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ABSTRACT

EXPERIMENTAL AND THEORETICAL STUDY OF
AN INTEGRATED SILICON MACH-ZEHNDER INTERFEROMETER

FOR CHEMICAL SENSING APPLICATIONS

by
Yew Fong Hor

This thesis involves the design, fabrication and characterization of an integrated optical

waveguide sensor. Prior to fabrication, design parameters of the waveguide need to be

determined and optimized. The waveguide parameters such as waveguide dimension and

the refractive index of the core and cladding are obtained from the single-mode cutoff

frequency calculated using either analytical or numerical methods. In this thesis, details

of analytical calculations to determine the cutoff frequency in terms of the waveguide

parameters will be presented. The method discussed here is Marcatili's approximation.

The purpose is to solve the scalar wave equation derived from Maxwell's equations

because it describes the mode properties inside the waveguides. The Finite Element

Method is used to simulate the electric and magnetic fields inside the waveguides and to

determine the propagation characteristics in optical waveguides. This method is suited for

problems involving complicated geometries and variable index of refraction.

Fabrication of the Integrated Mach-Zehnder Interferometer sensor involves

several important standard processes such as Chemical Vapor Deposition (CVD) for thin

film fabrication, photolithography for mask transfer, and etching for ridge waveguide

formation. The detailed fabrication procedures of the tested Mach-Zehnder Interferometer

sensors are discussed.



After completion of the sensor fabrication processes, the characterizations were

carried out for the thin film of Si02 and PSG, the waveguides and the Y-junction

separately. The waveguides were analyzed to make sure that the sensors are working as

expected. The experimental testing on the separated waveguide portions of the first batch

Integrated Mach-Zehnder Interferometer (MZI) sensors are described. These testing

procedures were also performed for the subsequent fabricated batches of the integrated

MZI sensors until optimum performance is achieved.

A new concept has been proposed for chemical sensing applications. The novelty

of the approach is mainly based on utilizing the multi-wavelength or broadband source

instead of single wavelength input to the integrated MZI. The shifting of output spectra

resulting from the interference has shown the ability of the MZI to analyze the different

concentrations of a chemical analyte. The sensitivity of the sensor is also determined

from the plot of intensity versus concentration, which is around 0.013 (%m1) -1 and 0.007

(%m1) -1 for the white light source and the 1.5 μm broadband source, respectively, while

the lowest detectable concentration of ethanol for the sensor detection is around 8% using

a intensity variation method and 0.6% using a peak wavelength variation method.
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CHAPTER 1

INTRODUCTION

1.1 Objectives

This study involves the design, fabrication and characterization of an integrated optical

waveguide sensor, which will provide a practical means for chemical sensing and

monitoring. Though the emphasis of the topic is experimental research and development

of the pollutant sensor, the main technical content focuses on the waveguide design and

waveguide characterization. The integrated waveguide sensor, specifically an integrated

Mach-Zehnder Interferometer sensor was fabricated partially in NJIT's class 10

cleanroom.

The objective of this dissertation is to provide knowledgeable insight on

analytical design in addition to computational design of square and rectangular dielectric

waveguides, which contribute to the foundation of the integrated Mach-Zehnder

Interferometer optical sensor. This is a technically important topic since planar optical

waveguides are the key devices to construct integrated optical circuits and semiconductor

lasers. Generally, the rectangular waveguides consist of a square or rectangular core

surrounded by a cladding with a lower refractive index than that of the core. Mode

properties of the light propagation along the longitudinal axis of the waveguide is

determined and discussed thoroughly because of its significant dependence on the

waveguide design and functionality. Cutoff wavelengths are fundamental design

constraints that have traditionally been difficult to calculate. Hence, using computational

techniques to solve the problem is one of the major achievements in the design of the

1
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integrated waveguide technology. Here, the proposed computational method for the

purpose is the Finite Element Method, and the analytical method used is Marcatili's

Approximation.

Experiments are presented to show the performance ability of the sensor using

different light sources and various chemical concentrations. The relation of the intensity

to the change in wavelengths and concentrations are reported. Future implementation can

be achieved to demonstrate chemical species selectivity based on the output intensity

variation of the sensor or absorption due to a chemical at certain wavelengths, which is

also known as the fingerprint of that chemical.

Essentially, this dissertation comprises of two major parts:

1. Fabrication and testing of the integrated Mach-Zehnder Interferometer

sensors, and

2. Numerical simulations using the finite element method.

1.2 Waveguide Mode Analysis

Several methods of the analytical and computational design analysis of the waveguides

are discussed briefly below for comparison and illustrative purposes. The advantages as

well as the shortcomings of each method are also discussed so that prospect selection of

the analysis can be chosen wisely. Although the analytical methods are approximate

methods, which predicted spurious modes at cutoff, the essential light wave transmission

mechanism in the waveguides can be fully investigated. Some of the methods are only

capable of approximating the solution for step-index profile and simple waveguide

geometry, namely, the planar optical waveguides. Complicated cross-sectional
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waveguide geometries such as rib waveguides can be treated precisely by computational

methods. However, computational methods have drawback of complexity in

programming, and require considerably large memory and hard disk space to compensate

for the running time.

1.2.1 Approximation Methods

Marcatili's Approximation 

A famous approximation method for solving the scalar wave equation of the form

for the rectangular or square cross-sections with a step index profile is due to Macatili 1 .

The accuracy of this method improves with the increasing values of the normalized

frequency but it provides reasonable estimates for the range of the normalized

frequencies in the practical single-mode region. This method is appropriate for solving a

square or rectangular waveguides with symmetrical cross-section such as an embedded

waveguides or buried channel waveguides. This approximation will be discussed in detail

in Chapter 2 since it is the method used for the mode analysis of the Mach-Zehnder

waveguides design for the project. The Marcatili's method predicts a spurious cutoff

wavelength for the fundamental mode at low frequency. Furthermore, it has the

deficiency for determining the modal fields, especially near the corners of the core-

cladding interface.

Effective Index Method

The ridge waveguide is difficult to analyze by the Marcatili's method since the

waveguide structure is complicated to deal with by the division of waveguide. In order to
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analyze ridge waveguide, one should use numerical methods; such as finite element

method and the finite difference method. The effective index method 2 is an analytical

method applicable to complicated waveguides such as ridge waveguides and diffused

waveguides in LiNbO3. The accuracy of the effective index method is almost the same as

that of Marcatili's method; but effective index method gives a larger estimation than the

accuracy solution, whereas Marcatili's method gives a lower estimation than the accurate

solution, respectively. The effective index method avoids the spurious cutoff problem of

the Marcatili's approach, but suffers from the same deficiency for determining the modal

fields.

Gaussian Approximation 

Gaussian Approximation is another form of approximation that using the theory of

variational methods. 3 '4 '5 In this approach, a relatively simple functional dependence is

assumed as a trial function for the spatial variation of the fundamental mode. The

fundamental mode field of the weakly guiding waveguide has an approximately parabolic

variation within the core, and an exponentially decreasing form in the uniform cladding.

This suggests that a Gaussian function is a close approximation to the exact solution over

both regions, since it is approximately parabolic close to the waveguide axis. The basis of

the Gaussian Approximation is to obtain an equation for the optimal spot size of the

Gaussian function by requiring the solution to be stationary. One of the disadvantages of

this Gaussian Approximation, like the Marcatili's approximation, is the prediction of a

spurious cutoff of the fundamental mode of the square waveguide.
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1.2.2 Computational/Numerical Methods

Point-Matching Method

The basic idea of the Point-Matching Method 6 is that, for regions of constant refractive

index, there are discrete, separable solutions of the scalar wave equation in cylindrical

polar coordinates based on the central axis of the waveguide as the origin in the cross

section. Each solution is the product of a Bessel function (giving the radial dependence)

and trigonometric function (giving the azimuthally dependence). The general solution in

each region consists of the sum over the basic set of these products. For computational

purposes, two limited expansions are used: one for the core and one for the cladding.

These two expressions and their first derivatives are matched at N points on the core-

cladding interface and a system of linear equations is derived for the expansion

coefficients and propagation constants; this is solved using standard numerical

techniques. The disadvantages of the point matching method are the limitation to the

step-profile waveguides only, and a very large number of coefficients are required in the

expansions close to cutoff.

Harmonic Boundary Method

The Harmonic Boundary Method 2 is based on an expansion of the field in terms of a

Fourier-Bessel series in the core and cladding. This method is similar to the Point

Matching Method used by Goell6 except the procedure used to transform the solutions of

the scalar wave equation into a set of coupled linear equations. The Point Matching

Method used point matching of the field on the boundary for evaluation of the mode field

while the Harmonic Boundary Method expanded the field into a Fourier series and a set

of linear equations for the coefficients of the decomposition is generated, by matching the
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core and the cladding fields. This method also has the advantage of being able to

determine the modal field at cutoff by replacing the Fourier-Bessel expansion over the

cladding by cylindrical harmonics, i.e. solutions of the Laplace equation in cylindrical

polar coordinates. The major drawback of this method is that, like the Point Matching

Method, it is restricted to step-index profile waveguiding structures.

Beam Propagation Method (BPM) 

This method solves the scalar wave equation by incremental propagation along the

length of a waveguide. It can deal with graded index profile and arbitrary cross-sectional

geometries. BPM was originally derived for longitudinally dependent variations, such as

Y-junctions, but is highly inefficient for translationally invariant waveguides. This

drawback is a consequence of the basic algorithm being based on the full three-

dimensional scalar wave equation, rather than the separable two-dimensional equation for

the transverse modal dependence. Numerous improved forms have been developed to

increase the accuracy, such as Finite-Difference Beam Propagation Method (FDBPM) 8 ,

Finite-Integration Beam Propagation Method (FIBPM) 9 and Finite-Element Beam

Propagation Method (FEBPM)10  to specifically solve a variety of waveguide and device

propagation problems.

Fourier Decomposition Method and Modified Fourier Decomposition Method (MFDM) 

This Fourier Decomposition Method" is based on a decomposition of the modal field

into complete set of sinusoidal basis functions, and can be readily applied to the square or

rectangular waveguides. In other words, it uses the orthogonality of trigonometric

functions to reduce the scalar wave equation to a system of linear equations. An attraction

of this algorithm is the subdivision of the domain into rectangular regions where the
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integration, related to scalar products of trigonometric functions can be performed

analytically. This method has several advantages over other numerical approaches,

namely, it is easy to implement because it relies on well-known Fourier analysis, and it

gives the modal fields of the waveguides in terms on a single expansion defined on the

whole domain which simplifies the programming task. However, it has the drawback of

becoming less and less accurate as a mode approaches its cutoff wavelength, i.e. this

method can only be used to calculate modal field distributions that are reasonably well

confined to the core region. As the cutoff is approached, the modal fields spread farther

into the cladding and the implicit assumption of zero fields at the boundary requires a

prohibitively large bounding box.

A modified method from the original version avoids this limitation by mapping

the infinite cross-sectional x-y plane of the waveguide into a finite domain, and then

applying the Fourier Decomposition. This method, labeled as Modified Fourier

Decomposition Method (MFDM), 12 leads to accurate values of cutoff wavelength for

most waveguiding structures.

Finite Difference Method (FDM) 

The Finite Difference Method 13 , 14 , 15 is the oldest known method for solving partial

differential equations with boundary conditions, and has been used with success in the

analysis of non-homogeneous waveguides, because it subdivides the domain into many

subregions, where the partial differential equation is replaced by finite difference

equation. The system of linear equations obtained is simpler than those obtained by the

Finite Element Method (FEM), and the solution is free from numerical artifact (the so-

called spurious modes) that is observed when using FEM.
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Finite Element Method (FEM) 

The Finite Element Method has been very successful in the numerical solution of the

partial differential equations because of its ability to model the most intricate domain

geometries.16  It extends the concept of the Finite Difference Method subdivision of the

domain to arbitrary element shapes on which the basic shape functions are defined. The

advantage of the FEM is that it can determine modal parameters accurately close to

cutoff.17,18,19 Another important advantage is the ability to treat geometrically complex

structures and it can be applied to material with non-constant properties.

1.3 Integrated Mach-Zehnder Interferometric Sensor

Optical sensors exhibit interesting properties for sensing chemical species and their

concentration. The most significant advantages of optical sensors are: immunity to

electromagnetic interference, noninteractivity with the sensor environment, and high

sensitivity when using optics fundamentals such as interferometry. 20

Silicon-based integrated optics technology is a really attractive way for the

development of optical sensors. 21 It has a lot of advantageous characteristics such as:

advanced processing technology associated with the substrate and the materials used for

the optical waveguides, the possibility of obtaining efficient coupling between optical

fibers and waveguides, and the possible association of optical and electrical circuits on

the same chip.

Several integrated optical sensors based on the Mach-Zehnder interferometer and

using different technologies have been reported. For example, Vadekar et al. 22 have

presented a novel pressure sensor designed using the concept of the integrated silicon
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Mach-Zehnder Interferometer. The integrated MZI waveguides are of the ARROW type,

which is the antiresonant reflecting optical waveguide, instead of the classic total internal

reflection waveguide. The main feature of the ARROW is that it allows for low index

core waveguide on a high index substrate without thick isolation layer. Another feature is

its high polarization selectivity. The pressure measurement mechanism is achieved by

having the sampling arm of the interferometer fabricated on a thin silicon diaphragm, as

depicted in Figure 1.1. When an applied pressure deflects the diaphragm, it will cause a

change in the optical path length, and hence changing the phase shift with respect to the

reference arm.

Figure 1.1 Schematic of an integrated Mach-Zehnder Interferometer pressure sensor.

Naghski et al. 23 reported another innovative configuration for the integrated

Mach-Zehnder Interferometric electric field sensor device utilizing the electro-optics

effect for sensing electric fields, as illustrated in Figure 1.2. In his study, lithium niobate

is used as the waveguides material instead of silicon, and the sensing mechanism using a

reversed-poled crystal orientation region. The device operates by immersion in an electric
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field, and the reverse poling of the sensing arm of the interferometer provides opposing

optical phase changes in the two interferometer arms.

Figure 1.2 Schematic of an integrated Mach-Zehnder Interferometer for sensing
electric field.

Another typical application using the integrated Mach-Zehnder Interferometer is

the immunosensor, 24 , 25 which uses the evanescent field to detect small refractive changes

at the sampling arm. The key idea is to have an antibody receptor surface on the

sampling arm to directly detect the binding of the antigen to the receptor surface. Similar

ideology is found in the biosensor, the humidity sensor, and the refractometer. 26,27,28

This project suggests an integrated symmetry Mach-Zehnder Interferometer to

serve as the basis for chemical sensing application. Kherrat et al. 29 have reported a

chemical sensor based on the integrated planar waveguide designed as a Mach-Zehnder

interferometer with taper end instead of a Y-junction. The change in the refractive index



11

due to the absorption of the organic molecules at the sensing arm causes phase shift at the

interferometer, which is proportional to the change in chemical concentration.

Most of the experimental techniques using integrated MZI sensor for sensing

purposes involved only the single wavelength source. The limitation of using single

wavelength source is that, it confines the application of the sensor only to single analyte

detection. In this dissertation, a new idea is presented by using multi-wavelength source 3°

as the input light source instead of the single wavelength source. The choice of multi-

wavelength source leads to the possibility of multiple chemicals concentration detection,

as different chemical species exhibits its own characteristic fingerprint.



CHAPTER 2

WAVEGUIDE DESIGN, TESTING AND FABRICATION

Prior to fabrication, design parameters of the waveguide need to be determined and

optimized. The waveguide parameters such as waveguide dimension and the refractive

index of the core and the cladding are obtained from the single-mode cutoff frequency

calculated using either the analytical or the numerical methods. In this section, the details

of analytical calculation to determine the cutoff in terms of the waveguide parameters

will be presented. The method discussed here is Marcatili's approximation since it is the

easiest among the other analytical techniques. The purpose is to solve the scalar wave

equation derived from Maxwell's equations because it describes the mode properties

inside the waveguides.

The wave equation is the key to understand the electromagnetic field propagation

inside a dielectric waveguide. The solution to this eigen value problem displays the

properties of the mode propagation (i.e. the eigenvalue) and the field distribution (i.e. the

eigen function), provided that the boundary conditions are satisfied. The solution can be

solved analytically using Marcatili's approximation together with the waveguide

parameters for the TM or TE modes. The cutoff condition for the single mode

propagation, which is determined from the eigenvalue, provides the basic idea of the

single mode waveguide design. However, the solution is not exact as discussed in

Chapter 1. The exact solution and field distribution can be fully studied by Finite Element

Method as discussed in Chapter 3.

12
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Fabrication of the Integrated Mach-Zehnder Interferometer sensor involves

several important standard processes like Chemical Vapor Deposition (CVD) for thin

film fabrication, photolithography for mask transfer, and etching for rib waveguide

formation. The detailed fabrication procedures of the tested Mach-Zehnder Interferometer

sensors are discussed. After completion of the sensor fabrication processes, the

functionality testing experiments were carried out for the thin film of Si02 and PSG, the

waveguides and the Y-junction separately.

Before going through the details of analytical design of the rectangular waveguides,

the structure of the Mazh-Zehnder Interferometer (MZI) is discussed with the comparison

between the bulk optics setup of MZI and the integrated optical waveguide MZI. The

important part of the interferometer structure is the sensing area, where the sensing

mechanism takes part, which contributes to the functionality as a sensor.

2.1 Analogous of the Mach-Zehnder Interferometers

The construction and structure of the interferometer as well as the operating function

involving light source and phase shift device is described in this section. The analogous

between the bulk optics and integrated optics gives the basic concept of the evolution of

the novel integrated Mach-Zehnder Interferometer Sensor.

The Mach-Zehnder Interferometer is basically used to measure variations of

refractive index, and hence of density, in compressible gas flows. The arrangement of the

Mach-Zehnder Interferometer using lenses, beam-splitters, and mirrors, is shown in

Figure 2.1. Light from a source S in the focal plane of a well-corrected lens L 1 is divided

at the semireflecting surface Al of a plane-parallel glass plate D1 into two beams, which,
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after reflection at plane mirrors MI, M2, are recombined at the semireflecting surface A2

of a second identical plane-parallel plate D2, and emerge to a well-corrected collecting

lens L2. The four reflecting surfaces are usually arranged to be approximately parallel,

with their centers at the corners of a parallelogram. Suppose the source is a point source

of quasi-monochromatic light. Let W, be a plane wave-front in the beam between M2 and

D2, W, the corresponding plane wave-front in the beam between M2 and D2, WI, the

virtual plane wave-front between M2 and D2 which would emerge from D2 coincident

and cophasal with WI . At a point P on W2, the virtual phase difference between the

emergent beams is then

where h =PN is the normal distance from P to 1/17, ', A, is the wavelength of the light

source, and n is the refractive index of the medium between W2 and W, ,.

Figure 2.1 The Mach-Zehnder Interferometer constructed from bulk optics.



Figure 2.2 The structure of Integrated Mach-Zehnder Interferometer.

The integrated Mach-Zehnder interferometer is constructed from two planar

single-mode waveguides connected by two 3 dB Y-splitters at both ends as illustrated in

Figure 2.2. The sampling arm of the interferometer is exposed directly to the chemical

species, while a protective oxide buffer layer covers the reference arm from the influence

of the liquid as shown in Figure 2.3. Laser light is coupled into the waveguide and split

into the reference and sampling arms by the Y-splitter configuration. The presence of the

analyte in proximity of the sampling waveguide causes an effective index change within

the sampling waveguide arm. Therefore, a phase difference, AO, exists between the two

arms. When light from the two interferometer-arms recombines, constructive or

destructive interference occurs and the light intensity exiting the interferometer, h, ratio

to the input light /0 , is given by:

15
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where L is the length of the waveguide arms, .1,, is the wavelength of the incident light

and n is the refractive indices with the subscripts refer to sampling arm and reference arm

respectively. If the two arms of the interferometer are the same length (L1=L2=L), then

equation (2.2) becomes

Figure 2.3 Side view of the configuration of the Integrated Mach-Zehnder
Interferometer shows the exposed sampling arm.



17

2.2 Wave Theory of Optical Waveguides

Optical waveguide analysis requires the explicit understanding of the electrodynamics of

the propagation waves, i.e. the electromagnetic field. The spatial dependence of the

electric field E (x, y, z) and the magnetic field H (x, y, z) of the optical waveguide is

determined by Maxwell's equations, and have the following forms for source-free,

dielectric media31

where co and ,u., are the free space dielectric constant and permeability respectively, and

n is the refractive index profile.

The refractive index profile resulting from the fabrication process determines the

propagation along the waveguides. For simplicity, we assume that the waveguides are

isotropic and non-absorbing, so the profile n(x, y, z) is a real scalar function. Since the

waveguides are translationally invariant, the index profile does not change along the z-

axis, so the profile has only transverse dependence, i.e. n = n(x,y).

The independence of the refractive index on the longitudinal coordinates allows

the electric field E and the magnetic field H vectors to be written in the separable forms
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where the E and H are the vectors contain the transverse dependence of the electric and

magnetic fields. The term fiz denotes the phase change at distance z along the

waveguide in terms of propagation constant /3 while the term — iωt denotes the time

dependence of the phase in term of the source frequency co and time t.

It is convenient to decompose the E and H fields into longitudinal components,

parallel to the waveguide axis, denoted by the scalar quantities Ez(x, y) and H z (x, y)

respectively; and transverse components, orthogonal to the waveguide axis, denoted by

El (x, y) and HI (x, y) respectively, where

and z is the unit vector parallel to the z axis.

There are certain discrete electromagnetic resonances in the cross-section,

corresponding to bound modes of the waveguide. Each bound mode has its own

propagation constant β , which is the solutions of the eigenvalue equation, and the

associated electric and magnetic field distribution. The flow of the electromagnetic power

in a mode is always parallel to the waveguide axis. A single-mode waveguide can only

support one bound mode, which is known as fundamental mode. Single-mode waveguide

is of primarily concern because of the broad application as described in Chapter 1. The

parameter values and the source wavelength are the key values for determination of the

single-mode waveguide.

The range of values that the propagation constant /3 of any bound mode can take

is related to the refractive indices of the waveguide, that is
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is the wavenumber, nclad is the cladding refractive index, n„„ is the core

refractive index, and A. is the source wavelength. The cutoff of a mode corresponds to the

smallest permissible value of the propagation constant, that is

β

 = knclad • Below this

value, the mode is no longer guided. In general, the cutoff wavelength of the second

mode is used to determine the largest wavelength below which the waveguide is single-

mode

2.3 Analytical Waveguide Design

There are very few exact analytical solutions to waveguides analysis because of the

complexity of the Maxwell's equations, or equivalently the vector wave equations, due to

the coupling of the three scalar components of both the electric and magnetic fields

vectors. Conveniently, most silica-based waveguides have only a small difference of

refractive index change over their cross section. Thus, it is sufficient to use a scalar

analysis, which considerably simplifies the analysis because scalar wave equation

involves only one component of the electric fields.

2.3.1 Basic Equations

In this section, the analytical method, proposed by Marcatili,' to deal with the two-

dimensional optical waveguide, as shown in Figure 2.4, is described. The important

assumption of this method is that the electromagnetic field in the shaded area in Figure

2.4 can be neglected, since the electromagnetic field of the well-guided mode decays
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quite rapidly in the cladding region. Then the boundary conditions for the

electromagnetic field are not imposed in the shaded area.

Figure 2.4 Two-dimensional rectangular waveguide proposed by Marcatili.

A set of equations for the electromagnetic field components is first obtained by

substituting equations (2.9) and (2.10) into equations (2.5) and (2.7):
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First, consider the electromagnetic mode in which the Ex and Hy are predominant.

According to Marcatili's treatment, H, is set to zero in equations (2.14) — (2.19). Then the

wave equation and the electromagnetic field representation are obtained as

On the other hand, Hy is set to zero in equations (2.14) — (2.19) to consider the

electromagnetic field in which Ey and H., are predominant. The wave equation and the

electromagnetic field representation are given by
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The modes in equations (2.20) — (2.25) are described as Expq (p and q are integers), since

Ex and Hy are the dominant electromagnetic fields. Conversely, the modes in equations

(2.26) — (2.31) are called E pqY , since Ey and fix are the dominant electromagnetic fields. In

the following section, the solution method of the dispersion equation for the Expq mode is

described in detail.

2.3.2 Dispersion Equation for TM Mode

Since the rectangular waveguide shown in Figure 2.4 is symmetrical with respect to the

x- and y- axis, only regions A, B, and C are analyzed. The solution fields that satisfy the

wave equation (2.20) is expressed as

where the transverse wavenumbers kx, Icy, γx, and γy and the optical phases 0 and y are

given by
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Note that the p and q starts from one because it follows from the mode definition by

Marcatili. By the conventional mode definition, the lowest mode in the rectangular

mode as illustrated in Figure 2.5, which has only one

electric field peak along both the x-and y-axis directions. Therefore, in the mode

definition by Marcatili, integers p and q represent the number of local electric field peaks

along the x- and y-axis directions. The boundary conditions such that the electric field

should be continuous at x= a and the magnetic field

be continuous at y=d, are applied to the wave equation to obtain the following

dispersion equations:



Figure 2.5 Mode definitions and electric field distributions in Marcatili's method.
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kx is acquired from equations (2.35) and (2.37), while ky is obtained from equations (2.36)

and (2.38), respectively. The propagation constant fl is then determined from

2.4 Y-Junctions

An important passive device in the planar optical technology is the single-mode

symmetric Y-junction, illustrated schematically in Figure 2.6. The Y-junction is the most

critical feature of the sensor design since it has the smallest dimensions near the splitting

part of the Y where the angle section approaches the 2 limit of the NJIT's exposure

tool in the photolithography process. The functionality of the Y-junction depends

exclusively on its symmetry. If the fundamental mode is excited in the stem, it will split

equally between the two arms and, even allowing excess loss, the optical power exiting

the two arms will be equal. In other words, the device is technically a 3 dB splitter.

Moreover, since the splitting action depends only on symmetry, it is independent of

wavelength. Thus the Y-junction is a 3 dB wavelength-independent splitter. When the Y-

junction is operated in the reverse direction, the fundamental mode of either arm

propagates through the junction to become the fundamental mode of the stem, but with a

50% loss of power. The 50%, or 3dB loss is also independent of wavelength, and is a

consequence of the reciprocity property of the Y-junction.

The emphasis in this section is on the design of an optimally low-loss Y-junction,

using simple physical principles, and constrained by the limitations imposed by the

lithographical and fabrication processes. In the following sections, the analyses of the
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tapered and splitting sections are presented in order to develop a complete low-loss Y-

junction design.

Figure 2.6 Schematic of a simple Y-junction.

2.4.1 Tapered Section

Changing the cross-section of a single-mode waveguide by tapering necessarily induces

radiation loss from the fundamental mode, because of the loss of translationally

invariance. Fundamentally, loss can be kept arbitrarily small by making the taper angle

sufficiently small, but such devices are difficult to fabricate and impractically long.

Hence, optimal taper shape, which minimizes the length for a given overall loss,  2.33 is

discussed below to aid the design.
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Figure 2.7 (a) A tapered waveguide, and (b) the core cross-section at corresponding
positions along (a).

A tapering section of a square or rectangular waveguide has a constant height in

the vertical plane, while the horizontal width varies throughout the waveguide axis.

Figure 2.7 shows such a tapered mask design with the cross-section BB' corresponds to a

square-core cross-section with side 2ρx=2ρy ; CC' to a down-tapered cross-section with

width 2ρx<2ρy ; and AA' to an up-tapered cross-section with width 2ρx>2ρy .

Assume the waveguide parameter is defined as



cross-section BB' corresponds to ρx=ρy and V=2 for single-mode propagation, then the

waveguide at cross-section AA' has V52, and at CC' has V<2 to conserve the mode. It is

then convenient to introduce a comparable normalized modal parameter W, defined by

with the local propagation constant p determined from the eigenvalue equation. Thus, the

maximum permissible taper angle is expressible as

2.4.2 Splitting Angle

The divergence of the two arms of the Y-junction in Figure 2.6 is equivalent to an up-

taper, which introduces excess loss through coupling of the local supermodes to the

radiation field. The excess loss will increase with increasing the angle 0 of Figure 2.6.

Thus, a splitter with arbitrarily low loss could be designed by making this angle

sufficiently small. However, this would lead to an unacceptably long device difficult for

fabrication as with the taper discussed above. Fortunately, it is possible to balance the

two requirements of low loss and compactness using simple physical considerations to

obtain a simple upper bound on this angle. 34 Since the splitting angle is a continuous from

the taper, then it follows from equation (2.16) that

where 0 is the half-branching angle.



Figure 2.8 Schematic of a single sensor mask overlapped with a window mask.

2.5 Masks Design

The fabrication of the Integrated Mach-Zehnder Interferometer sensor involves two

lithographic masks, one for the pattern of the sensors and the other for the opening

windows of the sampling arms. Dave Soltys, an undergraduate student of NJIT, designed

the masks with Mentor Graphics IC Station on a Sparc 20 workstation network. The

ultra-violet exposure tool with a resolution limit of 2 μm was used with the positive

photoresist spun on the wafer.

2.5.1 Sensor Mask

The sensor mask was designed such that sensors with different arm lengths and core

widths can be produced on a standard 5-inch wafer for optimal performance testing. An

Integrated Mach-Zehnder Interferometer sensor with 10 mm arm length and 50 pm of

separation between both arms is as shown in Figure 2.8. The splitting angle of the Y-

junction was design to meet the design criterion explained in Section 2.4.2, which was

less than 2°. This was the best angle that could be achieved because of the limitation of

29
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fabrication as mentioned early in this section. The 2-μm limitation in lithography process

has produced "U" shape taper instead of the desired "V" shape Y-junction. In the mask

design, sensors with different arm lengths of 10, 8, 6, 4, and 2 mm were grouped together

as illustrated in Figure 2.9, and the groups with various core widths of 6, 5, 4, and 3 μm

were then formed a "die". This means a "die" consists of twenty sensors with different

dimensions, and there are a total of ten "dies" on a 5-inch wafer, as shown in Figure 2.10.

Figure 2.9 Sensor mask design with five different arm lengths grouped together.
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Figure 2.10 Layout of the sensor mask. (Not drawn to scale).

The core widths designed were meant for single-mode operation in the near

infrared region. A small block of text describing the dimension of the sensor also

imprinted for easy identifying. The texts are in the form of Width x Length, for example,

4 lam x 6 mm. This mask was designed to pattern the actual interferometer sensor

structure, so the field of the mask was selected to be in clear region except the sensor
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patterns were in dark region. The clear region allows radiation goes through and exposes

the photoresist coating during photolithography process so that the sensor patterns can be

printed on the wafer.

2.5.2 Window Mask

Another mask needed to complete the sensor design is the window-opening mask. This

mask is used to pattern an opening onto the protective oxide layer over the entire length

of the sampling arm. Thus, the alignments of the window patterns have to be consistent

with the sensor patterns of the sensor mask, otherwise, misalignment will occur. The

lengths of the window patterns are also in 10, 8, 6, 4, and 2 pm, which is similar to the

arm lengths of the sensor patterns.

Figure 2.11 Window mask with different lengths grouped together.
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The layout of a group of the window patterns is illustrated in Figure 2.11. The

entire field of the mask was selected to be in dark region while the window patterns were

in clear region so that the printed windows can be etched off to reveal the waveguide

cores. The window width was set to 70 pm, which is remarkably large compare to the

sensor arm width. The purpose of doing so is to ensure that the entire sampling arm

would be properly exposed after the fabrication processes. The large window width,

however, became a major problem in the photolithography processes for the window

alignment, which has caused the overlapping of the window mask on both the reference

and sampling arms, as discussed in Section 2.7.3.

2.6 Fabrication By Deposition and Etching

In a typical fabrication process, the silicon wafer is sometimes pre-heated in a furnace or

immersed in a steam bath for an extended period in order to oxidize a layer several

microns thick within and below the wafer surface to facilitate the adhesive of deposited

silica and to form part of the buffer layer. After that, a uniform layer of pure silica is

deposited on the surface of the wafer to a depth of 10 μm or more by Low Pressure

Chemical Vapor Deposition. The thickness of the buffer layer should be large enough to

minimize the loss of light through tunneling to the silicon substrate, which has a much

higher index than the silica. A second layer of glass with slightly higher index than the

buffer layer is deposited to form the core layer. The thickness of the core layer is

determined by the requirements that the waveguide is single-mode and that the splice loss

to single-mode fiber is minimum. The higher index of the core layer can be achieved by

doping with suitable elements such as phosphorous, nitrogen, fluorine and germanium.
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Lithography processes are then performed to transfer the waveguide pattern from the pre-

designed mask on the core layer. The parts of the core layer not covered by the mask are

etched away by etching processes to reveal the waveguide cross-section. A final

deposition of silica completes the cladding surrounding the core waveguide.

2.6.1 LPCVD

LPCVD is one of the significant developments in chemical vapor deposition processing.

The introduction of this low-pressure reactor system to the semiconductor industry has

brought in the intensive growth in advanced IC technology and in mass fabrication of

silicon based products. These reactors can be divided into hot wall and cold wall systems.

Hot wall system have the advantage that the temperature flow is distributed evenly

through out the whole chamber to eliminate the convection effect, while the cold wall

system is capable to reduce the deposition on the chamber wall. The deposition on the

chamber wall lead to formation of deposition particles and hence contaminate the wafers.

The gas pressure employed in the LPCVD reactors is ranging from 0.1 to 1.0 Ton -, which

is considerably low compared to the conventional CVD process with around 760 Ton - of

gas pressure. However, the concentration of the input reactant gas has to be increased

relative to the atmospheric reactor case to compensate for the low pressure.

The most common reactor is horizontal LPCVD reactor, consists of a cylindrical

quartz tube heated by wire wound elements. The wafers to be deposited are lined

vertically along the chamber. A large mechanical pump is required to accommodate the

gas flow rates and to maintain the gas pressure. A recent innovative vertical LPCVD

reactor has been introduced and this system has more advantage than the horizontal
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reactor such as the wafers are stacked up along the chamber horizontally for easy access

by robotic handling, and the reduced particles counts.

2.6.1.1 LPCVD of SiO2. 	 LPCVD of Si02 is generally based on the reaction

between silane and oxygen under low-pressure:

Some new precursors such as diethylsilane and butoxysilane have been used to replace

the toxic and explosive silane for generating good quality films and optimizing the

deposition conditions. The deposition temperature is set to around 475 °C and gas

pressure is controlled at around 0.5 Ton for the diethylsilane and oxygen interaction to

form the silica film. Diethylsilane has a vapor pressure as high as 207 Ton at room

temperature. It is more favorable in used as the reactant for the Si02 deposition because

no heating of the liquid source is necessary and it is environmentally safe. The silica film

deposited under these conditions has refractive index of 1.456 and etching rate ranging

from 850 to 1000 Amin. depends on the etching method used.

2.6.1.2 LPCVD of Phosphosilicate Glass. The core material of a waveguide

determines the mode properties of the optical waveguide. In order to maintain mode

propagation, the core must have higher index of refraction compare to that of the

cladding and buffer layer surrounding the core to sustain the total internal reflection. This

can be achieved by doping of phosphorous into the silica to form the so-called

phosphosilicate glass (PSG). The PSG can be synthesized on top of the buffer layer by

means of LPCVD process.
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The adding of a small amount of phosphorous into the LPCVD reactor together

with the oxidation of silane by either nitrous oxide or oxygen produces a thin layer of

PSG on top of the silica buffer layer. The chemical processes can be summarized as

below,

It is easy to integrate the P205 into the Si02 to from the PSG material, as the SiO2:P2O5

ratio in the deposited film is controlled by the ratio of SiH4:PH3 in the flowing gas.

Si02 film has been deposited at reduced pressure and low temperature, taking the

advantages of the LPCVD. The phosphosilicate film, however unfortunately, does not

have these advantages. The step coverage of the film deposited at low temperature is non-

conformal. Heat-treatment at around 1100 °C usually used to flow the glass in order to get

uniform step coverage but this high temperature treatment is not acceptable for very short

channel devices where shallow junctions are required. This can be improved by using the

decomposition of organosilicon and organophosphorus compound in mid-temperature

ranging from 600°C to 800°C, to get consistent step coverage.

PSG is a binary glass that consists of two compounds, namely Si02 and P205. The

physical properties of the phosphorous-doped silica glass are expected to be related to the

chemical structure and composition of the phosphorous species in the silica network.

When the PSG film was formed at a relatively low temperature, the phosphorous in the

film was considered to be in such a state that small particles of P205, rather than the

compound SiO2.P2O5, were dispersed in the Si02 matrix. 35 The Si02 matrix, which is

water-insoluble, protects the P 205 from being diffused by the water. As the P205 reached
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a certain critical concentration, the volume fraction of the P205 to the Si02 matrix

increases, and the Si02 matrix no longer effective in protecting the P205 from the

moisture attack. The Si02 has a larger angular distribution width of Si-O-Si bond when

formed at low temperature, and becomes highly porous to water, 36 causing the P205 to

dissolve. Heat treatment increases the density of the Si02 matrix, which in turn makes it

hard for water vapor to diffuse the P205, and also intensifies the reaction between P205

and Si02 matrix to form the water-insoluble compound (SiO2)x.(P2O5) y .

The concentration of the P205 is an important parameter for forming the PSG film

because of its solubility to water as explained above. The phosphorous content inside the

PSG film controlled the film properties. At high concentration, the PSG film becomes

hydroscopic, produces corrosive compounds, and forms microcrystallites. While at low

concentration, the refractive index of the PSG film is not increased enough to be the

waveguide core. So it is important to control and determine this composition so as to

make it useful. This is accomplished by controlling the temperature and reactant gas

composition during the deposition of the PSG film.

2.6.2 Photolithography

One of the most important procedures in the integrated optics fabrication is the

photolithography process. Opto-electronics circuits or devices are in the micron range,

and this required micro technology processes to increase the resolution. Photolithography

is the process used to transfer the integrated circuit's pattern to the buffer layer. Before

doing so, a thin coat of photoresist material is applied on top of the buffer layer. The

photoresist coating is then exposed to a form a radiation, such as UV, electrons, or X-

rays, with the mask positioned on top of the wafer, as shown in Figure 2.12. The pattern
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formed on the photoresist layer according to the mask pattern is then undergone

subsequent development steps to produce the integrated optical pattern on the buffer

layer.

Figure 2.12 Schematic representation of photolithography process.

The photoresist area that is exposed to the radiation is made soluble or insoluble

in a specific solvent known as developer, to produce the so-called positive photoresist or

negative photoresist, respectively. After development, the regions not covered by the

photoresist are removed by etching process, thereby replicating the mask pattern on the

buffer layer.

2.6.3 Etching

Etching is the process to remove parts of the materials that is not covered by the

photoresist from the thin film on the buffer layer or substrate surface. This process is not
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completely capable to transfer the pattern established from the photolithography process

into the underlying materials. Degree to which the process fails to satisfy the ideal

etching is specified by two parameters, i.e. bias and tolerance. Bias is the difference

between the etched image and the mask image created by the photolithography process,

while the tolerance is a measure of statistical distribution of bias values that characterizes

the uniformity of etching.

The rate at which the materials are etched off is known as etch-rate with units of

A/min., p.m/min, etc. In general, high etch rates are desirable as they allow higher

production throughputs. In some cases, however, high etch rates become a trouble in

controlling lateral etching, since material removal can happen in both horizontal and

vertical directions. The horizontal etch rate has to be established in order to characterize

an etching process.

In the cases of an ideal etch process the mask pattern would be transfer to the

underlying layer with zero bias so that a vertical edge is created. This means that the

lateral etch rate would be zero as well. For non-zero lateral etch rate, the material is

etched to some degree under the mask, and hence create the undercut effect. When the

etching proceeds in all directions at the same rate, it is said to be isotropic. Otherwise, it

is anisotropic if the etching proceeds only in vertical direction. The typical isotropic and

anisotropic etch profile is shown in Figure 2.13. Isotropic etch profile can be corrected by

using a special technique called Dry Etching, instead of Wet Etching, as discussed in the

following section



Figure 2.13 Isotropic and anisotropic etching profile.

Both the photoresist and the buffer layer are etch-able by the etchant, and this

effect plays a significant role in the etching process. Fortunately, different materials have

different etch rates, and the ratio of the etch rates of different materials is known as

selectivity of an etching process. Hence, both the selectivity with respect to the

photoresist material and the selectivity with respect to the buffer layer are important

characteristic to the etching process.

2.6.3.1 Wet Etching. Wet etching is a purely chemical process that can have

serious drawbacks such as lack of anisotropic, poor process control, and excessive

particle contamination. However, wet etching can be highly selective and usually does

not damage the photoresist and the layer underneath. This etching process consists of

three steps: (i) movement of the etchant species to the surface of the wafer; (ii) a

chemical reaction with the exposed film that produces soluble byproducts; and (iii)
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movement of the reaction products away from the wafer. Since all three steps must occur

at once, the slowest one, called the rate limiting step, will determine the etch rate.

For most wet etching process, the film to be etched is not directly soluble in the

etchant solution. It is usually needed to change the material to be etched from a solid to a

liquid or a gas. If the etching process produces a gas, unpredicted bubbles will be formed

from the gas, and prevent the fresh etchant near the film surface. This problem is most

profound near the pattern edges. In order to overcome this, agitation in the wet chemical

bath is used to assist the movement of fresh etchant to the surface of the wafer. Besides, it

will also reduce the ability of the bubbles to adhere to the wafer. Another common

problem for wet etching is the undetected resist scum, occurs when some of the exposed

photoresist is not completely removed in the development process due to incomplete

exposure or insufficient developing of the pattern. A very thin layer of this photoresist

remaining is sufficient to block the wet etching process.

2.6.3.2 Dry Etching. Undercutting due to isotropic etching sometimes can be

intolerable if the thickness of the film being etched is comparable to the minimum pattern

dimension. Another alternative pattern transfer method that offers the capability of

anisotropic etching is dry etching. There are a variety of dry etching processes. The

mechanism of etching in each type of process can have (i) a physical bias, for example,

glow-discharge sputtering; (ii) a chemical bias, such as plasma etching; (iii) a

combination of the two, i.e. reactive ion etching (RIE); and (iv) reactive ion beam etching

(RIBS).

In processes that depend mainly on the physical mechanism of sputtering,

including the reactive ion beam etching, the strongly directional nature of the incident
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energetic ions allows the materials to be removed in a highly anisotropic manner, i.e.

essentially vertical etch profiles are produced. However, this mechanism does not

produce selectivity against both the photoresist and the layer underneath the film being

etched. On the other hand, purely chemical mechanism for etching can exhibit a very

high selectivity against both the photoresist and underlying materials. Such purely

chemical etching mechanism, however, typically etch in an isotropic fashion.

By adding a physical component to a purely chemical etching mechanism, the

shortcomings of both the physical based and purely chemical dry etching process can be

prevailed. An ideal dry etching process based solely on chemical mechanism for material

removal consists of six steps: (i) reactive species are generated in plasma state; (ii) these

species diffuse to the surface of the material being etched; (iii) the species are absorbed

on the surface; (iv) chemical reaction occurs with the formation of a volatile by-product;

(v) the by-product is desorbed from the surface; and (vi) the desorbed by-product diffuse

into bulk of gas. The overall etching process will end if any of these steps fail to occur.

Many reactive species can react rapidly with a solid surface but unless the product has a

reasonable vapor pressure so that desorption occurs, no etching will take place.

2.6.4 Fabrication of the Integrated MZI Sensors

Figure 2.14 and Figure 2.15 show the fabrication procedures of the ridge-waveguide

Integrated Mach-Zehnder Interferometer sensor. The first two layers of the thick SiO2

and the PSG are deposited on the silicon wafer by LPCVD. The mask of the Integrated

Mach-Zehnder Interferometer sensor pattern is then transferred onto the wafer surface by

using the standard technique of photolithography, namely, photoresist spinning,

lithography exposure and development. After plasma etching and photoresist elimination
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processes, the square waveguide goes through annealing at 1050 °C to create a flow edge,

to minimize coupling losses between fiber and waveguide. Another layer of Si0 2 is then

deposited on top of the waveguide core to achieve light guiding by total internal

reflection. Subsequently followed by transferring the window mask onto the wafer to

open a window on the sensing arm, using similar steps of photolithography. The window

mask has to be properly aligned on top of the sensors so that the windows opening are

opened exactly on the sampling arm. This alignment is crucial since the window mask

tends to misalign during the exposure process. After that, the plasma etching and

photoresist removal steps finalize the Integrated Mach-Zehnder Interferometer sensor.

The detail of the fabrication procedures is listed in Appendix A.

Figure 2.14 Fabrication processes of the Integrated MZI sensor. (Not drawn to scale)
(continued).



Figure 2.15 Fabrication processes of the Integrated MZI sensor. (continued)
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2.7 Functionality Testing on Integrated MZI Sensor

It is important to analyze the waveguides after fabrication to make sure that the sensors

are working as expected. The experimental testing on the separated waveguide portions

of the first batch Integrated Mach-Zehnder Interferometer sensors are described. These

testing procedures were also carried out for the subsequent fabricated batches of the

integrated MZI sensors until optimum performance is achieved, and the testing results are

discussed in detail in Chapter 5.

Figure 2.16 Experimental setup for the waveguide core testing.

2.7.1 Wave Guiding Core

The phosphosilicate glass (PSG) film has optical property of higher refractive index than

its host, i.e. the silicon dioxide. This property is the only requirement for light

transmitting along the waveguide via total internal reflection. The concentration of

phosphorous in the silica controls the variation of this optical property and hence affects

its functionality as waveguiding material. The condition of PSG deposition is crucial, as

explained in Section 2.6.1, to create an optimal waveguide for sensing principle.

Therefore, it was appropriate to test on the PSG film for different deposition conditions to
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optimize the doping criterion. Figure 2.16 illustrates a simple experimental setup used to

test the PSG film. Two different laser sources with 633 nm and 830 nm wavelengths were

used, and as can be seen in Figure 2.17 that the PSG thin film is transparent to the light

compare to that of the silica buffer layer.

Figure 2.17 PSG is transparent to light with wavelengths of (a) 633 nm and (b) 830 nm.
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2.7.2 Y-j unction

The structure as well as the functionality of a Y-junction has been discussed in previous

section. This Y-junction, also called the 3 dB Y-splitter is supposed to split the light

equally into the two arms of the integrated Mach-Zehnder Interferometer sensor. The

light split by the Y-junction will then recombined by another reversed Y-junction at the

other end of the sensor to produce interference. Interference occurs only when the two

recombined light beams are coherent. The coherency of the light may be affected by the

waveguides due to scattering by defects produced during fabrication or by inconsistency

of the phosphorous doped during deposition. Thus it is important to test the coherency of

the light after the Y-j unction in addition to the 3dB splitter.

Figure 2.18 Experimental setup for the testing of the 3dB splitter.

2.7.2.1 3dB splitter. 	An experiment was set up to test the Y-junction potions of

the integrated Mach-Zehnder Interferometer sensor. The schematic of the setup is

illustrated in Figure 2.18. The sensor was cleaved across before the window opening of

the sampling arm, showing the end side of the Y junction profile as shown in Figure 2.19.
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The laser beam was coupled into the incidence opening and to be split evenly at the

junction into the two arms, which would be detected at the two output ends of the

waveguides by a CCD camera. Before coupling the laser beam into the waveguide, the

output end of the Y-splitter did not illuminate, as can be seen in Figure 2.19, while Figure

2.20 indicates an almost equal light intensity at both output ends after the laser is coupled

into the waveguide.

Figure 2.19 The output arms profile of a Y-junction before coupling light in.

The actual power split of the second-batched Y-junction was also investigated by

replacing the CCD camera with a fiber out-coupled from the output end of the Y-junction

to an optical spectrum analyzer for output intensity measurement using a broadband

source. The power measured revealed that the second-batched Y-junction actually



49

exhibits a 60%-40% split (60% from reference arm, 40% from sampling arm) instead of

the expected 50%-50% split, as discussed in Chapter 4.

Figure 2.20 Light propagates through the Y-j unction.

Figure 2.21 Schematic setup to examine the light coherency.
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2.7.2.2 Interference. Subsequently, testing for the coherency of the output beams

was performed by using a mirror to divert one beam to the other as illustrated in Figure

2.21. The result captured by the CCD camera exhibited the interference property of the

light after propagating through the Y-junction when one of the beams was directed to

superimpose with the other, as shown in Figure 2.22. It also demonstrated the fringe

shifting caused by the displacement of the mirror. This has confirmed that the light does

maintain its coherency after transmitting through the waveguides and the Y-junction.

Figure 2.22	 Interference caused by superimposed of two beams output from a
symmetry Y- junction.
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2.7.3 Sensing Area

The sensing area of the sampling arm consists of an opening window where the

waveguide core is exposed to the chemical species when used as a chemical sensor. This

means that the sensing area exhibits an important task for sensing chemical. If this area

does not exposed adequately to the chemical species, then no sensing mechanism occurs,

and this leads to the failure of the purpose. Another critical cause to the failure is the

exposed waveguide core of the sampling arm became smaller than the waveguide core of

the reference arm after the etching process, resulting in unequal light intensity emerge

into the Y-combiner, consequently affect the output results.

Hence, it is the idea of this section that the sensing area, which is the exposed arm

or sampling arm as stated in previous section, be thoroughly scrutinized under the

microscope for the investigation of fabrication defects as mentioned. At first, the sensor

was placed flatly under the microscope for the window alignment examination. It was

found that some of the sensors have serious misalignment. As can be seen in Figure

2.23(a), a window was not opened at the correct position on the waveguide of the

sampling arm; instead it was located away from the sensor. In contrast, Figure 2.23(b)

shows that the window was opened exactly on top of the waveguides of both sampling

and reference arms.

Finally, those sensors with proper windows alignment were cleaved at the center

of the window opening so that the core size could be inspected. The cleaved sensor was

positioned such that the profile side to be investigated could be examined by the

microscope. The image of the waveguide cores profile of the sampling and reference

arms is demonstrated in Figure 2.24. The picture shows that the waveguide core of the
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sampling arm is smaller compare to that of the reference arm. This "over-etched"

situation is mainly due to the improper control of the selectivity etch rate during the

etching process, and also because of the drawback of using the wet etching as discussed

in Section 2.6.3.

Figure 2.23 Window misalignment: (a) off from the sampling arm, and (b) overlapped
on both arms.



Figure 2.24 Over-etching into the waveguide core of the sampling arm.

The overlapping of the window mask and the sensor mask has to be properly

aligned during the lithography exposure processes to overcome this misalignment

condition. Moreover, the window mask should not be wider than the arms separation of

the sensor, because after fabrication, the exact window will become broaden than the

window mask itself due to the isotropic property of wet etching. As shown in Section 2.5,

the window mask has 70 μm width while the sensor has only 50 p.m separation in

between the sampling arm and the reference arm. This has caused the overlapping of one

window on top of both the sampling and reference arms.
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CHAPTER 3

COMPUTATIONAL WAVEGUIDES DESIGN WITH FEM

The origin of the finite element method (FEM) is frequently traced to Courant who in the

1940s first discussed piecewise approximations. 37 In the 1950s, Argyris began putting

together the many mathematical ideas that comprise the FEM for aircraft structural

analysis. 38 The introduction of FEM to the engineering community occurred in the 1960s,

while some feel that the conferences on finite elements held in 1965, 1968, and 1970 at

the Wright Patterson Air Force Base in Dayton, Ohio, U.S. played a crucial role in

advancing the method. Later development on absorbing boundary conditions, perfectly

matched absorbers and hybridizations with boundary integral method have led to the

successful application of the FEM to open domain problems in scattering, microwaves

circuits and antennas. 39 The method's main advantages are its capability to treat any type

of geometry and material inhomogeneneity without a need to alter the formulation or the

computer program. That is, it provides geometrical fidelity and unrestricted material

treatment. Moreover, the application of the FEM leads to a sparse matrix system, which

can be stored with low memory requirements when iterative solvers are employed for the

solutions of these systems. Typically, FEM system have 0(N) storage requirements,

implying that the memory needed for a solution of an FEM system is proportional to the

number of unknowns N. This would depend on the number of dimension and the nature

of the partial differential equstion. For most cases, these memory requirements may

range from 10N to 50N depending on the type of problem considered and the employed

basis or shape functions approximating the field within the computation domain.

54
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Finite Element Method will be used to determine the wave propagation

characteristics in optical waveguides. The electromagnetic Maxwell equations, both in

vacuum and in dielectric, are solved to study the wave properties. Scalar and vector finite

elements shape functions are described. Elemental FEM matrix is determined, and

assembled into a global FEM matrix. The FEM codes are written in Matlab program.

This method is suited for problems involving complicated geometries and variable index

of refraction. The essence of the Finite Element Analysis is the discretization of the

waveguide's cross-section and its surrounding into a large number of small elements. It is

important to model the dielectric waveguide region by as many elements as needed in

order to show the physical behavior precisely. Herein, triangles or quadralateral elements

will be used. However, the triangle element is preferred because two triangles can be

assembled into a quadralateral. Therefore, only the elemental properties for a triangle will

be used.

3.1 Basic Concept of Wave Theory

In this section, fundamental electromagnetic concepts and theorems are explained along

with the notations employed throughout the whole chapter.

3.1.1 Time-Harmonic Maxwell's Equation

The study of harmonically varying fields with an angular frequency of ω =2πƒ is of

primary interest since finite element method for electromagnetics utilizes time-harmonic

fields. The time-harmonic electric field is related to the time-dependent electric field by
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is refered to as the field phasor. A simplified set of equations can be obtained by

introducing equations (3.1) and (3.2) into the time-dependent Maxwell's equations 4°

where the corresponding vector field and the current phasors are

E = electric field intensity in volts/meter (V/m)

H = magnetic field intensity in amperes/meter (A/m)

J = free carrier current density in amperes/meter2 (A/m2)

M = magnetic current density in volts/meter 2 (V/m2)

And the two charge phasors are

p = free electric charge density in coulombs/meter3 (C/m3)

pm = magnetic charge density in webers/meter 3 (Wb/m3)

Both the M and the pm are fictitious quantities introduced for convenience, since there is

no magnetic monopole exists, i.e. V • B = 0, and hence pm = 0 .

Implied in these time-harmonic equations are the constitutive relations for an

isotropic medium
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where the two additional phasors

D = electric flux density in coulombs/meter2 (C/m2)

B = magnetic filed density in webers/meter 2 (Wb/m2)

are related to E and H, respectively. These constitutive equations are an important

connection between the original time-dependent form of Maxwell's equations and the

time-harmonic form used in the finite element method. Similarly, the phasor forms of the

continuity equations are given by

The material constants are given by

so = free space permittivity = 8.854 x10 - ' 2 farads/meter (F/m)

,u0 = free space permeability = 4;r x10 -7 henrys/meter (H/m)

εr = medium's relative permittivity constant

Pr = medium's relative permeability constant

= electric current conductivity in mhos/m

am = magnetic current conductivity in ohms/m

Summarizations of Maxwell's equations in phasor form for isotropic media are
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where equations (3.11) and (3.12) was employed to rewrite (3.5) and (3.6) as given

above.

The corresponding integral representations of (3.13) to (3.16) are

where C is the contour bounding the open surface S illustrated in Figure 3.1 and

dS = n dS . The circle through the single integral indicates integration over a closed

contour, whereas the same symbol through the surface integral denotes integration over

the closed surface Se which enclosed the corresponding volume V. The surface S

associated with the integrals (3.17) and (3.18) is completely unrelated to S, that encloses

the volume V.

Equations (3.13) and (3.14) imply six scalar equations for the solution of the six

components connected with E and H. Thus, for time-harmonic fields, equations (3.13)

and (3.14) or equations (3.17) and (3.18) are sufficient for the solution of the electric and

magnetic fields.
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Figure 3.1 Illustration of the differential element ds and the contour C.

3.1.2 Wave Equation

Equations (3.13) and (3.14) are independent first-order vector equations, which lead to a

unique solution subject to the specified boundary conditions. They may be combined

together to produce a single second-order vector equation in terms of E and H as the

wave equation. The finite element method is used to numerically approximate the

solution of the wave equation.

The following vector wave equations are obtained by taking the curl of equations
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where the upper set of equations are the solution of the electric field while the lower set is

for the solution of the magnetic field. In the equations, Sr denotes the relative permittivity

of the media and Pr indicates the relative permeability of the media. These two

impedance. In materials other than free space, the wave impedance and the wave number

(3.22) can be written in the form

arranged into a more important version for homogeneous media, i.e.

This equation can be simplified to
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Vector equation of (3.26) represents three

field components each of which satisfies the scalar wave equation

where v denotes E x, Ey, or E. Similar equations can be obtained for the magnetic field

from equation (3.24).

3.2 Finite Element Method

FEM geometrical adaptability and low memory requirements have made it one of the

most popular numerical methods in all branches of engineering. Its application to

boundary value problems 41 involves the subdivision of the region where the fields are to

be determined into smaller elements. 39 The subdivision of the domain into small elements

is defined as meshing. It is also called discretization of the geometry and it is an

important step in FEM solution procedure. In the context of the FEM, the equation for the

unknown coefficients of the expansions is constructed by enforcing the wave equation in

a weighted sense over each element. The next step involves the application of the

boundary conditions leading to a secular matrix system.

where {b} is a column matrix and is determined on the basis of the boundary conditions,

such as a current source or incident field, for each specific problem. The matrix [A] is a

square matrix, N x N, typically symmetric unless nonreciprocal material exists in the

computational domain. Its nonzero entries provide the relationship among fields of

adjacent elements within the computational domain and its specific form is a

characteristic of the problem geometry and discretization of the domain. With the system
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equation constructed, its solution can be solved with the application of an iterative solver

for large systems, since these solver avoid explicit storage of the entire matrix, or direct

solver (LU decomposition) for smaller size system.

Suitable interpolation polynomials, commonly referred to as shape functions or

basis functions, are used to approximate the unknown function within each element. Once

these shape or basis functions are chosen, it is possible to compute and program the

microprocessor to solve complicated geometries by solely specifying the shape or basis

functions. The development of a unique element, which mimics the character of electric

and magnetic fields, has proved to be the key in obtaining robust solutions to the two

dimensional waveguides problems in electromagnetics.

In node based finite element, the form of the sought function in the element is

controlled by the function values at its node. The approximating function can then be

expressed as a linear combination of basis functions weighted by the nodal coefficients. If

the function values z4 at the nodes are taken as nodal variables, then the approximating

function for a two dimensional element e with p nodes has the form of

Since the equation (3.29) must be valid for any modal variable 14 , the basis function

AT (x, y) must be unity at node i, and zero for all remaining nodes within the elements.

The FEM steps involved in generation and solution are as summarized below;

1. Define the problem's computational domain.

2. Select a mesh truncation scheme.

3. Select shape or basis functions and discrete elements.
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4. Generate the mesh.

5. Enforce Maxwell wave equations over each element.

6. Generate the elemental matrix.

7. Apply boundary condition, either Neumann or Dirichlet BCs.

8. Assemble element matrices into global matrix.

9. Ensure matrix symmetry.

10. Select solver and solve matrix system.

11.Post-process field data to extract parameters of interest, i.e eigenvalues,

fields, propagation constant, impedance, etc.

3.3 One-Dimensional FEM

One-dimensional finite elements are employed for solving problems where the

discretization domain involves a curve or a contour around a two dimensional structure;

for example the bounding curve of the cross section of an infinite cylinder. These basis

functions can also be used in conjunction with higher dimensional finite elements when

the modeled structure can be decomposed into a single dimension without loss of

accuracy. It is most convenient to derive one-dimensional basis functions in terms of

Lagrange polynomials. 42 By considering a straight line with endpoints xe1 and xe2 . The

basis functions for element e are then defined as
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The basis functions have unit magnitude at one node and vanish at all others with linear

variation between the nodes.

The solution of the one-dimensional differential equation 41 is

where p(x), q(x) and ƒ(x) are the known functions and U(x) is the unknown field. This

equation can be represented as different problems, depending on the interpretation of

U(x) given below as examples.

For an electric field between parallel plates of a capacitor,

The boundary conditions are

hence,

For the potential of a parallel plate capacitor,

U(x) = V(x); potential between plates.

Boundary conditions:



65

f(x) =-ρ/ε;source function

then,

Appendix C lists the FEM program that illustrated the FEM application of various

steps in constructing, assembling and solving the one-dimensional system. The FEM

system is solved using 10 linear elements. The differential equation is also subjected to

the following boundary conditions.

By comparison to the general form of the differential equation (3.2), the coefficients are;

The FEM results obtained from solving the eigenvalue equations in the matrix

were also compared with the exact analytical solution, i.e. E y (x) = sin(πx) and are

tabulated in Table 3.1. From the table, it is observed that the difference between the exact

and the numerical solution is in the third decimal place, indicating that the employed

number of element are sufficient for an accurate representation of the field distribution.

3.4 Two-Dimensional FEM

Two-dimensional finite elements have found widespread use in modeling structures

whose third dimension is significantly larger or smaller than the cross section, thus

ensuring little variation in the unknown parameters in the third direction. Two-

dimensional finite elements have also been used to obtain reliable estimates of three-
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dimensional problems since the computational cost for obtaining two-dimensional

solutions is vastly less expensive than for three dimensions. There are several types of

shape function available for two-dimensional FEM analysis, namely rectangular,

quadrilateral, and triangular elements shape function.

Table 3.1 One-dimensional FEM solution with exact analytical solution

Node
location

E "41 10 elements E, yEXACT

1 0 0

2 0.3077 0.3090

3 0.5854 0.5878

4 0.8057 0.8090

5 0.9471 0.9511

6 0.9959 1.0

7 0.9471 0.9511

8 0.8057 0.8090

9 0.5854 0.5878

10 0.3077 0.3090

11 0 0
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3.4.1 Two-Dimensional Basis Functions

The triangular elements are selected to be the basis function of the waveguide problems.

Triangular elements are chosen because they are most versatile and can model arbitrary

geometry profiles, comparing with other elements. The shape functions of the triangular

elements are determined by using the Lagrange interpolation polynomials. In their final

expression, the shape functions will be expressed in terms of the area coordinates. By

considering, a point P within a triangular element shown in Figure 3.2 located at (x, y),

where (4 	 denote the coordinates of the it" triangle node. The area of the smaller

triangle formed by points P, 2, and 3 is given by

Figure 3.2 Triangular element.
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The area coordinate L7 is then defined by

where A is the area of the whole triangle and can be found from equation (3.37) by

replacing x and y in the first row with x, and y, .

Similarly, the two remaining area coordinates Le2 and Le3 are given by

The values for x and y inside the triangle element reduce to

where equations (3.41)-(3.43) are a result of the area identity A l + A 2 + A 3 = A .

Alternatively, 4 2,3 can be obtained in terms of x and y, and the vertex coordinates by

solving the system equations (3.41)-(3.43).

The coordinate Le, is zero on the edge opposite to vertex 1 and unity at vertex 1.

Its variation along the height of the triangle is displayed in Figure 3.3. The remaining two

area coordinates associated with the other two vertices behave similarly, vanishing on the

edge opposite to the corresponding vertex and having unit magnitude at the vertex it
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belongs to. This feature combined with spatial locality qualifies the area coordinates as

suitable basis functions	 for a triangle when the interpolation order is linear. That is

Higher order basis functions for triangles can also be derived. 42 '43

Figure 3.3 Area coordinates of a triangle.

3.4.2 Two-Dimensional Wave Equation

The electric and magnetic fields in waveguide propagation is assumed to be in the form

where 13 is the propagation constant along z and U(x,y) is the field value over the

waveguide cross section, the subscripts of e and h represent the electric and magnetic

fields, respectively. Recall from Section 3.1.2, the vector wave equations for the electric

and magnetic fields are



These equations allow a decoupling of the differential equation among the field

Thus only the scalar wave

equation needed to be solved for TE modes (H z #0, Ez =0). By setting

where V, denotes the surface gradient. Once the E z is determined from equation (3.49),

other field components can be obtained by using the expressions

is the wavenumber. Alternatively, the vector wave equation can

also be solved,

in which
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is the total transverse electric field in the waveguide.

On the other hand, for the TM modes where I = 0 while Ez 0 , the

appropriate scalar and vector wave equations are simply the duals of equations (3.49)-

(3.55). However, the boundary conditions used are the Dirichlet type when solving for Ez

and of the Neumann type when solving for H. The relation ∂Hz/∂n = 0 serves as thea

boundary condition for the TE case.

3.4.3 Discretization of the Two-Dimensional Wave Equation

From the above presentation, a general form of the two-dimensional wave equation is

The equation can be specialized to the problems of

scattering and waveguide propagation by choosing p(x,y) and q(x,y) appropriately. When

TE mode is considered,

while for TM mode,

The steps to be followed for the solution of equation (3.59) via the FEM involve

1. Casting of the original wave equation to its weak form to obtain a single

functional incorporating the conditions imposed by the wave equation and the

boundary conditions.
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2. Meshing of the computational domain allowing for a discretization of the weak

form to a linear system of equations element by element.

3. Assembly of the element equation and imposition of the boundary conditions to

attain the final linear system of equations.

In this section, the first two steps are discussed, and in the subsequent section the

assembly of the elemental equations are considered to solve for the fields and eigenvalue

associated with a metallic waveguide (closed domain problem).

3.4.3.1 Weak Form of the Wave Equation. 	 In electrodynamics, the weak form of

wave equation represents the scalar wave equation. The related residual of equation

(3.56) is

where as usual r = xx+yy , denotes the position vector. The weak form of wave equation

is derived from multiplying equation (3.60) by a weighting function W(x,y) and enforce

R(r) = 0 over the domain of each element. This gives

The weighting function must be compatible with the boundary conditions. To reduce the

order of the derivatives in the residual and introduce the boundary terms, the identities

below are used,
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in which Q denotes the pertinent computational domain, C is the contour enclosed 0, and

refers to the outward directed unit normal vector to the contour C. Equation (3.60) is

the divergence theorem, which can be considered as the generalization of integration by

parts to two dimensions.

Substituting equations (3.62) and (3.63) into the weighting residual equation

(3.61) yields

This is the weak form of the two-dimensional scalar wave equation. Note that the

presence of the boundary integral over C allows for the imposition of the boundary

conditions. Thus equation (3.61) provides a single statement incorporating the conditions

implied by the wave equation and the pertinent boundary conditions, and this is at the

heart of the finite element method.

3.4.3.2 Discretization of the Weak Wave Equation. To discretize equation

(3.61), a discrete representation of the field U(x,y) is introduced together with the proper

choices for the weighting function W(x,y). At first, the computational domain C2 is

divided into small triangular elements. Then, by approximating the field in each triangle

as a linear function, the expansion of basis function Nei (x, y), as given in Section 3.4.1,

can be chosen to represent U(x,y) over Q. Specifically, U(x,y) can be expand into



74

where U; are the unknown coefficients of the expansion and represent the field or

potential values at the nodes of each triangle. This representation is therefore referred to

as a node-based expansion. N e is the number of elements used for meshing the domain.

The explicit form of the shape function is

where

is the triangle area. The coefficients in equation (3.63) are given by

with the indices (i, j, k) following the cyclical rule. The shape functions 1\1: (x, y) are

equal to unity at the ith node of the eth element and taper linearly to zero at the other two

nodes, as illustrated in Figure 3.4. Consequently, the eth element expansion

scales the shape functions depending on the value of the field or

potential at the nodes of the eth element.

Substituting equation (3.62) into equation (3.61) yields
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Figure 3.4 Node coordinates for the e t" triangle and illustration of the node-based
expansion function N (x, y).

A linear set of equations can be obtained by employing Galerkin's method where the

weighting function W(x,y) is chosen so that it is equal to the expansion basis

From equation (3.67), a 3 x 3 system of equations can be obtained by running through all

assumed,



which is the element matrix system. The explicit form of the matrix entries is

where p(r) ,,:', pe and q(r)~  qe are constant over each element. Since N1 (r) are linear

functions, the evaluation of the [AC j matrix entries can be done in closed form,

where

Evaluating the entries of the submatrices
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The latter is independent of the triangle coordinates and is referred to as a universal

element matrix.44 By making use of equations (3.73) and (3.76) in equation (3.72), the

[Ae] matrix entries can be more compactly written as

where

Thus, for the chosen linear triangular elements, the matrix entries are given in closed

form and can be easily evaluated. The excitation column entries bej may need to be

computed numerically depending on the form of the function fix ,y).

3.4.3.3 Assembly of Element Equations. 	 The first step in the finite element

procedure is the assembly of the element equation (3.68). This involves the procedure of

carrying out the sum

as implied by the original discrete form of the weak wave equation (3.66). Since several

of the elements may share the same nodes, the sum of equation (3.75) consolidate the

surrounding element to yield a single equation, which produces the equation
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A key issue in performing the assembly as dictated by equation (3.75) is the

transformation from local to global nodes. The issue of node numbering becomes

apparent by looking at the assembled equation (3.76).

Since the unknowns U ie must be eventually put into a single column, it is

necessary to have readily available mapping between the local and global nodes, which

are associated with the eth element. Thus, in addition to the node geometry data provided

to the finite element program, the information about the local and global node numbering

schemes are also provided. Four tables may be required before carrying out the matrix

assembly routine, as in Appendix B.

3.4.3.4 Assembled Eigenvalue Matrix. Considered an 18-element rectangular

waveguide cross section as shown in Figure 3.5 with the elements connectivity and nodes

location tables given in Appendix B. Assume that U = H z , then °Van = n.VU = 0 at the

boundary nodes of the rectangular waveguide. Thus, the boundary integral in equation

(3.67) vanishes and the FEM system for the node fields is obtained by performing the

assembly

where the dimension of WI is16 and {be } was set to zero since no excitation is assumed.

A procedure for carrying out the assembly is as follow:

Note the correspondence between the local and global nodes, for example, U; -10 =U6 .

The single subscript refers to the global node 6, thus the element matrix for e = 10 is



Figure 3.5 Element geometry for matrix assembly.

To obtain the assembled equation for global node 6, the element sharing this node must

be considered as well. In addition to element 10, node 6 is shared by element 1, 2, 4, 9,

and 7. The corresponding element matrix for element 1 is

and similar matrixes applied to other shared elements with the same form of (3.78) and

(3.79). Adding the two of the seven local elements contributions related to the global

node number 6 yields the global system matrix

79



80

The element matrixes can be assembled into the above system until all of the elements

have been accounted for. The entries will be given by the sum

A computer program written in Matlab routine for performing the assembly is given in

the Appendix D.

3.4.3.5 TE Modes (Neuman Boundary Conditions).	 A situation where both

submatrices [Kg ] and [Kb, which obtained from the assembly of [Kve]  and [IC ] given in

equation (3.74), are used is that of computing the waveguide cutoff wavenumbers. The

cutoff wavenumbers are obtained by solving the generalized eigenvalue problem

where y 2 are the eigenvalues and y refer to the cutoff wavenumbers. The Neumann

boundary conditions (i.e. the natural boundary condition) is already embedded in the

FEM matrix formulation, as discussed in Section 3.4.3.2. In the TE mode case, the Hz

field is continuous across the boundary, i.e.
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Table 3.2 Cutoff wavenumbers for a rectangular waveguide

TE TM
Exact Analytical

Solution

Y

FEM 400 elements

(IBM Mainframe)

FEM 200 elements

(Intel Pent. II 650Mhz)

10 2.0946 2.0960 2.1030

20 4.1900 4.2053 4.2057

01 4.1900 4.2053 4.2573

11 11 4.6840 4.6848 4.7399

12 12 8.6386 8.8000 8.8463

21 21 5.9260 5.9953 6.1032

Consider the rectangular waveguide as depicted in Figure 3.5 with dimensions

= 2 the computed eigenvalues are given in Table 3.2 and the corresponding modea/b=2,

field distributions are shown in Figure 3.6 for the TE 10 mode, using 400 triangular45

elements over the waveguide cross section. From the table, they are within 0.4% of the

exact eigenvalues40 given by

and also around 0.4% for 200 triangular elements computed using the FEM program

listed in Appendix D, for the TEmn(m # 0 or n # 0) and the TMmn(m # 0 and n # 0)

modes. The accuracy of the calculated eigenvalues deteriorates for the higher order

modes since the latter require a finer meshing due to their more complex mode structure.
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In the event that an analytic solution is not available to test the accuracy of the

FEM results, an alternative is to use convergence studies. In this method, a parameter is

calculated with increasing number of elements. If the calculated value of the parameter,

such as y above, approaches a constant value as the number of elements is increased, then

FEM program code is functioning correctly assuming that the electromagnetic equations

are correct.

Figure 3.6 Calculated TE10 mode fields in a rectangular waveguide.

3.4.3.6 TM Modes (Dirichlet boundary Conditions). 	 For the TM modes in a

metallic rectangular waveguide, U = E and E, = 0 are set on the boundary. However,

is non-zero on the boundary and it is therefore necessary to
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as an additional unknown on the boundary. Since the field values at the

boundary node are zero, it is not necessary to test at these nodes. Instead, the boundary

nodes fields are set to zero whenever they appear in the system matrix. By avoiding

testing at the boundary nodes or elements, the integrals over C s. do not enter in the

construction of the final system and can be neglected altogether.

In this case, the eigenvalue problem becomes

are identical to those in solving the TE modes, except that only the

entries associated with interior nodes are kept. Some values of the 7 for the TM modes,

obtained from solving equation (3.85) are given in Table 3.2 for the metallic rectangular

waveguide. The FEM program is listed in Appendix D. Figure 3.7 displays the field of

the lowest TM mode. The TM and TE modes fields calculated with FEM are compatible

with the fields' solution shown in waveguide handbook. 46

3.5 Integrated MZI Single Waveguide Mode Solver

In this section, the integrated MZI waveguides TE and TM modes are solved by

modifying the weak form of two-dimensional wave equation (3.71) into
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where ne refers to the refractive index of each element. The MZI waveguide profile

consists of the refractive indices of the core, cladding, and the buffer layer. The refractive

index of each element is proportional to s r , since p,. =1 in most cases.
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where v is the cutoff frequency, b refers to the normalized propagation constant, Q is the

fictitious boundary profile, and n, can be the cladding index or buffer layer index.

For TE mode, where

Equation (3.86) becomes

which simplified to

is the sum of the two terms of the left hand side of equation (3.92) while

and b is the eigenvalue to be solved.

Similarly, for TM mode,

Equation (3.86) becomes
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which simplified to

is the sum of the two terms of the left hand side of equation (3.94) while

and h is the eigenvalue to be solved.

Figure 3.8	 Refractive index profile of the MZI single waveguide with each element
width of 1.0 μm.

In order to simulate the waveguide modes for the integrated Mach-Zehnder

Interferometer sensor; the finite element method required a mesh to be made to model the

waveguide index of refraction profile. The 200 elements mesh profile of core, cladding
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and the buffer layer is generated as shown in Figure 3.8. This FEM mesh profile

generation program is listed in Appendix I, with user-defined number of elements. The

mesh profile provides the fictitious boundary conditions of the step-index waveguide

structure. The sampling arm mesh profile was generated by the same program listed in

Appendix I, with the cladding index replaced by the air or chemical index of refraction.

The refractive index profile of the sampling arm is as shown in Figure 3.9. The

corresponding FEM programs to solved both the TM and TE modes are listed in

Appendix E and Appendix F, respectively. The results are discussed in Chapter 5.

Figure 3.9 Refractive index profile of the MZI sampling arm (without cladding).



CHAPTER 4

INTEGRATED CHEMICAL SENSOR

Integrated optical waveguide sensors based on the principle of Mach-Zehnder

Interferometry have been shown to be able to detect the changes in refractive index

within the evanescent field of the waveguide. The advantages of this type of sensors

include high sensitivity, immunity of electromagnetic field and external parameters

(temperature, vibration, etc.), low cost production and compact size. Together with the

innovative silicon technology, these devices are suitable for direct detection and for in-

situ measurements. Because of this, these sensors are of interest in the chemical and

biomedical fields, for bioprocessing industry and for environmental monitoring

applications.

There are several different designs of the waveguide sensors and hence several

experimental techniques of measurements reported in the literature. A Mach-Zehnder

interferometer with a tapered output section 29,47,48  has produced a different output

phenomena compared to a 3 dB Y junction24 ,25 . The latter case produces a variation in the

output intensity that results from a variation in the optical path difference between the

two arms of the interferometer, which may also be a result of fluctuation of the light

source intensity. This disadvantage has been overcome by the design of tapered section at

the output end that enable one to observe an interference pattern at the output, and the

observed displacement of the fringes is solely due to the optical path difference between

the two arms, and is independent of source power fluctuation. Even though this is a

popular design for chemical application", the technology used to create the tapered MZI

88
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sensor is of the Na+ - K+ ion exchange in glass substrate. On the other hand, the Y

junction MZI, which is generally used as immunosensor, 51 utilizes the advanced silicon

IC technology associated with material used for optical waveguides (silicon and its

compounds). This technology has advantages such as: the possibility of obtaining

efficient coupling between optical fibers and waveguides, and the possible integration of

opto-electronics components on the same chip. 49,50

Most of the experimental techniques using integrated MZI sensor for sensing

purposes uses a He-Ne laser or laser diode as the single wavelength source and

photodiode51 ,28 ,26 or CCD array47 ,48 as detector. The limitation of using single wavelength

source is that, it confines the application of the sensor only to single analyte detection. In

this chapter, a new idea is presented by using multi-wavelength source 30 as the input light

source instead of the single wavelength source. The choice of multi-wavelength source

leads to the possibility of multiple chemical concentration detection, as different chemical

species exhibits its own characteristic fingerprint. The results of interference spectrum at

the near-infrared region recorded by a spectrum analyzer shows a shifting of the fringes

corresponding to various concentrations of chemicals, which has been reported in

Chapter 5.

Two different broadband sources were used in the experiments, namely, a white

light source and a 1.5 pm broadband source. The experimental setup for the sensing

measurements involved different chemical solutions. The experimental procedures and

the data acquisition are explained in this chapter. The comparison of the power splitting

between both the reference and sampling arms is discussed. Total power loss in a single

straight waveguide is also measured and calculated.
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Figure 4.1 Schematic of the experimental setup for the MZI chemical sensor using
broadband source.

4.1 Multi-Wavelength Experiment

The experimental setup for the Mach-Zehnder interferometry detection using broadband

white light source is demonstrated in Figure 4.1. The light sources include (i) an Anritsu

MG922A white light source, and (ii) a JDS 1.5 mm broadband source. The Advantest

Q8381A Optical Spectrum Analyzer was used to measure the output results. The light is

butt coupled directly into the waveguide through a single mode silicon optical fiber with

7.8 μm core, and out-coupled to the spectrum analyzer by another similar optical fiber.

The data of the output light spectrum measured by the optical spectrum analyzer was then
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recorded by a Labview programming into the personal computer for data analysis via

GPIB interface.

The specification of the two light sources are described as follow:

Anritsu MG922A White Light Source

The spectrum of the white light source in the near infrared region after transmitting

through the optical fiber is shown in Figure 4.2. As seen in the figure, the light source

exhibits a decreasing in intensity with respect to the wavelength from 1000 nm to 1200

nm. However, it is considered stable from 1200 nm to 1700 nm. This is important in the

sense that the input light into the Integrated Mach-Zehnder Interferometer sensor must

show no sign of any intensity modulation. Hence, evidence of interference occurred

inside the sensor could be concluded to have taken place if any modulation is detected in

the output intensity.

Figure 4.2 Spectrum of the Anritsu MG922A white light source.
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JDS 1.5 ,um Broad Band Source

The spectrum of the 1.5 μm broadband light source after transmitting through the optical

fiber is shown in Figure 4.3. As can be seen in the figure, the light source does not

exhibit a flat and stable spectrum after transmitting through the optical fiber.

Nevertheless, the source is considered in this experiment because of the wavelength

range is around the 1.55 pm, which is the absorption band of most of the hydrocarbon

based chemicals.

Figure 4.3 Spectrum of the JDS Uniphase 1.5 μm broadband source.

4.2 Experimental Procedures

The liquid chemicals used for the experiments are ethanol and methanol diluted in

distilled water to different percentages of concentration. These alcohol based organic

chemicals were specifically chosen for the experimental purpose because they have
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absorption in the near infrared region. The preparation of the solutions in w% volume of

the chemical in water is described as

For example, a concentration of 20% of ethanol was prepared by dissolving 20 ml of

ethanol into 100 ml of distilled water. Hence the chemical was prepared in 10% to 50%

with 10% increment for used in the experiment.

The sample used for the experiment was cleaved from the wafer such that each

sample contained two dies of the Integrated Mach-Zehnder Interferometer sensors. The

experiments were performed with the solutions dropped on top of the sensor. After each

measurement, the chemical solution was drained from the sensor and cleaned with

distilled water to minimize the contamination of the chemical residue. Distilled water,

represented 0% of concentration, was first to be measured, then followed by 10% of

ethanol/methanol and the next increment of concentration, and so on. The reason in

performing the experiments from the lower to higher concentrations is to avoid the cross-

concentration contamination by the higher concentration solutions to the lower

concentration solutions.

4.3 Data Acquisition

The output result of each measurement of different concentration was recorded into the

personal computer for later analysis. This important task was performed by utilizing the

GPIB (General Parallel Interface Bus) interface, and controlled by the Labview

programming. Figure 4.4 demonstrates the Labview program flow-charts for the

interfacing between the Advantec Optical Spectrum Analyzer and the personal computer.



94

The Labview control panel controlled the spanning range of wavelengths, i.e.

setting the minimum and maximum wavelength for the spectrum scanned; average point

of the scanning; and the data were saved automatically to the hard drive in text file format

after completing the scanning.

Figure 4.4 Labview program flow-chart for controlling the optical spectrum analyzer.
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4.4 Power Loss

The total power loss due to waveguide loss mechanisms such as scattering loss, surface

roughness, and leaky mode to substrate, are investigated for the second-batched of

Integrated Mach-Zehnder Interferometer sensors. The procedures for the inspection has

already been discuss with detail in Section 2.7.2 for the Y-junction. In this section, the

output intensities from both the reference and sampling arms were compared. Two

different arm lengths, i.e. 10 mm and 2 mm, were evaluated for comparison. Power

attenuation of single waveguide was examined as well.

The second-batched integrated MZI sensors fabricated thereafter have been

perfected to minimize the errors as explained in Section 2.7. The testing results for the

new sensors are quite promising in the sense that there are no misalignments occurred in

the new integrated MZI sensors. However, the problem of over-etching on the sampling

arms still remained. Although it is not as serious as mentioned in Section 2.7.3, yet it is

considered as an imperfection factor to the fabrication, and to the whole project as well.

Hence, it is suitable to re-test the Y-junction for the power loss measurement between the

two arms.

The setup for the testing purpose is depicted schematically in Figure 4.5. The 10

mm and 2 mm arm length sensors with 6-μm core width were investigated for

comparison. In this experiment, the light source used was the Anritsu MG922A

Broadband White Light source. The ratio of the normalized output intensity of the

reference arm to that of the sampling arm is determined from Figure 4.6 and Figure 4.7

for 10 mm and 2 mm arm lengths, respectively.
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Figure 4.5 Experimental setup to measure the output power from both the sampling
arm and the reference arm of a Y-junction.

Figure 4.6 Output results of reference arm and sampling arm with 6 p.m core width and
10 mm arm length.
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Figure 4.7 Output results of reference arm and sampling arm with 2 mm arm length.

The percentage of the output power, %P' , transmitting through the waveguide

can be calculated from

where the superscript i represents the reference arm or the sampling arm respectively, and

Ptotal is the total output power of the two arms.

Table 4.1 lists all of the output power splitting ratios of the two arms for 10 mm

and 2 mm arm length sensors at three different wavelengths, namely, 1300 nm, 1400 nm,

and 1500 nm. The table shows that the power loss in both arms increases with respect to

the increase of wavelength in this region due to the absorption by silicon in the

wavelength towards the mid-inferred range. In order to examine the losses caused by the

window opening at the sampling arm, another set of measurement were made using the

Hewlett Packard HP8152A Optical Average Power Meter instead of Optical Spectrum
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Analyzer to really measure the total output power from the sensor arms. The results are

listed in Table 4.2 for the Y-junction without window opening and the sampling arm with

four different lengths. The results shows that the power splitting ratios of all the four

sensors are quite similar with only around 7% different between the 4 mm length with the

three longer arm length. The Y-junction alone has splitting ratio of 59:41. Also, the

sampling arms show 1% to 3% losses. The output intensity of the reference arms are

higher than that of sampling arms for all sensors showing that the problem is probably

due to the window mask design with the taper section of the Y-junction slightly off to the

sampling arm. Note that the power splitting ratios shown in Table 4.1 are different

between the 10 mm and 2 mm arms. The reason that might cause the difference is due to

the inefficient coupling between the fiber and the waveguide at both input and output

ends of the two sensors when performing this experiment.

Table 4.1 Output power splitting ratio (reference arm: sampling arm) for 10 mm and 2
mm length at 1.3 gm, 1.4 gm, and 1.5 μm wavelengths

Wavelength (nm) 10 mm Arm Length 2 mm Arm Length

1300 60:40 63:37

1400 63:37 69:31

1500 66:34 70:30
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The total power loss in a single straight waveguide is also measure in this section.

Figure 4.8 shows the normalized output power of two different length straight

waveguides with 6 μm core width measured with respect to wavelength. The power loss

in a single straight waveguide can be determined by

where l is the length of the straight waveguide, and a is the power loss in the waveguide.

Hence the power loss for a straight waveguide can be calculated using two similar

waveguides in different lengths by eliminating the input power, Pinput, assumed that it is

constant for both cases. Therefore the total power loss is defined as

Table 4.2 Output power measured from reference arm and sampling arm of different
sensors and the Y-junction

Arm length
% Output Power

Reference Arm Sampling Arm

Y-junction 59 41

4 mm 63 37

6 mm 60 40

8 mm 60 40

10 mm 60 40
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where the superscripts of 1 and 2 of Poutput represent the output power of two straight

waveguides with two different lengths, ll and '2, respectively. The results of the power

loss in a straight waveguide with respect to three different wavelengths are tabulated in

Table 4.3.

Figure 4.8 Output results of straight waveguides with 3.1 cm and 1.4 cm long.

The total power loss in a waveguide consists of the power loss inside the

waveguide as scattering loss and power absorption; and power loss due to the

inefficiency fiber-to-waveguide (and waveguide-to-fiber) coupling. This inefficiency of

coupling is owing to several reasons, namely, (i) the optical fiber core diameter of 7.5 μm

is larger then the waveguide core diameter of 6 μm, (ii) the fiber end and the waveguide

end were not polished, and as the result, rough surface scattered off part of the light

inside and outside the waveguide, and (iii) energy feedback at every end surface of the
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fibers and the waveguide in reverse direction to the transmission of light also accounted

for the loss.

Table 4.3 Total power loss in a straight waveguide with respect to three different
wavelengths

Wavelength (nm) a (cm -1 )

1300 0.105

1400 0.254

1500 0.140



CHAPTER 5

RESULTS AND DISCUSSION

The theoretical and experimental results of an integrated Mach-Zehnder Interferometer

are presented in this final chapter with detailed discussion on each subject. The Marcatili

solution is first discussed, and the cutoffs for the three lowest TM modes are displayed.

The FEM solutions with the entire corresponding mode fields' distribution for the TM

modes and TE modes are illustrated in three—dimensional graphics. Mode cutoffs are also

calculated using this method.

The experimental results are shown for light sources, which are the white light

source and the 1.5 pm broadband source. Discussions are focused on the results obtained

from the sensors with waveguide dimension of 5 pm x 8 mm, 5 pm x 10 mm, 6 pm x 8

mm, and 6 p.m x 10 mm, where the latter number represents the arm length of the sensor

in between the two Y-junctions. Finally, the comparison between the two methods and

among the theoretical and experimental results is discussed.

5.1 Marcatili's Solution

The analytical solution for the waveguide modes cutoff using this Marcatili's

approximation can be determined by first solving the kx and ky from dispersion equations

(2.35) and (2.36), respectively, by making use of equations (2.37) and (2.38), as

discussed in Section 2.3.2. The parameters used in the equations are

102
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with p = q = 1 for TM11 mode, p = 1 and q = 2 for TM12 mode, p = 2 and q = 1 for TM21

mode. These parameter values are also used in the FEM computational solution. The If,

and ky obtained were then substituted into equation (2.39) for the propagation constant fl.

This propagation constant can be related to the normalized propagation constant as in

equation (3.93), which is

The conditions for the guided modes are stated, from equation (2.13), as

and a plot of b versus wavelength A for the three lowest TM modes determines the

corresponding cutoffs where the cutoff condition is expressed as b = 0.

Since the dispersion equations are transcendental, hence it can only be solved by

iteration methods such as bisection method or Newton-Raphson method. Therefore, a

Mathematica program was written to solve this type of equation, utilizing the Newton-

Raphson method. This Mathematica program code is listed in Appendix K, and the

solution of the cutoff modes is depicted in Figure 5.1. The figure shows the three lowest

transverse magnetic modes TM 11 , TM12, and TM21 with their cutoffs at b = 0. From the

graph, the fundamental mode cutoff wavelength is 5 11171, while the second mode cutoff

wavelength is 2.5 μm.
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Figure 5.1 Cutoff values for the three lowest TM modes solved by using the Marcatili's
approximation for the 6 pm core waveguide.

5.2 FEM Solutions

Finite element method is accurate in solving the electromagnetic modes fields in various

waveguide geometries. As explained in Section 3.5, the TE and TM modes of the

integrated MZI waveguides are solved by utilizing the FEM weak form of two-

dimensional wave equations (3.95) and (3.97), respectively with the waveguide index

prof11le, element geometry, and nodes location as described in Figure 3.8 and Figure 3.9.

The Matlab programs written to solve the FEM equations are listed in Appendix E for

TM modes, and Appendix F for TE modes.

The two-dimensional graphic of TM ] 1 mode field at 1500 nm wavelength

generated with 200 elements is illustrated in Figure 5.2, and the three-dimensional

diagram is as shown in Figure 5.4. Figure 5.5 and Figure 5.6 show the modes f11elds for
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TM, 1 and TM 21 at 1100 nm wavelength while Figure 5.8, Figure 5.9 and Figure 5.10

depict the TM II , TM 21 , and TM 12 at 1000 nm. Notice that there are two modes at 1100

nm, while there are three modes at 1000 nm. This means that 1100 nm is the second

mode cutoff wavelength while 1000 nm is the third mode cutoff wavelength. The TE

modes fields are quite similar to the TM modes fields and hence will not be shown in the

dissertation. The TM modes fields of a 5 1.1M core waveguide at 1500 nm wavelength

generated with 800 elements is also calculated and is depicted in Figure 5.3.

Figure 5.2 Two-dimensional graphic of TM ! , at 1500 nm wavelength as simulated by
FEM with 200 elements for the 6 	 core waveguide.

The cutoff values can be determined from the dispersion curve of b versus inverse

wavelength calculated by the finite element method, which are shown in Figure 5.12 for

the TM modes while TE modes are depicted in Figure 5.13. The cutoff wavelength for
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TM11 and TE I are around 1900 nm; for TM21 and TE2, are about 1100 nm; and for TM 12

and TE 12 are at 1000 nm. This means that the interferometer sensor is sensitive only in

the wavelength range from 1100 nm to 1900 nm since multimode causes problem with

interference. Figure 5.14 shows that the single mode cutoff is the same for TE and TM

modes for square waveguide. The FEM Matlab codes are listed in Appendix G and

Appendix H for TM and TE cutoffs calculation, respectively. The dispersion curve of the

TM modes for the 5 1.1M core waveguide is shown in Figure 5.15. Note that the single

mode cutoff wavelength for this case is in the range of 950 nm to 1700 nm. The cutoff

wavelengths are shorter for smaller waveguide than the larger waveguide.

Figure 5.3 Two-dimensional graphic of TM 11 at 1400 nm wavelength as simulated by
FEM with 800 elements for the 5 11,M core waveguide.
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Figure 5.4 Three-dimensional graphic for TM 11 mode at 1500 nm wavelength for 6 μm
waveguide.

Figure 5.5 TM„ at 1100 nm wavelength for 6 pm waveguide.
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Figure 5.6 Two-dimensional graphic of TM 21 at 1100 nm wavelength for 6 m
waveguide.

Figure 5.7 Three-dimensional graphic for TM 21 mode at 1500 nm wavelength for 6 μm
waveguide.



Figure 5.8 TM 11 at 1000 nm wavelength for 6 μm waveguide.

Figure 5.9 Two-dimensional graphic of TM21 at 1000 nm wavelength for 6 μm
waveguide.



Figure 5.10 Two-dimensional graphic of TM 12 at 1000 nm wavelength for 6 pm
waveguide.

Figure 5.11 Three-dimensional graphic for TM12 mode at 1000 nm wavelength for 6 pm
waveguide.
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Figure 5.12 Dispersion curves for the lowest four TM modes as determined by FEM for
6 μm core waveguide.

Figure 5.13 Dispersion curves for the lowest four TE modes as determined by FEM for
6 vim core waveguide.
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Figure 5.14 Comparison of the dispersion curves for TM and TE modes in the
integrated MZI single waveguide for 6 pm waveguide.

Figure 5.15 Dispersion curves for the lowest four TM modes as determined by FEM for
5 p.m core waveguide.
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The mode field simulation for the waveguide without cladding is illustrated in

Figure 5.16 with comparison to the one with cladding. This is done by specified the

refractive index of the cladding to 1.0, which is the refractive index of air, in the same

FEM Matlab programs listed in Appendix E for TM modes. The corresponding

dispersion curves for the four lowest TM modes are shown in Figure 5.17, which shows

that the single mode cutoff for the sampling arm is between 900 nm and 1550 nm.

Figure 5.16 TM11 at 1500 nm wavelength as simulated by FEM with 200 elements for
the 6 µm core waveguide without cladding.

To simulate the effect of the chemical on the mode field in the sampling arm, the

refractive index of the air and the cladding are replaced by the refractive index of the

chemical. For example, the refractive index of the cladding and the air are replaced by the

refractive index of the 50% concentration of ethanol, which is 1.3616 from CRC
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Handbook. The single mode cutoff wavelength for this case is at the range of 980 nm to

1670 nm as shown in Figure 5.18 for the four lowest TM modes on a 6 μm core

waveguide. For water with refractive index of 1.333, the single mode cutoff wavelength

is at 1640 nm. This means that if the chemical concentration is increase from 0% to 50%,

the single mode cutoff wavelength range will be in between 1640 nm to 1670 nm.

Compare to single mode cutoff wavelength range for the reference arm, which is in

between 1100 nm and 1900 nm, it is clear that the input light source used for the

experiments should be in the 1100 nm and 1640 nm range so that single mode

propagation is maintained in both the reference and sampling arms.

Figure 5.17 Dispersion curves for the lowest four TM modes as determined by FEM
for 6 pm core waveguide without cladding.
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Figure 5.18 Dispersion curves for the lowest four TM modes as determined by FEM for
6 p.m core sampling arm with 50% of ethanol.

5.3 Experimental Results

The results of the experiments performed as explained in Chapter 4 are discussed in the

following sections. The experiments were carried out for different sensors, namely the 5

μm and 6 μm core waveguide sensors with 8 mm and 10 mm arm lengths. The chemical

used for the experiments were ethanol and methanol diluted in 10% up to 50% with 10%

increment. The output results using broadband white light and broadband around 1.5 p.m

wavelength are displayed in below.

5.3.1 White Light Source

A concern about whether the Integrated Mach-Zehnder Interferometer sensor would

exhibit the interference property has to be clarif11ed before performing the experiments

with the different chemical concentrations to the interferometer sensors. Therefore,
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experiments were first carried out to compare the output results of the MZI sensor, the

single waveguide and the input light source. From Figure 4.2 in Section 4.1, it is clear

that the input light source is constant through out the wavelength range from 1200 nm to

1700 nm. This state is to be expected in a straight single waveguide as well, however, a

modulation on intensity is to be anticipated in the MZI sensor if interference occurs inside

the interferometer. Hence, it is prudent to test on this matter before hand to avoid any

misinterpretation of the experimental results later on.

Figure 5.19 Comparison among the output profiles of the integrated MZI sensor, the
single waveguide and input light profiles.

Figure 5.19 shows the experimental results of the comparison between the

waveguides and the input light source. The graphs of the MZI sensors are vividly

showing the modulation of intensities as predicted, while compare to the graphs of the

output results from the straight single waveguide and the input light source. The figure
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also displays the shifting of the spectrum of the MZI with pure ethanol from the MZI

with distilled water, showing that the interferometer sensor is indeed sensitive to the

change in the index of refraction on the exposed sampling arm.

Figure 5.20 Experimental results showing the interference spectrums shifted
corresponding to the various concentration of ethanol on a 5µm MZI waveguide sensor
with 8 mm arm length.

From the two output spectrums of MZI shown in Figure 5.19, the graph of ethanol

is at the left hand side of the graph of water. This means that the phase shifting due to the

increasing of the refractive index of ethanol on the sampling arm from that of water has

shifted the output intensity of the ethanol to the left side of the water spectrum.

Consequently, if several different concentration of ethanol were applied to the sensor, the

output results would be shifting towards the left side gradually with the increasing of the

concentration, by other mean, the increasing of the index of refraction. This logical

interpretation has been proven and shown in Figure 5.20 for the 5 μm core width
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waveguide sensor with 8 mm arm length. Note that the interval of each spectrum is not

consistent for each 10% increment of ethanol concentration. This is because of the

residue or contamination due to the previous solutions on the sampling arm, which is

unpredictable even though the sensor has been thoroughly cleaned by flushing a large

amount of distilled water through the sensor before the consecutive measurements.

Figure 5.21 	 Experimental results showing the interference spectrums shifted
corresponding to the various concentration of ethanol on a 6-μm MZI waveguide sensor
with 8 mm arm length.

Similar experiments were performed using the 6-μm core width waveguide

sensors with 8 mm and 10 mm arm lengths, and the results are depicted in Figure 5.21

and Figure 5.22, respectively. Notice that the modulation of intensity becomes more

intense by means of a larger waveguide core width, which can sustain mode field with

higher intensity through out the waveguide with less radiation/leakage to the cladding and

the buffer layer. The 10 mm arm length waveguide sensor also shows a more sensitivity
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to the refractive index changed, which is demonstrated by the wider separation of interval

between each spectrum compare to the result of 8 mm arm length waveguide sensor.

Figure 5.22 Experimental results showing the interference spectrums shifted
corresponding to the various concentration of ethanol on a 6 μm MZI waveguide sensor
with 10 mm arm length.

Similar experiments using methanol were also performed on the integrated MZI

sensors with waveguide dimensions of 5 x 10 mm, 6 x 8 mm, and 6µm x 10

mm. The results too exhibit the same properties as mentioned above, which are shown in

Figure 5.23, Figure 5.24, and Figure 5.25, correspondingly. A separate experiment was

carried out for the comparison between the 50% concentration of ethanol and the 50%

concentration of methanol, and the results is illustrated in Figure 5.26.



Figure 5.23	 Experimental results showing the interference spectrums shifted
corresponding to the various concentration of methanol on a 5 1.1M MZI waveguide sensor
with 10 mm arm length.

Figure 5.24 Experimental results of methanol on a 6 pm MZI waveguide sensor with 8
mm arm length.
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Figure 5.25 Experimental results of methanol on a 6-μm MZI waveguide sensor with 10
mm arm length.

Figure 5.26 Comparison between the experimental results of 50% concentration of
ethanol and 50% concentration of methanol on a 5 μm  MZI waveguide sensor with 8 mm
arm length.
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Several measurements were made for an interval of 50 seconds with the water

covered the sampling arm of the sensor. The output spectra of the measurements

overlapped with each other showing that the results were repeatable, as shown in Figure

5.27. The results show that the wavelength peak does not shift over the time. This means

that the sampling arm reached its equilibrium state in less than a minute, or the chemical

interaction with the waveguide core is instantaneous, and the data is time independent in

a short duration of time. The intensity, however, slightly decreased after several

moments. This is because of the instability of the experiment apparatus used for the

fiber-waveguide coupling.

Figure 5.27 Output spectra of water before and after 50 seconds.

Several plots of normalized intensity vs. concentration of methanol based on the

experimental data at 1420 nm, 1460 nm, and 1480 nm wavelengths from Figure 5.23 are

shown in Figure 5.28. Notice that it is a positive slope at 1420 nm and a negative slope at
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1480 nm, while it's fairly flat at 1460 nm. This means that the sensor is sensitive at 1420

nm and 1480 nm wavelengths but not at 1460 nm wavelength for this case. The

sensitivity S„, can be determined by

since DIN≈cos(Δθ)≈ sin(Δθ ) AO if A. is chosen so that AO = 77 , where AO is the2 

phase shift, MN is the normalized intensity difference and AM is the change in chemical

concentration. The term AV is actually the slope of the normalized intensity versusAM

concentration. Hence the sensitivity of this particular sensor at 1420 nm is around 0.0044

and at 1480 nm is around 0.0038. The minimum detectable concentration Cmin is then

verified from

From the error bar provided by the standard deviation shown in Figure 5.28, the error is

0.035 for the plot at 1420 nm. Thus, the minimum detectable concentration is 7.95%,

while at 1480 nm with error = 0.03, the minimum concentration detectable is 7.89%. In

other words, the sensor will not response to the ethanol with less than 8% of

concentration of ethanol in water. The minimum detectable concentration can be

improved as discussed in the discussion section since the integrated MZI is expected to

be able to detect in low ppm range, while the 8% of ethanol is equivalent to 63,200 ppm.



Figure 5.28	 Normalized intensity vs. concentration of methanol based on the
experimental data at 1420 nm, 1460 nm, and 1480 nm wavelengths from Figure 5.23.

5.3.2 1.5 μm Broadband Source

The experimental procedures were repeated using the 1.5 μm broadband source. The

broadband source has wavelength ranging from 1520 nm to 1580 nm as depicted in

Figure 4.3. It is expected that the sensor have higher sensitivity in this wavelength range

since (from previous results shown in Figure 5.20 to Figure 5.26) the intensity spectra

with respect to the corresponding concentration of chemical show more significant

variations from the water compare to other wavelength regions. Thus, an experiment was

performed on the 5 pm x 10 mm sensor with different concentration of ethanol, and the

results are shown in Figure 5.29.
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Figure 5.29 Experimental results showing the interference spectrums shifted
corresponding to the various concentration of methanol on a 5 p.m MZI waveguide sensor
with 10 mm arm length using 1.5 pm broadband source.

Figure 5.30	 Normalized intensity vs. concentration of ethanol based on the
experimental data at 1520 nm, 1548 nm, and 1570 nm wavelengths from Figure 5.28.
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The intensity varies linearly with the concentration at wavelength around 1520

nm and 1570 nm as shown in Figure 5.30. This means that the sensor is sensitive at 1520

nm and 1570 nm but not at 1548 nm for this case. The sensitivity of this particular sensor

is the slope of the plot, which is around 0.0001 at 1520 nm and at 1570 nm. From

equation (5.3), the minimum concentration detectable for this case is

which means that this sensor becomes less sensitive to the

chemical of 10% or lower concentration, when 1.5 µm broadband source is used.

5.4 Discussion

The ratio of the propagation constant p to the wavenumber k is called the effective index,

neff , represented by

Hence the normalized propagation constant of equation (3.93) can be expressed as

When neff < nclad , the electromagnetic field in the cladding becomes oscillatory

along the transverse direction; i.e., the field is dissipated as the radiation mode into the

buffer layer and top cladding, for which case, b < 0 . In the case for b > 1, higher order

modes occur. This means that for each mode field, they have their own set values of

0 b. ..1, as shown in Figure 5.1 and Figure 5.14.



Figure 5.31 Schematic of a buried channel waveguide structure.

The calculated cutoffs for TM modes by the Marcatili's approximation are of big

difference compare to that by finite element method. The analytical cutoff is 5 p.m while

the numerical is 1.9 p.m. The difference is due to the fact that the Marcatili's treatment is

more accurate when deal with a waveguide configuration as shown in Figure 5.31, which

is the buried channel waveguide with thick cladding surrounded the waveguide core,

while for the integrated MZI sensor, the waveguide structure has much thinner cladding

covers only the three sides of the waveguide. Such complicated waveguide will need a

more sophisticated method, i.e. the finite element method, to solve the eigenvalues.

As for the ridge waveguide simulation using FEM or other numerical approaches,

most of the publications 52 '53 were specified on the waveguide structure as shown in

Figure 5.32, which is quite different from the waveguide designed for the integrated MZI

127
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sensor. This type of ridge waveguide has less complexity compare to the waveguide

designed for the integrated Mach-Zehnder Interferometer sensor in this dissertation.

Thus, this unique and complicated waveguide structure has contributed to the big

different between the analytical and numerical solutions.

Figure 5.32 Schematic of a ridge waveguide structure.

The cutoff value of the fundamental mode calculated by the FEM shows

agreement with the experimental results. For example, the cutoff wavelength of the first

order mode from Figure 5.20 is 1640 nm, where the output intensity does not show

interference beyond the cutoff. The agreement from the experimental value is also shown

in Figure 5.33 where the interference occurs after 1100 nm wavelength, which is the

second order mode cutoff. By other means, the wavelength of the source used for the

experiments has to be in between 1100 nm and 1640 nm so that single mode propagation
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can be maintained in the reference and sampling arms because interference happened

during the superposition of two single modes.

Figure 5.33 Comparison among the output profiles of the integrated MZI sensor, the
single waveguide and input light profiles.

The sensitivity calculated from Section 5.3 shows that there is a factor of 40

difference between the cases with the white light source and the 1.5 μm broadband

source. Since the sensor sensitivity is independent of the effect due to the total power loss

in the waveguide, the compensated sensitivity to the error can be estimated as

for the sensor using white light source, where SA, is the difference between the

maximum and minimum normalized intensity obtained from Figure 5.23. The estimated

sensitivity for the senor using 1.5 4m broadband source is 0.007 with S„, = 0.0001 and
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(5./N = 0.014 determined from Figure 5.29. The sensitivity of the two cases becomes a

factor of 2 difference after eliminating the power losses from the calculation.

Another approach used to calculate the sensor sensitivity is to determine the

wavelength at the peak of spectra as a function of the change of refractive index from

water. The sensitivity is defined as

where Δλpeak is the wavelength at the peak of the spectra and An is the difference of the

refractive index of the concentration of ethanol from water. A plot of the peak

wavelength versus the index difference is shown in Figure 5.34, with the data obtained

from Figure 5.23.

Figure 5.34 Peak wavelength versus refractive index difference of ethanol from water.
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The sensitivity in terms of wavelength is the slope of the plot, which is 1 μm/unit

index change for the 5 x 10 mm with white light source. The minimum detectable

concentration is then defined by

with the error = 0.006 gm determined from the plot, the minimum detectable

concentration is 0.6% of ethanol. This corresponds to about 4740 ppm. Note that this

minimum detectable concentration is about a factor of 10 smaller than that obtained with

intensity changes with concentration.

The experimental results using different concentration of chemical have proven

that the sensor is sensitive to the refractive index changed on the sensing/sampling arm

with respect to the wavelength variation. Notice that for all the intensity modulation

results, the destructive interference is not at zero, which means that there is an offset

value for the interference. This offset value is affected by the fringe visibility factor V 49 ,

which depend on the input and output Y-junctions spitting ratios and the losses in the

sampling and reference arms of the integrated Mach-Zehnder Interferometer sensor. This

factor can be related to the equation (2.4), and is expressed as

where nchem and nwater are the refractive index of the chemical and water, respectively; L is

the arm length and F is the waveguide index conversion factor, 54 which is also the curve

fitting value of the phase shifting. The fringe visibility can be estimated by
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where the /ref and Isamp are the output intensities of the reference arm and sampling arm

of the Y-junction, respectively. The fringe visibility is between 20% and 32% in the

wavelength ranging from 1300 nm to 1500 nm, for the 6 x 10 mm sensor. Note that

the fringe visibility will have different value for different interferometers. The data of the

fringe visibility as a function of wavelength calculated from experimental data of Figure

4.6 for 6 p.m x 10 mm waveguide sensor is shown in Figure 5.35.

Figure 5.35 Fringe visibility as a function of wavelength.

The theoretical value of the normalized intensity calculated using equations (5.8)

and (5.9) is shown in Figure 5.36, with the fringe visibility obtained from Figure 5.35,

and L = 10 mm. The nchem for 50% of ethanol is 1.3616 and the refractive index of water

can be obtained from the CRC Handbook, i.e.
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where T is the room temperature. The factor F is the estimated theoretical curve fitting

value, which is also wavelength dependent. In this case, the factor F is estimated as

Figure 5.36 Comparison between the experimental result and theoretical data.

This factor will have different values for different waveguides. The offsets between the

experimental result and the theoretical data are mainly due to the power loss in the Y-

splitter; the possibility of mode leakage into the buffer layer; and scattering loss in the

waveguides material.

The sensitivity obtained from the experimental results of Figure 5.28 and Figure

5.30 for the white light and 1.5 μm broadband sources varies from 8% to 10%. This

means that the sensors will not response accurately to a 10% or less of concentration

difference. This may explain why the experimental results listed in Section 5.3 for the

white light source exhibit an inconsistent shifting for each 10% increment in

concentration. The integrated Mach-Zehnder Interferometer sensor is expected to be
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sensitive in ppm (parts per million) range of concentration difference. However, the

experimental results show otherwise, and this is mainly due to the fiber-to-waveguide

coupling inefficiency. The fiber, which is butt-coupled to the waveguide, is susceptible to

movement from vibrations, air currents, or sagging/ creep of the positioning stages. This

problem can be improved by stabilized the whole fiber-waveguide system with the fiber

set on a V-groove connected to the waveguide, 55 as depicted in Figure 5.37

Figure 5.37 Schematic of a V-groove for stabilizing the optical fiber.

The setup system can be stabilized when the chemical is flowing constantly

through the sensor. This can be achieved by adhered a flow cell on top of the sensor as

depicted in Figure 5.38. By connecting the flow cell with piping and a mechanical pump,

the chemical can be directed through the sensor in a steady flow to minimize vibration on

the end coupling system. Together with a lock-in amplifier for output measurement, the

minimum detectable concentration can be improved up to 1000X. For example, the

minimum detectable concentration calculated from the experiment is 10% (intensity

variation method) of ethanol, which is equivalent to 79,000 ppm. The estimated

minimum detectable concentration after the improvement is 79 ppm.
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Figure 5.38	 A 4 cm long flow cell adhered on top of a sample with two dies of
integrated MZI sensors.

5.5 Anticipated Vision

Since the integrated MZI sensor exhibits the sensitivity to the different chemicals in the

broadband wavelength range, it can be implemented into a chemical selective device  if

integrated with a wavelength tunable laser diode. Different chemical species have  their

individual fingerprint spectra, which depend on absorption of particular wavelengths.

Therefore, by transmitting consecutive steps of single wavelength of a broadband source

through the sensor, the output spectrum will be able to reveal which chemical species

appears in the solution by matching the result to the fingerprint spectra.

From Figure 5.28 and Figure 5.30, which show the normalized intensity changes

with the % of concentration difference, the sensor exhibits its sensitivity only at certain
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wavelength range. In other words, the sensor will not response to a chemical species that

has absorption at the wavelength range where the sensor is not sensitive. Thus, for future

implementation, a phase modulator 56 can be integrated on the reference arm so that the

sensitivity range of the sensor can be tuned to coincide with the chemical absorption

range.

Selectivity can also be achieved by having a micro-concentrator integrated with

the Marc-Zehnder Interferometer as shown in Figure 5.39. The polymer layer inside the

chamber attracts chemical in a very low concentration for duration of time and releases

the chemical in a higher concentration for the sampling arm detection when the

temperature of the micro-concentration is increased. With the idea of selectivity using

different polymer for different chemical attraction, an array of the Mach-Zehnder

Interferometer sensors can be fabricated to form a multi-channel chemical selectivity

device as depicted in Figure 5.40. Each channel of the micro-concentrator will response

to a certain chemical and the output spectra will act like the fingerprint for a particular

chemical.

Figure 5.39 Schematic of a Micro-Concentration integrated with MZI.
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Figure 5.40 Schematic of a multi-channel chemical selectivity device.

In the future, the design of the integrated optical waveguides will be more

straightforward and effortless with the computational method presented in this

dissertation. The changing of the waveguide materials or doping materials can be

simulated according to the specific applications such as lithium niobate waveguide used

for sensing electric field, 23 or erbium doped waveguide used in waveguide amplifier. 57,58

The numerical method is also efficient in calculating the power loss in the waveguides by

updating the technique into three-dimensional method.

The computational design of the integrated optical waveguides can be

implemented to waveguide laser or amplifier simulation using three-dimensional FEM.

Further simulation can also be applied to the Y-junction using FE-BPM, i.e. finite
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element beam propagation method, which integrates the two novel numerical/simulation

methods to simulate the mode propagation along the variant z-axis (which is invariant in

the two-dimensional case), and the power loss/gain as the light transmitting through the

waveguide.

5.6 Summary

• A theoretical study on the integrated optical waveguide has been presented in both the

analytical and numerical approaches. The analytical method used is the Marcatili's

approximation while the numerical method employed is the finite element method

(FEM). The Marcatili's approximation is the simplest among other analytical

methods and hence is not accurate when applied to complicated waveguides as

designed for this project. On the other hand, the FEM is the most complicated

technique among the numerical methods, and thus the cutoff results calculated show

agreement with the experimental results. Moreover, the numerical method has been

proved to be able to simulate the electromagnetic fields propagating through the

waveguides with various design parameters.

• Due to the failure of the first generation sensors, the re-fabricated second generation

integrated MZI sensors were subjected to a series of testing processes to ensure the

sensor functionality before further experiments were performed.

• Experiments were performed using white light and 1.5 μm broadband sources with

different concentrations of ethanol and methanol. Results show that the output

intensity varied with respect to wavelength and the spectrum shifted in accordance

with different concentrations of the chemicals. The sensitivity of the sensor is also
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determined from the plot of intensity versus concentration, which is around 0.013

(%m1) -1 and 0.007 (%m1) -1 for the white light source and the 1.5 μm broadband

source, respectively. The lowest detectable concentration of ethanol for the sensor

detection is 8%.

• The experimental results agree with the theoretical data with minor offset due to the

unbalanced power split by the Y-splitter, and power loss due to scattering by the

waveguide materials and mode leakage into the substrate.



APPENDIX A

FABRICATION PROCEDURES FOR THE INTEGRATED MZI

Wafer Preparation

1. Clean wafer (primary), M-Proyl, Temp: 95°C 10 min.

2. Clean wafer (secondary), M-Proyl, Temp: 95°C 10 min.

3. Cold DI Rinse 10 min.

4. Spin Dry.

Buffer Layer and PSG Deposition

1. LPCVD of Si02, Gas: 02/Diethylsilane, Thickness: 15 1.1m, Temp: 775°C, Time:

20 hrs.

2. LPCVD of PSG, Gas: 02/Trimethylphosphite/Diethylsilane, Thickness: 7 pm,

Temp: 600°C, Time: 5 hrs.

PCG Etch-Back and First Sputter

1. RIE (Reactive Ion Etching) etch to ~ 5.5	 25 sccm CF4.

2. DC-Sputtering AL/0.5% Cu, Thickness: 2000A

Photolithography (Waveguide Layer)

1. Photoresist Deposition, Thickness: 2 pm, Time: 20 sec.

2. Hot Plate, Temp: 110°C, Time: 1 min.

3. Cold Plate, Temp: 18°C, Time: 30 sec.

4. Exposure to UV, Time: 18 sec.

5. Apply Developer, Time: 30 sec.
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6. Apply Developer, Time: 1 min.

7. DI Rinse.

8. Spin to remove water.

9. Hard Baking, Temp: 115°C, Time: 1 min.

10. Cold Plate, Time: 1 min.

Aluminum Etch Mask

1. Al Etch, Etchant: HNO 3/HOAC/H3PO4 , Temp: 40°C, Time: —20 sec., Etch Rate:

—2700 Amin.

2. Cold DI Rinse, Time: 10 min.

3. Spin Dry.

4. Photoresist Strip (primary), M-Proyl, Temp: 95°C, Time: 10 min.

5. Photoresist Strip (secondary), M-Proyl, Temp: 95°C, Time: 10 min.

6. Cold DI Rinse, Time: 10 min.

7. Spin Dry.

Etch of PSG Waveguide Cores and Removal Al Etch Mask

1. RIE (Reactive Ion Etching), 25 sccm CF4, Temp:25°C, 250 watts, 750 mTorr.

2. Al Etch, Temp: 40°C, Time: —20 sec., Etch Rate: —2275 Amin.

3. Cold DI Rinse.

4. Spin Dry.

Waveguide Core Anneal and Cladding Deposition

1. Anneal Waveguide Cores, Temp: 1050°C, Gases: 7.5 slpm N2 and 0.5 slpm 02.

Time: 1 hr.
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2. PECVD of Si02, Gas: 02/Diethylsilane, Thickness: 1 μm, Temp: 250°C, Time:

30 min.

Second Al Sputter

1. DC-Sputtering Al/0.5% Cu, Thickness: 2000 A.

Repeat Steps

1. Photolithography for Window Layer

2. Aluminum Etch Mask

Etch of Windows in Si02 and Removal of Al Etch Mask

1. RIE (Reactive Ion Etching), 25 sccm CF4, 25 sccm CHF 3 , Temp: 25°C, 250 watts,

750 mTorr.

2. Al Etch, Temp: 40°C, Time: —20 sec., Etch Rate: —2275 Å/min.

3. Cold DI Rinse, Time: 10 min.

4. Spin Dry.



APPENDIX B

FEM GLOBAL MATRIX ASSEMBLY TABLES

Node Location Table

A listing of all meshes nodes using global numbers and their corresponding (x, y)

coordinates. This table specifies the geometry of the input configuration, as shown in

Table A.1.

Triangle Connectivity Table

This table gives the global nodes comprising each triangle. For example, by referring to

Figure 3.5, element #3 (e = 3) is formed by nodes 2, 3, and 7, as given in line 3 of table

A.2. The table defines three arrays, which provides the correspondence between local

node number of eth element and the global nodes.

Boundary Element Table

To impose the boundary conditions it is necessary to identify the surface edges on the

outer boundary of the mesh and their associated nodes. This table can be generated using

the data in the previous two tables. The data manipulations required to generate the

surface node and element information is typically part of the data preprocessor and is an

important step before assembling the final system. An example of such a boundary

element table is given in Table A.3. The listed arrays provided the correspondence

between the local surface element nodes and the global.
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Table A.1 Node location table for matrix assembly

Global node # x y

1 0 0

2 3.33E-06 0

3 6.67E-06 0

4 1.00E-05 0

5 0 3.33E-06

6 3.33E-06 3.33E-06

7 6.67E-06 3.33E-06

8 1.00E-05 3.33E-06

9 0 6.67E-06

10 3.33E-06 6.67E-06

11 6.67E-06 6.67E-06

12 1.00E-05 6.67E-06

13 0 1.00E-05

14 3.33E-06 1.00E-05

15 6.67E-06 1.00E-05

16 1.00E-05 1.00E-05
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Table A.2 8-element triangular connectivity data for matrix assembly

Element #

e

Local Node arrays

n(1,e) n(2,e) n(3,e)

1 1 2 6

2 1 6 5

3 2 3 7

4 2 7 6

5 3 4 8

6 3 8 7

7 5 6 10

8 5 10 9

9 6 7 11

10 6 11 10

11 7 8 12

12 7 12 11

13 9 10 14

14 9 14 13

15 10 11 15

16 10 15 14

17 11 12 16

18 11 16 15
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Table A.3 Boundary element connectivity table

Surface Edge

Number s

Local Node Arrays

ns(1, s) 	 ns(2, s)

1 6 4

2 4 1

3 1 2

Material Group Table

In practice, the same material covers sections of the domain and it is not necessary to

specify the material parameters for each individual element. Instead, one may choose to

attach a material code column to the element connectivity table. That is, the material of

each element is specified through the "code" which is in turn associated with specific

values of Er and p r .

The first two of the above tables are always required but the latter two may or

may not be needed depending on the application at hand.



APPENDIX C

ONE-DIMENSIONAL FEM CODE

Listing of one-dimensional FEM program for one-dimensional Sturm-Liouville second

order differential equations.
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APPENDIX D

FEM TM AND TE FIELDS FOR AIR

The following is the Finite Element Method for solving the Transverse Magnetic and

Transverse Electric field modes written in Matlab codes for air or with the users'

specified dielectrics filled waveguides, and the total number of element.
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APPENDIX E

FEM TM MODE FOR DIELECTRIC

The following is the Finite Element Method for solving the Transverse Magnetic field

modes written in Matlab codes with the users' modification of the waveguides index of

refraction profile, which is also defined as the fictitious boundary condition of the

waveguides, and the total number of element.

1.0 I
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APPENDIX F

FEM TE MODE FOR DIELECTRIC

Matlab Finite Element Method codes for solving the Transverse Electric field modes in

the users' modifiable waveguides index of refraction profile, and the total number of

element.
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APPENDIX G

FEM TM MODES CUTOFF

The FEM Matlab codes for computing the TM modes cutoff wavelength, and propagation

constant. The first one is for all possible modes that exist and the latter is for the single

mode cutoff wavelength.
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if i==j,
Ae(i,j)=-(pe*(bi*bj+ci*cj))/(4*Area)+(ko A2)*((n_indexcore A 2)-
(n_indexsubstrate) A2)*((qe-n_indexsubstrate A2)/(n_indexcore A 2 -

n_indexsubstrate A2))*(Area/6);
Kedel(i,j)=Ae(i,j);

else;
Ae(i,j)=-(pe*(bi*bj+ci*cj))/(4*Area)+(ko A2)*((n_indexcore A 2) -

(n_indexsubstrate) A2)*((qe-n_indexsubstrate A2)/(n_indexcore A 2 -

n_indexsubstrate A 2))*(Area/12);
Kedel(i,j)=Ae(i,j);

end;

if i==j;
Ke(i,j)=(ko A 2)*(n_indexcore A 2-n_indexsubstrate A 2)*(Area/6);
Ae(i,j)=Ae(i,j)+(ko A2)*(n_indexcore A 2-
nindexsubstrate A2)*(Area/6);

else;
Ke(i,j)=(ko A2)*(n_indexcore A 2-n_indexsubstrate A 2)*(Area/12);
Ae(i,j)=Ae(i,j)+(ko A2)*(n_indexcore A 2-
n_indexsubstrate A2)*(Area/12);

end;

% Assemble the Element matrices into the Global FEM System:

	

% 

A(n(i,e),n(j,e))=A(n(i,e),n(j,e))+Ae(i,j);
Kdel(n(i,e),n(j,e))=Kdel(n(i,e),n(j,e))+Kedel(i,j);
K(n(i,e),n(j,e))=K(n(i,e),n(j,e))+Ke(i,j);
end;

end;
end;

%Solving eigenvalues equations
% 
K_TM=K;
KdelTM=Kdel;
A TM=A;

eig_squares_TM=eig(Kdel_TM,K_TM);
eig_values_indices_TM=find(eig_squares_TM >= 0);
eig_values_TM=sqrt(eig_squares_TM(eig_values_indices_TM));
[eig_values_TM_sorted,index_sorted]=sort(eig_values_TM);

if isempty(eig_values_TM_sorted)
fprintf(' \n NO PROPAGATION MODE! \n\n');

else
figure (1)
plot( eig_values_TM_sorted,"");
xlabel('The Modes (TM case)')
ylabel('The eigen values');
title('Eigen values for TM modes in a rectangular waveguide');
grid;
legend('a = b');

end;
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APPENDIX H

FEM TE MODES CUTOFF

The FEM Matlab codes for computing the TE modes cutoff wavelength, and propagation

cnngtant fnr all nnccihle mndec that exist in the waveguide
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APPENDIX I

WAVEGUIDE PROFILE GENERATION CODE

Listed is the FEM code for waveguides profile, or fictitious boundary condition matrix.
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APPENDIX J

3D CONTOUR PLOTTING CODE

The following are the codes for the 3D contour surface plot for both FEM solved TE and

TM mode fields.
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APPENDIX K

MATHEMATICA PROGRAM FOR MARCATILI'S METHOD

The listed program is written in Mathematica Ver. 4.0 code for rectangular waveguides

using the Marcatili's method.
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