model, it probably

will not bias the results of an injury severity model.

2.9 Summary

The preceding review illustrates the voluminous effort that has been undertaken to understand

the nature of bicycling during the past three decades. The benefits of bicycling have been

universally accepted. Despite the broad-based effort to quantify the nature of the dangers

associated with bicycle riding, there is still no reliable means to use this information to

increase the safety of the bicycling public. The challenge will be to use the knowledge gained

from the myriad operational and geometric factors that affect bicycle safety and combine them

with the temporal and operator confounders to create a workable Bicycle Route Safety Rating

model.



CHAPTER 3

THEORETICAL APPROACH

3.1 Methodology Choice

Predicting the safety of a bicycle route based on its physical characteristics is more difficult

than most accident modeling efforts. A direct approach would be to fit the accident rate of

a specific location with operational and physical factors specific to that location. However,

for bicycle accidents, that approach is not possible because, unlike other modes of transport,

bicycle accident rates are not easily obtainable.

Conventional accident rates are either population-based, i.e. total accidents divided

by an area's population, or exposure based - total accidents divided by traffic volume, miles

traveled, or other measures of exposure. The former population-based rates are unsuitable

for this modeling effort because such calculations are not route specific. For example, a

population based accident rate for Jersey City, would result in the same rate for the New

Jersey Turnpike Extension, an interstate, as the adjacent Liberty State Park two lane, local

access road.

Bicycle accident rates based on motor vehicle volumes are route specific but are not

based on the bicyclists' exposure. Reliance on motor vehicle volume based accident rates will

result in the false conclusion that a highway interstate with high motor vehicle volume and

little bicycle accident experience was safer than a local collector with low motor vehicle

volume and some observed bicycle accidents. The absence of bicycles on the highway

interstate guarantees that the number of bicycle accidents will be lower. Accident frequency,

another commonly used measure of safety, is also impractical because the rarity of bicycle

accidents requires extremely long analysis periods.

52
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Since bicycle accident rates are not available to serve as the model's response variable,

an alternative indicator must be selected. To be acceptable this variable must be: 1. practical -

the index must be provided or be easily obtained from available data; 2. reliable - the index

must be rational and widely accepted by traffic engineers; and 3. the index must be an

objective standard independent of any bias on the part of the researcher.

These requirements can be met by employing accident severity as the model's

dependent variable. Injury severity can be assigned a categorical index dependent on the

injury suffered by the bicyclist. The underlying rationale is that the severity of the accident

can then be extrapolated to the safety of the route, a fatality is more likely to occur on a

dangerous route than a safe route.

Severity, however, is not a continuous variable. Only integer values are possible.

Accident severity does not have a ratio relationship, which means an accident resulting in a

moderate injury (Injury severity = 2) is not 'A  as fortunate as a victim suffering a fatality

(Injury severity = 4). The ratio may actually be 1 to 100, or 1 to 1000.

Although ordinary least squares (OLS) regression is permissible for categorical

explanatory variables with continuous response variables, a categorical response variable

violates the Gauss-Markov conditions for linear regression in that a categorical variable is not

normally distributed. Non-linear transformations such as logit are used in lieu of OLS for

categorical prediction models. Prior to embarking on a discussion of categorical methods

which is the selected methodology, the fundamentals of OLS will be reviewed for comparison

purposes.
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3.2 Linear Regression Modeling

Various mathematical techniques have been developed to provide researchers with the tools

to derive models from sets of experimental data or observations. Linear regression, one of

the most commonly used methods, seeks to define the best fitting relationship between a

number of predictors, X (explanatory variables) and outcome, Y (response variable), by

minimizing the square of the error between the predicted outcome and the observed outcome

(Vining, 1998). The simplest form ofthis model assumes a linear relationship between a single

independent variable X:

Given n data points, the intercept and the slope of the independent variables can be derived

using the ordinary least square method in the following manner. Equation 3.2 is constructed

as the prediction of Y as a function of the intercept and slope.

Using Equation 3.3, the error terms or residual is calculated as the difference between the

observed response and the predicted response.



This methodology can be expanded to multivariate conditions in situations where there is

more than one independent variable. In the case of k predictors, the generalized form of

Equation 3.1 is:

To apply the OLS method, the data must meet the three Gauss - Markov assumptions:

• All relevant and no irrelevant X's are included in the model;

• The residual E is homoscedastic which requires that E is normally distributed with a

constant variance & across all observations; and
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• The residual c is serially independent in that it is not correlated with any other

independent variable.

Provided these assumptions are met, the OLS method produces Y predictors which are

"Blue" - the best, linear, unbiased estimators (Aldrich, 1984).

3.3 Categorical Models

Categorical models are models whose dependent variables are non-continuous. They may be

dichotomous having only two states, i.e. yes or no, Patient is dead Y = 0 or Patient is alive

Y=1. These models also may be polytomous or have more than two states. For examples,

injury severity is a polytomous variables with four levels: driver is not injured (Y = 1), driver

is mildly injured (Y = 2), driver is seriously injured (Y = 3), and driver is dead (Y = 4).

Although OLS solutions can be obtained with categorical explanatory variables, OLS

is not an option when the response variable is categorical. Not only does categorical data

violate the requirement of homeoscedasticity, and thus forfeiting the promise that the OLS

solution would produce the best linear unbiased estimate, the OLS solutions cannot be

constrained to combine the Xs in such a fashion to generate only Ys that are integers of the

level allowed by the target response variable. OLS solutions require that the dependent

variable be continuous and able to assume any value between -00 and 00.

One solution to this problem is to define Y as the expected value or probability that
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As shown in Figure 3.1, a number of mathematical functions have been used to

transform categorical variables to meet the requirement that probability distributions are

continuous and range from 0 to 1.
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These transformations differ in their symmetry about the origin, their constraints on Z and the

thickness of their tails. The logistic curve is the transformation used for logit models as

defined by Equation 3.7. The transformation which is based on the assumption of a randomly

distributed error term, is given as follows.

The standard normal distribution function curve is used for the probit model. It is based on

the assumption of a normally distributed interaction between response and explanatory

variables. The logistic curve and normal curves are so similar that with few exceptions they

produce nearly identical results as defined by Equation 3.8.

The Gompertz Curve is used for log log models. Unlike the logit and probit

transformations which are symmetrical around p=0.50, the complementary log-log

transformation as defined by Equation 3.9 is asymmetrical which is closely related to

continuous time models for the occurrence of events (Allison, 2001).

Of these three categorical model choices, the logistic approach is probably best suited

for the bicycle routes safety rating model. Considering the unexplained elements that cannot

be predicted based on the explanatory variables included in the model, there is no guarantee

that these unexplained elements are normally distributed (Train, 2002). The unexplained

element may be due to differences in police officers' assessments of the injury and accuracy
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in recording the specific attributes of the location, grade, surface condition, etc. The injury

severity may be affected by the strength of the individual, the resiliency of his bones and how

he fell. Although there are many variables such as operating speed or volume that may be

normally distributed, there is no injury that does not have some random element associated

with it. Moreover, because these models are a function of the probability of the event and not

its direct outcome, there is no error term to evaluate the form of its distribution. Therefore,

since there is no strong reason to use an alternative model and because the logit model is

attractive for many practical reasons, such as the availability and flexibility of software, logit

was chosen as the categorical method to develop the bicycle route safety rating model.

3.4 Logit

The logistic form as shown in Figure 3.2 has been historically popular because it is well

developed and mathematically easy to define and interpret. Irrespective ofthe value of Z, the

logistic fez) ranges between 0 and 1 which corresponds to probability functions. Another

reason for its popularity is the S-shape of its curve which defines upper bound and lower

bound thresholds for a response range. This shape corresponds with many commonly found

probability functions which produce flat slopes with relatively small responses at extreme

levels and steep slopes with large responses when the independent variable is close to the

origin.



The ratio of the likelihood of an event occurring to the likelihood of not occurring

is known as the odds ratio. The odds ratio relationship using a logistic transformation is

defined as follows:
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Because exponential and fractional denominators are mathematically difficult to manipulate

and fit observation data to, Equation 3.13 is transformed using natural logarithms to develop

a linear relation. The resulting expression, Equation 3.14, is termed the log odds ratio or logit

of Y:

In a familiar context, at a race track a horse might be given odds of 3-1 implying that

he has one chance of winning versus three chances of losing. In the event the horse won, a

$2 bet would pay $8, three times the money bet plus the return of the initial bet. Thus the

lower the odds ratio, the greater the likelihood of an event occurring and the lower the

payout. While a high odds ratios is akin to a long shot justifying a higher return on

investment. The logit form is generally chosen because it linearizes a function, Equation 3.14,

that would otherwise be difficult, if not impossible to fit. The fact that the logit has a

common language interpretation is a bonus in that it converts a complex mathematical

function into easy to conceive, familiar terminology.
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To obtain a logistic model from a set of observations, the dependent variable P(Y),

or for simplicity in notation, Y, is first transformed into Z using Equation 3.14. After a

model is obtained using the transformed variable Z to fit the set of independent variables X

using Equation 3.11, Z can be used to predict an outcome Y by reversing the transformation

using Equation 3.15 as given below:

3.5 Maximum Likelihood Estimation (MLE) Method

Unlike continuous functions, the variables a and f3 for a transformed categorical function

cannot be obtained by fitting a line through a sample of data points by minimizing the square

of the error. Instead, the MLE method is employed by fitting the logit model by maximizing

the likelihood that the predicted probability of the event matches the observed probability

(Hosmer and Lemeshow, 2000). Mathematically, this likelihood equation expressed for a

sample of n pairs of data points is:

As with the initial logistic transformation, it is easier to work with the sum of a series instead

of a product. Again, this is accomplished through the application of natural logarithms to

Equation 3.16 and restating it as follows:
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Partial derivatives of the log likelihood function as given in Equation 3.17, are taken with

respect to the 13 coefficients. The resulting equations shown below are set to 0 to obtain the

values of the coefficients which will maximize Equation 3.17 as shown below:

Because these equations are non-linear with respect to X, they cannot be solved using

standard linear algebra. Computer programs have been developed to solve them using

computational algorithms. These equations, if successfully solved, produce solutions that

converge after a number of iterations. The optimum 13k will achieve the maximum estimation

of the observed probabilities.

3.6 Polytomous Models

The previous section presented the Maximum Likelihood Equation (MLE) for the case of a

dichotomous or Bernoulli variable, i.e. Yes or No, 0 or 1, dependent variable. A further

distinction must be made between nominal and ordinal polytomous variables. Nominal

variables such as transportation choice, i.e. bus, car, train, walk, have no fixed order or

magnitude. Ordinal polytomous variables, such as in the current case where injury levels are

expressed in terms of increased severity, do have a relationship between each other. Unlike

nominal variables, cumulative probabilities may be derived for ordinal variables. For example

a cumulative probability can be established for a levels of severity less than or equal to a Level

3. Later in this section, the distinction between ordinal and nominal variables will be useful

in deriving the MLE equations for polytomous, ordinal response variables.
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As discussed earlier, the response variable based on the severity index, has more than

two levels. Such categorical models are termed polytomous with J different levels of Y 1. The

simplest approach to this problem is to set each j level as a separate dichotomous nonlinear

probability model. For each level of j, the question simplifies to what is the probability that

the observation, based on the dependent variables will assume that value of j. The following

equation defines the probability that Y is equal to a specific level, in this case j = 1. Similar

equations could be created for other levels of j = 2 and 3 as follows:

The MLE method could be used to solve this series of j equations to obtain k

coefficients for each level of j. However, there is no guarantee that if the probabilities for

each level were summed, the total would equal 1. An alternative approach that does satisfy

this requirement is similar to the log odds ratio used for the dichotomous problem. In this

case, one of the dependent variable levels, say J, is used for the denominator and each

probability is transformed into the logit model. For j = 1, 2, 3, . . J, there are a total of J-1

ratios of the form:
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variables which imply a variable for every level of response, it can pose a problem for nominal

response variables. For example, should a class be queried as to their favorite ice cream

flavor, Vanilla, Chocolate or Strawberry, a student who preferred Coffee would be omitted

from the count. This problem is corrected by the addition of a final category of "None of the

Above" thereby capturing all of the respondents in the count. Thus, Equation 3.23 can be

constructed as a summation of all probabilities of all J possible responses as follows:
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When j is ordinal, there is a fixed order of the polytomous response variables and a threshold

ill associated with moving from one level of severity to the next. For convenience p i is set

to 0, where It j is equal to the cumulative probability for each response variable level which

adheres to the following relationship:

It is accepted that the curve for each level of response variable is identical but offset by a

different intercept. The odds ratio for an ordinal model addresses this cumulative relationship

in the following manner:

Equation 3.29 will estimate the cumulative probability for a given response level which

includes the probability of all the lower events. To compute the probability for a specific

response level, it is necessary to subtract the cumulative probability of all lower levels. Thus

Equation 3.30 estimates the probability that event j will occur as the difference between the

cumulative probabilities of j and j -1 or:
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Figure 3.3, excerpted from the JMP Start Statistics C (1996) depicts this ordinal relationship

with each curve for a given event level identical in shape to all other event levels, but shifted

along the x axis.

The algebraic expressions for the shifting of these cumulative equations and the computation

of the delta probabilities are expressed by Equations 3.31 through 3.34 as follows:
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3.7 Statistical Inference

As with all models, a categorical model must be assessed in terms of its statistical quality.

Simply expressed, how good is the model? How well does the model predict the observed

responses? Does the model maximize the number of hits, the events correctly predicted, and

minimize the number of misses, the number of incorrect predictions? Is the model efficient?

Were the right factors chosen? Are important factors missing? The extra time and cost to

accumulate the data for a large number of independent variables may not be justified if a

comparable level of accuracy can be attained with a smaller subset.

3.7.1 Level of Confidence

First, it is important to establish an appropriate level of confidence. The establishment of an

appropriate confidence level is a factor of both the model's input: the quality of the data upon

which the predictions will be made and the need for accuracy. Certainly the level of

impurities in infant formula or the expected failure rate of space shuttle 0-rings require a

higher level of confidence than the predicted pounds of turkeys Americans will consume next

Thanksgiving. Although, the life and safety of the bicyclist is of great importance, it is the

quality of the data which necessitates a lower confidence interval. Traffic volume

measurements vary widely over proximity to the accident site and date taken. Even uniform

pavement management systems, if they are available in a community, do not produce ratings

precise to the hundredth of a decimal point. Given the random nature of the bicyclist's

behavior and the quality of the data itself (police reports taken at the accident scene under
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stressful conditions), a 99% level of confidence is unwarranted. Moreover, restricting the

explanatory variables to meet standards that are too rigid, will force the elimination of factors

that might have made a contribution to the overall model.

On the other hand, setting the confidence level too low, less than 90%, would not

produce a model with sufficiently reliable rating predictions on which to make route choice

or investment decision. As a result of these considerations, the model developed in this

research will have a confidence interval set at 90% with a p value of 0.1 for a one-tailed test.

For comparison purposes, a second model will be presented that meets a 95% confidence

limit.

Care must be exercised when ranking bicycle routes or making investment decision

based on estimates obtained from a model developed with this moderate levels of precision.

One route cannot be chosen over another because of the difference of a hundredth in

predicted severity level. The precision of the severity index will be established to correspond

to a given confidence level to provide users with the criteria to make choices.

3.7.2 Whole Model Test

The first step in evaluating a model is to assess its goodness-of-fit. In other words, based on

the sample data, how well does this model predict the observed responses? Does the model

make better predictions than a set of random occurrences, thereby justifying the rejection of

the null hypothesis? If the data's explanatory variables, Xs, were plotted against the data's
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responses, Ys, and found to be perfectly horizontal, i.e. there is no better explanation of the

response than the mean of the data, the null hypothesis which implies that that the model's

explanatory variable have no (null) effect on the prediction of the response variable.

Had the model been a linear regression obtained using the OLS Method, the null

hypothesis would have been evaluated by comparing the F statistic with the ratio of the

model's mean square to the error mean square. This is the joint hypothesis that all the

coefficients except the intercept are equal to 0. Since the MLE method is used instead of the

OLS to obtain the variable coefficients for a logit model, the goodness-of-fit is evaluated

using an alternative test statistic. The loglikelihood ratio G2, a test statistic that is compared

to a chi-square distribution, is computed as:

The likelihood of the fitted model is obtained by using all of the variables multiplied by each

of the fitted coefficients. The constrained model sets each of the variables equal to 0 and

calculates the likelihood as the result of the intercept alone, in essence a mean of the data.

The ratio between these two numbers is referred in the literature as the likelihood ratio.

When this ratio is very large such that twice the natural log of its value multiplied by -2 is

significantly greater than the r for K-1 levels of freedom, the model can be accepted as

explaining a statistically greater part of the data's variance than a simple mean. As discussed

in Section 3.6.1, a p value of 0.1 would indicate a meaningful model for the purposes of

predicting accident severity.
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3.7.3 Coefficient of Determination

Evaluations of linear regression models place great importance on the value of the coefficient

of determination, R2 , the square of the model's variance divided by the square of the total

variance. Simply put, R2 represents the portion of the data variance which is explained by the

variables. A high R2 demonstrates that the model is explaining a large part of the variance.

The following expression (Vining, 1998) defines R2 as the ratio of the error that is explained

by the model divided by the total error:

The same computation cannot be made for categorical models. Categorical models are

developed not by minimizing variance, but by maximizing the probability or likelihood of

achieving a correct response. A corresponding measure which may be used in lieu of R 2

(Allison, 2001) might be constructed for categorical models as follows:

In categorical models, high Res are rare . The ratios are very sensitive to the magnitude of

the intercept. The lower the intercept, the lower the ratio. For most purposes, the R 2 for

categorical models is not used.
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3.7.4 Coefficient Estimates

After passing the whole model test and lack of fit test affirming that the model contains all of

the variables and interactions required to produce meaningful estimates, the next question that

must be addressed is whether extraneous variables have also been included. A Wald chi-

square test should be performed on each coefficient to determine if it is significant and what

would be its corresponding confidence interval. The test statistic should be calculated as

follows:

The Wald statistic is compared to a X 2 . If p <0.1 then the null hypothesis, which states that

the model's predictions based on that variable are no better than random observations, could

not be rejected. Coefficients which meet the Wald X 2 test will be retained in the model,

otherwise, the variable is eliminated.

Confidence intervals for categorical models may be computed as in linear regression

models and inspected to verify that the range does not include the origin, i.e. horizontal or 0

slope. Flat slopes imply a lack of significance between the relationship between the response

variables and the explanatory variable.
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3.8 Logistic Model Interpretation

After a model has met the goodness-of-fit criteria and all insignificant variables have been

eliminated, the model can be interpreted by performing the following: 1. Examining the

coefficients' signs; 2. Determining the marginal effects of the model's variables; and 3.

Predicting the probability of the response variable given a set of explanatory variables. A

detailed discussion of these three model interpretation steps follows.

3.8.1 Coefficient Sign

Through examination of the sign of the coefficient, much can be learned about the impact of

a variable to the response of the model. In linear regression, a positive coefficient implies a

positive relationship. For example, a positive coefficient for an explanatory variable in an

accident prediction model such as traffic volume results in increasing relationship between

accident severity and volume, while a negative coefficient results in a decreasing relationship.

Linear probability models such as the logistic model cannot have negative values.

The expected severity Y, as defined in Equation 3.10, ranges between 0 and 1. As Z becomes

increasingly negative, the denominator of this equation increases forcing Y to 0. A positive

Z reduces the denominator and increases the probability of the function as Y approaches 1.

In this manner, coefficients can be evaluated based on their effect on Z.

3.8.2 Marginal Effects

Typically, one examines the magnitude of the coefficients of a model to determine the

marginal effect of that particular explanatory variable. However, unlike the coefficients of a

linear regression model, the 3k coefficients of a logistic model do not represent a constant
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effect. Given that the predicted probability of a logistic model is based on the logit

transformation and that the very slope of its S shaped curve is a function of Z, the marginal

effect of a variable can only be assessed by taking the partial derivative of the logistic model

as follows:

Thus the impact on Y of a change in an explanatory variable XK is a function of its log odds

ratio and coefficient 0K, and is not completely determined by OK . Thus the impact of a single

variable on the response variable varies with the probability of Y. The variable may have a

greater or lesser impact at different levels of severity.

3.8.3 Predicted Response Variable Probability

The logit model generates a set of coefficients for each of the polytomous levels of the

response variable. Applying these formulae to a given set of explanatory variables will

produce a probability for each j level where the levels for accident severity include 1, 2 or 3.

Since the sum of the probabilities for all possible outcomes must equal 1.0, it is important that

a given set of k explanatory values produce j equations that when summed together also equal

1.0. It is also important that the formulae make reasonable predictions across the full

cumulative range of probabilities given a fixed set of explanatory variables. For example, it

would be difficult to accept a model that responded to the steady increase of one or more of

its factors by vacillating between increasing and decreasing levels of severity. For example,

as speed limit increased by 10 mph, we would expect to see severity levels increase from 1
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to 3. If instead, such a change in speed limit resulted in a predicted severity level of 3 at 30

mph, a decrease to a severity level of 1 at 40 mph and an increase to a severity level of 3 at

50 mph, this erratic behavior would call to question the entire validity of the model. This

problem is avoided by using the parallel curves shifted by the intercepts generated by the

ordinal logit procedure.

3.9 Summary

After establishing the difference between continuous and categorical response variables, this

chapter has explained why categorical models cannot be developed using standard OLS

methods. The maximum likelihood equation (MLE) method was explored as an alternate

approach to fit the model based on a logistic transformation of a probability distribution

model. Then, the dichotomous solution was expanded to a polytomous form to accommodate

the three levels of severity. Chi-square tests were presented as a means to evaluate the

significance of the goodness-of-fit for the whole model using the loglikelihood ratio and the

significance of the beta estimates using the Wald statistic. Finally, coefficient signs and

estimates were used to interpret the model and the variable's marginal effects. With these

statistical tools, it will be possible to build a model using the data collected in the following

chapter.

In concluding this discussion of the technical approach, it is necessary to stress the

need to exercise caution in applying this or any mathematically derived model. Model

building is both a science and an art. It demands an intuitive understanding of the underlying

nature of the variables, how they will promote certain accident typologies, how they may
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interact with other variables and ultimately, in what way they will impact the safety of the

route. The variables considered in this model building effort are real characteristics at real

locations where real people were injured. These variables are not abstract numbers.

Notwithstanding the sophisticated techniques employed to develop the model and

irrespective of the quality of the statistical measures, any model can and should be rejected

if its application does not produce rational results.



CHAPTER 4

DATA COLLECTION

4.1 Data Acquisition

The bicycle route safety rating model was developed using Jersey City, New Jersey as the

study area. This selection was based on a number of factors. Its population of 225,000 is

sufficiently large to be classified as a Metropolitan Planning area. The municipality has

identified bicycling as a viable travel mode choice and intends to include it in their current

master planning effort. Finally, and most importantly, the Jersey City Engineering Division

and Police Department were generous in sharing their data resources.

The New Jersey Department of Transportation (NJDOT) accident database was used

as the source of accident records. This database does not contain all accidents, but is limited

to bicycle accidents which involve motor vehicles. This limitation initially appears to be

serious in that the majority of bicycle crashes do not involve motor vehicles. Bicycle / Motor

vehicle collisions are typically less than 20% of all crashes (Forester, 1983). However,

Tinsworth (1993) found that while most ofthe 500,000 bicycle-related emergency room visits

per year do not involve motor vehicles, 90% of fatalities do involve motor vehicles. Thus,

a study based on the State's motor vehicle accident will produce the most serious injuries.

The NJDOT database publishes its crash data on the Internet on an annual, county

by county basis for the period 1997-2000. Each county file contains over 20,000 events with

the information derived from standard police accident fauns, see Figure 4.1.
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The crash data contain over forty fields of information about conditions at the time of the

accident, including existing roadway conditions as well as information about the driver and

damage that occurred. Figure 4.2 contains the instructions for the accident report which

serves as the metadata for the files which explains the descriptions of the different values the

variables may take.

After first downloading these large county files for each of the four available years,

the text files were imported to Excel as comma delimited files. Since the text files did not

include column labels, a template was created using the metadata as a guide and pasted onto

the first row of each year's accident. Next, Jersey City bicycle accidents were extracted from

the files. Bicycle related accidents were identified from the vehicle occupant field where

bicyclists are denoted as "B." The separate data files for each ofthe four years were combined

into one large data file for model building. Standardized case numbers were created to keep

each record unique.

For the four-year period 1997-2000, there were 97,310 crashes in Hudson County of

which 36,623 or 37.6% motor vehicle accidents were reported in Jersey City. Of these

records 328 or 0.9% were bicycle accidents. Thirteen of these accidents were eliminated due

to insufficient data leaving a remaining 314 bicycle / motor vehicle accidents for study.

The raw data obtained from the NJDOT database has a number of limitations which

must be addressed before model building can proceed. Some fields were either blank or

assigned implausible values. Many fields had categories that are extraneous to this study, e.g.

driver's license number. Other categories, such as alcohol testing, had data that were too
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sparse to be useable. Not all desired study variables such as traffic volume and lane width

were provided by the database. Because of these problems, the NJDOT database was

enhanced with local information sources. Over 100 original police reports were obtained to

search for missing data. Using the location and cross streets provided in the NJDOT

database, crash locations were mapped on a Jersey City street map, Figure 4.3. Then data

were obtained from local municipal codes, zoning maps, transit maps as well as Jersey City's

internal records. In the following section describing the data, an explanation will be

provided as to how the data were obtained and if necessary "cleaned up."

4.2 Data Analysis Techniques

In the following data analysis sections, the data is summarized and analyzed using data plots

generated by JUMP 0 software, a SAS 0 product. These plots provide a concise and visual

summary of the data collected. Plots for categorical data are limited to frequency and

cumulative probability distributions. Plots for continuous variables also provide quantiles,

moments including mean and standard deviations and "Box and Whiskers" plots that visually

display ranges and frequency concentrations.

Plots are provided of the interaction between injury severity and each of the

explanatory variables. Categorical data is provided as a mosaic plot. The X-axis indicates

the level of the categorical variable: yes (+1) or no (-1) if the variable is dichotomous and

level equal 1, 2, 3 . . . n for polytomous variables with n levels. The frequency of the

response variable is plotted for each level of injury severity, the explanatory variable. The

right Y-axis shows the level of the response variable. The left Y-axis shows the cumulative

probability distribution. Interaction diagrams are also provided for continuous explanatory
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variables. In lieu of mosaic plots, as cartesian coordinates are plotted for each of the

continuous variables' data points. The curve is a plot of the logit of X for n-1 levels of Y,

the cumulative probability distributions as a function of X.

Examination of the interaction plot for both categorical and continuous variables

provide a visual display of the nature (or absence) of the relationship between the individual

explanatory and response variables. Both categorical and continuous plots report chi-square

tests of the intercepts and beta coefficients. Based on the results of these tests, a decision

will be made as to whether the interaction is sufficiently strong to include the variable during

the model building phase. Variables that do not meet the specified confidence levels when

combined with the other retained model variables will ultimately be dropped.

4.3 Accident Severity

The NJDOT Accident data base provides an injury severity rating for each of the vehicle

occupants including the bicyclists. The severity of the injury ranged from "No Injury,"

"Complaint of Pain," "Moderate Injury," "Incapacitated," to "Killed." Of the 314 bicycle

accident records extracted from the NJDOT accident data base for Jersey City for the four-

year period 1997 - 2000, no fatalities or incapacitating injuries were reported.

Injury severity reported in the NJDOT data base is derived from standard police

reports. However, police officers do not have complete information and are not as skilled

in assessing injury severity as hospital emergency department staff (Stuffs, 1990). It is

possible that a person removed from the scene by an ambulance may be released hours later

after being treated for abrasions, while another person may walk away from the accident with

a head injury and later die. There is also a great deal of variability between police officers'
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assessments of victims' physical conditions. The USDOT Crash Outcome Data Evaluation

(CODES) could improve the accuracy ofthe reported accident severity by correlating motor

vehicle accident report data with emergency room accident data. New Jersey, however, is

not one of twenty-three designated CODES states.

Police accident reports provide greater detail than what is contained in accident data

base records. To investigate the reliability of the reported accident severity, 149 original

police reports were obtained from the Jersey City Police records by using the case number

provided by the NJDOT database. The descriptive text from these accident reports provided

an understanding of the sequence of events, the typology of the accident and the nature of

the injuries. Comparisons of the NJDOT database records with the original police records

confirmed that there was great variability in the individual policemen's application of the

severity level. One policeman classified the injury severity of a victim who refused medical

attention as serious while another policeman reported the injury severity of a child with a

bleeding head who was taken from the scene by an ambulance as minor.
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To create a uniform and objective severity index, a new index was generated directly from

the reported injury. The injury classifications are shown in Table 4.1. Supported by the

police report detailed writeups, injury severity was derived from reported injury in the

following manner. All injuries which were unknown or not visible were deemed to be

property damage only (PDO) or Level 1. Those injuries that were not visible, although the

victim complained of pain were deemed minor, Level 2. All other observed injuries were

deemed serious, Level 3. Had there been fatalities, they would have been classified as

Level 4. Since no fatalities were reported for bicycle accidents during this period, Level 4

was eliminated. Figure 4.4 shows that ofall bicycle accident reported, 19% were PDO, 47%

were Minor Injury and 34% were Serious Injury.



4.4 Physical Factors

4.4.1 Lane Width

Lane width was not provided by the NJDOT database. Lane width was calculated by

subtracting the amount of roadway dedicated to parking from the total width and dividing

the difference by the number of through lanes. Parking lanes were assumed to be eight feet

wide.

86
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The carriageway width was obtained from Jersey City historical records. This required

looking up each roadway and locating the closest intersection to the accident. The number

of lanes was determined by field observations. The number of parking lanes were obtained

by looking up the section of roadway in the Jersey City Municipal Code Schedule 3,

parking regulations.

Figure 4.5 shows the median lane width is 12 feet. Lane widths ranged between a

minimum of 7' to a maximum of 30'. The constricted width of 7' occurred at a few locations

where parking exists on both sides of an already narrow street two street. In reality, such

narrow streets accommodate two-way traffic by using the numerous loading zones and

driveways that are interspersed between the parking lanes. Passage of opposing traffic,

especially for wide vehicles is accomplished by one vehicle pulling into vacant curb space to

let the other pass.

The interaction plot as shown in Figure 4.6 shows a strong relationship between lane

width and injury severity. When the street width is 7, there is an approximately 70% chance

that the injury severity is a PDO or Minor Injury. As the width increases to 30, the

probability of a PDO or Minor Injury drops below 40%. Width will be retained in the model

building stage.
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4.4.2 Grade and Curve

NJDOT provided grade information and curve information for most accidents as their Road

Character variable. Missing road character data were obtained by field observations. The

various classifications of grades for Road Character were aggregated into the dichotomous

variables Grade and Curve as shown in Table 4.2. Figures 4.7 and 4.9 show that of all the

accident locations, 9% were on grade, 81% were on level ground, 4% took place on a curve,

96% on straight away.

A comparison of the mosaic plots as shown in Figures 4.8 and 4.10 for Grade and

Curve shows a visible increase in the highest level of severity with grade, but little or no

change with curve. The middle severity level, Level 2 - Complaint of pain, is reduced for

both variables, but the reduction is far more pronounced for grade. A comparison of the p-

valuers confirms this fact. The variable Curve's p-value of 0.8986 is so high that any

significance is doubtful. The variable Curve will not be considered as a potential model

variable. Grade's p-value is not low enough to guarantee entry into the model, but it will be

retained for possible interaction with other variables.
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Figure 4.8 Grade Severity Mosaic.
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4.3.3 Road Division

Road Division data were obtained from the NJDOT database. The data were aggregated

as shown in Table 4.3.

There were 15 records with the variable Road_Divided_By designated as "Other"

as well as additional 15 records with no designations. Field inspections determined whether

medians existed at these locations. Of the 314 accidents, only 10 or 3.1% occurred on roads

with medians.

Road_Div appears to have no significance with a large p-value of 0.9655. This lack

of significance may result from the fact that in Jersey City with narrow pre-automobile roads,

few median median separations exist. In another, non-urban area, Road_Div may be

significant. Road_Div will not be considered as a model variable.



93



94

4.4.4 Pavement

The pavement variable answers the question: Was the accident location paved within the ten

years prior to the accident? In the absence of a pavement management system with a

standardized pavement rating system, the assumption is made that a newer pavement is in

better condition. Newer pavement is less likely to have utility patches, pot holes, ruts or

cracking. There are many other reasons for poor quality pavement besides age, such as

traffic volume, particularly heavy vehicle volume, quality of installation, underlying base,

amount of utility cuts, etc. Nevertheless, a section of roadway paved within the past ten

years is much less likely to exhibit the degradation present in older pavement sections.

Pavement age is also a marker for bicyclist safe grates. Stream flow catch basin

grates with longitudinal spacing were originally installed in the 1960's and 1970's to improve

drainage. The front wheels of bicycles, however, can easily become caught between the bars

of these grates. Newer grates with a closely spaced grid do not cause this problem. The

switch to bicycle safe grates has been a gradual process. In Jersey City, all roads constructed

within the past ten years have replaced existing grates with bicycle safe grates. Therefore,

pavement age reflects both pavement quality and the presence of bicycle safe grates.

The capital improvement records of the State of New Jersey, Hudson County and

Jersey City were investigated to determine the date of the most recent paving. Care was

taken that the paving occurred within ten years of the date of the accident, not ten years

prior to the date of this study. The accidents in the database occurred over a four year

period. Paving which took place after the accident would have no impact on the outcome.

Jersey City maintains a map of their ten-year pavement program.

The distribution between recently and older pavement sections is shown in Figure
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4.13. Roughly half or 52.5% of the roads have been paved within ten years of the accident.

Pavement is a very significant variable with a p-value of 0.0678. The mosaic plot shows

little impact of pavement condition on the difference between serious and minor injury, but

a pronounced difference between an injury and a property damage only accident.
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4.4.5 Highway

The NJDOT accident database designates the Road System for each of the locations where

accidents occurred. This variable was aggregated into the dichotomous variable referred

to as Highway as shown in Table 4.4. The variable simply answers the question, "Is the road

a State highway or not?" Of all accident locations, 5% were highways, 95% were local or

county roads as shown in Figure 4.15.

The highway mosaic plot depicted in Figure 4.16 shows a marked increase in severe

accidents on State highways. Because of limited records of bicycle accidents on highways,

the chi-square test may be suspect. However, the Highway variable will be entered into the

model to determine if it interacts with any other variables despite its relatively high p-value

of 0.3164.
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Figure 4.15 Highway Distribution.

Figure 4.16 Highway Severity Mosaic .
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4.5 Operational Factors

4.5.1 Speed

Posted speed was obtained directly from the NJDOT database. Missing data were obtained

either from NJDOT straight line diagrams or the Jersey City Municipal Code. The density

distribution shown in Figure 4.17 reveals that there is little distribution in speed limit. Over

90% of the streets are posted at 25 miles per hour with the exception of Garfield Avenue and

State Highways Route 1, 139, 169 and 440. Given this absence of variance in the data, it is

not surprising to see its mosaic plot, as shown in Figure 4.18, to be completely flat. With a

p-value of 0.9290, it is inconceivable that speed will be entered into the model. Speed will

not be considered as a model variable.

In truth, posted speed and operating speed differ greatly in congested urban areas.

Operating speeds of 10-15 mph are k more common than 25 mph. This is confirmed in the

morning and evening peak periods by Figures 4.19 and 4.20 which show the measured

operating speeds on Jersey City roads, (Voorhees, 1979). Few operating speed studies were

available in Jersey City's files. Unfortunately, the number of these studies were too small to

analyze. If funds and time were not a constraint, a speed study to determine operating speeds

may reveal that the most significant factor in urban bicycle accident injury severity is

operating speed.
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4.5.2 Lane Volume

The NJDOT database does not provide the ADT at the accident location. It was therefore

necessary to obtain the roadway volumes from Jersey City's Division of Traffic files.

Historically, Jersey City measures traffic volume locations at intersections when requests are

made to install new or upgrade existing traffic signals. On occasion, volume counts may be

taken at the request of an elected official, a resident, or as a part of a study of traffic impacts,

proposed detours, etc. Traffic counts were not maintained electronically. Manual retrieval

was required using a cumbersome and time consuming card catalog method. The indices to

these files are listed on index cards filed in a card catalog by the major street of the

intersection. As a byproduct of this research, Jersey City was provided with an electronic

database of traffic volume.

The task to obtain the volume for a given accident location required examining all of

the available traffic volume records. If no record existed at the specific location, volumes

would be sought for proximate locations taking into consideration the direction of traffic

flow. For example, if a count existed north of the accident location and another count existed

south of the location, the southbound traffic volume from the northern location would be

added to the northbound traffic volume from the southern location to compute a total ADT

for both directions. Cross street volumes were not included in the ADT because it would

produce unreasonably skewed volumes for mid-block crashes which had no intersecting

street.

Also not considered, was the directionality or distribution of the percentage of traffic

that flows in each direction. In rural areas where significant passing occurs, volumes with
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heavy one directional flows impact the bicyclist less because vehicles are able to pass the

bicyclist by moving into the opposing lane. Urban streets are either one way or striped with

a double yellow line that prohibit passing in the opposing lane. Therefore, although it would

affect a bicyclist if the majority of traffic was moving in the direction opposite of his travel,

the effect will not be as pronounced as in a rural area.

If no traffic volumes were available along the specific road from a proximate location,

traffic volumes were substituted from roads that were similar in land use, width, length and

circulation. In the rare cases where no reasonable volume counts were available, a minimal

value of 250 ADT was applied. It is assumed that these locations that had absolutely no

volume count history were generally little traveled roadways that never warranted a signal or

a traffic investigation.
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Jersey City has been able to generate computerized traffic counts using automated

traffic recorders (ATR's) since the early 1980's. Prior to this time, ATR tapes were

transcribed manually. Because of the concerns that a thirty-year old traffic count may have

questionable validity today and because of the potential error introduced by manual

transcription and summations, an arbitrary cut off date for inclusion of traffic volume data

were set at 1980. All traffic volume studies used in this analysis were taken after 1980 and

modified with a growth factor of one percent per annum from the year the count was taken.

Considering that according to the U.S. Census (2000), Jersey City's population grew over

7% in that period, a growth factor or one percent would be conservative.

For analysis purposes, traffic volume was divided by the number of lanes to create a

lane volume because the bicyclist's friction with motor vehicles is determined by the intensity

of traffic immediately adjacent to his path of travel. Jersey City has no records of the number

of lanes for each of its roads. Obtaining this information required field investigations.

Volume per lane ranges from a minimum of 250 vehicles per day (ADT) to a

maximum of 13,478 ADT with a mean of 4600 ADT. The variable volume has a reverse

effect on injury severity. As volume increases, severity decreases. The significance level of

volume at 0.1328 does not meet the criteria for inclusion in the model. However, it will be

retained for the model building effort at this time because of potential interactions with other

potential variables.
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4.5.3 Bus Routes

A determination of whether a bicycle accident was located on a bus route was undertaken by

identifying the location of the crash on a New Jersey Transit map for Hudson County. Those

crashes which occurred on a bus route were designated as +1. Those crashes which did not

occur on a bus route were designated as -1. The designation of 1 and -1 are convenient

modeling labels because they facilitate implementation of the model whose coefficients are

set at +0 for the presence of the condition, in this case a bus route, and -13 in the absence of

the condition. A distribution of the accidents on bus routes is shown in Figure 4.24

Slightly more than half; or 57% of all recorded bicycle crashes occurred on bus

routes. The mosaic plot shown in Figure 4.25 does show a slight increase in property damage

only accidents and a slight decrease in serious injury accidents on bus routes. With a p-value

of 0.2506 there is a slight chance that the Bus variable may combine with another variable to

meet the significance limit. For this reason, the Bus variable will be retained to test its

significance when combined with other variables during the model building stage.
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4.5.4 Truck Routes

Jersey City Municipal Code Schedule 7 designates the sections of roads that are truck routes.

The determination of whether an accident occurred on a truck route is determined by

pinpointing the accident location on a truck route map. The Jersey City Truck route map is

shown in Figure 4.26. If the accident did not occur on a truck route it is scored -1, if it did

occur on a bus route, it is scored +1.

Figure 4.27 shows that the majority of accidents, over 72%, occurred on truck routes.

As shown in Figure 4.28, the significance of the variable Truck is doubtful with its high p-

value of 0.4887, although there is a marked increase in serious injury accidents on truck

routes. An attempt will be made to investigate the Truck variable's interaction with other

variables by retaining it for testing during the model building stage.
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4.5.5 One-Way

A determination of whether the accident occurred at the intersection with at least one leg

being limited to one-way travel was determined by looking up the road segment in the Jersey

City municipal code Schedule 1 as mapped on Figure 4.29.

Figure 4.30 show that 64% of all accidents had a one-way street on at least one leg

of the intersection. Figure 4.31 shows a definite relationship between the variable One-Way

and injury severity. With a p-value of 0.0968, the variable One-Way will probably be retained

in the model.
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4.5.6 Parking

The Jersey Municipal Code Schedule 3 sets forth all parking restrictions enacted by municipal

ordinance. Those roads with parking restrictions on either side of the street were set as -1.

Those locations without parking restrictions were set as 1. Parking restrictions limited to

street sweeping were not considered. The plot in Figure 4.32 illustrates that very few

locations, little more than 10% of all accidents had parking restrictions.

Although the parking variable with a p-value of 0.1852, as shown in Figure 4.33, does

not meet the significance limit. However, the plot does show that there is a visible increase

in serious accidents in locations without parking. As with other variable with marginal

significance, it will be re-examined during the model building state as it may interact

significantly with other variables.
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4.5.7 Signalization

Jersey City has traffic signals located at 244 city streets which are mapped on Figure 4.34.

In addition, Hudson County maintains traffic signals on the following county roads: Kennedy

Boulevard, Patterson Plank Road and Secaucus Road. The State has traffic signals on Route

1, Route 139, Route 169 and Route 440. Each of these signals were located either on the

map provided in Figure 4.34 or on the updated schedule. To determine whether a given

accident location was at a signalized location, the location was looked up on the map. If the

location was at a signalized intersection, the Signal variable was coded 1. If it was not, Signal

was coded -1.

As shown on the Signal distribution in Figure 4.35, exactly one halfof all intersections

were signalized. The mosaic plat in Figure 4.36 shows that the variable Signal has a

disappointingly low significance with a p-value of 0.7556 and little variation amongst severity

levels. It will not be considered as a model variable.
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4.6 Socioeconomic Factors

4.6.1 Density

Density is defined as the population per square mile. High density areas might create more

street activity and numerous low impact accidents as high density areas may also slow down

traffic.

Data were available on the U.S. Census Bureau web site for each of the census tracts.

As shown in Figure 4.37, density ranged from a minimum of 310 persons per square mile to

a maximum of 60,245 persons per square mile with a mean of 29,698 persons per square mile.

The interaction plot shown in Figure 4.38 suggests that injury severity increases with

population density. Although, the curve is fairly flat and a high p-value of 0.4652, it may have

the potential to interact with other factors. As with other variables in the range of

significance, it will be reexamined during the model building stage.
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4.6.2 Income

To investigate the significance of income to accident severity, average income was obtained

from the US 2000 Census data. The census tracts were looked up for each accident using a

web site look up facility. Average income levels for each census tract were then applied to

the accident based on its census tract number. Figure 4.39 shows income levels ranged from

a minimum of $6,846 per person to a maximum of $67,435 per person with a mean of

$17,937.

The mosaic plot shown in Figure 4.40 shows a highly significant relationship between

injury severity and income, with a p-value of 0.0173. Examining the shape of the curve

reveals that injury severity increases with increasing per capita income. One plausible

explanation is that high income drivers who are preoccupied with cell phone and other

electronic equipment may be responsible for the serious accidents which result when the

motorist does not observe the bicyclist. Alternatively, high income victims may be more likely

to understand the financial implications of an accident any may also receive more sympathetic

treatment from the police. There is also the possibility that a few high income outlier points

may be responsible for the strong interaction. Nonetheless, Income will be included in the

model building stage.
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4.6.3 Land Use

Land use may affect the severity of an accident. Commercial areas tend to have high

volumes, slow moving traffic, frequent parking maneuvers, frequent transit stops and active

truck unloading zones. Residential areas have lower traffic volumes, with a larger percentage

of children bicyclists who use their bicycles for recreation as opposed to accessing working

or shopping destinations.

Jersey City has mapped its land use on a zoning map. Land use for each of the

records was determined by looking up the accident location on the zoning map. Those

accidents which occurred in areas zoned for some level of residential use were coded 1.

Industrial and commercial uses were coded -1. A distribution of residential use is shown in

Figure 4.41. As shown, slightly over a third or 35% of the accidents occurred in

nonresidential zones.

The mosaic plot shown in Figure 4.42 shows injury severity to be fairly constant

irrespective of the zoning. This may be a result of the fact that much of Jersey City was built

prior to the creation of zoning regulations. The present land use may differ greatly from the

formal zoning map. In any case, Resident with a p-value of 0.7970 cannot be

considered a candidate for inclusion into the model.
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4.7 Temporal Factors

4.7.1 Weather

Although weather is not a true model parameter, it is being considered for inclusion in the

model as a confounder. It is important to examine the effects of weather on the outcome of

the accident because if all other factors are equal, yet the accident severity varied due to the

weather, it would be incorrect to attribute all of the variance to non temporal factors. If

weather is ultimately included in the final model, it could be held constant to determine which

are the safest roads in dry conditions and then at a second level, in wet conditions. Weather

is derived from the NJDOT's accident database Weather field shown in Table 4.5.

Out of 314 records, only 4 had blanks Weather fields. These were assumed to be dry.

Only one accident occurred during a snowy condition. A distribution of the weather

conditions is shown in Figure 4.43. Over 90% of accidents occurred in dry conditions. Not

surprisingly, this confirms that few bicyclists enjoy riding in the rain.

Although the mosaic plot, as shown in Figure 4.44, does indicate a visible reduction

of injury accidents during good weather, the effect is not pronounced enough to produce a

high significance. With a p-value of 0.6034, the variable cannot be entered into the model.
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4.7.2 Daylight

Daylight was derived from the Lighting Condition variable in the NJDOT Accident database

as shown in Table 4.6. If the accident occurred during full daylight, the variable was coded

1. At all other times, irrespective of the lighting condition, it was coded as -1. Six accidents

had a blank value for daylight, but this value was imputed from time of day and month of

year.

The distribution of daylight accidents is shown in Figure 4.45. Out of314 accidents, roughly

one third, or 34.5% occurred during non-daylight hours. Surprisingly, the mosaic plot in

Figure 4.46 shows an actual increase in serious accidents during daylight hours. Possibly,

nighttime riders are more experienced and less likely to be recreational riders. Daylight, with

a borderline p-value of 0.1074 has a definite chance of ultimately becoming a model variable.
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4.8 Operator Factors

4.8.1 Age

Age is not truly a continuous variable although it may have a wide spectrum of values

between 0 (baby on bike seat) and 100, it need not be integer. Using Age as a continuous

variable implies a ratio relationship that does not exist. The severity of an accident for a 30

year old person is not expected to be less than the accident of a 35 year old person. The true

question contracts to "Was the victim a child or not?' The question of when the child is an

adult must be defined differently than the age of legal majority. A seventeen year old, 6' tall,

165 pound youth would not be expected to suffer a greater injury than a twenty-five year old

6' tall, 165 pound adult. It would be better to establish some criteria for height or weight

instead of age, but that information is not provided in police reports.

To determine the most appropriate age breakpoint for classification of Child, a series

of unilateral models were fit with severity and age as a categorical variable with breakpoints

of increasing age, similar to Stewart's (1996) CART method. To start, a unilateral model was

fit and a p-value obtained for the dichotomous variable, "Is the victim's age less than or equal

to 7 years? A second curve fitting was next done for the question, "Is the victim's age less

than 8 years?' which yielded a p-value of 0.8559. These cumulative age variables were tested

for 14 unilateral models ending with, "Is the victim's age less than or equal to 20T' The

results are shown in Table 4.7. For each age breakpoint, a p-value was obtained. From a

comparison of the p-values, fifteen years old was established as the breakpoint as it had the

highest significance with a p-value of 0.1150. Victims younger than 16 were classified as

children, Child =1. All others were classified as not children, or Child = -1.
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The NJDOT accident database provided the age of the victim in several fields. In

some records, the victim's age was provided in the occupant injury fields. On other records,

the date of birth was provided as the vehicle operator. The age data had to be extracted from

each of these fields after first determining which vehicle was driven by a bicyclist or which

occupant was the bicyclist. A number of missing fields had to be obtained by obtaining the

original accident report. Ten of the 314 accident records had no Age information. The

remaining 9 records were imputed in the following manner. Since 105 of the 305 records or

34.4% were classified as children, the unknown 9 records were designated, 3 children, 6

adult. This Child distribution is shown in Figure 4.48.

The mosaic plot shown in Figure 4.49 shows a pronounced reduction in severe

accidents which involve children. This observation may be anticipated because children

frequently get into accidents while playing in their residential neighborhoods. These accidents

are not as severe as those which occur while traveling in traffic.
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4.8 Data Summary

The data collection effort examined fifteen true variables (Width, Pavement, One_Way, Grade,

Volume, Parking, Bus, Highway, Density, Truck, Signal, Resident, Curve, Speed, and

Road_Div) and four confounders (Income, Child, Daylight and Weather). Of these variables,

only four (Width, Pavement, One-Way and Income) met the prescribed significance level of

0.10. Another twelve variables (Grade, Volume, Parking, Bus, Hwy, Density, Truck, Child

and Daylight) did not meet the significance level, but will be included in the model building

effort, in the event that they interact positively without variables which increases their

significance. Six variables (Signal, Resident, Curve, Speed Road_Div and Weather) were so

insignificant with p-values greater than 0.50, that they were eliminated from further

consideration. Several variables that were discussed in the Literature Review Section, such

as helmet use, alcohol involvement and gender were not included in this section due to scarcity

of data.



CHAPTER 5

MODEL DEVELOPMENT

5.1 Selection Criteria

Logistic software packages are available to quickly estimate the best coefficients for a model's

intercept and parameters which will maximize the model's likelihood of predicting the

observed data. The algorithms within the software perform this optimization only on a set

of user provided variables. It is the user's responsibility to select the variables which should

be included in the model. This task of determining which variables should be included in the

model and which should be omitted is both the most crucial and the most arduous task.

There are numerous models that can be developed from a given set of dependent

variables. If the model is limited to linear combinations to determine the logistic function,

then:



135

For the bicycle safety model, with nineteen variables under consideration, 19! or 3.56x10' 4

combinations could be considered. If higher order terms and interactions are included, the

number of viable models become practically infinite.

Obviously, a systematic method is needed to rationally identify the most likely

combinations lest the task becomes unmanageable. Before proceeding, it is essential to define

the precise criteria for choosing one model as the best model. One must resist the initial

temptation to seek the model which produces the maximum likelihood value as defined in

Equation 3.17 without regard to the significance of the individual independent variables. This

approach would be incorrect as even the most insignificant variables and even correlated

variables can increase the likelihood of the predictions. The resulting model would be overfit

to the data set from which it was derived. Its capacity to make valid predictions for other

data sets would be questionable.

Thus, the criterion definition for the "Best Model" is refined to seeking that model

which maximizes the likelihood function while using only variables which meet a specified

level of significance. Due to the inexact nature of human injuries and severity outcomes, a

90% confidence level should be appropriate. However, to satisfy reviewers who seek a more

stringent criterion, a second model will be identified meeting a 95% confidence level.

A final criteria refinement of parsimony using the least amount of variables will not

be the goal of this effort. Typically, researchers are motivated to obtain models that require

the least amount of data because smaller data sets are easier and less expensive to acquire and

maintain when using the model for application purposes. In this modeling effort, however,

the goal was to actually maintain as many variables as possible in order to evaluate the

magnitude and direction of their impact on the safety of a route. It was also observed that
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whenever a variable was added to the model, the log likelihood value was reduced. Thus, the

best model for research purposes is the model that includes as many significant variables as

possible and maximizes the log likelihood, although it may not be the most parsimonious

model that would be better suited for general practice. In summary, the criteria for

developing three models for discussions are as follows:

5.2 Variable Selection

The output for Model 0 is shown in Appendix A. It was built using all of the nineteen

variables. The whole model meets the goodness-of-fit test with its log-likelihood test of its

intercept and covariates equal to 0.0005, well below the target limit of 0.1. An examination

of its statistics for the individual beta tests, however, reveals that the p- value of many of the

variables grossly exceed the acceptable limits. Clearly, a parking variable with a p-value of
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0.9973 cannot be considered a significant variable and does not belong in the model. It is

tempting to delete all variables with p-values exceeding 0.10. In this haste good variables

may be unfairly eliminated due to unfavorable interactions with the insignificant variables.

One popular approach, is entitled Forward Selection. In this selection method,

variables are fit unilaterally with the response variable to determine their initial significance.

Then, one at a time, in order from most significant (lowest p-value) to least significance

(highest p-value), the variables are added to the model. Iftheir addition improves the model's

overall goodness of fit and individual variables continue to meet significance limits, the

variable is retained in the model. If not, the variable is removed. When a new variable is

retained in the model, the previously rejected variables are given another chance of inclusion

to determine if through interaction with the recently added variable, they now meet the

significance levels. The process continues until all variables are either included or rejected.

Unfortunately, the Forward Selection method can produce models that fail to include

variables which are not significant on their own, but are significant when combined with other

factors. Because these borderline factors are never entered into the model at the same time,

this interaction is never observed.

An alternative selection approach is entitled Backward Elimination. In this approach,

the full model is initially fit with all variables under consideration. Then, each of the variables'

p-values is examined. The variable with the highest p-value is dropped and the model is refit.

This process continues until all remaining variables meet the confidence level. Using this

method, Model 1 included in Appendix B, was developed including nine variables (Width,
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Volume, Density, One-way, Grade, Pave, Hwy, Truck and Daylight) and is included in

Appendix B. An in depth discussion of the significance of the model and these variables was

given previously in Sections 4.3 through 4.8.

If instead of a 90% confidence level, a 95% level was sought, the entire process would

be repeated using a p-value of 0.05 to allow entry of an explanatory variable into the model.

Using this criteria, a model was obtained by eliminating all variables with the exception of

Width, Volume, One-Way, Truck and Daylight. The SAS output for Model 2 is included in

the Appendix C.

5.3 SAS Statistical Measures

With the objectives of the model building process thus defined, it is now possible to use

statistical software to obtain candidate models from which to select the final model. While

there are many good statistical packages for doing logit regression, SAS is highly regarded

due to the efficiency and stability of its algorithms and quality of its documentation (Allison,

2001). Before comparing the results of different trials, it is beneficial to discuss the statistical

measures provided by the SAS logistic procedure output. This is accomplished by providing

a brief explanation of the SAS output for Model 1 contained in Appendix B.

5.3.1 Model Information

The first section confirms the basic analysis facts: the name of the data file is Bike Data; the

name of the dependent variable is Severity which has three increasing levels; the number of

observations which is 314 crashes; the model which is cumulative logit; and the Optimization

Technique, Fisher's Scoring which uses iteratively reweighted least squares to solve the

maximum likelihood equation.
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The cumulative probability relationships for a categorical response variable containing three

levels is defined as follows:

5.3.2 Response Profile and Class Level Information

The Response Profile section of the output then provides a distribution of the response

variable, Severity's levels: Level 1 (PDO has 59 accidents), Level 2 (minor injuries has 146)

accidents and Level 3 (serious injuries has109 accidents). It reconfirms that the software will

proceed under the assumption that they are cumulative from the lower level of 1 to the higher

level of 3. The class levels are defined for the six categorical variables: One-way, Grade,

Pave, Hwy, Truck and Daylight.

5.3.3 Convergence Status

The Convergence Status section verifies that the optimization technique was able to produce

a solution which converged within the allotted number of iterations.

5.3.4 Proportional Odds Test

The Score Test for the Proportional Odds assumption verifies whether the ordinal restrictions

are valid. The model was built assuming that the log of the curve for each level of Severity

was parallel but shifted by a constant intercept, a. If the proportional odds test fails, this
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assumption must be rejected and separate curves fit for each level of Severity. High p-values

are desirable signifying that there is no reason to reject the form of the ordinal model. The

reported value of 0.5062 is good.

5.3.5 Model Fit Statistics

The Model Fit statistics for Model 1 report the negative of twice the log of the maximum

likelihood equation for both the intercept only, "Constrained Condition," and the intercept

and covariates, "Covariates Model." Note, since the log-likelihood is actually a negative

number, by multiplying it by -2, the maximum likelihood is actually represented by the lower

number. The constrained condition equation is essentially the log of the averaged odds ratios

of the severity which is equal to 651.542. It assumes that the inclusion of the covariates will

have no effect on the predicted outcomes. The Covariates Model calculates the maximum

likelihood using the fitted model which is equal to 615.735.

Other model fit statistics are also provided. The Akalke's information criterion (AIC)

is calculated as:

The motivation of the AIC is to penalize the likelihood (increasing -2 log-likelihood value)

as the number of variables are added to the model. The Schwartz Criterion (SC) produces

an even harsher penalty with a value calculated as



These measures are only valuable when the goal is to seek the most parsimonious solution.

5.3.6 Global Null Hypotheses

The Testing Global Null Hypothesis: Beta4) section uses the log-likelihood of the intercept

only equation to compare it with the fitted equation using a chi-square table for the given

degrees of freedom. The difference between these two values is the chi-square value reported

in the Likelihood Ratio. It determines whether the probability of such an improvement could

occur randomly or in common terminology, whether the model is better than nothing. For

the model to meet a 90% confidence level, the p-value must be less than or equal to 0.10.

The likelihood ratio of Model 1 has a p-value of less than 0.0001 as shown in Table 5.1.

Again, SAS performs two additional tests to supply options for other researcher's

preferences. The Score statistic is a function (a quadratic form) of the first and second

derivatives of the log-likelihood function under the null hypothesis. The reported Score and

Wald statistics are 0.0001. Generally, there is little difference between the two, but in small

samples with extreme data patterns, Jennings (1986) has demonstrated that the likelihood

chi-square ratio is superior.
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5.3.7 Maximum Likelihood Estimates

Using the model fitting algorithms, SAS determines the estimates of an alpha for each of the

intercepts and a beta for each of the explanatory variables along with their standard errors.

The Wald chi-squares are computed by dividing the beta estimates by their standard error and

squaring the results comparing to a chi-square table to determine their p-values which may

be interpreted as the probability that their contribution to the model is random. Depending

on the desired confidence limits the p-value must be below 0.10 (90%) or below 0.05 (95%).

The significance of each of the model variables are discussed in depth in Section 5.4.

5.3.8 Odds Ratio Estimates

The coefficients of a logistic model are difficult to interpret. In linear regression, the

coefficients can be examined for their magnitude and slope. For example, a slope of -5

implies that a unit increase in the variable would reduce the value of the overall equation five

times the value of the variable. Due to the logistic transformation which was used to fit the

model, this relationship with the estimated coefficients is not valid.

Instead, it is possible to interpret the impacts to the odds ratio by exponentiating these

coefficients. The odds ratios reported in this section are the exponent of each of the

coefficient estimates for the curve fitted for each of the severity level curves. These parallel

curves are interpreted as the change in the ratio of a probability of a given severity level, for

example, the shift from a PDO accident to an injury accident based on a unit change in the

variable. Thus, an odds ratio less than 1.0, such as Grade with 0.466 implies that the odds

of a PDO only accident of(1-0.466) or 54.4% lower than those accidents which do not occur

on road sections with grade. Conversely, an accident which occurs on a section of roadway
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which was paved in the last ten years is (1.550-1) or 55.5% more likely to produce a PDO

accident than one which occurred on a road section that had not been maintained. The

confidence intervals provided are determined by the defined by the defined level of confidence

set at 90% for Model 0 and Model 1 and 95% for Model 2.

5.3.9 Predicted Probabilities and Observed Responses

The model's ability to predict the observed outcome is determined by a different set of

criterion than the one used to determine how well the data is fit. In linear regression, the

coefficient ofdetermination R2 is used. Logistic models cannot be evaluated using R 2 because

this value is based on the ratio between the explained error and the total error. Since logistic

functions predict probabilities, not precise values, there are no error terms to evaluate.

SAS provides four measures to evaluate the model's predictive power. These

measures are derived by evaluating all of the data points as a series ofpairs. The total number

of N pairs that exist for the bicycle accident data set with 314 records is:

Those pairs with identical severity levels are eliminated leaving a total of P = 30,959 pairs

in this case. The question is then asked whether the model would properly predict a higher

value for the record with the higher severity level and a lower value for the crash with the

lower severity level. If the answer is yes, the pair is deemed Concordant. The total percent

of Concordant pairs is C or 64.6%. If the answer is no, the pair is deemed Discordant. The

total percent of Discordant pairs is D or 34.5%. Pairs which have equal ratings or tied are

labeled T. The total percent of tied pairs is 0.8%. The measure of concordance(C),
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discordance (D) and ties (T) are used to calculate the four measures of the model's predictive

power. These measures entitled the Sommers'D, Gamma, Tau-a and c are useful when

making comparisons between candidate models. They are defined below as:

A preferable measure of a model's predictive ability is the generalized R 2 value

developed by Cox and Snell (1989) which is constructed as:

where n is the sample size and L is the likelihood ratio chi-square which is -2 times the

difference in the log likelihood of the fitted constrained (intercept only) model and the fitted

unconstrained (intercept plus covariates) model. Substituting these values into Equation 5.12,

produces:

The use of this generalized R 2 is recommended because it is based on log-likelihood, the

quantity that is being maximized, it never diminishes when variables are added to the model,

and its calculated values are usually quite similar to the R2 obtained from fitting a linear
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probability model by ordinary least squares. Using this measure of predictive power, the

model fit in Equation 5.13 with a R2 of 0.9677 would be expected to have a strong predictive

power.

5.4 Model Interpretation

Given the results of the model building effort, the logit can be constructed for the beta

estimates. These estimates, p-values for the individual variables as well as the overall model

are presented in Table 5.1 for all the models. Returning to Model 1 out of Appendix B, the

section entitled Analysis of Maximum Likelihood Estimates provides the estimated beta for

each of the explanatory variables. The logit equation derived from Model 1 is:

If this model were linear, instead of logistic, it would be possible to interpret the magnitude

and direction of the impact of an individual variable. For example, if this model were the

result of a linear regression, a unit change in width would reduce the response variable by

7.28%. This is a logistic model and Z is not severity. From Z, the probability that Y is less

than or equal to a given level of Severity can be predicted using the logistic transformation

of:



146

Because the coefficient estimates cannot be used to directly interpreted the effects of the

explanatory variables on the model, SAS provides Odds Ratio Estimates. The odds ratio is

defined as the ratio of the probability of an event occurring to the probability of that event not

occurring.

Thus a variable with an odds ratio of less than 1.0 can be understood to be a section of

roadway along which that variable has (0.R.-1.0)% less chance of having a PDO, Severity

Level 1, accident than an accident without that condition. On the other hand, a variable with

a O.R. greater than 1.0 implies that a section of roadway possessing that particular condition

has a (0.R.-1.0)% greater chance of having a PDO (Severity Level 1) accident. An O.R.

equal to 1.0 implies that the variable has no impact on the severity level. While none of the

explanatory variables included in Model 1 have O.R. equal to 0, three variables (Pave,

Highway and Grade) do contain the origin in their confidence intervals. The O.R.s will be

examined for each of model's explanatory variables.
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5.5.1 Width

The odds ratio of Width is 0.930. Thus a unit or 1' increase in the width of a curb lane will

be 0.930-1.0 or 7% less likely to have a PDO accident. With a p-value of 0.0129 for its chi-

square test, Width is one of the more significant variables in this model. At first the direction

of Width's impact may appear counterintuitive. It may be anticipated that wider streets are
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safer for bicyclists, yet wider streets may also produce higher operating speed. Wide lanes

allow cars to pass bicyclists without changing lanes, thus creating an environment for the most

fatal bicycle accident typology. Without designated bike lanes, wide roads in Jersey City

have produced more serious accidents. Width ranges in the database from a minimum of 7'

to a maximum of 30'.

5.5.2 Volume

The odds ratio for Volume is 1.090. Thus a unit of 1000 increase in ADT of Volume will

produce (1.090-1) or 9% increase in the probability of producing a PDO accident. With a p-

value of 0.0482, Volume would be included in a 95% model. As in Width, the direction of

the Volume effect is counter-intuitive. As volume increases the severity decreases. Again,

the underlying cause may be the operating speed. As volume increases, speed decreases.

Volume (1,000's) ranges from 0.250 to 13.478 ADT.

5.5.3 Density

The odds ratio for Density is 0.980. Thus a unit increase of 1000 persons per square mile

increases the probability that an accident will be a PDO accident by 2%. Increased

population density would generate more car bike interactions than a sparsely populated area.

5.5.4 One-Way

The odds ratio for One-Way streets is 0.535. Thus a One-Way street is (0.535-1) or 46.5.1%

less likely to have PDO accidents. It was anticipated that One-Way street having fewer points

of conflict would produce less severe accidents than two way streets. This false sense of

security may encourage both bicyclists and motorists to be less attentive. Bike riders may be
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more likely to ride on the wrong side, i.e. left side of the street, and be less cautious when

turning left than on two-way streets. Also, one-way streets tend to possess wider lanes and

operate at higher speed than their two way counterparts. With a p-value of 0.0100, One-Way

streets is a highly significant explanatory variable.

5.5.5 Grade

The odds ratio for Grade is 0.466. Thus a roadway section with a Grade is (0.466-1) or

52.4% less likely to have a PDO accident than a flat roadway. This effect was anticipated in

that steep roads produce higher bicyclist speeds on the downslope and maneuvering and line

of sight problems on the upslope. However, with a p-value of 0.0680, Grade would be

dropped from a 95% confidence model.

5.5.6 Pave

The odds ratio for Pave is 1.550. Thus a roadway section which was paved in the past ten

years is (1.550-1) or 55% more likely to have a PDO accident than a roadway section with

an older pavement surface. As anticipated, smoother riding surfaces and/or the presence of

bicycle safe grates create safer bicycling conditions for bicyclists. The significance of the Pave

variable is also borderline with a p-value of 0.0568 which would just miss being included in

a 95% confidence model.

5.5.7 Highway

The odds ratio for Highway is 0.355. Thus, a roadway section which is on a State highway

is (1-0.355) or 64.5% less likely to produce a PDO accident than an accident which occurred

on a county or local road. Not surprisingly, bicyclists operating on State Route 1 or 440, are
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more likely to being seriously injured than a bicyclist on Grove Street, a local street. State

highways are designed for and consequently posted for higher speeds. Thus, motorist on

state highways operate at higher speed and do not anticipate the presence of bicyclists. The

resulting high speed collisions cause more serious injuries. Highway's p-value of 0.0565

would also be considered a borderline variable at a 95% level.

5.5.8 Truck

The odds ratio for Truck is 0.452. Thus, a truck route is (1-0.452) or 54.8% less likely to

produce a PDO accident than a non-truck route. Certainly, any bicycle accident with a truck

would produce serious injuries. Even non-truck accidents may increase the likelihood of

serious injuries as trucks reduce visibility for all vehicles. Trucks also make wide right hand

turns and may not see a bicycle passing on the right in their blind spot. Based on these

findings, it would be inadvisable to locate bike routes on truck routes. The truck variable is

very significant with a p-value of 0.0076.

5.5.9 Daylight

The final explanatory variable Daylight is not a function of the location, but it is included as

a confounder. Its effect on the injury outcome can be held as a control while calculating

predictions for accident severity. The odds ratio for Daylight is 0.578. Thus, accidents

occurring during the day are (0.578-1.0) or 42.4% less likely to have a serious accident than

a nighttime accident. This is surprising because it would be anticipated that the better

visibility during the day would produce less severe accidents. Since Jersey City is an urban

area with street lights generally present at all locations, it is possible that there are less
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children and less recreational bicyclists during non-daylight hours. Certainly, the causes for

this observation should be explored further. Daylight is a very significant variable with a p-

value of 0.0176.

5.6 Predicted Probabilities

For comparison purposes and to understand the application ofthe model results, consider two

roadway sections. Section 1 possesses all of the most favorable conditions to make it the

safest section for bicyclists. The values of its explanatory values are: Width = 7', Volume =

13.478 (000) ADT and Density = 0.310 (000) population per square mile. Its roadway

section is not a one-way street. It does not have a grade, has been paved during the last ten

years and is not a state highway or a truck route. The accident severity is determined for

evening conditions. Under these conditions the probability of is calculated as follows:

These calculations state that an accident which occurred on a roadway section that possessed

all of the most favorable attributes, the resulting injury would have a 95.2% probability of

being a PDO, a 4.3% chance of being a minor injury and a 0.5% chance of being a serious

injury. On the other extreme, hypothetical scenario was envisioned where all of the factors

were as negative as possible, then the predicted severity distribution would be a 0.4%
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probability of being a PDO, a 3.0% chance of being a minor injury and a 96.6% chance of

being a serious injury.

These probabilities show that this hypothetical scenario was created only for

discussion purposes. Its existence is extremely impossible because there are no roadway

sections that meet all of these conditions. State highways simply do not exist with 30' lanes

experiencing only 250 ADT that are also truck routes on one-way streets.

Now that these two extreme conditions have been calculated, the question remains

as to how well would the model would predict injury severity levels on independent data.

Unfortunately, the data set was not large enough to retain a portion for validation. For

information purposes only, the model was applied to the conditions of each of the 314

accident records will produce a probability for each of the severity levels. The severity level

with the highest probability is designated as the predicted value. The predicted values are

summed over each of the observed levels to produce the following cross tabulation, shown

in Table 5.2.



153

Using this approach, the model overestimates the severity of PDO injuries and underestimates

the magnitude of serious injuries. Only 8.5% of Level 1 and 33% of Level 3 injuries were

accurately predicted. Level 2 predictions are better with an overall accuracy rate of 78.1%.

Accuracy over all levels is 49.4%. While 49.4% may not sound impressive, a comparison

with the one-third chance of randomly predicting the injury severity demonstrates that the

model has improved predictions by an additional 16.1%.

Table 5.2 oversimplifies the model's capabilities. By selecting a predicted value from

a set of probabilities from each of the severity levels, much of the predictive power is lost.

Imagine two hypothetical predicted probability distributions that both predict a minor injury,

but possess the following probability distributions for the [P(Y=Level 1), P(Y=Level 2),

P(Y=Level 3)] of (0.49, 0.51, 0.0) and (0.0, 0.51, 0.49). Clearly the first prediction is a safer

street with a lower expected value of injury severity than the second scenario. The

shortcoming of relying on cross tabulations is that once the prediction is made, the

information contained in the probabilities distributions is lost.

Another measure of the model's performance is its Log-Likelihood. The log of the

predicted probabilities of the observed levels are summed over each of the 314 observations.

If, for example, the observed level was Level 1 and the model made a perfect prediction, the

probability of a Level 1 would be 100% and its log likelihood would be Ln(1) or 0. If each

of the predictions for the 314 accidents were perfect, the sum ofthe log likelihoods would be

314*0 or 0. Conversely, if each of the predictions were completely wrong, they would have

a probability of O. Logs of 0 are not possible, but as the probability approaches 0, its log

approaches negative infinity. Summing these infinitely low numbers over all records produces

an infinitely low number. Thus, as the log likelihood decreases and approaches zero, the more
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effective is the model. The model's prediction over the 314 records produced a total log-

likelihood of 615.738/-2 or 307.86 with an average of -.9805, or an average predicted

probability of e- 9805 or 0.3751, not much better than a random probability of 0.3333.

Probably, the most effective measure that incorporates the full spectrum of the

predicted probabilities is the expected value. Constructing the expected value as

Returning to the two extreme cases discussed at the beginning of this section, the

expected value for the most favorable conditions is computed in Equation 5.18. Thus the

expected severity for an injury which occurred on a roadway section possessing all of the

most favorable conditions would be SI = 1.333 or approximately Level 1 (PDO.)

Conversely, if all of the conditions for a roadway section happened to be the most

unfavorable, a parallel computation would result in an expected value of 2.997, an almost

absolute certainly that the injury would be of the highest level. The expected value for the

most unfavorable conditions is computed in Equation 5.19.

If a similar calculation is performed on each of the accident records, each of the

expected values could be calculated. Averaging the expected values over each of the

Severity levels produces expected values for Level 1, Level 2 and Level 3 of 2.041, 2.205

and 2.465 respectively. Clearly, the model is able to distinguish between each level.
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Ultimately, the goal is to use the model for comparing one prospective route to another.

For this reason, the expected value is the best measure for making these public policy

decisions. This expected value method will be used in Chapter 6 to compare sections of

bicycle routes in Jersey City.



CHAPTER 6

MODEL APPLICATION

6.1 Jersey City Transportation Profile

As stated in the data section, Jersey City located in Hudson County, New Jersey was chosen

for the study location because of its urban character, the author's familiarity with the street

network and the availability of data. Aside from these practical considerations, there are

important reasons why Jersey City is particularly suited for bicycling.

Hudson County is compact and densely populated. According to the 2000 census,

608,975 people live within a total land mass of 46.69 square miles creating a population

density of 13,043 people per square mile, which is nearly 13 times the state average of

1,134.4 persons per square mile. This is the highest population density in the state of New

Jersey, already the most densely populated state in the nation. This density creates many

employment opportunities within "bikeable" distances. In fact, over 47% of Hudson County

residents work within the county. There are many accessible retail destinations such as the

Newport Mall. There are also excellent recreational attractions from the Hudson Waterfront

walkway with its views of Manhattan, to Liberty State Park and access to Ellis Island.

Jersey City's superior transit system with the PATH subway, the Hudson Bergen

Light Rail System and numerous bus line already produces an admirable modal split that

approaches a 33% transit share in the downtown area. As development continues, even with

good modal splits, additional vehicles are still added to the roadway network. Diverting a

156
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portion of these trips is desirable. Bicycle trips could replace auto trips to transit

Park'n'rides. Coupled with transit, bicycling can serve as an intermodal link to jobs in

Manhattan, Newark and suburban New Jersey.

In addition to all of the aforementioned reasons to bicycle, there are equally strong

disincentives to drive. Jersey City's streets are congested. Trans-Hudson commuter traffic

clogs its interstates and state highways as each day over 80,000 vehicles use the Holland

Tunnel. Every work day roadways in Jersey City including the New Jersey Turnpike, New

Jersey Route 1&9 Truck, the Pulaski Skiway and Tonnele Circles exceed capacity. Trans-

Hudson traffic destined for New York spills onto the City's street network already congested

with vehicles traveling to local destinations. Normal operating speeds of less than 10 miles

per hour are common. Given the operating conditions of Jersey City streets, a bicyclist can

complete his trip in less time than a car.

Even when the vehicle is not moving, Jersey City motorists face obstacles. Many of

the residents of pre-automobile neighborhood developments have no access to off-street

parking. Parking garages and lots are expensive, charging as much as $20 per hour in the

waterfront commercial districts. The little on-street parking remaining after reductions for

bus stops, fire hydrants, loading zones and handicap parking is frequently metered or

restricted by the parking permit program. High accident and auto theft rates and, as a result,

high auto insurance rates, make auto ownership in Jersey City an expensive proposition. In

1998, CNN named Jersey City as the auto-theft capital of the nation with 1 out of every 36

vehicles stolen.

Not to be overlooked is the most important factor in the bicycle mode split equation -

the population from which the potential bicyclists are drawn. Jersey City has a high percent
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(38.5%) of immigrants. An immigrant, coming from countries where bicycling is a dominant

mode of transportation, with some encouragement is likely to continue riding in his new

home. Also, stricter driver license regulations for foreigners have increased the difficulty of

obtaining driver licenses.

As demonstrated in the description above, Jersey City is an attractive place to bicycle.

Car operation is difficult and costly. The population has a large concentration of potential

bicyclists. Then, why aren't more people bicycling? The reasons stated nationally for not

bicycling include no secure place to leave bicycles, too dirty and too dangerous (Goldsmith,

1992). Jersey City could do much to change both the perception and the reality of bicycling

risks. Through the adoption of a bicycle master plan and through its implementation with

signage and striping, bicyclists could ride, confident in knowing that their local officials had

provided the safest route for their trip.

6.2 Jersey City Bicycle Plan

The Transportation Policy Institute, a unit of the Alan M. Voorhees Transportation Center

within the Edward J. Bloustein School of Planning and Public Policy at Rutgers University,

in conjunction with the Jersey City Division of Planning developed a Jersey City Bicycle

Master Plan (Rutgers, 2000). The goal of the plan was to develop a comprehensive bicycle

program in Jersey City by providing guidelines for bicycle lanes, shared use lanes, bicycle

parking and bicycle friendly community development. The plan provided a network of

recommended bicycle routes for Jersey City to incorporate, over time, into its existing road

system.
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The planners defined the benefits of bicycling. For the bicyclist, they contended that

the bicycle was fast in maneuvering through traffic jams and required little time to locate

parking spaces. It was convenient as most destinations within the city could be reached in

less than twenty minutes from the city center at Journal Square. It was healthy exercise. It

was inexpensive to operated since the cost of acquisition and maintenance was much lower

than that for an automobile and it does not need insurance, registration and fuel.

The report also noted that increased bicycle usage benefits non-cyclists. Diverting

automobile trips to bicycle trips reduced congestion, air pollution and wear on roads.

Allocations of land for highway expansion and parking garages also could be reduced.

Bicycle usage provided access to jobs thereby reducing unemployment.

The planners acknowledged that although Jersey City was an ideal location for

functional and recreational bicycle travel, roadway safety issues and lack of secure bicycle

storage areas discourage its use. Their goal was to:

1. Encourage bicycle use in the city

2. Reduce conflicts between bicycles, motor vehicles and pedestrians.

3.	 Encourage bicycle tourism

To accomplish these goals, the Plan made the following recommendations:

A. Implement a well-connected network of bicycle lanes and share use lanes that

connect and bring the city's diverse neighborhoods together.

B. Install safe and visible bicycle parking facilities at all major destinations.

C.	 Apply for state grants explicitly available for bicycle projects.
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Three criteria were used to develop the proposed bicycle route network. The first

criterion focused on making the routes "destination focused," i.e. providing access to major

destinations such as PATH stations, shopping districts, parks and schools. Second, the route

selected must be able to accommodate the bicycles without reduction in parking and roadway

capacity. Finally, the plan sought to service the entire city with no origin more than one-

quarter mile from a bicycle route. The plan did not address the safety of the routes.

A map of the recommended citywide bicycle Network is shown in Figure 6.1. As

depicted, numerous routes have been designated. Many of these routes are redundant.

Because of constrained funding, it is advisable to identify which routes will be the safest and

what investments are needed to improve the route safety. As a demonstration of the decision

making capabilities of the bicycle routes safety model developed in this research, the plan for

the Jersey City Heights section of the city will be examined.
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6.3 Jersey City Heights Bicycle Route Comparison

The Heights, formerly, Hudson City, was the last city to be amalgamated into the present-day

Jersey City. Although it has no PATH service, it is serviced by many bus routes and

ultimately the St Street Hudson Bergen Light Rail Transit (HBLRT) station will be connected

to the Heights with an elevator. Four north-south streets are recommended for inclusion by

the plan: Paterson Plank Road, Palisades Avenue, Central Avenue and Kennedy Boulevard.

A map of the Recommended Bicycle Network for the Heights is shown in Figure 6.2. Field

observations were conducted during a non-peak period, Sunday afternoon, April 13, 2003.

Each of the comparison sections were bicycled. Finally, these observations were compared

with ratings obtained from the safety rating model. As shown, all four roads provide access

between Franklin Street and Congress Street. The objective is this exercise is to determine

which one of these streets is the safest choice for a bicycle route.
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Figure 6.2 Recommended Bicycle Network - The Heights.
Source: Rutgers Transportation Policy Institute, Jersey City Bicycle Plan, Report prepared for the City of
Jersey City„ New Brunswick, New Jersey, April, 2000.
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Figure 6.3 Kennedy Boulevard.

Kennedy Boulevard, also known as County Route 501, is a two-way, four-lane arterial

beginning at the Jersey City /Bayonne border at milepost 26.7 and extending to milepost 32.7

at the Jersey City West New York border. As shown in Figure 6.3, it is primarily residential,

but also includes retail and small commercial offices. It is zoned R-1, single family residential.

Although its speed limit is 25 mph, most vehicles travel between 30 and 35 mph. On-street

parking is allowed on both sides of the street. Most intersections are signalized.
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The road is relatively flat with a fairly good surface, free from potholes and rutting. The No.

D5 5/WS, H1, I-12 and I-15 buses stop on Kennedy Boulevard. Kennedy Boulevard is not a

truck route.

Bicycling on Kennedy Boulevard was not a comfortable experience. Despite the

option of the second lane, cars frequently remained in the curb lane to pass. Passing was done

at high speed and with tight lateral clearances between the motor vehicle and bicyclist. The

general perception was that the motorists were "in a hurry" and had no time to be courteous

to bicyclists. Frequent traffic signals which were synchronized for motorists forced bicyclists

to stop frequently. There was a strong temptation to "run the light" especially at intersections

without cars visible at the cross streets.

The consensus was that Kennedy Boulevard could be a safe bicycling route if it were

supported by a driver education program. Informative signage encouraging drivers to be

courteous to bicyclists and to shift left when passing would greatly contribute to bicycle

safety.



Figure 6.4 Central Avenue.

Central Avenue, as shown on Figure 6.4, is a busy two-way, two-lane retail arterial. Many

shops, small offices and restaurants give it a typical urban bustle. Parking is primarily on-

street metered with numerous parking maneuvers per hour. Traffic signals are frequent. The

grade is relatively flat. The street surface was excellent as it had been newly resurfaced. It

is zoned Neighborhood Commercial. The No. 87 and privately operated Central Avenue bus
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lines serve Central Avenue. Its operating travel speed hovered between 10 and 15 mph

allowing the bicyclists to keep up with and even pass moving traffic. Central Avenue is not

a truck route.

The field observation confirmed that the street was narrow, at times forcing cars to

wait for gaps in opposing traffic before passing the bicyclists by shifting close to the double

yellow centerline. The narrow street also discouraged the bicyclist from easing forward

between parked cars and queued cars at red lights. Numerous parking maneuvers required

constant attention to avoid collisions with opening doors. Yet, the high level of activity on

the avenue seemed to force both the motorist and bicyclist to be more attentive. Central

Avenue drivers seemed resigned to the numerous delays from parked cars, buses and

pedestrians. No one appeared to try to "make good time." Surprisingly, the level of activity

made the overall experience of bicycling on Central Avenue both exciting and enjoyable.
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Figure 6.5 Palisade Avenue.

Palisade Avenue, as shown on Figure 6.5, is a two-way, two-lane arterial. Its uses are

primarily residential, although some retail and small offices are present. Parking is primarily

on-street metered with moderate level of parking maneuvers per hour. Traffic signals are less

frequent than Kennedy Boulevard and Central Avenue. The grade is relatively flat. Sections

of roadway were in poor condition. It is zoned R-2 multi-family residential.
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The No. D99S, 67, 68, 84, 86, and 87 buses serve Palisade Avenue. Palisade Avenue is not

a truck route. Palisade Avenue is not a truck route. Its operating travel speed ranged between

20 and 25 mph.

Similar to Central Avenue, field observations confirmed Palisade Avenue to be very

narrow. Passing motorists frequently waited for gaps in opposing traffic before squeezing next

to the centerline. However, with the absence of Central Avenues marketplace ambiance, the

Palisade Avenue motorists seemed less patient. On occasion, the presence of potholes forced

the bicyclists to swerve into traffic at inopportune times.
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Figure 6.6 Paterson Plank Road.

Paterson Plank Road Avenue, as shown in Figure 6.6, is a two-way, two-lane retail arterial.

Its uses are primarily industrial with limited access points. Parking is not allowed. The only

traffic signal is at the intersection of Paterson Plank Road with Congress Street. The grade

is steep in several locations. The road is currently being reconstructed. It is zoned R1 and R3

multi-family mid-rise residential. Busses 85, 87 and 89 serve Paterson Plank Road. Paterson

Plank Road is a truck route. Its operating travel speed during non-peak hours ranged between

30 and 35 mph.
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Bicycling south on Paterson Plank Road was an exhilarating and, at times, frightening

experience. The Manhattan skyline created a dramatic vista to the east and the cliff of the

Palisades on the west, made this a exceptionally scenic route. Traveling downhill, speeds

exceeding the 25mph speed limit were reached. It was a pleasurable experience, but

potentially dangerous, especially in wet weather conditions. The many blind driveways posed

an additional hazard. The wide carriageway would lend itself easily to the installation of

bicycle lanes.

6.4 Numerical Analysis

The safety rating model was applied to the sections of Kennedy Boulevard, Central Avenue,

Palisade Avenue and Paterson Plank Roads discussed previously in this chapter. Each ofthese

sections which were bounded by Congress Street on the north and either Franklin Street or

Manhattan Avenue on the south, are approximately 0.60 miles in length.

Prior to entering the data into the model, the following simplifications were made to

reduce the number of calculations. First, since the expected value will be the measure for

comparison, a direct equation for the routes' expected accident severity will be derived in the

following manner:



Two of these variables (Highway and Daylight) are in practice, unlikely to be treated

as variables and are more appropriately set as constants. Highway is not a true variable. It

helped to explain a number of severe accidents which occurred on State highways and thus

improve the predictive power of the model. However, highways will never be seriously

considered as bicycle routes. Therefore the highway variable may be fixed as -1 i.e. no.
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Daylight should be treated as a model confounder. It is not specific to the location, but

was found to be significant in fitting the model to the data. It may be fixed at +1 (daylight) for

comparison purposes. Using these assumptions, the logit model may be reduced to:

The constant term +0.2430 can be removed from the calculation of Z by using it to modify the

two model intercepts a l and a2 in the following manner:

Table 6.1 incorporates these simplifications in order to efficiently assign an expected levels of

severity for each of the considered roadway segments.

Examining the expected values for all four segments, it is clear that Paterson Plank

Road being a truck route with a steep grade and wide lane width would be a poor choice for

a bicycle route. While the three remaining roads have relatively low indices, Kennedy

Boulevard would be the preferred choice by a narrow margin.
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Before a final recommendation is made, particularly if other factors favor a specific

route, the planner may consider "What if?' scenarios which may mitigate a selected route.

In the evaluation considered above, one might consider what if both Palisade Avenue and

Paterson Plank Road were paved. Both roads have received grant funding and paving plans

are currently in design. Another consideration would be to reduce the lane width of Paterson

Plank Road by installing a 4' bike lane. Incorporating these three mitigations would produce

Table 6.2.

Now paving Palisade Avenue improves its index and is preferable to Central Avenue

and Kennedy Boulevard. Paterson Plank Road, due to its grade and lower volume, still is the

least preferable choice of the four roads. Based on this analysis, Palisade Avenue would be

the preferred as the safest route. The other routes may be recommended for convenience or

aesthetics, but a mapping of the area would designate Palisade Avenue as the safest route.

This section has demonstrated how the bicycle route safety rating model can be applied

to rank alternative road sections. Route ratings can be developed for routes consisting of

many linked non-homogenous sections by computing a weighted average rating based on

segment length.



CHAPTER 7

CONCLUSIONS AND FUTURE RESEARCH

7.1 Summary

The objectives of this dissertation were to develop a practical model to rate the safety of

bicycle routes. The rating would provide bicycle route planners with a tool for the

comparison of alternate routes. It would also allow planners to formulate capital programs

to improve bicycle routes by enabling them to conduct cost benefit analyses on selected

factors which impact bicycle safety. The model developed used the following multivariate

ordinal logistic transformation to define the bicycle route safety rating (RS) as:
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Each ofthe model's variable coefficients is statistically significant at a 90% confidence

level. The sign and the magnitude of the model's variable coefficients provide route planners

and bicyclists with a new understanding of factors which increase or reduce the safety of

chosen routes. Some of the recommendations appear to confirm the obvious. For example,

new pavement that included the installation of bicycle safe grates are desirable factors, steep

grades and truck routes are dangerous. Other recommendations provide new insights into

the realities of bicycling in urban areas. As an example, contrary to common belief, neither

increased lane width nor reduced traffic volume increases bicycle safety. This research has

demonstrated that in fact, reduced lane width and increased traffic volume reduces the injury

severity, possibly by calming traffic.

An important conclusion to be drawn from this understanding of the factors which

affect route safety is the acceptance that bicyclists need not be relegated to deserted,

circuitous routes in a city's outskirts. Bicyclists may safely choose direct routes through the

city center. Bicyclists need not be segregated from the traffic stream. Through wise route

choice and public education, bicycles could safely become an important mode of urban

transportation.

7.2 General Applicability

The model developed in this research has demonstrated its usefulness in predicting the safety

of proposed bicycle routes in Jersey City. Can this model be applied to other cities? Can it

be applied to other regions of the country? Can it be applied to rural areas? These questions
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can only be answered through the study of other accident databases. The model's predictive

properties can be evaluated by comparing its success in predicting the observed injury

severities.

The answer to the questions of the model's general applicability may be no. The

model was developed by fitting it to four years of Jersey City data (314 accidents) which

determined both the selection of the variables and the values of their coefficients. To achieve

a model which could be applied to other locations across the state or across the nation, a

larger database is recommended.

Nonetheless, the development of this safety prediction model for Jersey City has

demonstrated a valid method for creating objective safety prediction models. Using this

method, customized models could be developed for other communities. Statewide or national

databases could produce a model with broader applications. Better results may be obtained

by segmenting the data and producing separate models for rural, suburban and urban

jurisdictions.

Despite the possibility that the model may be limited to either Jersey City or other

mature, urban areas, the goal to obtain an objective means to predict the safety of a bicycle

route has been accomplished. Prior to this research effort, such a method did not exist.

Current practitioners of bicycle route planning either totally ignore route safety or erroneously

use traffic volumes as a measure. Concern for the safety of the bicycling public indicates that

this problem should be addressed. Further research and development is advised.
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7.3 Future Research

Data limitations constrained the model development in a number of significant ways. Future

research should address these issues to improve the accuracy of the model. Specific

improvements needed are discussed below:

7.3.1 Injury Reporting

The severity index was established based on the NJDOT accident database field for "most

serious injury" which had been completed by the police. The reliability of these assessments

is limited since the assessments are made without the benefit of a medical examination. The

CODES program is working to corroborate police and hospital records. At this time, New

Jersey has not received CODES funding. Future modeling efforts should use medical

assessments, not police reports to establish the model's response variable.

7.3.2 Speed

Speed was found to be an insignificant variable during the model fitting stage. As suggested,

this finding may be a result of the fact that operating speed and posted speed may vary

greatly, especially in congested areas. The significance of a number of explanatory variables

such as lane width and traffic volume may be linked to their interaction with operating speed.

In fact, there is the possibility that operating speed could be the most significant predictor of

a bicycle route's safety. Technology exists to take field measurements of operating speed.

The outcome of developing an accurate and simplified model would justify the cost and time

to undertake such an effort.
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7.3.3 Pavement Quality

Pavement age is used by the model to predict route safety. A better indicator would be

pavement quality. At this time, however, Jersey City has not adopted a uniform paving rating

system. A true pavement rating functioning as a continuous variable may have better

predictive properties that the categorical "Pavement Age less than 10 years." It is

recommended to repeat this model fitting method using a city with a current pavement

management system. Unilateral model fitting will evaluate the significance ofpavement rating

on injury severity.

7.3.4 Volume

The data used for volume was spread over a twenty year period. A growth factor of 1.0%

was applied uniformly. However, different portions of the city have experienced different

rates of growth. The waterfront's conversion from industrial to mixed use commercial zoning

has created more intense growth than that experience by more established neighborhoods.

A traffic volume collection program along proposed routes would provide more uniform data.

Actually bicycle volumes from which actual bicycle accident rates could be obtained would

be especially valuable enabling an independent validation of the model developed in this

research.

7.3.5 Intersection Data

Signalization of intersections did not prove to be a significant variable. The investigation was

limited to the simplistic question of whether the intersection was signalized or not. Additional
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factors may be relevant when considering the impacts of signals: Are turning bays present?

Is the signal semi-actuated? Does the timing have pedestrian phases?

A closer examination of the interrelationship between injury severity and intersection

signalization may provide a better understanding on how the operation of signals impact

bicycle safety.

7.3.6 Bicycle Facilities

As of this date, none of the bicycle facilities that were recommended in the Rutgers Bicycle

Plan had been implemented. The presence of facilities such as signage and lane markings may

offer bicyclists real benefits. An important variable in the model might be whether such

facilities are present. A before and after study of bicycle facilities would provide an answer

to this question. The variable indicating the presence of these facilities would then be

examined for significance. Again the logistic method must be used because a linear

regression based on total accidents could produce misleading results. Total accidents may

actually increase as more bicyclists are attracted to the official improved route. The logistic

modeling techniques used in this research would assess whether the accidents were more or

less severe than accidents which occurred in facilities without such improvements.

7.4 Graphical Interface Systems

In Chapter 6, a demonstration was provided of the technique to apply the model to chose a

single roadway segment. In practice, numerous roadway segments must be combined to

produce a complete route. The model generated expected severity value could be computed

for each candidate link, then combined together using a weighted average based on link
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length. Given numerous alternatives, the task could quickly become onerous. The effort

could be automated by using a GIS interface. A data base of the key explanatory variables

could be linked to the GIS map. Planners could compare candidate routes between desired

origins and destinations by stringing together links to complete alternate paths and selecting

the path with the lowest weighted average.

7.5 Conclusion

The entire effort pursued in this research has been to develop a tool to assess the safety of a

bicycle route. Certainly, there are other considerations for bicyclists in route selection.

Scenery and rest stops may be of great concern for a recreational bicyclist. However, trip

duration is generally most important to a commuting cyclist. The safety ratings from the

model developed in this research can be combined with these other stated preferences to

determine the route that best fulfils the bicyclists' stated objectives. Truly unsafe routes could

be either mitigated or eliminated from consideration. Public officials would be negligent if

they were to totally ignore the safety of the route in deference to these other stated objectives.

Encouraging a bicyclist to chose a route that is slightly longer or slightly less scenic is worth

the extra effort. Ultimately, the goal of the bicyclist is to reach his destination without the

assistance of an ambulance.



APPENDIX A

MODEL 0, FULL MODEL

This appendix contains the SAS software output for Model 0, the Full Model. This model

was fit using all nineteen study variable irrespective of its significance.

182



Model 0: Full Model

The LOGISTIC Procedure

Model Information

Data Set 	 WORK._TMP_O
Response Variable 	 Severity
Number of Response Levels 	 3
Number of Observations 	 314
Model 	 cumulative logit
Optimization Technique 	 Fisher's scoring

183

12:50 Tuesday, May 20

Severity

Response Profile

	

Ordered 	 Total

	

Value 	 Severity 	 Frequency

	

1 	 1 	 59

	

2	 2 	 146

	

3	 3 	 109

Probabilities modeled are cumulated over the lower Ordered Values.

Class Level Information

Design
Variables

Class 	 Value 	 1

One Way 	 1 	 1
-1	 -1

Road Div 	 1 	 1
-1	 -1

	

Grade_ 	 1 	 1
-1	 -1

Curve 	 1 	 1
-1 	 -1
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Grade_ 1 1.9584 0.1617
Curve 1 0.0929 0.7605
Pave 1 3.9007 0.0483
Hwy 1 2.8696 0.0903
Parking 1 0.0000 0.9973
Bus 1 0.0501 0.8229
Truck 1 5.8911 0.0152
Signal 1 0.0581 0.8094
Resident 1 0.6697 0.4132
Weather 1 1.2407 0.2653
Daylight 1 6.2147 0.0127
Child 1 1.7894 0.1810

Analysis of Maximum Likelihood Estimates

Standard Wald
Parameter DF Estimate Error Chi-Square Pr > ChiSq

Intercept 1 1 -1.5351 2.4635 0.3883 0.5332
Intercept 2 1 0.7999 	 , 2.4627 0.1055 0.7453
Speed 1 0.0259 0.0749 0.1194 0.7297
Width 1 -0.0788 0.0348 5.1121 0.0238
Volume 1 0.1212 0.0641 3.5708 0.0588
Income 1 -0.0328 0.0170 3.7134 0.0540
Density 1 -0.0217 0.00982 4.8940 0.0270
One Way 	 1 1 -0.2669 0.1347 3.9243 0.0476
Road Div 	 1 1 0.1183 0.4045 0.0855 0.7700
Grade 	 1 1 -0.3078 0.2199 1.9584 0.1617
Curve 	 1 1 -0.0871 0.2858 0.0929 0.7605
Pave 	 1 1 0.2318 0.1174 3.9007 0.0483
Hwy 	 1 1 -0.6017 0.3552 2.8696 0.0903
Parking 	 1 1 0.000841 0.2473 0.0000 0.9973
Bus 	 1 1 -0.0371 0.1657 0.0501 0.8229
Truck 	 1 1 -0.3768 0.1552 5.8911 0.0152
Signal 	 1 1 0.0292 0.1212 0.0581 0.8094
Resident 	 1 1 0.1031 0.1260 0.6697 0.4132
Weather 	 1 1 0.2139 0.1920 1.2407 0.2653
Daylight 	 1 1 -0.2956 0.1186 6.2147 0.0127
Child 	 1 1 0.1597 0.1194 1.7894 0.1810

Model 0: Full Model 12:50 Tuesday, May 20

The LOGISTIC Procedure
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APPENDIX B

MODEL 1, BEST 90%

This appendix contains the SAS software output for Model 1, the Best 90 Model. This

model was fit using only the nine study variable which are significant to a 90% confidence

level.
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Model 1: Best 90% Confidence Level
12:50 Tuesday, May 20, 200

The LOGISTIC Procedure

Model Information

Data Set
Response Variable
Number of Response Levels
Number of Observations
Model
Optimization Technique

WORK._TMP_O
Severity
3
314
cumulative logit
Fisher's scoring

Severity

Response Profile

	

Ordered
	

Total

	

Value
	

Severity 	 Frequency

	

1
	

1
	

59

	

2
	

2
	

146

	

3
	

3
	

109

Probabilities modeled are cumulated over the lower Ordered Values.

Class Level Information

Design
Variables

Class
	

Value 	 1

One Way
	

1
-1

Grade_

Pave 	 1
-1

1

1
-1

1
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-1 -1

Truck 1 1
-1 -1

Daylight 1 1
-1 -1

Model Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Model 1: Best 90% Confidence Level
12:50 Tuesday, May 20, 200

The LOGISTIC Procedure

Score Test for the Proportional Odds Assumption

	

Chi-Square 	 DF 	 Pr > ChiSq

	

8.2796 	 9 	 0.5062

Model Fit Statistics

Intercept
Intercept 	 and

Criterion
	

Only 	 Covariates

AIC 	 655.542 	 637.738
SC 	 663.041 	 678.982
-2 Log L 	 651.542 	 615.738

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 35.8040 9 <.0001
Score 33.1810 9 0.0001
Wald 32.8354 9 0.0001



191



192



APPENDIX C

MODEL 2, BEST 95%

This appendix contains the SAS software output for Model 2, the Best 95 Model. This

model was fit using only the three study variable which are significant to a 95% confidence

level.
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Model 2: Best 95% Confidence Level
12:50 Tuesday, May 20, 200

The LOGISTIC Procedure

Model Information

Data Set
Response Variable
Number of Response Levels
Number of Observations
Model
Optimization Technique

WORK._TMP_O
Severity
3
314
cumulative logit
Fisher's scoring

Severity

Response Profile

	

Ordered
	

Total

	

Value
	

Severity 	 Frequency

	

1
	

1
	

59

	

2
	

2
	

146

	

3
	

3
	

109

Probabilities modeled are cumulated over the lower Ordered Values.

Class Level Information

Design
Variables

Class
	 Value 	 1

One Way 	 1
	

1
-1 	 -1

	Grade_	 1
-1

Model Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.
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