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ABSTRACT

RESOANCES OF PERIODIC METAL-DIELETRIC MESHES IN THE

INFRARED WAVELENGTH REGION

by

Oren Sternberg

Metal meshes have been used as reflectors in radar receivers for wavelength much longer

than the periodic constant of the conducting wires and as optical reflectors in a Fabry-

Perot in the far infrared. Cross shaped metal meshes can be used as band pass filters but

the design theory and near field properties have not been known.

Transmittance of thin, single-layer and multiplayer metal meshes has been

investigated using Micro-Strips, yielding numerical solutions of Maxwell's equations.

The near field effect was studied for two alignment configurations of cross shaped metal

meshes, both free standing and with dielectrics, and transmission line theory was applied

for the interpretation as an oscillator mode model. The model for the interpretation of the

mode of a single mesh uses a pair of coupled surface wave (that is one standing wave on

each side). The transmittance of multi-layer metal meshes are interpreted as modes

composed of resonance modes of the single mesh, the Fabry-Perot modes depending on

the separation of the meshes, and their interaction.

Experimental data for thick inductive cross shaped metal meshes agree very well

with Micro-Stripes calculations in the long wavelength region and with Fourier Modal

method calculations in the short wavelength. The transmittances of all these meshes show



similar resonance peaks and the same dependence on thickness of the short wavelength

peaks, suggesting that the interpretation using the oscillator mode model is valid in the

short and long wavelength region.

Stacks of thin metal meshes have been studied with Micro-Strips and transmission

line theory. Narrow transmission regions for inductive meshes and narrow bandgap

regions for capacitive meshes may be obtained from layered structures for the aligned

configuration and spacing of 1/4 resonance wavelength of a single layer.
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CHAPTER 1

INTRODUCTION

1.1 Metal Meshes and Applications in the Infrared and mm-Region

Metal meshes have been used as reflectors for many years. In the 1940's and 1950's radar

receivers were constructed with metal grids as reflectors for wavelength much longer

than the periodic constant of the conducting wires. In the 1960's Ulrich et al.' constructed

a far infrared Fabry-Perot device with electroformed metal meshes as reflectors and

operated a Fabry-Perot spectrometer in the 100μm to 600μm region. These meshes

showed in transmission a strong maximum at a wavelength larger than the periodicity

constant and high reflectivity for long wavelength. The inverse structure of a metal grid,

that is a periodic array of metal squares, has first been published by Ressler and Möller2

and showed a strong minimum in reflection at the same wavelength as for the metal grid.

Ulrich3 used transmission line theory to develop a model for the meshes, and

described the metal meshes as electromagnetic oscillators similar to a two dimensional

array of dipoles. He used electromagnetic circuit elements for the description of the

resonance wavelength and studied arrays of metal meshes as multiple mesh filters'. The

theory was semi-empirical and needed input data from experiments. Ulrich1,3 named the

metal grids inductive meshes and the inverse structure capacitive meshes and used a

combination of inductive and capacitive meshes to manufacture meshes with cross

shaped pattern, see Figure 1.1. The transmittances of cross shaped inductive meshes were

studied by Chase and Joseph4 and the dependence on the geometrical parameters studied.

1
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Figure 1.1 Geometrical overview of crosses. Geometrical constant g, separation of cross
2a, width of cross arms 2b, and metal thickness t. (a) Inductive mesh (b) Capacitive
mesh.

Theoretical calculations on thin metal meshes have been done by Golden 5 ,

Compton6 and Porterfield using various computational methods for solving the

electromagnetic boundary value problem. These calculations were applied in the long

wavelength region to lithographically produced metal meshes, where the metal thickness

is small compared to the wavelength and periodicity constant. In the short wavelength

region, free standing metal meshes, on account of their mechanical stability, have a

thickness not small compared to the periodicity constant resonance wavelength and are

called thick metal meshes. Lalanne 8 has used the Fourier modal method in the 1

region for calculations of the transmittance of thick metal meshes with cross shaped

openings. In this dissertation the Micro-Stripes program is employed to calculate the

transmittance of thin and thick metal meshes. Solutions of Maxwell's equations with

appropriate boundary conditions are used for a wide range of geometrical parameters and

several values of refractive indices.
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The use of metal meshes in Fabry-Perot spectrometers led to the design and

construction of Fabry-Perot etalons as filters for specific wavelength in the long

wavelength region. The COBE (Cosmic Backbround Explorer) satellite used such cross

shaped metal mesh etalons as filters, designed by Möller et al.9 .

The Micro-Stripes^10 program allows the investigation of aspects of photonic

crystals constructed of stacks of thin and thick inductive and capacitive metal meshes, see

References [9] and [10]

1.2 The Micro-Stripes Simulation Program

The Micro-Stripes simulation program was used for the calculation of the transmittance

of metal meshes, free standing or in contact with dielectrics. The program solves

Maxwell's equations for 3D periodic structures and needs as input data the geometrical

parameters, boundary conditions, the surface impedance of the metal and the dielectric

constants of the dielectrics. A description is presented in Appendix A.

The transmittances of accurately manufactured thick metal meshes were used to

determine the surface impedance of the metal mesh by matching the simulated intensity

to the observed transmittance. These transmittance calculations of inductive metal

meshes of various thicknesses were used as justification of the Micro-Stripes

calculations, see Figure 1.2. The experimental results of eight transmittance peaks were

reproduced with an average accuracy of 1% of the measured values". Therefore, using

the adjusted surface impedance, we consider the Micro-Stripes simulations "as good as

experiments".
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Figure 1.2 Micro-Stripes calculated transmittance of free standing metal meshes of
thicknesses 11, 20 and 29μm. The parameters of the cross are g = 20, 2a = 1.5 and 2b =
3µm.

1.3 Interpretation of the Results of Simulations

Simulations are applied to specific sets of parameters and are similar to the numerical

results of an equivalent specific experiment. Variation of the parameters supplies clues

for the description using the laws of physics. For the interpretation, a number of models

are discussed, each describing a certain point of view of the physics involved.

1.3.1 Metal Meshes as Long Wavelength Reflectors

The reflectivity of metal meshes depends on the ratio of the wavelength to the periodicity

constant of the mesh, and for large ratios one may get 95% reflection or even higher.
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Square shaped metal meshes are commercially available as electroformed meshes with

periodicity constants from 25μm to the millimeter region and a thickness of a few

microns. In the far infrared, at around 100μm, metal meshes have been used as Fabry-

Perot reflectors. Metal meshes were used in this spectral region because they show

considerably less absorption than semi-transmissive thin metal films, as used in the short

wavelength region for the same purpose.

1.3.2 Inductive and Capacitive Meshes

Metal meshes made of wires in a two dimensional periodic arrangement are called

inductive meshes, and the inverse structure a capacitive mesh, both shown for cross

shaped pattern in Figure 1.1. The capacitive meshes need a substrate for their realization.

Ulrich3 has studied inductive and capacitive metal meshes with transmission line theory

and represented the meshes by electrical circuit elements. Since the incident light induces

currents along the wires of a wire grid, he called them inductive mesh, while in the

inverse structure positive and negative charges are produced on metals separated by a

dielectric gap, he called them capacitive mesh.

1.3.3 Diffraction, Resonance Peaks and Babinet's Principle

Electromagnetic radiation is considered incident in normal direction on inductive and

capacitive meshes with the same size of the crosses and periodicity constant. Both

meshes will show the same diffraction pattern for wavelength smaller than the periodicity

constant, similar to what one would have for a two dimensional grating, according to
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Babinet's principle in scalar wave formulation12,13,14  . The transmittance of radiation with

wavelength longer than the periodicity constant is shown in Figure 1.3.

(b) Transmittance of Capacitive Mesh

Figure 1.3 Demonstration of Babinet's Principle(a) Inductive Mesh (b) Capacitive Mesh.

The inductive mesh has a resonance maximum at around 40μm while the capacitive mesh

shows a resonance minimum at the same wavelength, see Figure 1.3. According to

Babinet's principle in electromagnetic formulation 12,13,14  complementary screens will

show complementary transmittance pattern. The maximum of an inductive mesh has the
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same wavelength as the minimum of the capacitive mesh provided that the geometrical

parameters are the same.

1.3.4 Resonance Mode and Intensity

The relation of the resonance wavelength of a mesh to the periodicity constant may be

seen considering a one dimensional capacitive grid that is chain of metal pieces separated

by dielectric gaps. The incident light induces changes in the distribution of the charges in

the metal and the vibrating positive and negative charges form a chain of vibrating

electrical dipoles. There is similarity to a vibrating chain of NaCl molecules. In the

fundamental mode all Na atoms move in phase against all Cl atoms and the resonance

wavelength of this fundamental mode is the vibrational wavelength of one NaCl molecule

vibrating with respect to its center of gravity. Similarly, the resonance wavelength of the

chain of vibrating dipoles has the resonance wavelength 2L for a dipole of length L.

When using the periodicity constant g for the representation of the resonance wavelength

one has for the resonance wavelength 2g minus two times the width of the gap between

the metal pieces. With respect to Babinet's principle, one can make an argument of

"dipoles of the openings"; that is the incident light excites the vibration of all dipoles in

the fundamental mode and all dipoles reflect in phase the incident light at the resonance

wavelength of a dipole. The incident light is strongly reflected at this wavelength,

producing a minimum in transmission, similar to constructive interference at a periodic

array of source points. In contrast, a random array of source points will show a much less

pronounced minimum at the resonance wavelength of the dipole.
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1.3.5 Surface Waves and Modes

The incident light induces a pair of surface waves on both sides of the mesh, and these

surface waves transfer the incident light into the reflected and transmitted light. The

induced longitudinal electromagnetic surface waves are standing waves with resulting

wave vector equal to zero and resonance wavelength depending on the periodicity of the

mesh. The two pairs of surface waves on the front and back side of a metal mesh oscillate

with the same resonance wavelength and form the resonance mode.

When a metal mesh is placed on a dielectric substrate, the resonance wavelength

shifts to longer wavelength by a factor smaller than the refractive index n of the substrate.

When the mesh is embedded in a dielectric, the resonance wavelength changes by the

refractive index n. The shifting of the resonance wavelength may be seen considering a

chain of metal rectangles of a two dimensional capacitive mesh. At the gap between the

rectangles one side has positive charges, on the other side has negative charges and in the

gap, a dielectric of refractive index n. For refractive indices n larger than 1, the

corresponding capacitance is increased. Since, in transmission line theory the resonance

wavelength is proportional to the square root of the inductance times the capacitance,

there is an increase of the capacitance resulting in a shift to longer wavelengths of the

resonance wavelength.

1.3.6 Thick Metal Meshes and the Waveguide Modes

Thick metal meshes show a similar transmission spectrum to for thin metal meshes when

the metal thickness is 1/100 of the periodicity constant. With increasing thickness, at a

metal thickness of about 1/10 of the periodicity constant, a new peak appears. The peak
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corresponds to a wave guide mode of the openings of the inductive mesh and transfers

energy from the surface waves on the front to the back side. The wavelength of the

thickness peak is obtained from the vector addition of wavevector k of the surface waves

and the wave guide modes.



CHAPTER 2

FREE STANDING CROSS SHAPED MESHES

2.1 Single Mesh

2.1.1 Geometrical Parameters

Electroformed metal meshes have been used in the far-infrared spectral region as well as

in the mm region as reflectors because of their high reflectivity and small losses. These

meshes with square shaped openings were called by Ulrich 1,3 , Inductive meshes. They

show a resonance transmittance at a wavelength close to the periodicity constant and high

reflectivity in the long wavelength region. The high and lossless reflectivity of the

meshes in the long wavelength region was used in Fabry-Perot spectrometers" 5 and

Fabry-Perot etalons and the resonance transmittance for the construction of multi-layer

band pass filters. The width of the transmittance band may be made narrower if the

square shaped openings are changed to cross shaped openings. Inductive, metal meshes

with cross-shaped pattern, see Figure 2.1, are metal foils with cross-shaped openings in a

periodic array.

In the astrophysical community, there is a great need of narrow bandpass filters in

the mid and far infrared spectral region. Cross shaped meshes have one geometrical

parameter more than square shaped meshes. The resonance wavelength of cross shaped

meshes may be designed at a position not as close to the limiting periodicity region that

one would have with square shaped meshes, thus allowing greater flexibility. A cross will

have narrower bandpass characteristics than that of a square shaped mesh. In addition,

crosses have the advantage that there is no preference with respect to polarization of the

10
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incident light. The resonance wavelength as well as the bandwidth of crosses depend on

the choice of the parameters a and b with respect to the periodicity constant g. The shape

of the crosses for certain ratios of a/g and b/g are shown in Figure. 2.2

Figure 2.1 (a) Pattern of inductive meshes; openings are white, and metal film is black.
(b) Geometrical parameters g, a, and b of a cross. (c) Cross in shifted position. (d) Cross
in the lined-up position.

Figure 2.2 Inductive Cross meshes, a/g and b/g values corresponding to certain cross
shapes, (Chase and Joseph see Reference [4]).



12

2.1.2 Modes of Metal Meshes

An inductive cross shaped metal mesh diffracts all light of wavelength shorter than the

periodicity constant and reflects most of the light of wavelength larger than the

periodicity constant. However, around a wavelength twice as large as the periodicity

constant, all incident light is transmitted. The interaction of the light with the mesh may

therefore be considered as an excitement of an oscillator by the incident light, and

transfer of energy of the incident light into the reflected and transmitted light. An analysis

of free standing inductive metal meshes has been presented by Ulrich 16 .

To describe the interaction process, one assumes a plane wave propagating in z

direction, perpendicular to the surface of the mesh in the x-y plane. The plane wave,

incident in normal direction, induces currents in the metal. As a result, longitudinal

surface waves are induced on the front and back side of the mesh. The surface waves

appear as pairs of traveling waves in opposite direction with wave vectors parallel to the

x-y direction. Since the incident light has a wave vector perpendicular to the x-y plane,

the surface waves are standing waves with resulting wave vector equal to zero. The pairs

of standing waves on the front and back side of the mesh form an oscillator mode of the

mesh.. The induced mode transfers the incident light into the reflected and transmitted

light. For thin meshes, the surface waves are tightly coupled through the openings. Figure

2.3, shows a schematic of the interaction of the light with the mesh.



Figure 2.3 The incident light induces a mode of the mesh, consisting of two pairs of
standing surface waves on each side of the mesh. For a thin mesh, the two pairs are
coupled tightly through the openings. The excited mode transfers the incident light into
the transmitted and reflected light.

The charge fluctuations may be looked at as a periodic array of oscillating dipoles

as positive and negative charges oscillate in the well known linear chain of solid state

physics. The fundamental mode of such a chain has the wavelength of 2 times the length

of one dipole. In the case of cross shaped meshes, the resonance wavelength turns out to

be close to two times the periodicity constant, but depends on the shape of the crosses.

2.2 Resonance Wavelength

2.2.1 Empirical Formula

Ulrich used a combination of capacitive and inductive meshes for the manufacturing of

cross shape meshes and Chase and Joseph 4 investigated the transmittance of six types of

cross shaped meshes with shape parameters of a/g between 0.05 and 0.2 and b/g between

0.56 and 0.15. They presented an empirical formula for the resonance wavelength, see

Equation (2.1a). a least squares fit calculation using six observed values of resonance
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wavelengths to determine the coefficients of g, a and b. An empirical formula on the

basis of dipole interaction was derived by Möller et al", shown in Equation (2.1b).

The Golden program" was used for the calculation of the transmittance of thin

metal meshes. The input data are the geometrical parameters of the crosses. The Golden

program assumes for the calculations, infinite conductivity. A least squares fit for the

formula is displayed in Equation (2.1c).

A computation of the transmission of six different types of cross shaped grids 4

using the Fourier Modal Method 8 in the near infrared was done as well. This rigorous

method relies on a Fourier decomposition of electromagnetic fields on the surface of the

periodic structure of the mesh. Symmetry consideration were exploited to reduce the

number of Fourier orders, and the results of computed data had an absolute error smaller

than 0.01. The calculations were performed on a nickel film surrounded by air with a

periodicity contact of g = 2.14 μm and the real and imaginary part of the refractive index

of nickel were interpolated from tabulated data8 . The resulting formula is shown in

Equation (2.1d).

The resonance wavelengths given in the four formulas are in general consistent

with experimental results. All formulas have a first term of about 2g and are modified by
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the parameters a and b of the shape of the crosses. The main difference with these linear

relations is the sign + or — for the 2b factor. For thin free standing meshes, the

formulation of Equation (2.1b) deems to be more appropriate, while the formula with +2b

is better for thin meshes on a thin substrate.

2.2.2 Micro-Stripes Results

The Micro-Stripes program10 provides 3D electromagnetic analysis of arbitrary

geometries, yielding results in time/frequency domain and uses the Transmission Line

Matrix(TLM). This method is based on establishing a network of transmission lines that

represents the physics of the problem, and finding equivalence between the electrical

solutions of that network and the physical parameters of the problem.

The Micro-Stripes program was used to calculate the resonance wavelength λR

and width of resonance RW for twenty-five sets of g, a, and b(free standing). In Figure

2.4 the resonance is plotted for a wavelength XR, calculated for g = 20μm, 2a = 3, 4, 6, 8,

9μm and 2b = 2, 4, 5, 6, 7μm. The resonance wavelength XR is plotted depending on a

and b. The Micro-Stripes data have been presented by a non-linear formula (Equations

(2.2a). The coefficient were calculated by a best-fit.17. Assuming that realistic input data

would have only two significant decimal places, Equations (2.2b)) appears without

second order b term.



Figure 2.4 Resonance wavelength verses cross separation. Geometrical parameters:
g=20μm, 2a = 3, 4, 6, 8, 9μm and 2b = 2, 4, 5, 6, 7μm.

A linear chain of dipoles of length g would have for the fundamental mode a

wavelength of 2g. The terms depending on a and b modify the resonance wavelength by

changing the shape of the crosses. The non-linear relation was based upon 25 data sets of

different cross shape parameters, and the formula is accurate within a standard deviation

of 0.2μm.
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2.3 Width of Resonance

An empirical formula for the bandwidth was given by Chase and Joseph4 . The width of

the band over the center wavelength was presented by a constant of 0.15 and an

additional term 14 (a/b).

The Micro-Stripes program was used to calculate the width of the resonance

(WR) defined as width at half height (Δλ/λ). In Figure 2.5 one shows WR for g = 20

depending on a/g and b/g. The values chosen were b/g = 0.05, 0.1, 0.125, 0.15, 0.175 and

calculated the resonance wavelength depending on a/g = .075, 0.1, 0.15, 0.2, 0.225 for

each of these values.

The results of the Micro-Stripes program have been presented with a non-linear

formula and the coefficient calculated by a best fit17, see Equation 2.3a. Assuming that

realistic input data would have only two significant decimal places, one can use Equation

(2.3b).

and the standard deviation was obtained as 0.023. The change of width of resonance

depending on changes of cross parameters a and b for fixed periodicity g may be seen

from Figure.2.5. The smallest width is obtained for large a/g and large b/g, and the largest

width for small a/g and b/g values
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Figure 2.5 Width of Resonance Vs Cross separation relation (a/g). g = 20μm and sets of
a/g = .075, 0.1, 0.15, 0.2, 0.225 and b/g = 0.05, 0.1, 0.125, 0.15, 0.175.

2.4 Width of Resonance and Intensity

Both the peak intensity resonances and the width to resonances depend on the shape of

the cross. This is shown for a few cross parameters a and b and fixed g = 24 μM, see

Figure.2.6. The parameters are for (1) a = 5.6 μm and b = 0.2 μm, (2) a = 5.2 μm and b =

1.0 JAM, (3) a = 4.8 μm and b = 1.2 μm, (4) a = 4.4 μm and b = 0.26 μm, and (5) a = 3.2

μm and b = 5 μm.
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Figure 2.6 Cross shaped meshes, g=24μm. The parameters are for (1) a = 5.6 μm and b =
0.2 μm, (2) a = 5.2 μm and b = 1.0 	 (3) a = 4.8 μm and b = 1.2 μm, (4) a = 4.4 μm
and b = 0.26 μm, and (5) a = 3.2 	 and b = 5 μm.

The change of the intensity depends on changes of WR, while WR depends on the

shape parameters a and b, as shown in Figure 2.5. The Micro-stripes program was used to

study the dependence of the intensity on WR and in turn on the dependence on cross

shape parameters. In Figure 2.7 the intensity is plotted depending on WR for g = 20 and

sets of a/g = .075, 0.1, 0.15, 0.2, 0.225 and b/g = 0.05, 0.1, 0.125, 0.15, 0.175.
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Intensity Vs W idth of Resonance

Figure 2.7 Intensity Verses Width of Resonance. Cross Shapes for g = 20 and sets of a/g
= .075, 0.1, 0.15, 0.2, 0.225 and b/g = 0.05, 0.1, 0.125, 0.15, 0.175.

The transmittance was calculated for each of these sets of parameters and the

intensity obtained. For all calculations of Figure 2.6 and Figure 2.7 the metal thickness

was 0.2μm and surface impedance 1.635Q.

One finds that broader WR corresponds to higher intensity, and vice versa. The

optimum intensity will correspond to small separation of the crosses and large cross

areas. It has been observed when the opening size are increased so does the intensity. One

can believe the reason for such a behavior is corresponding stronger coupling between

the surface waves through the cross openings.
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2.5 Micro-Stripes & Transmission Line Theory

2.5.1 Micro-Stripes Results as Input Parameters of TLT

In the past all calculations with transmission line theory needed input data obtained from

experiments. The Micro-Stripes program, after adjustment to the empirical parameters of

experiments, yields results corresponding to a relevant class of related experiments. Since

the study of dependence on a wide range of parameters can be done much faster with

transmission line theory than with the Micro-Stripes program, parameters and results of

the Micro-Stripes program are used as input data for transmission line theory.

There are three important parameters used in transmission line theory of metal

meshes. The parameters are the resonance wavelength, width of band and the loss

parameter. The transmittance of a mesh with resonance wavelength λ R of a single mesh,

corresponding to the normalized frequency ωo=g/λR, is obtained from Micro-Stripes

calculations and used as parameter in transmission line theory, see Figure.2.8. The width

of resonance band parameter Al is obtained by adjusting the transmission line

transmittance curve to the Micro-Stripes transmittance curve. The loss parameter al is

taken as 0.001 from Reference [18] and [19]
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Figure 2.8 Two free standing meshes with parameters g = 24μm, 2a = 9.6μm, 2b =3.6μm
and t = 0.2μm. Bold Line: Micro-Stripes program calculation Thin line: Transmission
line theory using parameters X 0 = 32.4μm, Al = 0.1, al = 0.001.

2.5.2 Transmission Line Theory

Transmission line theory uses complex quantities and electrical parameters for the

description of the mesh. Ulrich developed transmission line theory for calculation of

reflection and transmission of thin metal meshes'. A short description is given in

Reference [15]. Ulrich's formulation has been corrected by Whitbourn and Compton1 9

and is used here. In order for the analysis to be valid, the most important assumption is

that the wavelength must be greater than the periodicity constant g, to avoid diffraction.

Figure 2.9 Shunt impedance with incident and reflected waves on both sides.
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2.5.2.1 Parameters of a Single Mesh. 	 A single mesh is characterized by three

parameters, the resonance frequency co o, the bandwidth parameter Al, and the metal loss

parameter al. An inductive thin metal mesh is described by a resonance oscillator and a

shunt impedance is used, see Figure 2.9.

The shunt impedance for the case of a freestanding thin inductive mesh is taken as

where coo =g/XR is the normalized frequency, g is the periodicity constant, λR the

resonance wavelength of one mesh, Al the bandwidth parameter and al the loss

parameter of the metal mesh. The "generalized wavelength" is defined as

2.5.2.2 Cascading Matrices. To calculate the transmittance of the mesh, one can

consider the shunt impedance in Figure 2.9, and assume incident and reflected waves

a1and b1, transmitted wave b2 and backward traveling wave a2 . The waves are related by

the matrix M as20

Assuming no backward traveling waves, that is a2 = 0, one has for the ratio of reflected

wave b1 to the incident wave al
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and for the ratio of transmitted wave b 1 to the incident wave al

The matrix M1 describes the impedance at the interface of a plane with refractive index

n i = 1 on both sides

The matrix M2 describes a transmission line of length d without losses in the medium

with refractive index 1

2.6 Two meshes, Four meshes

2.6.1 Micro-stripes Calculations and Alignments, Two-Four Meshes, Cross Shaped

The Micro-Stripes program uses a unit cell for the calculation of the transmittance of a

periodic array. One may think of a waveguide with square-shaped cross and reflecting

walls. There are two different placements of the cross which preserve the symmetry of
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the mesh: one with 1/4 cross at each corner see Figure 2.10(c) and one with the cross at the

center, see Figure 2.10(d). Two meshes will have either the crosses lined up the in normal

direction, called symmetric geometry, filter (A), or the crosses are not lined up, called

asymmetric geometry, filter (B). In Figure 2.10, the alignments are shown schematically.

Figure 2.10 Positioning of crosses in two and four mesh filters. Filter (A): crosses of the
two meshes are lined-up. Filter (B): crosses in second mesh are shifted with respect to
first. Filter (A)(A): crosses of all meshes are lined-up. Filter (B)(B): the crosses of second
and fourth mesh are shifted.

2.6.2 Two Meshes, Matrix Representation

Experimentally assembled two-mesh filters have usually no-aligned crosses. While

Micro-Stripes calculations are used for the configurations of filter (A) and (B),

transmission line theory calculates the transmittance corresponding to experimentally

assembled two or four meshes, ignoring any alignment of the crosses.

A combination of several matrices of the type M1 and M2 will now be used for the

calculation of the transmittance of multi-layer metal meshes at a given spacing. The

matrix M1 describes the impedance at the interface of a plane with refractive index ni = 1

on both sides. And matrix M2 describes a transmission line of length d without losses in



26

the medium with refractive index ni = 1. The two metal meshes with a spacer of

thickness d will be described by the matrix product Mf =M1M2M1 (See Appendix B )

2.6.3 Two Meshes at Separation of d = 4, 8, 12 and 16μm

In this section TLT will serve as a guide for the splitting of the resonance modes and the

wavelength position of resonance and Fabry-Perot modes. The interpretation of the

transmittance of two meshes at distance d is done using the mode model, see Figure 2.3.

One considers only the fundamental mode composed of pairs of surface waves of

resonance wavelength 2R and tightly bound by the openings. It is advantageous to

calculate with transmission line theory the wavelength peak of transmittance for all

separations from d=0 to d=45μm, shown in Figure 2.11.

Figure 2.11 Transmission line calculations for two meshes at separation d and mesh
parameters g = 241,1m, 2a = 9.6μm, 2b =3.6μm and t = 0.2μm. Peak resonance
wavelength (squares) and Fabry-Perot peaks (triangles).
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There are two resonance peaks, appearing with different wavelength for small

values of d and merge into one peak for separation at around 10μm. At that distance, the

interaction has decreased, the two resonance wavelengths have the same value, and a

series of new peaks appear. I shall define them as Fabry-Perot modes, generated between

the two meshes and transferring energy through the mesh. These calculations serve as

guide for the interpretation of the Micro-Stripes calculation of filter (A) and (B).

Micro-Stripes and Transmission line theory were applied to the calculation of the

transmittance of two mesh filters for spacings of 4, 8, 12, and 16μm, shown in Figures.

2.12-2.15. The transmittances are shown for filter (A) and (B) and of the experimental

type represented by transmission line theory (TLT).

Figure 2.12 Calculated transmittance of two free standing meshes with parameters g =
24μm, 2a = 2b =3.6μm and t = 0.2μm at distance of 4μm. Bold line: Micro-
Stripes program calculation of filter (A). Solid line: Micro-Stripes program calculation of
filter (B). Broken line: Transmission line theory using parameters X = 32.4μm, Al = 0.1,
al = 0.001.
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Figure 2.13 Calculated transmittance of two free standing meshes with parameters g =
24μm, 2a = 9.6μm, 2b =3.6μm and t = 0.2μm at distance of 8μm. Bold line: Micro-
Stripes program calculation of filter (A). Solid line: Micro-Stripes program calculation of
filter (B). Broken line: Transmission line theory using parameters λo = 32.4μm, Al = 0.1,
al = 0.001.

Figure 2.14 Calculated transmittance of two free standing meshes with parameters g =
241,1m, 2a = 9.6μm, 2b =3.4μm and t = 0.2μm at distance of 12μm. Bold line: Micro-
Stripes program calculation of filter (A). Solid line: Micro-Stripes program calculation of
filter (B). Broken line: Transmission line theory using parameters X. = 32.4μm, Al = 0.1,
al = 0.001.
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Figure 2.15 Calculated transmittance of two free standing meshes with parameters g =
24μm, 2a = 9.6μm, 2b =3.6μm and t = 0.2μm at distance of 16μm. Bold line: Micro-
Stripes program calculation of filter (A). Solid line: Micro-Stripes program calculation of
filter (B). Broken line: Transmission line theory using parameters λo = 32.4μm, Al = 0.1,
al = 0.001.

The Transmittances shown in Figures 2.12-2.15 are interpreted as follows:

(i) The modes of filter (TLT, broken line) that is for the case of non-aligned crosses,

show interaction for all distances except for a distance of 8μm, that is, at Ä,R/4 where

oscillators have minimum interaction.

(ii) The modes of filter (A), that is, for symmetrically aligned crosses, show minimum

interaction for small separation, because of symmetric geometry, and the interaction

increases with increasing distance.
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(iii) The modes of filter (B), that is for asymmetrically aligned crosses, show interaction

for all distances, because of asymmetric geometry.

If one looks at two meshes, at the distance of 16μm, one can observe three peaks, two are

from the resonance wavelength of the meshes and the short wavelength peak is of the

Fabry-Perot mode, see Figure 2.11.

The near-field effect is seen when one compares the transmittance at spacing of 4

and 16μm, see Figures 2.12 and 2.15. At 4μm, filter (A) shows no interaction of the

resonance wavelengths; filter (TLT), small interaction; and filter (B), large interaction. In

comparison, at 16μm all three filters show the same degree of large interaction. For small

spacing the geometry of the alignment of the crosses is attributed to the differences

whereas for large spacing the effect of the alignment of the crosses disappears.

A filter should have one peak wavelength, as observed for filter(A) and (TLT) at

spacer distance of λR/4 see Figure 2.13, where oscillators have minimum interaction. At

that spacing, filter (TLT) shows a bandwidth of 10% with 100% transmittance, whereas

the bandwidth of filter (A) is 8% but with less than 100% transmittance. At a larger

distance of 12μm one has only a small increase of interaction for both filters. If the filters

with a dip are acceptable, one may select the desired filter bandwidth and shape for filters

(TLT) and (A) by finding the corresponding spacing between at λR/4 and at 4/2, and one

may consider filter (B), which shows two peaks for all distances and is in general less

suitable as a filter.
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2.7 Four Meshes

2.7.1 Transmission Line Matrix

Four metal meshes separated by three spacers with refractive index n = 1 are described by

the matrix product Mff = M1M2M1M2M1M2M1, The matrix M1 describes the

impedance at the interface of a plane with refractive index n1 = 1 on both sides and

matrix M2 describes a transmission line of length d without losses in the medium with

refractive index 1, see also Appendix B.

2.7.2 Four Meshes at Separation of d = 4, 8, 12 and 16μm

Micro-Stripes and Transmission line theory were applied to the calculation of the

transmittance of four mesh filters for spacings of 4, 8, 12, and 16μm, shown in Figures

2.16 to 2.19.

Figure 2.16 Calculated transmittance of four free standing meshes with parameters g =
24μm, 2a = 9.6μm, 2b =3.6μm and t = 0.2μm at distance of 4μm between each two. Bold
line: Micro-Stripes program calculation of filter (A)(A). Solid line: Micro-Stripes
program calculation of filter (B)(B). Broken line: Transmission line theory using
parameters 2„ = 32.4μm, Al = 0.1, al = 0.001.
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Figure 2.17 Calculated transmittance of four free standing meshes with parameters g =
24μm, 2a = 9.6μm, 2b =3.6μm and t = 0.21.1m at distance of 8μm between each two. Bold

line: Micro-Stripes program calculation of filter (A)(A). Solid line: Micro-Stripes
program calculation of filter (B)(B). Broken line: Transmission line theory using
parameters λ0 = 32.4μm, Al = 0.1, al = 0.001.

Figure 2.18 Calculated transmittance of four free standing meshes with parameters g =
24μm, 2a = 9.6μm, 2b =3.6μm and t = 0.2μm at distance of 12μm between each two.
Bold line: Micro-Stripes program calculation of filter (A)(A). Solid line: Micro-Stripes
program calculation of filter (B)(B). Broken line: Transmission line theory using
parameters 2L,0 = 32.4μm, Al = 0.1, al = 0.001.
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Figure 2.19 Calculated transmittance of four free standing meshes with parameters g =
24μm, 2a = 9.6μm, 2b =3.6μm and t = 0.2μm at distance of 16μm between each two.
Bold line: Micro-Stripes program calculation of filter (A)(A). Solid line: Micro-Stripes
program calculation of filter (B)(B). Broken line: Transmission line theory using
parameters λ0= 32.4μm, Al = 0.1, al = 0.001.

The transmittances are shown for a symmetric filter (A)(A) and asymmetric filter

(B)(B) and of the experimental type represented by transmission line theory (TLT).

The transmittances shown in Figures. 2.16-19 are interpreted as follows:

(i) The modes of filter (TLT) that is, for nonaligned crosses, show interaction for all

distances except for a distance of 8μm, that is, at 4/4 where oscillators have minimum

interaction.

(ii) The modes of filter (A)(A), that is, for symmetrically aligned crosses, show minimum

interaction for a distance 4μm. The interaction increases for 8μm and shows a box-shaped

contour. For larger distances the interaction increases.
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(iii) The Modes of filter (B)(B), that is, for asymmetrically aligned crosses, show

interaction for all distances, because of asymmetric geometry.

Four mesh filters have a maximum of four resonance peaks. For special purposes,

one may consider filter (A)(A) at 4μm as a very narrow band pass filter and at 8μm as a

band pass filter approaching a box shape contour, even if there are dips and less than

100% transmittance. Filter (B)(B) shows four peaks and filter (TLT) three peaks for

distances of 4 μm to 12 μm and all resonance and Fabry-Perot peaks for 16 μm, making

these four mesh filters less suitable as filters.

2.8 Summary, Free Standing Cross Shaped Meshes

The Micro-Stripes program has reproduced, with high accuracy, the experimental

resonance wavelength of a single mesh using the geometry parameters of the shape of the

opening and the periodicity constant. The material constant of the metal surface

impedance was determined by adjustment of the reproduce intensities to the experimental

one.

The resonance wavelength and WR were determined for a range of geometrical

parameters and very well presented by analytical formulas. The model of a linear chain of

vibrating dipoles serves well for the description of the resonance wavelength. The mode

model is used for the interpretation of the calculations of Micro-Stripes program and

transmission line theory on sequences of two and four meshes. The transmittance of two

mesh filters may be describes by the interaction of two resonance modes and one Fabry-

Perot mode, whereas for four meshes, by four resonance modes and three Fabry-Perot

modes. The resonance modes of the three differently aligned meshes couple differently
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for different separation of the meshes and show for large distance minimum coupling. For

small distances, a near-field effect is apparent. At a spacing of λR/ 4, filters of (TLT) and

(A) show for two meshes filters just one peak, indicating minimum interaction of the

modes as expected from oscillator theory. For four layer meshes a more square like shape

of the transmittance was obtained.



CHAPTER 3

METAL MESH ON DIELECTRIC SUBSTRATE/EMBEDDED

3.1 Metal Mesh on Thick Dielectric Substrate

3.1.1 Transmission Line Theory

Transmission line theory (TLT) has been used by Ulrich' to develop the oscillator model,

to calculate the transmittance of metal meshes, and to model multiple mesh filters.

Whitbourn and Compton 19 have corrected the theory and expanded the model to include

metal meshes on dielectrics or embedded in it. A shift of the resonance wavelength factor

((n 1 2+ n22)/2) 12) was predicted for metal meshes on the interface of two infinitely long

dielectrics of refractive index n i and n2. For the case of a metal mesh on a thick Silicon

substrate n = 3.4 the shift factor of the resonance wavelength was calculated to be 2.5.

TLT does not include a dependence of the resonance wavelength of the mesh, on the

thickness of a dielectric layer. TLT is limited to wavelengths larger than the periodicity

constant.

3.1.1.1 Thin Metal Mesh on Dielectric. 	 Only thin metal meshes are considered and

the shunt impedance Y of a freestanding thin inductive mesh is taken as

Figure 3.1 Shunt impedance with incident and reflected waves on both sides.

36
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The refractive indices of the media on each side of the mesh are described by ni

and n2 , g is the periodicity constant, co o is the resonance frequency of a single mesh, Al is

the bandwidth parameter and al is the loss parameter.

3.1.1.2 Cascading Matrices. 	 A single mesh is described by the shut impedance

Y. The waves on the left side of the impedance Y are related to the waves on the right

side by a matrix M as

For a2 = 0 one has for the ratio of reflected wave b1 to the incident wave al

and for the transmitted wave
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The cascading matrix M1 describes the impedance at the interface of a metal mesh with

dielectric of refractive index n1 on the left and n2 on the right and is given as

The cascading matrix M2 describes the impedance at the interface of a dielectric with

refractive index n1 on the left and n2 on the right and is given as

The Matrix M3 describes a transmission line without losses of length d in the medium

with refractive index n.

The combination of several matrices of type M1 , M2 and M3 were used for the

calculation of the transmittance of various combinations of metal meshes and dielectric

layers. Two metal meshes with a dielectric spacer will be described by a matrix product

Mb = M1M3M1', where Ml represents the metal mesh on the interface of the outside
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medium with n1 and the spacer with index n2, M3 the spacer of thickness d and refractive

index n2, and M1' the mesh on the interface of the spacer and the outside medium.

3.2 Comparison with Experiments,

Micro-Stripes and Transmission Line Theory Calculations

3.2.1 Resonance Wavelength

Cross shaped metal meshes on Silicon substrate have been manufactured in the far-IR by

Sternberg et al. 17 , Möller et al. 8, and Hicks et a121 . Metal meshes of aluminum with

thickness t= 0.2μm, periodicity g= 20μm, separation 2a = 8μm, and arm width 2b=6μm,

have been produced and compared with the Micro-Stripes calculations 17 . The meshes

were deposited on a silicon wafer with a thickness of 550μm, with resistivity of 15ohm-

cm. The experimental transmittance showed a peak wavelength at 71.3μm compared to

70.2μm as result of the Micro-Stripes calculations, see Figure 3.2.

Figure 3.2 Inductive cross shaped metal mesh of thickness 0.2μm on a Silicon substrate
of thickness of 550μm depending on the wavelength. The mesh has geometrical
parameters g = 20, 2a = 8, 2b = 6μm. (a) Bold Line- Measured (Experimental) resonance
wavelength at 71.3μm (b) Squares- Micro-Stripes Simulation wavelength at 70.2μm.
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There is good agreement of the overall intensity, confirming the validity of the

used surface impedance values for the metal and the conductivity value for the dielectric.

A comparison was made between the experimental resonance wavelengths values, of

Micro-Stripes and TLT, see Table 3.1.

Table 3.1 Values of Resonance Wavelengths, Thin Metal Thick Dielectric. (Thin Metal
Meshes on Top of Silicon Substrate. First Column Displays the Cross Parameters, Second Column
Displays Experimental Results, Third Column 3 Displays Micro-Stripes Results. Fourth Column Displays
TLT*Whitbourn Factor. (The Free Standing Value Was Obtained Using Micro-Stripes).

ExperimentalλR(μm) Micro-StripesλR(μm) TLT*W
Factor

Cross8 g = 26.4
2a = 3.2 2b = 4.8
a/g = 0.06 b/g = 0.09

124.9 115.2 129.75

Cross8 g = 16.4
2a = 2.5 2b = 4.8
a/g = 0.0762 b/g =
0.0146

61 67.2 58.75

Cross8 g = 20
2a = 2.4 2b = 3.6
a/g = 0.06 b/g = 0.09

83.6 90.8 81.75

Cross'' g = 20
2a = 8 2b = 6
a/g = 0.2 b/g = 0.15

71.3 70.2 58.87
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3.3 Micro-Stripes Calculations of Dependence on

Cross Parameters on Thick Silicon Substrate or Embedded in it

3.3.1 Resonance Formula

The resonance wavelength shifts to a longer wavelength when the mesh is

deposited on a dielectric substrate or embedded in it. The shift of XR to a longer

wavelength is smaller than the refractive index n when on a substrate and equal to the

refractive index n when a metal mesh is embedded in a thick dielectric layer. The shift

has been observed experimentally8,17 by comparing the resonance wavelength of the

mesh on a silicon substrate to a free standing mesh. The Micro-Stripes program was

applied to the calculations of the resonance wavelength XR and width of resonance WR

for meshes with g = 20μm and 2a = 3, 4, 6, 8, 9μm and 2b = 2, 4, 5, 6, 7μm on a silicon

wafer of thickness of 550μm with resistivity of 15O. The Micro-Stripes data" of the

resonance wavelength are presented by a nonlinear best-fit formula with a standard

deviation of 0.323. Assuming that realistic input data would have only two significant

decimal places, one has Equation (3.11b).
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In Figure 3.3, the resonance wavelength λ R is plotted depending on a/g and taking b/g as

parameter.

Figure 3.3 Micro-Stripes calculations of the resonance wavelength of an inductive cross
shaped metal mesh of thickness 0.2μm and surface impedance of Z = 1.635a The mesh
was assumed to be on a silicon substrate of thickness of 550μm and surface resistance of
15 ohm-cm. The dependence on the separation of the crosses and the width of the cross
arms is shown for the range of a/g = 0.075, 0.1, 0.15, 0.2, 0.225 and b/g = 0.05, 0.1,
0.125, 0.15 and 0.175.

3.3.2 Width of Resonance

The width of resonance (WR) for a thin cross shaped metal mesh on top of a thick silicon

substrate was studied with the Micro-Stripes program. The WR was defined as width at

half height (Aλa) and in Figure 3.4, the dependence of WR on a/g and b/g is shown for g

= 20μm. A calculation of a best-fit formula was performed giving standard deviation of

0.075.
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Figure 3.4 Micro-Stripes calculations of the width of resonance. Inductive cross shaped
metal mesh of thickness 0.2μm and surface impedance of Z = 1.635ohm-cm. The mesh
was assumed to be on a Silicon substrate of thickness of 550μm and surface resistance of
15 ohm-cm. The dependence on the separation of the crosses and the width of the cross
arms is shown for the range of a/g = 0.075, 0.1, 0.15, 0.2, 0.225 and b/g = 0.05, 0.1,
0.125, 0.15 and 0.175.

The experimentally observed width of resonance (Δλ/λ), of cross shaped meshes

with different geometries is compiled in Table 3.2. The experiments agree well with the

Micro-Stripes calculations and the results of Equation 3.12.
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Table 3.2 Values of Width of Resonance Aλa, Thin Metal Thick Dielectric (Thin Metal
Meshes on Top of Silicon Substrate. First Column Displays the Cross parameters, Second Column Two
Displays Experimental Results, Third Column Displays Micro-Stripes Results).

Experimental (AV?) Micro-Stripes

Cross g = 26.4
2a = 3.2 2b = 4.8
a/g = 0.06 b/g = 0.09

0.3472 0.3683

Cross g = 16.4
2a = 2.5 2b = 4.8
a/g = 0.0762 b/g = 0.0146

0.39 0.41667

Cross g = 20
2a = 2.4 2b = 3.6
a/g = 0.06 b/g = 0.09

0.3253 0.37

Cross g = 20
2a = 8 2b = 6
a/g = 0.2 b/g = 0.15

0.101 0.097

Cross g = 12.5
2a = 1.5 2b = 2.25
a/g = 0.06	 b/g = 0.09

0.3406 0.344

3.3.3 Shift of Resonance Wavelength on Silicon

The resonance wavelength of a free standing cross-shaped mesh shifts on the average by

a factor of 2.78 compared to the mesh deposited on silicon substrate. The dependence of

this factor on a/g and b/g is shown in Figure 3.5. The ratio of the calculated resonance

wavelengths was plotted of the cross shaped meshes on silicon substrate divided by the

resonance wavelength of the free standing mesh(See Ch-2), and is shown in Figure 3.5.
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Figure 3.5 Shift of the resonance wavelength of the free standing mesh when deposited
on the Silicon substrate. The resonance wavelength, calculated for the mesh on the
Silicon substrate, is divided by the resonance wavelength calculated for the freestanding
cross-shaped mesh. The dependence on the separation of the crosses and the width of the
cross arms is shown for the range of a/g = 0.075, 0.1, 0.15, 0.2, 0.225 and b/g = 0.05, 0.1,
0.125, 0.15 and 0.175.

An empirical best-fit formula 17 was obtained for the presentation of the calculated data.

Whitbourn and Compton 19 have used transmission line theory to study the shift of the

wavelength of a metal mesh on a thick dielectric substrate and arrived at a shift factor of

[(n1 2+ n22)/2 ,1/2 ,j 	 where n i is the refractive index of the dielectric on the front side of the

mesh and n2 on the back side. For n i = 1 and n2 = 3.4 the value of [(1-112+ n22)/2] 1/2 is 2.5.

Sternberg 17 et al arranged the best-fit formula of Equation 3.13 in such a way that the
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terms depending on a/g and b/g appear as correction terms with respect to the result of

References 8 and 17.

An interpretation may be given in terms of the mode model, see Figure 3.6. A

mode corresponding to the resonance wavelength is composed of surface waves on both

sides of the mesh. When one surface wave oscillates in a dielectric its wavelength shifts

to longer wavelength. This shift depends not only on the refractive index of the dielectric

but also on the thickness of the layer. The resonance wavelength of the mesh shifts for

small thicknesses of the dielectric, there is only one peak, and in most cases there remains

one peak for larger thicknesses.

Figure 3.6 The incident light induces a mode of the mesh, consisting of two pairs of
surface waves on each side of the mesh. One surface wave oscillates in a dielectric, and
the other in air. The modes are not strongly coupled as in the case of the free standing
mesh and so the degeneracy is lifted; the resonance wavelength is shifted.
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The coupling of the two surface waves depends not only on the geometry of the

crosses but also on the thickness of dielectric layer. For fixed thickness of the dielectric

layer, the shift factor gets larger with larger a/g values, that is with larger separation of

the crosses. The shift factor gets smaller with larger b/g values, that is larger values of the

width of the cross arms.

3.4 Single Metal Mesh on Dielectrics and Its Dependence

on Thickness of Substrate

The Micro-Stripes program has been used to calculate the resonance wavelength of a

single mesh depending on the thickness of a dielectric substrate or embedded in a

dielectric for refractive indices 1.5 and 3.4. The parameters of the mesh are g = 20μm, 2a

= 1.5μm, 2b = 3μm, and t = 0.2μm, and the thickness of the dielectric was varied from

0.2 to 20 μm, see Figures 3.7 and 3.8. In general, when a thin metal mesh is combined

with a dielectric substrate, whether it is embedded in it or mounted on one side of the

mesh, the resonance wavelength will shift to a longer wavelength. The shift depends

strongly on the configuration and the thickness of the substrate as well as the index of

refraction of the material.
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Figure 3.7a Micro-Stripes calculation of a cross shaped mesh. Geometrical parameters: g
= 20μm, 2a = 1.5μm, 2b = 3.6μ, t = 0.2μm. Substrate n=1.5, data series varies from
0.2μm to 25μm. Asymmetric configuration (Metal-Dielectric).

Figure 3.7b Micro-Stripes calculation of a cross shaped mesh. Geometrical parameters: g
= 20μm, 2a = 1.5μm, 2b = 3.6μm, t = 0.2µm.. Embedded n=1.5, data series varies from
0.2μm to 25μm. Symmetric configuration (Dielectric-Metal-Dielectric).



Figure 3.7c Micro-Stripes calculation of a cross shaped mesh. Geometrical parameters: g
= 20μm, 2a = 1.5μm, 2b = t = 0.2μm. Substrate n=3.4, data series varies from
0.2μm to 20μm. Asymmetric configuration (Metal-Dielectric), circles-resonance Pattern,
squares- Fabry-Perot modes.

Figure 3.7d Micro-Stripes calculation of a cross shaped mesh. Geometrical parameters: g
= 20μm, 2a = 1.5μm, 2b = 3.6μm, t = 0.2μm. Embedded n=3.4, data series varies from
0.2μm to 20μm. Symmetric configuration (Dielectric-Metal-Dielectric), circles-resonance
modes, squares-Fabry-Perot modes.
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Figure 3.8a TLT calculation of a cross shaped mesh. Geometrical parameters: g =
2a = 1.5μm, 2b = 3.6μm, t = 0.2μm. Substrate n=1.5, data series varies from 0.2μm to
25μm. Asymmetric configuration (Metal-Dielectric).

Figure 3.8b TLT calculation of a cross shaped mesh. Geometrical parameters: g =
2a = 1.5μm, 2b = 3.6μm, t = 0.2μm. Substrate n=1.5, data series varies from 0.2μm to
25μm. Symmetric configuration (Dielectric-Metal-Dielectric).
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Figure 3.8c TLT calculation of a cross shaped mesh. Geometrical parameters: g = 201.1m,
2a = 1.5μm, 2b = 3.61.1m, t = 0.2μm. Substrate n=1.5, data series varies from 0.211m to

25μm. Asymmetric configuration (Metal-Dielectric). circles-resonance pattern, squares-
Fabry-Perot modes.

Figure 3.8d TLT calculation of a cross shaped mesh. Geometrical parameters: g = 20μm,
2a = 2b = 3.611m, t = 0.2μm. Substrate n=1.5, data series varies from 0.2μm to

25μm. Symmetric configuration (Dielectric-Metal-Dielectric). circles-resonance pattern,
squares-Fabry-Perot modes.
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The transmittances shown in Figures. 3.7, and 3.8 are interpreted as follows:

(i) n = 1.5 case. In Figure 3.7a, 3.7b, 3.8a, and 3.8b, the material has an index of

refraction n = 1.5. The two surface waves and the Fabry-Perot modes constitute a

compound mode. Micro-Stripes shows the progression of the compound mode. As the

dielectric thickness is increasing, there is not enough interaction for the surface waves to

separate from the mode of the dielectric layer; the strongest interaction can be seen

around the Whitbourn Compton 19 line. Transmission line theory shows the same effect,

that is the peak wavelength of the compound mode of surface waves and dielectric layer

mode move back and forth around the Whitbourn Compton line 19 .

(ii) n = 3.4 case. In Figures 3.7c, 3.7d, and 3.8c and 3.8d, the material has an index of

refraction n = 3.4. Micro-Stripes shows the progression of the compound mode. As the

thickness of the dielectric is increasing, initially a pair of surface waves represented by a

resonance mode is displayed, whereas the dielectric itself affects the pair of surface wave

by a slight shift. As the dielectric thickness reaches to a λ/4*n (around 4 μm), a

Fabry-Perot mode appears.. The Whitbourn Compton line is at 10011m (Figure 3.7c) for the

Substrate case(Metal-Dielectric), and 136μm (Figure 3.8c) for the Embedded case. The

surface wave exchanges energy with the Fabry-Perot modes when passing through the

thickness region of maximum interaction between the two modes.
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3.5 Calculation of Two Metal Meshes with Dielectric

Spacer or Embedded in a Dielectric

3.5.1 Single Mesh Parameters

The calculations of two mesh filters are defined by the parameters g=24μm, 2a=9.6μm,

2b=3.6μm, metal thickness t=0.2μm, and surface impedance of 1.635 Q. The resonance

wavelength was calculated by Micro-Stripes and was found to be λR=32.4μm with

λR/4=8μm. The width of resonance Δλ/λ was found to be 18%, see Reference 22.

3.5.2 Two Meshes and Dielectrics

Two meshes with a spacer and its embedded counterpart are schematically shown in

Figure 3.9 Spacer configuration (SP) and Embedded configuration (EM) with spacer
thickness d, and thickness d* of layers on the outside of meshes for the embedded case.
Black is metal, gray is dielectric. In the filter configuration (A) the openings of both
metal meshes are lined up, in configuration (B) the openings of one mesh are between the
openings of the other mesh.
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The thickness of the dielectric separation of the meshes is defined as d, and the

thickness of the layers on each side of the two mesh is called d * . For the embedded cases

the choice of d* is such that the shift is equal to the Whitbourn Compton 19 shift, see

Section 3.4. The chosen values are for d* = 10μm for n=1.5 and d* = 5μm for n=3.4.

3.5.3 Alignment of Two and Four Cross Shaped Meshes Micro-Stripes Calculations

The Micro-Stripes program uses a unit cell for the calculation of the transmittance of a

periodic array. An analogy can be made to wave guide with a square shaped cross

section, with reflecting walls. There are two different placements of the cross, one with 1/4

cross in each corner see Figure 2.1c, and one with a cross at the center Figure 2.1d. Two

meshes may have aligned crosses, see Filter (A) in Figures 3.9 and 3.10, or non-aligned

crosses, see Filter(B) in Figures 3.9 and 3.10.

Figure 3.10 Positioning of crosses in two and four mesh filters. Filter (A): crosses of the
two meshes are lined-up. Filter (B): crosses in second mesh are shifted with respect to
first. Filter (A)(A): crosses of all meshes are lined-up. Filter (B)(B): the crosses of second
and fourth mesh are shifted.
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3.5.4 Transmission Line Theory

Transmission line theory (TLT), does not take into account the geometrical configuration.

However one can calculate the resonance frequency WO by using either Micro-Stripes or

an empirical formula8,17 . Using the parameters for single mesh (See Ch 2, and Appendix

B) one can obtained λR = 32.4μm. The loss parameter al is taken as 0.001, see ref, and

the bandwidth parameter is obtained from Micro-Stripes calculation, which is then

compared with the TLT calculation. In addition one adjusts the bandwidth of a single

mesh using λR  and al, see References 1,19, and 20.

3.6 Two Meshes, Micro-Stripes and TLT (Guidance) Calculations

for d=4μm and d=8μm, n=1.5

The separation of the meshes was chosen to be d = 4μm to study possible near field

effects. Both Micro-Stripes and Transmission line theory calculations were applied. A

second distance of 8μm was considered; at that distance free standing meshes show

minimum interaction. Transmission line theory shown in Figures 3.11-3.15 will serve as

a qualitative guide for the interpretation of the various modes.

Transmission line theory was applied to the calculation of the meshes,

representing meshes with non-aligned crosses. The peak transmittances are plotted in

Figure 3.11, as (SP) in the range of spacer thickness of d=0 to 18μm. There are two

separate resonance peaks for all values of d, and at about 8μm a branch of new peaks

appears. These peaks are Fabry-Perot and were generated between the two meshes. The

peaks depend on the separation of the meshes20,22.



Figure 3.11 Transmission line calculations of peak wavelengths of resonance and Fabry-
Perot peaks of two meshes with dielectrics of n=1.5 depending on thickness of spacer d =
2μm to 16μm. Square (SP): Spacer only. Round dots(EM): Embedded. Transmission line
parameters = 32.4μm, Al = 0.1, al = 0.001 corresponding to g = 24μm, 2a = 9.6μm, 2b
= 3.6μm and thickness of 0.2μm. The thickness of the outside layer for the embedded
case is d* = 10μm.

3.6.1 Spacer

The appearance of the peaks for (TLT) in Figures 3.12, and 3.13 will be used as a

guide for the discussion of Filter (A) and Filter (B). There are two (TLT) resonance peaks

for 4μm and 8μm and no Fabry-Perot peaks are shown. For Filter (A), there are two

resonance peaks for the distance 4μm and one resonance peak for distance of 8μm. For

Filter (B), we have two resonance peaks for the distances of 41.1,m and 81.1.m. The shortest

wavelength peak for filter (A) and (B) are the "Fabry-Perot peaks".



Figure 3.12 Micro-Stripes calculations of two metal meshes with spacer of refractive
index n = 1.5 and thickness d = 4 1.1m. Geometrical parameters of g = 24 μm, 2a = 9.6
μm, 2b = 3.6 μ,m and thickness of 0.2 μm. Shaded line: Micro-Stripes calculation of filter
(A). Solid line: Micro-Stripes calculation of filter (B). Broken line: Transmission line
theory calculations, filter (TLT), using parameters ?c o = 32.4 lam, Al = 0.1, al = 0.001.

Figure 3.13 Micro-Stripes calculations of two metal meshes with spacer of refractive
index n = 1.5 and thickness d = 8 μm. Geometrical parameters of g = 24 μm, 2a = 9.6
μm, 2b = 3.6 µm and thickness of 0.2 μm. Shaded line: Micro-Stripes calculation of filter
(A). Solid line: Micro-Stripes calculation of filter (B). Broken line: Transmission line
theory calculations, filter (TLT), using parameters λo = 32.4 lam, Al = 0.1, al = 0.001.
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3.6.2 Embedded

The transmission line calculations are plotted in Figure 3.11 as (EM) for the range of

spacing d=0 to 18μm. There are two separate resonance peaks at 4μm, merged into one

peak at 8μm. This is different compared to the (SP) case. A branch of new peaks appears

at about 8pm. These Fabry-Perot peaks have about the same wavelength as for the (SP)

case. The (TLT) peaks in Figures 3.13, and 3.14, will be used for the discussion of Filter

(A) and (B).

Figure 3.14 Micro-Stripes calculations of two metal meshes embedded in a dielectric of
refractive index n = 1.5 and spacer thickness d = 4 pun and outside layer of thickness d* =
10 μm. Geometrical parameters of g = 24 μm, 2a = 9.6 μm, 2b = 3.6 vim and thickness of
0.2 ptm. Shaded line: Micro-Stripes calculation of filter (A). Solid line: Micro-Stripes
calculation of filter (B). Broken line: Transmission line theory calculations, filter (TLT),
using parameters λ0 = 32.4μm, Al = 0.1, al = 0.001.



59

Figure 3.15 Micro-Stripes calculations of two metal meshes embedded in a dielectric of
refractive index n = 1.5, spacer thickness of d = 8µm and outside layer of thickness d* =
10 gm. Geometrical parameters of g = 24 gm, 2a = 9.6 gm, 2b = 3.6 gm and thickness of
0.2 gm. Shaded line (A): Micro-Stripes calculation of filter. Solid line (B): Micro-Stripes
calculation of filter. Broken line: Transmission line theory (TLT) using parameters λ0 =
32.4 gm, Al = 0.1, al = 0.001.

There are two (TLT) resonance peaks at distance of 4μm, merged to one at

distance of 8μm. The Fabry-Perot peak is not shown (it is below 30μm). For Filter (A),

we have two small resonance peaks for distance of 4μm, Figure 3.14, and one small peak

for distance of 8μm, Fig.3.15. The shortest wavelength peak is the Fabry-Perot peak. For

Filter (B) one has two resonance peaks at the distance of μm and 8μm and again the

shortest wavelength peak is the Fabry-Perot Peak.
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3.7 Two Meshes, Micro-Stripes and TLT Calculations

for d=4μm and d=8μm, n=3.4

3.7.1 Spacer

The Transmission line calculation represents meshes with non-aligned crosses. The peak

transmittances are plotted in Figure 3.16 as (SP) in the range of spacer thickness of d=0

to 18μm. There are two separate resonance peaks for all values of d and at about 10μm a

branch of new peaks appears. These peaks are Fabry-Perot peaks generated between the

two meshes, and the Fabry-Perot peaks depend on the separation of the meshes 9 .

Figure 3.16 Transmission line calculations of peak wavelengths of resonance and
Fabry-Perot peaks of two meshes with dielectrics of refractive index n = 3.4 depending on

thickness of spacer d = 2 to 16μm. Squares (SP): spacer only. Round dots (EM):
embedded. Transmission line parameters X = 32.4m, Al = 0.1, al = 0.001
corresponding to g = 241,1m, 2a = 2b = 3.6μm and thickness of 0.2μm The
thickness of the outside layer for the embedded case is d* = 5μM.
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Figure 3.17 Micro-Stripes calculations of two metal meshes embedded in a dielectric of
refractive index n = 3.4 and spacer thickness of d = 4 pm. Geometrical parameters of g =
24 μm, 2a = 9.6 μm, 2b = 3.6 μm and thickness of 0.2 pm. Shaded line (A): Micro-
Stripes calculation of filter. Solid line (B): Micro-Stripes calculation of filter. Broken
line: Transmission line theory (TLT) using parameters λ0 = 32.4 μm, Al = 0.1, al =
0.001.

Figure 3.18 Micro-Stripes calculations of two metal meshes with spacer of refractive
index n = 3.4 and thickness d = 8 pm. Geometrical parameters of g = 24 pm, 2a = 9.6
pm, 2b = 3.6 pm and thickness of 0.2 μm. Shaded line (A): Micro-Stripes calculation of
filter. Solid line (B): Micro-Stripes calculation of filter. Broken line: Transmission line
theory (TLT) using parameters λ0 = 32.4 pm, Al = 0.1, al = 0.001.
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The appearance of the peaks for TLT in Figure 3.17, and 3.18 will be used as a

guide for the discussion of Filter (A) and Filter (B). There are two resonance peaks for

4μm, and 81.1,m, and the Fabry-Perot peak is shown for 8μm. For Filter (A), there are two

resonance peaks for the distance 4.1m and one resonance peak for distance of 8[1,m. The

two shortest wavelength peaks are Fabry-Perot peak. For Filter (B) one has two

resonance peaks for the distances of 4μm and 8μm. The two shortest wavelength peaks

are the Fabry-Perot peaks.

3.7.2 Embedded

The transmission line calculation represents meshes with the non-aligned case of crosses.

The peak transmittances are plotted in Figure 3.16, as (EM) for the range of spacing d----0

to 18μm. There are two separate resonance peaks around 10μm, that is when a branch of

new peaks appears, the Fabry-Perot peaks are generated between the two meshes. The

appearance of the (TLT) peaks in Figure 3.16, will be used as a guide for the discussion

of Filter (A) and (B), see Figures 3.19, and 3.20. There are two resonance peaks at the

distance of μm and 8μm. Only one Fabry-Perot peak is just shown for 8μm, (TLT). For

Filter (A), we have small transmission of two resonance peaks at a distance of μm and

peaks. For Filter (B), one small peak at the distance of 8μm, the shortest wavelength

peaks are the Fabry-Perot has two resonance peaks at the distance of 4μm and 8μm and at

shorter wavelengths the Fabry-Perot peak.



63

Figure 3.19 Micro-Stripes calculations of two metal meshes embedded in a dielectric of
refractive index n = 3.4 and spacer thickness d = 4 μm and outside layer of thickness d* =
5 μm. Geometrical parameters of g = 24 lam, 2a = 9.6 !Am, 2b = 3.6 μm and thickness of
0.2 μm Shaded line: Micro-Stripes calculation of filter (A). Solid line: Micro-Stripes
calculation of filter (B). Broken line: Transmission line theory (TLT) using parameters λ0
= 32.4 μm, Al = 0.1, al = 0.001.

Figure 3.20 Micro-Stripes calculations of two metal meshes embedded in a dielectric of
refractive index n = 3.4 and spacer thickness d = 8 μm and outside layer of thickness d* =
5 μm. Geometrical parameters of g = 24 μm, 2a = 9.6 μm, 2b = 3.6μm and thickness of
0.2 μm. Shaded line: Micro-Stripes calculation of filter (A). Solid line: Micro-Stripes
calculation of filter (B). Broken line: Transmission line theory (TLT) using parameters λo
= 32.4 μm, Al = 0.1, al = 0.001.
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3.8 Application to Filter Design

If one were to design a filter, ideally one would wish the filter to have close to 100%

transmittance. For a cross with g = 2μm, 2a = 9.6μm, 2b = 3.6, the investigation leads to

the conclusion that the ideal condition can be approached. In order to accomplish that

condition, one can use a substrate material with index of refraction of n = 1.5, with an

embedded configuration and with a distance of 81,1m, see Figure 3.11, and Figure 3.15. A

similar results can be reached by taking two free standing meshes at this distance, see

Reference [18]. Filter(A) shows in Figure 3.13, 3.15, and 3.24 only one peak, but the

referred figures all have undesirable low transmittance, Filter(B) shows more than one

peak for all cases. If one were to accept for a filter two narrowly spaced peaks, one can

use a configuration of Filter (TLT), for index of refraction of n=1.5 and spacing of 4μm,

and for index of refraction n=3.4 spacing of 8μm Changing the spacer thickness can

change the contour to the desired shape.

At spacing of 8μm = λR/4, where R is the resonance wavelength of the free

standing mesh, oscillators show minimum interaction. There is a compensation of the

effect of the shift by the dielectric layers to longer wavelength and the effect of the

dielectric constant on the wavelength in the dielectric spacer. Therefore, the value of the

spacing of λR/4 for two free standing meshes is about the same as for dielectric spacer.

While the resonance wavelength is shifted when using dielectric layers, the width of

resonance remains about the same, see Figure 21. The width of resonance at 8μm for two

free standing meshes (F) is about 10%, for a spacer of refractive index n=1.5 (SP) is 10%

and embedded in the dielectric of n=1.5 (EM) is 12%.
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The use of transmission line theory to predict the peak wavelength of two-mesh

filter with dielectric spacer is not possible for small thicknesses. The reason for that is the

corresponding shift depending on the thickness of the dielectric. To avoid the

"Thickness" issue, the Micro-Stripes program can be used to calculate the correct peak

wavelength shift of a single mesh on a dielectric substrate as thin as one chooses. Then a

two mesh filter is to be assembled with the metal meshes facing each other, having the

dielectric substrate on the outside of the spacing area. The desired spacing may be

determined with the transmission line theory since one has an index of refraction of n = 1

for the spacer.

Figure 3.21 Transmittance of two meshes with spacer of thickness 8μm. Transmission
line parameters λ0 = 32.4 μm, Al = 0.1, al = 0.001. Free standing meshes (F), spacer of
refractive index n = 1.5 (SP) and embedded in dielectrics of refractive index n = 1.5 with
d* = 10 µm (EM). The ratio of bandwidth at half height to peak wavelength BW is for (F)
equal to10%, for (SP) equal to10% and for (EM) equal to 12%.
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3.9 Summary

The resonance wavelength and bandwidth of a single mesh in contact with dielectric

layers was calculated with electromagnetic theory using as input parameters the

geometrical configuration, the surface impedance of the metal, and the refractive index of

the dielectric layers. An empirical non-linear relation was given for the experimental

results, for both the resonance and the bandwidth. Using Micro-Stripes calculations, the

resonance wavelength of two metal meshes was studied for two specified alignments of

the crosses and the dependences of the resonance peaks on the thickness and refractive

index of the spacing. Transmission line theory was used to study the transmittance of two

non-aligned cross-shaped meshes and the limitations of the spacer thickness. Filter with

non-aligned crosses show desirable filter characteristics for quarter wavelength spacing

and low refractive index. A special configuration may be used for meshes on thin meshes.

The interpretation of the study was done with the oscillator mode model. In

simple terms, the incident light excites a compound mode of mesh and dielectric and this

mode transfers the energy to the reflected and transmitted light. The compound mode

consist of modes of the meshes with k = 0 and Fabry-Perot modes with wavevectors

parallel to the incident light and their interaction.



CHAPTER 4

THICK METAL MESHES

4.1 Inductive Metal Meshes - Introduction

In Chapters 2 and 3 thin inductive metal meshes were discussed, free standing and in

contact with dielectrics. The metal thickness of most of the meshes was assumed to be

0.2μm and a periodicity constant of 20μm was used. Thick metal meshes with thickness

of 11, 20 and 29μm and periodicity constant of g = 20μm have been produced by

Ruprecht et al."; these meshes have been manufactured with high accuracy and have

been used to adjust the surface impedance of the metal in the Micro-Stripes simulation

program The transmittance of these free standing cross shaped metal meshes shows a

resonance peak and an additional peak at shorter wavelength, both show dependence on

the thickness of the mesh. Whitbourn et a1. 19 have predicted such peaks for thick free

standing cross shaped metal meshes and Möller et a/. 8 ,23 have given an interpretation in

terms of coupling of the k vectors of resonance and thickness peak.

In the short wavelength region Ebbesen et al.24 and Grupp et al. 25 have presented

experimental studies of metal meshes with round holes and thicknesses of 'At of the

periodicity constant. Martin-Moreno et al.26 have calculated similar meshes with square

shaped openings. Möller et a/. 8 , 22 '23 have calculated meshes with cross shaped openings.

All these metal meshes in the short and long wavelength region have similar

transmittances with identical peak dependence on the thickness. A rudimentary model,

expressed in transmission line theory, describes very well all resonance peaks of these

meshes.
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4.2 Free Standing Thick Inductive Metal Meshes

4.2.1 Inductive Metal Meshes with Periodicity Constant of g = 20μm

The transmittance of inductive cross shaped meshes with g =	 2a = 1.5μm, 2b =

3μm has been calculated for thicknesses of 0.2, 1.0, 3.2,6.4, 9.6, 12.8, 16, 19.2, 22.4 and

25.6μm, and are shown in Figure 4.1 to 4.3. In Figure 4.4, the peak wavelength

transmittance of all peaks is plotted depending on the thickness t of the meshes.

Figure 4.1 Transmittance of inductive cross shaped meshes calculated with Micro-
Stripes program Geometrical parameters g = 201_1m, 2a = 2b = 3μm The metal
thicknesses of 0.2, 1, 3.2, and 6.4μm are indicated in the graph area. The resonance peaks
shift to shorter wavelength with increasing metal thickness, (see also Figure 4.4).
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Figure 4.2 Transmittance of inductive cross shaped meshes calculated with Micro-
Stripes program Geometrical parameters g = 20μm, 2a = 1.5μm, 2b = 3μm The metal
thicknesses 9.6, 12.8 and 16μm are indicated in the graph area. The long wavelength
peaks are resonance peaks, the short wavelength peaks are the first series of thickness
peaks, (see also Figure 4.4).

Figure 4.3 Transmittance of inductive cross shaped meshes calculated with Micro-
Stripes program Geometrical parameters g = 20μm, 2a = 2b = 311,m The metal
thicknesses 19.2, 22.4 and 25.6μm are indicated in the graph area. The longest
wavelength peaks are resonance peaks. At shorter wavelengths, the first series of
thickness peaks appear, and at even shorter wavelengths, the second series of thickness
peaks, (see also Figure 4.4).
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Figure 4.4 Graph of wavelengths of resonance and thickness peaks depending on metal
thickness t of the meshes. Upper curve: Resonance wavelengths. Triangles calculated
with Micro-Stripes program Round dots are experimental data. Next lower curve:
Thickness peaks. Squares calculated with Micro-Stripes program Round dots are
experimental data. Lowest curve: Thickness peaks. Triangles calculated with Micro-
Stripes program. Round dots are experimental data.

4.2.2 Experiments

Ruprecht et al." have manufactured free standing metal meshes of excellent quality with

the same geometrical parameters as used above of g = 20μm, 2a = 1.5μm, 2b = 3μm and

for thickness' of 11, 20 and 29μm Micro-Stripes calculations are shown in Figure 4.5

and agree with the experimental data of Reference [11] within a few percent. All

calculated peaks and the experimental observed data of Reference [11] are shown in

Figure 4.4.
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Figure 4.5 Micro-Strips calculations of the transmittance of free standing metal meshes
of thicknesses 11, 20 and 29μm. The parameters of the cross are g = 20, 2a = 1.5 and 2b
= 3μm, (see Reference [11]).

4.2.3 Resonance Peaks

From Figure 4.4, one can observe that the wavelength of the resonance peaks shifts to

shorter wavelength with increasing thickness, while the wavelength of the thickness

peaks shift from the region of 2=g to a longer wavelength. For larger thicknesses a new

series of thickness peaks is generated. The linear formula, see Equation 2.1a , for free

standing inductive metal meshes gives the resonance wavelength for t = 0.41,m, while the

empirical formula of Equation 2.1b gives approximately the resonance wavelength for all

thicknesses larger than t = 3μm.
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4.2.4 Thickness Peaks

The thickness peaks appear first at a wavelength close to the periodicity constant g and

shift with increasing thickness towards the resonance peak. After a certain thickness of

the mesh, a new series of thickness peaks appear with its first peak having again a

wavelength close to the periodicity constant. An empirical formula has been suggested

(see Reference 23) for the wavelength of the thickness peaks 2T based on the interaction

of a surface wave with wave vector ks and a wave traveling in the opening with wave

vector kF . Since the two wave vectors are perpendicular, the resulting wave vector of the

thickness peak is obtained as

Taking for the wavelength of the surface wave Xs = 2g and for the wavelength of

the wave in the openings kF = g + t, the wavelength of the thickness peak λT was

calculated from

The wavelengths of the experimental thickness peaks for thicknesses of 11, 20 and 29 μm

agreed well with the wavelength calculated with Equation 4.2. A similar approach was

taken to represent the Micro-Stripes program calculations of the thickness peaks with an

empirical formula. In a slightly different approach the resonance wavelength R was used

instead of 2g and two coefficients were used for the term with g and t.
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A good fit was obtained using c1 =0.82 and c2 =1.30, calculations are shown in Appendix

C.

4.3 Cross Shaped Inductive Meshes with Periodicity Constant g = 1 gm

The Fourier modal method23 ,27 was applied to calculate the transmittance of free standing

cross shaped metal meshes in the short wavelength region. The geometrical parameters

were g = 1 μm, 2a = 0.2μm, 2b = 0.11μm, for thickness' of 0.2, 0.4, 0.8, 1, 1.6, and 2μm

The calculations are shown in Figure 4.6 and 4.7. and are similar to the long wavelength

calculations for g = 20μ,m. There are "resonance peaks" shifting to shorter wavelength,

and shorter wavelength peaks, "thickness peaks", with an appearance depending on the

thickness of the metal mesh. The peak wavelength of all peaks depending on the

thickness is plotted in Figure 4.8 for the range 0 to 2μm Such calculations have been

repeated for cross shaped metal meshes with similar ratios of a/g and b/g for periodicity

constants of g = 2.14μm and g = 3μm The results of the dependence on thickness of

resonance and thickness peaks is very similar for much larger periodicity constants in the

longer wavelength region, as shown in Figure.4.4
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Figure 4.6 Transmittance of inductive cross shaped meshes calculated with the Fourier
Modal Method. Geometrical parameters g = 2a = 0.2μm, 2b = 0.11μm The metal
thicknesses 0.2μm, 0.μm, and 0.8μm are indicated in the graph area. The long
wavelength peaks are resonance peaks, the short wavelength peaks are the first series of
thickness peaks, (see also Figure 4.8).

Figure 4.7 Transmittance of inductive cross shaped meshes calculated with the Fourier
Modal Method. Geometrical parameters g = 1μm, 2a = 2b = 0.11μm. The metal
thicknesses 1 μm, 1.6μm, and 2μm are indicated in the graph area. The longest
wavelength peaks are resonance peaks. At shorter wavelengths the first series of
thickness peaks show up, and at even shorter wavelengths the second series of thickness
peaks (see also Figure 4.8).



Figure 4.8 Graph of wavelengths of resonance and thickness peaks plotted depending on
the metal thickness t. Upper curves: Squares and diamonds are resonance wavelengths.
Next lower curve: Triangles are first series of thickness peaks. Two lowest curves:
Second and third series of thickness peaks.
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4.4 The Oscillator Model and Transmission Line Theory

4.4.1 Oscillator Model

Ulrich' has analyzed the modes of thin square shaped inductive metal meshes. The modes

are composed of pairs of surface waves on each side of the mesh. The corresponding

wavelengths are the resonance wavelengths of a thin metal mesh. The thin mesh model is

extended to thick meshes and it is assumed that the surface waves on each side of the

thick mesh are described by an oscillator having the same resonance wavelength as the

surface waves of a thin mesh with the same geometrical parameters. The oscillators on

both sides of the thick mesh are coupled by wave guide modes of the openings,

depending on the thickness t of the mesh. For a qualitative description of this simple

model of two interacting oscillators one can use transmission line theory 1,20,23 and

calculate the peaks of the transmitted waves.

4.4.2 Transmission Line Theory

4.2.2.1 Oscillator.	 TLT used in this section is similar to that described in the previous

chapters, but is repeated for completeness. The oscillator is described by a shunt

impedance.

where
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The periodicity constant of the mesh is g, the normalized resonance frequency ωo, the

bandwidth parameter Al and the loss parameter al. The input parameters co o, Al, and al

may be obtained from observations, simulations such as the Micro-Strips program or

empirical formulas.

4.2.2.2 Cascading Matrices. 	 The cascading matrix of each element of the

transmission line is presented by a 2 by 2 matrix. The waves on the left side of the

impedance Y, are related by a matrix M to the waves on the right side as

For a2 = 0, that is no backwards traveling wave on the right side, one has for the ratio of

the reflected wave b1 to incident wave al

and for the ratio of the transmitted wave b2 to the incident wave al

The transmitted intensity is calculated from the (2,2) element of the resulting matrix

presenting all elements in the transmission line.



78

The matrix M1 of the impedance Y has the elements

and the matrix M2 of the separation of length t in the medium with refractive index 1 is

4.4.3 Calculations

The two oscillators of the model are separated by the distance t and described by the

matrix product M = M1M2M1, where the separation of the oscillators corresponds to the

thickness t of the metal mesh. For the input data, one has for the resonance frequency co o

= g/λR , where λR is obtained from the resonance formula of a thin free standing metal

mesh as discussed in Chapter 2. The bandwidth parameter is assumed similar to what has

been done in Chapter 2 and Chapter 3, and the loss parameter al is taken as 0.001. In

Figure 4.9 the calculated peak wavelengths are plotted depending on the thickness of the

mesh for the range of 0 to 45µm.
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Figure 4.9 Transmission line theory calculations of resonance and thickness peaks of two
oscillators at distance t. The peak wavelength of resonance and thickness peaks are
plotted depending on the thickness of the mesh. At small values of t, the resonance peaks
(squares and diamonds) show interaction and at t = 10µm the interaction of the resonance
peaks has vanished and at t = 12µm the first branch of thickness peaks (triangles)
appears. At t = 25µm the first peak of the second series of thickness peaks appears and at
t = 40µm interacts strongly with the resonance peaks.

For small values of t, the two oscillators interact and show a "splitting", which

decreases for increasing values of t. The splitting is observed in Figure 4.9; at around t =

12µm a new peak appears, shifting for larger values of t towards the wavelength of the

oscillators. The "new peaks" are the "thickness peaks" and are interpreted as compound

modes composed of oscillator resonance and waveguide modes. The wave guide modes

are "Fabry-Perot" modes, as they appear between two reflecting plates, similar as

described in Reference [26] for narrow slots in thick gratings. The second and third series

are also "thickness peaks" composed of resonance and higher order wave guide modes.

The appearance of resonance and thickness peaks are plotted for thicknesses of 4, 10 and
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18µm in Figure 4.10 on a logarithmic scale for better visibility. It is observed that a

splitting occurs at 44.1m, at 10µm the splitting disappears, while one thickness peak is

present. At 18µm, three thickness peaks occur with one thickness peak close to the

resonance peak that shows a splitting. The interaction of the oscillators with one another

and the wave guide mode is small and therefore the resulting wavelength of the resonance

wavelength is close to the resonance wavelength of the thin mesh. In the interaction

regions, the resonance and thickness peaks for thicknesses of 16, 20 and 24µm are plotted

in Figure 4.11. All three branches of "thickness peaks" appear with their first peak at a

wavelength about equal to the periodicity constant g. Interaction occurs when the

thickness t is in the range of the periodicity constant.

Figure 4.10 Transmission line theory calculations of two oscillators of the same
resonance wavelength as used in Figure 4.4, for separation distances of 4, 10 and 18 µm.
With increasing distance, the resonance wavelengths show splitting, no splitting and
again splitting around 40µm. Waveguide modes appear first at short wavelength and then
move to longer wavelength.



Figure 4.11 The resonance and thickness peaks for thicknesses of 16, 20 and 24.1m.

4.5 Discussion

The oscillator model describes the transmittance of the mesh by interaction of the

oscillator resonance mode and the waveguide mode. The incident light at normal

incidence induces a standing wave mode within the mesh. The mode couples energy of

the incident light to the transmitted and reflected light. This induced resonance mode is

composed of two standing surface waves, one on each side of the mesh. When the surface

waves interact through the openings, the degeneracy is lifted and the resonance is split

into two. As the metal thickness increases, the coupling decreases and the resonance

peaks are merged into one peak. This is shown in simulations for the short wavelength

region as a splitting disappearing for larger thickness, see Figures 4.6 to 4,8, and

simulations and experiments in the long wavelength region as a broad peak decreasing in
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width, see Figure 4.2. With increasing metal structure thickness, the interaction of the

two surface waves deceases and the energy transfer is now accomplished by wave guide

modes. The simulations in both spectral regions and the experiments in the long

wavelength region show series of new peaks with peak wavelength depending on the

thickness of the mesh and shifting to longer wavelength.

The oscillator model has been applied to the interpretation of the transmittance

data of cross shaped meshes. The geometrical property of crosses is contained in the

input data of the oscillators used in transmission line theory. These input data will be

different for square or hole apertures, but the qualitative result will not change much.

Martin-Moreno et a126 have calculated thick periodic structures with square shaped

openings in the short wavelength region. Transmission data are reported for free standing

meshes with periodicity constant g = 750nm, square length of 280nm and five thickness'

with t/g values of 0.13, 0.26, 0.4, 0.53, 0.67. The transmittances depending on thickness

of these meshes show a resonance and a thickness peak, very similar to our results for

crosses and expected from the oscillator model. A thickness peak appears first for t/g =

0.13 at a wavelength close to g. For increasing thickness, the thickness peaks shift to

longer wavelength while the resonance peak shifts to shorter wavelength, and both appear

together in the range of t/g = 0.4 to 0.67.

The results of Reference [22] have been applied to the interpretation of

experimental data on round holes, studied by Ebbesen et a1. 24 on substrates, and by Grupp

et al. 25 as free standing structures. Unfortunately, these experimental investigations are

done only for a narrow range of t/g values. In Reference [24](Figure 2), one peak is

shown, perhaps with an additional shoulder, at t/g of about 0.4 for round holes of
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diameter of 400 nm and g = 750nm. For the same t/g values and the same g, at shorter

wavelength, in Reference 10 though a broad peak with a dip is exhibited for squares of

length of 280nm

There is no extraordinary transmission enhancement in the short wavelength

region. In order to normalize the transmittance properly, one needs to take the ratio of the

area of the aperture to the unit cell area. The percentage transmittance of the experimental

data in the short and long wavelength regions is about 2 to 3 times larger than this ratio.

These transmittance enhancements occur via resonance modes, as mentioned for the short

wavelength region in Reference [23] and follows from Reference [13] for the long

wavelength region.

4.6 Free Standing Thick Capacitive Metal Meshes

4.6.1 Introduction

Capacitive grids may not be realized as free standing grids. However, in the far infrared,

one has found4 that a 2.5 microns thick Mylar substrate has little or no effect on the

transmissivity of the metal grids. Babinet's principle in electromagnetic formulation12 , 13

tells us that thin metal meshes with complementary pattern will result in complementary

transmittances. This is not true for thick metal meshes and important difference will

appear for thick capacitive meshes in comparison to thick inductive meshes.

4.6.2 Resonance Wavelength, Transition Region and Thickness Peaks

Using the Micro-Stripes program, the transmittance of thick capacitive cross shaped

meshes were calculated for meshes with geometrical parameters g = 20µm, 2a = 1.5μm,
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2b = 311,m, and thicknesses 0.2, 1.0, 3.2,6.4, 9.6, 12.8, 16, 19.2, 22.4 and 25.6µm , see

Figure 4.12 to 4.14. The transmittance shows a stop band for small thicknesses, as

expected for capacitive meshes. After a thickness of 6.4µm there appear narrow

transmittance regions at shorter wavelength. In Figure 4.15 a graph is shown of the

transition from minimum to maximum for thicknesses 11, 12, and 12.8µm. In Figure 4.16

the minima of the stop bands are plotted for thicknesses up to 10µm. The resonance

wavelength of these minima have about the same values as the maxima of the

corresponding inductive mesh, and exactly the same value for thin meshes. For

thicknesses larger than around 10µm, that is to longer wavelength from the transition

region, there are maxima and thickness peaks, similar as one has for thick inductive

meshes.

The thickness peaks for capacitive meshes are interpreted similarly to as has been

done for thick inductive meshes. After a thickness of about g/2 has been passed, Fabry-

Perot modes are generated in the openings and the capacitive mesh makes a transition to

an inductive mesh. The resonance wavelengths, that are now maxima, of thick capacitive

meshes from 16 to 25.6 microns, may be calculated from an empirical formula λRt = g/6

+2t.



Figure 4.12 Micro-Stripes calculations of the transmittance as function of wavelength
for four free standing capacitive cross shaped metal grids with g = 20μm, 2a = 1.5µm, 2b
= 3µm. Thickness in µm are indicated.

Figure 4.13 Micro-Strips calculation of the transmittance as function of wavelength for
three free standing capacitive cross shaped metal grids with g = 20µm, 2a = 1.5μ,m, 2b =
3µm Thicknesses in µm are indicated.



Figure 4.14 Micro-Strips calculation of the transmittance as function of wavelength for
three free standing thick capacitive cross shaped metal grids with g = 20μm, 2a =
2b = 3μm. Thicknesses in microns are indicated.

Figure 4.15 Micro-Strips calculation of the transmittance as function of wavelength for
three free standing thick capacitive cross shaped metal grids with g =	 2a =
2b = 3μm The transition from capacitive to inductive mesh is seen for thicknesses of 11,
12, and 12.8 μm
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Figure 4.16 Micro-Stripes, graph of wavelengths of resonance and thickness peaks
plotted depending on the metal thickness t. Diamonds: Resonance of capacitive meshes
(minima). Triangles: Resonance of inductive meshes after transition. Round holes:
Thickness peaks. Open squares: Best fit data of thickness peaks with Equation 4.11.

The thickness peaks are again considered as compound mode of resonance and Fabry-

Perot mode. Similar to the discussion for inductive meshes, the coupling is described by

wave vector addition and the wavelength of the thickness peak is calculated from

where R is the resonance wavelength and XF = c 1 g + c2 t was taken for the Fabry-Perot

mode. A good fit was obtained using c1 =1.15 and c2 =0.82, see Figure 4.16 One notes

that the coefficients c1 and c2 have almost the same values as c 2 and c l , respectively, for

the inductive mesh. The good agreement of this formula for large thicknesses of
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capacitive cross shaped meshes with the same g, a, and b values is taken as strong

support for the compound mode model described by the interaction of two modes with

perpendicular k vectors.

4.6.3 The Oscillator Model for Capacitive grid

The oscillator model describes the transmittance of thick metal meshes by interaction of

the oscillator resonance modes, corresponding to the pair of standing surface waves on

front and back side of the thick mesh and coupling to wave guide mode. Inductive thick

metal meshes have been discussed by assuming that the incident light induces the pair of

standing waves on both surfaces and that waveguide modes are generated to transport

energy from the incident light to the transmitted and reflected light, increasing the

transmittance for certain wavelength regions. Similarly for capacitive meshes, after a

certain thickness of the metal meshes has been obtained, waveguide modes are generated

and the transmittance in increased in certain wavelength regions.



CHAPTER 5

PHOTONIC CRYSTALS

5.1 Introduction

Stacks of inductive and capacitive metal meshes have recently been considered as

photonic band gap structures. Inductive metal layers have been studied by McCalmont et

a1. 28 as multi-layer square shaped metal meshes separated by dielectric layers in the mm

spectral region. Fleming et a129 studied in the near infrared layers of metal rod gratings

with the rods in a crossed arrangement from layer to layer and separated by dielectric

material. An arrangement of metal spheres, which can be considered as a layered

structure of capacitive meshes has been experimentally investigated in the millimeter

region by Serpenguzel30. .

In Chapter 2 and 3 multi-mesh filters were studied and in particular free standing

inductive cross shaped metal meshes at various spacer distances, both free standing and

with dielectric spacers. All of the studies in the previous chapters were done for normal

incidence and the photonic crystals considered in this chapter are stacks of inductive or

capacitive meshes. The coupled oscillator model was applied for the interpretation of the

simulations in Chapter 2 and 3. The compound mode, consists of the modes of the metal

meshes via a pair of surface waves on both sides on the mesh, and the Fabry-Perot modes

which depends distance between the metal meshes, as well as the coupling between

Fabry-Perot modes and the surface waves.

89
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Figure 5.1 Two layers of inductive meshes; aligned (a) and shifted (b). Capacitive
meshes; aligned (c) and shifted (d).

5.2 Inductive Cross Shaped Metal Meshes

The Micro-Stripes program allows for one to study the metal meshes of the layers lined

up or not aligned configurations, see Figure 5.1a and Figure 5.1b. In contrast,

transmission line theory calculations do not include alignment specification.



Figure 5.2 Micro-Stripes calculations of four free standing inductive meshes at i/4 R
spacing. Bold: aligned, thin: shifted.

Figure 5.3 Transmission line theory calculations of four inductive meshes with spacing
at i/4 λR, where the resonance wavelength is taken in the medium. Short wavelength peak,
free standing, long wavelength peak, medium of spacers is n = 1.5. Thin: 4 meshes, Bold:
10 meshes, Bold broken: 100 meshes.
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5.2.1 Free Standing Inductive Meshes

The transmittance of four free standing inductive cross shaped meshes, aligned and non

aligned, at distance of i/4 of the resonance wavelength is shown in Figure 5.2. In Figure

5.3 the transmittance of 4, 10, and 100 layers is shown, calculated using transmission line

theory.

Figure 5.4 Micro-Stripes calculations of four aligned inductive meshes with spacer of n =
1.5 and thickness of 1/4 λR.

5.2.2 Inductive Meshes with Spacers of Refractive Index n = 1.5

The transmittance of four inductive cross shaped meshes at distance of i/4 of the

resonance wavelength in the dielectric is shown for the aligned case in Figure 5.4, and the

non aligned case in Figure 5.5, it is observed that there is a greater interaction between all

modes. In Figure 5.3 the transmittance of 4, 10, and 100 are shown for layers for

dielectric spacers with index n = 1.5, calculated using transmission line theory.

A very narrow transmittance band and very broad gap of no transmittance is

shown in Figure 5.2 for four free stranding meshes at distance of i/4 R, for the aligned
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case. Each mode of a mesh is composed of a degenerate set of two surface waves on each

side of the mesh and together using the placement at a distance of i/4 R, there is

minimum interaction of the meshes. The transmission line calculation assumes non-

alignment of the meshes but agrees very well with this aligned case and shows also a very

narrow transmittance for 4, 10 and 100 layers, see Figure 5.3.

Figure 5.5 Four non aligned inductive meshes with spacer of n = 1.5 and thickness of i/4

R .

The free standing case of non aligned meshes is shown in Figure 5.2, and meshes

with dielectric layers in Figure 5.4 and Figure 5.5, all have broader transmittance regions.

The appearance of additional peaks indicates stronger interaction of the mesh modes of

non aligned meshes and when dielectrics are present with Fabry-Perot modes. As result,

for a photonic crystal with a narrow transmittance region, one should use aligned

inductive metal meshes at spacing of 1/4 λR.
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5.3 Capacitive Cross Shaped Metal Meshes

The Micro-Stripes program may be used to calculate metal meshes of layers lined up or

not aligned, see Figure 1 c and Figure 1 d and transmission line theory calculations do not

include any such specific alignments. While inductive meshes may be used without

dielectric support, capacitive meshes need always a substrate. For comparison with the

free standing inductive mesh of four layers, capacitive meshes are considered.

5.3.1 Free Standing Capacitive Meshes

The transmittance of four free standing capacitive cross shaped meshes, aligned and non

aligned, at distance of i/4 4 is shown in Figure 5.6. In Figure 5.7 transmission line theory

is used for the calculation of the transmittance of 4, 10, and 100 layers.

Figure 5.6 Micro-Stripes calculations of four free standing capacitive meshes at i/4 R
spacing. Bold: aligned, thin: shifted.
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Figure 5.7 Transmission line theory calculations of four free standing capacitive meshes
with spacing at i/4 λR. Thin: 4 meshes, Bold: 10 meshes, Bold broken: 100 meshes.

5.3.2 Capacitive Meshes with Spacers of Refractive Index n = 1.5

The transmittance of four capacitive cross shaped meshes at distance of the resonance

wavelength in the dielectric is shown for the aligned case in Figure 5.8. Transmission line

calculations of the transmittance of 4, 10, and 100 layers are shown in Figure 5.9, using

dielectric spacers of refractive index n = 1.5 and thickness of i/4 λR in the medium.

Comparing the free standing case of non aligned meshes, shown in Figure 5.6,

and meshes with dielectric layers, Figure 5.8, one observes that the shifted free standing

and the unshifted(aligned) meshes in medium of n = 1.5 have broader bandstop regions.

The broadening indicates stronger interaction of the mesh modes for the non aligned

meshes and with the Fabry-Perot modes in the dielectric.



Figure 5.8 Micro-Strips calculations of four capacitive meshes, aligned, with dielectric
spacers of i/4 resonance wavelength in the medium n = 1.5.

Figure 5.9 Transmission line theory calculations of capacitive meshes with dielectric
spacers of i/4 resonance wavelength in the medium. Thin: 4 meshes, Bold: 10 meshes,
Bold broken: 100 meshes.
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A similar result was found for inductive meshes. The transmittance region was narrow for

aligned inductive metal meshes at spacing of 1/4 λR.  However, for practical purposes

(capacitive grids cannot be suspended in air), capacitive meshes need a thin substrate.

In Figure 5.10 a comparison is shown for free standing capacitive meshes at

spacing of 1/4 and 1/2 resonance wavelength. One observes that the bandstop region is

narrower for 1/4 of the resonance wavelength.

Figure 5.10 Transmittance of 2 freestanding capacitive meshes at distance of X/4 (bold)
and ?J2 (thin solid).
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5.4 Metal Meshes and Photonic Crystals

One should recall that all calcuations are done for normal incidence. The transmission

line theory calculations are in good agreement with the result obtained for the aligned

meshes of four layers. A cubic photonic crystal may be considered to be made of a large

set of aligned layers. Transmission line theory predicts that the width of the transmittance

is about the same for small and large numbers of layers. The layers are presented by

oscillator modes with resonance wavelength depending on the geometry of the metal

mesh structure. Therefore the position of the transmission or stop band can be calcualted

from the geometrical structure of the metal mesh. The smaller width of transmittance or

bandstop regions is obtained for a spacing of 1/4 λR,and in contrast for 1/2Rthe width is

much larger, see Figure 5.10. The use of the Bragg condition for the determination of

reflection maxima uses only the concept of optical path difference in interference from

the reflecting layers. The description using resonance oscillators for the layers and their

interaction determines the wavelength of transmitted or reflected maxima by the

resonance wavelength of the layer and interaction between them.



CHAPTER 6

SUMMARY AND CONCLUSION

6.1 Thin Free Standing Meshes

A single free standing metal mesh is well described by a resonance mode with oscillation

dependence of the resonance wavelength on the geometrical parameters of the mesh. The

intensity depends on the surface impedance of the metal and does not show in the long

wavelength region much of difference for good conductors.

A set of n meshes at equal separation shows n resonance modes and (n-1) first

order Fabry-Perot modes, generated between the planes of the resonance modes, however

the latter not appearing for very small separations. All modes show interaction depending

on the separation of the meshes, and minimum interaction is at a value of separation

equal to 1/4 of the resonance wavelength. In stacks of meshes with crosses aligned in their

position with respect to next neighbor meshes, there is little interaction of the resonance

modes for a large range of spacing around the 1/4 resonance wavelength spacing. For the

non-aligned case strong interaction exist, even at around 1/4 resonance wavelength

spacing.

6.2 Thin Free Standing Meshes and Dielectrics

The resonance wavelength of the mode of a single free standing mesh on a thick substrate

shifts to longer wavelength by an amount smaller than the refractive index of the

substrate. Reduction of thickness of a thin substrate reduces the shift of the resonance

wavelength and demonstrates the extent of the surface wave in normal direction. At a

99
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very small value of the substrate the resonance wavelength is approaching the resonance

wavelength of the free standing mesh.

The resonance wavelength of the mode of a single free standing mesh embedded

in thick dielectric layers shifts to longer wavelength by an amount equal to the refractive

index of the dielectric. The behavior-extent of the surface waves into normal direction is

similar as for the metal mesh on a substrate.

A set of n meshes at equal separation shows n resonance modes and (n-1) first

order Fabry-Perot modes, generated between the planes of the resonance modes, however

they do not appear for very small separations. All modes show interaction depending on

separation and value of the refractive index and have minimum interaction at a value of

separation equal to 1/4 of the resonance wavelength.

In stacks of meshes with crosses aligned in their position with respect to next

neighbor meshes, there is little interaction of the resonance modes for spacing around 1/4

wavelength for refractive index n = 1.5 and 3.4, while one has large interaction for

meshes with non aligned crosses.

The Wood anomaly appears at a wavelength equal to the product of the refractive

index and the periodicity constant. It is interpreted as the value of the wavelength for

which the diffraction angle is 90°, diffraction is not any longer possible and an

evanescent wave appears. The wavelength of the Wood anomaly does not depend on the

geometrical parameters of different periodic structures for a number of meshes 17 . The

dependence on the refractive index of the Wood anomaly of the periodic metal structure

could be confirmed by simulations, and experiments17.
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6.3 Thick Metal Meshes

Thick inductive metal meshes are described by compound modes consisting of resonance

modes corresponding to surface waves on each side of the metal mesh and waveguide

modes of the openings. These two modes interact and appear as two transmission peaks.

The resonance mode shows little interaction with the waveguide mode and has about the

same wavelength as one has for thin meshes. The waveguide modes of the openings

interact with the resonance modes depending on the thickness of the metal. Their

wavelength is obtained by vector addition of the perpendicular k vectors of both modes.

Calculations using the Fourier modal method showed similar results in the 1 microns

region, deducing that the analysis for meshes for the longer wavelength in general can be

applied to the near infrared region. Extraordinary transmittance reported24 of inductive

metal meshes in this spectral region could be referred to as a simple resonance

phenomenon.

According to Babinet's principle in electromagnetic formulation, thick capacitive

metal meshes are not complementary to thick inductive metal meshes. They have

transmission minima at the resonance wavelength but also show waveguide peaks at

larger thickness. The interaction of the waveguide peaks with the resonance wavelength

is so strong that the transmittance of a thick capacitive mesh is similar to an inductive

thick mesh.
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6.4 Thin and Thick Metal Meshes as Photonic Crystals

Metal dielectric photonic crystals have been constructed by stacks of aligned inductive

meshes with dielectric spacers, See Reference [28]. These photonic crystals are

considered to be made of identical layers and all have the same distance from one

another. The resonance wavelength of one layer depends on the geometrical parameters

of the metal structure. They are described similarly as done for four inductive metal

meshes with dielectric spacers, as discussed in Chapter 3, and the extension to 10 or 100

layers, as discussed in Chapter 5.

6.5 Thin and Thick Metal Meshes as Filters

for the Astrophysical Community

The astrophysical community needs for space missions in the infrared region, filters with

a fixed resonance wavelength and a width of the transmission band of about 10%.

Emission measurements are conducted on astrophysical objects, such as galaxies. Filters

using metal meshes, as a Fabry-Perot type filter, are used in the far infrared, from 60 to

1000 microns. These filters can not be made in the 20 to 60 micron region because of the

increasing manufacturing difficulties of the small geometrical pattern required as

reflector plates and critical spacer thickness in the shorter wavelength region. In the 20 to

60 micron region, inductive cross shaped meshes can be used as two coupled oscillator

filters at distance of 1/4 wavelength for minimum interaction. The geometrical pattern may

well be fabricated and the spacing of the meshes is considerable less critical to change the

resonance wavelength as in a Fabry-Perot filter. Cross shaped meshes on polyimide or

polypropylene may be manufactured and the geometrical design parameters can be
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assumed from a study using Micro-Stripes calculations. In a special geometrical

arrangement, with metal meshes facing one another, the final resonance wavelength can

be determined by transmission line theory. Free standing inductive metal meshes show an

advantage. They have a smaller width of band for the same design parameters used for

the thin meshes on dielectric substrates. The question which of the two mesh filters, the

meshes on substrate or the free standing meshes, are better has to be determined form

experimental manufacturing of such filters and studying the conduction losses of the

meshes.



APPENDIX A

MICRO-STRIPES OVERVIEW

Micro-Stripes10 is a powerful software program ideal for the design of waveguide

components, non-planar circuit structures, and variety of antennae. Micro-Stripes provide

3D electromagnetic analysis of arbitrary geometries yielding results in time/frequency

domain. The simulator uses the Transmission Line method (TLM). The TLM method is

based on establishing a network of transmission lines that represents the physics of the

problem, and finding equivalence between the electrical solutions of that network and the

physical parameters of the problem.

Figure A.1 The data required of the 3D-simulater by resolve wave consists of a record of
two field components at two points in each port of the simulated device. The analysis is
done in the time domain at each output point and then is transformed to the frequency
domain.
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Figure A.3 Inductive/Capacitive grid front elevation profile.
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The directional output shown in Figure A.1 is simply a record of the ingoing and

outgoing signals at the port. These signals are resolved by comparing E and H fields at

two points, one on each side of the reference plane. The arrangement is closely analogous

to monitoring the signals in a waveguide by attaching a directional coupler. To get a

directional output in a waveguide, it is only necessary to place two time-domain output

points on a line parallel to the waveguide axis.

In order to construct the computational mesh, a workspace needs to be defined,

followed by the construction of the mesh. Each mesh is actually defined by a small

rectangular homogenized cell and each cell is entirely empty or entirely filled with the

same metal or dielectric. Accuracy is improved with a greater amount of cells(greater

accuracy means longer calculation time) . Micro-Stripes simulator works in the time

domain. Depending on the size of the problem, it can take as much as several seconds of

computer run- time to simulate each nano-second in real time. The duration of the

simulation is the length of time simulated — it is proportional to the computer run-time,

and is consequently limited by the patience of the user.



APPENDIX B

FABRICATION OF METAL DIELECTRIC HYBRID

Since the invention of the first integrated circuit in 1960's there has been an ever-

increasing density of devices manufactured on semiconductor substrates. Silicon

technology has remained the dominant force in integrated fabrication and is likely to

retain this position in the foreseeable future. There are two main steps in the course of

manufacturing integrated circuits. These steps can be grouped into two phases: 1) design

phase, and 2) fabrication phase. The standard fabrication phase for some of the meshes in

this thesis is outlined below31

Step 1-Wafer Preparation

In order to prevent/remove an array of contamination it is necessary to remove

organic/metallic contaminant on bare Silicon, proper cleaning is necessary. The

"Cleaning" is often referred to as an RCA clean. The typical solvent for an RCA clean

consists of very aggressive solvents. The most commonly used mixture is 7 parts sulfuric

acid H2SO4(98%) and 3 parts 30% H202. This solution has earned (rightly so) the name

of "pirrhana clean", because it attacks organic materials so aggressively. Wafers are

immersed in piranha at 100-130°C for about 10 minutes. Upon removal the wafers are

vigorously rinsed in de-ionized water.
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Step 2- Sputter Deposition

Sputtering is a term used to describe the mechanism in which atoms are ejected from the

surface of a material when that surface is struck by sufficiently energetic particles. It has

become the dominant technique for depositing a variety of metallic films in VLSI and

VLSI fabrication, including aluminum alloys, titanium, titanium: tungsten, titanium

nitride, tantalum, and cobalt.

Step 3- Wet cleaning of metal-Coated wafers

Once metal is deposited on a wafer, the aggressive acids and alkali solutions used in the

RCA clean can no longer be used. Instead, cleaning must be done with less reactive

solvents. The most common solvent used is n-methly-pyrrolidone (NMP). In some case

this step might be omitted.

Figure B.1 Sputtered metal film on top of a silicon wafer.
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Step 4- Resist Processing: Spin Coating

Following cleaning, drying, and priming, the wafers are ready to be coated with the

photoresist. The goal of the coating step is to produce a uniform, adherent, defect-free

polymeric film of a desired thickness over the entire wafer which adheres well to the

substrate. This procedure is carried out by dispensing the resist solution onto the wafer

surface, and then rapidly spinning the wafer until the resist is almost dry.

Figure B.2 A spun photoresist film on top of a metallic film, mounted on top of a Silicon
Wafer. (Figure not to scale).

Step 5 Resist Processing: Soft-Bake

After the wafers are coated with the resist, they are subjected to a baking step called soft-

bake (or pre-bake or post-apply bake). Several important functions are accomplished by

this step. First, solvent is driven out of the spun-on resist, reducing its level in the film to

about 5%, and the liquid-cast film is converted into solid form. Second, soft-baking

improves the adhesion of the resist by relieving film stress that arises from the shear

forces encountered in the spinning process. If not relieved, such stresses could enhance

the tendency of the resist to delaminate. The standard technique for soft-baking VLSI

resists used vacuum hot-plate-baking, in most standard cases hot plates provide better
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temperature and uniformly control than that of ovens. In hot-plate baking, one wafer at a

time is processed, with the heat being conducted to the wafer through its backside. In this

step the resist is heated quickly to the desired temperatures, and the soft bake cycle can

be short.

Step 6- Resist Processing: Exposure

After a wafer has been coated with resist and suitably soft-baked, it is ready to be

exposed to some form of radiation in order to create a latent image in the resist. The

degree of exposure is adjusted by controlling the energy impinging on the resist. An

energy integrator is used to detect the total energy striking a unit area of a resist, and

automatically adjusts the time of exposure to compensate for aging variation in the

source.

Step 7- Resist Processing: Post-Exposure Bake (PEB)

The post-exposure (and pre-develop) bake step subjects the resist to a temperature 5-15 °C

higher than the soft-bake step. This step causes an unexposed region to diffuse through

the resist an averaging effect across the exposed/unexposed boundary.

Step 8- Resist Processing: Development

Following exposure and post-exposure-baking, the resist film must undergo development

to turn the latent image in the resist into the final resist image. The resist image, which

results after development serves as the mask in a subsequent etching, steps. Development
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is another of the critical steps in the photo resist process, and often entails both extensive

process development efforts and stringent control after it put into production.

Step 9- Resist-Processing: Post-Development-Bake

Post-Development-bake, or hard baking is a process that subjects the resist to an elevated

temperature after completion of development, and it performed prior to etching or

implant. Its chief functions are to remove the residue solvents, to improve adhesion, and

to increase the etch resistance of the resists. Hard baking, like soft baking are normally

done using vacuum hot plates. After soft baking the resist contains about 5% solvent, and

hard baking reduces this value even further

Figure B.3 Developed photoresist prior to etching. Metal spunned mesh on top of a
silicon substrate (Figure not up to scale).

Etching in microelectronics is a process by which material is removed from the silicon

substrate (or from thin films on the substrate surface) by chemical reaction with a reagent

material (etching solution). When a mask layer is used to protect specific regions of the
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wafer surface, the main goal of etching is to precisely transfer the pattern created by the

mask onto the wafer surface by removing the material not covered by the resist.

Wet chemical etching was the standard pattern transfer technique when early

generation of integrated circuits were fabricated. Its widespread use was based upon two

factors. First wet etching technology was well-established from its long use in the

printing industry. Second, liquid etchent systems are available which selectively remove

only the material to be etched (and not the materials beneath them), and most of these do

not attack photoresist. However, wet chemical process typically etches in all directions at

the same rate.

Step 10- Photo-Resist Removal

Photoresist must be removed following a variety of processing steps, such as etching, and

high temperature post-baking. And simple removal of misaligned resist patterns for re-

imaging after development and inspection. The main objective in resist stripping is to

insure that all the photoresist is removed as quickly as possible without attacking any

underlying surface materials. Cleaning is typically done with NMP.
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Figure B.4 Patterned, and etched metal mesh on top of a silicon substrate (Figure not up
to scale).

Figure B.5 Photograph of experimental Inductive and capacitive cross shaped metal
meshes on silicon substrate.



APPENDIX C

TRANSMISSION LINE THEORY AND MATHCAD

There are three important parameters used in transmission line theory of metal meshes.

The parameters are the resonance wavelength, bandwidth and the loss parameter. The

transmittance of a mesh with resonance wavelength XR of a single mesh, corresponding to

the normalized frequency coo = g/λR, is obtained from Micro-Stripes calculations and used

as a parameter.

A shift of the resonance wavelength factor ((n1^2+ n2^2)/2)1/2is implemented for the

case of a metal meshes with an interface of two dielectrics of refractive index n1 and n2.

The width of resonance band parameter Al is obtained by adjusting the transmission line

transmittance curve to the Micro-Stripes transmittance curve. The loss parameter al is

taken as 0.001 from Reference [18] and [19].
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Inductive Configuration

One mesh, substrate or embedded
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Figure C.1a Page 1, MATHCAD output of an inductive mesh, substrate/embedded
configuration. w23, shifted frequency, g the periodicity constant, M1 Matrix (Interface,
from n1 to n2), M2 Second Matrix (Propagation Inside dielectric n2), Y Shut Impedance.
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Figure C.1b Page 2, inductive mesh, substrate/embedded configuration. M3 Matrix (n2
to n3,Y), M4 Matrix (Propagation Inside dielectric n3), M5 Matrix (Interface, from n3 to
n4). Mf Final Matrix product; Tf- final transmittance.
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Figure C.1c Page 3, MATHCAD output Inductive mesh, substrate/embedded
configuration. Al-the bandwidth Parameter, al- the loss parameter, X0- the resonance
wavelength (free standing), dl, d2- dielectric thickness, Tf- Transmittance.



N+2 inductive meshes, same index and distance for all spacings.
2 different indices
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Figure C.2a Page 1, MATHCAD output: N+2 inductive meshes configuration. w1, w3
shifted frequencies, g the periodicity constant, M12 First Matrix (from n1 to n2), M2d2
Second Matrix (Propagation Inside dielectric n2), Y1 Shut Impedance.



Mesh from n2 to n1, M21
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Figure C.2b Page 2, MATHCAD output: N+2 inductive meshes configuration. M21
Matrix (from n2 to n1, Y1), M22 Matrix (Propagation Inside dielectric n2, Y1), M13
Matrix (from n1 to n3, Y3).



Distance in n3 thickness d3, M3d3
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Figure C.2c Page 3, MATHCAD Output: N+2 inductive meshes configuration. M3d3
Matrix (Propagation Inside dielectric n3). M31 (from n3 to n1, Y3), M33 Matrix
(Propagation Inside dielectric n3, Y3), Mde12 Matrix (Interface-from n1 to n2).



Dielectric Interface n2 to n1,Mde21
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Figure C.2d Page 4, MATHCAD output: N+2 inductive meshes. Mde21 Matrix
(Interface-from n2 to n1). Mfl, Mfg Final Matrix products (two sets of independent and
different filters, N+2 Filters); Tf1 — Transmittance (one set), Tf2 Transmittance (second
set).



Mesh constants
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Figure C.2e Page 5, MATHCAD output: N+2 inductive meshes. Al-the bandwidth
Parameter, al - the 1oss parameter, X 1̂ , X,3- the resonance wavelengths (resonances are
independent), dl, d2, d3- dielectric thickness (distances are independent). Tfl, and Tf2-
Transmittances (two different sets), N=2 First set (4 filters), NN=98 Second set (100
filters).



N+2 capacitive meshes, same index and distance for all spacings.
2 different indices
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Figure C.3a Page 1, MATHCAD output: N+2 capacitive meshes configuration. ω1c,
ω3c shifted frequency, g the periodicity, Mc12 First Matrix elements(from n1 to n2),

Mc2d2 matrix Element(Propagation Inside dielectric n2), Y1 Shut Impedance.
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Figure C.3b Page 2, MATHCAD output: N+2 capacitive meshes configuration. Mc21
Matrix (from n2 to n1, Y1 — metal contribution), Mc22 Matrix (Propagation Inside
dielectric n2, Y1), Mc13 Matrix (from n1 to n3, Y3).



Distance in n3 thickness dc3 Mc3d3
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Figure C.3c Page 3, MATHCAD output: N+2 capacitive meshes configuration Mc3d3
Matrix (Propagation Inside dielectric n3). Mc31 (from n3 to n1, Y3), Mc33 Matrix
(Propagation Inside dielectric n3, Y3- metal mesh contribution), Mdel2 Matrix
(Interface-from n1 to n2).



Dielectric Interface n2 to n1,Mde21
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Examples: Mcf1 with N =2 is: Four meshes, separation of d2 and n2, outside n1
Mcf2 with N=2 is: Four meshes, separation of d3 and n3, outside n1

Figure C.3d Page 4, MATHCAD output: N+2 capacitive meshes configuration. Mde21
Matrix (Interface-from n2 to n1). Mcfl, Mcf2 Final Matrix products (two sets of
independent and different filters, N+2 Filters); Tcfl — Transmittance (first set), Tcf2
Transmittance (second set).



Mesh constants
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Figure C.3e Page 5, MATHCAD output: N+2 capacitive meshes. Al-the bandwidth
Parameter, al- the loss parameter, A 1 , 23 - the resonance wavelengths (resonances are
independent), dl, d2, d3- dielectric thickness (distances are independent). Tcfl, and Tcf2-
Transmittances (two different sets), N=2 First set (4 filters), NN=2 Second set (4 filters).



Karlsruhe Inductive Thickness peaks
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Figure C.4 MATHCAD Output. Fitting of thickness peak for thick inductive meshes for
simulated data. Formula from wave vectors addition. Fitting constants.: c1=0.85, and
c2=1.2. T1,T2- Simulated resonances of thickness peak(microns), F1,F2- Fitted values of
thickness peak(microns), t2 actual thickness(microns). Note: Seven simulated peaks are
fitted with two fitting constants.
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Formula C.5 MATHCAD Output. Fitting of thickness peak for thick capacitive meshes
for simulated data. Formula from wave vectors addition. Fitting constants c1=1.25, and
c2=1.25; T2- simulated resonances of thickness peak(microns), F 1- Fitted values of
thickness peak(microns), t2 actual thickness(microns).



APPENDIX D

GLOSSARY

Babinet's Principle (Electromagnetic Vector Formulation). Complementary Screens

will show complementary transmittance pattern, where as the Maximum of an inductive

mesh has the same wavelength as the minimum of the capacitive mesh, provided that

geometrical parameters are the same

Compound modes

a. Thin free Standing Metal Meshes. The Compound mode consists of two sets of

standing surface waves, each set on one side of the mesh.

b. Stacks of Thin Free Standing Metal Meshes, at Distance d. The two modes of the

metal mesh and the Fabry-Perot mode form the Compound Mode.

c. Single Free Standing Metal Mesh, Substrate/Embedded Case. The Compound

mode consists of two sets of resonance wavelength shifted surface waves and their

interaction with the dielectric (Fabry-Perot) modes.

d. Stacks of Thin Metal Meshes, on Top of Dielectric Substrate, at Distance d. The

Compound mode consists of the resonance modes of each metal mesh, the mode

generated by the dielectric, and the interaction between them.
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e. Thick Free Standing Metal Meshes. The compound mode consists of two sets of

surface waves one on the front and the other on the backside of the mesh and interaction

with the waveguide modes

Fabry-Perot Modes. Modes of two reflecting surfaces at distance d.

Oscillator Model. The model assumes the formation of resonance and waveguide modes

and their coupling.

Resonance Mode. The two pairs of surface waves on the front and backside of a metal

mesh oscillate with the same resonance wavelength and form the resonance mode.

Surface Wave. A longitudinal wave oscillating on the plane perpendicular to incoming

propagating incident wave

Surface Wave Interaction. The governing mechanizing of a resonance mode is

controlled via the interaction of surface waves. The incident light induces a pair of

surface waves on both sides of the mesh, and these surface waves transfer the incident

light into the reflected and transmitted light. The induced longitudinal electromagnetic

surface waves are standing waves with resulting wave vector equal to zero and resonance

wavelength depending on the periodicity of the mesh and geometry of the openings.

Different substrate as well as different metallic thickness affects the surface waves

behavior.
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Transmission Line Theory and Meshes. Meshes are described by complex quantities

and electrical parameters as electrical oscillators

Waveguide Modes. Modes generated with increased thickness of free standing metal

meshes, also called "Thickness Peaks".
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