
New Jersey Institute of Technology
Digital Commons @ NJIT

Dissertations Theses and Dissertations

Spring 2002

Analysis of costs and delivery intervals for multiple-
release software
High-way Sun
New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/dissertations

Part of the Industrial Engineering Commons

This Dissertation is brought to you for free and open access by the Theses and Dissertations at Digital Commons @ NJIT. It has been accepted for
inclusion in Dissertations by an authorized administrator of Digital Commons @ NJIT. For more information, please contact
digitalcommons@njit.edu.

Recommended Citation
Sun, High-way, "Analysis of costs and delivery intervals for multiple-release software" (2002). Dissertations. 538.
https://digitalcommons.njit.edu/dissertations/538

https://digitalcommons.njit.edu?utm_source=digitalcommons.njit.edu%2Fdissertations%2F538&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/dissertations?utm_source=digitalcommons.njit.edu%2Fdissertations%2F538&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/etd?utm_source=digitalcommons.njit.edu%2Fdissertations%2F538&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/dissertations?utm_source=digitalcommons.njit.edu%2Fdissertations%2F538&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/307?utm_source=digitalcommons.njit.edu%2Fdissertations%2F538&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/dissertations/538?utm_source=digitalcommons.njit.edu%2Fdissertations%2F538&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of
the personal information and all signatures from
the approval page and biographical sketches of
theses and dissertations in order to protect the
identity of NJIT graduates and faculty.

ABSTRACT

ANALYSIS OF COSTS AND DELIVERY INTERVALS
FOR MULTIPLE-RELEASE SOFTWARE

by
High-Way Sun

Project managers of large software projects, and particularly those associated with

Internet Business-to-Business (B2B) or Business-to-Customer (B2C) applications, are

under pressure to capture market share by delivering reliable software with cost and

timing constraints. An earlier delivery time may help the E-commerce software capture a

larger market share. However, early delivery sometimes means lower quality. In

addition, most of the time the scale of the software is so large that incremental multiple

releases are warranted.

A Multiple-Release methodology has been developed to optimize the most

efficient and effective delivery intervals of the various releases of software products,

taking into consideration software costs and reliability. The Multiple-Release

methodology extends existing software cost and reliability models, meets the needs of

large software development firms, and gives a navigation guide to software industrial

managers. The main decision factors for the multiple releases include the delivery

interval of each release, the market value of the features in the release, and the software

costs associated with testing and error penalties. The input of these factors was assessing

using Design of Experiments (DOE). The costs included in the research are based on a

salary survey of software staff at companies in the New Jersey area and on budgets of

software development teams. The Activity Based Cost (ABC) method was used to

determine costs on the basis of job functions associated with the development of the

software. It is assumed that the error data behavior follows the Non-Homogeneous

Poisson Processes (NHPP).

ANALYSIS OF COSTS AND DELIVERY INTERVALS
FOR MULTIPLE-RELEASE SOFTWARE

by
High-Way Sun

A Dissertation
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy in Industrial Engineering

Department of Industrial and Manufacturing Engineering

May 2002

CopyRight © 2002 by High-Way Sun

ALL RIGHTS RESERVED

APPROVAL PAGE

ANALYSIS OF COSTS AND DELIVERY INTERVALS FOR
MULTIPLE-RELEASE SOFTWARE

High-Way Sun

Dr. George Abdou, P.E. CMfgE., Dissertation Advisor 	 Date
Associate Professor of Industrial and Manufacturing Engineering, NJIT

Dr. Athanassios Bladikas, Committee Member 	 Date
Associate Professor of Industrial and Manufacturing Engineering, NJIT

Dr. One-Jang Jeng, Committee Member./ 	 Date
Assistant Professor of Industrial and Manufacturing Engineering, NJIT

Dr. Jian Yang, Committee Memb 	 Date
Assistant Professor of Industrial and Manufacturing Engineering, NJIT

Dr. MengChu you, Committee Member 	 Date
Professor of Electrical and Computer Engineering. NJIT

BIOGRAPHICAL SKETCH

Author:	 High-Way (Steve) Sun

Degree:	 Doctor of Philosophy

Date:	 May 2002

Date of Birth:

Place of Birth:

Undergraduate and Graduate Education

• Doctor of Philosophy in Industrial Engineering
New Jersey Institute of Technology, Newark, NJ, 2002

• Master's degree in Computer Science
New Jersey Institute of Technology, Somerset, NJ, 1999

• Master's degree in Industrial Engineering
University of Wisconsin, Madison, Wisconsin, WI, 1990

• Master's degree in Engineering Management
New Jersey Institute of Technology, Newark, NJ, 1988

• Bachelors degree in Mechanical Engineering
National Central University, Chun-Li, Taiwan, 1985

Major:	 Industrial Engineering

Presentations and Publications:

Sun, H.W., Abdou, G. (2002). "Analysis of Multiple-Release Software Delivery Interval:
a Case Study," IEEE Transactions of Reliability. Submitted 2002.

Sun, H.W., Zhou, M.C., Wolf, C. (200I). "A Methodology for Software Development
Cost Analysis in Information-Based Manufacturing, " 2001 IEEE International
Conference on Robotics and Automation. Seoul, Korea.

Sun, H.W., (1991), Science and Policy Review 1991, National Science Council, Taipei

Sun, H.W., (1992), Science and Policy Review 1992, National Science Council, Taipei

To my father, Shou-Wei Sun; my mother, Jye Wang; and my wife, Chi-Min Li

with their love, I have completed this work.

V

ACKNOWLEDGMENT

I would like to express my deep gratitude and appreciation to my advisor,

Dr. George Abdou, for his continuous guidance, support, encouragement, and inspiration

throughout the course of this work.

My sincere thanks are also extended to Dr. MengChu Zhou, Dr. One-Jang

Jeng, Dr. Jian Yang and Dr. Athanassios Bladikas for participating in the

supervising committee of my dissertation and giving me valuable suggestions.

I am also truly grateful to Dr. Carl Wolf, Dr. Layek Abdel-Malek and

Dr. Xiuli Chao for their patient guidance and encouragement during my first year

of graduate study.

I would like to take this opportunity to thank Dr. Shui Y. Lee, Dr. Joseph

0. Bergholm, Dr. John D. Williams, Mrs. Jennifer Wei, Dr. Chai-Yi Chou, Dr.

Chin-Shen Lee, Dr. Jing-Chu Chou and Dr. Peter Ting for providing

encouragement during research.

Thanks are also owed to my fellow graduate students, Mr. Yung-Chun Yen, Dr..

Mai-Mai Gou, Dr. HongZhou Wang, Dr. XingDong Wang, Dr. Xie-Mei Zhang, Dr.

Tung Fu, Dr. Shin-Ying Huang and Dr. Ru Wu, and Ms. Janet M. Bodner for correcting

the grammar.

VI

TABLE OF CONTENTS

Chapter 	 Page

1. INTRODUCTION 	 1

I.1 The Need for a Software Multiple-Release Model 	 1

I.2 Software Cost Development 	 3

1.3 Software Reliability Development 	 4

	

1.4 Dissertation Overview 5

2. LITERATURE REVIEW 	 7

2.1 Review of Software Reliability and Cost Papers 	 8

2.3 The Limitations of Existing Models 	 I4

3. RESEARCH OBJECTIVES 	 16

3.1 Identification and Analys of Software Cost Analysis Using the

	

Activity Based Cost (ABC) Method I6

3.2 Development of A Multiple-Release Model 	 17

4. SCOPE OF THE MULTIPLE-RELEASE MODEL 	 I8

4.I Decision Factors 	 I8

4.2 Framework of the Multiple-Release Environment 	 I9

4.3 Application Domain 	 22

	

4.4 Dimensions and Tolerances 22

4.5 Constraints 	 24

	

4.6 Operation Plan 26

VII

TABLE OF CONTENTS
(Continued)

Chapter	 Page

5. SOFTWARE MULTIPLE-RLEASE METHODOLOGY 	 27

5.1 ABC Analysis of Software Costs 	 28

	

5.2 Multiple-Release Decision Model 30

	

5.2.1 Data Collection 32

	

5.2.2 Error Validation and Kill MR 33

	

5.2.3 Monthly Data Reports 34

	

5.2.4 Data Fitting 35

5.2.5 Data Stability 	 37

5.2.6 Reliability Model 	 38

5.2.7 Cost Model 	 38

5.3 Design of Experiments 	 42

5.4 Software Delivery Decision 	 44

6. CASE STUDIES OF SOFTWARE COST ANALYSIS AND THE
MULTIPLE-RELEASE MODEL 	 46

6.1 X Juice Company Case Study 	 47

6.1.1 Existing Order Processes and Internet-based Structure 	 50

6.1.2 ABC Methodology 	 52

6.I.3 ABC Result Analysis 	 55

6.2 Y Service Provision Company Case Study 	 56

VIII

TABLE OF CONTENTS
(Continued)

Chapter	 Page

7. ANALYSIS OF RESULTS 	 68

	

7.1 Results of ABC Analysis 68

7.2 Analysis Multiple-Release Model 	 70

7.3 Analysis of the Means of Total Profit (y) 	 72

7.4 Analysis of Variation log. (S) 	 75

7.5 Analysis of Signal to Noise Ratio —10.1og10 1/n(Σ1/y1 2) 	 78

7.6 Decisions of Release and t-Test 	 81

7.6.1 Comparison of the On-Time Delivery Profit μ 1 with the
Delayed Delivery Profit μ 2 	 81

7.6.2 F+ Condition: Comparison of the Delayed Delivery Profit
μ 1 with on-time Delivery Profit μ 2 	 82

7.6.3 Comparison of the 12-week Interval Time Profit μ 1 and
16-week Interval Time Profit μ 2 	 83

7.7 Delivery Case Analysis 	 84

	

7.7.1 On-Time Delivery Case Analysis 84

7.7.2 Delayed Delivery Case Analysis 	 86

7.7.3 Determination of the Project Case Analysis 	 87

7.8 Decision Method Applied to Four Real-World Releases 	 88

7.9 Comparison with Zhang's Model 	 89

	

7.10 Comparison with Zheng's model 92

IX

TABLE OF CONTENTS
(Continued)

Chapter	 Page

8. CONCLUSIONS AND RECOMMENDATIONS 	 95

8.I Software Cost Analysis 	 95

8.2 Software Multiple-Release and Life Cycle Analysis 	 95

8.3 Future Research 	 99

APPENDIX A NHPP DATA FITTING 	 102

APPENDIX B DESIGN OF EXPERIMENTS RESULTS 	 108

REFERENCES 	 112

X

LIST OF TABLES

Table	 Page

2.1 Summary of Software Reliability and Cost Models 	 13

2.2 Comparison of Proposed Model with Existing Models 	 15

	

5.1 Job Descriptions of B2B Software Development 29

5.2 Catalog of All Possible Errors 	 33

6.I Annual Salaries of Software Staff 	 52

6.2 Salary Analysis of Six Pools of Software Staffs 	 54

6.3 Annual Costs of Hardware, Software License and Office Space Analysis.. 	 55

	

6.4 Monthly Data of Four Software Releases 58

	

6.5 Goel's Model Analysis of the Release One Error Data 60

	

6.6 Goel's Model Analysis of the Release Two Error Data 61

6.7 Goel's Model Analysis of the Release Three Error Data.. 	 62

6.8 Goel's Model Analysis of the Release Four Error Data 	 63

6.9 Estimated Total Errors (a) using an S-Shaped Model of the Four Releases 	 64

6.10 Estimated Error Detection Rate (b) using an S-Shaped Model of
the Four Releases 	 64

6.10 S-Shape Model of the Four Releases - b is the error detection rate.... 	 64

	

6.II Reliability of Release One as Time Extended 66

6.I2 High and Low Level Factors 	 67

7.I Summary of Annual Salaries of Six Pools 	 68

	

7.2 Total Cost Analysis 69

	

7.3 Contrast Effect for Total Profit 71

7.4 On-Time Delivery Detection Rate on Total Profit 	 72

XI

LIST OF TABLES

(Continued)

Table	 Page

7.5 Detection Rate and Delivery Intervals Effect on Total Profit 	 73

7.6	 Delayed Delivery-Detect Rate Effect Total Profit 	 74

7.7 Detection Rate and Delivery Interval Effect on Total Profit 	 76

7.8	 S/N of Significant Factors of On-Time Delivery 79

7.9	 S/N of Significant Factors of Delayed Delivery 	 80

7.10 t-Test of On-Time Delivery and Delayed Delivery 	 81

7.II Different Factors between On-Time Delivery and Delayed Delivery 	 82

7.12 t-Test of On-Time Delivery and Delayed Delivery under F+ Condition 	 83

7.I3 t-Test of On-Time Delivery Comparison 12-week and a 16-week Interval.. 	 83

7.14 t-Test of Delayed Delivery Comparison 12-week and a 16-week Interval 	 84

7.15 Cases in which On-Time Delivery Profit is Positive. 	 85

7.I6 Delayed Delivery Cases 86

7.17 No Profit Cases of On-Time Delivery or Delayed Delivery 87

7.18 Parameters of Four Releases Cases 88

7.I9 Profit of Four Releases Cases 88

7.20 Sorted Profit Table of Different Release Policies (I means On-Time,
2 means Delayed) 	 89

7.21 In Zhang's Model, the Market Drop Rate at 0.01/hour and 0.05/hour 	 90

7.22 Optimal Release Time for C1=$5000, C241,000, C 344,000 91

7.23 Shaohui Zheng's Model. 93

8.1 Optimal Release Intervals of the Four-Release Cases 96

XII

LIST OF FIGURES

Figure	 Page

1.1	 Dissertation low 	 5

4.1	 Traditional computer server-client architecture 20

4.2	 Example of software/hardware architecture of the E-commerce architecture.... 20

5.1	 Software job functions of software staffs 	 29

5.2	 Flowchart of Multiple-Releases model 	 31

5.3	 Error validation processes 	 34

5.4	 Monthly errors data report processes. 34

5.5	 Release decision of multiple releases 39

6.1	 Existing X juice company service flowchart 	 51

6.2	 Internet B2B service flowchart 	 51

6.3	 Sample of error data MR report 	 56

6.4	 Example of MR reviewed report. 	 57

6.5	 Monthly error chart of four releases 59

6.6	 Accumulated errors of four releases 59

6.7	 Estimated a in time domain 65

6.8	 Estimated b in time domain 65

7.I	 Probability plot for On-Time delivery 72

7.2	 Probability plot for Delayed delivery 73

7.3	 Probability plot for On-Time delivery for the log o (S) 75

7.4	 Probability plot for delayed delivery for the log o (S) 76

XIII

LIST OF FIGURES
(Continued)

Figure	 Page

7.5	 Probability plot for On-Time delivery, S/N = -10.1og, 0 1/n(Σ1/yi2)	 78

7.6	 Probability plot for Delayed delivery, S/N = -10. log10 1/n(Σl/ yi2)	79

XIV

NOMENCLATURE

a	 Estimated total number of errors in the software

ABC	 Activity Based Cost

AVE	 Agile Virtual Enterprise

b	 Contact fault detection rate

B2B	 Business-to-Business Internet platform

B2C	 Business to Customer Internet platform

C 1 	Software test cost per unit time

C2 	 Cost of removing each error per unit time during testing

C3 	 Error penalty cost per unit time.

C4 	 Cost of software installation

C r 	Slope of debug cost increase; the default value set at 0

CGI	 Common Gateway Interface

CMM	 Capacity Maturity Model

CORBA	 Common Object Request Broker Architecture

D	 The decision point

Data	 Use of standard data structures and types throughout
Commonality	 the program.

DOE	 Design of Experiment

E (T)	 Expected total cost of a software system by time T

E-commerce	 Electronic commerce through Internet.

Error	 Manager introduced errors and asks the testers to find the
Seeding	 errors

Error Tolerance	 Damage that occurs when program encounters an error.

XV

Expandability	 Degree to which architectural, data, or procedural design can
be extended.

Failure Rate	 The probability of software error happened under
specifically

Model	 condition

Generality	 Breadth of potential application of program components.

Instrumentation	 Degree to which the program monitors its own operation and
identifies errors that do occur.

m(T)	 Expected number of errors to be detected by time T

Markov Structure Markov decision process that software condition transition
from module I to module J

MLE	 Maximum Likelihood Estimate

Modularity	 Functional independence of program components.

MR	 Modification Request

MR Status	 Action of the MR

MTBF	 Mean Time Between Failures

MTTF	 Mean Time to Failure

NHPP	 Non-Homogeneous Poisson Process

N-Version	 1,2,...N independent groups use different algorithms
Programming	 developing software programming applied in the same

function.

Operability	 The ease of operation of a program

P i 	Release profit of the software at time Ti

Software	 In this research, software functions do not follow system
Error	 requirements or customers' needs.

Software	 In this research, software is maintained following the
Maintenance	 Total Quality Control guide line.

XVI

Software	 Maximize the software profit
Release Policy

Software	 The probability that software will not fail for a specified
Reliability	 period of time under Specified conditions.

SQA	 Software Quality Assurance

R(x/T)	 Reliability function of software by time T for a mission
time x

x	 Mission time

T	 Software release time

T 1 	First software release time

Ti	 The second and later release point I=2,3,N

TQM	 Total Quality Management

Traceability	 The ability to trace a design representation or actual program
component back to requirements.

Uy 	Expected time to remove an error during testing phase,
which is E (Y)

WWW	 World Wide Web

XVII

CHAPTER 1

INTRODUCTION

The Multiple-Release model presented here describes software deployment

behavior. Software project managers prioritize market values and set the

software delivery interval time based on market needs and company resources.

All software features may not be delivered at once, but rather a few at a time and

at set intervals. If the software market value is smaller than the development cost

or the software reaches technological limitations, then the software will be

retained in a maintenance mode and the limited resources will be assigned to

serve existing customers.

The Multiple-Release model is based on the needs of software firms to

build new large software platforms or to migrate existing software systems to

new applications. This chapter introduces the business characteristics associated

with the development of large software and especially large Internet software, the

determination of the relevant cost and the definition of the pertinent reliability.

1.1 The Need for a Multiple-Release Model

From 1995-1998 only company information was shown on the Internet in most

web sites. Since 1998, E-commerce websites have interacted with customers. It

is estimated that by 2005 the core business processes will migrate completely

from Intranets to the Internet. The market will be affected by E-commerce and

industries will be reconstructed with the emergence of new intermediaries and

1

2

new business models. Beyond these changing patterns in consumer behavior, the

most long-term and profound impact is the structural changes occurring every day

in business-to-business (B2B) relationships.

Through the blossoming of E-commerce, a supply chain can support better

customer service and channel performance. The four major impacts on the supply

chain are cost, quality, delivery and flexibility. The Intranet and Internet data

networks inside the organization and among the supply chain partners efficiently

link the buyer-seller relationships. Additionally, networks may be used to speed

electronic market places characterized by more ephemeral transactions among

buyers and sellers. Also plausible is the use of networks to strengthen existing

commercial relationships and lock in partners by increasing the costs of switching

to new trading partners.

Andrew Grove, CEO of Intel, predicts that "In five years all companies

will be Internet companies or they won't be companies at all." For businesses to

survive in this new economy they must set their own B2B platforms. The existing

legacy computer software has been undergoing an accelerated evolution driven by

the Internet. To remain competitive in the E-commerce environment, most

companies must upgrade their existing internal and external software and

information systems, and connect to the large and united World Wide Web

(WWW) Internet family. The upgrade includes deploying integrated IT

platforms, designing a new business model, designing Internet payment and

systems security, and other processes.

3

However, the decision of an enterprise to move to E-commerce can be painful.

It requires a substantial investment in software and hardware upgrades and the

training of a large number of employees. The basic concern is whether the

existing business functions can operate correctly and efficiently. Another

concern is whether the customers can order all of the existing products correctly

through the Internet platform. Will the order processes inside the organization

still be traced and sent to the right places? Will the product inventories in

warehouses be linked to the new Internet environment precisely without losing

any inventory records and while operating more efficiently? Most importantly,

the enterprise needs to succeed in its field. The competition is severe. Thus the

deployment timing of a B2B system is a critical factor. Software reliability

while migrating from the existing software environment to the new Internet

environment is a key point of enterprise survival in the large software industry.

The dissertation focuses on the Internet software cost investment, software

reliability analysis, and the use of a software reliability model to solve the

modern large software cost allocation and optimal release time problems.

1.2 Software Cost Development

The quality of a software system usually depends on the length of testing and the

choice of testing methodologies. Generally speaking, the longer the testing time,

the more reliable the software is expected to be and the total cost of developing

the software is expected to increase. On the other hand, if errors are not detected,

the company's reputation and market share suffer. Testing is an efficient way to

4

remove faults in software. It is impossible to remove all the errors, especially in

large software that may consist of millions of lines of code. Thus, it is important

to determine when to stop testing and when to release the software to the market.

In defining important software cost factors, a cost model should help software

developers and managers answer the following questions:

I. How should resources be scheduled to ensure the on-time and efficient

delivery of a software product?

2. Is the software product sufficiently reliable for release?

3. What information does a manager of software development need to

determine whether to release software undergoing testing?

1.3 Software Reliability Development

The existing methods used to determine software reliability are summarized and analyzed

in Chapter 2. Most models treat the software as a finished product and are cost/reliability

driven. In general, the software multiple release and lifecycle behavior have been

investigated extensively by the researchers and the optimal resource allocation and

delivery policies are based on these factors: the delivery interval, the error occurrence

estimation, the learning factor of debugging, the cost of testing, the cost of fixing bugs

and the cost penalty of hanging errors in the released version. It has to be mentioned also,

that in an E-commerce software platform, the error tolerance is larger than that of aviation

software or life support software. For example, if Yahoo's shopping features temporarily

shut down ten minutes to fix a software bug, it may cause some financial loss, but if life

support or aviation software is not available for ten minutes, a life may be lost or a plane

5

may crash.

1.4 Dissertation Overview

This dissertation is organized into eight chapters, which incorporate the overall

methodology, analysis, and design as illustrated in Figure I.1.

Figure 1.1 Dissertation flow

Chapter 2 reviews and points out the limitations of the current literature

and research conducted by different authors investigating software cost and

reliability. Chapter 3 provides the objectives of this research and the proposed

methodology to extend the research of existing software cost and reliability

models. Chapter 4 defines the boundaries of the model application.

Chapter 5 describes the processes to implement the proposed model,

6

including the ABC method to classify the software development cost items and

the technique to collect software error data, using NHPP to estimate the number

of errors and the error detection rate. A software cost decision is implemented.

The design of experiments methodology is applied to analyze the result. Finally

there is a discussion of the software delivery decision and significant factors

analysis.

Chapter 6 applies the proposed method to two leading industrial companies,

including the X Juice Company and the Y Service Provision Company whose software

development process data are used.

Chapter 7 analyzes the data from Chapter 6, deciding on the significant factors

that impact the decision. The software delivery policy is derived. The outcomes are also

compared with existing software cost models created by other authors. Chapter 8

summarizes the conclusions and suggests directions for future research.

CHAPTER 2

LITERATURE REVIEW

There are many research papers devoted to software reliability, software cost and

software quality control already published in leading reliability and software

journals. From I972 till now, many researchers have contributed to these fields.

Software reliability is evaluated on the basis of the Software Quality Assurance

(SQA) and Total Quality Management (TQM) concepts.

Crosby (I979) developed the Software Quality Assurance concept, which

is an "umbrella activity" that is applied throughout the software engineering

process. Cavano and McCall (1978) developed a checklist used to assign scores

to a set of quality factors. Schulmeyer and McManus (I987) concluded that the

scope of quality assurance responsibility might best be characterized by

paraphrasing a once-popular automobile commercial: "Quality is Job #I." Musa,

Iannino and Okumoto (1984) mentioned that "To model software reliability one

must first consider the principal factors that affect it: fault introduction, fault

removal, and the environment."

TQM can be defined as the application of quantitative methods and human

resources to improve the materials and services provided as inputs to an organization and

to improve all of the processes within the organization.

7

8

2.1 Review of Software Reliability and Cost Papers

Software reliability, which is part of SQA and TQM, is now an established

independent research field. Since 1972, research has been conducted to study the

reliability of computer software. As software systems have become more and

more complicated to design and develop, intensive studies have been carried out

to increase the chance that a software system will perform satisfactorily in

operation. Mills (1972), then Knight and Ammenn (1985) first presented the

error-seeding model, where the manager introduces errors and asks the testers to

find the errors. By finding the induced errors, the total number of unknown

errors can be estimated. A program is randomly seeded with a number of known

errors and then the program is tested. The probability of finding j real errors of a

total population of J unknown errors can be related to the probability of finding k

seeded errors from all K errors embedded in the code.

Goel and Okumoto (1979) introduced the time-dependent error detection

rate for software and other performance measures of a software system. They

used a technique which based on the existing error detection rate obtains the

probability of detecting the next error during the next period of time. Sahin

(I999) and Yamada (1998) used the Markov structure to get the transition matrix

Qij , that is, the probability that the software will go from state i to state j.

Currently, the Non-Homogeneous Poisson Process (NHPP) is widely used by

software engineers and designers. Goel and Okumoto (1979), who first

introduced the NHPP model, indicated that two factors, the number of errors and

the testers' learning curve, should determine the error detection rate. Based on

9

these two factors, the software reliability curve can be obtained. Other

researchers have reported some interesting results using NHPP models. Yamada

and Ohba (1983) observed that software error detection data as a function of time

are often S-shaped. Recently, Normann and Pham (1999), and also Pham and

Zhang (1999), found in their two papers that software reliability is also a function

of the number of additional errors that are introduced during the test period.

Testers improve their testing skill and their error detection rate over time, and the

researches use the error numbers and the testers' learning curve to derive

reliability parameters.

Many software reliability researchers, for example Pham (1994), have

shown interest in other related fields, such as multiversion programming for

security reasons in some life critical software. To prevent software failure caused

by unpredicted conditions, different programs are developed separately,

preferably based on different programming logic, algorithms, languages, coding

methods, etc. These diverse programs are normally utilized in a set of recovery

blocks of N-version programming.

Fault-tolerance is a widely used technique to increase the reliability of

software coding. Abdou (1990) and Arlate (1990) studied a fault-tolerance model

and applied an electronic components' reliability concept to software reliability.

In general, fault-tolerant approaches can be grouped into fault-removal and fault-

masking techniques. Fault-removal techniques can be classified into either

forward or backward error recovery methods. The former aims to identify the

error and correct the system state containing the errors. The latter corrects system

10

errors before they can manifest themselves as faults. 	 At present, software

reliability modeling is considered to be an integral part of software quality and

software engineering.

A bridge between software engineers in the industrial field and the

statistical researchers in the academic field has been built, although the gap

between practitioners and theoreticians is still waiting to be filled. Nordmann

and Pham (1999) presented a software cost model and created a practical users'

guide for software developers in industry. Kapur and Lamberson (1997)

developed a model to be used for determining the optimum release time of new

versions of a program package. Zhang and Pham (1998) discussed software costs

taking into consideration the impacts of the software's life cycle, and imperfect

debugging and its penalties. Zheng (2002) published a paper about the dynamic

release policy for a software system and discussed the tradeoff between the

failure penalty and the testing cost. Lee et al. (2000) presented the

methodologies of priority setting with applications for software development.

Pham and Zhang (1998) published a study of environmental factors and software

reliability. Some of the factors, like program complexity, programmers' skills,

testing coverage, testing effects, and the testing environment were considered to

be key factors that impact software quality.

Sahin and Zahhedi (1999) considered the warranty policy and upgrade cost from

the industrial point of view. Wall (1997) also presented the benefits of software

maintenance. Furyyamma (1993) considered the mental stress impacting software

development and testing from the human factors point of view.

11

Cost is the most important issue. Hansen & Mowen, [1999] used Activity Based

Cost (ABC) analysis. Pham and Nordmann (1999) pointed out some errors in detection

cost and testing cost but, they simply assigned a constant cost number to all factors. Tsay

(I999) considered the supplier and customers as a whole system. Under this system, the

customers can be guaranteed good quantity, good price and on-time delivery by the

supplies. Shin, Collier and Wilson (2000) discussed four factors that can be used to judge

quality: suppliers cost, product quality, delivery time and flexibility.

Price policy is also an important field of research. Zhao and Zheng (2000)

investigated a pricing policy that could improve revenue for perishable assets. Alfredsson

and Verrijdt (I999) modeled on emergency supply option to shorten the lead-time and get

optimal benefits. The issue of choosing supplier alliance partners is also important.

McCutcheon and Stuart (2000) ranked suppliers' quality to suggest a good alliance. An

Agile Virtual Enterprise (AVE) in the supply chain may also play an important role. Wu

et al. (I999) and DeVor et al. (1997) pointed out that agile manufacturing is a new

concept used to represent the ability of a producer of goods or services to thrive in the

face of continuous change.

Lin and Chen (1993) and Ashrafi, Berman, and Cutler (I994) found that fault

tolerant software uses redundancy to improve reliability, but such redundancy requires

additional resources and tends to be costly. Therefore, the redundancy level needs to be

optimized within a software system under the assumption that functionally equivalent

software components fail independently. An illustration is the tradeoff between the cost

of using N-version programming and improved reliability for a software system. Major

assumptions of application of the N-version programming are:

12

1. Several versions of each module, each with an estimated cost and reliability, are

available;

2. These module versions fail independently.

Optimization models are used to select the optimal set of versions for each module such

that the system reliability is maximized and total cost remains within budget.

Maghsoodllo, Brown and Lin (1992), present the reliability cost analysis of an automatic

prototype generator. The two models of software testing were compared on a cost and

reliability basis. This extends the work of Maghsoodllo, Brown and Lin (1992), in which

a cost model was developed to obtain optimum software testing based upon traditional

testing.

Smidts, Stutzke and Stoddard (1998) considered software reliability modeling to

make early predictions. Models for predicting software reliability in the early phases of

development are of paramount importance since they provide early identification of cost

overruns, software development process issues, optimal development strategies, etc.

Khoshgoftaar (2000) presented a Bayes framework for the quantification of software

process failure mode probabilities. This framework can be useful since it allows use of

historical data that are only partially relevant to the software at hand. A summary of

software reliability and cost models are listed in Table 2.1

Software Reliability
MODEL
ERROR SEEDING

Non-Homogeneous
Poisson Process

1979 Goel, A. and
Okumoto, K.

Description Year Author(s)

1972
b

Mills, H.D

1983

1984

1999

1999

Table 2.1 Summary of Software Reliability and Cost Models

13

NHPP
Delayed S-Shaped

NHPP
Inflection S-Shaped

NHPP
Pham-Nordmann

NHPP
Pham-Zhang

Other NHPP

Yamada, S.

Ohba, M. and
Yamada, S.

Pham, H, and
Nordmann, L.

Pham, H.

Gai, K.Y.
Zhao, M.
Yamada. S.
Zhao, M.
Xie, M.

1998
1996
1985
1992
1992

Failure Rate Model 1979 Goel, A.

14

Table 2.1 Summary of Software Reliability and Cost Models (Continued
Markov Structure Markov decision process

Qij= probability that transition
from module i to module j fails

1998
1999

Yamada, S.
Sahin, I.

General Fault The computer systems are 1990 Abbott, J.
Tolerance capable of recovery from 1990 Abdou, G.H.

hardware or software failure to 1990 Arlate, J.
provide uninterrupted real-time 1990 Schenedewind, N.
service. 1992 Munson, J.

1981 Moranda, P.
Software SQA — Total Quality Control 1998 Bank, R.
Maintenance 1993 Paulk, M.
N-Version
Programming

1,2,N Independent groups
use different algorithms for
developing modules.

1994 Pham, H.

Software Release C3 > C1+C2 1999 Pham, H.
Policy C3- cost of errors that occur 1992 Kapur, P.K.

with no SQA program 1996 Pham, H.
C1- is the cost of the SQA 1999 Zheng, S.

C2 - the cost of errors not 1999 Lee, M.
found by SQA activity 1997 Hou, R.
Maximize the software profit 1990 Ohtera, H.

1992 Munson, J.

2.2 The Limitations of Existing Models

Based on the literature review, four imitations of existing models have been observed:

1.The authors of the reviewed papers consider only the testing cost and development

cost. Many authors assigned an underestimated constant value for both costs.

2. The researchers papers have applied only one single release of the same software.

Although, some papers also mentioned about the Multiple-Release, they are based on

the different softwares deliveries. The authors treated the unique software release as

only one shot, and then derived the optimal solution.

3. The software lifecycle concept was not addressed in the literature although most firms

15

in the software industry use it. The overall total cost of software development could

certainly be wrong, if it is not taken into consideration.

4. In a few studies, only the roles of the testers and developers were considered. The

importance of the system engineers in the designing stage and the customer support

staff in the maintenance stage was ignored.

The Multiple-Release model presented in this dissertation was developed to fill

the voiding in the existing literature on software cost, reliability and delivery intervals.

Table 2.2 compares the proposed model with existing models.

Table 2.2 Comparison of Proposed Model with Existing Models
Decision time
D- discrete
C- continuous

Discard
Y- yes
N- No

Warranty
Period

Debug
P- Perfect
I - imperfect

Cost by
R-R (x/t)
N- Num

Decision
Method

Release

Proposed Model D Y Y P N NHPP Multiple

Pham (1999) C N Y P R NHPP Single

Khoshgoftaar,
T. (2000) 1

C N N P % Bayesian Single

Khoshgoftaar,
T. (2000) 2

C N N P N D-Tree Multiple

Miller, H. (1972) C N N P None Prob. Single

Zhang, X. (1998) C N Y P R NHPP Single

Zheng, S. (2002) C Y Y P N NHPP Single

Sahin, I. (1999) D Y Y I Prob. Markov Multiple

Where
R(x/t) means reliability during (t, t+s) given that the last error occurs at time t.
Num. means the number of errors in the software.

CHAPTER 3

RESEARCH OBJECTIVES

To remove the limitations of existing models and make a more informed and

accurate decision, an effective model had to be developed. Therefore, the main

objectives of this dissertation are:

1. To identify all pertinent costs, including testing and development costs.

2. To determine optimal software delivery intervals and accordingly the life

cycle of the software.

The following two major efforts were under taken to achieve these objectives.

3.1 Identification and Analysis of Software Cost Using the Activity Based
Cost (ABC) Method

A number of software development costs are considered such as the cost of staff,

hardware/software, office rental, etc, during the software development processes. The

software development cost analysis uses the ABC cost management method to sort and

classify all the necessary cost items. The salary of in-house employees, and the cost of

outsourcing consultant agents are included. As a result, the outcome of the analyses can

help project managers make the decision on whether to out-source or not the software.

The main focus of the ABC analysis is to provide a more realistic representation of costs

than the single release models used in the existing literature.

16

17

3.2 Development of A Multiple-Release Model

A Multiple-Release decision model was developed to improve on the existing a single

release models. Obviously, large software cannot be delivered in just one release. Many

new features may be added in every subsequent release during the life cycle of the

software. The objective of the Multiple-Release model is to maximize the long run profit

of the company. Different factors that impact the delivery decision of the multiple

releases have been studied. The outcomes of the model can help software project

managers in determining the optimum delivery interval and the significant factors

impacting their decisions. In addition, a case study is presented; the model is applied

using data from a leading software company. Finally, the Multiple-Release model is

compared with existing software cost models. The procedure undertaken contains the

following steps:

1. Use ABC analysis to determine costs.

2. Collect and analyze weekly error report.

3. Apply NHPP model to estimate the number of errors and the error

detection rate.

4. Develop a cost model to determine the total software profit.

5. Conduct Design of Experiments (DOE) to determine:

• Optimal decision: Release/ No Release (End of software development)

• Optimum software delivery interval

• Software life cycle

• Significant factors affecting total profit

CHAPTER 4

SCOPE OF THE MULTIPLE-RELEASE MODEL

The scope of the Multiple-Release model, as applied to a medium or large

software-developing company, includes the following factors: the software staff

is above 40 people; the development time of each release is around one year; the

interval time for each release is around three to six months, and the total

development cycle time of the software is around two to five years. The

Multiple-Release model monitors the software and assists managers to make

decisions about the application features to be included, design of the

software/hardware architecture, the coding and testing of the program, and

repetition of the release cycle until the software is taken off the shelf and placed

in the maintenance mode.

4.1 Decision Factors

A number of factors impact the total profit predicted by the Multiple-Release

model. One factor is the time interval between releases. Some companies use a

release interval of about three months while some may use annual releases.

Three to six months may be a reasonable release interval for an Internet-based

project. The error behavior and error detection rate are also important factors that

impact the decision. Software errors are a key parameter for judging software

quality. The error estimation and error-debugging rate impact the release time and

18

19

may even cause a project termination decision. Testing and debugging costs also

impact the decision.

The software staff salary floats with the software market. Right now

(2001-2002) all the leading software companies like IBM and Y Service

Provision Company, used here as a case study, are outsourcing their software

projects to smaller companies or overseas to India and China where software staff

salaries are relatively lower than in the US. Another main decision factor is the

market value of the features; for example, the shopping platform provided before

and after the Christmas season makes a significant difference in market value.

This dissertation discusses the software elements of an order system and

an inventory database system. It focuses on the reliability of the user-interface

transition, the database migration, and the reengineering of the data flow

transaction processes. The cost estimation is based on the ABC methodology

from the industrial standard. The software error detection is the errors that

occurred in the time domain. The errors are based on the present industrial

standard classifications from severity one (the system is corrupt) to severity four

(minor user inconvenience).

4.2 Framework of the Multiple-Release Environment

Most traditional companies may use Visual Basic or Visual C as the language

behind the graphical user interface (GUI) in the PC Microsoft environment, or

they may use motifs in the Unix X-windows environment. The application

middleware may come from middleware vendors or coding by C or C++. The

20

typical backend database, DB3, shown in Figure 4A, is an example of the high

level of server-client architecture.

Figure 4.1 Traditional computer server-client architecture

As shown in Figure 4.2, E-commerce order systems today use a newer

graphical user interface (GUI) based on Java and HTML. The companies buy

middleware, as usual, from the middleware software vendors. The common

database systems are ORACLE or Informix and Sybase.

Figure 4.2 Example of software/hardware architecture for E-commerce

21

A company using a traditional computer system needs to migrate to E-

commerce.

One example of the data flow steps is as follows:

1. Users from the web browser type the web site URL, for example "www.xxx.com".

2. The server side's directory /cgi/build.cgi sends the HTML/JAVA script file to

the client and builds the browser display.

3. The user browser sends the client's cookie ID, which includes the name,

value, expiration date, path, and domain that validate the security of the

client.

4. The server confirms through Common Gateway Interface (CGI)

5. The client sends a request through cgi.

6. The server runs the JAVA program to contact the CORBA (Common Object

Request Broker Architecture) communication interface.

7. The CORBA requests data from a business legacy system.

8. The legacy system confirms to CORBA.

9. The CORBA sends data to JAVA in the server.

10. The server sends the confirmation to the client through cgi.

This example includes 10 steps to process a basic service. Errors may happen

in each step. This project studies development of E-commerce software,

especially on the CORBA connection to the old legacy systems. The legacy

system re-engineering reconstructs the legacy data migration to the new database

schema.

22

4.3 Application Domain

This research concentrates on the reliability of software developed for errors PC

or workstation platform. The product order systems will run on the different

browsers of the Internet, such as, Netscape or Internet Explorer. This research

aims to analyze the cost investment and reliability performance review. The

application domain is limited to the B2B or business-to-customer B2C order

systems. The goal of such systems is to correctly place an order from the Internet

GUI, correctly process the order through the internal organization, and correctly

trace and efficiently handle the inventory.

4.4 Dimensions and Tolerances

The Capability Maturity Model (CMM) for software was produced for the

Software Engineering Institute (SEI) by a dedicated group of people who spent

many hours discussing the model and its features and then documenting it in the

two versions of CMM. The CMM is the major technique used by large IT

companies to improve software quality and has the following characteristics:

• It is based on actual practices;

• It reflects the state of the art;

• It is publicly available;

• It is documented; and

• It reflects the needs of individuals performing software process improvement

and software process appraisals.

23

A software reliability model is applied to the Y Service Provision

Company. It includes all the errors associated with the new coding using Java,

the new PC platform, the new relational database structure and, business data

migration to the new platform. The tolerances are dependent on a company's

policy. Some companies may set a policy of 100 to 1, asking the system tester to

find as many errors as possible before the program is released, considering the

penalty of finding 100 errors by testers the equivalent of one error found by a

customer.

The terminology used in the existing literature is not consistent. The terms

fault, error, failure, bug, mistake, malfunction, and defect are often used

interchangeable. Software is said to contain a fault if, for some input data, the

output result is incorrect. Although the definitions of fault may vary for different

software and different situations, faults always exists in parts of a software and

can be removed by correcting the erroneous part. By software faults the

researchers generally mean all those parts in the software that may cause

problems. Each execution of the software program where the output is incorrect,

constitutes a software failure. A failure may be caused by a software fault or by

another reason, such as a human mistake or hardware failure. Thus, failure and

success are two different possible stages of the output. During the software-

testing step, programs are invoked and errors are found. Each incorrect output

may be counted as a failure. Faults that caused the failure are identified and

removed. After faults are removed, the reliability of the software increases.

24

4.5 Constraints

The usefulness of the Multiple-Release model is limited to large commercial

software. It is limited on the project budget and delivery timing, the budget

sometimes is limited below 20 millions dollars; and the delivery time is within 5

years. Also the software project must be well managed. It should pass at least the

second level of the CMM so the software processes are predictable and well

documented. As imperfect human beings write the software, some errors can be

expected. Miscommunications among managers, system designers, developers and

testers may also cause some errors. Budget limitations force some different

decisions to be made, e.g., how large and how many portions of the existing

software need to be changed, and whether to outsource to software consultanting

firms or to develop it by the company software staff.

The final goal within the project budget is to find the best delivery timing

with a tradeoff between software reliability and market need. To achieve lasting

results from process improvement efforts, it is necessary to design an evolutionary

path that increases an organization's software process maturity in stages. The

CMM orders these stages so that improvements at each stage provide a foundation

on which to build improvements undertaken at the next stage.

A maturity level is a well-defined evolutionary plateau toward achieving a

mature software process. Each maturity level comprises a set of process goals

that, when satisfied, stabilize an important component of the software process.

Achieving each level of the maturity framework establishes a different

component in the software process, resulting in an increase in the process

25

capability of the organization. Organizing the CMM into five levels prioritizes

improvement actions for increasing software process maturity.

The five levels can be briefly described as:

I. Initial: The software process is characterized as ad hoc, and occasionally

even chaotic. Few processes are defined, and success depends on individual

effort and heroics.

2. Repeatable: Basic project management processes are established to track cost,

schedule, and functionality. The necessary process discipline is in place to

repeat earlier successes on projects with similar applications.

3. Defined: The software process for both management and engineering

activities is documented, standardized, and integrated into a standard software

process for the organization. All projects use an approved version of the

organization's standard software process for developing software.

4. Managed: Detailed measures of the software process and product quality are

collected. Both the software process and products are quantitatively

understood and controlled.

5. Optimizing: Continuous process improvement is enabled by quantitative

feedback from the process and from piloting innovative ideas and

technologies.

These five levels reflect the fact that the CMM is a model for improving

the capability of software organizations. The priorities in the CMM, as expressed

by these levels, are not directed at individual projects. A troubled project might

well prioritize its problems differently from the taxonomy given by the CMM. Its

26

solutions might be of limited value to the rest of the organization, because other

projects might have different problems or be unable to take advantage of its

solutions because they lack the necessary foundation to implement the solutions.

The CMM focuses on processes that are of value across the organization.

4.6 Operation Plan

The Multiple-Release models analyze the cost from the local software staff's

salary survey. The error data are collected and maintained in the Y Service

Provision Company Modification Request (MR) system or a similar device. The

number of errors observed & fixed per unit period follow the Non-Homogenous

Poisson Process (NHPP). The data analysis, the dissertation used the Design of

Experiment (DOE) methodology to analysis the impacts of different factors.

Clearly, the new Internet software platform has to operate at least the existing

business functions. Moreover, a company can take advantage of this opportunity to

simplify the existing operating processes and upgrade their database management

systems. From the research point of view, a final result may come to a formula or

guidelines to a similar enterprise. The manager can use them to judge the best strategy.

The managers can increase the investment and change developer salaries in the job

market. These actions will change the scale of the software expensive costs.

CHAPTER 5

SOFTWARE MULTIPLE-RELEASE METHODOLOGY

The main reasons for developing this model are the vast scope and the profit-

oriented behavior of most application software. To obtain software development

costs, an ABC analysis has been conducted in which the expenses of all activities

are classified. Then, the total expenses of each activity group are calculated.

This calculation is the foundation for the subsequent Multiple-Release model,

especially the testing cost activity function of the software.

Usually, software project managers decide the release intervals and release

features each time, and the Multiple-Release model provides a decision

mechanism to help the project managers decide optimal delivery timing. The

model also helps project managers analyze the impact of different decision

factors. In addition, the model helps with the critical decision on whether to

discard certain features if the error penalty is larger than the delivery profit.

27

28

5.1 ABC Analysis of Software Costs

The cost analysis is based on ABC the methodology by Hansen and Mowen

(1997). The first stage of ABC is to identify activities and then get the cost

information from the associated individual activities. Then the cost is separated

into homogeneous sets.

To streamline the process, activities are grouped in homogeneous sets

based on similar characteristics: a logical relationship, and the same consumption

ratios for in whole project. The collection of overhead costs associated with each

set of activities is called a homogeneous cost pool. Once the pool is defined, the

cost per unit is determined. This is called the pool rate. Computation of the pool

rate completes the first stage.

Thus, the first stage produces four outcomes: activities are identified, costs are

assigned to activities, related activities are summed to defined homogeneous cost pools,

and pool (overhead) rates are computed. Then, the overhead assigned from each cost pool

to each project is computed as follows: Applied overhead (to a project) = Pool rate x

Activity usage. The ABC analysis uses the working characteristics of the software staff to

separate different costs into different categories, including supervision, system

engineering, and software development and staff overhead. The cost-driving factors are

that to determine total cost are considered to be :

Staff has the following characteristics:

A. Level of education.

B. Experience with application.

C. Knowledge of languages.

29

D. Familiarity with the infrastructure environment.

In performing its functions, the staff engages in six entities as shown in

Figure 5.1. These terms are called: define, design, construct, test, install, and

maintain.

Figure 5.1 Software job functions of software staff

For example, in a B2B software development project, the six entities can be

described as in Table 5.1.

Table 5.1 Job Descriptions of B2B Software Development

Activities Description

Define Business-to-Business	 Internet	 platform	 and	 the
internal	 requirements	 from	 customer	 service,
continuous	 replenishment	 program,	 the	 logistics
department, and the dispatch center. 	 In addition, the
outside	 environment	 should	 consider	 the	 retailers'
order interface, the shipping contractors, etc.

Design Software/hardware	 architecture	 and	 the	 data	 flow
transmission design.

Construct Coding processes by the programmers.

Test Software system tests of different features and in
different scenarios.

Install Installation inside X Juice Company and all members
in the supply chain.

Maintain Debugging the errors and keeping the system running.

30

The hardware & software annual cost includes hardware, software licenses and

office space used by the development staff. The software/hardware cost is

influenced by:

A. Compatibility between development computers and target computers.

B. Computing conditions during the development.

C. Availability of the development computers.

D. Size of the development database.

E. The response time of the development computers.

F. Equipment available in the network place.

5.2 Multiple-Release Decision Model

The assumptions of the Multiple-Release model and its implementation

process are shown below:

1. Due to the vast scope of the software, it is being developed in Multiple-

Releases.

2. The release relationship is release 1 -> release 2 ->...release N Release i must

be delivered before release j. (i, j 5 N an i < j)

3. To simplify this model, release N can only be delivered on time at TN or

during the next delivery interval TN+1.

4. Since deployment of a new release requires that the business server be

temporarily shut down, deployment is done late at night or a weekend to

prevent interference in the normal course of business.

31

5. If the release cost is larger than the release profit, the software project should

be terminated.

6. The cost to perform testing is proportional to the testing time.

7. The cost to remove errors during the testing phase is proportional to the

number of errors and constant.

8. The testing starts at time 0, the first due date delivery point is set to Time Td,

and then Ti is the interval of the next delivery.

9. The software at the decision point depends on the error condition to decide

which delivery point to go to obtain the maximum company profit.

10. Each release of the software the software firm obtains the same profit(Pi).

A detailed description of is shown in Figure 5.2:

Figure 5.2 Flowchart of Multiple-Release model

32

5.2.1 Data Collection

The testers operate the system and find errors during the system test period.

Certain types of errors can be found. The errors can be associated with data

incompatibility and format discrepancies, program logic errors, and anything else

that does not meet the requirements and customers' needs. The Modification

Request (MR) is generated. The MR information includes:

1. Product: The software name

2. System: Customer who uses the software system

3. Subsystem: Software module of the whole software system

4. Release Detected: Release number

5. MR Severity: the importance of the MR

The valid error definitions were divided into 4 categories:

Severity 1: System is non-operational.

Severity 2: Major functions of the system are unavailable, unusable, or

system performance is well below normal operation.

Severity 3: Minor functions of the system are unavailable. (Bug fix)

Severity 4: Minor deficiency with minimal impact to users. (Enhancements)

6. Required Date: Due date to fix this MR

7. Originator: The tester who finds the MR

8. Abstract: Title of the description

9. MR Description: Detailed description.

33

5.2.2 Error Validation and Kill MR

The MR board members, including the software managers, the system engineers,

system developers and system testers, validate the errors to judge if they are valid

errors or just the users' operation errors. A routine software MR review takes

place at a board meeting, including all the managers, project leaders and

coordinators; they decide whether the MR is valid. Sometimes it is just that the

testers don't know how to operate the system; in that case, it will be considered

as a user training or user-friendly issue.

After the board members decide the validity of the MRs, they assign the

MR to developers to fix the related code. If it is not a valid MR, the board

members decide to "kill MR" without taking any action. In the Weekly Data

Report, the board members classify the causes of the errors. For example, Pham

(1998) has a list of all possible software errors (see Table 5.2).

Table 5.2 Catalog of All Possible Errors
1. 	 Program complexity 2. 	 Documentation 3. 	 Amount of

programming effort
4. 	 Programmer skills 5. 	 Program workload 6. 	 Program categories
7. 	 Testing coverage 8. 	 Testing tools 9. 	 Work standards
10, Testing effort 11. Programming

organization
12. System software

13. Testing environment 14. Domain knowledge 15. Volume of program
design documents

16. Frequency of
specification change
testing methods

17. Difficulty of
programming

18. Development team size

19. Requirement
analysis

20. Design
methodologies

21. Programming language

22. Percentage of reused
code

23. Human nature 24. Processor

25. Relationship of
detailed coding

26. Development
management

27. Telecommunication
device

28. Design and
requirement

29. Testing resource
allocation

30. I/O device

34

The research can extend the list to subtitles: for example, the I/O device

errors can be computer servers to servers or computer servers to databases.

However, if more than three users report the same user-friendly issue, it will be

considered a bug needing to be fixed. The error validation processes are shown

in Figure 5.3.

Figure 5.3 Error validation processes

5.2.3 Monthly Data Reports

The programmers usually fix the errors right away and document the summary

weekly. The number of errors is accumulated weekly. The project is based on

multiple releases, so the errors can be attributed to separate releases. The delivery

time is very long, so monthly data reports are used. The monthly report can be

obtained from the MR system; the processes are shown in Figure 5.4.

Figure 5.4 Monthly errors data report processes

35

5.2.4 Data Fitting

Goel (1985) divided the existing models into four groups:

1. Times between failure models —Markov model

2. Failure count models — Non-Homogeneous Poisson Process models

3. Fault Seeding models — Any models in which a number of faults are seeded

and a capture-recapture technique is used in modeling and testing.

4. Input domain based models - The models input a test scenario into the

software and get the sampling result. The result is used to construct a formula

of the software reliability.

5.2.4.1 Data Fitting — Historical Data.	 The seed data of the estimation total

software errors "a" and estimation error detection rate "b" are input in the data fitting

regression method. The seed data are the initial values of the regression method to get the

final estimated "a" and "b". The seed data come from the judgment of the project

manager.

5.2.4.2 Non-Homogeneous Poisson Process.	 To study the software reliability,

the first step should be an analysis of the error data. This research uses the Non-

Homogeneous Poisson Process (NHPP), which is the most commonly used model

in industry and research. The exponential NHPP model is based on the following

assumptions:

1. All faults in a program are independent.

2. The number of failures detected at any time is proportional to the current number of

faults in a program. This means that the probability of detective a fault is constant.

36

3. If a fault is detected and isolated, it is removed prior to future testing.

4. In the process of removing an error, no additional errors are introduced.

5.2.4.3 Data Fitting — NHPP Goel Model. 	 If the testing errors follow a

monotonic decrease, the data can apply to the NHPP Goel model.

For the Type I data: the accumulated errors data

Assuming that the cumulative number of detected errors yi in a given time-

interval (0,ti) where I=1,2,.n and 0<t1<t2<„<tn, the estimate of parameters a and

b using the Maximum Likelihood Estimation (MLE) method can be obtained by

solving the following equations from Pham and Zhang (1999) simultaneously:

Where

a	 Total number of software errors

b	 Error detection rate

yi	 The cumulative number of detected error in time (0, ti)

5.2.4.4 Data Fitting - The S-Shaped NHPP Model. 	 The error detection

data pattern is s-shaped as pointed. The error detection rate is slow at first. Then, the

detection rate goes up as the testers become more familiar with the system. Afterwards,

the errors are difficult to find, and the detection rate goes down. This is a typical learning

process and it should not be surprising that it generates S-shaped results. The delayed S-

shaped NHPP model (Yamada, 1983) is used in this dissertation.

37

2 tbAssume b(t) = 	 where b is the error detection rate in the steady
bt +1

state. The mean value function can be obtained as m(t) = a[1— (1+ bt)e-bt] which

shows an S-shaped curve. This is called the delayed S-shaped NHPP model for

such an error detection process, in which the observed growth curve of the

cumulative number of detected errors is S-shaped.

For Type I data, the estimate of parameters a and b using the MLE method

can be obtained by solving the following equations Pham and Zhang (1999)

simultaneously:

Where

a 	 Total number of software errors

b 	 Error detection rate

The cumulative number of detected error in time (0, ti)

5.2.5 Data Stability

In order to make the estimation errors "a" and the detection rate steady state,

input the error data using the regression method in (5.3) and (5.4). First, input

two months' error data to get the first a 2 and b 2 , then input the first three months

data to get a3 and b3, and so on. Use the n months' data to get an and b„. If the

38

estimated "a" and estimated "b" have not come to a steady state, in this

dissertation set the data change within ± 5% is steady state, then input more data

into the fitting program. If "a" and "b" become steady, then no more data are

inputted. Then, the "a" and "b" are passed to the next step. If out of data the "a"

and "b" still have not come to steady state, then choose the final a n and b„.

5.2.6 Reliability Model

From the Geol-Okumoto model (1979) the reliability function is as follows:

Where

Maximum Likelihood Estimation (MLE) number of errors detected by
time t.

R(s/t) MLE Reliability during (t, t+s) given that the last error occurs at time t.

Total number of software errors

b	 Error detection rate

Za Parameter a of the standard normal distribution.

5.2.7 Cost Model

Following are the definitions of the notations for the Multiple-Release model.

Notations

m(t) Expected number of errors to be detected by time t

39

a	 Total number of software errors

b	 Error detection rate

T1	 First software release time

Ti	 Second and later release point i=2,3,...,N

C1	 Software test cost per unit time

C2 	 Cost of removing each error per unit time during testing

C3 	 Error penalty cost per unit time.

C4 	 Cost of software installation

Cr	 Slope of debug cost increase, the default value is set to 0

Pi	 Release revenue of the software at time Ti

D	 Decision point

Li	 Software i release target time

The Multiple-Release model is considers of the following steps:

Figure 5.5 Release decision of the multiple releases

Start at the decision point, compute:

1) The cost to perform testing is given by:

40

E(C1)= C1(D+Ti . N)	 where N= 0,1,2,3	 (5.8)

The cost to remove all errors detected during the testing period is the

product of removal removing time multiplied by the removal cost. When the

removal out is more and more difficult, the removal time is assumed to be Tb

i. R for i=1,2,3,4 This means the first error takes Tb time, the second error takes

Tb+1R, the third error takes Tb+2R, and so on.

The cost to remove the errors is:

E(C)= Cost. (Tb+ i. R) = C + i. Cr 	 for i=1,2,3...

However, since the process , the cost for the period (0,T) should be computed as:

For a Poisson process, E (N (T))=Var (N (T))= m (T)

The penalty cost due to software failure and the wait for fixing the next release is:

E (C3)= C3 [a-m (T+Ti)]. Ti/2	 (5.10)

The delivery profit is:

The total revenue - total cost = net profit:

Assuming the decision time is only at the start point(time 0).

Total profit (t)= Pi - C1 (T+Ti.N) - C2 M(T+Ti.N) - C3 [a-M(T+Ti.N)].Ti/2 — C4

For M (t) = a (1- ebt)

δprofit(t)/δTi =

δprofit(t)/δ Ti 2 =

when δprofit(t)/δTi =0 and δ profit(t)/δTi2<=0 profit is the maximized.

There are [lifeCycle/Ti]releases during the software lifecycle, and the total profit is

41

42

the summation of these [lifeCycle/Ti] releases.

The total profit for a predetermined time period (Time) is:

When the delivery interval time Ti is increased, the error penalty is

increased, it takes longer for the corrected version to reach the customers. How,

installation fees are reduced with fewer installations. These should be taken into

consideration by the project manager when decide the optimal delivery interval

Ti.

5.3 Design of Experiments

After the testers collect all the error data and costs and get the result of the total

costs all are determined, the project manager needs to make a final decision on

the basis of the final results of the Multiple-Release model options: I. Deliver on

time; 2. Postpone to next delivery; 3. Stop the software project. Six factors are

considered to have an impact on profit, the final decision, and are following:

A The error detection rate/week

B The amount of software revenue decay rate/week

43

C The delivery interval in weeks

D The software test cost/week

E The cost of removing error during test

F The error penalty cost/week

The factorial experiment sets two levels of A, B, C, D, E, F six factors 2 6=64

results in On-Time delivery. Also two levels of A, B, C, D, E, and F: 2 6=64

results in Delayed delivery. The corresponding contrasts of the mean Y,

(S/N) i = -10.1og 101/n(Σ1/y 1
2) and log10(S), Y is the mean of total profit,

log 10 (S) is the observations of the standard deviation estimate of variability of

the particular factor, and the (S/N) i = -10.1og 101/n(Σ1/yi2) signal-to-noise ratio.

These three analyses can point out the significant factors under the designated

conditions. The research uses a probability plot to analyze which factors are

significant to change the three contrasts. The plot also can consider what is

significant to change the profit. Probability plots use the notions of sample

percentile and rank, which must be retrieved and digested. An observed data set

is written xi, x2, x 3 ...xn in the order in which the observations are recorded. The

notation indicates that the data set has n data points. The notation for the ranked

data set, which represents xl, x2, x3... x i, rank order from smallest to largest, is

x(1)<=x(2)<=x(3)<= ... <=X(n-1)<=X(n), The percentile is each ranked data point in the

sample percentiles; x (i) is the 100(i-1/2/n)th sample percentile.

44

Pair-wise comparison t-Test

The Multiple-Release model analyzes different policies to decide which one can

generate maximum profit. It compares the following for

1. The On-Time delivery profit with the Delayed delivery profit.

2. Under a high market value dropped condition, the Delayed delivery profit is

compared with On-Time delivery profit.

3. The 12-week interval time profit is compared with the 16-week interval time

profit.

Another example of a test of a hypothesis is using the pair-wise

comparison t-Test. There is a significant different on two condition (μ 1-μ2).

The two samples are very heterogeneous with respect to their variances. A test on

means is desired. The d1, d2, d3....d n are the differences between 2 samples. This

situation is often referred to as the

Ho : μD = 0

Hi: : μD # 0

t= d/Sd √jz

With a degree of freedom n-1 when n is the sample number of test data. The

probability of a type I error is designed as a . Reject if |t| ≥ t1-α /2 or t ≥ t1-α in

the research case, two-tail situation, |t| ≥ t 1-α

/2

 is applied.

5.4 Software Delivery Decision

1. In the software multiple releases, after simulating the total costs, the project manager

45

needs to make a final decision. There are three decisions: 1. Deliver on time; 2.

Postpone to next delivery; 3. Stop software development and terminate the project. If

the on time delivery generates profit and the delayed delivery cannot generate

significant improvement to the profit, On-Time delivery is selected. If the On-Time

delivery generates negative profit or less than the one from delayed delivery, Delayed

delivery is selected. If both On-Time and Delayed delivery generated a loss, the

project manager can consider terminating the N+1 st release after delivering N release.

The software lifecycle is then stopped. Software will be off the shelf in maintenance

mode. Based on the contract with the customer or a market strategy, project managers

decide on the level this maintenance resources made available to maintain existing

features of the software.

CHAPTER 6

CASE STUDIES OF SOFTWARE COST ANALYSIS
AND THE MULTIPLE-RELEASE MODEL

Two cases are presented in this chapter. The first case analyzes the software cost

of the X Juice Company which intends to move the existing service provision

software platform to a new B2B Internet platform. This case catalyzes all the

project expenses using the ABC method. At the same time, it compares in-house

development costs with costs of out-sourcing the project to consultant firms.

The second case applies the Multiple-Release model to analyze a large re-

engineering project at the Y Service Provision Company. In the second case, the

existing systems are still running to handle the route business functions. After

each software release, the new software systems and migrate the existing system

functions to an Internet platform totally replace the old systems. This is a good

example of a multiple release case in which the system migrates little by little to

the new platform. The project has followed the Capability Maturity Model

(CMM) control and Software Quality Assurance (SQA) guidelines. This assures

that the code is reusable and the processes are well documented and repeatable.

46

47

6.1 X Juice Company Case Study

The case as presented here was published in Sun, H.W., Zhou, M.C., Wolf, C.

(2001),"A Methodology for Software Development Cost Analysis in Information-Based

Manufacturing", 200I IEEE International Conference on Robotics and Automation.

Seoul, Korea.

A Methodology of Software Development Cost Analysis

The long lead-time response is always a problem for supply chain distribution

systems, especially in the perishable food industry and the rapidly advancing

computer industry. An Internet based environment can support suppliers and

customers with on-line information and can provide quick response time. This

report is the result of a project between New Jersey Institute of Technology

(NJIT) and the X Juice Company. One goal of the project was to use information

technology to automate the present system and thus shorten the response time

from seven to three days.

The existing structure uses an Electronic Distribution Interface (EDI), fax,

telephone or Email to place orders. The project proposed an integrated Internet

working environment for all members of the supply chain and focused on the cost

analysis of the related software. Activity Based Cost (ABC) and lifecycle

engineering methods were used to catalog all the cost expenses and determine the

level of effort the software development takes. The cost analysis involves both

in-house and outsourcing developments.

Case Introduction

Information-based manufacturing is critical if manufacturers are to compete

48

intoday's global market. The development cost analysis becomes an important

issue of industrial relevance for a software project involving both in-house

development and outsourcing expenses. This work is motivated by the need to

implement information-based manufacturing for the X Juice Company.

The project is based on the architecture of the company's Distribution

Center. Juices that have a shelf life of approximately 65 days arrive by train and

trucks from the regional customers come to the facility to pick up orders. This

facility consists of an Automated Storage and Retrieval System, which is fully

integrated into an Automated Warehousing System. To shorten the customers'

order process time from seven to three days, is was proposed to use the Internet

to streamline the distribution process.

According to Seybold et al. (1999), E-commerce is defined as the use of

the Web, e-mail and other devices to streamline the business process, improve

customer service time it was reduce cycle time, etc. To succeed in implementing

an E-commerce strategy, proposed to use a team of about 97 skilled software

developers. (57 regular employees in-house and about 40 contractors from an

outsourcing software consultant house.)

The X Juice Company's current practice faces three problems: first, its

Internet software is not connected to the entire supply chain; second, there is a

lack of efficient and effective ordering policies; and third, there is a need to

combine marketing strategies with inventory levels. Currently, X Juice Company

managers control about 15%-20% of the inventory orders from retailers through

the Company's Continuous Replenishment Program (CRP) system. Meanwhile,

49

individual stores randomly place the other 80%-85% of orders, which are not

under the Company's control. The X Juice Company customer service department

administers orders from those individual customers.

An Internet interface between customer service and customers, from the

supply chain perspective, can benefit both the customers and the warehouse. The

advantage to the warehouse is that it is able to centralize demand information for

individual stores as the company decides to ship more juice. The retailers benefit

from in-time delivery and less stock-out penalties. This helps reduce random

variation and hence demand uncertainties demand in the warehouse.

The second problem is the central ordering of juices that are shipped to the

distribution center from the plant. The distribution center sometimes builds up

an inventory of certain classes of juices that are close to their expiration date, and

the company has to get rid of them either at a very low price with sales promotion

or donate them to charity. A carefully designed and sophisticated coordination in

ordering policies can reduce the occurrence of these problems and result in

savings. One approach would be to create an incentive for the customers to

synchronize their order function with X Juice Company. This is the so-called

supplier-retailer coordination problem. A carefully designed coordinated system

can benefit every player in the supply chain network. Shin, Collier and Wilson

(2000) discuss the four factors to judge supplier quality: cost, quality, delivery

and flexibility. This may require the design of contracts or cost sharing

agreements with customers.

The third problem is how to combine marketing strategies with inventory

50

levels and other factors. Marketing strategies such as sales incentives can

influence demand. Foreseeing an inventory buildup problem, the company can

use price as a tool to increase or reduce demand when insufficient inventory is on

hand. F. Chen, et al. (2000) indicated that a company could use promotional

initiatives to catch the emerging orders and gain larger profit.

The objective of this study was to evaluate the Internet software

development cost and for the X Juice Company's Distribution Center. The

method used is applicable to other industries. Section 6.1.1 Introduces the

existing structure and explains the re-engineering model and cost analysis

methodology. Section 6.1.2 discusses the ABC cost analysis of the re-engineering

process and section 6.1.3 presents the conclusions.

6.1.1 Existing Order Processes and Internet-based Structure

The existing X Juice Company data flow is shown in Figure 6.I about 80%-85%

of the customer orders come directly from the customers and the remaining I5%-

20% are generated from the Continuous Replenishment Program (CRP) that

provides the information of customer inventory and demand through the

Electronic Distribution Interface (EDI). Then the Customer Service Department

uses Order and Inventory Management System (O&IMS) to maintain the orders

and assign carriers to them. The traffic department picks up orders from the

remote printer and manually assigns a pickup date, time, and carrier to each order

ticket. Finally the dispatch controls the logistics and operation of inbound and

outbound trucks.

51

Figure 6.1 Existing X Juice Company service flowchart

To shorten the process time and provide a common work environment for

all the components of the supply chain, it is suggested to create an Internet E-

commerce environment as shown in Figure 6.2. The Internet can link all the

existing software and databases. All parties including customers, the customer

service department, the warehouse, the traffic department, manufacturing plants

and top managers can view the ordering processes through a clear user interface,

which saves communication time and prevents mistakes.

Figure 6.2 Internet B2B service flowchart

52

6.1.2 ABC Methodology

To use the ABC method, salaries of software professionals were collected and the

summary of the survey is shown in Table 6.I.

Table 6.1 Annual Salaries of Software Staff

Personnel Resource Number Salary Amount
X Juice Company employee

Supervisor
Senior 3 $120,000 $360,000
Junior 3 $100,000 $300,000

System Engineer
Senior 5 $100,000 $500,000
Junior 5 $80,000 $400,000

System Analysis
DB analysis 3 $75,000 $225,000
Tool analysis 3 $60,000 $180,000

Software developer
15 years and higher 5 $90,000 $450,000
I0 years and higher 10 $80,000 $800,000
5 years and higher 10 $65,000 $650,000

Network and System Support
Database administrator 2 $120,000 $240,000
WEB administrator 2 $I00,000 $200,000

Technical Document Writer
20 years experience 3 $60,000 $180,000
Customer Support Experience 3 $I00,000 $300,000

Subtotal 57 $4,785,000

Benefits	 (insurance, 401K and Stock option) (1.4X $4,785,000)
XJuice Company TOTAL $6,699,000

Contractors from software consultant companies
Software Developers

Senior 	 I0 $I20,000 $I,200,000
Junior 	 I0 $80,000 $800,000

Testers
Senior 	 10 $80,000 $800,000
Junior 	 10 $50,000 $500,000

Subtotal 	 40 $3,300,000

Total	 97 $9,999,000

53

Using the data of Table 6.1, the personnel cost is:

X Juice Company $6,699,000/9,999,000 = 67.0%.

Software consultant $3,300,000/9,999,000 = 33.0%

Average personnel cost at X Juice Company $6,699,000/57 = $1I7,526

Average personnel cost at Software consultant $3,300,000/40 = $82,500.

According to their characteristics, the activities can be classified into six

pools as shown as Table 6.2.

5
5

$100,000
$ 80,000

$500,000
$400,000

$75,000
$60,000

$225,000
$180,000

$1,305,000
$l,827,000

$114,187

3
3

16

5
10
10

$90,000
$80,000
$65,000

$450,000
$800,000
$650,000

$120,000
$100,000

$240,000
$200,000

$2,340,000
$3,276,000

$112,965

2
2

29

$300,000
$480,000
$672,000

$112,000

$180,000$60,000

$100,000

3

3
6

54

Table 6.2 Salary Analyses of Six Pools of Software Staffs

Personnel Resource
Pool 1 : Supervisor

Senior
Junior

Subtotal
Benefit Factors (x 1.4)
Average

Number 	 Salary

3 	 $120,000
3 	 $100,000
6

Amount

$360,000
$300,000
$660,000
$924,000

$154,000

Pool 2 : System Engineers
System Engineer

Senior
Junior

System Analysis
DB analysis
Tool analysis

Subtotal
Benefit Factors (x 1.4)
Average

Pool 3 : Software Developer
Software Developer

15 years and higher
10 years and higher
5 years and higher

Network and System Support
Database administrator
WEB administrator

Subtotal
Benefit Factors (x1.4)
Average

Pool 4 : Supporting Overhead
Technical document writer
20 years experience

Customer Support
Experience
Subtotal
Benefit Factors (x 1.4)

Average

Pool 5 : Contractors from software consultant companies
Software Developers

	

Senior 	 10 	 $120,000 	 $l,200,000

	

Junior 	 10 	 $80, 000 	 $800,000
	Subtotal	 20 	 $2,000,000

	

Average 	 $100,000

Pool 6 : Testers
Senior 	 10 	 $80,000 	 $800,000
Junior 	 10 	 $50,000 	 $500,000

Subtotal 	 20 	 $1,300,000
Average 	 $65,000

55

6.1.3. ABC Results Analysis

It can been seen from Table 6.2 that at a similar computer skill level, testers

from the consulting company can replace support people from X Juice Company.

The outsourced staff can lower the cost significantly. For example, the average

support staff cost at X Juice Company is $1I2,000 compared with the average

salary of testers from a consultant house of $65,000. If six people are replaced,

the saving are 6 x ($1I2,000-65,000) = $282,000. The project manager can also

conduct a benefit comparison for software programmers from the in-house and

outsourcing developers. If they replace 29 developers between outsource, the

project can save, 29 x ($I12,695-100,000) = $368,155. The manager needs to

decide whether the outsourcing portion should be increased to reduce the total

project cost. Other then personnel costs are summarized in Table 6. 3.

Table 6.3 Annual Costs of Hardware, Software License and Office Space
Analysis

Personnel Resource Number Cost Amount
Depreciation equipment

HP workstation 100 $6,500 $650,000
PC Pentium III 800MHz 100 $2,900 $290,000
Notebook Toshiba 600 MHz 50 $3,000 $150,000
MS Office 100 $950 $95,000

Subtotal $1,185,000
Suppose 2 years depreciation x 0.5 $592,500

Annual expense fee
Query Language Oracle 100 $100 $10,000
Office Space 100 $7,200 $720,000

Subtotal $730,000

Total equipment Annual fee $1,322,500

56

6.2 Y Service Provision Company Case Study

The Y Service Provision Company case is based on a large software migration to

a new B2B platform. The data was collected from December I997 to April 2000.

It includes four software feature releases. It is a typical application of multiple

software releases.

Collection of Errors Data

A the testing takes place detailed information about errors is selected from the

Modification Request (MR) from testers or invited potential customers. The MRs

include systems that do not function properly or are user-unfriendly and are kept

in an MR database. An example of an MR report is shown in Figure 6.3. From

this MR the user found that the inventory system (IM) does not function well

enough to keep the record of the product CISCO I2012 in the TESTNJ01

location.

	 INFORMATION FOR MR nsdi010519

Product: NSDI	 Release Detected: v7.0
System: NetPlan	 MR Severity: 2

Subsystem: IMS-FAC	 Required Date: I0/31/01
Originator: Joanne

Abstract: FRF8457 - err msg exits user out of browse update
MR Description:

When an error is encountered in browse update in IM, the user is exited from
browse update back to main IM screen when click OK on err msg - regardless of
err msg. See CISCO I2012 in TESTNJ01 and try to add row w/incorrect
qualified ID.

Figure 6.3 Sample of errors data MR report

57

Data Validation

A review by the MR board members follows, and then a retest of the scenario that

produced the eorr. If the board members identify this error as a user error, they will decide

"killmr", i.e., put this issue into the inactive database. If it is a valid MR it will be put into

the active database. For an example, MR number nsdi010519 shown in Figure 6.1 is not

valid. It was decided to kill this MR as shown in Figure 6.4.

	 REPORT FOR MR nsdi010519 	
MR Status: mra_study	 Duplicate MR:

MR Severity: 2	 Product:	 NSDI
Release Det.: v7.0 	 System:	 NetPlan
Phase Det.: system test	 Subsystem: IMS-FAC
Category:	 testing	 Date: 10/30/01
Create Date: 10/30/01 11:03:26	 Site:	 MT-B
Reason Code:	 Reqd. Date: 10/31/01
Compl. Date:	 Originator: Joanne
Creator:	 Joanne	 Closer:
Study Dev: Joanne	 Due Date:
Abstract: FRF8457 - err msg exits user out of browse update
Description:
When an error is encountered in browse update in IM, the user is exited from
browse update back to main IM screen when click OK on err msg - regardless of
err ms
g. See CISCO 12012 in TESTNJ01 and try to add row w/incorrect qualified ID.
Reason Deferred:

None.
MR Proposed Solution:

We went thru the process with Joanne, and the Browse/Update equipment
Window does not disappear from the window.
Please kill this MR
<	 >
Figure 6.4 Example of an MR reviewed report

58

Monthly Data Report

The project manager can type the "report" command in the MR system and get

the monthly report summary as shown in Table 6.4 below.

Table 6.4 Monthly Data of Four Software Releases.
YY/MM RELEASE 1 RELEASE 2 RELEASE 3 RELEASE 4

97/12 10
98/1 48
98/2 35
98/3 74
98/4 67
98/5 76
98/6 99
98/7 46
98/8 31 9
98/9 29 86

98/10 40 83
98/11 21 51
98/12 10 41
99/1 3 39
99/2 0 37 12
99/3 3 42 31
99/4 26 84
99/5 13 81
99/6 10 101
99/7 5 21
99/8 0 20
99/9 0 23

99/10 1 14
99/11 2
99/12 5
00/1 18
00/2 108
00/3 83
00/4 43
00/5 55
00/6 67
00/7 23
00/8 24

00/09 1
00/10 1

59

Based on the time frame, the manager can use Microsoft Excel to plot the error

numbers as in Figures 6.5 and 6.6

Figure 6.5 Monthly error chart of four releases

Figure 6.6 Accumulated errors of four releases

The Data Fitting — NHPP Goel Model

There are also two factors that can help in making the data fitting decision: The

Non-Homogeneous Poisson Process and the Data Characteristic Decision. The

seed data of the estimated errors "a" and estimated error detection rate "b" can

use historical data from a previous project. Following NHPP data for the four

releases, Tables 6.5, 6.6, 6.7 and 6.8 can be generated.

60

Table 6.5 Goel's Model Analysis of the Release One Error Data
tk vk-vk-1 vk tleexo(-blk) tk-1"exo(-bik-1) exo(-bik-1) exo(-b"k) (b*(d-e1/9f-o)

0 0 0
1 9 9 0.900076967 0 1 0.900077 81.069324
2 95 104 1.620277094 0.900076967 0.90007697 0.810139 760.7317533
3 178 282 2.18756114 1.620277094 0.81013855 0.729187 1247.371075
4 229 511 2.625297863 2.18756114 0.72918705 0.656324 1375.763911
5 270 781 2.953712673 2.625297863 0.65632447 0.590743 1352.07972
6 309 1090 3.190282495 2.953712673 0.59074253 0.531714 1238.380124

346 1436 3.350083092 3.190282495 0.53171375 0.478583 1040.665123
8 388 1824 3.446094434 3.350083092 0.4785833 0.430762 778.9886347
9 414 2238 3.489469006 3.446094434 0.4307618 0.387719 417.1889041

10 427 2665 3.489767423 3.489469006 0.38771878 0.348977 3.289038739
11 437 3102 3.455165207 3.489767423 0.34897674 0.314106 -433.6339346
12 442 3544 3.392634132 3.455165207 0.31410593 0.28272 -880.5954213
13 442 3986 3.308101161 3.392634132 0.28271951 0.254469 -1322.595421
14 442 4428 3.206587635 3.308101161 0.25446932 0.229042 -1764.595421
15 443 4871 3.092331079 3.206587635 0.22904197 0.206155 -2211.587719
16
17
18
19
20 1682.51969

0.105275 1682.009097
558.0437317

Test time / months R(0.1/T) R(1r1)
16 0.299761365 3.20937E-05
17 0.338109849 9.02468E-05
18 0.376804249 0.000228864
19 0.415404874 0.000528858
20 0.453518558 0.001123966

From Chapter 5 equation (5.3), (5.4), (5.5) and (5.6)

= 661 .218

b = 0.141

= 661 .218 X(1 - e -" 41)

r - (0.141)t
-

- (0 .141)(T + x)

R = (x I t) = e - (661 .218)Le 	 e

61

Table 6.6 Goel's Model Analysis of the Release Two Error Data
tk vk-vk-1 yk tk*exp(-b*tk) tk-1*exp(-b*tk-1) exp(-b*tk-1) exp(-b*tk) (b*(ci-e)/9f-q)

0 0 0
1 9 9 0.900076967 0 1 0.900077 81.069324
2 95 104 1.620277094 0.900076967 0.90007697 0.810139 760.7317533
3 178 282 2.18756114 1.620277094 0.81013855 0.729187 1247.371075
4 229 511 2.625297863 2.18756114 0.72918705 0.656324 1375.763911
5 270 781 2.953712673 2.625297863 0.65632447 0.590743 1352.07972
6 309 1090 3.190282495 2.953712673 0.59074253 0.531714 1238.380124
7 346 1436 3.350083092 3.190282495 0.53171375 0.478583 1040.666123
8 388 1824 3.446094434 3.350383092 0.4785833 0.430762 7789886347
9 414 2238 3.489469036 3.446094434 0.4307618 0.387719 417.1889041

10 427 2665 3A89767423 3.489469006 0.38771878 0.348977 3.289038739
11 437 3102 3.455165207 3.489767423 0.34897674 0.314106 -433.6339346
12 442 3544 3.392634132 3.455165207 0.31410593, 0.28272 -880.5954213
13 442 3986 3.308101161 3.392634132 0.28271951 0.254469 -1322.595421
14 442 4428 8206587635 3.308101161 0.25446932 0.229042 -1764.595421
15 443 4871 3.092331079 3.206587635 0.22904197 0.206155 -2211.587719
16
17
18
19
20 1682.51969

0.105275 1682.009097
558.0437317

Test time / month R(0.1fT) R(1/T)
16 0.299761365 3.20937E-05
17 0.338109849 9.02468E-05
18 0.376804249 0.000228864
19 0.415404874 0.000528858
20 0.453518558 0.001123966

From Chapter 5 equation (5.3), (5.4), (5.5) and (5.6)

a = 558.043

= 0.105

rh = 558 .043 X(1 - e -1105)

R = (x/t) = e-(558 .043)[e-(0.105)t -e-(0.105)(T+x)]

62

Table 6.7 Goel's Model Analysis of the Release Three Error Data
tk yk-yk-1 Yk tk*exp(-b*tk) tk-1*exp(-b*tk-1) exp(-b*tk-1) exp(-b*tk) (b*(d-e)/9f-g)

0 0 0
1 12 12 0.863000507 0 1 0.863001 75.59156526
2 43 55 1.489539751 0.863000507 0.86300051 0.74477 227,8697755
3 127 182 1.928210342 1.489539751 0.74476968 0.642737 546.0107323
4 208 390 2.218728671 1.928210342 0.64273678 0.554682 686.2537978
5 307 697 2.393454961 2.218728671 0.55468217 0.478691 705.8842112
6 330 1027 2.478663415 2.393454961 0.47869099 0.413111 428.7680446
7 350 1377 2.495602415 2.478663415 0.41311057 0.356515 104.7539867
8 373 1750 2.461378458 2.495602415 0.35651463 0.307672 -261.3621799
9 387 2137 2.389692215 2.461378458 0.30767231 0.265521 -658.1720205

10 389 2526 2.29145066 2,389692215 0.26552136 0.229145 -1050.573426
11
12
13
14
15
16
17
18
19
20 805,0244865

0.14734 805.1005449
497.5793154

Test time /months R(0.1/T R(1/T)
16 0.299761365 9.84696E-05
17 0.338109849 0.003814688
18 0.376804249 0.00818084
19 0.415404874 0.015803145
20 0.453518558 0.027894253

From Chapter 5 equation (5.3), (5.4), (5.5) and (5.6)

a = 497.579

b = 0.147
m = 497.579 X(1-e-0.147)

R = (x /t) =e-(497.579)[-1(0.147)t -e-(0.147)(T+x)

63

Table 6.8 Goel's Model Analysis of the Release Four Error Data
tk yk-yk-1 yk tk*exp(-b*tk) tk-1*exp(-b*tk-1) exp(-b*tk-1) exp(-b*tk) (b(d-e)/9f-q)

0 0 0
1 5 5 0.875705878 0 1 0.875706 35.2271638
2 23 28 1.53372157 0.875705878 0.87570588 0.766861 139.0449535
3 131 159 2014633491 1.53372157 0.76686078 0.671544 660.9516915
4 214 373 2352301854 2014633491 0.6715445 0.588075 866.7223105
5 257 630 2574905701 2352301854 0.58807546 0.514981 7826762191
6 312 942 2705832039 2574905701 0.51498114 0.450972 638.1750209
7 379 1321 276443189 2705832)69 0.45097231 0.394919 3962190153
8 402 1723 27E6662006 276443189 0.39491884 0.345833 1826396925
9 426 2149 2725629254 27666E2006 0.34593275 0.302848 -4066456445

10 427. 2576 2652055747 2725629954 0.30294777 0.265206 -834.6032118
11 428 3004 2554832988 2652)55747 0.26520557 0.232242 -1264.554779
12
13
14
15
16
17
18
19
20 1030.480009

0.132725 1030.834793
513.0734528

Test time / months ROAM R(1/T)
16, 0.396965795 0.000487046
17 0.445272342 0.001256857
18 0.49237895 0.002882886
19 0.537705952 0.005964252
20 0.593813278 0,011273047

From Chapter 5 equation (5.3), (5.4), (5.5) and
a

= 513 .073
b = 0.133
m = 513 .073 X(1 - e-0.147)

R =(x/t)= e-(513.073) [e -(0.133)t -e - (0.133)(T + x)]

The Data Fitting - NHPP S-Shaped Model

The S-Shaped NHPP reanalysis of the data for the four releases are shown in

Tables 6.9 and 6.10. The simulation programs are listed in Appendix A.

64

Table 6.9 Estimated Total Errors (a) using an S-Shaped Model of the Four
Releases

Release 1 Release 2 Release 3 Release 4
1000 1000 1000 1000
97 159 940 38
295 1000 158 163
1000 483 1000 235
I000 397 1000 1000
1000 405 666 754
1000 430 485 840
1I79 477 495 606
843 485 44I 558
747 474 418 491
760 469 463
685 463
629 454
620 450

448

Table 6.10 Estimated Error Detection Rate (b) using an S-Shaped Model of the
Four Releases

Release 1 Release 2 Release 3 Release 4
0 0 0 0
1 1 0.17 1
0.38 0.08 1 1
0.1 0.4 0.01 1
0.14 0.47 0.05 0.18
0.14 0.43 0.28 0.24
0.1 0.38 0.36 0.22
0.17 0.38 0.38 0.28
0.22 0.39 0.4 0.31
0.24 0.4 0.43 0.35
0.23 0.4 0.38
0.25 0.42
0.28 0.43
0.29 0.43
0.3

It can be seen for Table 6.10 that for b in the S-Shaped model the detection rate

b is mostly in the 0. 3 to 0.43 range.

65

Data of Steady State Analysis

The simulation programs listed in Appendix A were used to get Tables 6.11

(p.66) and 6.12 (p.67). As the weeks continued the estimate became a stable

value. Figure 6.7 shows that after 8-10 months, the estimation of errors became

stable. Similarly in Figure 6.8, the detection rate b becomes stable as the 8-10

months error data was collected and fitted into the S-Shaped model.

Figure 6.7 Estimated a in time domain

Figure 6.8 Estimated b in time domain

66

The Reliability Model

From the chapter 5 equation (5.7)

m^(t) - Zα√m^ ≤ N(t) ≤ m^(t)+Zα√m^ -

Confidence intervals for N (t) based on the Poisson distribution.

From the data, the project manager can derive the software reliability

performance measures table.

Table 6.11 Reliability of Release One as Time Extended
Test time / months R(0.1/T) R(1/T)

16 0.379077202 0.000110414
17 0.43065464 0.000365939
18 0.48111075 0.001035993
19 0.529703974 0.002557816
20 0.575871799 0.005607408

R (x/t) means the possibility next x time will have an error happen at time t.

The Software Cost Analysis

The Staff at Y Service Provision Company receive salaries similar to those of the

staff at X Juice Company, for comparable computer skill levels. The weekly

salary of a tester from Table 6.10 is around $1,200 to $1,500. The project needs

three full time testers; the personnel cost is 88% of the total cost, so the total cost

should be 100/88; thus the cost is in the $3,000 to $5,000/week range and there

are the figures to be used in the next chapter. The debugging costs are the same.

In Table 6.12 the developer's salary is shown at $50/hour, and one bug may need

10 to 20 developer-hours to solve, so the cost is around $500 to $1,000 for one

bug.

The Simulation Conditions

Based on the assumptions, the errors are a random number between 300-900. The

67

experiment uses 600+ 600, random (-0.5,0.5) as the input errors. The software

lifecycle is one year. Each year there are two releases, and each release earns a

profit of $1,000,000. The first delivery is made after one year, and then the

delivery interval Ti is I2 weeks or I6 weeks. The installation fee for each

delivery is $40,000 and the penalty cost for each error is $2,000 per month. An

experimental simulation involved about six factors, k=six factors in two levels.

The total factorial run is n=64. Once the significant factors are identified, the

impact of the factors and the confidence interval of the decision based on the

factor level are studied. The testing cost, debugging and penalty cost come from

the survey of the local software industry and project size, as described above.

Table 6.12 High and Low Level Factors

Factors Levels

High + Low -

A: The error detection rate 0.5 0.3

B: The software revenue decay/week 0.02 0.01

C: The delivery interval in weeks 16 weeks 12 weeks

D: The software test cost/week $5,000 $3,000

E: The cost of removing an error during test $I,000 $500

F: The error penalty cost/week $4,000 $2,000

In order to process the independent variability on the six factors surveyed, the

simulation program generates the random errors number into the system and gets the total

profit based on the different factor combinations. That is, 26 = 64 sets of the total cost

result. The factorial result of profits of the software projects if delivery is on release I is

displayed in Appendix B Table B.1. The factorial profits of the software project if

delayed delivery is postponed are shown in Table B.2.

CHAPTER 7

ANALYSIS OF RESULTS

Based on data in Chapter 6, this chapter analyzes software development costs for

the X Juice Company. It also analyzes the software multiple delivery policy

based on the Multiple-Release model.

7.1 Results of ABC Analysis

In the X Juice Company case, the salaries of staff can be grouped into 6 salary

pools, which are summarized in Table 7.I.

Table 7.1 Summary of Annual Salaries of Six Pools

Pool I Supervisor	 Average	 $I54,000
Pool 2 System Engineer	 Average	 $1I4,I87
Pool 3 Software Developer	 Average	 $1I2,965
Pool 4 Supporting Overhead	 Average	 $112,000
Contractors from software consultant companies
Pool 5 Software Developers	 Average	 $100,000
Pool 6 Testers	 Average	 $65,000

The manager needs to decide whether the outsourcing portion should be

increased in order to reduce the total project cost. The total development cost

includes the expensive for staff, software and hardware in Table 7.2.

68

69

Table 7.2 Total Cost Analyses

Personnel Resource Number Pool Avg Amount
Supervisor 6 $154,000 $924,000
System Engineers 16 $I14,187 $1,827,000
Software Developer 29 $1I2,965 $3,276,000
Supporting Overhead 6 $112,000 $672,000

Subtotal $6,699,000

Contractors from software consultant companies
Software Developers	 20 $I00,000 $2,000,000
Testers 20 $ 65,000 $I,300,000

Subtotal $3,300,000

Total Personnel $9,999,000

Equipment and Space $I,322,500

Total Estimated Annual Cost for X Juice Company Project 	 $11,321,500

According to Table 7-2, the in-house development cost (with a staff of 57) is:

$6,699,000 + (57/97) x $1,322,500 = $7,476,I39

The outsourcing cost (with a staff of 40 staff)is:

$3,300,000 + (40/97) x $1,322,500 = $3,845,361

Consequently, we can derive the following conclusions: The current in-

house expense is 66% and for outsourcing is 34% of the total project. The

average support staff cost on the X Company is $II2,000, while for a tester from

a consultant house with the same computer skill level costs $65,000. It's easy to

outsource this portion and reduce the cost significantly. Replacement of the 29

software developers is a major portion of cutting the cost. Note that the personnel

expense of $9,999,000 is 88%.

70

7.2 Analysis of Multiple-Release Model

DOE methodology is used to analyze the results of the six controllable factors

which impact the total cost of the software, listed as follow:

A The error detection rate/week

B The amount of software revenue decay rate/week

C The delivery interval in weeks

D The software test cost/week

E The cost of removing error during test

F The error penalty cost/week

There are also several elements that can improve profit after the profit results

analysis: accurate cost information, speeded-up error detection rate, or modification of

delivery interval time. One can also get alternative software developers, e.g., subcontract

to consultant firms, or outsource to overseas countries like India or China, to lower the

software development cost factors. The detailed analyses are shown below. The

corresponding contrasts of the total profit mean Y, (S/ N) i = -10. log101/n(Σ1/yi2) and

log o (S) are presented in Table 7-3.

71

Table 7.3 Contrast Effect for Total Profit

Ave
On-Time
Delivery
Y

Ave
Delayed
Delivery
Y

On-Time
log o (S)

Delayed
log10(S)

On - Time
S/N

Delayed
S/N

A 188,921 82,155 -0.82 -0.72 12.33 7.08
B -14,000 -28,000 0.00 0.00 -0.68 -4.02
C 50,449 -39,515 -0.25 -0.02 2.85 -5.13
D -8,122 -36,000 0.00 0.00 0.32 -4.79
E -19,634 -38,293 0.09 0.29 1.90 1.37
F -38,008 -2,245 0.18 0.01 -3.34 -0.19

AB 174,921 54,155 -0.82 -0.72 11.65 3.06
AC 234,274 42,156 -83.34 -0.74 14.68 1.68
AD 180,921 46,155 -0.82 -0.72 12.85 2.28
AE 165,781 43,863 -0.70 -0.43 13.93 7.36
AF 126,063 63,903 -0.64 -0.70 8.99 6.89
BC 31,353 -67,999 -0.25 -0.02 1.67 -9.41
BD -14,375 -57,274 0.28 0.25 5.97 -2.52
BE -37,140 -66,293 0.12 0.29 0.92 -2.64
BF -76,858 -30,245 0.18 0.01 -4.02 -4.20
CD 37,353 -75,999 -0.25 -0.02 2.67 -10.19
CE 22,213 -78,292 -0.13 0.27 3.95 -4.03
CF -17,505 -39,646 -0.06 -0.01 -0.99 -5.58
DE -31,140 -74,060 0.12 0.29 1.92 -3.42
DF -70,858 -35,509 0.18 0.01 -3.02 -4.98
EF -85,998 -40,538 0.30 0.30 -1.73 1.19

mean 38,029 -17,977 -4.12 -0.11 3.94 -1.57
SD 98,895 51,479 18.15 0..39 6.06 5.01
CL(95%) 45,016 23,433 -8.26 -0.18 6.7 0.71

72

7.3 Analysis of the Means of Total Profit (y)

A probability plot analysis of On-Time delivery factors is shown in Figure 7.1.

Clearly, the AC interaction factor and the A factor itself are significant.

Figure 7.1 Probability plot for On-Time delivery

In Figure 7.1, AC, A, AD, AB, AE, AF and C are significant factors to the

total profit. Compared with the A+ the 0.5 error detection rate and the 0.3 error

detection rate, there is an $188,921 difference to the total profit, which indicates

that the quality and speed of the testers is a dominant factor of the total profit.

The detection rate effect to total profit is shown in Table 7.4.

Table 7.4 On-Time Delivery Detection Rate Effect on Total Profit
0.5 detection 	 0.3 detection 	 Difference]

rate	 rate

128464	 -60457	 188921

With the A factor the error detection rate at 0.5, and the delivery interval

C- (12) weeks give a better result of total profit: $129.004. The difference

73

between these two significant conditions gives a $234,274 difference. The two-

way effect is shown on Table 7.5.

Table 7.5 Detection Rate and Delivery intervals Effect on Total Profit
0+ C-

A+ 127923.68 129004.36
A- -14563.75 -56456.84

From the table above A+ C+ is $127,923.68 and A- C- is -$56,456.84. There is a

S 184,380.52 difference. It is a significant two-way factor. Compare A+ C+ and A-4- C-

and we can make another conclusion: the A factor is a stronger influence over the total

profit than the C factor. A probability plot analysis of delayed delivery factors is shown in

Figure 7.2.

Figure 7.2 Probability plot for Delayed delivery

A, AF, AB, AD, AE and AC are significant factors, compared with A+ being the

0.5 error detection rate and 0.3 error detection rate. There is a $82,155 difference.

It shows that the quality and speed of the testers is a dominant factor in the total

profit. The detection rate effect on total profit is shown on Table 7.6.

74

Table 7.6 Delayed Delivery-Detect Rate Effect Total Profit
0.5 detection0.3
rate

detection
rate

Different

A 66271 -15885 82155

The factors B, C, D, E, F are all negative values, and AB, AC, AD, AE,

AF all are positives. This means improvement of the error detection rate factor A

can make a difference if the software have to be delayed to the second release

schedule. Also a 12-week delivery interval time is better than a 16-week delivery

interval.

As a conclusion, the following facts were observed.

1. On-Time condition: the error detection rate A+ (0.5) is the dominant factor of

the total profit.

2. On-Time condition: the delivery interval under A+ (0.5) error detection rate.

For C+ (16) weeks, the profit is $127,923, and for C- (12) weeks the profit is

$129,004.

3. Delayed condition: A+ (0.5) error detection rate is the dominant factor.

75

7.4 Analysis of Variation log 10 (S)

The standard deviation of each set of three observations provides an estimation of

variability of total profit under the particular set of factor levels used in that run.

The effects of the factors A, B, C, D, E, F and the two-way interaction on

log 10 (S) are studied using contrast effects from Table 7-1. The probability plots

are shown in Figure 7.3 for On-Time delivery and Figure 7.4 for Delayed

delivery.

Figure 7.3 Probability plot for On-Time delivery for the log 10 (S)

This analysis indicates that only AC is a significant factor. A "two-way"

means analysis for log 10 (S) is presented below for the AC indentation. The two-

way effect is shown in Table 7.7.

76

Table 7.7 Detection Rate and Delivery Interval Effect on Total Profit

log 10 (S) 0 +

A+ 4.01 4.29
A- 4.86 87.36 	 1

The AC two-way factor A+C+ - (A-C-) =4,01 —87.36 = -83.34 has a

significant impact on the variability. A similar result can indicate, as shown

previously in Chapter 7.1, that AC is a significant two-way factor.

Clearly, the result is the same as the average analysis AC is significant for the

total profit. For the standard deviation of each set of three observations of

delayed delivery, the probability plot analysis is shown below.

Figure 7.4 Probability plot for Delayed delivery for the log o (S)

The range of the log 10 (S) is between —0.8 and 0.4. A, AF, AB, AD, AE and AC

77

are significant factors, the results are similar as the contract effects of the average

profit Y of the On-Time delivery.

As a conclusion, the following facts were observed.

1. On-Time condition: the error detection rate A+ (0.5) is the dominant factor of

the variation of profit.

2. On-Time condition: the delivery interval under A+ (0.5) error detection rate,

for the C+ (I6) weeks the variation of profit is 4.0I, and C- (I2) weeks the

variation of profit is 4.29. So the values are very close.

3. Delayed condition: no significant dominating factor.

78

7.5 Analysis of Signal to Noise Ratio — 10.1og 10 1/n(Σi1/yi2)

Since in this study the higher the SIN value, the better the total profit, it would

1
perform the analysis using the (S/N) i = - 10.1og io ln(Σi 1/yi2), where y i is the

observed value at experiment i. signal-to-noise ratio. The values are generated

from EOD and the summaries are illustrated in Table 7.3. The On-Time delivery

analysis is shown in Figure 7.5 and the Delayed delivery is displayed in Figure

7.6, respectively.

Figure 7.5 Probability plot for On-Time delivery, S/ N =-10.1og, 0 —I
(I / y, 2)

n

The probability plot analysis in Figure 7.5 clearly suggests that A and two-way

interaction AB, AC, AD, AE and AF contrast are significant positives. Factor A and two-

way interaction effects are shown Table 7.8 below.

79

Table 7.8 S/N of Significant Factors of On-Time Delivery.
On-Time 	 A + 	 A - 	 1 Diff S/N
A 	 101.99 	 89.66 	I	 12.33
B+	 101.50	 102.00 	 -0.5
B- 102.48 	 89,85 	 12.63,
C 	 102.04 	 91.96	 10.08
C- 101.94 	 87,36 	 14.58
D+	 101.71 	 90.26 	 11.45
D- 107.27 	 88.86 	 18.4 1
E+	 101.62 	 91.64 	 9.98
E- 102.36 	 87.68 	 1,1-.68
F+	 101.47 	 86.84 	 14 63
F - 	 102.51 	 92.48 	 10.03

Factor A is the dominant factor, and factors B, C, D, E, F are all smaller

values. After combining with factor A, the two-way interactions AB, AC, AD,

AE, and AF all are increased and become significant. This means the

improvement of the error detection rate A can make a difference. The result is

similar to the average error analysis of mean total profit (y).

Figure 7.6 Probability plot for Delayed delivery, S/ N = -10.1og101/n(Σi1/yi2).

The probability plot analysis in Figure 7.6 clearly suggests that A, E and

80

the two-way interactions AB, AC, AD, AE, AF and EF contrasts are significantly

affects. The factors and two-way interaction effects are shown Table 7.9 below.

Table 7.9 S/N of Significant Factors of Delayed Delivery.
Delayed A + A - Diff S/N

A 94.56 87.48 7.08
B+ 91.91 97.62 -5.71
B- 97.21 88.85 8.36
C+ 90.55 86.10 4.45
C- 98.57 88.87 9.7
D+ 91.14 86.11 5.03
D- 97.98 88.86 9.12
E+ 92.40 89.92 2.48
E- 95.62 85.05 10.57
F+ 94.56 87.30 7.26
F- 94.50 87.66 6.84

The result is similar to the On-Time delivery analysis: factor A is the

dominant factor, and the detection rate is significantly affects the total profit.

Previously it was shown from the S/N probability table that as an overall

conclusion as below:

1. A factor and the error detection rate should be set at its high level at 0.5 in

order to reduce variability and get the maximum total profit.

2. The delivery interval of each release, factor C, has not been shown to

influence either the total profit or the variation of the profit. The level of C

may thus be set to12 or 16 weeks on the basis of reduced operating costs.

3. Factor errors penalty cost F has not been shown to have a significant effect on

variability in the total cost, so in this respect it is arbitrary which level is

chosen. However, since it has a large influence on total average cost, it is

important to choose the level carefully so as to achieve the desired optimal

level.

81

7.6 Decisions of Release and t-Test

In order to make a decision based on the previous analysis, the research is using

the pair wise comparison t-Test to get the confidence interval of our decision. If

the project manager chose to deliver the software on time, there are 64 factorial

situations on release I and 64 situations on delayed delivery.

7.6.1 Comparison of the On-Time Delivery Profit ,u, with the Delayed
Delivery Profit ,u 2

Two means were tested. The hypothesis is to test if the profit of delivery on time

is better than the delayed delivery.

Ho : ,up = 0

0

The d1, d2, d3....dn are the differences between two samples. This situation is

often referred to as the

dt= d/Sd/√n With a degree of freedom n-1

Type I error is designed as a =0.05. The rule to reject if | t| ≥ t1 -α/2 is applied.

The lump sum 64-case hypothesis is shown in Table 7.I0.

Table 7.10 t-Test of On-Time Delivery and Delayed Delivery
t-Test: Pair Wise Comparison

Variable d
Mean 8811
Standard Deviation 110791
Observations 64
df 63
t Stat 0.6362
t Critical two-tail 1.9983
P >0.05

82

From Table 7.10, the pair wise comparison t-Test analysis, there is not greater

than 95% confidence that the On-Time delivery time frame may be better for the

delivery to make more money.

7.6.2 F+ Condition: Comparison of the Delayed Delivery Profit p i with on-
time Delivery Profit ,u 2

In Table 7.11 below, it is clear that under F+ conditions, in most cases Delayed

delivery earns a better total profit than On-Time delivery. The F+ situation means

a high error penalty situation, and if the project manager chooses to deliver

software at Delayed delivery times, the t-Test result is as follows:

Table 7.11 Different Factors between On-Time Delivery and Delayed Delivery
Delayed delivery-
On-Time delivery

A -106,765
B -14,000
C -90,200
D -28,000
E -17,515
F 60,613

AB -120,765
AC -83,683
AD -134,765
AE -121,919
AF -46,153
BC -99,352
BD -42,899
BE -29,153
BF 46,613
CD -113,352
CE -100,505
CF -24,739
DE -43,153
DF 32,613
EF 45,460

Delayed delivery is chosen with F+, from the data of the t-Test, the results will be

shown in Table 7.I2.

83

Table 7.12 t- Test of On-Time delivery and Delayed delivery under F+ condition
t-Test: Pair Wise Comparison

Variable d
Mean -21496
Standard Deviation 103968
Observations 32
df 31
t Stat -1.1512
t Critical two-tail 2.0395
P <0.05

Under the F+, and the penalty cost is $4,000/error, the mean of the

Delayed delivery is better than On-Time delivery. The higher the error penalty the

better to postpone the delivery time to Delayed delivery. However, the absolute

value of —1.1512 is smaller than the critical value 2.0395. It is still not enough to

say the Delayed delivery is better than On-Time delivery under a 95% confidence

interval of the pair wise comparison t-Test.

7.6.3 Comparison of the 12-week Interval Time Profit p i and 16-week

Interval Time Profit p 2

Using the pair wise comparison t-Test, here is a comparison of the result of a I2-

week interval time and a 16-week interval time as shown below. Table 7.13

contains the On-Time delivery results and Table 7.14 contains the Delayed

delivery results.

Table 7.13 t-Test of On-Time Delivery Comnaring 12-week and 16-week Interval
t-Test: Pair Wise Comparison

Variable d
Mean -45343
Standard Deviation 60796
Observations 32
df 31
t Stat -4.1535
t Critical two-tail 2.0395
P >0.05

84

The absolute value of —4.I535 is larger than the critical value 2.0395.

Under On-Time delivery, the delivery intervals of 16-week is better than 12-week

under 95% confident interval of pair wise comparison t-Test.

Table 7.14 t-Test of Delayed Delivery Comparing 12-week and I6-week Interval
t-Test: Pair Wise Comparison

Variable d
Mean 39999
Standard Deviation 10243
Observations 32
df 31
t Stat 21.7424
t Critical two-tail 2.0395
P >0.05

From the above pair wise comparison t-Test, under a delayed condition, the 12-

week interval is clearly better than the 16-week interval, and the confidence interval is

more than 95%. In addition, if under the delayed condition the 12-week interval is much

better than the 16-week interval, the profit is $45,I92. Comparing that profit with

$5,193, there is about a $39,999 improvement. Using the release 1 data, from Appendix

B, comparing the average profits are good in decreasing order: On-Time 16-week >

Delayed 12-week > On-Time 12-week > Delayed 16-week.

7.7 Delivery Case Analysis

Based on the report of Table 7.3, in the dissertation four different delivery condition are

under study.

7.7.1 On-Time Delivery Case Analysis

If On-Time delivery profit > 0 and On-Time delivery profit > Delayed delivery

profit condition is happened. From Table 7.15, we can see that, when the A+

85

condition means a high error detection rate, the On-Time delivery gives a larger

profit.

Table 7.15 Cases in which On-Time Delivery Profit is Positive
On-Time
delivery

Delayed
delivery

A B C D E F Average Average
+ - - - - 152,003 120,809
+ - + - - - 149,949 88,885
+ - - + - - 148,003 92,809
+ - + - - + 146,032 88,883
+ - - - + - 144,518 107,722
+ - - + + - 140,518 79,722
+ + - - - - 140,003 96,809
+ - + + - - 137,949 44,885
+ - + - + - 137,815 75,773
+ + - + - - 136,003 68,809
+ - + + - + 134,032 44,883
+ + + - - - 133,949 56,885
+ - + - + + 133,898 75,770
+ + - - + - 132,518 83,722
+ + + - - + 130,032 56,883
+ - - - - + 129,491 120,706
+ + - + + - 128,518 55,722
+ - + + + - 125,815 31,773
+ - - + - + 125,491 92,706
+ - - - + + 122,006 107,619
+ + + + - - 121,949 12,885
+ - + + + + 121,898 31,770
+ + + - + - 121,815 43,773
+ + + + - + 118,032 12,883
+ - - + + + 118,006 79,619
+ + + - + + 117,898 43,770
+ + - - - + 117,491 96,706
+ + - + - + 113,491 68,706
+ + - - + 110,006 83,619
+ + + + + - 109,815 -227
+ + - + + + 106,006 55,619
+ + + + + + 105,898 -230
- - + - - - 54,958 36,706
- - + + - - 42,958 -7,294
- + + - - - 38,958 4,706
- + + + - - 26,958 -39,294
- - + - + - 5,845 -27,656

86

7.7.2 Delayed Delivery Case Analysis

If the delayed delivery profit > the On-Time delivery profit, the Delayed delivery profit

will be positive. The data are shown in Table 7.I6.

Table 7.16 Delayed Delivery Cases
On-Time
delivery

Delayed
delivery

A B C D E F Average Average Different
- - - - - _ -4,900 63,448 68,348
- - - - - + -167,973 55,505 223,478
- + - - - - -16,900 39,448 56,348
- - + - - + -6,972 35,775 42,747
- - - + - - -8,900 35,448 44,348
- + - - - + -179,973 31,505 211,478
- - - + - + -171,973 27,505 199,478
- + - + - - -20,900 11,448 32,348
- + + - - + -22,972 3,775 26,747
- + - + - + -183,973 3,505 187,478
- - - - + - -28,727 838 29,565

As Table 7.11 shows, some conclusions can be reached:

1. Under the A- condition, the error detection rate is lower.

2. Under the debugging cost is lower (E-) condition.

If the project manager chooses Delayed delivery instead of On-Time

delivery, the On-Time delivery shares the resources with Delayed delivery. The

project manager needs to consider the profit gained from the On-Time delivery

and the loss from Delayed delivery.

87

7.7.3 Determination of the Project Case Analysis

The cases where On-Time delivery profit < 0 and delayed delivery profit < 0 are

analyzed in Table 7.17.

Table 7.17 No profit Cases of On-Time Delivery or Delayed Delivery
On-Time
Delivery

Delayed
Delivery

A B C D E F Average Average
- + + + + + -84,085 -104,588
- + + + + - -22,155 -103,656
- - + + + + -68,085 -72,588
- - + + + - -6,155 -71,656
- + + - + + -72,085 -60,588
- + + - + - -10,155 -59,656
- + - + + + -207,800 -59,105
- + - + + - -44,727 -51,162
- + + + - + -34,972 -40,225
- - - + + + -195,800 -35,105
- + - - + + -203,800 -31,105
- - + - + + -56,085 -28,588
- - - + + - -32,727 -27,162
- + - - + - -40,727 -23,162
- - + + - + -18,972 -8,225
- - - - + + -191,800 -7,105

From Table 7.I7 the following conclusions can be made:

1. Under E+, the debugging cost increase also causes the profit to decrease.

2. B, C, D, and F seem not to strongly impact the termination decision.

88

7.8 Decision Method Applied to Four Real-World Releases

From Chapter 6 about the S-Shaped model, the cases of the Y Service Provision

Company four releases estimated errors and error detection rates are shown in

Table 7.18.

Table 7.18 Parameters of the Four Release Cases
GL' 	 Estimated errors b 	 Estimated error detection

rate

The profit of On-Time
delivery, interval 24

weeks
Phase 1 620 0.30 -10,986
Phase 2 448 0.43 74,010
Phase 3 418 0.43 78,945
Phase 4 463 0.38 1,650

The total profit of the four phases is $143,619. The design of experiments

consider the six decision factors. The translation of the four releases to the profit

model is as derived in the Chapter 6 data analysis. If project manager chooses

C+, the delivery interval of I6 weeks, and C-, the delivery interval of 12 weeks,

the analysis is below in Table 7.I9.

Table 7.19 Profit of the Four Release Cases
A B C D E F On time Delayed

1,888Phase 1 - + + - - + - 1I,486
- + - - - + - 89,987 15,726

Phase 2 + + + - - - 66,975 3,775
+ + - - - - 70,002 28,443

Phase 3 + - + - - - 74,975 44,443
+ - - - - 76,002 60,405

Phase 4 - - + - - - 29,729 I8,353
- - - - - - -2,450 31,724

After combining the profits from Table 7.19, the sorted profits from the cost

model are shown in Table 7.20.

89

Table 7.20 Sorted profit Table of Different Release Policies (1 means on time,
2 means delayed)

Release1Reelase2 Releas3 Release4 Profit 1 Profit 2 Profit 3 Profit 4 Total profit
12-week 2 1 1 2 15,753 70,002 76,002 31,724 193,480
12-week 2 1 2 2 15,753 70,002 60,405 31,724 177,883
16-week 2 1 1 1 1,888 66,975 74,975 29,729 173,566
12-week 2 2 1 2 15,753 48,405 76,002 31,724 171,883
16-week 2 1 1 2 1,888 66,975 74,975 18,353 162,190
16-week 1 1 1 1 -11,486 66,975 74,975 29,729 160,192
12-week 2 1 1 1 15,753 70,002 76,002 -2,450 159,306
12-week 2 2 2 2 15,753 48,405 60,405 31,724 156,286
16-week 1 1 1 2 -11,486 66,975 74,975 18,353 148,816
12-week 2 1 2 1 15,753 70,002 60,405 -2,450 143,709
16-week 2 1 2 1 1,888 66,975 44,443 29,729 143,034
12-week 2 2 1 1 15,753 48,405 76,002 -2,450 137,709
16-week 2 2 1 1 1,888 28,443 74,975 29,729 135,034
16-week 2 1 2 2 1,888 66,975 44,443 18,353 131,658
16-week 1 1 2 1 -11,486 66,975 44,443 29,729 129,660
16-week 2 2 1 2 1,888 28,443 74,975 18,353 123,658
12-week 2 2 2 1 15,753 48,405 60,405 -2,450 122,112
16-week 1 2 1 1 -11,486 28,443 74,975 29,729 121,660
16-week 1 1 2 2 -11,486 66,975 44,443 18,353 118,284
16-week 1 2 1 2 -11,486 28,443 74,975 18,353 110,284
16-week 2 2 2 1 1,888 28,443 44,443 29,729 104,502
16-week 2 2 2 2 1,888 28,443 44,443 18,353 93,126
16-week 1 2 2 1 -11,486 28,443 44,443 29,729 91,128
12-week 1 1 1 2 -89,987 70,002 76,002 31,724 87,741
16-week 1 2 2 2 -11,486 28,443 44,443 18,353 79,752
12-week 1 1 2 2 -89,987 70,002 60,405 31,724 72,144
12-week 1 2 1 2 -89,987 48,405 76,002 31,724 66,144
12-week 1 1 1 1 -89,987 70,002 76,002 -2,450 53,567
12-week 1 2 2 2 -89,987 48,405 60,405 31,724 50,547
12-week 1 1 2 1 -89,987 70,002 60,405 -2,450 37,970
12-week 1 2 1 1 -89,987 48,405 76,002 -2,450 31,970
12-week 1 2 2 1 -89,987 48,405 60,405 -2,450 16,373

The best profit occurs when the delivery interval becomes 12 weeks.

7.9 Comparison with Zhang's Model

In the paper by X. Zhang and H. Pham, (1998) the expected total software cost

can be expressed as

E(T) = C1 T+C2m(T)uy+C3[1-R(x/T)] Where

90

E(T) expected total cost of a software by time T

Cl	 software test cost per unit time

C2	 cost of removing each error per unit time during testing

C3	 risk cost due to system failure

Uy	 expected time to remove an error

R(x/T) reliability function of software by time T for a mission time x

Case 1

Using Zhang's data input into the Multiple-Release Model:

Case 1: C1=$600, C2=$20, Cw=$10, C3=$20,000, Cp =$2000,00 and x= I hour.

The calculation results are shown in Table 7.21.

Table 7.21 In Zhang's Model, the Market Drop Rate at 0.01/hour and 0.05/hour
Delivery after
T hours Testing

Zhang's model Multiple Release,
0.01 drop rate

Multiple Release
0.05 drop rate

48 58,000 22,195 -361,804
49 58,911 24,681 -367,318
50 59,183 26,663 -37,336
51 59,356 28,191 -379,808
52 59,441 29,307 -393,948
53 * 59,448 30,051 -393,948
54 59,386 30,460 -401,539
55 59,261 * 30,566 -409,433
56 59,082 30,399 -417,600

The optimal delivery time of the Multiple-Release Model at drop 0.01/hour

is 55 hours is similar to Zhang's model of 53 hours. However, if the market drop

rate is put in as 0.05/hour, the software company may lose $393,948. The

Multiple-Release model can reflect the software market drop and give a better

release decision.

91

Case 2

Case 2 uses the software development costs from the X Juice Company case input

into Zhang's model. Case 2 C1 =$5000, C2=$1,000, C3=$4,000, and the Uy=0 if

the project manager does not consider the market value drop factor P. For Y

Service Provision Company case release 1.

a = 620

=0.3

tit = 620(1- e -")
r
 e
- (0.3)t

- e- (0.3)(T + x)]
R = (x 1 t) = e- (620)1

Put P=0 and the mission time at T to next release 2T so the software

reliability during the T and 2T is R(2T/T).

The above data are input into Zhang's model. The results are shown in

Table 7.22, the data from the proposed method into Zhang's model.

Table 7.22 Optimal Release Time for C1=$5000, C2=$1,000, C3=$4,000
Release
Time T*(week)

C1T C2.m(T).Uy C3[1-R(x/T)] Expected Total
cost E(T)

1 5,000 160,693 4,000 169,693
2 10,000 279,737 4,000 293,737
3 15,000 367,927 4,000 386,927
4 20,000 433,260 4,000 457,260
5 25,000 481,659 4,000 510,659
6 30,000 517,515 4,000 551,515
7 35,000 544,077 4,000 583,077
8 40,000 563,755 4,000 607,755
9 45,000 578,333 4,000 627,333
10 50,000 589,132 4,000 643,132
11 55,000 597,132 4,000 656,132
12 60,000 603,059 4,000 667,059
13 65,000 607,450 4,000 676,450
14 70,000 610,703 4,000 684,702
15 75,000 613,112 3,996 692,108
16 80,000 614,898 3,975 698,872

92

Clearly, the first week has the lowest total cost, $I69,692. The reason is

that Zhang's model counts the penalty of the reliability at most at $4,000, so the

rather low penalty cost can almost be ignored compared with the testing Cost C 1

and the debugging cost C2. The delivery error penalty is low and the testing and

debugging costs are high. Earlier delivery will be better. Also, Zhang's model

uses the next hour to judge the cost of the error penalty. The Multiple-Release

Model uses the next delivery time frame to get the error penalty cost.

7.10 Comparison with Zheng's model

Defined: n1,t = min{ n: ψ(n, 	,t) - Φ(n ,t) <0},

n2,t = min{n: Cp - min{ Φ(n, t), ψ(n,t)} < 0}

If N 1 , t 	N	 N 2, t	 then release the system. Where

(I) (n, t) discounted fixing and penalty cost after release if the project manager

stops testing at t;

• (N, t)	 the discounted cost-to-go if the project manager continues testing

system at time t.

Φ (n, t) = C R .E [Xn (t)](1-e-(a+b)Ti/1-e-(a+b)

• (n,t) = Ct+ Cr E[Dn(t)] if no variance

b	 error detection rate

X = x ,	 expected number of errors detected up to time t

a	 discount factor

93

CR	 penalty cost

Cr	 bug removal cost

Ct	 testing cost

Dn (t)	 number of errors within a unit of time following t

TL	 warranty period

Inputting the data from the proposed model gets Table 7.20:

a =0 is the discount; factor b = 0.3 the detection rate; the expected errors E [Xn (t)] =620;

m(t) = 620[1 - (1+ bt)e-bt],

Cr= $1,000,Ct= $5,000,CR= $4,000,Dn = m(t+1)- m(t) ,TL =6 months

The calculation results are shown in Table 7.23.

Table 7.23 Shaohui Zheng's Model
Weeks M (t) Φ (n,t) ψ (n,t)

1 22.90 828,936 57,678
2 75.58 463,972 70,482
3 141.06 307,736 73,110
4 209.17 215,226 69,977
5 274.15 154,098 63,893
6 333.04 111,703 56,598
7 384.64 81,558 49,128
8 428.77 59,819 42,064
9 465.83 44,004 35,698
10 496.53 32,436 30,141
11 521.67 23,943 25,403
12 542.07 17,691 21,432
13 558.51 13,081 18,149
14 571.65 9,677 15,464
15 582.12 7,161 13,288
16 590.41 5,301 11,536
17 596.94 3,925 10,136
18 602.08 2,907 9,023
19 606.10 2,153 8,141
20 609.24 1,594 7,447
21 611.69 1,181 6,901
22 613.59 875 6,474

94

Clearly, the cost to stop testing c1:0 (n, t) is larger than the cost IF (n, t) of

continuous testing up to 11 months. The better decision is to deliver the software

at I2 months. The drawback of Zheng's model is the decision policy. From

Zheng's model, when the testing cost is larger than the penalty cost, the software

is delivered. However, the first match unit time may not always be the optimal

decision. The later unit time may generate better profit than the first match unit

time.

CHAPTER 8

CONCLUSIONS AND RECOMMENDATIONS

According to the objectives of the research, the software cost analysis is derived

from the case study of Chapter 6. The Multiple-Release model and software

lifecycle conditions were analyzed in Chapter 7. Chapter 8 contains the

conclusions and future research direction.

8.1 Software Cost Analysis

From the ABC analysis, the personnel expense is around 88% of the total

software project cost. A decrease in the personnel cost can significantly lower

the total project cost. The estimated cost of the X Juice Company software staff

is $112,000 compared with the consultant firm staff estimated cost of $65,000.

The software project of out-sourcing to consultant firms is a good solution to

lower the total costs. Considering the software testing cost from the consultant

firm, the hourly rate is around $32.5 /hour ($65,000/2000 hours per year). The

weekly rate is around $1,300 per staff. It is a relatively small portion of the

project cost; however, the testing quality impacts the total software project profit

dramatically. It is a better policy to out-source the testing portion to a consultant

firm.

8.2 Multiple-Release and Life Cycle Analysis

Applying the Multiple-Release models into the 4-phase Y Service Provision

95

96

Company case, the optimal delivery timing is a delivery interval of 12 weeks

between each release. The delivery time is one year, so the first release is one

year + I2 weeks (three months). In the same development resource, each phase,

divided into two releases, can improve the profit from $143,619 to $I93,480 in a

2-year delivery time frame. This also saves three months, total delivery time.

The delivery time frame is shown in Table 8.I.

Table 8.1 Optimal Release Intervals of the four-Release Cases
YY/MM PHASE 1 PHASE 2 PHASE 3 PHASE 4

Release 1 Release2 Release 3 Release 4 Relase 5 Release 6 Release 7 Release 8
97/12 5
98/1 24
98/2 2
98/3 37 5
98/4 34 24
98/5 38 2
98/6 50 37 5
98/7 23 34 43
98/8 16 38 42
98/9 15 50 26 5
98/10 20 23 21 43
98/11 11 16 19 42
98/12 5 15 19 26 6
99/1 2 20 21 21 16
99/2 0 11 13 19 42
99/3 2 5 7 19 41 6
99/4 2 5 21 51 16
99/5 0 3 13 11 42
99/6 2 0 7 10 41 3
99/7 0 5 12 51 9
99/8 1 3 7 11 54
99/9 0 1 10 42 3
99/10 0 12 22 9
99/11 1 7 28 54
99/12 1 34 42
00/1 12 22
00/2 12 28
00/3 1 34
00/4 1 12
00/5 12
00/6 1
00/7 1
00/8
00/9
00/10

97

The above total delivery time from I2/1997 to 07/2000 can save 3 months'

software delivery time. Factor A-, the error detection rate/week, is the dominant factor

compared with the 0.5 error detection rate and 0.3 error detection rate. There is an

$I88,92I benefit improvement. The total profit is $386,959 of these four-phase releases.

As of the improvement of the factors D and E, the testing cost and the debugging cost, it

is usual to hire lower cost contractors or out-source projects to other companies or other

countries.

From the above analysis, the results of the 4-phased releases are that during the

software project development of the first release, the error number is large and the error

detection rate is slow. The later release can prevent some errors and get a better error

detection rate.

The End of Software Life Cycle Conditions

From the analysis in Chapter 7, the project manager can know that under

some conditions, no matter whether there is On-Time delivery of the software or

delayed delivery of the software, the project cannot get any profit. The situation

summary is below:

1. Lower A-: the detection rate is the dominant factor to terminate the project

from the profit point of view.

2. E+: the debugging cost is higher, so it is not worthwhile to put resources to

do the debugging.

3. B, C, D, and F: seem not to strongly impact the termination decision.

98

Comparison with Existing Software Cost Models

Zhang's model

In Zhang's model the software delivery penalty comes from software

reliability. After testing and debugging, and improving the reliability, the penalty

cost will become $4,000 times (1- reliability). However, Zheng's model is not

valid for large commercial software like an Internet case. In large commercial

software, it is almost impossible to prevent the errors from happening, however,

during a set of periods, for example, one month or one year. Zhang's model gives

you a similar result -- $4,000. In the Y Service Provision Company case, there

are 620 errors in the first releases. It should be 620 errors x $4,000 = $2,480,000

penalty cost. If Zheng's software cost model is followed, the company loses

$2,476,000. If the cost information from Zheng's model is applied, e.g. to input

Zhang's example, the result comes from Multiple-Release model in Case 1:

C1=$600, C2=$20, Cw=$10, C3=$20,000, Cp =$2000,00 an x= I.0 hour, the

optimal delivery time is 55 hours which is similar to Zhang's model of 53 hours.

However, if the market drop rate was put in at 0.05/hour, clearly, when the

software value is under a larger market drop, no profit will be made for the

release. Zhang's model cannot reflect the market value. Also, the testing cost of

$600 and the debugging cost $20 are relatively low, so Zhang's model can be

driven to continuous testing. So the pretty low penalty cost almost can be

ignored. Also Zhang's model uses the next hour to judge the total cost. The

proposed mode considers the cost during one release and should use the delivery

interval as the total cost.

99

Zheng's model

Zheng's model only considers the to-go cost (n, t) and the penalty cost

0:1) (n, t) without the market value drop, and the detection rate will change during

the warranty period. Another drawback is that the estimation errors number "a "

and the detection rate "b" are unknown beforehand. Users cannot make good

decisions using a small number of error data. If the error data have not come to

steady state, this may give users a wrong direction.

8.3 Future Research

Obviously, software technology updates very quickly. The life cycle of the

software is shortened excessively. Managerial staffs must know the cost and use

the budget wisely. The presented methodology can be used to help them make the

best decisions by offering detailed and accurate cost analysis results for a

complex software project.

Not much existing research effort has resulted in Software Quality

Assurance (SQA), so further research may address the issues of SQA.

Exploration of the issue of quality and opportunity cost may be a future research

topic. For a sustainable software industry firm, the human quality is a key

component to success, so proper training and motivation are needed.

The relationship between the training cost and performance output needs

to be explored further. To summarize the further research to construct the whole

Multiple-Release decision model, the following directions are pointed out:

• Propose the spectrum of the software's bug-solving difficulty and look into

100

the relationship of difficulty level and debugging/fixing time.

• Catalogue errors as to severity level and penalty cost index to provide

reference for a future software maintenance and for measuring warranty or

fixing response time when working out contracts with customers.

• Study the testing group's performance as its members increase.

• Study the relative effects between the financial incentive and course training

in improving the performance of the software development staff.

In future research, as described above, software reliability and cost

measurement can be integrated to maximize the business profit under limited

resource requirements. Different programming languages used as software

development tools, for example JAVA or C++ that are widely used today, may

have different error patterns. The exploration into the issue of errors or problems

that are generated by the programming language can be a good direction for the

next generation language's implementation.

Going back to the basic software reliability theory of Geol's Non-

Homogeneous Poisson Process (NHPP) model (1979), which is the instructed

model and widely used in industrial fields, NHPP is not the only choice of

modeling the error data behavior, despite its wide popularity. Other methods,

which are presented by other researchers, may derive different error data

parameters and produce different release decision results. So, comparing and

trying different methods may lead to a better choice that satisfies the software

industry's specific needs. For a researcher, to provide a more robust and easy to

use model to match the new programming languages and hardware architectures

101

is a direction for further research. The application of decision support or expert

system needs to relocate resources and train people to use it. It needs extra costs

and human resources to create a user-friendly expert system. The issue of how to

integrate it into the company's mainstream operation needs to be addressed in the

future.

APPENDIX A

NHPP DATA FITTING

The following are the NHPP data fitting and cost simulation programs.

//This program input the errors data into NHPP fitting method
#include<iostream.h>
#include<stdlib.h>
extern void powl(int, float[] , float&, float&);
extern void m(int, float&, float&);

int main(){
floatrelease_1[]={0,10,58,93,167,234,310,409,455,486,515,555,576,586,58

9,589,592};
float
release_ 2[]={0,9,95,l78,229,270,309,346,388,414,427,437,442,442,44
2,4431;
float release_ 3[]={0,12,43,127,208,307,330,350,373,387,389};

float release_4[]={0,5,23,131,214,257,312,379,402,426,427,428};
int n;
float a_release,b_release=0;
int data_1=16;
int data_2=15;
int data_3=10;
int data 4=11;

// printf("The on time delivery a= estimated errors number, b=
learning factor\n");
for (int j=1; j<=data_1;j++)
{
a_release=500;//defaul a
b_release=0.1;//defaul a
pow1(j, release_1, a_release, b_release);

// 	 printf("total data= %3d the estimate a = %12.2f 	 the
estimate b = %12.2f\n",j,a_release, b_release);

printf("total data= %3d the estimate a = %12.2f 	 the estimate
b = %12.2f\n",j,a_release, b_release);
m(data_1, a_release, b_release);
// printf("\n\nThe release 2 a= estimated errors number, b=

learning factor\n\n");
for (j=1; j<=data_2;j++)
{
a_release=500;//defaul a
powl(j, release_2, a_release, b_release);
// printf("total data= %3d the estimate a = %12.2f 	 the

estimate b = %12.2f\n",j,a_release, b_release);

printf("\n\ntotal data= %3d the estimate a = %12.2f 	 the
estimate b = %12.2f\n",j,a_release, b_release);
m(data2, a_release, b_release);
// printf("\n\nThe release 3 a= estimated errors number, b=
learning factor\n\n");
for (j=1; j<=data_3;j++)

102

103

{
a_release=500;//defaul a
pow1(j, release_3, a_release, b_release);
//printf("total data= %3d the estimate a = %12.2f 	 the

estimate b = %12.2f\n",j,a_release, b_release);

printf("\n\ntotal data= %3d the estimate a = %12.2f 	 the
estimate b = %12.2f\n",j,a_release, b_release);
m(data_3, a release, b_release);
//printf("\n\nThe release 4 a= estimated errors number, b=

learning factor\n\n");
for (j=1; j<=data_4;j++)

a_release=500;//defaul a
pow1(j, release_4, a_release, b_release);
//printf("total data= %3d the estimate a = %12.2f 	 the

estimate b = %12.2f\n",j,a_release, b_release);

printf("\n\ntotal data= %3d the estimate a = %12.2f 	 the
estimate b = %12.2f\n",j,a_release, b_release);
m(data4, a_release, b_release);

// cout«"total data= "«j«" the estimate a = "«a_release«"
the estimate b = "«b_release«endl;
return 0;

//This program will limit the data parameters a and b
#include <stdlib.h>
#include <iostream.h>
#include <math.h>
void pow1(int in, float y[], float& inl, float& in2)

float yn,module_1, module_2,module_3, module_4;
float temp_1,temp_2,temp_3,temp_4,temp_5,temp_6;
yn=y[in];
int tn=in;
float testnew=0;
float test=100000;
float b;
for (float test_num = 0; test_num<=1000; test_num++)

in2= test_num/1000;
//cout «"in2 "«in2«endl;

module_1=yn*tn*tn*exp(-1*in2*tn);
//cout «"module_1 "«module_1«endl;
module_2=1-(1+in2*tn)*exp(-1*in2*tn);
//cout «"module_2 "«module_2«endl;
module_3=module_l/module_2;
//cout «"module_3 "«module_3«endl;
float temp=0;

for (int num =1; num<=in; num++)
{

int num1=num-1;
temp_1=(y[num]-y[num1]);
temp_2=num*num*exp(-1*in2*num);

104

temp_3=(num1)*(num1)*exp(-1*in2*num1);
temp_4=(1+in2*(num1))*exp(-1*in2*num1);
temp_5=(1+in2*(num))*exp(-1*in2*num);
temp=temp+(temp_1*(temp_2-temp_3))/(temp_4-

temp_5);

module_4=temp;
// cout «"module 4 "«module 4«endl;

testnew=module_4-module_3;
//cout «"newtest "«testnew«endl;
//cout «"test "«test«endl;

if (abs(testnew)< test)

test=abs(testnew);
b=in2;

//cout «"b= "«b«endl;
temp_6=1-(1+b*in)*exp(-1*b*in);

// cout «"temp_6 "«temp_6«endl;
float a=inl;
inl=yn/temp_6;
in2=b;

//The program will generate the up and low case of the 6 factors
#include <stdlib.h>
#include <iostream.h>
#include <math.h>

extern void m2(int,float, float,float,int,int,int,int);
float randl(int);

int main() {

int initial time;

float estimate_b[]={0,0.5 1 0.3};
float P[]={0,0.02,0.01}; 	 //profit decay rate /week
int Ti[]={0,16,12};
int C1[] = {0,5000,3000};

//Testing cost/week , 5 workers X 20 dollars /hours X 8 hours X
5 days/week
int C2H={0,1000,500}; 	 // Debugging cost/case , 	 25 workers X
50 dollars
int C3[]={0,4000,2000); 	 //penalty cost/errors, 	 system shut
down

char simple[]={'*','+','-'};

int Cr=0;
int release, ii, i2, i3, i4, i5, i6, i7;
int Decision_Time=0;
float Cost_Cl;
float Cost_C2;
float Cost_C3;
float Total_Profit;
float estimate_ a[]={0,500,600,700};
float k=1; // the sd of the data close to error estimation;

105

float kl;
int pre_seed=15;
int err=600;//center of the errors

for (int ra=1; ra<=3; ra++) //randon number to make the range

k=randl(rand()+pre_seed);
kl=k/65536;
if (k1 > 	 0.5)
// {
kl=k1-0.5;

k1=-1*k1;
//}

estimate_a[ra]=err+k1*err ;
printf("estimate a= %10.8f\n",estimate_a[ra]);

for (i2=1; i2<=2; i2++)
for (i3=1; i3<=2; i3++)

for (i4=1; i4<=2; i4++)
for (i5=1; i5<=2; i5++)
for (i6=1; i6<=2; i6++)
for (i7=1; i7<=2; i7++)

for (release=1;release<=2;release++)

for (il=l; il<=3; il++)

if (11==1&&release==1)

if (i1==1&&release==1)
printf("%2c 	 :%2c 	 :%2c 	 :%2c 	 :%2c:

%2c",simple[i2],simple[i3],simple[i4],simp
le [i5] , simple[i6],simple[i7]);

//printf("%3d,%10.2f,%10.2f,%10.2f,%3d,%3d,%3d,%3d", 	 release,
estimate_a [il]
,estimate_b[i2],P[i3],Ti[i4],Cl[i5],C2[i6],C3[i7]);

m2(release,
estimate_a[il],estimate_b[i2],P[i3],Ti[i4],C1[i5],C2[i6],C3[i 7]

if (i1==3&&release==2)
printf("\n");

}}

float randl(int pseed)

static short seed=1;
seed =(pseed *25173 +3849) % 65536;
return (seed);

//The program will generate the up and low case of the 6 factors
#include <stdlib.h>
#include <iostream.h>
#include <math.h>

extern void ml(int,float, float,float,int,int,int,int);

int main() {

int initial time;

106

float estimate_ a[]={0,400,500,600};
float estimate_b[]={0,0.4,0.3};
float P[]={0,0 005,0.001}; //profit decay rate /week
int Ti[]={0,12,10};
int C1[] = {0,4000,3000};

//Testing cost/week , 5 workers X 20 dollars /hours X 8 hours X
5 days/week
int C2[]={0,1000,500}; 	 // Debugging cost/case , 	 25 workers X
50 dollars
int C3[]={0,5000,2500}; 	 //penalty cost/errors, 	 system shut
down

char simple[]={ 1 *','+','-'};

int Cr=0;
int release,i1,i2,i3,i4,i5,i6,i7;
int Decision_Time=0;
float Cost_C1;
float Cost_C2;
float Cost_C3;
float Total Profit;

for (i2=1; i2<=2; i2++)
for (i3=1; i3<=2; i3++)

for (i4=1; i4<=2; i4++)
for (i5=1; i5<=2; i5++)

for (i6=1; i6<=2; i6++)
for (i7=1; i7<=2; i7++)
for (release=l;release<=2;release++)

for (i1=1; il<=3; i1++)

if (i1==1&&release==1)
printf("%2c 	 :%2c 	 :%2c 	 :%2c 	 :%2c:

%2c",simple[i2],simple[i3],simple[i4],simple[i5],
simple[i6],simple[i7]);

//printf("%3d,%10.2f,%10.2f,%10.2f,%3d,%3d,%3d,%3d", 	 release,
estimate_a[i1],estimate_b[i2],P[i3],Ti[i4],Cl[i5],C2[i6],C3[i7]);

ml(release,
estimate_a[il],estimate_b[i2],P[i3],Ti[i4],Cl[i5],C2[i6],C3[i7]);

if (i1==3&&release==2)
printf("\n");

}}

//This program will input the factors from money.0 and calculate
the cost
//and total profit
#include <stdlib.h>
#include <iostream.h>
#include <math.h>

int initial_time;
int C1=30000;	 //Testing cost/week , 	 25 workers X 30 dolloars
/hours X 8 hou
rs X 5 days/week
int C2=1250; 	 // Debugging cost/case , 25 workers X 50 dollars
int C3=2000; 	 //penalty cost/errors, wait for next release
int C4=40000; 	 //penalty cost/errors, system shut down

107

float Profit; //profit per release
int contract=1000000;
int Ti=16/4;
int Delivery_Time=12;
float Cost_Cl;
float Cost_C2;
float Cost_C3;
float Cost_C4; //installation fee
float Total_Profit;

void m2(int N, float estimate_a, float estimate_b,float Pint
Ti,int Cl,int C2,i
nt C3)
{
// initial time=in;
float estimatem[50];

for (int num =1; num<=Ti*2; num++)
{

estimate_m[num]= 	 estimate_a*(1-(1+estimate_b*num)*exp(-
1*estimate_b*num));

// 	 printf("\nTime= 	 %3d 	 estimate m=
n

_ 	 %5.2f 	 ,
num,estimate_m[num]);

} 	 //end of num

// for (int N =1; N<=2; N++)
// {

//printf("\n The Realease (1 mean on time, 2 mean delay to next)
%3d 	 ", N);
Cost_Cl= C1*(Delivery_Time+Ti*N);
//Cost_Cl= C1*(Ti*N-Decision_Time);

// printf("\nThe total testing 	 Cost_Cl= %10.2f ", Cost_C1);
// 	 Cost_C2=	 C2*(estimate_m[(initial_time+1+Ti*N)]-
estimate_m[initial_time+1]);
Cost_C2= C2*(estimate_m[(Delivery_Time+Ti*N)]);
// printf("\nThe total debug 	 Cost_C2= %10.2f", Cost_C2);
Cost_C3= C3*(estimate_a-estimate_m[Delivery_Time])*Ti/48;
//printf("\nThe total penalty 	 Cost_C3= %10.2f", Cost_C3);
Cost_C4= C4*48/Ti;
//printf("\nThe total penalty 	 Cost_C3= %10.2f", Cost_C3);
float rate =P*Ti*N;
Profit=contract-contract*rate;
// printf("\nThe profit = %10.2f", Profit);
Total_Profit= Profit-(Cost_C1+Cost_C2+Cost_C3+CostC4);
//printf("\nTotal_Profit= %10.2f\n", Total_Profit);
printf(": %10.2f", Total_Profit);

//}

}

APPENDIX B

DESIGN OF EXPERIMENTS RESULTS

The following are the total profits values generated from the design of experiments.

Table B.1 Factorial Results of On-Time Delivery.
A BC D El F P1 P21 P3Average Si Log (S) S/N

+ + + + + + 96,690 98,673 122,332 105898 14267 4.15 100
+ + + + + - 101,731 103,471 124,244 109815 12526 4.10 101
+ + + + - + 112,304 113,537 128,254 118032 8874 3.95 101
+ + + + - - 117,34 118,336 130,166 121949 7133 3.85 102
+ + + - + + 108,69r 110,673 134,332 117898 14267 4.15 101
+ + + - + - 113,731 115,471 136,244 121815 12526 4.10 102
+ + + - - + 124,304 125,537 140,254 130032 8874 3.95 102
+ + + - - - 129,34 130,336 142,166 133949 7133 3.85 103
+ + - + + + 88,797 92,502 136,719 106006 26663 4.43 100
+ + - + + - 117,766 120,081 147,706 128518 16658 4.22 102
+ + - + - + 98,429 101,672 140,372 113491 23336 4,37 101
+ + - + - - 127,398 129,251 151,359 136003 13331 4.12 103
+ + - - + + 92,797 96,502 140,719 110006 26663 4.43 100
+ + - - + - 121,766 124,081 151,706 132518 16658 4.22 102
+ + - - - + 102,42* 105,672 144,372 117491 23336 4.37 101
+ + - - - - 131,39' 133,251 155,359 140003 13331 4.12 103
+ - + + + + 112,691 114,673 138,332 121898 14267 4.15 102
+ - + + + - 117,731 119,471 140,244 125815 12526 4.10 102
+ - + + - + 128,304 129,537 144,254 134032 8874 3.95 103
+ - + + - - 133,34 134,336 146,166 137949 7133 3.85 103
+ - + - + + 124,691 126,673 150,332 133898 14267 4.15 102
+ - + - + - 129,731 131,471 152,244 137815 12526 4.10 103
+ - + - - + 140,304 141,537 156,254 146032 8874 3.95 103
+ - + - - - 145,34 146,336 158,166 149949 7133 3.85 103
+ - - + + + 100,797 104,502 148,719 118006 26663 4.43 101
+ - - + + - 129,766 132,081 159,706 140518 16658 4.22 103
+ - - + - + 110,429 113,672 152,372 125491 23336 4.37 102
+ - - + - - 139,398 141,251 163,359 148003 13331 4.12 103
+ - - - + + 104,797 108,502 152,719 122006 26663 4.43 101
+ - - - + - 133,766 136,081 163,706 144518 16658 4.22 103
+ - - - - + 114,429 117,672 156,372 129491 23336 4.37 102
+ - - - - - 143,39: 145,251 167,359 152003 13331 4.12 104

108

Table B.1 (Continued
A B CI D El F P1 P2 P3Average SLog (S) S/N

- + + + + + -147,789 -134,074 29,608 -84085 98699 4.99 94
- + + + + - -68,095 -58,204 59,833 -22155 71176 4.85 96
- + + + - + -84,588 -73,906 53,578 -34972 76872 4.89 97
- + + + - - -4,895 1,963 83,804 26958 49350 4.69 70
- + + - + + -135,789 -122,074 41,608 -72085 98699 4.99 96
- + + - + - -56,095 -46,204 71,833 -10155 71176 4.85 95
- + + - - + -72,588 -61,906 65,578 -22972 76872 4.89 96
- + + - - - 7,106 13,963 95,804 38958 49350 4.69 81
- + - + + + -315,023 -291,938 -16,440-207800 166124 5.22 89
- + - + + - -105,173 -92,159 63,151 -44727 93651 4.97 98
- + - + - + -284,361 -262,747 -4,810-183973 155535 5.19 78
- + - + - - -74,511 -62,969 74,780 -20900 83062 4.92 97
- + - - + + -311,023 -287,938 -12,440-203800 166124 5.22 87
- + - - + - -101,173 -88,159 67,151 -40727 93651 4.97 98
- + - - - + -280,361 -258,747 -810-179973 155535 5.19 63
- + - - - - -70,511 -58,969 78,780 -16900 83062 4.92 97
- - + + + + -131,789 -118,074 45,608 -68085 98699 4.99 97
- - + + + - -52,095 -42,204 75,833 -6155 71176 4.85 94
- - + + - + -68,588 -57,906 69,578 -18972 76872 4.89 96
- - + + - - 11,106 17,963 99,804 42958 49350 4.69 84
- - + - + + -119,789 -106,074 57,608 -56085 98699 4.99 98
- - + - + - -40,095 -30,204 87,833 5845 71176 4.85 92
- - + - - + -56,588 -45,906 81,578 -6972 76872 4.89 95
- - + - - - 23,106 29,963 111,804 54958 49350 4.69 90
- - - + + + -303,023 -279,938 -4,440-195800 166124 5.22 78
- - - + + - -93,173 -80,159 75,151 -32727 93651 4.97 98
- - - + - + -272,361 -250,747 7,190-171973 155535 5.19 82
- - - + - - -62,511 -50,969 86,780 -8900 83062 4.92 96
- - - - + + -299,023 -275,938 -440-191800 166124 5.22 58
- - - - + - -89,173 -76,159 79,151 -28727 93651 4.97 98
- - - - - + -268,361 -246,747 11,190-167973 155535 5.19 86
- - - - - - -58,511 -46,969 90,780 -4900 83062 4.92 95

109

110

Table B.2 Factorial Results of Delayed Delivery.
A B C D E F P1 P2 P3 Average S Log (S) S/N

+ + + + + + -7,754 -6,134 13,198 -230 11657 4.07 -230
+ + + + + - -7,750 -6,131 13,199 -227 11656 4.07 -227
+ + + + - + 9,120 9,930 19,598 12883 5830 3.77 12883
+ + + + - - 9,123 9,933 19,599 12885 5829 3.77 12885
+ + + - + + 36,246 37,866 57,198 43770 11657 4.07 43770
+ + + - + - 36,250 37,869 57,199 43773 11656 4.07 43773
+ + + - - + 53,120 53,930 63,598 56883 5830 3.77 56883
+ + + - - - 53,123 53,933 63,599 56885 5829 3.77 56885
+ + - + + + 48,051 49,680 69,124 55619 11724 4.07 55619
+ + - + + - 48,184 49,807 69,175 55722 11678 4.07 55722
+ + - + - + 64,892 65,713 75,511 68706 5908 3.77 68706
+ + - + - - 65,026 65,840 75,562 68809 5862 3.77 68809
+ + - - + + 76,051 77,680 97,124 83619 11724 4.07 83619
+ + - - + - 76,184 77,807 97,175 83722 11678 4.07 83722
+ + - - - + 92,892 93,713 103,511 96706 5908 3.77 96706
+ + - - - - 93,026 93,840 103,562 96809 5862 3.77 96809
+ - + + + + 24,246 25,866 45,198 31770 11657 4.07 31770
+ - + + + - 24,250 25,869 45,199 31773 11656 4.07 31773
+ - + + - + 41,120 41,930 51,598 44883 5830 3.77 44883
+ _ + + - - 41,123 41,933 51,599 44885 5829 3.77 44885
+ - + - + + 68,246 69,866 89,198 75770 11657 4.07 75770
+ - + - + - 68,250 69,869 89,199 75773 11656 4.07 75773
+ - + - - + 85,120 85,930 95,598 88883 5830 3.77 88883
+ - + - - - 85,123 85,933 95,599 88885 5829 3.77 88885
+ - - + + + 72,051 73,680 93,124 79619 11724 4.07 79619
+ - - + + - 72,184 73,807 93,175 79722 11678 4.07 79722
+ - - + - + 88,892 89,713 99,511 92706 5908 3.77 92706
+ - - + - - 89,026 89,840 99,562 92809 5862 3.77 92809
+ - - - + + 100,051 101,680 121,124 107619 11724 4.07 107619
+ - - - + - 100,184 101,807 121,175 107722 11678 4.07 107722
+ - - - - + 116,892 117,713 127,511 120706 5908 3.77 120706

111

Table B.2 (Continoued
ABC D E F P1 P2 P3Average S Log (S) S/N
- + + + + + -142,046-133,981 -37,736-104588 58036 4.76 -104588
- + + + + - -140,848-132,840 -37,281-103656 57622 4.76 -103656
- + + + - + -59,222 -55,132 -6,322 -40225 29432 4.47 -40225
- + + + - - -58,023 -53,991 -5,868 -39294 29018 4.46 -39294
- + + - + + -98,046 -89,981 6,264 -60588 58036 4.76 -60588
- + + - + - -96,848 -88,840 6,719 -59656 57622 4.76 -59656
- + + - - + -15,222 -11,132 37,678 3775 29432 4.47 3775
- + + - - - -14,023 -9,991 38,132 4706 29018 4.46 4706
- + - + + + -99,580 -90,866 13,131 -59105 62710 4.80 -59105
- + - + + - -89,359 -81,135 17,008 -51162 59180 4.77 -51162
- + - + - + -19,011 -14,164 43,689 3505 34885 4.54 3505
- + - + - - -8,790 -4,433 47,566 11448 31355 4.50 11448
- + - - + + -71,580 -62,866 41,131 -31105 62710 4.80 -31105
- + - - + - -61,359 -53,135 45,008 -23162 59180 4.77 -23162
- + - - - + 8,989 13,836 71,689 31505 34885 4.54 31505
- + - - - - 19,210 23,567 75,566 39448 31355 4,50 39448
- - + + + + -110,046-101,981 -5,736 -72588 58036 4.76 -72588
- - + + + - -108,848-100,840 -5,281 -71656 57622 4.76 -71656
- - + + - + -27,222 -23,132 25,678 -8225 29432 4.47 -8225
- - + + - - -26,023 -21,991 26,132 -7294 . 29018 4.46 -7294
- - + - + + -66,046 -57,981 38,264 -28588 - 58036 4.76 -28588
- - + - + - -64,848 -56,840 38,719 -27656 57622 4.76 -27656
- - + - - + 16,778 20,868 69,678 35775 29432 4.47 35775
- - + - - - 17,977 22,009 70,132 36706 29018 4.46 36706
- - - + + + -75,580 -66,866 37,131 -3510562710 4.80 -35105
- - - + + - -65,359 -57,135 41,008 -27162: 59180 4.77 -27162
- - - + - + 4,989 9,836 67,689 27505 34885 4.54 27505
- - - + - - 15,210 19,567 71,566 35448 31355 4.50 35448
- - - - + + -47,580 -38,866 65,131 -7105 62710 4.80 -7105
- - - - + - -37,359 -29,135 69,008 838 59180 4.77 838
- - - - - + 32,989 37,836 95,689 5550534885 4.54 55505
- - - - - - 43,210 47,567 99,566 63448 31355 4.50 63448

REFERENCES

Abdou, G. and Tereshkovich, W. (200I). "Optimal Operating Parameters in High Speed
Milling Operation for Aluminum," International Journal of Production Research
Vol. 39, No. 10, pp. 2I97-2214.

Abdou, G. H. (I989). "Effects of Operating Rates on the Performance of
Manufacturing Systems: A Case Study," Computers in Industry, 13, pp.
123-134.

Abdou, G. and Dutta, S. P. (1990). "An Integrated Approach to Facilities Layout
using Expert System," International Journal of Production Research, Vol. 28,
No. 4, pp. 685-708.

Adamopouloas, G. (I999). "Job Sequencing with Uncertain and Controllable
Processing Times," Information Transactions in Operation Research,. 6, pp.
483-493.

Alfredesson, P. and Verrijdt, J. (1999). "Modeling Emergency Supply
Flexibility in a Two-Echelon Inventory System," Management Science, Vol.
45, No.10, pp. I416-1431.

Andreas, C. (I999). "Electronic Commerce and the Banking Industry: The
Requirement and Opportunities for New Payment Systems Using the
Internet," Journal of Computer-Mediated Communication, Vol. 1, pp. 1-I7.

Ansari, A., Essegaeir, S. and Kohli, R. (2000). "Internet Recommendation
Systems," Journal of Marketing Research, Vol. 37, pp. 363-375.

Ashrafi, N., Berman, 0. and Cutler, M. (1994). "Optimal Design of Software-
Systems Using N-Version Programming," IEEE Transactions on Reliability,
Vol. 43, No. 2, pp. 344-350.

Bank, R., Gordon, D. and Slaughter, A. (1998). "Software Development
Practices, Software Complexity, and Software Maintenance Performance: A
Field Study, " Management Science, Vol. 44, pp. 433-450.

Bock, G. (1999). "Getting Started with an E-Business Strategy." E-Business
Strategies & Solutions, pp. I0-12.

112

113

Buzby, B. (1999). "Cyclical Schedules for One-warehouse, Multi-Retailer
Systems with Dynamic Demands," Journal of the Operational Research
Society, 50, pp. 850-856.

Cachon, G. (1999). "Managing Supply Chain Demand Variability with
Scheduled Ordering Policies," Management Science, Vol. 45, No. 6, pp.
843-856

Cavano, J.P., and McCall J.A. (1978). "A Framework for the Measurement of
Software Quality," Production ACM Software Quality Assurance Workshop,
pp. 133-I39.

Chen, F., Drezher, Z., Ryan, J. K. and Simchi-Levi, D. (2000). "Quantifying the
Bullwhip Effect in a Simple Supply Chain: The Impact of Forecasting, Lead
Times and Information," Management Science, Vol. 46, No. 3, pp. 436-443.

Crosby, P. (1979), Quality is Free, McGraw-Hill.

Dahan, E. and Srinivasan, V. (2000). "The Predictive Power of Internet-Based
Product Concept Testing Using Visual Depiction and Animation," Journal
of Product Innovation Management, 17, pp. 99-I09.

Dahlstrom, R. and Nygaard (1999). "An Empirical Investigation of Ex Post
Transaction Costs in Franchised Distribution Channel," Journal of
Marketing Research, Vol. 37, pp. I60-I70.

DeVor, R., Graves, R. and Milles, J.J. (1997). "Agile Manufacturing Research:
Accomplishments and Opportunities," IIE Transactions, 10, pp. 813-823.

Elsayed, A. E. and Thomas, 0. B. (1994). Analysis and Control of Production
System, Second Edition, Prentice Hall.

Goel, A.L. and Okumoto, K. (1979). "Time-dependent error detection rate model
for software and other performance measures," IEEE Trans. Reliability,
Vol. R-28.

Grady, R.B. and Caswell, D.L. (1987). Software Metrics: Establishing a
Company- Wide Program, Prentice-Hall.

Halstead, M. (1977). Elements of Software Science, North Holland.

114

Hansen, D. & Mowen, M. (I997). Cost Management, South—Western College
Publishing.

Hoffman, D. L., Novak, T. and Chatterjee, P. (2000). "Commercial Scenarios for
the Web: Opportunities and Challenges," Journal of Computer-Mediated
Communication, Vol. 1, No. 3, pp. I-17.

Hogue, A. Y. and Lohse, G. L. (1999). "An Information Search Cost Perspective
for Designing Interface For Electronic Commerce," Journal of Marketing
Research, Vol. 36, pp. 387-394.

Hou, R., Kuo, S. and Chang, Y. (1997). "Optimal Release Times for Software
Systems with Scheduled Delivery Time Based on the HGDM," IEEE
Transaction On Computers, Vol. 46, No. 2, pp. 216-220.

Huang, E., Cheng, F.T. and Yang, H.C. (1999). "Development of a
Collaborative and Event-Driven Supply Chain Information System Using
Mobile Object Technology," in Proc. 1999 IEEE Int. Conf. on Robotics and
Automation, Detroit, Michigan, U.S.A., pp. 1776-1781.

Iannino, A., et al. (1984). "Criteria for Software Reliability Model
Comparisons," IEEE Transaction On Software Engineering, Vol. SE-10,
No. 6, 1984, pp. 687-691.

Iyer, S. and Nagi, R. (1997). "Automated Retrieval and Ranking of Similar Parts
in Agile Manufacturing," IIE Transaction, 10, pp. 859-876.

Jahanian, F., and Mok, A.K. (1986). "Safety Analysis of Timing Properties of
Real-Time Systems," IEEE Trans. Software Engineering, Vol. SE-12, No.
9, pp. 890-904.

Jo, A., Sterling, L.S., Quinn, R.D., Busey, G.C. and Kim, Y. (1997). "An Agile
Manufacturing Workcell Design," IIE Transactions, 10, pp. 901-909.

Kapur, K.C. and Lamberson, L.R. (I997). Reliability in Engineering Design,
John Wiley & Sons.

115

Khoshgoftaar, T. M. and Allen, E. (2000). "A Practical Classification-Rule for
Software-Quality Models," IEEE Transaction On Reliability, Vol. 49, No.
2, pp. 209-216.

Khoshgoftaar,	 T.,	 Ellen,	 E.,	 Jones,	 W.D.	 and Hudepohl,	 J.P.
(2000)."Classification-Tree Models of Software-Quality Over Multiple
Releases," IEEE Trans on Reliability, Vol. 49, No. 1, pp.4-II.

Knight, J.C., and Ammenn, P.E. (1985). "An Experimental Evaluation of Simple
Methods for Seeding Program Errors," Procedure 8 th International
Conference of Software Engineering, IEEE, London, pp. 337-342.

Lee, H., So, K. and Tang, C. (2000). "The Value of Information Sharing in a
Two-Level Supply Chain," Management Science, Vol. 46, No. 5, pp. 626-
643.

Lee, H. A. (2000). "Heuristic for Scheduling on Nonidentical Machine to
Minimize Tardy Jobs," Intonation Journal of Industrial Engineering, 7(3),
pp. 188-194.

Leveson, N.G. (1986). "Software Safety: Why, What, and How," ACM
Computing Surveys, Vol. 18, No. 2, pp. 125-163.

Leveson, N.G., and Stolzy, J.L. (1987). "Safety Analysis using petri Nets,"
IEEE Trans. Software Engineering, Vol. SE-13, No.3, pp. 386-397.

Lin, H. and Chen, K. (I993). "Nonhomogeneous Poisson Process Software-
Debugging Models With Linear Dependence," IEEE Transaction on
Reliability, Vol. 42, No. 4, pp. 613-617.

MacCormack, A., Verganti, R., and Iansiti, B.(200I). "Developing Products on
Internet Time: The Anatomy of a Flexible Development Process,"
Management Science, Vol. 47, No. 1, pp. 133-I50.

Maghsoodllo, S., Brown, D.B. and Lin, C. (1992). "A Reliability & Cost
Analysis of an Automatic Prototype Generator Test Paradigm," IEEE
Transactions on Reliability, Vol. 41, No. 4, pp. 547-553.

116

Magrab, E. (2001). An Engineer's Guide to Matlab, Prentice Hall.

McCall, J. P. and Walters, G. (1977). "Factors in Software Quality," three
volumes, NTIS AD-A049-014, 015, 055.

McCutcheon, D. and Staurt, F. (2000). "Issues in the Choices of Supplier
Alliance Partners," Journal of Operations Management, 18, pp. 279-301.

Merat, F., Sargent, D.M., Barendt, N.A., Velasco, V.B. and Jr. Podgurski, A.
(1999). "Editors Business and the Internet," IEEE Engineering
Management Review, Winter, pp. 6-24.

Michael, P. and Chao, X. (1999). Operations Scheduling With Application in
Manufacturing and Service, Irwin McGraw-Hill.

Mills, H.D. (1972). "On the Statistical Validation of Computer Programs,"
FSC72: 6015, IBM Federal Systems Division.

Miller, D.R. and Sofer, A. (1985). "Completely Monotone Regression Estimates
for Software Failure Rates," Procedure 8 th International Conference of
Software Engineering, IEEE, London, August 1985, pp. 343-348.

Moranda, P. (1981). "Error Detection Model for Application during Software
Development," IEEE Transaction On Reliability, Vol. R-30, No. 4, pp. 309-
312.

Munson, J. and Khoshgoftaar, T. M. (1992). "The Detection of Fault-Prone
Programs," IEEE Trans. On Software Engineering, Vol. 18, No. 5, pp. 423-
432.

Musa, J.D., Iannino, A. and Okumoto, K. (1987) Engineering and Managing
Software with Reliability Measures, McGraw-Hill.

Nordmann, L. and Pham, H. (1999). "Weighted Voting System," IEEE
Transaction on Reliability, Vol. 48, No. 1, pp. 42-49.

Noushin, A. and Berman, 0. (1992). "Optimization Models for Selection of
Programs, Considering Cost & Reliability," IEEE Transaction on
Reliability. Vol. 41, No. 2, pp. 281-287.

117

Nouwan, J. and Harry, B. (2000). "Living Apart Together in Electronic
Commerce: The Use of Information and Communication Technology to
Create Network Organization," Journal of Computer-Mediated
Communication, Vol. 1, No. 3, pp. 1-12.

Ohtera, H. (1999). "Optimum Software-Release Time Considering an Error-
Detection Phenomenon during Operation," IEEE Transaction Vol. 39, No.
5, pp. 596-599.

Paulk, M. C., Curtis, B. Chissis, M.B. and Weber, C.V. (1993). "Capability
Maturity Model, Version 1.1," IEEE Software, Vol. 10, No. 4, pp. 18-27.

Pham, H., Nordman, L. and Zhang, X. (1999). "A General Imperfect-Software-
Debugging Model with S-Shaped Fault-Detection Rate," IEEE Transactions
on Reliability, Vol. 48, No. 2, pp. 169-175.

Pham, H. and Zhang, X. (1999). " Software Release Policies with Gain in
Reliability Justifying the Costs," Annals of Software Engineering 8, pp.
147-166.

Picot, A., Bortenlaenger, C. and Roehrl, H. (2000). "The Automation of Capital
Markets," Journal of Computer-Mediated Communication, Vol. 1, No. 3,
pp. 1-20.

Ross, S. M. (1993). Probability Model, Fifth Edition Academic Press, Inc.

Sahin, I. and Zahhedi, F. (1999). "Control Limit Policies for Warranty,
Maintenance and Upgrade of Software System," School of Business
Administration University of Wisconsin-Milwaukee, pp. 1-31.

Sarkar, M. B., Butler, B. and Steinfield, C. (2000). "Intermediaries and
Cybermediaries: A Continuing Role for Mediating Players in the Electronic
Marketplace," Journal of Computer-Mediated Communication, Vol. 1, No.
3, pp. 1-15.

Saysar, M. and Allahverdi, A. (1999). "Algorithm for Scheduling Jobs on Two
Serials Duplicate Stations," Internal Transaction of Operation Reserach. 6,
pp. 411-422.

Schneidewind, N. F. (1997). "Reliability Modeling for Safety-Critical
Software." IEEE Trans. On Reliability. Vol. 46, No. 1, pp. 88-98.

118

Schulmeyer, G.C., and McManus, J.I. (1987). Handbook of Software Quality
Assurance, Van Nostrand Reinhold.

Seybold, P., Marshak, D. and Patricia, S. (2000). "Group's E-commerce Service
Evolves into E-Business Strategies & Solution," E-Business Strategies &
Solution/Opinion.

Shin, H., Collier, D.A. and Wilson, D. (2000). "Supply Management Orientation
and Supplier/Buyer Performance," Journal of Operation Management, 18,
pp. 317-333.

Shooman, M. (1983). Software Engineering, McGraw-Hill.

Smids, C., Stutzke, M. and Stoddard, R. W. (1998). "Software Reliability
Modeling: An Approach to Early Reliability Prediction," IEEE Transactions
on Reliability, Vol. 47, No. 3, pp. 268-278.

Software Engineering Standards, 3d ed., IEEE, 1989.

Song, L. and Nagi, R. (1997). "Design and Implementation of a Virtue
Information System for Agile Manufacturing," IIE Transaction, 10, pp.
839-857.

Steinfield, C., Kraut, R. and Plummer, A. (2000). "The Impact of
Interorganization Networks on Buyer-Seller Relationship," Journal of
Computer-Mediated Communication, Vol. 1, No. 3, pp. 1-13.

Sueyoshi, T. (1999). "DEA Duality on Returns to Scale (RTS) in Production and
Cost Analyses: An Occurrence of Multiple Solutions and Differences
Between Production-Based and Cost-Based RTS Estimations," Management
Science, Vol. 45, No. 11, pp. 1593-1608.

Sun, H.W., Zhou, M.C. and Wolf, C. (2001),"A Methodology for Software Development
Cost Analysis in Information-Based Manufacturing", 2001 IEEE International
Conference on Robotics and Automation. Seoul, Korea

Trachtenberg, M. (1990). "A General Theory of Software-Reliability Modeling,"
IEEE Trans. On Reliability, Vol. 39, No. 1, pp. 92-96.

Tropicana Jersey City Information Technology. January 3, 2000, pp. 1-28.

119

Tsay, A. (1999). "The Quantity Flexibility Contract and Supplier-Customer
Incentives," Management Science, Vol. 45, No. 10, pp. 1339-1358.

Upadhyaya, S. (1993). "Analysis of Noncherent Systems and an Architecture for
the Computation of the System Reliability," IEEE Transaction on
Computer, Vol. 42, No. 4, pp. 483-493.

Venkatraman, N. and Henderson, J.C. (1999). "Real Strategies for Virtual
Organizing," IEEE Engineering Management Review, Winter, pp. 26-40.

Veseley, W.E., et al. (1981). Fault Tree Handbook, NUREG-0492, U.S. Nuclear
Regulatory Commission.

Whitney, D. (1995). "Agile pathfinders in the Aircraft and Automobile
Industrial," A Process Report MIT.

Wigand, R. T. and Benjamin, R. I. (2000). "Electronic Commerce: Effects on
Electronic Markets," Journal of Computer-Mediated Communication, Vol.
1, No. 3, pp. 1-10.

Wu, N., Mao, N. and Qian, Y. (1999). "An Approach to Partner Selection in
Agile Manufacture," Journal of Intelligent Manufacturing, 10, pp. 519-529.

Yamada, S. (1998). "Quantitative Assessment Models for Software
Safety/Reliability," Electronics and Communications in Japan, Part 2, Vol.
81(5), pp. 215-222.

Yamada, S., and Ohba, M. and Osaki, S. (1983). "S-Shaped Reliability Growth
Modeling for Software Error Detection," IEEE Transaction Vol. R-32, No.
5, pp. 475-478.

Yamada, S. and Osaki, S. (1985). "Discrete Software Reliability Growth
Models," Applied Stochastic Models and Data Analysis, Vol. 1, 1, pp. 65-
77.

Zhang, X. and H. Pham,(1998). " A Software Cost Model with Error Removal
times and Risk Costs," International Journal on System Science, Vol. 29(4),
pp134-145.

	New Jersey Institute of Technology
	Digital Commons @ NJIT
	Spring 2002

	Analysis of costs and delivery intervals for multiple-release software
	High-way Sun
	Recommended Citation

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract (1 of 2)
	Abstract (2 of 2)

	Title Page
	Copyright Page
	Approval Page
	Biographical Sketch
	Table of Contents (1 of 4)
	Table of Contents (2 of 4)
	Table of Contents (3 of 4)
	Table of Contents (4 of 4)
	Chapter 1: Introduction
	Chapter 2: Literature Review
	Chapter 3: Research Objectives
	Chapter 4: Scope of the Multiple-Release Model
	Chapter 5: Software Multiple-Release Methodology
	Chapter 6: Case Studies of Software Cost Analysis and the Multiple-Release Model
	Chapter 7: Analysis of Results
	Chapter 8: Conclusions and Recommendations
	Appendix A: NHPP Data Fitting
	Appendix B: Design of Experiments Results
	References

	List of Tables (1 of 2)
	List of Tables (2 of 2)

	List of Figures (1 of 2)
	List of Figures (2 of 2)

	Nomenclature (1 of 3)
	Nomenclature (2 of 3)
	Nomenclature (3 of 3)

