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ABSTRACT

A MICROFABRICATED MICROCONCENTRATOR
FOR SENSORS AND CHROMATOGRAPHY

by
Minhee Kim

The detection and quantitative measurement of trace components is a challenging task.

The key component in such an instrument is the concentration step where the analytes are

accumulated before the analysis. In this research, simple and inexpensive processes for

the microfabrication of microconcentrator that can be used with sensors and as an injector

in GC were developed. Analytes are selectively concentrated in the microconcentrator.

Rapid electrical heating of the microconcentrator releases the adsorbed species as a

"concentration pulse", which serves as an injection for the detection system. The

relatively small size of the microconcentrator allows it to be heated and cooled rapidly.

The microconcentrator serves the dual purposes of sample concentration and injection.

The devices were fabricated on 6-inch silicon substrate using standard

photolithographic processes. First, a microheater embedded in silicon wafer was

fabricated. The channels were lined with a conductive layer by sputtering metal film

through which an electric current could be passed causing Ohmic heating. The

preconcentration was done on thin-film polymeric layer deposited in the channel. Rapid

heating of the conductive layer caused the "desorption pulse" to be injected into the

sensor/detector. Several channel configurations were fabricated with a width between 50

to 456 [an, depth between 35 and 350 pm and length between 6 and 19 cm. The

separation distance between the channels was varied such that the entire microheater



fitted in a 1 cm2 area. Due to their small size, the microconcentrators could be fabricated

more than 50 at a time on a 6-inch silicon wafer.

In the first part of this research, the heating characteristics of the microheaters are

studied. Deposition of metals to form a resistive heating element in microchannels was

demonstrated. It was found that temperature as high as 360°C could be attained in a ten

seconds. The microconcentrator was effective as a concentrator plus injector. It

exhibited high signal enhancement and precision.
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CHAPTER 1

INTRODUCTION

1.1 Miniaturization of Chemical Analysis Systems

Miniaturization is a growing trend in the field of analytical chemistry [1,2]. Over the past

decade the development of microfabricated systems for analytical techniques has become

a dominant player in the physical and biological sciences [3-5]. Influenced by the

success of the microelectronics industry, chemists and biologists, together with physicists

and engineers, are striving to miniaturize conventional laboratory devices and procedures

down to the size of matchboxes [6,7]. Also, interest in miniaturized analytical systems

has been stimulated by the fact that physical processes can be controlled more precisely

when instrumental dimensions are reduced to the micro size. It has primarily been driven

by a need to perform analytical measurements on small sample volumes so that rapid, on-

line measurements at low concentrations are possible. Major applications are in fields

such as DNA analysis, drug discovery, pharmaceutical screening, medical diagnostics

and environmental analysis.

The success of miniaturized systems depends on the development of integrated

devices (also known as micro total analysis systems, μ-TAS). These incorporate all

necessary elements to perform a chemical analysis, on a single chip, and preferably can

do without the need for a conventional laboratory [8,9].

t-TAS is designed to carry out full-scale analyses from sample introduction,

separation and detection, on a single, miniaturized device [10-14]. Figure 1.1 shows the

typical protocol for μ-TAS that can be used for chemical analysis [15-17]. It shows that

1
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four stages in measurement that include collection, preparation, processing and analysis.

Each stage of a conventional method needs to be replaced (at least partially) with a

miniaturized device. The miniaturized detectors in general do not possess the same

analytical power as their bench-top counterparts. The integration in μ-TAS is important

to enhance selectivity and sensitivity of the miniaturized device to a level comparable to

its lab-scale counter part.

System integration also has one of the most significant roles in miniaturization.

The quest for miniaturization will lead to better process intensification, since a μ-TAS

would benefit from the fact that it could consist of several system elements, and each

optimized for its own specific function. Miniaturization, in conjunction with integration

of multiple functionalities can enable the construction of structures that exceed the

performance of traditional macroscopic systems, can provide an abundance of new

functionalities and offer the potential of low-cost mass production.

Figure 1.1 Typical protocol used for μ-TAS for analytical science.

The advantages associated with t-TAS include:

• Increased speed and higher sample throughput

• Reduced reagent consumption both in energy and chemicals and waste generation

both heat and chemicals

• Reduced manufacturing and operating costs per analysis
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• Improved efficiency with respect to sample size, application, response times,

experimental throughput and automation.

• The possibility of parallel processing.

1.2 Microfabricated Instrumentations for Environmental Monitoring

The determination of the trace levels of organic pollutants in aqueous/gaseous samples

are of important because from a public health and regulatory perspective. For example,

airborne aromatic compounds such as benzene, toluene and xylene are toxic even at ppb

concentrations and lead to tropospospheric ozone formation. Highly sensitive analytical

techniques are needed for their detection in the field that can be used in this type of

analysis. Development of several on-chip analytical instruments has been reported. The

details are described on following section. A micro-fluidic device by using flame

ionization detector as the detection method, which enables to identify and quantify

atmospheric levels of VOCs, was reported. Microchip-based separation techniques, as an

essential element in the development of fully integrated micro-total analysis systems,

were integrated with several detectors for environmental analysis. Microfabricated

analytical instrumentations are envisioned to become powerful tools for environmental

monitoring.

1.2.1 Miniaturized Gas Chromatography

Gas chromatography (GC) is one of the most reliable analytical tools commonly

employed in the laboratory setting for environmental measurement. The components of a

mixture can be separated, identified, and their concentrations quantified using a GC. In

their most common configuration, they tend to be large, fragile and expensive table-top
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instrumentation. In consonance with the Environmental Protection Agency (EPA) and

National Institute of Occupational Safety and Health (NIOSH) federal mandates for

accomplishing on-site chemical analyzes, several investigators have focused their

attention toward realizing portable and robust GC systems. Development of a

miniaturized gas chromatographic system was reported as early as in 1979 [18-25]. In

fact, it was the first microchip-based analytical system fabricated on silicon. This device

included an injection valve and a 1.5 m long separation column all fabricated on a single

silicon wafer. A thermal conductivity detector was fabricated on a separate wafer and

mechanically clamped to the wafer containing the column. Although this gas

chromatograph was able to separate simple mixtures in a matter of seconds, the response

was lukewarm due to the difficulties in producing homogeneous stationary phases and

adequate phase ratios that led to unsatisfactory performance.

Development of a new miniaturized gas chromatography (referred as micro GC)

system was reported [26-31]. This miniature GC system consists of five components: a

miniature sample injector that incorporates a 10 Al sample loop; a 0.9 m long,

rectangular-shaped (300 μm width and 10 pm height) capillary column coated with a 0.2

pm thick copper phthalocyanine (CuPc) stationary phase; and a dual-detector scheme

based upon a CuPc-coated chemiresistor and a commercially available, 125-μm diameter

thermal conductivity detector (TCD) bead. Modern silicon micromachining and VLSI

circuit processing techniques were employed to fabricate design the interface between the

sample injector and the GC system's column, the GC system's column itself and the dual-

detector cavity. A novel integrated circuit thin film processing technique was developed

to deposit the CuPc stationary phase, which is a nearly homogenous thin-film, coating on
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the GC system's column walls micromachined in the silicon wafer substrate and the

Pyrex(R) cover plate which was bonded electrostatically. In this micro GC, the separation

and detection of NH3 and NO2 in less than 30 minutes were demonstrated when it

operated isothermally (55-80 °C).

Figure 1.2 Functional block diagram of the micromachined GC system.

There are several commercially available micro GCs. The instrument from

Varian, Inc. has a dimensions of 5.9 x 11.8 inch, and features one to four plug-and play

GC columns, each of which has a separate pneumatics, injector, column and detector,

enabling the user to generate more data 10-50 times faster than conventional GCs. A

Chrompack 2002 micro-GC system, as shown in Figure 1.3, equipped with two gas

chromatographic modules [32]. Each module consists of an injector, two heated columns
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and a micromachined thermal conductivity detector. This micro GC consists of an

injector, which is etched in a glass wafer, pneumatically actuated valves, a micro

sampling loop and flow restrictors. For optimum performance these were a conventional

open tubular capillary columns.

*MESI = Membrane extraction with a sorbent interface

Figure 1.3 Schematic of a micro-GC module.
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The commercially available micro GCs have a rather limited scope of

applications. Most of them have poor sensitivity. However, the sensitivity can be very

much improved by sample preconcentration.

Development of microfabricated silicon gas chromatographic micro-channels was

also reported [33]. These columns range from lm to 1.5m in length on a 1 cm 2 silicon

chip. Polymeric stationary phases impart both analyte selectivity and time

discrimination.On-chip temperature ramping gives these devices excellent selectivity

with a rapid response.

Advantages of micro GC are a small sample volume (x 10 -6 cm3) and short

retention times (~ 160 s). And gas chromatograph with a cryogenic separation column

has been used for the analysis of hydrogen isotope gas mixture in the fusion fuel cycle

[34]. However, cryogenic GC has the disadvantage of long retention time, typically a

few 10 min [35]. However, it is not suitable in applications such as process control that

require faster response. It should be noted that these micro GCs may still require off-chip

sample preparation such as liquid extraction, pyrolysis-derivatization and

preconcentration.

1.2.2 Chip - Mass Spectrometry

Mass spectrometry is another analytical tool used for environmental monitoring.

Presently available mass spectrometers use relative bulky mass analyzers. Large

dimensions of several tens of centimeters require low pressure of 10 -4 mbar or less, which

requires a two-stage pumping system. Thus the pumping system accounts for a

considerable share of the overall size and cost. The above mentioned disadvantages can

be greatly reduced by using a mass spectrometer fabricated as a micro-system. The small
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separator length of 1.5 mm facilitates mass separation at a 1-10 Pa pressure, hence

requiring simpler vacuum systems.

Several microfabricated devices have been reported for coupling capillary

electrophoresis to mass spectrometer [36-37]. For example, microelectric impedance

spectroscopy has been developed for the electrophysiological characterization of cells.

They were applied to the analysis of proteolytic digests as well as peptides. Two mass

spectrometer analyzers, a triple quadrupole and time of flight, were connected separately

to microfluidic devices through nanoelectrospray emitters to perform trace analysis of

membrane proteins and carnitines in human urine. A device that integrated the synthesis

of compound and a detection mode that relied on time-of-flight mass spectrometry was

presented. This system also allowed the parallel processing, in real time, of

multicomponent reaction subreactions.

A modular microsystem including an autosampler, microfluidic separation device,

and interface for nanaoelectrospray mass spectrometry was presented. Such a system

was able to perform sequential injections and separations of up to 30 samples/hour.

A chip-based CE/MS system has been reported to make quantitative

determinations of drugs in human plasma. A 15-amol-sample detection limit by coupling

a chip and a mass spectrometer has been achieved.

An advantage of miniaturization is generation of high field strength at low voltage

exploited. Even high field strength due to the small dimensions of a micro-system can

greatly enhance portability. Due to the small size, low power and low gas consumption

the micro mass spectrometer is suited for self-sufficient mobile analysis system in

application such as pollution and process monitoring. However, present day micro mass
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spectrometers do not have the figures of merit of the macroscopic mass spectrometers

and their detection limits are high, which ranges in the order of several hundred of ppm.

1.2.3 Microfabricated Sensors

Microfabricated devices require new approaches to sensor technology to exploit the full

potential of microsystem integration, and to provide a complete solution for complex and

tedious analytical problems. Development of several sensors has been reported [38-42].

SAW sensors are well known their high sensitivity for chemical and gas sensing. A

SAW device is characterized in that a surface acoustic wave is electrically excited in a

piezoelectric plate substrate by use of a metallic interdigital transducer (IDT) structure.

When a SAW device is coated with organic and /or inorganic materials, it acts as a

chemical sensor while the specific environmental analytes are adsorbed to its surface.

Figure 1.4 shows a schematic of SAW sensor. As shown in Figure 1.4, SAW devices

consist of a piezoelectric substrate, typically quartz, and two interdigitated transducers

formed by photolithographic patterning of a thin metal layer.

Figure 1.4 Schematic of a surface acoustic wave (SAW) sensor.
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Development of mass-sensitive sensor arrays with polymer-coated SAW device

has been reported [43-45]. Especially, SAW resonator based sensors are accepted to

have the best sensing properties for organic gas detection [46]. A SAW sensor array

based on eight non-continuously working oscillators equipped with differently coated

SAW sensors as shown in Figure 1.5. The sensor array approach provides greatly

increased selectivity and reliability in field environments over a single sensor. Single

sensors do not have high selectivity to discriminate against interfering species. In

addition, sensor arrays offer the possibility of detecting and quantifying multiple analytes

with the same system. The compact SAW sensor array systems envisioned would

convert data into chemical information and communicate it in a form necessary for

decision-making.

Figure 1.5 Schematic setup of the sensor array, consisting of eight multiplexed SAW
oscillators with capacity diodes.
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A variety of portable SAW sensor array systems have been developed. They have

been designed, built and field tested to provide rapid, reversible, sensitive, and

quantitative detection of individual volatile organic compounds. The sensor responses

and chemical concentrations were observed for trichlorethylene using the portable SAW

sensor as shown in Figure 1.6.

Figure 1.6 Linear sensor responses to trichloroethylene from 1 to 10,000 ppm.

The latest and smallest system is housed in a 5.5"x3.3"x1.5" plastic case and

includes batteries for portable or field operation developed by Sandia National

Laboratories as shown in Figure 1.7 [15]. However, this system consists of only a single

SAW sensor. It is still under way to design and built a portable instrument based on a
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SAW sensor array using selective coating on separate sensors to provide simultaneous

chemical identification and quantitation of multiple VOCs.

Figure 1.7 Picture of battery operated portable SAW sensor.

SAW sensor technology will become the basis for practical, fieldable solutions to

characterization and monitoring problems. However, it is still under way to design and

build a portable instrument based on a SAW sensor array using selective coatings on

separate sensors to provide simultaneous chemical identification and quantitation of one

or more VOCs.

The advantages of the SAW vapor sensor technology include

• Rugged planar design of the devices

• Suitability of polymer-coated devices for use in arrays with pattern recognition

• Fast response times (seconds)

• Rapidly reversible responses (the selective material is not altered by the vapor)

• Flexibility of the array approach to be adapted to many detection problems

Development of a tin oxide sensor has been reported. SnO 2 films are commonly

used as gas sensors due to their high sensitivity and selectivity towards various toxic
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gases in urban environments. These sensors also present short response times to gases, as

well as good reproducibility and repeatability. The gas detection capability of these

sensors is based on the variations of the sensor resistance caused by the adsorption of gas

on the sensor surface. Also, a sensor array of tin oxide sensors has been reported. Using

a sensor array of 15 thin film tin oxide sensors, the classification of six VOCs single

gases and the multicomponent analysis of VOCs gas mixtures were possible. Unlike

most semiconductor sensors, tin oxide based sensors showed excellent linear

characteristics. However, there was inadequate long-term stability, which is of

considerable significance for the practical use. For example, the case for use of this type

of sensors in warning devices both in private household and industrial applications, for

which is not possible to schedule recalibaration since the cost of such recalibaration

would be relatively high. One of the reasons for inadequate long-term stability is the

change of matalization. At high temperature, a metal film could create volatile oxides,

which might destroy the sensor heater. This decreases the effective heating of the sensor

and thus reduces the sensor temperature. As a result, the sensor resistance is usually

increased and the gas sensitivity is altered.

The miniaturization of chemical sensors made possible by silicon processing leads

to opportunities for mass production of inexpensive sensors with low power

consumption, fast response, and increased sensitivity to small amounts of chemical

species. However, most of them suffer from problems associated with lifetime, stability

and chemical interference. In fact, to perform a satisfactory chemical analysis in the

laboratory a complete system involving several steps in usually used. A sensor faces

significant challenges in approaching the detection limits and selectivity of many
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laboratory procedures. The increasing needs in monitoring and detection of various

chemicals and gases has added new impetus to the research and development of low cost

sensors. In principle, sensors can provide real-time (or near real-time), on-line

measurements. Furthermore, it is desirable that the sensors be completely automated, and

not requires additional chemical reagents or sample preconditioning. Figures of merits

are necessary for all measurements such as high sensitivity, selectivity, reproducibility,

short response time and long-term stability. To solve real-world problems, the sensors

need to meet these requirements. However, most gas sensors do not have the figures of

merit that are need in many monitoring applications. They may suffer from problems

such as non-linearity, low selectivity and sensitivity. In trace measurements applications

such as in environmental monitoring and chemical vapors detections, the biggest draw

back has been the low sensitivity and high detection limit of the sensors.

1.3 Preconcentration on Chips

Detection sensitivity is one of the few performance parameters of an instrument for

chemical analysis that does not directly benefit from system miniaturization. This is

because the dimension of the analysis system is minimized, the available detection

volume is reduced. For example, when performing capillary electrophoresis on

microfabricated chip device, injection volumes may typically range between 10 -14 - 10-10

dm3 [47]. This implies that for a diagnostically relevant sample concentration of 1 nm,

only 10 — 1000 molecules are available for analysis. Since the number of molecules

actually available for detection decreases drastically as detector volumes are reduced in

size, this will result in high detection limit. If the injection volume is reduced much
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further a point is soon reached at which no analyte molecules at all will be introduced

into the analysis system. Moreover, even for analyte volumes on a pL scale, it is evident

that detection becomes a key issue in determining the practicality of microfluidic

systems. And this is also true for the miniaturized gas chromatography, as the column

dimensions are further reduced, so is the available detection volume. Hence, many

detection principles are concentration-dependent and surely a final frontier is reached

when there is only one molecule left in the detection volume.

Many approaches have been undertaken to overcome the limitation described on

the above. Development of the methods for on-chip detection is the one way. It is clear

that high-sensitivity detection is essential when performing any kind of analysis on a

small scale. Many literatures demonstrate that the methods for on-chip detection include

laser-induced fluorescence (LIF), chemiluminescence, electrochemistry, refractive index

variation, Raman spectroscopy and electrochemiluminescence methods [49,50]. Of

these, LIF continues to be the most applied form of optical detection in conjunction with

microfluidic chips, due to its exceptional sensitivity and low mass detection limits. Most

of small volume detection within planar chip devices has conventionally been based

around optical measurements. This is primarily due to the optical properties of the

materials used in chip fabrication. For example, the most common substrates include

glass, quartz and polymeric materials, all of which possess good transparency in the

visible regions of the electromagnetic spectrum. However, LW techniques suffer from

significant drawbacks that prohibit their use universally. These include LIF detection

requires a large, expensive off-chip supporting optical system that greatly compromises

the benefits of miniaturization and portability, and the fact that the majority of molecular
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species do not fluoresce or are not easily converted to fluorescent species. Also, most

microfluidic chip devices have been developed for specific application such as

DNA/RNA separations, small-molecule organic synthesis, DNA amplification,

immunoassays and cell manipulation [50]. In many of the above applications a single

analyte is targeted for analysis. However, more usually structural identification and

quantitation of individual sample components is highly desirable or even necessary. On-

chip spectroscopic detection cannot easily provide this information and consequently

alternative analytical techniques must be considered. Therefore, the development of new

detection protocols in therefore of considerable importance.

As an alternative to these studies, the research might be approached from the

other side that is to increase the number of available sample molecules in the detection

volume prior to their detection by proving some kind of preconcentration step. Aiming to

overcome the above-mentioned drawbacks by the on-line generation of a flow of a

homogeneously enriched gaseous sample is the preconcentration method based on the

principles of equilibrium absorption.

Sample preconcentration is necessary where trace analysis of organics is desired,

and the detection sensitivity is too low to reliably detect and quantify the analysis. In our

previous studies, we have reported the use of microtrap. The microtrap interface had

been explored for directly introducing air sample into a mass spectrometer (MTMS).

Compared with other methods, microtrap offers the convenience of being both a sample

concentrator and injection device. By trapping organics on a sorbent material to increase

the sample amount for detection, the detection limits can be reduced to ppt level.

Sampling time varies from under one minute to several minutes depending on the
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detection level required by the application. Unlike the other methods, the thermal

desorption of the microtrap produces a concentration pulse into ionization chamber,

which generates a peak instead of a platform as detection signal. By using a microtrap,

we have reported the improvement of signal to noise rations at very small concentrations.

A common technical challenge for many trace analyte detection applications

concerns the ability of a detector to collect the sample efficiently, both to achieve a

certain limit of detection and to achieve that sensitivity within a reasonable time frame.

Detection sensitivity for many analytes can be significantly improved by using some type

of preconcentration step.

However, preconcentration devices based on conventional adsorption-thermal

desorption techniques cannot be directly coupled to micro GC without strict

miniaturization. These demands impose great difficulties in the construction of portable

analytical instrumentation based on high-speed narrow-bore GC techniques. Microchip-

based preconcentration techniques are essential elements in the development of fully

integrated micro-total analysis systems, which are envisioned to become powerful

instruments for obtaining and assessing analytical data in research, industry, and

everyday life.



CHAPTER 2

RESEARCH OBJECTIVE

The key component in trace analysis is the concentration step where the analytes are

accumulated before the analysis. The objective of this research is to micromachine a

concentrator (referred to as the microconcentrator) on a silicon substrate that can be

integrated with a sensor/detector to enhance the sensitivity. Another application

demonstrated here is a concentrator cum injector for a micro gas chromatography. The

microconcentrator is a miniaturized sorbent trap fabricated on a microchip so that a

sensor or detector can be integrated on the same chip.

The microconcentrators were fabricated on six-inch silicon substrate using

standard photolithographic processes. The fabrication steps are discussed in detail. The

microconcentrator is composed of microchannels etched in silicon. The channels were

lined with a resistive layer through which an electric current could be passed causing

Ohmic heating. The fabrication and testing of the metal deposited heaters are studied.

The preconcentration was done on thin-film polymeric layer deposited above the heater

in the channel. Rapid heating of the resistive layer caused the "desorption pulse" to be

injected into the sensor or a detector. Due to their small size, the microconcentrators

could be fabricated more than 50 at a time on a 6-inch silicon wafer.
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In summary the objectives of this research were:

• Development of microheater on a chip

• Study the heating characteristics of microheater

• Fabrication of the microconcentrator on a chip

• Integration of the microconcentrator with FID detector

• Study the characteristics of microconcentrator
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CHAPTER 3

A MICROMACHINED HEATER

3.1 Introduction

Microfluidic devices are being used in various applications, such as, chemical analysis,

drug discovery, electronics chip cooling, flow sensors and bio-medical devices [51].

There has been a growing interest in microfluidics for use in various analytical

applications such as gas chromatography [52-54], liquid chromatography [55], and

capillary electrophoresis [56-58]. It has been demonstrated that it is possible to put a

conventional chemical laboratory onto a single microchip to produce a large numbers of

chemical micro analytical systems [59]. These micro-electro-mechanical systems

(MEMS) have improved the performance by fast analysis and offer functional and

economic benefits. Performance enhancement, high throughput, lower power

consumption, the reduction of the sample size, and low cost are some of the advantages

of these devices. Moreover, the combination of chemical analysis and traditional

electronics on a single silicon chip can lead to fast and inexpensive manufacturing

processes [60]. Noteworthy among the different applications is microfabricated capillary

electrophoresis used in DNA analysis.

Many microfluidic devices require technologies for temperature control because

reactions and sample preparations need to be carried out at higher temperatures. It is

often important to maintain a particular area of a working element heated while rest of

the system is at a lower temperature [61]. The need for local microheating and

maintaining a constant temperature necessitates the development and fabrication of

20



21

efficient microscaled heaters. For example, the Polymerase Chain Reaction (PCR) for

DNA amplification requires fast temperature cycling which takes within 30 to 40 seconds

for each cycle [62].

Development of several microfabricated heating devices has been reported [63-

74]. Widely used techniques for these microheaters involve either the deposition of

polysilicon layer [64,65], or the heavy doping of the silicon substrate [66,67]. Many of

the current microheaters use fabrication techniques in which a selective etch of the bulk

silicon followed by implant of high concentration of dopants (typical range of the ion

dose is between 10 19 to 1021 atoms/cm3) to achieve a higher level of electrical

conductivity of the heater region [68]. The study on micromachined heaters for

thermomechanical data storage has been conducted [66]. Single-crystal silicon

cantilevers with integrated resistive heaters have also been demonstrated [66]. These

cantilevers were made electrically conductive by a heavy ion implant. The heater region

was doped with phosphorous at 1.5 x 10 21 atoms/cm3 and the legs at 1020 atoms/cm3 [66].

Ion implantation over a device allows the option of further anisotropical etching of the

underlying substrate while providing for localized heating. However, heavy ion

implantation is an expensive process [69].

Silicon On Insulator (SOI) technology is another way of fabricating microheaters

and is known to be simpler than deposition of polysilicon layers, or the heavy doping of

the silicon [70]. A thermally isolated microheater suspended 2μm above the wafer

substrate has been fabricated using a SOI wafer with a 2 tun buried oxide layer on silicon

substrate for the fabrication of heating devices [71]. This method is simpler than the

other methods because it involves only one masking step. However, it also requires heavy



22

boron or phosphorous doping to form the conductive layer (approximately > 10 19

atoms/cm3). Experimental results obtained using these devices have shown that

temperatures in excess of 1000 °C can be achieved with the use of very little power [71].

The heater can be as small as 500 [1111 2 . It has also been demonstrated that these heaters

reduce contact resistance so that there is less unwanted heating at the contacts. However,

once the maximum temperature is reached, any further increase in current only broadens

the active area of the heating element. Thus, continued operation in this region leads to

device weakening and eventually device burn out.

In this chapter, a simplified and inexpensive process for the fabrication of

microheaters for microfluidic applications using standard photolithographic techniques

and chemical wet etching is presented. This chapter focuses on the fabrication and

testing of the metal deposited heaters. Their temperature characteristics have been

studied under various conditions. The heaters were also coated with Spin-On-Glass

(SOG) to see how that changed the heating characteristics. Stability of the heater under

repeated pulses was also studies to simulate real-world applications. A comparison is

also made with a heater of similar dimension formed by boron implantation of silicon.

3.2 Experimental

The microheaters to be used in MEMS could be fabricated on quartz or borosilicate glass

wafers, two common materials for photolithographic fabrication [75]. Quartz works well

in electrophoresis because it is not only a good electrical insulator, but also transparent to

the UV required for absorbance and fluorescence detection. Quartz substrates also

generate high electroosmotic flow rates and have favorable surface characteristics after
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fabrication by etching [76]. Silicon is also popular as a microfluidic substrate because it

is possible to embed both fluid-control and fluid detection by integrated circuits on one

substrate. The typical fluidic devices such as microreactors and microfluidic capillaries

are 2- to 3-cm2 in size, and are made of silicon, glass, quartz, or plastic that are either

etched or molded [77]. Microfluidic chambers and channels have cross-sections as low as

5 to 50μm. The etched channels and chambers are usually covered with such as Pyrex,

glass or silicon to contain the sample and the reagent.

3.2.1 Fabrication

All fabrications except the ion implantation were done at the New Jersey Institute of

Technology Microelectronics Research Center cleanroom. NJIT cleanroom is a 1200-

sq.-ft and class 10 fabrication line. Ion implantation was carried out at Ion Implant

Services (Sunnyvale, CA). Ion implantation was performed at Ion Implant Services

(Sunnyvale, CA). The implantation processes were simulated using Stanford University

Process Emulator (SUPREM III) simulation package.

The chip layout was done on a Sun Sparc workstation using IC tool in Mentor

Graphics (Wilsonville, OR).

3.2.2 Flow Chart for Fabrication of the Microheater

The following shows a flow chart of the entire processing to fabricate the microheater.

The detail traveler is shown in Appendix A.



3.2.2.1 Microheater Made by Aluminum Alloys:

Silicon Wafer

Steam oxidation to grow oxide

Deposition of LPCVD nitride

Photolithography to pattern the nitride

Reactive Ion Etching (RIE) of nitride and oxide

Stripping photoresist

Wet etching of the silicon

Sputtering of the metal

Photolithography to pattern the metal

Wet etch the metal
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Stripping the photoresist
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3.2.2.2 Microheater Made by Boron Implantation:

Silicon Wafer

if

Steam oxidation to grow oxide

Deposition of LPCVD nitride

Photolithography to pattern the nitride

1

Reactive Ion Etching (RIE) of nitride and oxide

Stripping photoresist

Wet etching of the silicon

Patterned wafers were sent to Ion Implant Service

3.2.3 Process

A detailed description of the process is described below. The materials used for this

microheater were <100> oriented, 6-inch, p-typed (boron doped), single side polished

silicon wafers, with a thickness of 575 gm and a resistivity of 10-25 Ω-cm.
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Each wafer was scribed on the back for identification, and then all the wafers

were cleaned by using wet chemical cleaning which is usually done by rinsing in hot

organic solvents followed by mechanical scrubbing. This step helped in removing the

impurities and contaminants from the wafer surface. The impurities and contaminants

include as airborne bacteria, grease and wax from cutting oils and from physical

handling, and a variety of plasticizers which come from the containers and wrapping in

which the wafers are handled and shipped. surface. Surface cleaning is important prior

to high temperature processes because impurities react and diffuse at much higher rates at

elevated temperatures. The most commonly used wet chemical cleaning technology is

based on hot alkaline or acidic peroxide (H202) solutions. These are used to remove

chemically bonded films from the wafer surface prior to critical steps. RCA cleans are

based on a two-step process: standard-clean-1 (SC-1) followed by a standard-clean-2

(SC-2). SC-1 is an aqueous alkaline solution which functions to oxidize all remaining

organic contaminants on the surface, while SC-2 is an acidic mixture that is effective in

removing heavy metals such as cadmium, cobalt, copper, iron, mercury, nickel, and

silver, alkali ions and cations. SC-1 consists of 5:1:1 volumes of DI water (H20) : 30%

hydrogen peroxide (H202) : 20% ammonium hydroxide (NH 4OH).). This solution is very

effective in removing organic contaminants. SC-2 typically consists of 4:1:1 volumes of

DI water (H20): 30% hydrogen peroxide (H202) : 37% hydrochloric acid (HCl) is

effective in removing heavy metals. Each of these steps is carried out for ten minutes at

80°C under condition of rapid agitation.

The first step was steam oxidation of the wafers to grow approximately 1500 A

thick oxide layer at 950 °C for 40 minutes. The details of process conditions are:



27

02 = 75 SLM

Bubbler = 530 sccm

Temperature = 1050 °C

Time = 30 minutes

Target thickness = 3000 A

This was followed by LPCVD to deposit the silicon nitride layer (Si3N4). The details of

process are:

NH3 = 120 sccm

DCS = 50 sccm

Pressure = 200 mTorr

Temperature = 775 °C

Time = 25 minutes

Target thickness = 1200 A

The thickness measurements were done using ellipsometer. Ellipsometer is a film-

thickness instruments that use a polarized laser light source. In the ellipsometer the

polarized beam is directed to the oxide-covered wafer at an angle. The beam enters the

transparent film and reflects off the reflective wafer surface. During its passage through

the film, the angle of the beam plane is rotated. The amount of rotation of the beam is a

function of the thickness and index of refraction of the film. A detector in the instrument

measures the amount of rotation and an onboard computer calculates the thicknesses and

refractive indices of multiple layers (such as Si02 followed by Si 3N4) on a semiconductor

substrate. A major advantage of this technique is that areal information can be obtained

in a nondestructive manner by scanning the beam over the surface.
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The next step was photolithography of 2000A thick oxide and 1550A thick nitride

to create the patterns on the wafer surface. Photolithography is one of the most critical

operations in semiconductor processing. The goal of the photolithography is twofold.

First, it is to create in and on the wafer surface a pattern whose dimensions are as close to

the design requirements as possible. The second goal is the correct placement called

alignment. The details of the photolithography process are:

Wafer with mask film

Coating with primer

Coating with photoresist

Softbake

Cooling

Mask alignment

UV exposure

4,

Development

4,



29

Hardbake

4,

Removal of exposed photoresist

1

Etching of mask film

Removal of unexposed resist

To next process

The photoresist (PR) was applied as a thin film to the substrate and subsequently

exposed through a mask. The mask contains clear and opaque features that respectively

prevent or allow light through define the patterns to be created in the PR layer. The areas

in the PR exposed to the light are made either soluble or insoluble in a specific solvent

known as developer. Here resist was retained only on the active region and was removed

from elsewhere. To start with the wafer was spin primed with a pre-resist coating of a

material designed to ensure good photoresist adhesion. The primer chemically ties up

molecular water on the wafer surface, thereby increasing its adhesion property. The

spinner dispensed the primer onto the rotating wafer; the chuck is ramped to 800 rpm for

20 sec to dry the prime layer. The wafers were then ready to be coated with photoresist.

Spin coating is the most widely used technique to apply a uniform and adherent film of

desired thickness. This procedure was carried out be dispensing the resist solution on the

wafer surface, and then rapidly spinning the resist at 2000 rpm for 20 sec, until the resist

was essentially dry.
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After the wafers were coated with photoresist, they were subjected to a

temperature step, called softbake. In this step, all traces of solvent from the spun- on

resist are droved out, and adhesion of the resist is improved. Typically, the film thickness

shrinks to about 85% of its spun-on value during this softbake step. The wafers were

softbaked at 110 °C for one minute. After the wafer had been coated with resist and

suitably softbaked, it was ready to be exposed to some form of radiation in order to create

an image on the resist. The degree of exposure was adjusted by controlling the energy

impinging on the resist. Following exposure, the resist film was made to undergo

development which results in dissolution of the exposed photoresist but does not affect

the unexposed regions. The wafer was then spun-dry and transported to the postake

module. Following development, an inspection was performed. The purpose was to

insure that the steps of the PR process up to this point have been performed correctly and

to within the specified tolerance. Any inadequately processed wafers detected by this

inspecting could have their resist stripped and reworked. Hardbaking was then

performed at 115°C for 60 sec. The goal of hard baking is to further densify the resist so

as to reduce the dissolution rate of its undissolved regions, to improve the adhesion, and

to toughen the resist so that it can better withstand during reactive ion etching (RIE) etch

process.

Silicon nitride and oxide were etched using Trion-Phantom. Details of process

conditions are:

40 sccm CF4

Pressure = 250 mTorr

Power = 150 Watts
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Temperature = 25°C

Time = 180 sec for each cycle

RIE systems are a combination of plasma etching and ion beam etching. The

combination brings the benefits of chemical plasma etching along with the benefits of

directional ion milling. A major advantage of RIE systems is in the etching of silicon

dioxide over silicon layers. Visual inspection was made to make sure that the nitride was

etched completely. The photoresist layer that acted as an etch barrier was no longer need

and was stripped subsequently.

An anisotropic etching of silicon was then performed. The wafers were immersed

in the solution of potassium hydroxide (KOH 45% by volume) at 90 °C for 6 hrs at an

etch rate of 1.66 μm/minute. The KOH etch is a mixture of 45% KOH in water. The

solution is heated to 90 °C in a stainless steel water bath. A lid is placed over the beaker

which causes condensation of the solution to be dripped back into the beaker, maintaining

a constant chemical composition and therefore constant etch rate. The etch rate will

depend on the doping and crystal orientation of the silicon and the type and temperature

of KOH solution used, but is typically on the order of about 1.2 pun per minute. The

wafers were placed vertically, so that the gaseous by-products could escape without

hindering the etch. When the wafer was etched through silicon, the etch was stopped on

the nitride. The KOH etch has a very high selectivity between the (100) and (111) plane

of silicon. This causes the silicon wafer to be etched at 54.7° angle with respect to the

surface of the (100)-oriented wafer. After KOH etch, the wafer was cleaned using DI

water.
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Two different approaches were taken to form the conducting layer in the

microheater. The first was deposition of metal in the channel by sputtering, and the

second was doping with boron via ion implantation. The metal source used in this study

was aluminum alloy, which was 99% aluminum, the rest being silicon and copper. The

reason of using the silicon-aluminum alloys was to prevent the silicon in the wafer from

reacting with the deposited aluminum, which could cause spiking, or short circuits [78].

Approximately one micron Al-Cu-Si metal was sputter deposited. Aluminum and its

alloys are primarily used as material, which interconnects the deice structures, formed in

the silicon substrate. Sputtering is the term used to describe the mechanism in which

atoms are dislodged from the surface of material by collision with high energy particles.

The sputtering process basically consists of four steps, ions are generated and directed at

a target, the ion sputter target atoms, the ejected (sputtered) atoms are transported to the

substrate, these atoms condense and form a thin film. Photolithography was performed

using the metal mask. Metal etch was performed using wet etch. Selective etching

solutions for aluminum alloy layers are based on a mixture of H3PO4 and HNO3.

A set of etched wafers was sent to ion implantation service. Ion Implantation is a

process by which energetic impurity atoms can be introduced into a single-crystal

substrate in order to change its electronic properties. In ion implantation, dopant atoms

are ionized, formed into a beam, and swept across the wafer. The bombarding atoms

enter the substrate and come to rest below the surface. The dopant used in this study was

boron.
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3.2.4 Cross Sections

The Figure 3.1 shows the step by step processing of the wafer and its cross sectional view
after each step.

A. The Silicon wafer was p-type. 1500 A steam oxide was grown on the wafer.

B. A 2000 A thick silicon nitride was deposited.

C. Photoresist was then deposited and Si3N4 and Si02 were patterned.

D. Si3N4 and Si02 were RIE etched.



E. Photoresist was stripped and KOH wet etch was then done.

F. Metal was sputtered.
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G. Photoresist was then deposited and was patterned.

H. Metal was patterned using metal mask as shown above.
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I. Spin-on-glass was coated.

Figure 3.1 Cross sectional view after each step.

3.2.5 Experimental Set-up

Once all process steps were completed, each microfabricated heater was tested

individually. The heater was mounted under a four-point probe station (Cascade

Microtech Inc., Beaverton, OR). Different voltages were applied to each device to test

the heating characteristics as a function of time. The voltage was applied through 0.5 mm

tip tungsten probes. The Tegam 871 digital thermometer in conjunction with Kapton

p08508-86 K thermocouple probes with tip diameter 0.254 mm was placed on contact

pads to measure the channel temperatures.

3.3 Results and Discussion

Etching the <100> oriented silicon wafers in KOH (45% by volume) produced wells with

54° angle sidewalls. Since the substrate was <100> oriented, the chemical wet etching

produced the channels anisotropically with low aspect ratios. As a result, the channel

geometry was trapezoidal as shown in Figure 3.2. Several channel configurations were

fabricated with a width between 50 to 456 pm, depth between 35 and 350 lam and length

between 6 and 19 cm. The separation distance between the channels was varied such that

the entire microheater fitted in a 1 cm 2 area. Figure 3.3 shows the fabricated heater with

two contact pads.
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The resistance, R, of the circuit element can be computed as:

Where p is the resistivity of conducting material, t is the thickness of the conducting

material, L is the overall length of channel, and W is the width of channel.

The different channel configurations shown in the Table 3.1 were fabricated on a

single wafer to find an optimal heater configuration. Three different thicknesses, 1 gm,

3μm and 5μm, of conducting films were deposited on the channels. The channels with

thickness of 5μm failed to be patterned in the standard UV lithography process. Due to

the excessive thickness of the conducting film, there was not enough separation space

between the mask and the wafer. This resulted in incomplete wafer pattern.

Table 3.1 Experimental and Theoretical Resistances of the Microheaters of Different
Dimensions

Heater
Type

W
[pm]

L
[cm]

Resistance with 1μm
metal film

Rt'

[0]

Re2

[Q]
A 456 6.7 3.9 5.8
B 300 6.0 5.3 14.2
C 456 18.7 10.9 21.0
D 50 6.0 31.8 40.0

1Rt is a computed resistance.

2Re is an experimental resistance.



Figure 3.2 Cross section of the etched channel of microheater.
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Figure 3.3 Photograph of the heated channels on silicon wafer (top view).
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Theoretical resistance, Rt, could be calculated based on known resistivity,

thickness of conducting material and its dimension. The experimental resistance, Re, are

shown on Table 3.1. As predicted by Equation 3.1, the resistance of the heaters with lgm

metal film was higher than those with 3μm thick metal. Similarly, between A and C, C

had higher resistance because it was longer. Although aluminum based alloys have been

the metalization of choice for silicon IC technologies, it suffers from electromigration

[79]. Electromigration can lead to the electrical failure of metallic conductors in

relatively short times, reducing the circuit lifetime to an unacceptable level [69]. The

problem occurs when long skinny leads of aluminum carry high currents over long

distances. The current sets up an electric field at the lead that decreases from the input

side to the output. Also, heat generated by the flowing current sets up a thermal gradient

along the aluminum lead.

The heating characteristics of microheater at different voltages as a function of

time were studied. The initial temperature was between 23 and 25 °C for all the heaters.

The temperature profile of heater A with 15, 30, and 36 volts across it are shown in

Figure 3.4. It took an average 10 to 20 seconds to reach the maximum temperature. It

took only less than 5 seconds to cool down to its initial temperature. The microheaters

cooled faster than they heated up. This was because the wafer was exposed during these

tests and was prone to heat loss while there was only one heating source, which slowed

down the heating rate. In the In all cases, temperature stabilized in less than 30-seconds.

Table 3.2 shows the maximum temperatures attained for different heater configurations.

As shown in Figure 3.4 and Table 3.2, the maximum temp. in excess of 350 °C could be
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Figure 3.4 Temperature profile of heater type A with 1μm metal film when different voltages were applied.
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achieved with approximately 36V. It should be noted that higher temperature could be

attained by applying higher voltage or changing film thickness.

Table 3.2 Maximum Temperature Measured [°C] for Different Metal Heaters at 40 Volts

Heater type METAL METAL METAL

With SOG

Metal
(Al)

Metal
(Al)

Metal and SOG

Thickness 1 inn 3 pm 1.71.1m t
A 387 256.6 130.8

B 246.8 110.0 52.0

C 137.1 90 41.2

D 86.0 58.4 30.9

'Total thickness of metal and SOG (Metal is 1μm thick and SOG is 0.7μm thick).

The amount of power that is transferred to the load from the source will be at its

maximum when the resistance of the load matches the internal resistance of the source.

When the load resistance, RL, is greater than the internal source resistance, Ri, the load

voltage is higher but the load current is reduced. When R L is smaller than R.; the load

current is higher but the load voltage is reduced. Only when RL and R ; are equal is the

product of the load voltage and the load current is at the maximum value. Since power is

the product of voltage and current, this is the point of maximum power transfer. To

transfer maximum power to the aluminum heating element, one needs to match the

source resistance to that of the load resistance. The resistance of 1 pm thick metal was

higher than that of 3 μm thick metal. However, the maximum temperature output

observed for 1 μm metal was higher than 3 μm metal due to the matching of the source
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resistance to the metal resistance. So, while designing the heating element, one needs to

mach the source resistance to that of the heating element.

3.3.1 Comparison with heater made by boron implantation

The 2nd set of heaters was made by low dose boron implantation. The resistance was a

function of dopant concentration. The wafers were annealed at 400°C in a forming gas,

Argon. The annealing brought some of the dispersed dopant ions closer to the surface,

thus forming a uniform conductive layer. Inadequate annealing could result in a bulk of

the implanted ions being distributed too deep into the substrate to contribute to

conductivity. Two different implantation regimes were tried out. Furthermore, in an

effort to improve heating characteristics, each was subjected to two different anneal

times.

In order to arrive at the proper energy and dose of the boron source, the

concentration following the annealing was simulated using a computer program called

SUPREME III (Stanford University Process Emulator). This determined the depth of the

penetration of the boron atoms. For the first run, implantation energy was 80 keV at a

dose of 1 x 10 14 atoms / cm3 . For the second run, implantation was at a higher dose, 2 x

10 15 atoms / cm3 , and at 100 keV. After annealing (dopant activation), boron ions come

to rest at various depths in the wafer. They are centered about a depth called the

projected range at which diffusion depth can be predicted and fall of in density. The

conditions utilized for the initial implantation schedule are:

Implantation energy = 80 keV

Implantation dose = 1 x 10 14 atoms/cm2

Anneal = 40 minutes
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Additional anneal = 20 minutes

and the simulation is presented in Figure 3.5.

Since the measurement result obtained from this wafer were not very favorable,

secondimplantation schedule involving a higher dose and energy was also tried out. The

conditions used in the implantation are:

Implantation energy = 100 keV

Implantation dose = 2 x 10 5 atoms/cm2

Anneal = 20 minutes

Additional anneal = 20 minutes

The simulation results are presented in Figure 3.6. As can be seen, this results in

a higher implanted concentration of dopant and a much more uniform distribution upto a

greater depth within the substrate following annealing.

The resistance of the heaters was calculated based on Equation 3.1 from the

resistivity of the material if the thickness of conducting film and the L/W ratios are

known. For the boron-deposited wafer, the resistivity could be calculated based on mean

boron concentration and the depth of the boron layer. The resistivity for this

concentration was obtained from literature [80].

The sheet resistances after boron implantation were measured. The computed

and measured total resistances are listed in Table 3.3. The resistances with boron doping

were much higher than those obtained by metal deposition. For the initial implant (80

keV, 1 x 10 14 / cm2 , 40 minutes anneal at 900 °C), the concentration was 5 x 10 19 / cm3 at

a depth of 0.4 pm with p of 1.8 x 10 -3 Q - cm. For the second implant atom (100 keV, 2

x 10 15 / cm2 , 20 minutes anneal at 1050 °C), the concentration was 1 x 10 20 / cm3 a depth
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Figure 3.5 Boron concentration profile in silicon after implantation and annealing.
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Figure 3.6 Boron concentration profile in silicon after implantation and annealing:
alternative implantation regime.
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of 1 μm with p of 5 x 10-4 S2 - cm. The second scheme brought about an order of

magnitude decrease in the resistance of the channels. However, even this was a very high

resistance suggesting that even higher dose of doping is necessary probably in the range

of 10 x 10 19/ cm3 to 1021 / cm2 . However, such heavy doping increases the fabrication

cost a hundred to a thousand times.

Table 3.3 Calculated and Measured Resistances and Measured Power for Individual
Channels

Heater

Type

Implant at

80 keV, 1 x 10 14 / cm2 , 900°C

Implant at

100 keV, 2 x 10 15 / cm2 , 1050 °C

Rt

(kΩ)

Re

(kΩ)

Power

(W)

Rt

(Q)

Re

(Q)

Power

(mW)

A 6.0 0.54 0.3 665 66.7 41.7

B 18.4 1.95 1.2 2000 125 78.1

C 156 25.5 15.9 17400 1600 1000

D 131 00 00 14600 73 45.6

Table 3.4 shows the maximum temperature attained by different fabricated

heaters under different annealing conditions. It shows that annealing beyond 20 minutes

did not increase the maximum attainable temperature by the heaters.
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Figure 3.7 shows the temperature rise in the boron-doped wafer as a function of

time. For instance, the channel type A with a metal heater could attain temperature up to

387 °C, while the maximum temperature attained with boron doping was 67.3 °C.

However, the heating profile of the doped was similar to the heaters with the metallic

layer. In the conductivity depended on the dopant concentration.

Table 3.4 Maximum Temperature Measured [°C] for the Boron Implanted Heaters at 40
Volts

Heater Type
BORON

Implanted, Annealed

80 keV1x10^14/cm2

40 minutes
annealing

80 keVlx10^14/cm2

60 minutes
annealing

100 keV2x10^15/cm2

20 minutes
annealing

100 keV2x10^15/cm2

40 minutes
annealing.

Boron
Diffusion

Depth

0.3 pm 0.4 μm 1μm 1.2 μm

A 32.8 36.6 64.3 62.0

B 25 26.1 44.0 38.1

C 26.7 26.7 26.0 27.3

C 25 25.9 40.3 40.4

3.3.2 Effect of Glass Coating

It is expected that in many applications, the heater would be coated with some other

material such as glass or polymer. For example, those used in electrophoresis and

chromatography require glass-based surfaces because of the ease of chemical

modification using organosilanes [81]. Since organic polymers have low adhesivity for

silicon or metal, a layer of glass can be used on the substrate for modification. Hence, a

coat of Spin-on-glass (SOG) was applied on the channels to see how it effected the



Figure 3.7 Temperature characteristic of microheater type A with 1 and 3 gm aluminum film and by boron
doping at 100 KeV at a dose of 2x10^15/cm3 . The voltage applied was 36V.
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temperature characteristics. The thickness was controlled by the speed of the spinner.

For the six inch wafers, 4 ml of SOG was applied at 2000 RPM for a period of two

seconds. This achieved a glass thickness of 1µm. This was followed by hard plate

baking at 80°C, 150°C and 250°C for 40 seconds each. Then the wafers were cured in a

furnace at 425°C for 60 minutes.

The rise in temperature as a function of time with the spin-on glass coating are

presented in Figure 3.8 at an applied voltage of 43 V. In all cases, the temperature

stabilized in less than 10 seconds. As expected, the glass film served as a barrier to heat

transfer and the maximum temperature attained was significantly lower. At an applied

voltage of 36, temperatures was as high as 390 °C in the absence of the glass coating,

whereas the maximum temperature at an applied voltage of 43 with spin-on-glass was

120 °C.

3.3.2 Microheater under Repeated Cycles

Stability of heater to alternate heating and cooling was studied by applying a series of

repeated voltage pulses. Series of 2 seconds, 30 V pulses were applied to heater A, and

the current was measured. This was repeated every two minutes for five hours. The

results are shown in Figure 3.9. The heater was able to reach a constant current of 1.6 A

for each voltage pulse. We also demonstrated that the temperature reached as high as 100

°C within a pulsing period of two seconds. The resistance of the heater did not change

during the 148 cycles performed here. In another set of experiments, the heater was

cycled for seventeen hours (overnight). The current stayed the same even after 486

cycles.
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The precision was calculated by determining relative standard deviation or RSD:

RSD% = Std. Dev. / Mean Conc. X 100 	 (3.2)

RSD for 148 cycles was 0.620 %. This demonstrated the ruggedness of the microheater,

under widely ranging voltage application.



Figure 3.8 Temperature characteristics of 1 gm metal deposited microheater type A and D with Spin-On-
Glass.



Figure 3.9 Current profile for each voltage pulse to the heater type A; 30 V pulses were applied every 2 minutes
for a period of 2 seconds.



CHAPTER 4

A MICROFABRICATED MICROCONCENTRATOR

4.1 Introduction

The environmental monitoring requires the measurements of pollutants at very trace

concentrations (ppm to ppt) because even at such low concentrations they pose a threat to

human health and the environment. Continuous, on-line determination of the trace level

of organics in aqueous or gaseous matrix presents many challenges. A variety of

conventional laboratory based analytical techniques are used for pollution monitoring.

Currently, gas chromatographs, mass spectrometers and Fourier transform infrared

(FTIR) are the most commonly used instruments [82-88]. These techniques have

excellent figures of merit in terms of sensitivity, detection limit and other performance

characteristics [88-91]. However, they are relatively large, expensive and do not lend

themselves to easy portability.

The increasing needs for inexpensive, small monitoring devices have added new

impetus to miniaturize of chemical analysis systems. It is well known that the

miniaturization offers functional and economical benefits such as the reduction of the

sample size, decrease in reagent consumption and inexpensive mass production [92]. The

advancements in thin-film microfabrication technology over the past few years have

opened a wide range of possible microsensor designs. Micromachining processes,

particularly anisotropic and plasma etching, and the sacrificial layer method make

possible the construction of three-dimensional structures. It is feasible to employ these

techniques to produce chemical and gas sensors to meet the desirable sensor properties.

52
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Low energy consumption devices can be produced at modest cost [93,94]. The high

degree of reproducibility and relatively small size of these sensors enhance both

performance and the potential for practical applications.

Development of several microfabricated sensors has been reported [94,95]. Tin-

oxide-based sensors have been widely used in gas sensing [95-97]. An important

environmental application is the detection of low concentration toxic gases (i.e., CO,

NO2, 0 3 etc.). SnO2 films are commonly used as gas sensors due to their high sensitivity

to different gases, low production cost and the ease of use. Surface acoustic wave

(SAW) sensors are another widely used class of environmental sensors [98,99]. It offers

very high detection sensitivity for chemical sensing. A coated SAW device acts as a

chemical sensor by adsorbing analytes on its surface. A mass loading on the surface

results in a change in propagation velocity and a corresponding phase shift. Schottky-

diode-type sensors have also been used in gas sensing [100]. When an analyte molecule

diffuses toward the interface between the metal and the insulting layers of a diode, the

height of the Schottky barrier diminishes. This leads to a change in either the forward

voltage or the reverse current of the diode, forming the mechanism of the gas or chemical

vapor diode. Many chemical species can be detected using electrochemical sensors. An

example of the solid electrolyte electrochemical sensor for gas sensing is the ZrO2- based

high-temperature oxygen sensors [101]. This sensor is operated at 650°C in order to

ensure the ionic conductivity of ZrO2, and the amount of energy required to heat the

sensor is relatively large.

Micromachined, micro gas chromatographs have also been developed [102,103].

GC columns have been etched on silicon, and diaphragm based injection valves have
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been developed [104]. Micromachined thermal conductivity detector has been

successfully made and is currently available commercially. The potential to use a whole

micromachined GC as a sensor is also an attractive idea.

In principle, sensors can provide real-time (or near real-time), on-line

measurements. Furthermore, it is desirable that the senors be completely automated, and

not require additional chemical reagents or sample preconditioning. Figures of merits

necessary for different measurements are high sensitivity, selectivity, reproducibility,

short response time and long-term stability [109]. The limited successes of microsensors

are due to the inability to meet some of these requirements. In trace measurements

applications such as in environmental monitoring and chemical vapors detection, the

biggest draw back has been the low sensitivity and high detection limit of the sensors

[105].

One way to enhance sensitivity in any measurements is to provide some kind of

preconcentration. Sorbent trapping in air sampling, solid phase extraction and SPME are

common examples of preconcentration [106,107]. This allows a larger amount of analyte

to be concentrated and then released into the detection device or sensor. Larger sample

throughput in terms of mass of analyte per unit time results in a high signal to noise ratio.

These ideas have been used in different conventional measurements. Over the last few

years, we have reported the use of a microtrap as concentration cum injection device for

continuous monitoring of organics in a gas stream by GC, mass spectrometry, or a non-

methane organic carbon analyzer [108-111]. The microtrap is a small sorbent trap that is

put on-line. Sample passes continuously through it, and periodic electrical heating

releases the adsorbed gases as a "concentration pulse", which serves as an injection for
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the detection system. Its small size allows it to be cycled at high frequency, and the

preconcentration effect allows ppb level detection.

It is envisioned that the sensitivity of a microsensor can be enhanced by providing

on-line preconcentrator. The objective of this research is to micromachine a concentrator

(referred to as the microconcentrator) on a silicon substrate that can be integrated with a

sensor or a micromachined GC to enhance the signal to noise ratio. Basically, the

microconcentrator is a miniaturized sorbent trap fabricated on a microchip. It is to be

fabricated on silicon substrate so that a sensor can be integrated on the same chip. The

microconcentrator is put on-line with the sample stream, and is operated at a fixed

frequency. In principle, the microconcentrator is similar to the microtrap for GC and MS

described above. It is composed of microchannels etched in silicon. The channels are

lined with a microheater for in-situ heating. The preconcentration is done on thin-film

polymeric layer deposited above the heater in the channel. Rapid heating by the channel

heater generates "desorption pulse" to be injected into a detector or sensor. This chapter

presents the development of characterization of the microconcentrator.

4.2 Experimental Section

4.2.1 Fabrication

4.2.1.1 Flow Chart for Fabrication of the Microconcentrator: 	 The following

shows a flow chart of the entire processing to fabricate the microconcentrator (The

Traveler is shown in Appendix A).
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Spin coating of the spin-on-glass (SOG)

1

Spin coating of the polymer

Bonding with the quartz wafer

4.2.2 Process

The materials used for this microconcentrators were <100> oriented, 6-inch, p-typed

(boron doped), single side polished silicon wafers, with a thickness of 575 μm and a

resistivity of 10-25 Ω-cm. The chip layout was done on a Sun Sparc workstation using IC

tool in Mentor Graphics (Wilsonville, OR). All fabrications were done at the New Jersey

Institute of Technology Microelectronics Research Center cleanroom. Figure 4.1 shows

the step by step processing of the wafer and its cross sectional view after each step.

The detail process flow is described in Section 3.2.1. The first step was steam

oxidation of the wafers to grow the oxide layer. This was followed by LPCVD to deposit

the nitride layer. Then the wafers with 2000A thick oxide and 1550A thick nitride were

patterned using standard UV lithography. The patterned wafers were etched using

Reactive Ion Etching (RIE). After this, anisotropic etching with KOH was performed at

95 °C for 3.5 hrs at an etch rate of 1.66mm/min. Etching the <100> oriented silicon

wafers in KOH (45%) produced wells with 54° angle sidewalls. Since the substrate was

<100> oriented, the chemical wet etching produced the channels isotropically with low

aspect ratios. As a result, the channel geometry was trapezoidal as shown in Figure 4.2.

Several channel configurations were fabricated with a width between 50 to 456 pm,
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depth between 35 and 350 μm and length between 6 and 19 cm. The separation distance

between the channels was varied such that the entire microheater fitted in a 1cm 2 area.

Sputtering used deposition of metal in the channel by sputtering to form a

conductive layer. The metal source used in this study was aluminum alloy, which was

99% aluminum, the rest being silicon and copper.

Then the microconcentrators were coated with Spin-On-Glass (SOG) since

microconcentrator require glass-based surfaces because of the ease of chemical

modification of glass surfaces using organosilanes. Since organic polymers have a low

adhesivity for silicon or metal, a coat of glass was specially applied on the channels by

spinning them over the surface of the wafer. SOG materials consist of polysiloxane

polymer, and, upon heat treatment, become SiO2-like in character. The SOG

(Honeywell) was applied on Si wafers by using the spinner. The thickness was

controlled by the speed of the spinner. For the six inch wafers, four ml of SOG with

2000 RPM for 2.0 seconds was applied to achiever approximately 1μm followed by hard

plate baking at 80 °C, 150 °C and 250 °C for 40 seconds each hot plate. Then the wafers

were placed in the furnace for curing process at 425 °C for 60 minutes.

Thin films of commercially available gas chromatography stationary phase, OV17

(polymethyl-phenyl-phase) were deposited on the microconcentrator using a spin coating

at 2000 rpm for 20 seconds to form an adsorbent layer. By adjusting spin-coating

conditions, the thickness of the polysilane was varied. Then the wafers were placed in

the oven for baking at 120 °C for 48 hours.

WaferGrip (Dynatex, Santa Rosa, CA) was used to bond patterned Silicon and

quartz glass wafers. WaferGrip is an advanced composite film adhesive engineered to
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securely bond wafers and other substrates during dicing, grinding and polishing.

WaferGrip is a heat activated adhesive of uniform thickness. Using Wafer Bonder, the

adhesive layer of WaferGrip is compressed on a substrate under vacuum. Adhesive on a

polyester backing or as a film on release paper may be used. With its high shear strength,

WaferGrip secures devices as small as 5 mils square and still maintains adhesion for

maximum feed rates. In Figure 4.3, the cross section view of the microconcentrator after

the all processes were completed is presented.

4.3 Cross Sections

A. The Silicon wafer was p-type. 1500 A steam oxide was grown on the wafer.

B. A 2000 A thick silicon nitride was deposited

C. Photoresist was then deposited and Si3N4 and Si02 were patterned.



D. Si3N4 and Si02 were RIE etched

E. Photoresist was stripped and KOH wet etch was then done.
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F. Metal was sputtered.

G. Photoresist was then deposited and was patterned.



H. Metal was patterned using metal mask as shown above.

I. Spin-on-glass was coated.

J. Polymer was coated.
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K. Bonding with quartz wafer using WaferGrip.

Figure 4.1 Cross sectional view after each step.
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Figure 4.2 SEM image of the anisotropically etched channel of the Microconcentrator.

Figure 4.3 Cross section of the etched channel of microconcentrator.
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4.2.3 Experiment Set-up

Once all process steps were completed, microconcentrator was tested by interfacing with

Flame Ionization Detector (FID). The experimental system used in this study is shown in

Figure 4.4. A SRI Instrument model 8600/9300 portable GC equipped with a flame

ionization (FID) detector was used for analysis. In some tests, a 0.53 mm ID, 30 m

capillary column (DB-624, J&W Scientific) was used. Standard gases such as air,

nitrogen, and hydrogen were purchased from Matheson Co., NJ. Nitrogen flow was used

as the striping gas and the flow rate was set to 11 ml/min. A steady toluene stream was

generated by diffusing a controlled amount of the analyte from diffusion capillary into a

flow of N2. The toluene liquid was placed in a melting point capillary of 0.1mm

diameter. The sample diffused up the capillary tube onto a flow of N2. Toluene and

benzene vapors were prepared by a headspace technique. A microprocessor was used to

control the interval, and duration of the electrical pulses to the microconcentrator. The

toluene vapors passed along with a stream of air, and toluene was adsorbed by the

microconcentrator. The preconcentration was done on thin-film polymeric layer

deposited in the channel. After a sufficient time has elapsed, three minutes, a pulse of

electric current was applied to the micro-concentrator to desorb the trapped organics.

Rapid heating of the conductive layer caused the "desorption pulse" to be injected into

the detector. The use of microconcentrator enhanced the sensitivity by generating series

of pulses.

Software used for data collection was the Peaksimple Data System supplied by

SRI Instruments. It provided precise temperature controls for the GC oven and its



Figure 4.4 Schematic diagram of the experimental system.
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detector. Calibration, real-time qualitative/quantitative analysis, documentation of

analytical results, and report output were also controlled and handled by this date system.

4.3 Results and Discussion

4.3.1 Heating Characteristics of the Microheater

The key component in the microconcentrator is the heating element embedded in the

channel. The heating characteristics of the channel heater of the microconcentrator were

studied.

The temperature of the microchannel was measured using a 50 pm thermocouple.

Typical temperature profile as a function of time is plotted in Figure 4.4. The

temperature depended upon several factors such as heater design, applied voltage etc

[112]. For the heater presented here, temperature as high as 330 °C could be reached in

less than 10 seconds. The SOG provides a resistance to heat transfer and the maximum

temperature was only 120 °C. It should be noted that the thermocouple has slow

response, and the real heat-up rate could be somewhat higher. Detailed heating

characteristics of such thin-film heater have been presented elsewhere, and the heater

stability during multiple cycling has been demonstrated [113].

4.3.2 On-line Microconcentrator

The microconcentrator was put on-line with the sample stream. The gaseous sample

containing the analyte was introduced into the detector through the microconcentrator.

The analytes were trapped in the polymer film and could be thermally desorbed by

electrical heating. The desorption of the microconcentrator was achieved by resistive

heating using an electrical current pulse. Rapid desorption was essential for producing a



Figure 4.5 Temperature characteristics of 1 gm metal deposited Microconcentrator with and without Spin-On-Glass.



Figure 4.6 Continuous monitoring of a stream containing organics. Corresponding to each injection I I , 12 , 13 ..... a
response C 1 , C2, C3 ....was obtained.
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sharp concentration pulse to provide high throughput in terms of mass of sample per

second. The mode of operation for continuous monitoring is that electrical pulses, or

injections were made at fixed intervals of time and corresponding to each injection, a

signal pulse was obtained. Continuous monitoring using the microconcentrator is

demonstrated by monitoring a stream of organic vapors. As shown in Figure 4.6,

microconcentrator generated a series of signal pulses corresponding to a sequence of

injections. Reproducibility in terms of peak height was excellent, and injection pulses

could be continued indefinitely.

Both adsorption and desorption processes play important roles in the on-line

microconcentrator operation. In a previous study, the effect of capacity factor in

conventional packed tube microtrap was described [114]. Similar ideas are applicable

here. The capacities of adsorption in terms of analyte breakthrough, and desorption

efficiency are important issues. Because of its small dimensions, only a small amount of

polymer could be coated inside. Consequently, the microconcentrator had inherently low

capacity and was prone to breakthrough.

The breakthrough characteristics can be studied from the peak shape. The sample

flowed continuously through the microconcentrator. When the microconcentrator was

heated, a desorption peak was observed. The analytes were re-adsorbed in the

microconcentrator as it cooled. This lowered the base line into the negative territory

appearing as a negative peak. As the sample began to breakthrough, the detector

response increased back to the base line. The width of the negative peak has been shown

to equal to the breakthrough time measured by frontal chromatography [109]. The

desorption generated a positive concentration profile while the immediate sample
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readsoprtion generated a negative one. Thus, a microconcentrator peak contained a

positive and negative part as shown in Figure 4.7. The time interval AD in Figure 4.7 is

the time taken by the sample to migrate through the microconcentrator. This is denoted

as

Where L is the length of the microconcentrator, u is the flow-rate of the sample and k is

the capacity factor of sample in the microconcentrator stationary phase. As capacity

factor, k, increased, tb increased, the negative peak became shallow and appeared to

merge with the baseline so that the peak resembled a conventional concentration spike

without a negative profile. Figure 6 represents a low capacity microtrap with a very thin-

film coating where the negative peak is pronounced. Whereas, Figure 4.6 shows the

response of a higher capacity microconcentrator with relatively thicker polymer film and

without a negative profile. A microconcentrator with a higher capacity factor allowed

longer breakthrough time, and generates peaks without a negative part.

The microconcentrator response as a function of injection interval was studied.

As the injection interval increased, the amount of sample trapped in the

microconcentrator increased. However, once the interval equals tb, the sample began to

break through and the response could not be increased further. This is shown in Figure

4.8. So the response profile shows a linear increase in microtrap response up to tb

followed by a constant response beyond tb.

Linearity in microconcentrator response was observed as a function of

concentration. This was true even at different injection intervals. Since the amount of

sample trapped in the microconcentrator was proportional to the concentration of the



Figure 4.7 Characteristic peak from a low capacity microtrap which shows a pronounced negative peak.



Figure 4.8 Microconcentrator response as a function of injection interval at 0 °C and 25°C. Toluene was used as the analyte.
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stream flowing in, its response was proportional to sample concentration. At higher

injection interval, the larger amount of trapped sample resulted in a higher response. The

microconcentrator could be operated at any injection interval, either longer or shorter

than tb. Once beyond tb, the sensitivity of the calibration curve did not increase.

Operating it at higher frequency resulted in faster monitoring, but allowed less time for

sample accumulation, thus, lower sensitivity.

4.3.3 Trapping Efficiency

Due to the small dimension of microconcentrator and limited amount of sorbent, it

trapped only a fraction of the sample flowing through it and had relatively low capacity

factor. However, the microconcentrator should accumulate as much sample as possible

before making injection so that a large signal can be obtained at the sensor. The

untrapped sample breaks through the microconcentrator. Trapping efficiency of the

microconcentrator is defined as the fraction of the incoming sample retained by the

microconcentrator before an injection is made:

The retention mechanism in a microconcentrator is very similar to that of a GC column.

There is equilibrium between the concentration of the sample in the polymer phase and

the flowing gas phase. So trapping efficiency,
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where, M s is the amount of sample trapped per unit time in the polymer phase, Mt is the

sample amount per unit time flowing into the microconcentrator, M m , is the amount of

sample per unit time that remains in flowing gas phase and t i is the injection interval.

Since the capacity factor, k, is defined as,

Equation 4.5 reduces to :

The trapping efficiency was calculated from Equation 4.6. Figure 4.9 shows the

trapping efficiency as a function of injection interval, ti at two different

microconcentrator temperatures. If the injection interval is less than the break through

time, ti < tb, then Equation 4.6 becomes:

and trapping efficiency depends only on the capacity factor of the microconcentrator.

As shown in Figure 4.9, when the injection interval is less then break through

time, the trapping efficiency, T, is constant corresponding to the flat portion of the curve.

When then injection interval is greater than break through time, i.e., tb < the trapping

efficiency decreases as predicted from Equation 4.6. The microconcentrator temperature

affects the microconcentrator response. The trapping efficiency decreases with increase

in microconcentrator temperature as shown in Figure 4.9. It it is seen that at 25°C, tb was

five minutes while tb increased to six minutes at 0°C. Thus, the trapping efficiency was

affected by the microconcentrator temperature. This is because a lower temperature



Figure 4.9 Trapping efficiency as a function of injection interval.
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increases k in Equation 4.6, thus increasing trapping efficiency. High trapping efficiency

generated a large signal and enhanced sensitivity.

4.3.4 Microconcentrator as a GC Injector

The microconcentrator was also used as a GC injector. A mixture of benzene, toluene

and xylene were used as the sample stream. A short conventional GC column was used

for the separation of these compounds. A series of injection were made and

corresponding to each injection, a chromatogram was obtained. As shown in Figure 4.10,

the sharp peaks and narrow bandwidths were observed. Reproducibility of retention time

and peak high were very good for the microconcentrator. This can be used as an

effective injector for gas chromatographs.

4.4 Microconcentrator Performance

The performance of the microconcentrator was studied in terms of linearity, precision,

and detection limits. Calibration curves of toluene at 0 °C and 25 °C are presented in

Figure 4.11. From the data, it was observed that a linear relationship between the

response and toluene concentration existed in the interval concentration range of 20 — 800

ppm.

The microconcentrator precision was calculated by determining the relative

standard deviation or RSD:

As shown in the Table 4.1, although the lowest concentration exhibited relatively higher

variation, about 13% for Toluene at the 20ppm level, RSD% was in acceptable range.



Figure 4.10 Continuous monitoring of a stream containing ppm levels of benzene, toluene and xylene. Corresponding
to each injection I I , 12 , 13 .... A response C 1 , C2, C3 ....was obtained.



Figure 4.11 Microconcentrator response as a function of injection intervals, three and six minutes.



Table 4.1 Precision Analysis of Toluene using RSD%

Concentration
of Toluene 20 50 100 250 400 550 700 850

[ppm]

RSD% 13.32 3.42 5.32 2.73 3.02 5.34 3.55 2.38

Detection limit is roughly equal to 3 times the standard deviation of the blank over the

slope of the calibration curve. However, the most generally accepted qualitative

definition of detection limit is that it is the minimum concentration that can be measured

with a known confidence level. Method detection limit (MDL) for Toluene was 8.4 ppm.
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CHAPTER 5

CONCLUSION

Micromachined heaters using sputtered metal layer were fabricated during the first part of

this research. Rapid heating to temperature as high as 360 °C was possible. It was also

demonstrated that continual heating did not lead to devices weakening and burning out.

Comparison with low dose boron implantation showed that the metal-deposited heaters

were able to reach higher temperatures under the same conditions. Application of spin-

on-glass on the heater surface, reduced the maximum attainable temperature, but still

temperature as high as 100°C was possible. On the whole, it is concluded that deposition

of metals to form a resistive layer is a simple and inexpensive method for fabricating

heater for lab-on-a-chip applications.

During the second part of this research, the fabrication and characterization of a

microfabricated microconcentrator was demonstrated. The preconcentration effect

enhanced sensitivity and it was possible to use it as an injector for GC. The

microconcentrator response was stable during long periods of operation and also

producible.
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APPENDIX A

THE TRAVELERS FOR THE DEVICE FABRICATION

Table A.1 shows the step by step processing to fabricate the microheater.

A.1 A Traveler for the Microheater

Stage Process Description Date Wafers Operator Comments
0. Start Inspect Starting material:

P-type,
10-25 Ω-cm,

6 inch,
Single side polished.

Scribe Scribe identification
on the backside of the
wafers

Scrub High-pressure water

1.
Etch
Mask
(Deep)

Clean M-pyrol:
PRIMARY (95 °C)

10 min.
SECONDARY

(95 °C)
10 min.

RINSE COLD DI
10 min.

Spin dry

Clean P — Clean:
5:1 H2SO4:H202

110°C
10 minutes

Rinse Hot DI Water
10 min.

Rinse Cold DI Water
5 min.

Spin dry
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Clean RCA-2 clean:
4:1:1 H2O:H2O2:HCl

80°C
10 min.

Rinse Cold DI Water
5 min.

Pre-
Clean

Furnace pre-clean:
100:1 H20: HF

1 minute
Rinse Cold DI Water

10 min.
Spin dry

Oxide Stem Oxidation
2000 A
02 : 7.5 SLM
Bubbler: 530 sccm
Temp: 1050°C
Time: 20 min

Measure Mean:
Measured : 2015 A
#pts./wafer: 13 pts

Nitride Deposit LPCVD
Si3N4

DCS: 50 sccm
Press: 300m Torr
NH3 : 120 sccm
Temp: 775°C
Time: 23 min

Measure Mean:
Measured : 1565 A
#pts./wafer: 13 pts

Bake Dehydration, oven
110°C, allow to cool

Prim Prime Shipley
800 rpm
20 sec
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Spin
resist

Shipley 3813
2000 rpm
20 sec.

Bake Hot plate #8
110 °C
1 min.

Expose Front 15 sec
Mask

Develop Immersion develop
First paddle

30 sec.
Second paddle

60 sec.

Rinse,
dry

Spin rinse, spin dry

Inspect For residual resist and
defects

Bake Hard bake
Hot plate #9
115 °C
60 sec.

Plasma
Etch

Reactive Ion Etch
Nitride/Oxide Trion-
Phantom

40 sccm CF4
250mTorr
150 watts
25 °C
Time = ~ 2:20

each cycle

Inspect Verify etching
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Strip PR M-pyrol:
PRIMARY (95 °C)

10 min.
SECONDARY

(95 °C)
10 min.

RINSE COLD DI
10 min.

Spin dry

Etch KOH etch silicon:
45% KOH
90 °C
Etch rate 1.66A /min
Target 350 pm

Inspect Inspect Etched to
completion

Clean

IF
5

RCA-2 clean:
4:1:1 H2O:H2O2:HCl
80°C
10 min.
Rinse Cold DI Water

min.

Clean Furnace pre-clean:
100:1 H2O: HF

1 minute
Rinse Cold DI Water

10 min.
Oven dry

Sputter Target source:
Al alloys
Target thickness

1µm

Prim Prime Shipley
800 rpm
20 sec
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Spin
resist

Shipley 3813
2000 rpm
20 sec.

Bake Hot plate #8
110 °C
1 min.

Expose Front 15 sec
Mask

Develop Immersion develop
First paddle

30 sec.
Second paddle

60 sec.

Rinse,
dry

Spin rinse, spin dry

Inspect For residual resist and
defects

Bake Hard bake
Hot plate #9
115 °C
60 sec.

Etch Trion Etch Al-Cu-Si

Strip PR M-pyrol:
PRIMARY (95 °C)

10 min.
SECONDARY

(95 °C)
10 min.

RINSE COLD DI
10 min.

Spin dry

Spin
SOG

Shipley 3813
2000 rpm
2 sec.
SOG: 4 ml
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Bake Oven bake for
80°C
150°C
250 °C

40 sec.
Each hot plate

Cure Furnace curing
425 °C
60 min.

Inspect Verify drying
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Table A.2 shows the step by step processing to fabricate the microconcentrator.

A.2 A Traveler for the Microconcentrator

Stage Process Description Date Wafers Operator Comments
0. Start Inspect Starting material:

P-type,
10-25Ω-cm,

6 inch,
Single side polished.

Scribe Scribe identification
on the backside of the
wafers

Scrub High-pressure water

1.
Etch
Mask
(Deep)

Clean M-pyrol:
PRIMARY (95 °C)

10 min.
SECONDARY

(95 °C)
10 min.

RINSE COLD DI
10 min.

Spin dry

Clean P — Clean:
5:1 H2SO4:H2O2

110°C
10 minutes

Rinse Hot DI Water
10 min.

Rinse Cold DI Water
5 min.

Spin dry

Clean RCA-2 clean:
4:1:1 H2O:H2O2:HCl

80°C
10 min.

Rinse Cold DI Water
5 min.
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Pre-
Clean

Furnace pre-clean:
100:1 H2O: HF

1 minute
Rinse Cold DI Water

10 min.
Spin dry

Oxide Stem Oxidation
2000 A
O2 : 7.5 SLM
Bubbler: 530 sccm
Temp: 1050°C
Time: 20 min

II
Measure Mean:

Measured : 2015 A
#pts./wafer: 13 pts

Nitride Deposit LPCVD
Si3N4

DCS: 50 sccm
Press: 300m Torr
NH3: 120 sccm
Temp: 775°C
Time: 23 min

Measure Mean:
Measured : 1565 A
#pts./wafer: 13 pts

Bake Dehydration, oven
110°C, allow to cool

Prim Prime Shipley
800 rpm
20 sec

Spin
resist

Shipley 3813
2000 rpm
20 sec.

Bake Hot plate #8
110 °C
1 min.
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Expose Front 15 sec
Mask

Develop Immersion develop
First paddle

30 sec.
Second paddle

60 sec.

Rinse,
dry

Spin rinse, spin dry

Inspect For residual resist and
defects

Bake Hard bake
Hot plate #9
115 °C
60 sec.

Plasma
Etch

Reactive Ion Etch
Nitride/Oxide Trion-
Phantom

40 sccm CF4
250mTorr
150 watts
25°C
Time = ~ 2:20

each cycle

Inspect Verify etching

Strip PR M-pyrol:
PRIMARY (95 °C)

10 min.
SECONDARY

(95 °C)
10 min.

RINSE COLD DI
10 min.

Spin dry
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2.
Silicon
Etch

Etch KOH etch silicon:
45% KOH
90 °C
Etch rate 1.66A /min
Target 350 μm

Inspect Inspect Etched to
completion

Clean RCA-2 clean:
4:1:1 H2O:H2O2:HCl
80°C
10 min.
Rinse Cold DI Water

5 min.

3.
Al
Sputteri-
ing

Clean Furnace pre-clean:
100:1 H2O: HF

1 minute
Rinse Cold DI Water

10 min.
Oven dry

Sputter Target source:
Al alloys
Target thickness

1 m

Prim Prime Shipley
800 rpm
20 sec

Spin
resist

Shipley 3813
2000 rpm
20 sec.

Bake Hot plate #8
110 °C
1 min.

Expose Front 15 sec
Mask
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Develop Immersion develop
First paddle

30 sec.
Second paddle

60 sec.

Rinse,
dry

Spin rinse, spin dry

Inspect For residual resist and
defects

Bake Hard bake
Hot plate #9
115 °C
60 sec.

4.

Al Etch

Etch Trion Etch Al-Cu-Si

Strip PR M-pyrol:
PRIMARY (95 °C)

10 min.
SECONDARY

(95 °C)
10 m.

RINSE COLD DI
10 min.

Spin dry

5.
Spin-on-
glass
coating

Spin
SOG

Shipley 3813
2000 rpm
2 sec.
SOG: 4 ml

Bake Oven bake for
80 °C
150 °C
250 °C

40 sec.
Each hot plate

Cure Furnace curing
425 °C
60 min.

Inspect Verify drying
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6.
Polymer

*ISpin
Polymer

Coating

Shipley 3813
800-2000 rpm

*2Bake Oven bake for
48-72 hours

Repeat * 1 and *2 steps

Inspect Verify thing
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