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ABSTRACT

DEPOSITION AND CHARACTERIZATION
OF MAGNETRON SPUTTERED BCC TANTALUM

by
Anamika Patel

The goal of this thesis was to provide scientific and technical research results for

developing and characterizing tantalum (Ta) coatings on steel substrates deposited by DC

magnetron sputtering. Deposition of tantalum on steel is of special interest for the

protection it offers to surfaces, e.g. the surfaces of gun barrels against the erosive wear of

hot propellant gases and the mechanical damage caused by the motion of launching

projectiles. Electro-plated chromium is presently most commonly used for this purpose;

however, it is considered to be carcinogenic in its hexavalent form. Tantalum is being

investigated as non-toxic alternative to chromium and also because of its superior

protective properties in these extreme environments.

DC magnetron sputtering was chosen for this investigation of tantalum coatings

on steel substrates because it is a versatile industrial proven process for deposition of

metals. Sputter deposited Ta films can have two crystallographic structures: 1) body

center cubic (bcc) phase, characterized by high toughness and high ductility and 2) a

tetragonal beta phase characterized by brittleness and a tendency to fail under stress. It

was found in this work that the bcc Ta coatings on steel can be obtained reliably by either

of two methods: 1) depositing Ta on a submicron, stoichiometric TaN seed layer

reactively sputtered on unheated steel and 2) depositing Ta directly on steel heated above

a critical temperature. For argon sputtering gas this critical temperature was found to be



400 °C at a pressure of 5 mtorr. With the heavier krypton gas, this critical temperature is

reduced to 350 °C.

X-ray diffraction (XRD) was used to investigate the structure of tantalum and

nitride films, and the composition of the nitride films was measured by nuclear reaction

analyses (NRA), which were used to study in detail the enhancement of the bcc phase of

Ta on steel. The scratch adhesion tests performed with a diamond hemispherical tip of

radius 200 gm under increasing loads revealed high critical load values for failure (>15

N) for the bcc coatings versus the low load values (< 9 N) for the beta coatings. The

coating deposited on TaN interlayers on sputter-etched steel had better adhesion than

those on steel surface without sputter etching.

The results for this work have demonstrated that by controlling the various

process parameters of dc magnetron sputtering, high quality bcc Ta coatings of multi-

micron thickness with excellent adhesion to steel can be made. An important

contribution of this dissertation is in the enhancing an understanding of this process. The

impact of this research will be in a number of fields where superior protective castings

are needed. These include military applications, electronic components, chemical

processing, and others.
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CHAPTER 1

INTRODUCTION

1.1 Objective and Scope of Work

The main goals of this research, presented in the following dissertation were:

1) To control the process of DC magnetron sputtering for the growth of high quality bcc

tantalum (Ta) coatings on steel

2) To understand the effects of various parameters of DC magnetron sputtering on the

resultant crystallographic phase and other properties of Ta coatings.

Sputtered Ta coating has two main phases: alpha phase, which has a bcc crystal

structure (also found in bulk Ta) and beta phase, which has a tetragonal structure and is a

meta-stable state. The bcc (a) phase is preferred over the beta phase for most

applications, as it is characterized by high toughness and ductility whereas, the beta phase

is brittle and hard and prone to failure under stress. One application of bcc Ta coatings is

the protection of steel from erosive and corrosive wear. Crystallographic phase is an

important factor controlling the coating performance. Sputtering parameters control the

structure and the morphology in sputtered coatings. The mixed phase (bcc + beta) of Ta

can be easily deposited but to grow a pure bcc phase requires a careful selection and

control of the process parameters. Deposition of Ta has been extensively studied on

substrates like silicon and glass, but the process of deposition of Ta on steel has not well

documented.

This research was driven by a very specific application for the US Army, which

funded the project. A problem of concern to the army is the damage of the gun tubes

1
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caused by erosive and corrosive wear during firing [1]. Electroplated chromium has long

been used as a protective coating in gun barrels. Protective coatings of chromium

however are found not to be sufficient in extreme conditions created by new, advanced

propellants. Additionally chromium, which is deposited by electroplating in the

hexavalent (VI) form, is carcinogenic. A major environmental hazard is created by

chromium in the production, use and disposal of weapons. Increased restrictions and

industrial hygiene requirements make it difficult to continue with electro-deposited

chromium coatings. Tantalum was chosen as an alternate metal for the protective

coatings and sputtering as a method of deposition of Ta, over CVD and electro chemical

deposition, by the Army researchers. A CVD and electrochemical deposition requires

high deposition temperature, as discussed in Section 2.2. The gun barrel cannot be

exposed to the high temperature (which is more than the tempering temperature of steel),

as it will undergo undesirable changes in its mechanical properties.

This work involved design, assembly and testing of a planar DC magnetron

sputtering system. The vacuum chamber housing the system and the sputtering source

were manufactured by Kurt J. Lesker Company, PA while, other components were

obtained from various manufacturers or were made at NJIT's machine shop. A series of

depositions were carried out in this system with various sputtering process parameters.

The influence of pressure (1-150 mT), gas flow (1-30 mT) and source power (100-1000

watts) or film properties, was investigated. Argon was mostly used as the sputtering gas

for deposition of Ta and krypton was tested in some experiments. Tantalum was also

deposited on a tantalum nitride interlayer on steel. During the reactive deposition of the

tantalum nitride interlayer, a mixture of nitrogen and argon was used. Ta films and
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coatings with thickness ranging from 1 to 50 1.1m were deposited on steel and control

substrates of Si and Si02.

Thin films and coating of bcc tantalum were successfully obtained by two

methods:

1) Deposition of Ta on a thin interlayer of tantalum nitride on steel,

2) Deposition of Ta on heated steel substrates.

This research was based on analysis of many experiments for deposition of Ta films and

coatings and their characterization. Characterization techniques included x-ray diffraction

(XRD), four point probe resistivity measurements, scratch (adhesion) tests, scanning

electron microscopy (SEM), nuclear reaction analysis (NRA), optical microscopy,

Rutherford backscattering (RBS) and atomic force microscopy (AFM).

An effort was made to better understand the Ta deposition process and to clarify

often-contradictory information on this subject found in literature. This effort was also

aimed to support work at the Army Research Laboratory and Benet laboratory. Thin films

and coatings of pure bcc structure, with excellent adhesion to steel substrates, were

successfully deposited by the DC magnetron process. These findings will also have

potential application in other fields of technology and industry

1.2 Synopsis

This dissertation presents the results on bcc Ta deposition by DC magnetron sputtering

system undertaken at the Ion Beam and Thin Film Research Laboratory at NJIT. The

presentation of this thesis begins with a general description of the properties of Ta.
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Deposition methods of Ta are discussed later followed by the literature review on Ta thin

films and coatings in Chapter 2.

The details of the system with sample preparation method, substrate mounting

and experimental parameters are discussed in Chapter 3.

Characterization of Ta films and coatings was performed subsequent to

deposition. The film thickness was measured with a profilometer on control samples of Si

and Si02. A crystallographic phase determination is based on x-ray diffraction (XRD)

measurements. Electrical resistivity measurements were also performed on control

sample of Si02 by the four-point probe method. Morphology of the films was determined

by, optical microscopy and scanning electron microscopy (SEM) and Atomic Force

Microscopy (AFM). Scratch tests to determine the adhesion of the coating were

performed. Rutherford backscattering (RBS) data on Ta films was also studied. The

structure of the interlayer of tantalum nitride was studied by nuclear reaction analysis

(NRA). Chapter 4 addresses the working principles of these characterization techniques.

Results are focused on two methods of obtaining the bcc Ta coatings: i)

deposition on a thin tantalum nitride interlayer and ii) deposition on a heated substrate.

These results are reviewed in Chapter 5, discussed in Chapter 6 and the conclusions of

this dissertation are summarized in Chapter 7.



CHAPTER 2

BACKGROUND

2.1 Properties of Tantalum

The element tantalum (Ta) was discovered in 1802 by Swedish chemist A.G. Ekenberg in

Uppsala, Sweden. He named the new element after the figure of Geek mythology,

Tantalus, to describe its resistance to acids. C. W. Balke first produced tantalum in

United States in 1922 and commercial production has continued from that time.

Tantalum is earth's 49 th most abundant element [2] but it is uncommon as it is

found in earth's crust in a concentration of only 2.5 ppm. It has a strong affinity to

oxygen and so it occurs mostly as oxide in association with niobium. Tantalum is

produced as a byproduct of tin smelting.

Bulk Ta is shiny, grey colored metal. It has a high boiling point (5425 °C) and

melting point (2996 °C). Its density is 16.6 gm/cc at 293K. Its atomic number is 73 and

atomic weight is 180.95 gm/mole. In its bulk equilibrium form it has a bcc (body

centered cubic) structure with a lattice constant of 3.30 A. Its electrical resistivity is 13.5

l_tOcm. Tantalum is also one of the most corrosion resistant metals known. It has good

resistance to brittle fracture and failure due to vibration and shock.

2.2 Deposition Methods for Tantalum Films and Coatings

Main methods for Ta deposition can be classified as:

• Chemical vapor deposition

• Electrochemical deposition

• Physical vapor deposition.

5
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2.2.1 Chemical Vapor Deposition

Chemical vapor deposition (CVD) creates a vapor phase dispersion of the material to be

deposited by using a precursor molecule containing the atom to be deposited. The metal

can be released by allowing a chemical reaction to take place in either the vapor phase

very near to the substrate or on the substrate itself. Advantages of this process are the

relative low cost of the equipment and its low operation expenses. 0ne drawback of CVD

is that the crystalline structure, thickness and adhesion of the film are very sensitive to the

substrate temperature and gaseous stream. In the work reported by Brossa [3] CVD

coatings of Ta were produced by thermal reduction of TaC1 5 with hydrogen or zinc.

However, it was found that CVD-Ta has poor metallurgical properties and a high

resistivity as compared to PVD-Ta [4].

2.2.2 Electrochemical Deposition

Electrochemical deposition of tantalum is also reported in the literature [5]. The

electrolyte used was a eutectic mixture of LiF-NaF-KF (FLINAK), which was prepared

from reagent grade fluoride salts. To this mixture K 2TaF7 was added. The intermediate

reversible process produced insoluble TaF 2 , which grows by providing additional

nucleation sites to give dense coatings:
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The final irreversible process produces tantalum. This process of electro deposition was

carried out at temperatures ranging from 700 to 800 °C. Tantalum coatings obtained by

this method had the bcc structure, as reported by Lee et al. [6]. The main drawback of this

process was that liner technology had to be used for deposition of Ta on gun barrels, as

the steel substrate could not be exposed to high temperatures of the molten salt.

2.2.3 Physical Vapor Deposition

Main categories of physical vapor deposition (PVD) are vacuum evaporation and sputter

deposition. Vacuum evaporation is a process in which atoms or molecules, emitted from

a thermal evaporation source, deposit on the substrate with little or no collision with gas

molecules in space between the source and the substrate so that their trajectory is a line of

sight. 0ne of the advantages of evaporation can be, the high deposition rates [7]. Vacuum

deposition of Ta however requires heating to a very high temperature above 3350 °C in

order to get vapor pressure of 0.1 ton at the source. This technique is not very popular for

Ta deposition.

When a solid surface is bombarded by energetic particles (accelerated ions),

atoms of the solid near the surface can be knocked out due to collisions between the

surface atoms and energetic particles. This phenomenon is known as sputtering. In

general, the sputtering process consists of four steps: 1) the ions are generated and

accelerated towards the target, 2) the ions sputter target atoms, 3) the ejected (sputtered)

atoms are transported to the substrate, where 4) they condense and form a film. The

number of sputtered atoms per incident ion is known as sputtering yield of the target

material. Sputtering yields of metals with argon ions with energy below 1 keV are of the

order of unity [8]. Figure 2.1 shows the dependency of sputtering yield of tantalum on the



8

energy of argon ions [9]. There could be some complications also associated with this

type of old data such as presence of surface oxide may dominate the result i.e. instead of

measuring on Ta it could be performed on Ta205.

0ne of the important characteristics of sputtering is its universality. As a

cathode target atoms are ejected by physical momentum-exchange process, practically

most any solid material can be sputtered [10]. There are different types of sputter

deposition in use today, such as direct current (DC) sputtering, radio frequency (RF)

diode sputtering, ion beam deposition and magnetron sputtering. DC magnetron

sputtering was used for this research work because it is the most effective and versatile

technique for the deposition of metals.
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2.3 Overview of Sputtering Processes

2.3.1 DC Diode Sputtering

This technique takes its roots from the work by W.R. Groove on glow discharge almost

150 years ago [11]. Grove sputtered from the tip of a wire held very close to a highly

polished silver surface, at a pressure of about 0.5 Corr. In diode sputtering the material,

which needs to be sputtered, is the cathode of an electrical circuit and hence this method

is also known as cathode sputtering. The substrate is placed on an electrically grounded

anode. These electrodes are housed in a chamber, which is pumped to low base pressure

10-5 Corr). Argon is commonly introduced into the chamber to maintain a specific

pressure of a few hundred milliton. An electric field accelerates the electrons, which

collide with argon atoms and ionizes them. This process of electron collision is known as

the electron impact ionization. In this collision the primary electron removes an electron

from the atom, producing a positive ion and an additional electrons. For example,

The two electrons released in this process can then be accelerated by an electric field

until they can produce ionization too. This continuous process of ionization results in the

glow discharge.

The minimum energy required for the ionization process to occur is the energy

required to remove the weakly bound electron from the atom and is known as ionization

potential. In case of argon it is 15.75 eV. The electric field accelerates the charged

particles in the glow discharge and the electrons move toward the anode, and the ions

towards the cathode. When the ions strike the cathode, they may sputter some of the

target atoms off, predominantly electrically neutral particles. The sputtered atoms, from
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the target fly off in random directions and some of them land on the substrate, condense

there and form the film. The rate of film formation depends on the amount of material

sputtered from the target; this in turn depends on the ion flux at the target, which is

proportional to the cunent. The amount of sputtering also depends on the sputtering yield

and thus on the ion energy.

2.3.2 Radio Frequency Sputtering (RF)

To sputter insulators (dielectrics), DC diode sputtering process cannot be used because

the glow discharge cannot be maintained with a dc voltage if the cathode is not

electrically conductive. This can be explained by the fact that when the cathode is

bombarded by a positive ion, which is neutralized, an electron is stripped from the

cathode surface. Such electrons can be replaced by electrical conduction, if the cathode is

a conductor, but in case of an insulator this is not possible. Hence the front surface of the

cathode (insulator) accumulates the positive charge and the potential difference (between

cathode surface and anode surface) decreases. When this value decreases below the value

required to sustain the plasma, the plasma extinguishes. To replenish the lost electrons in

insulator surfaces a technique was developed which involves the application of an ac

voltage instead of dc to the electrode. The applied power has the oscillations in radio

frequency range hence the technique is known as radio frequency (RF) sputtering [10].

2.3.3 Magnetron Sputtering

The beginning of the magnetron sputtering technique dates back to 1936 when Penning

[12] proposed the application of perpendicular magnetic field in order to increase the

plasma concentration of glow discharge. DC and RF sputtering processes normally
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exhibit low deposition rates, as most secondary electrons emitted from the target move

away from it before ionizing sputtering gas atoms. If a magnetic field is applied parallel

to the surface of a target of a dc sputtering system (perpendicular to the electric field),

due to Lorentz forces, the secondary electrons that are accelerated from the target to the

substrate are forced into a spiral path in the vicinity of the target surface. To understand

this effect, consider an electron normally emitted from a surface with velocity v into a

region of magnetic field B and zero electric field. The electron will describe a semicircle

of radius r, provided it does not collide and will return to the surface with velocity v.

Hence the effect of magnetic field is to trap the emitted electron near the surface. To

examine a situation, which is closer to the magnetic sputtering application, consider a

strong electric field, which exists in the space above the surface of the sputtering target

and also the magnetic field, which is parallel to the surface. Let the electric field E

decrease linearly with the distance from the target through the dark space (L). The

electric field is thus given by,

Here, y is the dimension perpendicular to the target with y = 0 at the target surface, the

electric field is Eon. The electron emitted from the target will be rapidly accelerated

vertically, initially away from the target by the strong normal electric field at the surface

but simultaneously it experiences an increasing force due to magnetic field, F = q(v x B).

The presence of an electric field along with the magnetic field changes the electron path

from circular to cycloidal (hopping) as shown in Figure 2.2, provided the electron stays in

the dark space [13]. This increases the electron path length in the plasma and hence

increases the probability of collision with sputtering gas atoms near the target surface.
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The increase in the production rate of ions that strike the target increases the sputtering

rate. The deposition rate enhancement is commonly a factor of 10 over the diode

sputtering method. It is also possible to sputter at a lower pressure as compared to DC

diode sputtering process. The system geometry for a simple planar magnetron sputtering

system is similar to DC and RF sputtering system but the applied magnetic field makes

the system more effective. Magnetron sputtering is presently the most commonly used

sputtering method [14].

Figure 2.2 Motion of the electron ejected from the surface with a velocity v a) with no
electric field, b) with a linearly decreasing electric field [9].

There are many types of magnetrons in practical sputtering systems. The most

widely used magnetron electrode configuration in sputtering system is the circular

magnetron [8]. In circular magnetrons the target surface is planar, and the B-field is

created by permanent magnet behind the target. A schematic of target anangement and

magnets for a circular magnetron is shown in Figure 2.3.



Figure 2.3 Anangement of target and magnets for circular magnetron source [10].

The plasma is most intense where the magnetic field is parallel to the target surface and

this is where maximum ejection of target atoms is expected. This results in the target

erosion pattern called the racetrack. A more detailed cross section view of a circular

magnetron sputtering source is shown in Figure 2.4.

The disadvantage of magnetron sputtering is the localized erosion of the target,

which gives low target material utilization, non-uniform deposition pattern and requires

frequent replacement of the target. Uniformity improves as the target to wafer spacing is
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increased but this causes a decrease in the deposition rate. Thus a tradeoff is often made

between deposition rate and thickness uniformity

Sputter deposition can also be performed by ion beam sputtering with energetic

ion bombardment of target in vacuum using an ion gun. Ensinger [15] has reported on

wear and conosion protection Ta coating deposited by ion beam sputter deposition.

2.3.4 Reactive Sputtering

Reactive sputtering is the process where at least one of the coating species enters the

system in the gas phase. The advantage of reactive sputtering is that complex compounds

can be formed using relatively easy to fabricate metallic targets. The difficulty in reactive

sputtering is the complexity, which accompanies its versatility. Reactions can occur on

the target surface, following which the reacted material is sputtered. They also occur at

the substrate, and in cases of high working pressure, in the gas phase. When sputtering

with a reactive gas and argon mixture, the relationship between film properties and the

reactive gas injection rate is generally non-linear. The condensing film could be

considered as an additional pump for the reactive gas. Examples of reactive sputtered

films include Al sputtered in 02 to form Al203; Nb, Ti and Ta sputtered in N2 to form

NbN, TiN, TaN all in presence of argon.

2.4 Prior Work on Ta Films and Coatings

2.4.1 Early Work on Ta Thin Films

Tantalum films have been investigated since 1970. Sputtered Ta films have mainly two

crystallographic principle phases known as the alpha and the beta phase. Alpha has the
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bcc structure (3.31 — 3.33 A), while beta has a tetragonal structure (a = 5.34 A and c =

9.94 A). The electrical resistivity of the two phases also differs by a factor of ten. The

high resistivity (180-300 I.S2cm) beta phase is prefened for thin film resistors while; the

low resistivity bcc phase is prefened for thin film interconnects. The bcc phase is also

characterized by high toughness and ductility and hence is desired in the protective

coatings whereas the beta phase is hard and brittle and prone to failure under stress. The

beta phase transforms to the bcc phase above 750 °C [16,17]. A new phase with a fcc

lattice was reported in the films deposited on the Mg substrate by using electron beam

evaporation. This fcc phase in a 100 A film transformed into a bcc phase with the

growing film thickness [7,18]. The fcc phase has not been seen in films deposited by dc

sputtering.

Typically, thin sputtered films are nucleated in the tetragonal 13 phase while the

bcc a phase is found in bulk. Most of the literature is inconsistent regarding the

conditions that promote a particular phase of tantalum. The first report on the fib phase of

tantalum in sputtered films (for a varying thicknesses of 100 — 20,000 A) was published

in 1965 [19]. It was concluded that the 13 phase was formed when the concentration of the

various impurities were below a critical level in the vacuum chamber, while the residual

gas impurities and the gas contamination promoted the formation of bcc tantalum.

Impurity levels in films will be controlled by; 1) deposition rate and 2) anival rate of

"impurities" in vacuum. L. Maissel and R. Glang also observed the dependence of

particular phase formation on the base pressure of the chamber, with a base pressure in

the range 10 -5 ton promoting the formation of the bce phase [20]. Some other studies

could not confirm the dependence of phase formation on the residual gas and proposed
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the existence of an "X" impurity on the substrate, which resulted in the formation of

alpha tantalum [21]. In the work of Westwood, which was published in 1970, it was

demonstrated that a 1000 A thick interfacial layer of carbon or gold on glass and alumina

substrate promoted the bcc phase of tantalum [22]. Further, D. Mills reported the 13 phase

in tantalum sputtered onto an oxide-coated surface while the bcc phase formed on non-

oxide surface [23]. Feinstein et. al, reported that 13 phase is meta-stable and their work

also showed that the presence of 0 or 0H on the surface of the substrate was necessary

for the nucleation of 13 tantalum [24]. The substrates that do not readily form surface

oxides (e.g. Au, Pt, W etc) were shown to nucleate the bcc phase of tantalum.

In later years, these results were contradicted. Hieber and Mayer reported that

the thin film of carbon (non-oxide surface) does not affect the structure of tantalum film

[25]. Sato observed 13 tantalum on all the substrates (including Au and Pt) except

titanium, which has the crystal structure very close to bcc tantalum [26]. Contradictory

views of researchers were explained to some extent by misinterpretation of X-Ray

Diffraction (XRD) data. Some of the peaks in the XRD spectra of the two phases almost

coincide [27]. There has been strong evidence, however that the structure of tantalum thin

films may be influenced by the structure of the substrate or the interfacial layer deposited

on the substrate prior to the deposition of the film. Face and Prober found that the thin

(>3 A) Nb (niobium) interfacial layer favors the formation of bce phase of tantalum on

silicon substrate [28] and also a thin titanium layer on silicon promoted the bcc phase of

tantalum [29]. It was also shown that it is not possible to obtain f3 -Ta on bcc-Ta while

the opposite is possible [30]. Schauer described a method for producing thin films of

tantalum in the bcc phase by heating the glass substrate to 300 °C during deposition [31].
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Studies on the transformation of the beta phase Ta to the bce phase, as a function of

annealing temperature is also reported in literature [46,47,32].

2.4.2 Tantalum Film as a Barrier Layer for Cu Interconnects in ICs

The interest in Ta films increased recently with the trend of replacement of aluminum

with copper metallization in semiconductor integrated circuits [33]. The introduction of

Cu in microelectronic devices made it necessary to deposit a banier layer between Si02

and Cu, to avoid Cu diffusion into Si02, which is very strong and deteriorates the

electrical performance of device even at temperatures as low as 200 °C [34]. Tantalum

has proved to be one of the most promising banier metals. As reported by P. Catania et

al., the phase of Ta deposited on Si is sensitive to the pre-cleaning and also to the ion

bombardment energies at the substrate [35]. Lower ion bombardment energies (-40eV)

produced bcc Ta film while increasing the ion bombardment energy (>40eV) resulted in

the increase of 13 phase in the film. Colgan and Fryer [36] described the method of

making bcc Ta thin films by introducing an intermediate layer as thin as 20 A of Ta(N)

on the silicon substrate. This seed layer of Ta (N) was RF sputtered with nitrogen and

argon as the sputtering gas. IBM implemented a liner which was the bi-layer of Ta/TaN

in the process of manufacturing the first CM0S chips with Cu interconnects [37]. This

liner was deposited from a pure Ta target, using Ar and N2 sputtering gases.

2.4.3 Work Reported on Ta Coatings

Very little work has been done to investigate the phase characteristics of the thicker (i.e.,

>4 limn) sputtered Ta films. In the last decade, after tantalum was chosen as a promising

material for protective coating in gun banels, a new research area has been opened for
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obtaining thick Ta films. The 13 phase of Ta, which was previously observed in thin films,

was also produced in thick coatings [38]. Matson et al. reported on the thick (>25 im)

tantalum coatings deposited on niobium interfacial layers and also on heated steel

substrates [39]. The coatings consisted mostly of the bcc phase with a few % of the [3

phase, which was observed at the interface between the steel substrate and tantalum

coating on all their samples. As demonstrated by Lee and Windover, a niobium layer can

promote the growth of bcc tantalum, inespective to the impurity contents. Adhesion was

a problem in these coatings, often with mixed phases [6,40,44]. Excellent behavior in soft

and ductile bcc Ta area and cracking and delamination in the p Ta area of the coatings

was reported [6]. Hence, minimizing or elimination of the 13 phase Ta was suggested for

the superior coating performance. Effects of sputtering gas species and the substrate

biasing was also reported on the thick sputtered Ta film [39]. Koski et al. [42] has

reported on the improvement in the adhesion of the film grown on steel substrate, by

sputter etching used along with the appropriate chemical cleaning method.

In conclusion, many process parameters have been identified that influence the

structure of sputtered Ta. A specific effect of each of these variables is still being debated

primarily because it is difficult to fully isolate each variable from the effect of the others.

Much work has been done to understand this complex dependency in the area of thin

films but unfortunately extrapolations of thin film deposition conditions to the thick

coatings are not easy and straightforward. This research work addresses this issue.
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EXPERIMENTAL METHODOLOGY

3.1 DC Magnetron Sputtering System

A planar DC magnetron sputtering system was designed and assembled at the Ion Beam

and Thin Film Research Laboratory at NJIT. Kurt J. Lesker Company, PA, manufactured

the vacuum chamber and the key components (pumps, gauges etc.) of the system, came

from various manufacturers. Shields, substrate holders and the other internal chamber

components were made at the NJIT machine shop. The assembly and testing of this

system was a part of this thesis work. A photograph of the magnetron system is shown in

Figure 3.4. A schematic diagram with more details of the planar magnetron system is

shown in Figure 3.2.

Figure 3.1 Planar magnetron sputtering system built at New Jersey Institute of
Technology in the Ion Beam and Thin Film Research Laboratory.
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Figure 3.2 Schematic diagram of the vacuum chamber of the planar magnetron
deposition system.
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The system chamber is cylindrical in shape with a volume of approximately 801,

inside diameter is 20 inches and an inside height of 45 inches. The chamber has

numerous ports and these ports allow flexibility in attaching various accessories, vacuum

feed-through and gages. A cryogenic vacuum pump (CTI-Cryoton-8) with motorized

control gate valve is attached to the pumping port of the chamber. A turbo molecular

pump, which pumps the system during deposition, throttled by the gate valve is attached

to a 4.5 inch Con-Flat (CF) flange on the opposite side of the chamber. In the sidewall on

the front of the chamber is the view port, which allows for viewing the process. 0ther

chamber ports were used for sensors like as ionization gauge and a capacitance pressure

gauge (0-4 ton). Initially a residual gas analyzer (RGA) sensor was mounted to monitor

the partial pressure of the residual gases in the chamber before sputtering. Later the

system was modified to measure the partial pressure of the residual gases during

sputtering. Two mass flow controllers (0-400 sccm) are attached to a read out which

reads the gas flows. The bottom flange of the chamber has four 8 inch CF flanges to

which, up to four deposition sources could be attached. For this research work a

sputtering source (Torus 2) with the target diameter of 2 inches is attached to the bottom

flange with a compression vacuum seal. The seal allowed the vertical movement of the

source and thus the adjustment of the distance between the target and the substrate

mounted above the source. The source is fitted with a Ta target (2 inch in diameter and

0.425 inch thick) and is clamped to water-cooled copper base plate. Figure 3.3 shows the

inner view of the chamber with the source. A motorized hoist lifts the heavy top lid of the

chamber. Top lid has CF ports, one of which has the canousel substrate platter attached
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to it. 0ther ports on top have feedthroughs for thermocouples, a high voltage cable (for

pre-sputtering) and the cables for heating lamps.

Figure 3.3 Inner view of the chamber showing the Torus 2 magnetron source.

The chamber has a rotary feedthrough that supports a platter with eight circular

slots and it holds one substrate holder in each slot. 45-degree rotation of the platter

changes the position of the holder above the target. Figures 3.4 and 3.5 show the picture

and the schematic of the platter respectively. A stainless steel shield (0.062 inches thick)

is mounted 0.25 inches below the substrate platter by four posts attached on the bottom

flange of the chamber. This shield limits the deposition to, one substrate holder and

prevents deposition on the chamber top lid and walls.
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Figure 3.4 A view of the deposition chamber with the top lid lifted, showing the platter
with the substrate holders.

Figure 3.5 Design of the rotary platter with the slots for the substrate holder.
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3.2 Gas Flow and Pumping System

A mechanical pump (Leybold D8B) pumps the chamber to a fore vacuum of 200 mton.

A micro maze filter attached between the chamber and the pump prevents any back

streaming of the oil pump vapors into the chamber. A cryo-pump pumps the system to a

base pressure of 8 x 10-8 ton- and the turbo pump pumps the system during the

deposition. A thermocouple gauge measures the fore vacuum and the ionization gauge

measures the high vacuum. A pressure transducer (MKS Baratron) measures the working

pressure of the chamber, with a range from 0.4 Eton to 4 ton. Two different gases can be

admitted to the chamber through the mass flow controllers (MFC). Four-channel read out,

to which the flow controllers were attached, was calibrated for each gas used in the

sputtering process. A RGA measures the partial pressure of the gases during sputtering

too as it is differentially pumped by a small turbo pump. The schematic diagram of the

vacuum and gas flow system is shown in Figure 3.6.



TMP-Turbo-molecular pump; CM-Capacitance manometer; RGA-Residual gas analyzer;
MFC-Mass flow controller; GVP-Gate valve positioner; MP-Mechanical pump;
IG-Ionization Gauge; vv- Venting valve; TIC- Thermocouple gauge

Figure 3.6 Schematic of vacuum and gas flow control of the deposition system.
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3.3 Substrate Preparation

Substrate surface preparation is considered an important step in coating technology, as it

is important for a good bonding, between the coating and the substrate. Substrate

preparation can also influence some other characteristics of the films and coatings. In the

present study, square substrates of 0.5 inch x 0.5 inch and 0.2 inch thick were machined

from gun steel and 4340 steel.

The substrate surface was subjected to grinding, abrasion and polishing. The

manner in which abrasives are supported on the backing material and the speed at which

the particles are removed decides whether the process is grinding, abrasion or polishing.

During grinding the abrasives are cemented together to a rigid block. After cutting the

steel samples, initial grinding was done on 60-grit size grinding wheel at NJIT's machine

shop.

Abrasion generally employs a layer of abrasive particles cemented onto a cloth

or paper backing. Surface speed is another parameter that distinguishes between abrasion

and grinding process. Grinding is done at high surface speeds and significant heating of

the surface layers take place due to friction between the two surfaces. Unlike grinding,

abrasion employs lower speeds and liquid coolant and so heating of the specimen surface

is avoided. Polishing uses abrasive particles that are not firmly fixed but suspended in

liquid. Metallographic preparation procedure actually has a sequence of grinding stages

with increasing fineness, which is followed by the abrasion process of increasing fineness

and the final step involves the polishing process of increasing fineness until the desired

surface finish is achieved.
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MINIMET 4000 polisher/grinder manufactured by the Buehler Company was

used for steel substrates surface preparation. Being a highly automated machine it

provides control of rotating speed (from 3.5 — 35 cm/s), pressure applied to the specimen

(from 5-50 N) and polishing time (up to 99 minutes at a time). Adhesive backed silicon

carbide abrasive papers applied to glass plate were used to grind the surface of steel

surface. To grind the steel substrate, SiC abrasive paper of abrasive sizes from 240 grit to

600 grit was used sequentially. The steps of grinding steel substrates are summarized in

Table 3.4.

Polishing of the steel substrates was performed using diamond paste of descending sizes

from 45 to 0.5 pm. An alumina suspension of size 0.05 pm was used to achieve the

final scratch free steel surface. The sequence of polishing established for steel substrates

are summarized in the Table 3.2. The controlled samples of silicon and silicon dioxide

did not need polishing as they were cut from highly polished wafers. More details on

sample preparation are reported in the thesis work of Y. Abassi [43].



Table 3.2 Sequential Steps Followed for Polishing Steel Substrates
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The surface cleaning was achieved by electro cleaning followed by ultrasonic

cleaning. The electro-cleaner solution used was "59 special" made by North West

Company. The details of the composition of "59 special" is not known but is described as

highly alkaline. This process removes the oil and grease left on the steel surface from

machining operations and polishing but does not remove the metal from the sample. In

this process the sample was connected to the positive terminal while the negative

terminal was connected to a copper electrode. After electro-cleaning process was

completed, the samples were rinsed in DI water, to remove the residual alkaline cleaner.

Usually the final polishing was done after electro cleaning.

Finally, steel, Si, and Si02 samples were subjected to ultrasound cleaning. In

ultra sonic cleaning, substrates are treated with high intensity sound waves, which

generate the pressure fluctuations that produce microscopic bubbles in the liquid medium.

These bubbles produce the shockwaves, which impinges on the sample surface and
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removes the dirt from the surface. These cleaning processes involved three steps. During

the first step the samples were ultrasonically cleaned with methanol for 40 minutes and

during the second step with acetone for 5 minutes. In the final step samples were cleaned

with methanol again for 40 minutes. The samples were then kept in desiccators to prevent

any contamination before loading them in the chamber.

The surface oxides on the substrate can be removed by chemical or sputter

etching. In the sputtering process an in-situ method of cleaning such as, sputter etching is

one of the most effective methods for improving the adhesion of the growing film.

Sputter etching is the name given to the process of removal of material from a surface by

sputtering. In this process of cleaning, the material being cleaned is made the target

(cathode) of the sputtering system. This cleaning method is also known to have negative

effects on substrates, which includes re-deposition, cone formation on the surface and

some surface contamination due to impacts of sputtering gas ions [44]. In this research

work, the substrates holders with the substrates were sputtered etched in argon plasma.

The DC voltage used for sputter etching was in the range of 300-400 V at a working

pressure of 480-230 mton when argon was flowed into the chamber at 48 sccm. The

sputter etching cunent density was 40-400 i.iA/cm 2 . The sputter etching time was

typically 20 minutes. To avoid re-deposition on the substrates from the mounting screws

and the holders, a ceramic substrate holder was used in some cases.



Figure 3.7 Chart summarizing the surface preparation process.

Substrates of steel and Si02 are mounted on steel holders and a maximum of 7

holders could be loaded for one process cycle. Figure 3.8 shows the picture of the

mounted steel substrates. As seen, there are two sets of substrates one with a size of 0.8

inch x 0.8 inch and second with a size of 0.5 inch x 0.5 inch. Together with steel

substrates, a control sample of Si02 substrates was also mounted as shown in Figure 3.9.

Substrates are mounted in the holders outside the chamber and then the holders are

inserted into the slots in the platter. The substrate holders are insulated from the platter by

ceramic tabs (Figure 3.4) so that the voltage can be supplied to them during sputter

etching. The holders are grounded during sputter deposition.



Figure 3.9 Steel, silicon and silicon dioxide substrates on the holder.
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3.4 Deposition Parameters

A series of depositions were carried out on various substrates including steel, silicon and

silicon dioxide, by changing the sputtering parameters. The magnetron source was

energized by a DC power supply from Electronic Measurement Inc. (model TCR

4600S1.5) for depositions. In some experiments, which required the higher deposition

cunent, anther DC power supply from Electronic Measurement Inc. (model TCR 600S5)

was used. A maximum power of one kilowatt could be delivered to the source. During

depositions typically 350 V and 0.5 A were supplied to the source during Ta deposition.

A tantalum target (with 99.95% purity), of 2 inches diameter and 0.425 inches thickness

was used for all depositions. The distance between target and substrate was maintained at

2 inch in most of the experiments. This distance was chosen in order to generate the

conditions in the large deposition system used for gun banel coatings. Sputtering was

carried out between 4- 400 mtorr and the gas flow rates of 2-40 mton. Argon (99.999 %)

was used as the sputtering gas and krypton (99.998 %) was also tested for few

experiments. During the deposition of the nitride interfacial layer, tantalum was

reactively sputtered with an argon and nitrogen (99.999 %) mixture. During experiments

in which substrate heating was required, the substrate holder was heated from the back by

a halogen lamp (300 W, 420 V), shown in Figure 3.4. This can increase the temperature

of the substrate up to 400 °C. The procedure (Figure 3.40) that was followed for the

process was:
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1. Samples were prepared (as explained in previous Section 3.3) and loaded into the

chamber.

2. The chamber was baked for 7-8 hours in high vacuum (300 °C measured on the

substrate platter), to reduce the background gas contamination.

3. After the pre-run bake-out, the system was cooled overnight. The base pressure

obtained after this run was about 8 x 4 0-g tone.

4. 0n the following day, if the target was new it was cleaned before deposition, by

sputtering for an hour with the shutter of the source closed.

5. The substrates were sputter etched in argon plasma.

6. A tantalum nitride interlayer was deposited on these sputter-etched substrates or,

depending on the experiment, the substrate is heated till temperature stabilizes.

7. Ta was deposited and steps 5, 6 and 7 are repeated for each holder.

At the completion of the deposition run, the system was allowed to cool overnight before

venting with nitrogen for substrate removal.



Figure 3.10 Chart summarizing steps followed during deposition process.
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CHAPTER 4

CHARACTERIZATION TECHNIQUES

4.1 Surface Profilometry

Surface profilometry technique is used to determine the thickness of deposited films. In

this work, masking a portion of the Si02 substrate, with a steel foil at an edge, created a

step in the film. The step height was measured by electromechanically tracking the

motion of mechanical stylus as it sweeps across the step. A Sloan Dektak ILIA surface

profilometer from Veeco Instruments Inc. at Microelectronics Research Center (NIT)

was used for all the measurements. The measurement functions and the leveling are

computer controlled in this equipment. The height of the step contour trace gives the

thickness of the film. The deposition rate was calculated, by dividing the total thickness

of the film, by the total time of deposition.

The thickness of films and coatings was measured on the control substrate of

Si02. Steel substrates, were masked by a holding screw but due to a shadowing effect the

step was not clearly defined. Hence, the thickness was not measured on the steel

substrates with this technique; rather an estimate was made from the thickness

measurement results on Si02 substrates mounted on the same holder.

The minimum thickness, that the available profilometer could measure, was 400

nm. This limitation did not hamper the thickness measurement of Ta films and coatings

but it precluded the thickness measurement of thinner (5-70 nm) interlayers. To

determine the thickness of tantalum nitride interlayer, thicker (400-900 nm) films were

deposited and from the deposition rate the thickness of thinner interlayer was estimated.
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Thicknesses of some Ta coatings were also measured using optical microscopy, which

will be discussed in Section 4.3. Figure 4.4 shows an output from the profilometer. The

vertical scale is in Angstroms and the horizontal scale is in microns. As seen from the

graph, the step in the profile corresponds to a Ta coating of 26.2 1.1.111 on Si0 2 substrate.

4.2 Four-Point Probe Resistivity Measurements

Four-point probe measurement reveals the resistivity of the specimen under test. This

method is one of the common methods used to measure the resistivity of films. Four

probes are used, in which the outer two probes supply a constant current and the inner

two measures the voltage drop across a portion of the sample. Probes used for resistivity



measurements are usually made of hard metals such as tungsten, and are ground to a

sharp point. A cunent source forces cunent (I) through the sample, while a voltmeter

measures the voltage (V), as shown in Figure 4.2.
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Figure 4.2 Four-point probe resistivity measurement set up.

Independent measurements of voltage and cunent yield the film resistivity if the film

dimensions are known. Electrostatic analysis of the electric potential distribution within

the film yields,

where, Rs is the sheet resistance, k is a constant that depends on the configuration and

spacing of the contacts. Multiplying the sheet resistance by the thickness of the film gives

the resistivity of the film material.
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4.2.1 Resistivity Measurement of Deposited Ta

The resistivity of Ta coatings and films deposited on Si0 2 substrate was measured using

four-point probe at Microelectronics Research Center (NJIT). The resistivity values

observed from various measurements are as follows,

4.3 Optical Microscopy

The optical microscopy can examine the features on the sample by reflection of visible

light from the surface. 0ptical microscope is one of the simplest tools that can be used to

observe microscopic features in metallic specimen. Surface features like size of the

grains, their distribution, surface defects, and distribution of phases can be revealed under

the microscope, after careful surface preparation and chemical etching in some cases. An

optical microscope consists essentially of three parts: 4) an illuminator, to illuminate the

surface of the specimen, 2) an objective, and 3) an eyepiece, to form and enlarge the

image. This microscope does-not reveal fine scale atomic details (existence of

dislocations, structure of the crystal etc.), because of the limited resolving power. The

smallest distance, which may be resolved, is given by,
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where, X. is the wavelength of the illumination. The denominator is the numerical aperture

with 1.1 the refractive index of the medium (..t=4 for air) and a the angle subtended by the

maximum cone of rays entering the objective. Therefore, in an optical microscope the

resolution increases with an increase in the numerical aperture. Having even the most

favorable case, with a approaching 90°, the resolution cannot exceed 200 nm, as the

wavelength of light is about 500 nm.

The author in this study was only interested in thickness measurement and

phase distribution in Ta coatings, under optical microscope. The steel sample with thick

Ta coating was cross-sectioned and after polishing, was observed under the microscope.

Image was the then electronically stored through a Kodak Microscopy Documentation

System (MDS 290). Figure 4.3 shows an image of cross-sectioned steel sample with thick

(46 Ta coating. 0ptical microscopy was also used for photomicrograph technique

was used to reveal the difference in color and texture brought out by polishing. Beta

phase being harder appears lighter and the bcc being softer appears darker under the

optical microscope. Example of such image is presented in the next Chapter (# 5).
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Figure 4.3 Optical micrograph of the Ta coating (— 50 gm) deposited on steel.

4.4 Scanning Electron Microscopy

Scanning electron microscopy (SEM) is the widely used technique to characterize very

small features of surfaces with a spatial resolution of a micrometer or even less

resolution. The SEM provides information related to morphology, and topographical

features. It is also capable of determining near surface elemental compositions of micro-

volumes with the addition of an x-ray spectrometer.

A SEM consists of an electron accelerator that focuses as the electron beam

from a tungsten or lanthanum hexaboride (LaB6) cathode filament on to the specimen

with the help of electromagnetic lenses. The beam is moved across an area of the

specimen in a raster form. Upon impinging on the specimen, the primary electrons are

scattered elastically, and some lose energy inelastically, to other atomic electrons or to

the lattice. A detection system measures the intensity of electrons scattered by the

specimen and is used to form the image. The schematic of the SEM setup is shown in
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Figure 4.4. In SEM, insulating specimens cannot be analyzed directly, as it accumulates

the absorbed electrons on the surface. Eventually, the accumulated electrons built up a

charge region. This can cause to deflect the beam in an inegular manner, leading to

severe image distortion. Such samples can often be coated with a thin conducting layer

such as Al for subsequent examination.

Figure 4.4 Schematic of primary components of typical SEM [45].

In this work, SEM was used to examine the surface topography of Ta and TaN

films. The author used an Electroscan 2020 model, Environmental Scanning Electron

Microscope (ESEM) at an accelerated voltage of 20 kV to study the surface morphology
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of tantalum films deposited on steel and Si0 2 substrates. Water at a vapor pressure of 5

Corr is used in the chamber as a conducting medium. Initial Ta film deposited on steel was

found to be flaky and non-continuous as shown in Figure 4.5. Later, to improve the

quality of the film, a proper cleaning procedure and baking was developed, which is

described in Sections 3.3 and 3.4.

Figure 4.5 Example of scanning electron micrograph of the Ta film deposited on steel
during preliminary experiments.
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4.5 Atomic Force Microscopy

Atomic force microscopy (AFM) is one of characterization techniques commonly used

for surface study. This technique is very attractive for surface imaging of various

materials. It's a type of scanning probe microscopy (SPM). A schematic of generalized

SPM is shown in Figure 4.6.

Figure 4.6 Schematic of a generalized scanning probe microscopy [46].

4.5.1 Principle of Atomic Force Microscopy

AFM measurement involves scanning of a sample surface with a sharp tip. The tip

mounted on the end of a flexible cantilever is a few microns long and less than 10 nm in

diameter. Forces between the tip and the sample surface cause the cantilever to bend, or
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deflect. A detector measures the cantilever deflection as the tip is scanned over the

sample, or the sample is scanned under the tip. The measured cantilever deflections allow

a computer to generate a map of surface topography. Several forces typically contribute

to the deflection of an AFM cantilever. The force most commonly associated with AFM

is an inter-atomic force called the Van der Waals force. AFM can be operated in mainly

two modes: 4) Contact mode and 2) Tapping mode. In the contact regime, the tip is held

less than a few angstroms from the sample surface, and the inter-atomic force between

the tip and the sample is repulsive. In the non-contact regime, the tip is held on the order

of tens to hundreds of angstroms from the sample surface, and the inter-atomic force

between the tip and sample is attractive (largely a result of the long-range Van der Wails

interactions). Discussion will be limited to the tapping mode, as it was the only mode

used for this study. A schematic anangement of major components for tapping mode

operation of AFM could be seen in Figure 4.7.
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Figure 4.7 Schematic arrangements of AFM showing the feedback loop for tapping
mode operation [46].

Tapping mode AFM operates by scanning a tip attached to the end of an

oscillating cantilever across the sample. The cantilever is oscillating at or near its

resonant frequency with amplitude ranging typically from 20 nm to 100 nm. The

frequency of oscillation can be at or on either side of the resonant frequency. The tip

lightly "taps" on the sample surface during scanning, contacting the surface at the bottom

of the swing. The feedback loop maintains constant oscillation amplitude by adjusting the

distance between the tip and the sample and maintains a constant RMS of the oscillation

signal acquired by the split photodiode detector. The laser deflection detects the root-

mean-square amplitude of the cantilever oscillation. Recording the vertical movement of
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the cantilever at every x, y data point, forms the topographical image. The main

advantage of the tapping mode over the contact mode is that lateral, shear forces are

eliminated, which are present in the contact mode. This enables tapping mode to probe

soft, fragile samples without damaging their surfaces.

4.5.2 Equipment

In this research, AFM instrument used was a Nano-Scope Ina manufactured by Digital

Instruments and was available at York Center of NJIT. This Nano-Scope is capable of

scanning up to 452 lam x 452 horizontal areas and 5 vertical distances. The

instrument was used to study the surface morphology of tantalum nitride interlayers

deposited on Si02 substrates with various nitrogen flows. Example of a two dimensional

image from AFM is shown in Figure 4.8. Three-dimensional images from this

characterization technique are discussed in Chapter 5.



Figure 4.8 Atomic force micrograph of a tantalum nitride film on a silicon dioxide
substrate deposited by the reactive sputtering of Ta in argon and nitrogen plasma.
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4.6 X-ray Diffraction

The principle of diffraction is used in this technique to determine lattice constants,

identification of crystalline materials, orientation of single crystals, prefened orientation

of polycrystals etc. A diffraction beam may be defined as a beam composed of a large

number of scattered rays mutually reinforcing one another [45]. Diffraction is therefore, a

scattering phenomenon that involves interaction between ordered anays of atoms lattice

and x-rays. An x-ray diffraction pattern follows a basic principle of Bragg's law,

where, X, is the wavelength of the x-ray beam, d is the distance between each set of

atomic planes of crystal lattice, 0 is the angle of diffraction and n represents the order of

diffraction. Figure 4.9 shows the reflection of X-ray beam from the planes of a specimen.
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X-ray diffraction is useful for studying crystals because the wavelength used is close to

the spacing of atomic planes in a crystal. The X-ray diffraction instrument consists of: 4)

a source of radiation (consisting of an X-ray tube and a high-voltage generator), 2) a

detector, and 3) a diffractometer. A schematic of a XRD setup is shown in Figure 4.10.

The inter-planar distances depend solely on the dimension of the crystal's unit cell,

whereas the intensities of the diffracted rays are a function of the placement of the atoms

in the unit cell. An unknown crystalline material can be identified by comparing

intensities of its pattern to the patterns in powder diffraction reference files, compiled by

the joint committee on powder diffraction standards (JCPDS). Advantages of XRD are

that it is non-destructive and does not require any sample preparation or removal of the

film from the substrate. The X-ray diffraction method has limitations for studying very

thin films of light elements due to the fact that the great penetrating power of X-ray

means that with typical incident angles, their path length through such films is too short

to produce diffraction beams of sufficient intensity. Under such conditions the substrate,

rather than the film, dominates the scattered X-ray signal. This limitation was only of

concern in the case of very thin TaN film studied in this work.
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XRD measurements of the Ta and tantalum nitride films deposited on steel and

control sample of Si02, was done using a Philips X'Pert MPD instrument with Cu Ka

radiation. Measured spectra were compared with the standard powder spectra for bcc Ta

[47] and beta Ta [48] as shown in Figures 4.44 and 4.42 respectively. Typical XRD

spectra for films of bcc and beta Ta are shown in Figures 4.43 and 4.44 respectively.
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4.7 Nuclear Reaction Analysis

Many isotopes of chemical elements can be detected using resonant nuclear reactions.

When accelerated particles such as protons, deuterons or other light element ions interact

with the target atom nuclei, gamma rays and secondary particles can be emitted. If the so

called, coulomb barrier is overcome allowing the nuclei to form a compound nucleus and

de-excite with the emission of gamma rays or emerging particles. Resonant reactions

occur only if the incoming particles have the specific resonance energy for the two nuclei

to interact. Nuclear reaction analysis (NRA) is a non-destructive method that can be used

to analyze the concentration and depth distribution of specific light element isotopes in

thin films. When a beam of charged particles produced in an accelerator, with energy

from few hundred keV to several MeV, hits the low atomic number (Z) nuclei in the

sample, nuclear reactions may be induced. When products of these reactions are detected,

the spectrum of particle yield vs. incident energy can be obtained. In many cases of

(pay) reactions a particles have energies that are low for effective detection and the

associated y rays are detected instead.

Two important parameters in NRA are reaction's Q value and the cross sections. Q value

is the energy released in a specific nuclear reaction, which determines the energy of

particles resulting from the reaction. Reactions with high (positive) Q values are most

suitable for NRA. The cross section relates to the rate at which particles are removed

from the beam by a particular reaction. The cross section of a reaction is measured as a

function of incident ion energy and detector angle with respect to incident beam.

Secondary particle or gamma rays yields are directly proportional to the reaction cross

section hence this information allows an experimenter to select the incident beam energy
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and beam detector angle to maximize sensitivity. NRA complements other accelerator

based ion beam techniques like Rutherford back scattering (RBS), which is less sensitive

for light element detection. When a layer of a light element film is deposited on a heavy

substrate, then the RBS spectrum of light element is superimposed on top of the spectrum

of heavy element, or in other words, the light element signal is seen against a huge

background thereby limiting its sensitivity. For NRA there is no natural background from

high Z component because to interact with high Z nuclei the particles require high

energies.

The NRA method was used to detect the nitrogen content of the interlayer of

tantalum nitride on steel. The reaction on which these measurements were based is as

follows:

The Q value for the above reaction is 4.964 MeV [49] with a resonant energy of 898 keV.

The proton with the resonance energy interacts with nitrogen on the surface of the sample

and the gamma rays are emitted. To detect the nitrogen below the surface of the sample,

the beam energy is increased to compensate for slowing down of protons in the sample.

For calculating the content of nitrogen in a given sample, the detected gamma yield is

compared to the yield measured on a standard reference sample, (e.g. TiN) containing a

known fraction of nitrogen. The difference in the stopping cross sections in these two

different media is also taken into account. The depth x at which a bombarding particle

with an initial energy Eb will slow down to an energy E, is given by:
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The program SCRIM (The Stopping and Range of Ions in Matter), developed by

James Ziegler at IBM was used for calculating the stopping and range of ions into matter.

The Monte Carlo program TRIM (the Transport of Ions in Matter) is the most

comprehensive program included in SRIM [54]. The projected range, defined as the mean

depth from the target surface at which the ion comes to a halt, can also be calculated

using SRIM. Knowing the projected range as a function of energy, the depth

corresponding to a resonance reaction occurring can be calculated. Figure 4.15 shows the

resonance depth as a function of beam energy for different percentages of Ta in tantalum

nitride films.

As seen in Figure 4.15, a film containing more nitrogen has a lower stopping power for

the protons and so the resonance reaction for proton with a given energy will occur

deeper in the sample, as compared to the tantalum nitride film containing less nitrogen.
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The gamma yield vs. bombarded energy curve can be converted to a concentration vs.

depth plot. The principle of nitrogen depth profiling on the surface and inside the sample

is shown in Figure 4.16.
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As the beam of proton penetrates the film surface, the slowing down is accompanied by a

spreading of their energy, which is called energy straggling. This is due to the statistical

fluctuations in the number of collisions along the trajectory of the incident particles

inside the sample. If the straggle is appreciable it will somewhat degrade the resolution of

the depth profile (of nitrogen concentration) measurements.

Using the TRIM code, the energy straggling of protons passing through 4 pm

films of in the stoichiometric TaN (density: 8.843 gms/cm 3) was calculated as 6.29 ± 0.04

keY for an incident proton energy range of 900-4050 keY. It was also found from the

TRIM code that the energy loss occurs mainly through interactions with electrons.

Energy straggle increases with the atomic number of the target element, as this number is

equal to the number of electrons in an atom. In Figure 4.47 it is shown that the straggle

increases with the increase in the tantalum content of tantalum nitride film as the Ta atom

(Z=73) is heavier compared to nitrogen atom (Z=7). The figure also shows that energy

straggle is essentially the same for two incident beam energies of 900 and 1000keY.
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Figure 4.17 Energy straggle vs. percentage of tantalum in 1 Om thick Ta-N film
calculated by TRIM code for the proton beam energies of 900 and 4000 keY.
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Figure 4.18 Energy straggle as a function of depth at which the resonance reaction
occurs (Er = 898 keY) for a range of proton energies of 900-1050 keY, in a TaN sample
calculated using TRIM code.
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Figure 4.48 shows the proton energy straggle calculated (using TRIM code) as a

function of depth at which the resonance reaction (E r = 898 keY) occurs, in TaN sample

with the estimated film density of 8.843 gm/cm3 or 5.448E +22 atoms/cm3 . Each point in

the graph conesponds to, a different incident beam energy. It's clear from Figure 4.48

that energy straggle increases with the increase in the depth at which the resonance

reaction occurs. The energy straggle exceeds the ion beam energy spread of 2 keY at the

depth of approximately 470 nm and beyond this depth determines the resolution of the

experiment.

4.8 Adhesion Test

Protective coating needs not only to be continuous and defect free but also needs to be

strongly adhering to the substrate it intends to protect. 0ne of the primitive ways to

measure adhesion is to apply an adhesive tape to the surface of the coating and to

subsequently examine the result of stripping. Those, which are weakly bond to the

substrate comes off easily, while those, which are strongly bonded will remain on the

substrate. However, the above method is highly qualitative and gives no indication of the

relative magnitudes of adhesive forces.

A specific test, namely the scratch test was used in this study to determine the

adhesion of the coating with the substrate. In this test, a critical load characterizes the

mechanical resistance of the coating, which is the minimum load at which damage by

separation of the coating from the substrate can be observed. More specifically tipped

stylus with a given load or a gradually increasing load is drawn across the sample under

test. A commercially available scratch tester, Revetest Automatic Scratch Tester with a

Rockwell C diamond tip (conical angle, 420°; hemispherical tip of radius 200 Jim) was
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used for these studies. The applied load could either be kept constant or linearly increased

while scratching. The tester was equipped with an integrated optical microscope, an

acoustic emission detection system and a device to measure the tangential frictional

force, giving the friction coefficient value during scratching. The critical load for a

coating substrate system can be determined by optical, acoustical or mechanical methods.

When a series of similar samples have to be tested for the critical load measurement, the

acoustic emission and frictional force are used. These two do not replace the optical

observation, which in turn gives the useful indications on the nature of the failures. In

most cases, the three methods provide complementary information.

Some samples were subjected to a groove adhesion testing performed at Benet

Laboratories. The test used is a modification of a standard groove test for soft coatings.

The modification induces a plowing of coating rather than cutting. 0ne major advantage

is that when poor adhesion is present, the coating tends to fully delaminate. This gives

ease of examination of the substrate.



CHAPTER 5

RESULTS

The research was aimed to produce a high quality, bcc Ta coatings on steel substrate by

sputtering. Two methods of deposition of bcc Ta were successful:

1. Deposition of Ta at room temperature, on a seed layer (interlayer) of tantalum

nitride formed by reactive sputtering of Ta in Ar and N2 gases.

2. Deposition of Ta on heated steel substrate.

This chapter presents the results obtained by these two methods. Results

obtained on Ta deposited on a seed layer of tantalum nitride are presented in Section 5.4.

The result of the study of structure and morphology of tantalum nitride seed layer

promoting the bcc phase of Ta are presented in Section 5.2, while Section 5.3 describes,

the results of Ta deposition on heated steel substrates. Adhesion of coatings obtained by

both methods was investigated and the results are presented in Section 5.4.

5.1 Tantalum Deposited on Tantalum Nitride Seed layer

In this part of the research, the influence of a tantalum nitride seed layer on the structure

of Ta sputter deposited on steel was investigated. A seed layer of tantalum nitride was

reactively sputtered in a nitrogen and argon gas mixture, followed by Ta deposition in

argon. An example of the influence of this tantalum nitride interlayer on the

crystallographic phase of Ta coatings is shown in Figure 5.1. All the peaks in the XRD

spectrum of Ta deposited on steel without the interlayer, conespond to the Ta beta phase

while all the peaks in the spectrum of Ta deposited with the tantalum nitride interlayer

represent bcc structure. Details of the deposition parameters for these samples are given

61
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in the appendix. In the XRD spectra of some Ta films deposited on steel without the seed

layer, the peaks corresponding to both phases (mixed phase) were observed.

Resistivity measurements were also performed on tantalum films and coatings

deposited on the control substrates of Si02 with tantalum nitride seed layer. Ta deposited

without an interlayer exhibit a resistivity of 160-200 g2cm, which corresponds to

literature values of tetragonal beta phase Ta. The resistivity of Ta films deposited with

the tantalum nitride interlayer was measured as 20-25 g2cm indicative of the bcc phase.

This is further evidence that a tantalum nitride interlayer promotes the growth of bcc

phase of Ta.

It was assumed that the thinnest possible interlayer is desired to minimize its

effect on the Ta coating integrity. To find the minimum thickness of the interlayer

required to produce a pure bce phase of Ta, a wide range of interlayer thickness (4 nm to
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3 gm) was investigated and the influence of interlayer thickness on the phase of

deposited Ta was studied. This seed layer thickness was reduced sequentially from the

maximum of 3 1.1M and the phase composition of subsequently deposited Ta films was

measured by XRD. Results from this study are given in Table 5.1.
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Figure 5.2 shows an example of the XRD spectrum of Ta deposited on a 20 rim thick

tantalum nitride seed layer, deposited with nitrogen and argon flow ratio of 2/48 (40%

nitrogen concentration). Figure 5.3 shows the XRD spectrum of Ta deposited on a thinner

(5 nm) seed layer of tantalum nitride deposited under the same condition.

As indicated by the peaks in the spectra, a pure bcc structure of Ta was obtained

on the 20 nm thick seed layer (Figure 5.2) but a mixed phase, with prominent beta phase

peaks was obtained with a 5 nm thick seed layer (Figure 5.3). The 20 nm thick seed layer,

deposited with a 40% nitrogen concentration in the sputtering gas did not produce a pure

bcc phase in some Ta films. However, tantalum nitride layers deposited at somewhat

higher nitrogen concentrations of 44%, 48% and 24%, all with thickness of 20nm,

produced bcc Ta in all films. Ta sputtered on nitride seed layers deposited with all the

above gas compositions and thickness of more than 20 nm also grows exclusively with

the bcc phase. Additionally, Ta deposited with a seed layer thickness of less than 20 nm

grows with a mixed phase similar to one presented in the XRD spectrum of Figure 5.3. It

was thus established that the minimum thickness of tantalum nitride seed layer to grow

bcc Ta on steel (subjected to sputter etching before deposition), is 20 Om.
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The influence of substrate sputter etching on the critical thickness of the seed

layer required for the growth of bcc Ta was also investigated. Table 5.2 shows the

comparison of seed layer thicknesses required to produce bcc Ta on steel substrates with

and without sputter etching prior to deposition. The bcc Ta films were observed on

thinner (less than 20 nm) tantalum nitride seed layers that were deposited on steel

substrates, which were not subjected to sputter etching prior to deposition.

A special case of this study is presented in Figure 5.4 showing the XRD

spectrum and Figure 5.5 showing the photomicrograph of the cross-sectioned thick (46

pm) Ta coating deposited with a tantalum nitride seed layer of —15 nm on sputter etched

2
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steel substrate. For comparison, mu) and photomicrography was performed on a Ta

coating (47 p.m) deposited on the steel substrate with the same seed layer of tantalum

nitride (-45 nm) but with no prior sputter etching performed on the steel substrate.

Figure 5.5 Photomicrograph of the cross section of steel sample with Ta coating on 45
nm thick tantalum nitride interlayer, deposited after sputter etching of the substrate.
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As seen in the spectrum (Figure 5.4) there were some beta peak inclusions in the

Ta coating deposited on sputter etched steel along with peaks of bcc phase. Such beta

phase inclusions were also observed by photomicrography performed at Benet

laboratories on the same sample. Beta inclusions could be clearly observed as light spots

in a gray background of bcc matrix, in the photomicrograph (Figure 5.5). The )(RD

pattern (Figure 5.6) and the photomicrograph (Figure 5.7) reveals that Ta deposited with

a tantalum nitride seed layer (-15 nm) on steel substrate, with no prior sputter etching,

had the pure bcc phase, unlike the one deposited on the sputter etched steel. Results

obtained from this study, indicate that sputter Ta coatings deposited on sputter etched

steel substrates require a thicker tantalum nitride seed layer to grow in the bcc phase

structure.

Figure 5.6 XRD spectrum of bcc Ta coating deposited on a 15 nm thick tantalum nitride
interlayer steel substrate (without prior sputter etching).
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Figure 5.7 Photomicrograph of the cross section of steel sample (without sputter etching)
with a Ta coating on top of tantalum nitride interlayer (15 nm thick).

The surface of the Ta coating was also studied by photomicrography performed

at WIT. An example is presented in Figure 5.8 showing a plane view of the polished

coating surface of a 45 pun thick Ta deposited on steel, with a 15 Om thick tantalum

nitride interlayer. As seen from the photomicrograph, the Ta coating has a mixed phase

with numerous beta phase inclusions appearing in light color on the dark background of

mostly bcc film. A cross section of the same film is shown in Figure 5.9, with needle

shaped beta phase inclusions (light color) that were found to grow in a cc phase (darker

color).
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Figure 5.9 Cross section of the steel sample with bcc Ta coating deposited on tantalum
nitride seed layer with beta inclusions clearly visible as light needles.
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5.2 Tantalum Nitride Structure Promoting Bcc Tantalum

The results presented in Section 5.4 show that a tantalum nitride under layer plays an

important role in the overgrowth of bcc Ta. As it was shown, there is a critical thickness

of the nitride seed layer necessary to grow bcc Ta that depends on the flow of nitrogen

during the reactive sputtering of Ta. The critical thickness also depends on the treatment

of the steel surface by sputter etching prior to the nitride deposition. To understaOd these

phenomena, properties of tantalum nitride films were studied as a function of varying

nitrogen flow in a mixture of nitrogen and argon during reactive sputtering. Due to the

limitation of the characterization equipment, thick tantalum nitride films (600-900 nm)

were deposited for the study and the results were used to understand the properties of thin

(20-50 nm) seed layer deposited under the same condition.

For the estimation of the deposition rates of reactively sputtered Ta, the film

thicknesses were measured by a profilometer on control samples of Si02. The

dependence of the deposition rate on the nitrogen concentration is presented in Figure

5.40. As seen in the plot, increasing the nitrogen concentration from 4.6 to 33% decreases

the sputtering rate from 0.87 nm/s to 0.43 nm/s. Similar results are reported in the

literature [52,53,54] on sputtered tantalum nitride films. The decrease in the deposition

rate could be due to nitridation of the target also known as target poisoning, and also due

to low ionization efficiency of nitrogen gas atom [55]. In the phenomenon of target

poisoning, a compound layer is grown on the target, which decreases the amount of open

sites for metal sputtering on the cathode surface. This effect was indicated in the

observed increase in the value of applied voltage when the sputter power supply was

working in a constant cunent mode.



Figure 5.10 Deposition rate vs. the percentage of nitrogen concentration in the sputtering
gas.

The electrical resistivity of tantalum nitride films, measured as a function of

nitrogen concentration during reactive sputtering, is plotted in Figure 5.44. With 4.6% of

nitrogen in the sputtering gas, the resistivity of the film was 240 an cm. An increase in

the nitrogen flow between 4 to 7% increased the resistivity values of the film to 300-330

IA/ cm. A yet higher nitrogen flow of 40% to 44% gave film resistivity values between

340-370 42 cm. A significant increase in the resistivity of the film was observed at

nitrogen concentrations between 18 to 33 %, reaching a very high value of 4800 1.10 cm

at a nitrogen concentration of 33%.
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Figure 5.11 Resistivity of tantalum nitride films on Si0 2 substrate vs. the percentage of
nitrogen concentration in the sputtering gas.

In order to understand their morphology and the crystallographic structure,

tantalum nitride films were investigated by AFM and XRD. These measurements were

made on the films that were deposited on Si02 substrates, because their flatness and

smooth surface makes them suitable for characterization by AFM and four-point probe.

Figures 5.42 and 5.43 shows 2 am x 2 am area AFM scans of the surface of tantalum

nitride film deposited with nitrogen concentrations of 5%, 44%, 48%, 24%, 28% and

33%.
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4)

14% N2

b)

18% N2

c)

Figure 5.12 AFM image of 2 1.1M x 2	 area (Z= 20 nm/div) of the tantalum nitride film
deposited with nitrogen concentration of a) 5% b) 44% c) 18%, in a mixture of argon and
nitrogen, on silicon dioxide substrate.



28% N2

b)

21
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33"/0 N2

c)

Figure 5.13 AFM image of 2	 x 2 am area(Z= 20 nrn/div) of the tantalum nitride film
deposited with nitrogen concentration a) 24% b) 28% c) 33%, in a mixture of argon and
nitrogen, on silicon dioxide substrate.
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The surface roughness of the surface of tantalum nitride film was determined as,

4 .- 1

where, Ra is the arithmetic roughness average, n the number of height positions along the

line profile, Zip the height at position i and z the average height. The summary of results

from AFM measurements is presented in Table 5.3.

The atomic force images show the change in the morphology of the film with

the change in the nitrogen flow. The tantalum nitride film deposited with 5% nitrogen

concentration shows rough inegular structure (Figure 5.42a), while, the AFM image of

tantalum nitride film deposited with 44% concentration (Figure 5.42b) shows smaller

surface features, combined with a reduction in the roughness (Ra) of the film (i.e. 2.64

nm to 4.47 nm). Surface projections at regular intervals of same size and increased

roughness are observed in tantalum nitride films deposited with 18% nitrogen

concentration. The film deposited with 28% nitrogen concentration also had the regular

cylindrical projections that were larger than those observed in the film deposited with
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48%, with a conesponding increase in the roughness. The films deposited with 24% and

33% nitrogen concentration showed similar conical projections, though the latter film

was rougher.

XRD spectra of the films deposited with the nitrogen flow of

24%, 28% and 33% are presented in Figure 5.44 and 5.45 respectively. A broad peak on

the XRD pattern (Figure 5.44a) of the film deposited with 5% nitrogen flow is noted,

which indicates the film to be amorphous. This peak may include the peaks of Ta2N (002)

respectively [56] but could also conespond to TaN

(404) at 20 = 36.8° [57]. The XRD spectra of the tantalum nitride films deposited with

the nitrogen flow of 44% and 18% is shown in Figure 5.45b and 5.45c respectively. The

are identified as conesponding to

respectively. The same two peaks with different

intensity ratios are seen in XRD spectra of tantalum nitride films deposited with nitrogen

concentration of 24%, 28% and 33%, shown in Figure 5.45 a, b and c respectively. The

TaN (200) peak is more prominent in films deposited with 21% nitrogen concentration

and TaN (440) is more prominent in XRD spectrum for films deposited with 33%

Oitrogen concentration. A summary of these results are tabulated in Table 5.4.
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Table 5.4 Summary of XRD Results on the Tantalum Nitride Films deposited on Si02.

80

X-ray diffraction was also used to study the structure of tantalum Oitride films

deposited on steel substrates. Comparison of XRD spectra of tantalum nitride layers

deposited with different nitrogen concentration on steel substrates are shown in Figure

5.16. A broadened peak evident in the spectra of taOtalum nitride film deposited with

nitrogen concentrations between 1 to 5% indicates the amorphous nature of the film and

was also observed in the film deposited with the same flow on Si02 substrates. With an

increase in the nitrogen concentration in the sputtering gas mixture, the composition of

tantalum nitride films changed from Ta2N to TaN, which is reflected in the XRD patterns

(Figure 5.46). There was a transition from Ta 2N phase to TaN phase as the concentration

is increased above 5%. With higher concentrations (28% and 33%) of nitrogen, broader

peaks (at 20 =34°) were observed in the XRD spectrum on steel, which were not

observed on Si02, indicating the change in the structure as compared to the spectra for

44, 48 aOd 21 % nitrogen. All the spectra have the peak appearing at 20 angle of 44.5,

which corresponds to the steel, i.e. the substrate. Hence, the tantalum nitrides on Si02 and
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steel substrates grown under the same conditions were similar. The seed layer promoting

the bce phase in Ta films and coatings appear to be cubic TEN.
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Depth concentration profiles of nitrogen in selected nitrided layers were

measured using a nuclear reaction analysis (NRA) technique using the 5
N(p, ocy)12c

reaction at the 898 keY resonance energy. The energy of the proton beam was increased

in small steps, so that the intensity of the detected 7 radiation from the nuclear reaction

was proportional to nitrogen concentration at a depth where the protons passing through

the sample were slowed down to the resonance energy. The nitrogen content of selected

tantalum nitride films is shown in Figure 5.47. The data were obtained on 4 im and 0.8

thick nitride layers deposited on steel substrate with 5% and 44% nitrogen

concentration sputter gas at a pressure of 5 mton. The results of NRA show nearly 50%

nitrogen content in the nitride film deposited with 44% nitrogen concentration that

confirms the formation of stoichiometric TaN at this concentration. In nitride films

deposited at 5% nitrogen content, only 30% nitrogen content was found that indicates the

Ta2N phase in these films. These results agree with conclusions from the XRD data.
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Scanning electron microscopy was performed on a thin tantalum nitride seed

layer deposited on steel. A larger area of the nitride films was exposed by SEM. 0ne such

image of a tantalum nitride film is shown in Figure 5.18. The tantalum nitride film

deposited on polished steel substrates showed smooth surfaces yet some SEM images

indicated discoOtinuities of a few micron in size in the thin seed layer films.

Figure 5.18 ScaOning electron micrograph of tantalum nitride film of thickness 10 nm
deposited on a sputter etched steel substrate.
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5.3 Tantalum Deposited on Heated Substrate

Another method of producing bcc Ta coatings on the steel involved heating of the

substrates. Ta deposited on steel at room temperature had always the beta or a mixed

phase. To find the critical temperature required for the growth of bce Ta, a series of

experiments were performed with tantalum deposited on steel substrates heated to

temperatures from 400 to 450 °C. Figure 5.49 and Figure 5.20 show the XRD spectra of

Ta deposited with argon and krypton on steel, heated to 400 °C and 350 °C respectively.

As seen from the patterns, the films have the same bce structure but different

crystallographic textures.



Figure 5.20 XRD spectrum of Ta deposited (3 gm) on heated steel substrate (350 °C)
with krypton as the sputtering gas, all peaks correspond to the bcc Ta phase.

Figure 5.24 shows the XRD spectrum of a Ta film deposited on a steel substrate heated to

200 and 250 °C with Ar and Kr respectively. Peaks representing both beta and bcc are

present in these spectra. This mixed phase was usually obtained on the Ta films deposited

on the steel substrates heated below the critical temperature of 400 °C and 350 °C with

argon and krypton respectively. Figure 5.22 shows the RD pattern of a Ta film (4pm)

deposited on a steel substrate heated to 400 °C during deposition with Ar. As seen in the

spectrum, a strong peak (222) at 107° is observed. Figure 5.23 shows the comparison of

Ta coatings of different thickness deposited with Ar on heated steel substrate (400 °C).

The 222 peak of bcc Ta was the only peak detectable in the spectrum of thicker (44 and

50 pm) Ta coating. These results are also tabulated in Table 5.5.
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Figure 5.22 XRD pattern of Ta film (4 gm) deposited on steel substrate maintained at
400 °C during deposition using argon.
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In a special case as XRD test was performed on both sides of the film (2 gm)

that peeled off from the steel substrate. This was done to check the phase at the interface

of the bcc Ta film. Figure 5.24 shows the XRD spectra of one such analysis on such a

peeled off Ta film. As seen in the spectra (Figure 5.24) both sides of the Ta film had the
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identical bee phase. Photomicrography was performed on the cross-sectioned thick (50

gm) bcc Ta coating produced on heated steel substrate (at NJIT) as shown in Figure 5.25.

No beta phase was found at the interface of steel and the coating.

Figure 5.25 Photomicrograph of the bcc Ta coating deposited on heated steel substrate
with no trace of beta phase in the coating.
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5.4 Adhesion of Ta Coatings

Figure 5.26 and Figure 5.27 shows scanning electron micrographs of Ta coatings,

deposited on steel substrate with and without sputter etching (after the groove test

performed at Benet Laboratories, with knife edged tungsten carbide tool bit). In Figure

5.26 minor adhesion failure at the edge of the sample was observed which might be due

to the inegular coating under the screw that was used to hold the steel to the substrate

holder. Figure 5.27 shows a major failure in the Ta coating deposited without prior

sputter etching. This adhesion test performed at Benet laboratories on the Ta coatings

deposited with tantalum nitride seed layer suggested that sputtering etching prior to

deposition improved the adhesion of the coating with the substrate. The overall adhesion

of the Ta coatings deposited on sputter-etched substrate was reported by the Benet

Laboratories investigators to be excellent. Sputter etching time of steel substrates for 20

minutes with cunent density of approximately 25 11A/cm 2 was found to be sufficient.



Figure 5.26 SEM image, showing the Ta coating deposited on sputter etched steel
sample with an interlayer of tantalum nitride, after the groove test (performed at Benet
laboratories).

Figure 5.27 Scanning electron micrograph (after groove test) of Ta coating deposited on
steel substrate without sputter etching and with an interlayer of tantalum nitride.
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Results from the scratch adhesion test performed at NIT on bce Ta, and mixed

phase coatings with a diamond tip (conical angle, 120 0 ; hemispherical tip of radius 200

gm) are shown in Figure 5.28 and Figure 5.29 respectively. Figure 5.30 and 5.34 shows

the results obtained on beta phase Ta coatings. Two distinct modes of failure in the Ta

coatings were observed, depending upon the phase composition. Brittle failure was

observed with the crack propagating in and around the scratch channel in the beta phase

coating. The bce coating showed ductile behavior, no cracking was observed before

complete delamination. No acoustic signals are measured from such failures [59].

Figure 5.28 Failure pattern of bce Ta coating deposited on sputter etched steel with 20
Om thick, tantalum nitride interlayer.



Figure 5.30 Coating failure pattern observed in beta-Ta coating deposited on sputter
etched steel substrate.
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Figure 5.31 Failure observed in the beta Ta coating deposited on steel without the
tantalum nitride interlayer.



CHAPTER 6

DISCUSSIONS

6.1 Effect of Tantalum Nitride Interlayer on the Phase of deposited Ta

The results of this research clearly show that the bcc phase of tantalum can be grown by

sputter deposition on steel at room temperature, when a seed layer of tantalum nitride is

deposited prior to tantalum. Beta Ta or a mixed (beta + bcc) phase is normally formed on

steel at room temperature. The results from XRD and resistivity measurements also

supported by NRA data as presented in chapter 5 clearly indicate that the stoichiometric

tantalum nitride (TaN) interlayer plays an important role in bcc Ta formation.

A critical thickness of 20 nm of TaN is required on steel substrates after sputter

etching, while thinner layers (4nm) are needed when sputter etching was not done prior to

deposition. Sputter etching however is desired to enhance adhesion of the films. Possible

explanation for the requirement of a critical thickness of the interlayer could be, the

discontinuity (or the small islands) in thin interlayers of tantalum nitride. Some

imperfections in the substrates surface can cause the discontinuity on this nitride

interlayer, which could results in the formation of the beta phase of Ta. The fact that the

critical thickness of tantalum nitride required for the samples without sputter etching is

smaller than the one with sputter etching could be explained by the fact that sputter

etching increases the roughness in the steel substrate [43]. Hence, thicker interlayers are

required to cover the rougher substrate and to produce a continuous nitride film and

subsequent bcc Ta phase in the coating.

94
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A special case of one of the cc Ta coatings is shown in Figure 6.1, in which

beta inclusions were observed in the pure bcc Ta. These results contradict the hypothesis

by Collobert and Chouan [301, which states that it is impossible to get beta on cc Ta.

The growth of beta Ta on bcc phase has not been reported in literature to our knowledge.

This growth of beta Ta on bcc structure could be due to stresses build up in the growing

film.

Figure 6.1 Cross section of steel sample with cc Ta coating grown on tantalum nitride
interlayer and beta Ta inclusions are clearly observed as light needles in a grey
background of cc.
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6.2 Characteristics of Tantalum Nitride Films

The Ta-N system is extremely rich and complex [60-64] and tantalum nitride film

structures have being extensively studied by researchers for a long time. Tantalum nitride

has been reported to have a defective structure and its deviations from stoichiometry are

common [62].

The results of the work presented in Section 5.2 shows that the electrical

resistivity of tantalum nitride film varies with the variation in the nitrogen flow (Figure

5.44). Resistivity values of 200-250 AD cm are reported for the Ta2N phase of tantalum

nitride films in the literature [63, 64], which conesponds to the measured resistivity of

the films deposited here with 4.6% nitrogen concentration. This indicates that with 4.6%

nitrogen concentration in the sputtering gas, the Ta2N phase is obtained in the films.

Resistivity values of 340-370 1.tf2 cm were measured for films deposited with nitrogen

concentrations between 40-44%, indicating a TaN phase. That is in agreement with the

resistivity values determined by Krikorian and Chen [65, 66] for this phase. In the films

deposited with nitrogen concentrations between 4 to 7 %, resistivity values of 260-300

a1-2 was observed which may be due to the mixed phase of Ta2N and TaN. A dramatic

increase was noted in the resistivity of the tantalum nitride film deposited with nitrogen

concentrations between 48-33%. A higher percentage of nitrogen in the sputtering gas

could result in nitrogen-rich compounds of higher resistivity, like Ta 5N6, Ta4N5 and

Ta3N5 [67]. This however is not supported by the XRD spectra. 0ther explanations could

be that the film grain boundaries are saturated with nitrogen or that high nitrogen content

could also reduce the grain size of the film, as observed by Saha and Barnard [68].
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The XRD spectrum of the nitride film, deposited with 5% nitrogen concentration

(Figure 5.44a), shows a very broad peak, indicating the amorphous nature of the film.

Further, the films deposited with 44%, 48%, 24%, 28%, and 33% nitrogen concentration

had the TaN structure indicated by the XRD measurements.

It was observed from the XRD spectra (Figure 5.46) that the structure of

tantalum nitride films, deposited with different nitrogen concentration, was similar on

steel and on the Si02 substrates. However, X-ray diffraction results do not seem to

support the formation of nitrogen rich compounds like Ta 5N6, Ta4N5 and Ta3N5 as no

new peaks indicating these phases were observed. Another possibility could be that the

Ta3N5 (430) peak [69] overlaps with the TaN (440) peak, at 20 = 35°. The stoichiometry

of tantalum nitride films was also confirmed by nuclear reaction analysis. These results

show that stoichiometric TaN films were deposited with nitrogen concentration of 44%,

while the concentration of 5% resulted in Ta2N.

It is concluded from this study that an interlayer of TaN on steel favors the

formation of bcc Ta. This could be due to the fact that TaN has the same crystal structure

and a close lattice match with bcc Ta. The lattice mismatch between TaN (3.35 A) and

bcc Ta (3.34 A) is approximately only 0.3%. Similar results are reported in literature with

the bcc Ta grown by sputtering on Nb, which has also the bcc structure [28]. The lattice

mismatch of both bulk Ta and Nb is 0.4%. An advantage of using TaN as an interlayer is

that it could be pre-deposited with the same Ta target by the introduction of nitrogen in

the sputtering gas without breaking the vacuum.
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6.3 Effect of Temperature on Deposited Ta

As is well known the substrate temperature is a very important parameter controlling the

structure coatings [70]. In this work, elevated substrate temperatures (T = 400 °C with Ar

and 350 °C with Kr) has been found necessary to consistently grow a bcc phase Ta

coating directly on steel substrate. The promotion of the bcc phase over the beta phase in

the Ta coatings deposited on heated steel substrates can be explained by the increased

mobility of Ta atoms in the growing film at the higher temperatures. It is interesting that

these substrate temperatures are much lower than required for phase transformation from

beta to bcc in bulk and thin film. They are also much lower than the melting point of Ta

(T/Tn  = 0.43). This value of T/Tn  in Thornton's zone model Ta coatings conesponds to

the starting edge of Zone-T structure [74]. In most commercial applications Zone-T

coatings are desired, as they are dense, contain fewer voids and have good adhesion plus

lateral strength.

An interesting characteristic was noted in the Ta coatings deposited on heated

steel substrates with Ar. These films showed a strong tendency for the alignment of (444)

planes with the substrate surface, indicated by a strong peak of bcc Ta at 407° (222) in

the XRD spectrum (Figure 5.22). This alignment increases with the increase in the

thickness of the Ta film as shown in the XRD patterns presented in Figure 5.23.

Ta coatings produced at BeOet Laboratory mainly had the bcc phase with a beta

phase interface between the Ta coating and the substrate in a few cases, which reduces

the protective quality of the coating. As it was mentioned earlier, the beta phase is more

brittle as compared to bcc hence it undergoes failure under stress.
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Similar results of beta phase at the interface were obtained for Ta coatings deposited on

the heated steel substrate at Pacific Northwest National Laboratories [72]. The beta phase

was not observed in bcc Ta coatings produced at NJIT (Figure 5.25). XRD measurement

on both sides of the peeled film also showed a mono phase film (Figure 5.24).



CHAPTER 7

SUMMARY AND CONCLUSIONS

In this work, deposition of tantalum on steel by dc magnetron sputtering was studied with

the objectives of obtaining high quality bcc phase Ta films/coatings and understanding

the process conditions and pertinent mechanisms for their formation. In order to conduct

this study, a planar DC magnetron system was first designed, and assembled to allow

control of the various process parameters on the crystallographic phase formation and

properties of Ta coatings. A cryogenic vacuum pump was used to achieve a base pressure

in the high 10 -8 ton range and a turbo molecular pump was used to pump the system

during deposition. The system has the capability of admitting of two different gases at the

same time to the chamber through the mass flow controllers. A commercial planar

magnetron sputtering source (K.J. Lesker, Torus 2A) with the target diameter of 2 inches

was used for all depositions. During experiments in which substrate heating was required,

substrates holders were heated with a halogen lamp to achieve the temperature up to

450 °C.

Deposition on unheated steel substrates resulted in formation of the tetragonal

phase Ta or a mixed (tetragonal + bcc) phases. This is in agreement with the result

reported by other workers in the literature [6,38,40,411 However, two methods of

deposition were found to be successful for consistently achieving the objective of

depositing bcc Ta. These are: 1) Deposition of Ta on heated steel substrates and 2)

deposition of Ta at room temperature, on a seed layer (interlayer) of tantalum nitride

formed by reactive sputtering of Ta in a mixture of Ar and N2 gases.
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It was previously known that bce Ta can be produced on heated glass substrates

[31]. This research proved that it's possible to consistently obtain cc phase Ta coatings

on steel substrates heated above a critical temperature. For argon sputtering gas this

critical temperature was found for the first time to be 400 °C. Using krypton, a heavier

sputtering gas the critical temperature can be reduced to 350 °C.

The results of the research presented in Section 5.1 also showed for the first

time that by using a thin tantalum nitride interlayer, the order of a few tens of nm in

thickness, the phase of deposited Ta on steel could be altered. The interlayer was found to

promote the formation of bce phase Ta and to inhibit the formation of beta phase Ta

during depositions at room temperature. Thus, the bce phase of Ta can be reproducibly

grown on steel without requiring heating of the substrate. More detailed studies of the

influence of the tantalum nitride interlayer on the phase of deposited Ta revealed that the

TaN layer could be as thin as 20 nm. This minimum thickness of tantalum nitride

interlayer required to promote cc Ta could be decreased to 4 nm on steel substrate not

subjected to sputter etching prior to deposition. It was also found that the stoichiometry

of the nitride interlayer defined the phase of tantalum deposited on it. TaN was

responsible for the promotion of bce phase Ta.

A special case of growth of needle-like beta phase inclusions growing in a

background of cc phase is reported for the first time in this dissertation, contrary to the

earlier observations reported in the literature that only bce phase can grow on the

tetragonal phase but not the other way around. These inclusions were only observed in a

few very thick coatings (> 40 gm) deposited at room temperature on the interlayer, while

other coatings, deposited under very similar conditions, consisted only of bce Ta. This
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growth of beta on bcc structure is likely related to the compressive stress built up in the

thick film, i.e. phase transformation is a stress release mechanism that may be initiated,

for example, by incorporation of an impurity. This is a tentative explanation of this

phenomenon. Further experiments with the deposition of thick coating (>5 'um) are

suggested to confirm this explanation.

The bcc Ta coatings produced during this research by using both substrate

heating and tantalum nitride seed layers had excellent adhesion to steel substrates. This

was proved by the scratch adhesion tests performed with a diamond hemispherical tip of

radius 200 gm under increasing loads. These adhesion tests revealed high critical load

values for failure (>15 N) for these bcc coatings versus low values (< 9 N) for the beta Ta

coatings. Sputter etching of steel prior to deposition of the nitride seed layer improved the

adhesion of tantalum coatings. This was evident by the groove test, which involves the

plowing of coating with the knife edge tool bit. No signs of failure were observed in the

coating with sputter-etched steel; however delamination was observed for the coating

deposited without sputter etching on steel when tested at a similar load.

The results for this work have demonstrated that by controlling the various

process parameters of dc magnetron sputtering, one can produce high quality bcc Ta

coatings of multi-micron thickness with excellent adhesion to steel. An important

contribution of this dissertation is in the area of understanding methods to sputter bcc Ta.

Sputtering is inherently a non-equilibrium process, in which the energy and mobility of

adatoms is strongly influenced by energetic ions, atoms, and molecules bombarding the

growing film surface, rather than only by the substrate temperature. The non-equilibrium

beta phase growth, observed at low substrate temperatures, is enhanced at high sputtering
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gas pressure and at a higher sputtering rate. The meta-stable tetragonal beta phase of Ta

has been recently found to be highly disordered [73]. It can be concluded from the thesis

data that an increase of the surface thermal energy at a moderate deposition rate promote

the growth of the equilibrium phase. The adatoms surface mobility is still strongly

influenced by the energetic particle bombardment, as evidenced by the difference in the

critical temperature of sputtering with argon and krypton. Ions of krypton have a higher

mass and thus impart a higher momentum transfer in collisions. The critical temperatures

for both sputtering gases are rather low, in comparison with the value of the Ta melting

point (2996°C). They are close to the transition temperature between Zone 1 and Zone T

at low pressures in the Zone model of sputtering films by Thornton [71]. They are also

considerably below the reported transition temperature of 750 °C, from tetragonal to bcc

phase. Annealing of the tetragonal phase films deposited at the critical temperature (for

Ar) has not resulted in the phase transition.

This work showed that the phase of growing Ta could also be controlled by

modification of the steel substrate surface. The dependence of the Ta phase on interlayer

stoichiometry is consistent with epitaxial growth, since TaN has the same crystal

structure and a close lattice match with bcc Ta. The lattice mismatch between TaN (3.35

A) and bcc Ta (3.34 A) is approximately only 0.3%. The epitaxial growth of bcc Ta by

sputtering has been also reported on Nb or Ti interlayers [29, 30]. An advantage of using

TaN as an interlayer is that it can be deposited with the same Ta target by introduction of

nitrogen in the sputtering gas without breaking vacuum thus avoiding possible

contamination at the interface. The fact that the critical thickness of tantalum nitride

required for the samples without sputter etching is smaller than the one with sputter



104

etching could be explained by the fact that sputter etching increases the roughness in the

steel substrate as reported in the literature [43]. Hence, a thicker interlayer is required to

cover the rougher surface and to produce a continuous nitride film resulting in the bcc Ta

phase in the coating.

There remain a number of problems that need to be solved before the

commercial application of these research findings can be realized. These include issues

like defining and controlling the process parameters for the deposition of bcc phase Ta

for specific complex commercial systems (like the cylindrical magnetron for deposition

in gun barrels). The results of this research have already had an impact on better

understanding the deposition process for bcc Ta in ink-jet cartridges (Hewlett Packard,

0regon) and as well as the deposition of protective Ta coatings on gun barrels (at Benet

Laboratories) by magnetron sputtering.



APPENDIX

DETAILS OF DEPOSITION CONDITIONS

The films and coating were deposited by DC magnetron sputtering. Noted parameters

during the process and after the characterization of the deposited Ta and tantalum nitride

films/coatings are listed below in Table Al.
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