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ABSTRACT

DEVELOPMENT AND CHARACTERIZATION OF METHODOLOGY
AND TECHNOLOGY FOR THE ALIGNMENT OF FMRI TIME SERIES

by
Carlo Ciulla

This dissertation has developed, implemented and tested a novel computer based

system (AUTOALIGN) that incorporates an algorithm for the alignment of

functional Magnetic Resonance Image (fMRI) time series. The algorithm assumes

the human brain to be a rigid body and computes a head coordinate system on the

basis of three reference points that lie on the directions correspondent to two of the

eigenvectors of inertia of the volume, at the intersections with the head boundary.

The eigenvectors are found weighting the inertia components with the voxel's

intensity values assumed as mass. The three reference points are found in the same

position, relative to the origin of the head coordinate system, in both test and

reference brain images. Intensity correction is performed at sub-voxel accuracy by

tri-linear interpolation. A test fMR brain volume in which controlled simulations of

rigid-body transformations have been introduced has preliminarily assessed system

performance. Further experimentation has been conducted with real fMRI time

series. Rigid-body transformations have been retrieved automatically and the

values of the motion parameters compared to those obtained by the Statistical

Parametric Mapping (SPM99), and the Automatic Image Registration (AIR 3.08).

Results indicated that AUTOALIGN offers sub-voxel accuracy in correcting both

misalignment and intensity among time points in fMR images time series, and also

that its performance is comparable to that of SPM99 and AIR3.08.
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CHAPTER 1

INTRODUCTION

1.1 Brain Image Registration

Image registration is a basic requirement in neuro-imaging and all methods aimed

to the construction and use of brain atlases (Toga and Thompson 2000). Data must

either undergo some alignment procedure or be assumed to be in register to allow

any analysis, within or across subjects or sessions. As it is for many image-

processing applications, also in neuro-imaging it is necessary to form a

voxel-by-voxel / pixel-by-pixel comparison of two images (3D / 2D) of the same object field

obtained from different sensors, or two images of an object field taken from the

same sensor at different times. To form this comparison, it is necessary to spatially

register the images and thereby correct for relative translational shifts,

magnification differences, and rotational shifts, as well as geometrical and intensity

distortions of each image (Althof et al. 1997).

Presently, neuro-imaging techniques such as fMRI (functional Magnetic

Resonance Imaging), MRI (Magnetic Resonance Imaging), PET (Positron

Emission Tomography) and CT (Computerized Tomography), among others,

require head motion correction. Correction of any head movements that may occur

during scanning must be employed prior to any data analysis, in order to minimize

head motion artifacts. Several automated methodologies have been applied in the

past with some success. Most of these methodologies rely on the assumption that

the human brain is a rigid body subject to rigid motion during the period of

scanning (Pellizzari et al. 1989; Alpert et al. 1990; Woods et al. 1992, 1993, 1998a,
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1998b; Maurer et al. 1997; West et al. 1997, 1999), others assume that motion-

related artifacts are still present after alignment is performed (Friston et al. 1996),

and some uses algorithms that can model elastic deformations (Thompson and

Toga 2000).

Registration of 3D medical images to a standard was obtained by the principal

axes method by Faber and Stokely (1988). The principal axes of an object were

defined as those orthogonal axes about which the moments of inertia are minimized

and thus it was shown that if two objects are identical, except for a rotation and/or a

translation, they could be registered by matching their principal axes. Alpert et al.

(1990) developed a computational technique called registration by the principal

axes transformation. This methodology assumes the brain to be a rigid body and

was developed for the registration of volumes, which are rotated and translated in

the transverse section plane. The performance of the method was studied with

image data from PET, CT and MRI. It was found that progressively, coarser

sampling of data sets led to some degradation in the performance of the method.

There is agreement in literature about the need in neuro-imaging for sub-voxel

registration accuracy. It has been estimated that registration accuracy of the order

of 0.05 voxels (typically 50 gm) is required to avoid mis-registration artifacts in

MRI (Lemieux et al. 1998). Maximization of mutual information (MMI) has

recently been proposed as a new approach for multi-modal medical image

registration. Mutual information (MI) was introduced as a robust similarity measure

for medical data (Viola and Wells 1995; Collignon at al. 1995) and proved superior

to optimize transformations of both mono and multi-modal registration. Since then,
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several separate studies have found excellent results for mutual information based

medical image registration (Wells and Viola 1996; Maes et al. 1997; Meyer et al.

1997; Studholme et al. 1997; Thevenaz et al. 1998, 2000; Holden et al. 2000).

Studholme et al. (1996) presented a comparative study of several voxel-based

registration methods (e.g. various correlation measures, corresponding variance,

moments of the joint histogram, joint entropy, and mutual information). In term of

robustness, they concluded that mutual information performed extremely well

when compared to other measures.

West et al. (1997) aimed recently to perform a blinded evaluation of a group of

brain image registration techniques using as a gold standard a prospective bone-

implanted marker-based registration method described by Maurer et al. (1997).

Their results indicated that brain registration techniques have the potential to

produce satisfactory results much of the time but that visual inspection is necessary

to guard against large errors and that the most accurate registration standard for

clinical data was is obtainable with the bone-implanted markers and has an

accuracy of around 500 The brain registrations made by West et al. (1997)

were performed in parallel at several sites with registration algorithms that were

published earlier in literature. Several authors participated to the experiment. Some

methods were used that were applicable only to CT-to-MR or PET-to-MR

registration, and some were suitable for both cases.

In order to distinguish between registration solutions that are clinically

satisfactory and those that are not, one approach is to rely on a human observer to

inspect the registration results and reject images that have been registered with

3



insufficient accuracy. Therefore, a methodology was developed for evaluating the

efficacy of the visual assessment of registration accuracy (Fitzpatrick et al. 1998).

Such methodology was applied to the registration solution proposed earlier by

Maurer et al. (1997) and was obtained using external fiduciary markers screwed

into the patient's skull that were visible in both MRI and CT images. The latter, to

be fully automatic needs a technique for finding and localizing externally attached

markers. Thus, a method was developed and tested for CT (Computerized

Tomography) and MRI (Magnetic Resonance Imaging) by Wang et al. (1996).

Also, functional fMRI data series present the problem of head motion-related

artifacts. Despite restraints to inhibit head movement, even willing and co-

operative subjects still show head displacements (Friston et al. 1996). With some

subjects (i.e. very young), head restraints appear to be ineffective in preventing

motion. In such circumstances head movement of several millimeters or more is not

uncommon. As suggested by Friston et al. (1996) simply moving the images back

into register is not sufficient to remove all motion-related effects. Movement-

related effects will still persist even after perfect realignment. Grootoonk et al.

(2000) emphasized the existence of residual intensity errors in fMRI time series

even after realignment. In particular, it was demonstrated that if a non-ideal

interpolation scheme is used to resample realigned images, this could account for a

major component of the residual artifacts.
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1.2 Brain Image Rigid Registration

Brain imaging is a vast component of a larger set of applications in the modern

clinical setting and as such it assumes relevant importance since it consists of

imaging modalities devoted to recording from the human brain. Brain imaging can

be partitioned into two main categories: anatomical and functional. While the

former is devoted to the visualization of the anatomy of the human brain, the latter

aims to reveal information about tissue metabolism underlying anatomy. The

following anatomical imaging techniques were considered in this dissertation: X-

ray, CT (Computer Tomography) and MRI (Magnetic Resonance Imaging);

together with functional imaging techniques like: SPECT (Single-Photon Emission

Computed Tomography), PET (Positron Emission Tomography) and fMRI

(functional Magnetic Resonance Imaging).

Because signal intensities recorded from the human brain are very weak,

replications of recording need to be conducted in order to obtain successful

imaging (e.g. fMRI). Thus, registration of brain images obtained with the same

modality but at different times can be a necessity. Also, some brain imaging

applications are in their nature complementary to each other. An example of this

kind is the anatomical structure of the human brain recorded by MRI and the

functional activation of the same recorded with techniques like PET and/or fMRI.

Registration is then employed in order to determine a voxel-to-voxel mapping

(alignment) between images of different modalities (co-registration).

According to the elegant outline proposed by Rouet et al. (2000), a registration

algorithm is composed by several steps. Preliminarily, an optional pre-processing
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procedure is applied in order to segment the image or extract features of interest.

However, any processing procedures prior to registration can affect the results of

the subsequent alignment. Next the registration algorithm requires to adopt either

rigid or non-rigid body assumptions (Bookstein 1989; Miller et al. 1993; Collins et

al. 1995; Davatzikos 1996; Shormann et al. 1996; Thompson and Toga 1996;

Iosifescu et. al. 1997; Thompson et al. 1997; Toga 1994; Warfield et al. 1996;

Coley et al. 2000; Rouet et al. 2000; Toga and Thompson 2000; Wang and Staib

2000) to model the transformation. Then, a cost function between target and

transformed images and an optimization procedure that maximize it need to be

defined, so that the registration parameters can be found. The choice of the cost

function is the step of the registration algorithm that determines the approach used

to elaborate the relationships between images to align. The last step is that of fusing

and/or interpreting the registered images, which implies estimation of the voxel's

intensity from the values of the original image. This is accomplished by

interpolation. Similarly, Grootoonk et al. (2000) reports two processes governing

brain image rigid registration. The first is that of estimating for each image the six

rigid-body parameters, which define the spatial transformation. The second is that

of re-sampling each image according to the spatial transformation.

Previous research surveyed the broad topic of image registration (Brown 1992)

and compiled a general overview of the algorithms classifying them in: (i)

correlation-based; (ii) fourier-based; (iii) point-based and (iv) elastic registration

methods. Other research surveyed the more focused medical image registration and

its applications (Maurer and Fitzpatrick 1993; van den Elsen et al. 1993; Maintz

6



and Viergever 1998; Fitzpatrick et al. 2000). Audette et al. (2000) reviewed surface

registration approaches and presented them as a subset of the medical image

registration techniques discussed by Maintz and Viergever (1998). Among the

surface-based algorithms, the authors did not include those approaches based on

manually identified landmarks. Consistent with Audette et al. (2000), this

dissertation considers approaches based on landmarks extracted automatically from

surfaces as feature-based algorithms and distinguish them from algorithms based

on manually selected landmarks. Also, consistent with Maintz and Viergever

(1998), principal axes based approaches, which reduce the image content to vectors

and scalars, are considered here as distinct from algorithms of the voxel-based

category, which for definition, uses the full image content. Therefore, on the basis

of the knowledge provided in literature, the present dissertation classifies the bulk

of registration algorithms that rely on the rigid-body assumption in either extrinsic

(artificial objects attached to the patient) or intrinsic: (i) voxel-based (e.g.

maximization of mutual information); (ii) feature-based; (iii) anatomical landmarks

based; (iv) segmentation-based and (v) principal axes based.

Brain imaging techniques necessitate automatic procedures in order to

determine voxel-to-voxel mapping between images. Mapping consists of

registration, which enables reliable analysis of brain images of the same modality

(e.g. fMRI), or co-registration, which enables projection of images of one modality

onto another. One example is functional recordings onto anatomical datasets. In

either case, a large body of literature has been reported and a rich web of
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methodologies has been proposed in order to determine the voxel-to-voxel mapping

using several different assumptions and/or properties of the brain images.

The most basic assumption that features a registration algorithm is that of rigid

or non-rigid (Rouet et al. 2000; Wang and Staib 2000; Toga and Thompson 2000;

Thompson and Toga 2000) motion. Several properties of the brain images have

been used: voxel relationships such as intensity differences (Friston et al. 1995),

statistical similarities such as variance of intensity ratios (Woods at al. 1992, 1993,

1998a, 1998b) or mutual information (Wells et al. 1995, 1996; Maes et al. 1997,

1999; Studholme et al. 1997; Thevenaz et al. 1998; Thevenaz and Unser 2000;

Holden et al. 2000), features (Maintz et al. 1995, 1996a, 1996b, 1997), landmarks

(Grachev et al. 1999; Kruggel et al. 1999; Pennec et al. 2000) and vectors and

scalars (Faber and Stokely 1988; Alpert et al. 1990). Also, extrinsic properties of

brain images determined by fiducial markers have been used (Maurer et al. 1993,

1994, 1995, 1996, 1997) and a mathematical formulation has been given to assess

accuracy of point-based registration (Fitzpatrick et al. 1998; Fitzpatrick and West

2001; West et al. 2001).

Focusing on brain image rigid registration, it can be inferred that in general: (i)

excellent results, independent from modality, can be obtained with fiducial markers

(Maurer et al. 1997); (ii) moment based registration algorithms provide simple and

fast methodologies (Alpert et al. 1990; Faber and Stokely 1988); (iii) mutual

information approaches provide robust co-registration of functional and anatomical

datasets (Hill et al. 1993, 1994; Collignon et al. 1995a, 1995b; Wells et al. 1995,

1996; Studholme et al. 1996); (iv) voxel-based approaches (Friston et al. 1995;
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Woods et al. 1992, 1993, 1998a, 1998b) are more prone to perform successful

within-modality registration. However, each of the above methodologies presents

limitations. Fiducial markers, for example, need to have consistency such to be

detected and imaged independently from any modalities. Also, either affixed or

screwed, markers necessitate algorithms to localize them accurately into the brain

images (Wang et al. 1996). Moment based registration algorithms are particularly

sensitive to sampling axial resolution (Faber and Stokely 1988). Mutual

information approaches are subject to long and time-wise expensive optimization

processes and need to be initialized close to the optimal solution (Maes et al. 1997).

Voxel-based methods provide excellent mean for within-modality registration but

their similarity measures are based on assumptions made on the nature of the

relationships between voxel's intensity.

Though literature on brain image rigid registration is rich and diverse, few

studies made comparative evaluation of performances across algorithms. The most

comprehensive one in term of variety of approaches compared and most consistent

in term of equality of modalities and size of brain images used for evaluation, was

reported by West et al. (1997, 1999). Other studies have focused on investigating

which optimization strategies were the best for multi-resolution rigid registration

based on maximization of mutual information (Maes et al. 1999), and which brain

image similarity measure was the best between joint-entropy (e.g. mutual

information) and correlation based cost-functions (Holden et al. 2000).
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1.3 Alignment of fMRI Time Series

Considerable efforts have been devoted to the alignment of functional Magnetic

Resonance Images. Cox (1996) released software for visualization and analysis of

fMRI, which by means of markers allow co-registration of anatomical and

functional datasets. As far as voxel-based methods are concerned, Friston et al.

(1995) developed the Statistical Parametric Mapping, which can also be used for

alignment of fMRI time series by a least-square non-iterative method that

minimizes differences between two images intensity values. Also Thevenaz et al.

(1998) proposed an algorithm based on least-square minimization of intensity

differences but proposed as an optimizer, a variant of the Marquardt-Levenberg

(ML) method.

Biswal and Hyde (1997) presented a contour-based technique and showed that

local changes in signal intensity, such as those due to magnetic field variations,

constitute a limitation for intensity-based fMRI registration. Along the same line,

Kybic et al. (1999) studied the non-linear geometrical distortions of echo-planar

images (EPI) that are caused by local magnetic field inhomogeneities and reported

an algorithm to register EPI images to MRI.

Eddy et al. (1996) explored the issue of within-plane motion in fMRI and

proposed a two-dimensional method that estimates, before image reconstruction,

translations and rotations in the Fourier domain (k-space). Also, Maas et al. (1997)

addressed the problem of in-plane motion and proposed the DART registration

algorithm, which was based on the separation of rotational and translational motion
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components and allowed reduction of complexity eliminating the need of iterative

implementations.

Lee et al. (1996, 1998) reported a prospective real-time methodology to solve

the problem of through-plane motion, which occurs when an anatomical section of

the brain goes in and out of the imaging plane.

As far as the accuracy obtainable by intensity correction, it has been shown

that motion related effects are still present after registration (Friston et al. 1996) and

is attributable to interpolation (Grootoonk et al. 2000) or magnetic field

inhomogeneities (Andersson et al. 2001). Various interpolation paradigms were

evaluated (Ostuni et al. 1997) and it was found the tri-cubic spline to be the most

accurate and the tri-linear to be the most practical in term of computational time.

Also, Freire and Mangin (2001) presented evidence supporting the argument that,

alignment algorithms, especially those based on least-square measures, might

produce artifacts in motion free fMRI data, suggesting not to resample time series

if motion estimates are small compared to the voxel's size.

1.4 Research Aims

This dissertation focus on fMRI and starting from the assumption that to screw

fiduciary markers into the patient's skull is not feasible either for research or for

diagnostic purposes proposes that fiducial markers can be automatically found by

principal axes transformation methods. At this purpose, the principal axes / tensor-

based transformation method reported by Alpert et al. (1990) and Faber and

11



Stokely (1988), has been merged to a method that uses three points to identify the

position of the brain in the scanning volume. The latter was successfully employed

to co-register MRI with MEG data during previous work investigating the origin of

the 40 Hz Auditory Steady State Response (Ciulla et al. 1996) and the spontaneous

Alpha Rhythm (Ciulla et al. 1999). A new and fully automatic technique to align

fMRI time series has been developed, implemented and tested on a SGI Origin

2400 workstation and it consists of a software package written using Matlab, Open

GL and ANSI C.

Thus, aiming to both exploit accuracy of point-based registration and speed of

computation of moment-based registration, a fiducial markers methodology used

earlier (Ciulla et al. 1999, 2000) was combined with a tensor-based approach to

obtain the AUTOALIGN registration technique (Ciulla and Deek 2001a). This

dissertation gives a full mathematical description of the AUTOALIGN algorithm,

developed on the basis of the registration technique, and assesses its performance

by comparing results obtained in fMRI to those of SPM99 and AIR3.08 with the

same dataset. Issues explored by this research are discussed on the basis of the

knowledge provided in literature.

Also, this dissertation aims to bring further contribution to the literature by

focusing on brain image rigid registration and by placing emphasis on algorithmic

performance, extending the work of previous evaluations (West et al. 1997, 1999;

Maes et al. 1999; Holden et al. 2000) to a larger number of registration techniques.

A framework is advanced that groups the most successful brain image rigid

registration techniques on the basis of the imaging modality in which they were
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employed, and analyze performance of each algorithm in term of accuracy,

computational time and approach used for validation.

1.5 Manuscript Organization

This manuscript is organized as follow. In chapter 2 is given a detailed outline of

the current published literature in brain rigid image registration. In chapter 3 is

explained what this research consists of, what scientific approaches were used and

technological efforts were spent in term of software implementation. A preliminary

study is described to develop and test separately AUTOALIGN components and

later pipeline them to form the novel approach. Also, advantages of the novel

computer based system are outlined together with the registration algorithm that

has been developed. Chapter 3 also includes a detailed description of all

mathematics incorporated into the AUTOALIGN algorithm and implemented into

software. In chapter 4, components of the software system are defined by

architectural diagrams based on object oriented methodologies. Diagrams describe

AUTOALIGN internal functions. A picture of the Graphical User Interface (GUI)

is included such to provide the reader with all the functionality elements of the

software system. A data description is given in Appendix A that refers to the terms

used in both object oriented diagrams and structure charts. In chapter 5 results are

given to show the potentiality of the new algorithm and how it compares in terms

of performance to existing methods. Chapters 6 and 7 respectively discuss value of

this dissertation with respect to the current knowledge and outline conclusions.
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CHAPTER 2

RELATED RESEARCH

This chapter presents a review of the literature on algorithms that adopt the rigid-

body assumption to solve the problem of brain image registration. It is also

advanced a framework that considers two important issues in order to outline

performance in brain image registration: methodology used to elaborate

relationship between the volumes to register and imaging modality. Using the

literature as a basis, identified methodologies were classified in either extrinsic,

which rely on external objects affixed to the head, and intrinsic, which rely on

information provided by the brain images alone. Performance of published

algorithms was analyzed devoting particular attention to accuracy, computational

time and validation approach. It was found that algorithms offering the best

performance are, within the extrinsic classification, those based on fiducial markers

and, within the intrinsic classification, those using relationships between voxel's

intensity. For each imaging modality, the framework also identifies the algorithm

that is most promising in term of accuracy.

2.1 Performance of Rigid Registration in Brain Imaging

2.1.1 Extrinsic Algorithms

Extrinsic algorithms rely on external objects (attached or screwed) to the subject's

head in order to determine the matching transformation between brain images to be
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registered. As such, these algorithms are easy to implement and require no need of

optimization procedures. External objects can be fiducial markers (Erickson and

Jack 1993; Maurer et al. 1993, 1994, 1995), stereotaxic frames (Zhang et al. 1990)

or head-holding devices (Evans et al. 1988, 1989). They provide fixed reference

points into the brain images.

While use of stereotaxic frames is invasive, head-holding devices present the

disadvantage of difficult and not precise positioning during each scanning. A

drawback with the use of external fiducial markers is that the technology must

ensure that the markers are always imaged. Since the physics may vary from one

imaging modality to another, type and consistency of markers may vary also. For

the high resolution requirements of CT and MR images, specific fiducial marker

systems that fit onto stereotaxic frame-base rings have been used, but these can

cause pain and discomfort for the patient (Henri et al. 1991).

Also, as indicated by research, all of the above methods require prospective

planning studies, making relatively difficult retrospective analysis of scans without

extrinsic reference (Hogan et al. 1996). Registration results have been documented

with either two (Dobbins et al. 1993) or four (Arendsen and Bentum 1991; Bellers

and De Bruijn 1993) fiducial markers. The mismatch error obtained in co-

registration of SPECT and MR studies by use of fiducial markers has been

reported, with a phantom model, to be no greater than 3 mm (Erickson and Jack

1993).

Later, Maurer et al. (1997) developed a method based on invasive fiducial

markers and reported a registration accuracy of 0.5 mm for CT, MR and X-ray
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images. To date, this is claimed to be the most accurate fiducial markers

registration method; also one of the most accurate among all co-registration

techniques and had been used by West et al. (1997, 1999) as "gold standard" within

an experiment aimed to compare the accuracy of several other alignment

techniques.

Fitzpatrick et al. (1998b) developed a methodology for the evaluation of the

efficacy of the visual assessment of registration accuracy and applied it to the

registration solution proposed earlier by Maurer et al. (1997). Table 2.1

summarizes the most accurate results that can be obtained by the use of fiducial

markers. Data are presented together with the modality and the approach chosen for

validation.

Table 2.1 Performance of Fiducial Markers Algorithms

From left to right are reported author, modality, accuracy, time, validation approach, resolution and

computer technology.
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Contrary to voxel-based registration algorithms, which use the full image

content to find the matching transformation between images to align, accuracy of

fiducial-based algorithms is largely dependent on a number of factors determined



by the fiducials themselves. These factors have been clearly outlined and a

mathematical expression (Target Registration Error — TRE) that characterizes their

influence on registration accuracy has been provided (Fitzpatrick et al. 1998a;

Fitzpatrick and West 2001; West et al. 2001). It was demonstrated that the target

registration error, which provides a more objective measure of accuracy than the

fiducial registration error (FRE), depends on number of fiducials, fiducial

configuration and localization error (FLE). According to Fitzpatrick et al. (1998a),

an increase of number of fiducials is accompanied by a reduction of TRE if the

root-mean-square distance of the reference points (fiducials) from the principal

axes of the fiducial configuration, remains constant. Earlier work (Schonemann

1966) showed that the problem of fitting two three-dimensional point sets has

unique solution if and only if the point sets contain at least three non-collinear

points. Combining such knowledge with the work of (Fitzpatrick et al. 1998a;

Fitzpatrick and West 2001; West et al. 2001) and provided that fiducials are

accurately localized (Wang et al. 1996), allows fiducial marker based registration to

step on a solid scientific ground.

2.1.2 Intrinsic Algorithms

2.1.2.1 Voxel Based. Registration algorithms using patient related image

information maximize a similarity measure between two images. The similarity

measure may apply directly to the original gray value images (van den Elsen et al.

1994; Thevenaz et al. 1998) particularly when two images of the same modality are

to be registered. In multi-modality image registration, however, the physical
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realities of the two images can be quite different, thus statistical similarity based

registration might be preferred (Woods et al. 1992, 1993; Hajnal et al. 1995; Chen

et al. 1998, 1999; Ashburner et al. 1999).

Cross-correlation is the basic statistical approach to brain image registration

(Maintz et al. 1994, 1995, 1996a; van den Elsen et al. 1994). Other cost-functions

were also employed: (i) Fourier-based correlation (De Castro and Morandi 1987;

Eddy et al. 1996); (ii) variance intensity ratios (Hill et al. 1993, 1994; Woods et al.

1992, 1993, 1998a, 1998b); (iii) intensity differences - least square methods

(Hajnal et al. 1995; Jacq and Roux 1995; Friston et al. 1995; Thevenaz et al. 1998b;

Nikou et al. 1998), which work best under Gaussian noise assumptions; (iv) motion

flow (Vemuri et al. 1998); (v) Bayesian statistics (Ashburner et al. 1999) and (vi)

entropy (Atkinson et al. 1997).

Various optimization strategies were used in the literature: (i) steepest descent

(Ashburner et al. 1999); (ii) multivariate Newton methods (Woods et al. 1998a,

1998b); (iii) quasi-Newton methods (Vemuri et al. 1998); (iv) simplex

minimization (Eddy et al. 1996); (v) simulated annealing (Nikou et al. 1998); (vi)

Powell method (van den Elsen et al. 1994) and (vii) Levenburg-Marquardt methods

(Hajnal et al. 1995; Unser et al. 1995; Woods et al. 1998a, 1998b; Thevenaz et al.

1998b).

Best results in terms of accuracy were reported in (Friston et al. 1995; Hajnal et

al. 1995; Nikou et al. 1998). It is significant to report that all of these studies have

used intensity differences as cost-function to minimize in the least square sense. In

term of computational time the fastest optimization procedures were: Levenburg-
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Marquardt based (Thevenaz et al. 1998b), Newton based (Woods et al. 1998a,

1998b) and non-iterative (Friston et al. 1995), all of which solved 3D registration

and co-registration problems. Table 2.2 reports on what was learned in term of

accuracy, computational time and validation procedures for the brain imaging

registration algorithms that belongs to the voxel-based classification.

Among the voxel-based classification, maximization of mutual information

algorithms (MMI) has been recently proposed as new approaches for multi-modal

brain image registration. The Mutual Information (MI) metric has been rigorously

derived from information theory. It describes the statistical dependence of two

random variables, and is suitable to determine the amount of redundant information

contained in both variables. Therefore, methodologies that have been proposed

apply the concept of mutual information (MI) to measure the statistical dependence

between the intensities of corresponding voxels in two images.

The joint probability distribution, which is closely related to MI, can be

graphically displayed as a 2D compound histogram. The optimal transformation is

found, if the dispersion of significant clusters in the histogram is minimized, which

coincides with MI reaching its maximum (Viola and Wells 1995; Collignon at al.

1995a, 1995b). Because no assumptions are made regarding the nature of the

dependence and no limiting constraints are imposed on the image content of the

modalities involved, MI is a very general and powerful criterion, allowing robust,

fully automated affine registration of multi-modal images with different contrast

and resolution in a variety of applications without the need for segmentation or

other preprocessing (Maes et al. 1997).
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Various strategies have been proposed for maximization of mutual information:

(i) Powell's method (Powell 1964) used in (Hill et al. 1993, 1994; Collignon et al.

1995a, 1995b; Studholme et al. 1995; Hastreiter et al. 2000); (ii) downhill simplex

(Maes et al. 1999); (iii) conjugate-gradient (Clarckson et al. 1999); (iv) multi-

resolution search (Studholme et al. 1997) and (v) stochastic optimization (Wells et

al. 1995, 1996).

Comparative evaluation of the optimization strategies has been carried out by

Maes et al. (1999). It was found that considerable speed up, without loss of

robustness, is achieved with simplex, conjugate-gradient and Levenberg-Marquardt

methods. Lately, Thevenaz and Unser (2000) proposed a Levenberg-Marquardt

based new optimizer for solving the problem of inter-modal image registration.

Best results in term of computational time have been reported in by Thevenaz et al.

(1998a) and Thevenaz and Unser (2000) with 2D MR images using Levenberg-

Marquardt optimization, and by Wells et al. (1995, 1996) for CT-MR and PET-MR

three-dimensional co-registration using stochastic optimization.

Image noise limits overall accuracy of automated algorithms such as MMI, and

also as research shows, cost functions related to standard similarity measures are

generally nonlinear, yielding many local minima in the cost function.

Consequently, MMI registration algorithms must be initialized close to the optimal

solution in order to obtain satisfactory solutions (Wells et al. 1995, 1996; Nikou et

al. 1998). Table 2.3 shows performance of this class of algorithms. As it can be

seen, mutual information approaches offer most of the time accurate registrations

but they are subject to long and expensive optimization processes.
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Table 2.2 Performance of Voxel Based Registration

Some algorithms had their accuracy compared to a "gold standard" (Med. Val. Ref. to GS) based on

bone-implanted markers (Maurer et al. 1997).
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Table 2.3 Performance of Mutual Information Approaches
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2.1.2.2 Feature Based. The idea behind feature-based registration algorithms is

that of extracting from the brain image features that can be used for matching.

Features commonly used in brain image matching are edges (Borgefors 1988) and

ridges (Levin et al. 1988; Zhang et al. 1990; Hill et al. 1991; Lemoine et al. 1991;

van den Elsen et al. 1992, 1993b; Turkington et al. 1993; Erickson and Jack 1993;



Li et al. 1993; Liu et al. 1994; Thirion 1994; Collignon et al. 1995c; Hogan et al.

1995; Maintz et al. 1995, 1996a, 1996b, 1997).

Because of the physics behind imaging modalities, when a brain image is

depicted as intensity landscape, the skull offers valuable information content that

can be used for matching purposes. Precisely, the skull forms a positive ridge in the

CT image and a negative ridge in the MR image. Furthermore, since the skull is

assumed to be a virtually undeformable structure, "ridge images" are well suited for

registration under the rigid-body assumption. "Ridgness" extracting operators are

for example derivative of Gaussian, and if they are applied to brain images,

resulting feature images show a remarkable similarity that can be caught even by

visual comparison. "Edgeness" images are on the other hand a measure of the local

steepness of the intensity landscape. CT and MR brain "edgeness" images offer

often less visual similarity than "ridgeness" images (Maintz et al. 1995, 1996a,

1996b, 1997).

Cost-functions used within the feature-based classification were: (i)

correlation-based (Maintz et al. 1995, 1996b, 1997; Biswal and Hyde 1997); (ii)

squared distances between surface points (Hemler et al. 1995; Meyer et al. 1995;

Pennec et al. 2000); (iii) chamfer distance (Jiang et al. 1992a, 1992b); (iv) root

mean-square distance (Hogan et al. 1995, 1999).

The most used optimization strategy (Maintz et al. 1995, 1996b, 1997) was the

hierarchical multi-resolution Powell based method reported by van den Elsen et al.

(1995). Other strategies were also employed: (i) Levenberg-Marquardt (Hemler et

al. 1995) and (ii) stochastic optimization (Hill et al. 1991). Excellent results were
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obtained in term of accuracy by Pennec et al. (2000) and in term of computational

time by Hill et al. (1991). Table 2.4 summarizes performance characteristics of

algorithms belonging to the feature-based classification.

Table 2.4 Performance of Feature Based Algorithms
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2.1.2.3 Anatomical Landmarks Based. Anatomical landmarks have been used by

several researchers as matching features within multi-modal image registration

(Evans et al. 1988, 1991; Boesecke et al. 1990; Hawkes et al. 1990; Strasters et al.

1997), for which the purpose is to register two volumes by measuring different

properties of an object. However, the selection of landmarks is recognized to be a



difficult problem whether done automatically or manually. For many images, this is

a serious drawback because registration accuracy cannot be better than what it is

achieved by the initial selection of landmarks.

Variance of intensity ratios (Woods et al. 1998a, 1998b) was used as cost

function by Grachev et al. (1999) to assess inter-subject registration accuracy based

on anatomical landmarks localization. Optimization strategies were: (i) Newton-

based (Grachev et al. 1999; Kruggel et al. 1999); (ii) conjugate-gradient (Kruggel et

al. 1999) and (iii) Powell's method (Kruggel et al. 1999).

The Newton's method was found to produce the most accurate results (Kruggel

et al. 1999) within a study that compared orientation and origin of automatically

generated axes, with manually generated reference alignments. Table 2.5

summarizes performance of the most successful registration algorithms based on

anatomical landmarks.

Table 2.5 Performance of Anatomical Landmarks Based Algorithms

25



2.1.2.4 Segmentation Based, Principal Axes Based and Real Time Algorithms

Other categories that are considered in this review are: segmentation, principal axes

and real time approaches. The first category is mainly characterized by application

of spatial pre-processing techniques aimed to segment the brain image prior

registration. The work in this area has been initiated by Pellizzari et al. (1989). A

considerable performance evaluation of segmentation-based techniques (Pellizzari

et al. 1989; Lemoine et al. 1994; Malandain et al. 1994a, 1994b, 1995) has been

conducted within the experiment performed by West et al. (1997).

Cost-functions used within the segmentation-based algorithms were: (i)

distance between 3D surfaces (Pellizzari et al. 1989; Lemoine et al. 1994) and (ii)

potential field (Malandain et al. 1994a, 1994b, 1995). Optimization strategies were:

(i) Powell method (Pellizzari et al. 1989; Lemoine et al. 1994) and (ii) potential

minimization (Malandain et al. 1994a, 1994b, 1995). The best results were obtained

by Lemoine et al. (1994) in the order of 1.6 mm of accuracy, and by Malandain et

al. (1994a, 1994b, 1995) in terms of computational time, respectively for CT-MR

and PET-MR registrations.

Principal axes registration is characterized by simplicity of implementation and

restricted computational demand. This is because no cost-functions are computed

nor iterative strategies are employed for optimization. The theory of this class of

registration approaches was presented by Faber and Stokely (1988) and used to

align SPECT images. It assumes that brain volumes are registered by matching

their principal axes and centers of gravity. Later, this method was used also by

Alpert et al. (1990), and it was confirmed that progressively coarser sampling
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resolution lead to degradation of performance. Other applications were reported in

(Banerjee and Toga 1994; Pavia et al. 1994).

Real time approaches are prone to correct intra-image through-plane motion.

Being different from motion occurring between individual image acquisitions,

which can be corrected retrospectively, intra-image motion occurs during

acquisition when the anatomical section of interest moves in and out of the excited

plane (Lee et al. 1996, 1998). Within the real time approaches, it is interesting to

note how the impressive time of the adaptive methodology reported by Lee et al.

(1996, 1998), is accompanied by high accuracy (0.5 mm), though such on-line

method is unique compared to the rest of the other registration algorithms that

involve data post-processing. Tables 2.6, 2.7 and 2.8 show performance of these

three categories of registration approaches.

Table 2.6 Performance of Segmentation Based Algorithms
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Table 2.7 Performance of a Real Time Algorithm

Table 2.8 Performance of Principal Axes Based Algorithms

2.1.3 Findings

As far as accuracy, computational time and validation approaches, for registration

and co-registration algorithms, findings can be summarized as follow:

(i) Comparison between data reported in tables 2.2, 2.3 (algorithms that use

relationships between voxel's intensity) and 2.4 (feature-based algorithms), 2.5

(anatomical landmarks algorithms), 2.6 (segmentation-based), suggests that voxel-

based algorithms, including those based on the maximization of mutual information

(MMI), allow higher level of accuracy in brain rigid registration than feature,

anatomical landmark and segmentation based algorithms.

(ii) Though data reported in tables 2.6 and 2.5 suggests that anatomical landmarks

based algorithms allow for higher level of accuracy than feature-based algorithms,

for both classes of algorithms accuracy is strongly dependent on the localization

precision of either features or landmarks.
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(iii) Comparison of data reported in tables 2.1 and 2.8 suggests that fiducial

markers algorithms allow for higher level of accuracy than principal axes methods.

However, accuracy of the former category is strongly dependent on correct

localization of markers into the brain images.

(iv) For the voxel-based classification (other than MMI), cost-functions

accompanied by best accuracy of within-modality registration were those based on

intensity differences to be minimized in the least square sense (Friston et al. 1995;

Hajnal et al. 1995; Nikou et al. 1998).

(v) Optimization strategies accompanied by shortest computational time were:

Levenburg-Marquardt (Thevenaz et al. 1998b; Thevenaz and Unser 2000), used for

MMI in order to solve 2D registrations; stochastic optimization (Hill et al. 1991;

Wells et al. 1995, 1996), used respectively for feature-based and MMI algorithms

and Newton's method (Kruggel et al. 1999; Woods et al. 1998a, 1998b), used

respectively for anatomical landmark and voxel-based algorithms.

(vi) Most commonly adopted validation approaches were brain images with

controlled motion and brain images of the Vanderbilt medical database.

2.2 A Framework for Brain Image Rigid Registration

2.2.1 Mono-modal Applications

2.2.1.1 Computer Tomography (CT). Registrations of CT scans were reported

in (Levin et al. 1988; Hill et al. 1991; Lemoine et al. 1991; Maintz et al. 1996a;

Althof et al. 1997; Pennec et al. 2000). The best results in terms of accuracy were
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obtained by Maurer et al. (1997) with fiducial markers. Validation techniques used

for CT registrations were reference points (Hill et al. 1991; Maintz et al. 1996a),

phantom (Maurer et al. 1997) and synthetic data (Pennec et al. 2000).

2.2.1.2 Magnetic Resonance (MR). Several studies performed MR mono-

modal registrations (Levin et al. 1988; Hedley et al. 1991a, 1991b; Hill et al. 1991;

Lemoine et al. 1991; Rosseau et al. 1991; Jiang et al. 1992a, 1992b; Mandava et al.

1992; Li et al. 1993; Morris et al. 1993; Turkington et al. 1993; Maurer et al. 1993,

1994, 1995, 1996, 1997; Collignon et al. 1995a, 1995b; Hajnal et al. 1995; Friston

et al. 1995; Maintz et al. 1995; Atkinson et al. 1997; Rutherford et al. 1997;

Lemieux et al. 1998; Nikou et al. 1998; Vemuri et. al. 1998; Chen et al. 1998,

1999; Ashburner et al. 1999; Grachev et al. 1999; Kruggel and von Cramen 1999;

Holden et al. 2000; Hastreiter et. al. 2000; Pennec et al. 2000).

Also, two different approaches in MRI inter-subject registration were

disseminated to the research community: (i) the piecewise linear Talaraich

stereotaxic transformation method (Talairach. and Tournoux 1988) and (ii) the non-

linear transformation method AIR of Woods et al. (1992, 1993, 1998a, 1998b). It

was reported that accurate registration (0.5 mm) for MR data is obtainable with

bone-implanted markers (Maurer et al. 1997). However, voxel-based methods

reported by Friston et al. (1995) and Holden et al. (2000) seem to obtain even better

accuracy.

Computational time to perform MR registration is significantly small (order of

sec.) for 2D applications (Thevenaz et al. 1998a; Thevenaz and Unser 2000) but

can also increase dramatically up to several hours (Hajnal et al. 1995) for 3D
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applications. Various validation approaches were used for MR registration. Among

those were: phantom (Maurer et al. 1997), brain images with known motion

(Hajnal et al. 1995; Thevenaz and Unser 2000) and subject re-imaging (Hill et al.

1997).

2.2.1.3 Positron Emission Tomography (PET). The two most effective

approaches to perform registration of PET images were introduced by Friston et al.

(1991a, 1991b, 1995) and Woods et al. (1992, 1993). Recently, Unser et al. (1995)

described a registration algorithm that uses the concept of multi-resolution analysis,

which consists of representing a signal by a sequence of fine-to-coarse continuous

functions providing approximations at various resolutions.

Other approaches can be found in (Levin et al. 1988; Alpert et al. 1990; Turkington

et al. 1993; Thevenaz et al. 1998). Based on the data collected in this survey,

processing time for PET registrations is usually in the order of minutes (Friston et

al. 1995; Thevenaz et al. 1998b; Woods et al. 1998a, 1998b), and validation

approaches have used both controlled motion simulations and brain images of the

Vanderbilt medical database.

2.2.1.4 Single Photon Emission Computed Tomography (SPECT). This type

of registration was performed by Faber and Stokely (1988) to validate principal

axes transformation methods, and Maintz et al. (1997) to validate feature-based

registration algorithms. Other SPECT registrations were reported in (Turkington et

al. 1993; Pavia et al. 1994; Kybic et al. 2000; Kybic and Unser 2000). Both in

terms of accuracy and processing time, the work of Faber and Stokely (1998)
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remains the one offering the best performance. Simulated data were used to

validate the algorithm.

2.2.1.5 Functional Magnetic Resonance (fMR). 	 Various algorithms have

been proposed to correct head-motion related artifacts in fMRI (Eddy et al. 1996;

Cox 1996; Maas et al. 1997; Biswal and Hyde 1997; Lee et al. 1996, 1998).

Recently, Thevenaz et al. (1998) described a voxel-based technique and Ciulla and

Deek (2001a) reported an application of a principal-axes/fiducial-markers

approach. Friston et al. (1995) developed the Statistical Parametric Mapping

(SPM), a software package that can be used for both alignment and analysis of

fMRI time series. To date, this application seems the most accurate (100μm) and

also is relatively fast. Validation approaches for fMRI registration were phantom

(Maas et al. 1997) and controlled motion simulation (Friston et al. 1995; Eddy et al.

1996; Biswal and Hyde 1997; Ciulla and Deek 2001).

2.2.2 Multi-modal Applications

2.2.2.1 Computer Tomography — Magnetic Resonance. 	 Many studies have

performed CT-MR registrations (Maguire et al. 1991; Jiang et al. 1992a, 1992b;

Hill et al. 1993, 1994; Hill and Hawkes 1994; Lemoine et al. 1994; Malandain et al.

1994a, 1994b, 1995; van den Elsen et al. 1994; Hemler et al. 1995; Hogan et al.

1996; Collignon et al. 1995a; Viola and Wells 1995; Wang et al. 1996; Wells et al.

1995, 1996; Maintz et al. 1994, 1996a, 1996b, 1997, 1998; Studholme et al. 1996,

1997; Thevenaz and Unser 1998; Clarkson et al. 1999; Maes et al. 1999; Panigrahy

et al. 2000). CT-MR highly accurate registration of head volumes were obtained by
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van den Elsen (1994) with a voxel-based algorithm, by Wang et al. (1996) and

Maurer et al. (1997) using implantable markers. Computational time varied from

minutes (Pellizzari et al. 1989; Maguire et al. 1991; Lemoine et al. 1994;

Malandain et al. 1994a, 1994b, 1995; Collignon et al. 1995a, 1995b; Hill et al.

1993, 1994; Studholme et al. 1995; Wells et al. 1995, 1996; Hogan et al. 1995;

Kruggel et al. 1999), up to hours (van den Elsen et al. 1994; Maintz et al. 1995,

1996b, 1997; Maes et al. 1999). The most used validation approach for this type of

registration was the Vanderbilt medical database.

2.2.2.2 Computer Tomography — Positron Emission Tomography. Alpert et al.

(1990) performed rigid 3-D transformations in order to register CT to PET using

the image's principal axes and the center of gravity, with simulated data used for

validation. Accuracy was reported to be 1 mm. Affine registration was also

obtained by Maguire et al. (1991).

2.2.2.3 Positron Emission Tomography — Magnetic Resonance. Registrations

that use various algorithms can be found in (Pellizzari et al. 1989; Lavalle et al.

1991; Maguire et al. 1991, Mangin et al. 1992; Jiang et al. 1992a, 1992b; van den

Elsen et al. 1992; Li et al. 1993; Collignon et al. 1995a; Wells et al. 1995, 1996;

Maintz et al. 1995, 1996a, 1997; West et al. 1997; Li et al. 1993; Lemoine et al.

1994; Meyer et al. 1995; Hemler et al. 1995; Hill et al. 1993, 1994; Hill and Hawks

1994; Studholme et al. 1996, 1997; Malandain et al. 1994a, 1994b, 1995; Viola and

Wells 1995; Wells et al. 1995, 1996).

Woods et al. (1992, 1993, 1998a, 1998b) described a registration technique, which

calculates the ratio of one image to the other on a pixel-to-pixel basis and then
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iteratively moves the images relative to one another to minimize the variance of

this ratio across pixels. This work remains the most effective algorithm for PET-

MR registration. It offers accuracy of 1.7-2.3 mm, demands computational time in

the order of minutes and it has been validated with the Vanderbilt medical database.

Other studies (Wells et al. 1995, 1996) used controlled motion to validate their

algorithm.

2.2.2.4 Single Photon Emission Computed Tomography — Magnetic

Resonance. Maguire et al. (1991) used user-identified landmarks and user-

identified external markers to perform affine SPECT-MR registration by locally

optimizing cross-correlation. Jiang et al. (1992b) used multi-resolution chamfer

matching on semi-automatically segmented surfaces. Hogan et al. (1995, 1999)

used also feature-based algorithms and used fiducial markers as validation

methodology. Nikou et al. (1998) performed the most promising SPECT-MR

registration in term of accuracy with a voxel-based algorithm that required

processing time up to one hour and used controlled motion simulations to validate

their work.

2.2.2.5 Functional Magnetic Resonance — Magnetic Resonance. Kybic et al.

(1999) proposed to register the distorted EPI image with a corresponding

geometrically correct anatomical MRI image to recover the deformation.

2.2.2.6 Magnetic Resonance - X-Ray. Betting and Feldmar (1995) registered

MR to X-ray images (2-D and 3-D) by automatic extraction of contours from MR

images followed by projection of them onto the X-ray plane, and minimization of
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the contour distance using a variation of the iterative closest point (ICP) algorithm

(Besl and McKay, 1992).

2.2.3 Findings

Registration and co-registration algorithms that are most promising in term of

accuracy are visualized in the framework of figure 2.1 and summarized as follow:

(i) Registration (within-modality applications): (i.1) CT and X-ray: Maurer et al.

(1997) with a fiducial markers approach of claimed accuracy of 500 	 (i.2) SPECT:

Faber and Stokely (1998) with a principal axes based algorithm having sub-voxel

accuracy. (i.3) MR: Friston et al. (1995) and Holden et al. (2000) with voxel-based

algorithms of claimed accuracy of respectively 100 and 78-122 μm. (i.4) fMR and

PET: Friston et al. (1995) with the same voxel-based algorithm (SPM).

(ii) Co-registration (between-modality applications): (ii.1) CT - MR: van den Elsen et

al. (1994) and Maurer et al. (1997) with respectively voxel-based and fiducial markers

algorithms having sub-voxel accuracy. (ii.2) MR — PET: Woods et al. (1992, 1993,

1998a, 1998b) with a voxel based algorithm of accuracy within 1.7 and 2.3 mm. (ii.3)

fMR — MR: Kybic et al. (1999) with a voxel-based algorithm. (ii.4) MR — X-ray:

Betting and Feldmar (1995) with a feature-based algorithm. (ii.5) CT - PET: Alpert et

al. (1990) with a principal axes algorithm of claimed accuracy of 1 mm.
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Figure 2.1 A Framework for Brain Image Rigid Registration

For each modality are shown best registration (within-modality) and co-

registration (between-modalities) algorithms in term of accuracy. Authors are

indicated together with the algorithm typology (FM: fiducial markers; MI: mutual

information; VB: voxel-based; FB: feature-based; PA: principal axes).



CHAPTER 3

SCIENTIFIC METHODOLOGY

3.1 Motivation

This work starts from the fact recognized in literature, that fiducial markers

technique for brain image registration present a clear disadvantage. If the fiducial

markers are affixed to the subject's head, then either for single or multiple

recording sessions they can be localized at different positions, and this completely

obscures the assumption on the basis of which the methodology works. Precisely,

when markers are affixed and a single recording session is performed on a single

subject, because of the skin movement they will be imaged at different locations. If,

on the other hand, there are multiple recording sessions on a single subject, then it

is very difficult, almost impossible, to place the markers at the same location on the

subject's head. Maurer et al. (1997) reported methodologies that rely on markers

that are screwed on the subject's head.

However, this solution even offering high accuracy is not always the most

practical. This is for two reasons. First, it is unreal to screw markers in case of brain

imaging that is done for research purpose. Second, this methodology needs to have

an automatic algorithm that allow markers localization into the brain images such

that any registration algorithms that is applied, know the marker location such to

perform reliably and precisely image matching. Another question of interest in the

development of fiducial markers techniques is the determination of the sufficient

number of markers. The question steam from the fact that any registration
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algorithms that for purpose of image matching uses fiducial markers, need to have

them in a sufficient number such that a head coordinate system can be built.

The other methodology that was incorporated in the automatic algorithm is that

of the moment-based/principal-axes transformation method. The advantage offered

by this methodology is that of simplicity of implementation and speed of

computation. The disadvantage is that it requires prior segmentation of brain

images. Segmentation can be obtained simply by roughly setting a threshold into

the brain image. But in such a case, results of the registration algorithm would not

be robust, since changing threshold of segmentation would also change registration

performance.

It is then preferable to apply an algorithm that it is based on principal axes but

does not require threshold segmentation of brain images. Also, it is highly valuable

to devise a registration algorithm that is computationally fast. Some current state of

the art algorithms based on maximization of mutual information require long and

expensive optimization processes, and also that the algorithm is initialized close to

the desired solution. Predictably, in the near future, resolution of brain images will

increase due to the increasing need, both in research and diagnostic applications, to

extract more information about the functional activation of the human brain during

task performance. Finer images resolution would certainly facilitate the study of

brain functions, also make available to the physician finer detail about information

processing in the human brain. Thus, even though speed of computation will

increase, it is fare to assume that registration algorithms that are dependent on

optimization processes would not always be practical, considering the massive
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computation they demand. In view of such possibility, algorithms like the one that

has been developed in this dissertation, could serve to the purpose of finding the

trade-off between accuracy and speed of computation.

3.2 Research Methods

This chapter explains in detail what the present research consisted of, what are the

advantages of the computer based system that has been developed and how it

advances the present state of the art in the field of fMRI registration. This research

aimed to merge together two state of the art methodologies for brain image rigid

registration. They are: (i) fiducial markers and (ii) moment-based/principal-axes.

An automatic technique has been developed that incorporates the two

methodologies such to obtain a new method with the advantages of the two and to

find a trade-off between accuracy and computational demand of a registration

algorithm. The new technique has been implemented into a fully automatic

computer based system provided with a graphical user interface. The use of a

simulated dataset to test the algorithm furnished a "proof of concept" of the

efficacy of the alignment program.

Testing has been extended to real data such to provide accuracy figures that are

realistic in the real world setting. Thus, this research required efforts under both

scientific and technology domains. Science was required to understand characterize

and combine the two methodologies reported in literature, such to derive the new

one: AUTOALIGN. Also, in devising new mathematical formulations that give

solution to issues related to the implementation of ideas that constitute the new
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methodology. Technological effort was required to implement into software and

test all of the procedures of which the method is composed of. This required

mastery and command of computer programming languages such as Matlab,

OpenGL and ANSI C.

3.3 Scientific Approach

It is now explained in detail what the present research consisted of. First of all, this

research has developed software tools that can be used to visualize the content of

specific files containing brain images acquired through functional Magnetic

Resonance Imaging (fMRI). To visualize the images is helpful for two simple

reasons. First is that through visualization, a considerable amount of information is

provided to the physician. In the specific case of image registration, it is also

possible for the physician to directly inspect the image and see (in some cases) the

head motion present into them. Second, after registration is desirable to visually

inspect the images such to check for registration accuracy. OpenGL was used to

write software routines that allow visualizing the content of files containing brain

images obtained with fMRI. OpenGL is a sub-class of libraries of the C language,

specially designed for graphical applications.

Since this research handled three dimensional brain images, and since it is

intended to develop applications that furnish the most of the available visual

information, the human brain has been visualized in three 2D composite views.

They are called: Axial, Sagittal and Coronal views. The user is allowed to slide

interactively by the use of keyboard each of the brain slides in the three views.
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Also, the computer-based system (AUTOALIGN) has been implemented on an SGI

Origin 2400, which is provided with high hardware acceleration for graphic

renderings. Thus, both high rendering and computational speed feature the

graphical routines.

The software system is provided with a Graphical User Interface (GUI), which

code is written in Matlab. There are several reasons why Matlab is preferred to

other software environments for the development of the GUI. Matlab offers plenty

of flexibility combined with features that ease operations like calling programs and

passing parameters to them. Also, Matlab is preferable because each of the other

programs written either in ANSI C or OpenGL is completely independent from the

GUI. What is visible to the user is the GUI, through which, some basic parameters

relevant to the format of the brain images to process, are given as input to both

ANSI C and OpenGL programs. These programs are called through simple UNIX

commands that are easily interpreted by Matlab. Independence between GUI and

programs is a feature that is more difficult to achieve with software environments

like Visual C++.

Together with software for visualization, this research has developed a novel

registration algorithm, which, as anticipated earlier was obtained by merging

together two state of the art methodologies and also incorporated advantages of the

two. The first question that needs to be addressed is then: "how many fiducial

markers are needed in order to build a head coordinate system for purpose of image

matching." The answer this research furnishes is: "three fiducial markers are

enough". The reason is that because of the physical constraints of the human head,
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which is attached to the neck, subjects can make head rotations that are less than

ninety degrees. In mathematical terms, this implies that the equations of the planes

of the head coordinate system can be univocally determined with sets of three

equations even though there are four unknown coefficients for each plane. Detailed

explanation of the solution that this research has adopted and proposed is reported

later in this chapter.

Given the number of markers that are sufficient to build the head coordinate

system, the first step of the algorithm is that of localizing them automatically into

the brain images. This way, disadvantages of the current techniques, due to the

practice of affixing or screwing markers, are overcome. The steps necessary to

localize the markers are described as follow. First a gradient of the brain image is

extracted. The effect of convolving the brain image with a third order gradient is

that of finding the zero-crossing points into the images. This process results into the

determination of the actual boundary of the subject's head. If markers would be

affixed or screwed, they would be located at the boundary of the subject's head.

Thus to have localized the boundary of the subject's head is equivalent to having a

subset of voxels where the actual markers should be localized. In other words, it is

like assuming that the fiducial markers are at the borderline of the human head.

Second, the algorithm needs to identify the principal axes of the subject's head.

As reported earlier, moment-based approaches needs prior segmentation before

computing the principal axes. In this research, such limitation is overcome by

employing a method that weights the inertia components with the voxel's intensity.

This is considered when computing the values of the tensors of inertia. The latter
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are determined by extracting the eigenvectors of the symmetric inertia matrix. This

is accomplished by employing the Jacobi algorithm (Demmel, 1997). A software

routine that implements the Jacobi algorithm has been developed in ANSI C and

incorporated into the software system. Incorporating into the computation all of the

voxels of the image, also those that are not representing parts of the subject's head,

allows avoiding pre-processing in term of threshold segmentation. Those pixels

outside the head are likely to have intensity values almost close to zero, and thus

cancel out unnecessary information.

The algorithm then uses principal axes of the human head, to localize markers

at the outer surface. The following method has been used. The brain image is

scanned departing from the center of gravity, along two directions identified by two

of the eigenvectors of inertia. The markers are assumed to be those reference points

that are found along the eigenvectors of inertia, at the intersection with the human

head boundary. The latter, as mentioned earlier, is found through the extraction of

the gradient of the brain image. To find the markers, the algorithm evaluates all of

the voxels that are along the directions of the eigenvectors of inertia. From them, a

subset of is derived that satisfies the condition of being a local maximum. A local

maximum is defined as that voxel for which the intensity is greater or equal to the

subsequent ten voxels on the eigenvector. From this subset of pixels, identified by

the algorithm, the right (left) marker corresponds with that voxel that has the larger

(smaller) index value in the volume, and at the same time its intensity is above a

given threshold.
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Once found the three markers are found automatically, the algorithm proceeds

with the computation of the head coordinate system. This research has proposed a

straightforward methodology based on computational geometry, to compute the

unit vectors of the head coordinate system on the basis of only three points. The

contribution of the methodology is that it was shown it is possible to find the four

unknown coefficients of the mathematical equation of a plane in 3D, by only three

parameters. This allowed for each plane, to write a linear system of three equations.

The fourth equation is derived from the physical constraints of the human head. It

is impossible for the head to make rotations larger than ninety degrees because of

the fact that the head is constrained to the neck. Therefore, the physical restraint

constitutes the fourth mathematical constraint that is needed.

Having the mathematical expression of the equations of the head coordinate

system, any given images can be registered to a reference image by matching the

axes. This implies to find the three rotation angles (pitch, roll and yaw) and the

three coordinates of the center of gravity of the brain. To find the three rotation

angles, computational geometry was employed. Precisely, rotation about the Z-axis

can be derived computing angles between the X and Y-axes of reference and test

head coordinate system. Similarly, rotation about X and Y-axes is derived

computing angles between Y and Z-axes, and X and Z-axes respectively.

Once the six rigid-body parameters are found, the brain volume needs to be

aligned to the reference. To do so, two basic operations are necessary. One is the

application of the rigid-body transformation to the grid of voxels such to obtain a

new grid. The other operation is that of the interpolation. It consists of estimation
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of the voxel's intensity at the location that is placed in between the original grid.

This is achieved by a simple tri-linear procedure. Similarly, also the Statistical

Parametric Mapping (SPM99) adopts this interpolation scheme (Friston et al.

1995). To apply both rigid-body transformation and tri-linear interpolation, code

has been developed and incorporated into the AUTOALIGN system.

To derive the algorithm as a combination of state of the art methodologies

required a preliminary study aimed to implement and test the theoretical basis of

our method. The preliminary study has been conducted during previous research

(Ciulla 2000; Ciulla and Deek 2001a). The moment-based/principal-axes

transformation method has been developed as a separate computer based system

(EIGEN). It served the purpose of reproducing and testing the theory reported by

Alpert et al. (1990). Investigation of the principal axes method started from a two-

dimensional brain image in which controlled artificial motion has been applied.

Then, implementation has been extended to the three dimensional case (Ciulla

2000). During a preliminary part of the study, the Jacobi algorithm has been

reproduced and implemented into software for the extraction of the eigenvectors of

a symmetric matrix. The matrix in question is that of the inertia as reported by

Alpert et al. (1990). Results of the implementation of the Jacobi algorithm have

been compared (Ciulla 2000) to those obtainable with the same dataset by

professional software packages such as Matlab and Splus5.

During the preliminary study, a variant in the form of the tensor-based function

as reported by Faber and Stokely (1988) has been developed as a separate computer

based system (Ciulla 2000). This furnished the basis of development for the
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construction of the inertia matrix that incorporates the pixel's intensity such to

derive an alternative methodology capable to avoid pre-processing in term of

segmentation. Thus, the Jacobi algorithm has been employed to extract

eigenvectors from the inertia matrix derived by voxel's intensity. The final stage of

the preliminary study consisted of the development and implementation of a

fiducial markers based approach called ALIGN (Ciulla 2000; Ciulla and Deek

2001a). It has been demonstrated the efficiency of the mathematics explained in the

method section for the determination of a head coordinate system from three

fiducial markers only. The ALIGN system simulated what happens in practice

when markers are affixed or screwed into the subject's head. Particularly, markers

were artificially introduced into the brain volume and later selected manually by the

user. This way, it was simulated what an automatic algorithm should be capable to

achieve in order to localize markers into the brain volume. Results of registration

have been compared across the three modalities of the preliminary study and each

methodology has been provided with its separate graphical user interface. After the

study was completed (Ciulla and Deek 2001a), the present research has pipelined

above methodologies such to create a novel and fully automatic method

(AUTOALIGN). This required development of software routines for the

computation of gradient images, and an algorithm for the automatic localization of

fiducial markers by means of tensors of inertia.
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3.4 Technological Effort

AUTOALIGN system is organized in two main panels: (i) Two fMRI Scans and

(ii) All fMRI Scans. The first is a section devoted to visualization and alignment of

a couple of fMRI volumes. This panel requires more manual interaction of the user

with the graphical interface. The user is able to choose reference and test volumes,

set the required pixel's resolution and size, and perform alignment by activating

four different programs. They are: (i) visualization and localization of markers; (ii)

computation of the head coordinate system; (iii) computation of alignment

parameters and (iv) interpolation / re-display of brain volumes. The second panel of

the computer-based system has been developed for the alignment of entire fMRI

time series. This panel requires minimal user interaction so that a set of brain

volumes can be aligned to the reference, by means of a program that is mostly

independent from the user. The options of the program are the same as those of the

first section of the system. The four programs mentioned above are incorporated in

a larger and single routine, and there is no visual display during computation. At

the end of the process, the user can chose which image to visualize, or can even see

the difference image between the reference and the test volumes, such to check if

motion artifacts are still present even after alignment. With respect to the

Automatic Image Registration (AIR3.08), AUTOALIGN offers the user non-

indifferent functionality in term of capability to automatically process an entire

fMRI time series. Similarly, the Statistical Parametric Mapping offers such

functionality.
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3.5 Testing and Validation

The approach that this research adopted in order to test performance of

AUTOALIGN software system is explained as follow. The idea used to test the

alignment algorithm bases itself on brain image volumes in which, a simulated

controlled and artificial motion has been introduced. Therefore, this research has

developed also software routines that can be used to simulate motion in sample

fMRI images. This was accomplished (Ciulla 2000) developing another computer

based system capable to compute the six rigid-body motion parameters on the basis

of the user request (ROTRA) and use them to calculate the new grid coordinates of

the new artificial volume. ROTRA (Ciulla 2000) has an interface similar to the

other GUIs developed to implement the methods and serve as theoretical basis for

the development of AUTOALIGN system.

Having capability to produce artificial volumes for which head motion is

known a-priori, leads to accuracy in evaluation of the registration performances of

the algorithm. The deviation of the actual performance from the desired

performance is then computed. The desired performance is known because of the

simulations. Also, algorithm's performance was compared to that of the Statistical

Parametric Mapping (SPM99) and the Automatic Image Registration (AIR3.08).

They are software packages with established accuracy and currently used by the

research community. With respect to those, AUTOALIGN is capable to express

registration accuracy estimation also in cases in which the motion is not known.

Volumes with simulated motion serve the purpose of estimating the accuracy of the

system.
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Later, validation has been extended to brain images for which the motion is not

known. Particularly, AUTOALIGN performance has been investigated with 64 (x

res.) x 64 (y res.) x 21 (z res.) and 64 (x res.) x 64 (y res.) x 16 (z res.) fMRI time

series. For those cases in which the head motion is not known, AUTOALIGN

performs automatically estimation of alignment accuracy. This is achieved as

follow; having for both reference and test volume, after alignment, the position of

the fiducial markers with respect to the origin of the head coordinate system, it is

possible by means of 3D Euclidean distances to compute misalignment values at

the markers' location. Misalignment values consist of the location mismatch

between markers of the two volumes, after the registration has been done. Markers

are placed farthest away from the centroid of alignment because they are localized

at the outer-most surface of the head. Theoretically, after registration, if the

mismatch is not zero, then a misalignment exists and it is the measure of the

maximum misalignment. This is so because the maximum misalignment is

measured at the points that are farthest away from the centroid of alignment

(Fitzpatrick et al., 1998).

3.6 Contributions

The main advantage of AUTOALIGN software system is that of searching for a

trade-off between accuracy and computational time for the problem of alignment of

fMRI time series. This was accomplished by merging two state of the art

methodologies. To achieve this purpose, novel solutions were given to research
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questions posed in literature and thus, the following contributions were given to

advance the state of the art.

(i) A new methodology for fMRI alignment that is accurate and fast

(independent on optimization processes) at the same time. This constitutes a non

indifferent advantage in cases of large brain volumes (high resolution).

AUTOALIGN performs well in terms of accuracy with low resolutions (64 x 64 x

16) brain volumes.

(ii) To have shown mathematically that only three points are sufficient to build

a coordinate system in the case of the human head. The method constitutes a

particular case of the larger mathematical framework on point-based registration

made by (Fitzpatrick et al. 1998a). An algorithm was derived and implemented in

software by the ANSI C programming language.

(iii) An automatic and reliable approach to localize reference points into the

brain images. This overcomes the limitation of affixing/screwing fiducials (Maurer

et al. 1997). For this issue this research has furnished both theoretical and practical

solutions. It is proposed that fiducial markers can be automatically localized into

brain images by means of tensors of inertia. This overcomes limitations that arise if

markers are either affixed or screwed to the patient's head. Implementation has also

involved us into the formulation of a procedure capable to select markers between

subsets of voxels located along the directions identified by the tensors of inertia.

(iv) A novel solution to the problem of reliably determining the axis of minor

resolution (64 x 64 x 21) for Moment-based registration. This overcomes the
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limitation posed by Moment-Based approaches (Faber and Stokely, 1988) for brain

volumes with coarse resolution.

(v) To have demonstrated though AUTOALIGN the feasibility of fiducial

based registration in fMRI. This is a novelty in the field.

(vi) To have shown how to avoid threshold segmentation of brain images. In

this regard, it is proposed here that voxel's intensities are taken into account in the

computation of the inertia matrix of the brain images. Precisely, by weighting the

voxel's coordinates with the intensity, all of those constituting the brain image can

be included in the computation, such that those outside the brain will cancel

themselves out because of their negligible intensity values.

(vi) To have shown how to keep AUTOALIGN algorithm fast such that, for

fine resolutions, computation time does not increase dramatically. The answer to

this question is in devising a registration algorithm which computational time is

independent from different degrees of translation and rotation. Also, it is

recommendable to use an interpolation scheme like the tri-liner function such to

achieve sub-voxel accuracy in intensity correction and at the same time an

acceptable computational demand.

3.7 Head Motion Simulation

Parameters that describe the six degrees of freedom of the head in a 3D volume are

three angles: pitch (rotation about the X-axis), roll (rotation about the Y-axis), yaw

(rotation about the Z-axis); and three coordinates x, y and z of the origin of the

head coordinate system. In all of the cases: principal axes transformation method,
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tensor-based method and 3-fiducial markers method; the coordinates of the origin

of the head coordinate system are those of the center of mass of the brain.

Either given eigenvectors or tensors of the symmetric inertia matrix or given

the unit vectors of the head coordinate system, for both reference volume and test

volume, it is possible to compute the three angles (pitch, yaw and roll) applying the

following procedure. The yaw angle can be found on the basis of the angle between

X-axes and Y-axes (on the XY plane) of the head coordinate system. Particularly,

since both eigenvectors and unit vectors are orthogonal, angles between X-axes and

between Y-axes will be averaged. Similarly, pitch and roll angles can be found

averaging respectively angles between Y-axes and Z-axes, and X-axes and Z-axes.

Once the three angles (pitch, yaw and roll) and the three coordinates (x, y and z) of

the origin of the head coordinate system are known, the rigid-body transformation

can be computed and applied to the test volume with respect to the center of gravity

of the brain (origin of head coordinate system).

3.8 Head Coordinate System of the 3-Fiducial Markers Technique

This method is presented for two reasons: One is that, the method itself is simple

because based only on 3-fiduciary markers, which under some assumptions, are

enough to cover the six degree of freedom in a 3D volume. The other is that, such a

method is applicable to cross-modality registration (Maurer et al. 1997). The

method requires that the origin be at the midpoint between the ear's markers. The

construction of the head coordinate system takes the following form. Let P1 = (x1,

y1, z1), P2 = (x2, y29 z2) and P3 = (x3, y3, z3) be respectively the left ear, right ear and
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nose fiduciary markers. Let Axy * x + Bxy * y + Cxy * z Dxy = 0 be the equation

of plane XY as passing through the three fiduciary points. The values of the

coefficients of plane XY can be computed as:
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Where the mid-point between the ears is stored as the origin Po = (xo, yo, zo) of the

head coordinate system. Let Azy * x + Bzy * y + Czy * z Dzy = 0 be the equation

of plane ZY found by the constraints that it must be perpendicular to plane XY and

it must pass through the origin Po of the coordinate system and through the nose P3.

Let Azx * x + Bzx * y + Czx * z + Dzx = 0 be the equation of plane ZX found by

the constraints that it must be perpendicular to plane XY and plane ZY and at the

same time must pass through the origin P o of the coordinate system. The likely

assumption that the human brain cannot make rotations bigger than 90-degrees

ensures that one of the coefficients of both planes ZY and ZX is equal to one. The

constraints ensure a unique solution of the problem. This amounts to demanding



that the axis of the coordinate system cannot make an angle bigger than 90-degrees

with the axis of the fixed coordinate system. Therefore the problem of finding a

plane can be solved with three constraints even though there are four unknown

coefficients. The values of the coefficients of plane ZY can be computed as

follows:
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Where:
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3.9 The AUTOALIGN Technique

The principal axes transformation method (Alpert et al. 1990) relies on the use of a

threshold T to select the pixels above a given arbitrary intensity. The use of the

threshold aims to select only those pixels relevant to the brain for the computation

of the inertia matrix. This implies that changing the value of the threshold would

accordingly change the alignment performance of the method, since the numerical

values of the symmetric inertia matrix are computed on the basis of the coordinates

of the pixels above the arbitrary threshold. To make the method more robust, a

technique was utilized that cancels out the pixels outside the brain weighting the

pixel coordinates with their intensities. The formulas used are reported as follows:
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Where a, (3 and y are respectively the values of x, y and z coordinates of the center

of gravity of the brain; and f (pi) is the value of the i th pixel's intensity.

Any fiduciary markers methods, to become fully automatic, require that an

algorithm accurately localizes markers and that their shape and consistency is such

to be detected by the imaging modality. Therefore, considering that there is



evidence that marker techniques offer accurate registration results (Maurer et al.

1997) we devised an algorithm that, on the basis of the directions identified by the

principal axes transformation method finds automatically three points on the

subject's head that can be adopted as markers. As we have seen in the previous

section, three markers are enough to determine a coordinate system by which the

position of the head can be uniquely featured into the scanning volume.

Thus, the method to localize the markers works in four steps: (i) the symmetric

inertia matrix is obtained weighting the voxel's coordinates with their intensity; (ii)

the eigenvectors of the inertia matrix are computed and identify the principal axes

of the brain; (iii) A third order gradient of the image is computed in order to

identify the borderline between the outer surface of the head and the pixels outside;

(iv) Departing from the center of gravity of the head, the image is scanned along the

X and Y directions identified by the principal axes in order to find the markers at

the intersection between the two principal axes and the outer surface of the head.

Two markers at the right and left ear locations are found scanning along the X

direction. The marker at the nose location is found scanning along the Y direction.

Extracting the gradient of the image furnished the brain's edges and made

possible to find the markers at the borderline between its outer surface and the

pixels outside the head. To find the markers at the intersection of the head's outer

surface and the two principal axes is equivalent to the practice of affixing them to

the subject's head but present the advantage of accurate and automatic localization.
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3.10 AUTOALIGN Registration Algorithm

3.10.1 Extraction of the Tensors of Inertia

Formulas used to extract the tensors of inertia of the brain volume were given

earlier (Ciulla and Deek 2001a). The Jacobi-algorithm (Demmel 1997) allowed

computing the eigenvectors (ex, fx, gx; e y, fy , gy ; ez, fz, gz) of the inertia matrix:

3.10.2 Localization of Fiducial Markers

Given the physical constraints of the subject's head, three fiducial markers are

sufficient to build a head coordinate system. Since affixing or screwing markers

might be unpractical, it has been shown that fiducial markers can be found on the

directions of two of the tensors of inertia of the brain volume (Ciulla and Deek

2001a). To localize the three fiducial markers, the algorithm performs the following

steps: (i) the gradient of the brain image is computed in order to identify the

outermost surface of the subject's head. The X and Y components of the gradient,

respectively A and A y , are computed convolving the brain image F with:
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(ii) Departing from the origin of the head coordinate system (P0 = [x0, y0, z0]), the

algorithm scans the gradient image along directions identified by two of the tensors

of inertia (X and Y) such to localize three points at the intersection between the

tensors and the head boundary. The three points to be adopted as markers are called

the "left ear" (P1 = [xi, y1, z1]), "right ear", (P2 = [x2, y2, z2]) and "nose" (P3 = [x3,

y3, z3]). Let xres and yres be respectively the X and Y resolution of the brain

volume. To search for the "left ear" marker with k = 0...n and i = x0... n, let

be n+1 sets of (x0-n) voxels where our marker is located; where e x , fx and g, are

respectively the x, y and z components of the X tensor of inertia. If the value f(ik)

of the intensity of the ik voxel is greater or equal to each of the preceding f(ij) (with

j = 1...n), then the ik voxel is assumed as potential left ear marker. Thus, a subset of

at most (x0-n) potential left ear markers is derived from the (n+1)*(x0-n) voxels.
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The "left ear" marker will be that voxel ik of the subset for which i is the smallest in

value and at the same time the intensity f(i k) is greater than a threshold TH. Thus,

the coordinates of the "left ear" marker will be:

Similarly, to search for the "right ear" marker with k = 0...n and i = x0...(xres-n):

are n+1 sets of (xres-x0-n) voxels where the marker is located. A subset of at most

(xres-x0-n) potential right ear markers is derived from the ik voxels considering

only those for which the value of the intensity f(ik) is greater or equal to each of the

subsequent f(ij) (with j = 1...n). The "right ear" marker will then be that voxel ik of

the subset for which i is the greatest in value and at the same time the intensity f(ik)

is greater than TH. The coordinates of the "right ear" marker will be:
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Similarly, for the "nose" marker with k = 0...n and i = y0...(yres-n):



The scalars e y, fy and gy are respectively x, y and z component of the Y tensor of

inertia. The coordinates of the "nose" marker will be:

Once the three markers are found into the reference volume, they can be

reproduced into each of the test volumes of the series. This is done by simply using

equations (3.43)-(3.45), (3.47)-(3.49) and (3.51)-(3.53) with values of P0 = [x0, y0,

z0] and ex, fx, gx, e y, fy, gy extracted from the test volumes and thus independent

from any thresholds. As for ik, its numerical value in each test volumes is the same

found into the reference volume. This approach increases the reliability of

localization across brain images.

3.10.3 Construction of the Head Coordinate System

Let a be the XY plane of equation Axy * x BXY * y + Cxy * z + Dxy = 0 (P1 C a,

P2 C a, P3 C a), 13 be the ZY plane of equation Azy * X BZY * y + CZY * Z DZY

= 0 (p 1 a and P0 C (3, P3 C 13) and y be the ZX plane of equation Azx * x + Bzx * y

+ Czx * z + Dzx = 0 (y a, y p and P0 C y). The coefficients of a, 13 and y are

found as illustrated earlier (Ciulla and Deek 2001a) and the unit vectors (lx , mx, nx;

ly , my, ny ; l z , mz , TO of the head coordinate system can be computed as follow:
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3.10.4 Determination of the Rigid-Body Transformation

Given that X and Y axes of the head coordinate system are orthogonal, rotations ψ r

and ψa about the Z axis of reference (r) and test (a) brain images can be computed

as:
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coordinate system respectively for reference (r) and test (a) brain images and 11/x is



the rotation about the Z axis to apply to the test image to align the reference image.

Rotations ψr and ψa can also be computed as:
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The scalars lyr, m y„ nyr; 'yap mya, nya are the unit vectors of the Y axis of the head

coordinate system respectively for reference (r) and test (a) brain images and by is

the rotation about the Z axis to apply to the test image to align the reference image.

The yaw angle 11/ is found averaging (3.69) and (3.76):

Rotations (1) r and (1) a about the Y axis of reference (r) and test (a) brain images can

be computed using the unit vectors of the X axis:



Rotations 4) r and 4) a can also be computed using the unit vectors of the Z axis:

The scalars lzr, ma, nzr; lza, mza, nza are the unit vectors of the Z axis of the head

coordinate system, respectively for reference (r) and test (a) brain images and 4) x

and 4) z are the rotations about the Y axis to apply to the test image to align the

reference image. The roll angle 4) is found averaging (3.84) and (3.91):

Rotations 0 r and 0 a about the X axis of reference (r) and test (a) brain images can

be computed using the unit vectors of the Z axis:



Rotations 0 r and 0 a can also be computed using the unit vectors of the Y axis:

Angles 0 z and 0 y are rotations about the X axis to apply to the test image to align

the reference image. The roll angle 0 is found averaging (3.99) and (3.106):

The rotation matrix is expressed as:



and the translation vector is expressed as:

Scalars -rF. - -a εa, - - - A. and ?E r - 7E a are respectively the x, y and z difference betweenX, 

coordinates of centers of gravity of reference and test brain images.
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3.10.5 Interpolation

Tri-linear interpolation was incorporated into the registration procedure extending

the two-dimensional method illustrated by Castleman (1996) to 3D. The eight

neighboring voxels are taken into account to determine the intensity value f(X,Y,Z)

at any intra-voxel location:
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3.10.6 Accuracy Estimation

According to Fitzpatrick et al. (1998) accuracy of an alignment method based on

markers is worst at the locations that are farthest from the centroid of alignment. To

measure registration accuracy (A) at the three marker locations, 3D Euclidean

distances have been computed as:

where X°MR Y°MR Z°MR are respectively x, y, and z coordinates of the marker in the

reference brain image with respect to the global (0) coordinate system and X °MA

Y°MA Z°MA are those of the same marker in the test brain image after alignment is
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Scalars XHMA YHMA ZHMA are respectively x, y, and z coordinates of the marker

in the test brain image with respect to the subject's head coordinate system. Scalars

EA, λA, πA are coordinates of the center of gravity with respect to the global (0)

coordinate system. The rotation matrix is R. Values of accuracy (A) have meaning

similar to that of the fiducial registration error (FRE) illustrated by Fitzpatrick et al.

(1998) and also express how reliably markers are localized across brain images.



CHAPTER 4

TECHNOLOGY DEVELOPMENT

4.1 General Description of AUTOALIGN Computer Based System

Medical image data obtained with functional Magnetic Resonance Imaging is

recorded in multiple scanning periods and is stored to form large image databases.

Before any analysis tools can be used in order to extract information about

functional human brain activation, fMRI data requires spatial pre-processing in

term of registration. Also it requires visualization, thus it is prone to the application

of computer based systems that incorporate both data display and algorithmic tools

to perform spatial pre-processing procedures.

In recent years, emphasis has been placed on developing computer systems,

which make effective use of data in various forms, such as image graphics, video

sequences, and other scientific or medical data. Recent approaches that adopted to

develop image database systems, have generally fallen into one of the following

two classifications: (i) databases with no image understanding capabilities or (ii)

vision systems which store images in a basic image depository (Bach et al. 1993).

Figure 4.1 shows the architectural framework of visual information systems. It is

visible from the picture that two different domains need to be filled: (i) query

system and (ii) computer vision system. This implies that the search initiated by the

query does not have to be restricted to alphanumeric summaries of the images, but

it has to go beyond in the interpretation and understanding of the images. Computer

Vision System needs to be included to give visualization properties to the system
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and also has to communicate with the image understanding routines, such to furnish

the appropriate answer to the user in the form of images.

On the other hand, as figure 4.2 shows, databases rely mainly on alphanumeric

summaries of the images, which are used to satisfy queries, and determine the

resulting images (Chang et al. 1988). These systems provide query mechanisms

that are similar to traditional databases. They lack of any property to accurately

interpret image data. Computer vision systems address more specifically both

image interpretation and understanding. However, these types of systems are

intended for vision or research. They do not provide emphasis on specific database

processes such as querying (Bach et al. 1993).

An architectural framework of brain image registration systems is given in

figure 4.3. The GUI is the only portion of the system that the user can see and can

directly interact with. The Computer Vision System is constituted by the set of

routines that allows visualization of the image content, before and after processing.

The Computer Vision System feeds back visual information to the user and also it

serves the purpose of initializing the registration system according to the user

request. The Registration System allows spatial processing. It constitutes the core

of the registration algorithm, and directly interacts with the Image Database, also

furnishing information back to the computer vision system for post processing

visualization.

One of this dissertation's aims has been to build a computer-based system with

the intent to combine together an image registration algorithm with a computer
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Figure 4.1 The Architectural Framework of a Visual Information System 

It is by filling two different domains that state of the art visual information 

systems can be developed. The first domain is filled by the query system that 

incorporates the characteristics of a classical information system. In addition, the 

system needs the Image Understanding subsystem to be the interface between the 

query system and the Image database (knowledge provided by Bach et al. 1993). 
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Figure 4.2 Architectural Framework of an Image Database System 

The components of this type of systems are: (i) The Graphical User Interface; (ii) 

The Query System; (iii) Alphanumeric Summaries; and (iv) The Image Database. 

As suggested by the picture, components of this type of systems, recall the more 

traditional text based information systems. As a matter of fact, research done on 

image database systems achieved development of systems that perform image 

selection mainly relying on alphanumeric summaries of the images. However, 

visual systems handling images needs to have query mechanisms capable to 

accurately interpret and retrieve complex image data (knowledge provided by 

Bach et al. 1993). 
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Figure 4.3 Architectural Framework of a Computer Based System for Brain 

Image Registration 

According to the top level framework given in figure 4.1, a visual information 

system that incorporates vision capabilities together with image processing and 

understanding subsystems, can be classified in the subclass of Computer Vision 

Systems (Bach et al. 1993). The picture illustrates the components of the system: 

(i) Graphical User Interface (GUI); (ii) Computer Vision System; (iii) 

Registration System and (iv) Brain Image Database. 



vision system. The computer based system falls in the second category mentioned

above (i.e. vision systems with image understanding capabilities).

The system has been provided with a Graphical User Interface and has been

implemented using three software environments: Matlab, OpenGL and ANSI C;

and its architectural diagram is illustrated in figure 4.4. Matlab has been used in

order to build the GUI (Graphical User Interface). The user through the GUI

initiates both visual displays, consisting of graphical applications and

computational routines. Communication between the graphic applications and the

computational routines are achieved through exchange of information contained

into files stored in the local system. The user receives feedback of both visual and

numerical nature together with information relative to the alignment parameters

that are stored into output files. Interactive graphic applications were used to

visualize fMRI data and were developed with OpenGL. ANSI C has been used to

write routines performing mathematical computations of the registration algorithm.

Figure 4.5 shows the GUI of the AUTOALIGN software system. The GUI

controls the X, Y and Z resolution of the brain image. The "Display Info" button

allows the user to get information on how to set X, Y and Z resolution, while the

"DataType" option allows the user to choose the format of the brain image to

process. The "Display Scan" button activates a program that displays three

composite 2D views (Plane, Sagittal and Coronal Sections), which can be sliced

interactively by the keyboard. Also, it computes the gradient of the image; the

eigenvectors of inertia corresponding to the principal axes, and it finds the three

fiducial markers on which the registration algorithm is based. The "Unit Vectors"
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button computes the unit vectors of the head coordinate system. The "Align Scan"

button aligns the test brain image to the reference one. The "Reference Scan" is

specified in the GUI as a file name containing the unit vectors of the reference

brain image. Once the computation is performed, the "ReDisplay" button re-

displays the scan that has been aligned to the reference. The "Align All" button

allows aligning an entire fMRI time series to the reference image. Finally the "Diff.

Image" button displays, after alignment, difference images between reference and

aligned volumes.

AUTOALIGN contains both visualization and image processing capabilities

typical of a computer vision system. As mentioned in the previous section,

computer based systems of this kind that were developed earlier were: (i) Statistical

Parametric Mapping (SPM99) and (ii) Automatic Image Registration (AIR3.08).

For what concerns a comparison AUTOALIGN with the above two, it can be said

in term of functionality AUTOALIGN, like AIR3.08, focuses on the registration

issue, while SPM99 is also widely used for data analysis. Also, in SPM99, the

realignment component is part of a set of options aimed to various spatial pre-

processing operations. SPM99 provides to the user also with operations like

normalization, smoothing and segmentation of brain images. AIR3.08 is prone to

the automatic registration of couple of volumes only. AUTOALIGN and SPM99,

on the other hand, are capable to align entire fMRI time series.
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Figure 4.4 Architectural Diagram of AUTOALIGN Computer Based System for

Brain Image Registration

The picture illustrates system-user interactions and internal functions of the

AUTOALIGN computer program. The user communicates with the Matlab GUI,

and can interact with the OpenGL graphic applications through the use of both

mouse and keyboard. The ANSI C modules of the system communicate with each

other through files stored in the working directory. Both text and visual feedback

is provided to the user, plus output files containing results of the realignment

algorithm.
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Figure 4.5 AUTOALIGN Graphical User Interface (GUI)

Each button is connected to a separate module. Each module receives information

consisting of the program's parameters from both slides and edit boxes. Brain

images in several different data formats (unsigned char, int, float and double) can

be automatically processed. The GUI's panel is divided in two main sections. The

upper section (Two fMRI Scans) is designed to assist the alignment of a couple of

volumes, while the lower section (All fMRI Scans) is designed to align

automatically, without any user interactions, an entire fMRI time series. While the

former allows re-display of brain volumes after registration, the latter allows the

user to display difference images between reference and test volumes after

tri-linear interpolation has been applied.



4.2 Detailed Description

4.2.1 Generally Object Oriented

In this paragraph it is given a description of the computer-based system that has

been developed. In order to apply object-oriented methodologies to the design of a

computer-based system, a flow chart needs to be derived that contains objects

whose behavior is described by attributes. According to object orientation

methodologies, an object (and its behavior) is described by a set of attributes.

Under such a methodology an object can be depicted by the following attributes:

Inputs, Outputs, Limiting factors / Controls (e.g. Constraints) and Resources (Ranki

1994). In the following, AUTOALIGN will be decomposed in diagrams. In figure

4.6 AUTOALIGN is shown at its top level by using an approach that determines

meaningful objects and organizes them such that the data flow and processes'

layout becomes Object Oriented (00). The approach was conceptually re-adapted

from Ranki (1994). Each box identifies an object and each side of the box has a

particular meaning. The left side of the box is for inputs, the right side of the box is

for outputs, the topside is for constraints and the bottom side is for mechanisms

(resources). Inputs are transformed into outputs, controls constrain or dictate the

conditions under which transformations occur and mechanisms (resources) describe

how the function is accomplished (Ranki 1994). The same 00 approach can be

used to generalize and describe the full activity and structural organization of the

software at the highest layer. Stratifying the chart in layers can give insights on

how the internal and external activities of the AUTOALIGN software are
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Figure 4.6 AUTOALIGN Level 0 Diagram

The purpose is to spatially register fMRI time series and to correct for intensities

at sub-voxel accuracy. The view-point is the user.



developed. Thus, AUTOALIGN can be thought as having several layers

hierarchically structured below the one shown in Figure 4.6 and for which there is

another stratification that comprises the other relevant data flow and functions of

the computer program (conceptually re-adapted from Ranki, 1994). AUTOALIGN

data description, which is relevant to, inputs, outputs, resources and controls,

furnishes other information relevant to the specific meaning of each of the entries

of the diagram and it is given in Appendix A.

Figure 4.7 illustrates data flow between the programs that constitute the first part

(two fMRI scans) of the AUTOALIGN computer based system. Each of the objects

represents a button in the Graphical User Interface. The "Display Button" object

takes as inputs, voxel's size and sampling axial resolution, from the options of the

GUI. The program performs several computations and offers both visual and

numerical displays. Results of this program are saved interactively by the user in a

file that contains numerical values of the three fiducial markers' coordinates that

are found automatically by the algorithm. The "Unit Vectors" object receives as

input the output of "Display Scan" and automatically computes the axes and the

origin of the head coordinate system. On the basis of the head coordinate system of

the reference volume, the "Align Scan" button computes pitch, roll and yaw angles

and the misalignment vector of the origin. Later, after alignment is performed, the

"ReDisplay" object displays the original brain volume. Figure 4.8 illustrates the

"All fMRI Scans" section, which is at the same level of the "two fMRI Scans"

section. This diagram shows the fully automatic part of the system devoted to the

alignment of entire fMRI time series. The "Display Info" object reads from a
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Figure 4.7 AUTO ALIGN Levell Diagram (Two fMRI Scans) 
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Figure 4.8 AUTOALIGN Level 2 Diagram (All fMRI Scans) 



standard header, data relevant to the format of the brain images and produces

numerical display. The "Align All to Ref." object is a large routine that

incorporates into one, all of the programs of the "two fMRI Scans" section. The

"Diff. Image" object computes the difference image between reference and test

volumes. The "ReDisplay" object function as shown in figure 4.8.

Figure 4.9 shows details of decomposition of the data flow between routines that

constitute the "Display Scan" object. The latter is constituted by the following

objects. There is a "Load fMRI data" object which is an ANSI C routine. It receives

an fMRI volume as input and produces the equivalent analog data as output. The

"Compute Gradient" object incorporates a simple convolution operator that

transforms the original brain volume into a gradient volume, thus identifying the

zero-crossing points of the image. The "Compute Inertia" object also receives the

brain image in analog format (0-255) from the "Load fMRI Data" object and

computes the inertia matrix. The latter is fed to the "Compute Eigenvect." object,

which extracts, by the Jacobi algorithm (Demmel 1997), eigenvectors

corresponding to the eigenvalues of the inertia matrix. Finally, the "Find Markers"

object finds automatically three fiducial markers at the intersections of two of the

tensors of inertia (eigenvectors) with the head boundary found by the "Compute

Gradient" object. At the end of the process, the program saves the information

about the fiducial markers into an output file.

Figure 4.10 also shows details of what constitute the "Unit Vectors" object. It

is an assembly of three objects, which in turn implements three steps of the

algorithm used to determine unit vectors of the head coordinate system of the brain
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Figure 4.9 AUTO ALIGN Level 2 Diagram (Display Scan) 
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Figure 4.10 AUTOALIGN Level 2 Diagram (Unit Vectors) 



volume. The "Compute XY Plane" object writes the equation of a plane passing

through three fiducial markers. The "Compute ZY Plane" writes the equation of a

plane that is perpendicular to the XY plane and passes through the center of gravity

and the "nose" marker. The "Compute ZX Plane" writes the equation of a plane

that is perpendicular to the previous two (XY and ZY) planes and passes through

the center of gravity of the brain.

Figure 4.11 illustrates the objects that constitute the "Align Scan" object. The

"Compute R. Matrix" object takes as input the unit vectors of both reference and

test images. It computes the rotation matrix, which incorporates the pitch, roll and

yaw rotations about the three axes of the coordinate system. The "Compute T.

Vector" object is a simple routine that computes the misalignment vector between

the centers of gravity of two brain images. Finally, the "Compute New Coord."

object applies the rigid-body transformation to the original grid of voxels, thus

obtains coordinate values of the new grid. At the end of the process the rotation-

translation matrix is saved into an output file.

Figure 4.12 shows details of the data flow between the objects that compose

the "ReDisplay" object. The "Load fMRI Data" object receives as input the test

brain image, and transforms it into analog representation. The "Apply Transf."

object receives the analog brain image from the "Load fMRI Data" object, also

reads the rotation-translation matrix from the file stored in the working directory,

and finally obtains the new grid coordinate values. The latter are fed to the

"Interpolate" object, which is performs the calculation of the pixel's intensity at the
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Figure 4.11 AUTOALIGN Level 2 Diagram (Align Scan) 

Figure 4.12 AUTOALIGN Level 2 Diagram (ReDisplay) 



new grid's coordinates by a 3D extension of the tri-linear interpolation scheme

described by Castleman (1996). Finally, the "Interpolate" object furnishes aligned

brain volumes and save them into output files.

Figure 4.13 shows in finer decomposition the objects of "Diff. Image". The

"Load fMRI Data" object inputs two brain volumes and convert them into analog

(0-255) scale. The "Diff. Image" object returns the difference image to the visual

display.

Finally, figure 4.14 illustrates with finer detail objects constituting the "Align

All to Ref." Object. The "Load fMRI Data" object works as above. The "Find

Markers" object automatically locates three fiducial markers and feed data to the

"Compute Planes" object, which is basically a routine comprising of the three

objects of figure 4.10. Finally, the "Compute Transf." and the "Interp." objects,

which respectively compute the new grid's coordinates, alignment parameters and

accuracy coefficients, complete the process. Also, numerical display is given to the

user for each of the test volumes that are aligned to the reference.
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Figure 4.13 AUTOALIGN Level 2 Diagram (Diff. Image) 
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Figure 4.14 AUTOALIGN Level 2 Diagram (Align All to Ref.) 



4.2.2 Structure Chart Based

In the present paragraph, a structure chart description of the AUTOALIGN

computer based system is given. Figure 4.15 shows the top-level structure chart of

the AUTOALIGN software system. Consistently with the representation given

earlier, the system is composed of two main parts: (i) "Two fMRI Scans" used to

align a couple of fMRI volumes and (ii) "All fMRI Scans" used to align an entire

fMRI time series. As figure 4.16 shows, the system is provided with input routine,

which accept values from the user such that brain volumes can be loaded

consistently with their format. The system also incorporates output routines that

save into files values of accuracy coefficients and alignment parameters for each of

the brain volumes.

Figure 4.17 shows the structure chart of the "Two fMRI Scans" portion of the

system, exactly one layer down. Data flow across the four modules such that from

the original brain volumes: (i) three fiducial markers are found; (ii) axes of the head

coordinate system are derived; (iii) three angles of rotation are retrieved together

with misalignment values of the origin of the coordinate system and (iv) alignment

parameters are saved together with accuracy coefficients. A new (aligned) brain

volume is produced. Figure 4.18 shows the structure chart organization of the

"Display Scan" module. The first operation that is performed is that of loading the

brain image. The diagram offers a detailed description of the operations performed

by the program in order to find the three fiducial markers. Particularly the gradient

is computed, the inertia matrix is extracted, the eigenvectors are found and finally,
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Figure 4.15 AUTOALIGN Structure Chart Level 0 

Figure 4.16 AUTO ALIGN Structure Chart level 0: Input 
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Figure 4.17 AUTOALIGN Structure Chart Levell: Two fMRI Scans 
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Figure 4.18 AUTO ALIGN Structure Chart Level 2: Display Scan 



markers are localized. This program reads data both from the user and from the

database containing the brain images.

Figure 4.19 shows the data flow of the program used to derive the unit vectors

of the head coordinate system from the three fiducial markers. Three different

modules compute the three planes of the coordinate system, consistently with what

has been shown in figure 4.10. Both input and output operations are performed

automatically from and to files placed in the working directory. Figure 4.20 shows

the organization of the "Align Scan" module. There are three sub-modules, two of

which dedicated to the computation of rotation-translation matrix, and one devoted

to the calculation of new grid values. At the end of the process, the rotation-

translation matrix is saved into a file and the estimation of alignment accuracy is

given as a display to the user.

Figure 4.21 shows the data flow of the "ReDisplay" module. First the brain

image is loaded and converted into analog (0-255) scale, then the transformation is

applied and the value of the intensity at the new grid coordinates is found by

tri-linear interpolation. Finally, the aligned volume is displayed to the user and saved

into a file. Figure 4.22 illustrates the structure chart of the "All fMRI Scans"

section of the AUTOALIGN software system that is used to align an entire fMRI

time series to a reference brain volume. The user reads information about the

format of the brain volumes from a standard header file. This produces a numerical

display that is used by the user to fix the values of the options of the graphical user

interface. The "Align All to Ref." button activates a fully automatic program
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Figure 4.19 AUTOALIGN Structure Chart Level 2: Unit Vectors 
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Figure 4.20 AUTOALIGN Structure Chart Level 2: Align Scan 
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RT.Matrix 6 

Figure 4.21 AUTOALIGN Structure Chart Level 2: Re-Display 
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written in ANSI C at the end of which, are found: (i) three fiducial markers; (ii) 

axes and origin of the head coordinate system and (iii) three rotation angles (pitch, 

roll and yaw). At the end of the alignment process the user chose any brain images 

to compute the difference between itself and the reference image and display such 

difference in three 2D composite views. This operation allows the user to check 

into the difference image for residual artifacts . that might be present after the 

alignment process. 

Figure 4.22 AUTOALIGN Structure Chart Levell: All fMRI Scans 



102

Alternatively, the user chose any brain volumes to display as it is after alignment.

The program outputs both accuracy coefficients and alignment parameters in two

different files.

Figure 4.23 shows details of the data flow of the "Align All to Ref." button.

Data is loaded according to the user instructions. Then, markers are automatically

found and fed to the routine that computes three planes of the head coordinate

system. This process involves application of several routines, each of which has

been illustrated in figure 4.14. The unit vectors are saved into a file that is later read

by another routine, which, purpose is to compute the rigid-body transformation.

Finally, a routine is activated that interpolate the brain image at the location of the

new grid coordinates and save the aligned fMRI volume into an output file. The

format of this file is the same as that of the original brain images. Figure 4.24

shows how the "Diff. Image" module functions. Two fMRI scans, respectively the

reference and the test volume after alignment, are read and converted into analog

scale. Finally, a difference image is displayed for the user to see. Figure 4.25 gives

an idea of the output data of the AUTOALIGN software system. It consists, as

previously mentioned, of two different output files, one containing the accuracy

coefficients and the other containing the alignment parameters.
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Figure 4.23 AUTOALIGN Structure Chart Level 2: Align All to Ref 
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Figure 4.24 AUTO ALIGN Structure Chart Level 2: Diff. Image 



Alignment 
Parameters 

Figure 4.25 AUTOALIGN Structure Chart Levell: Output 
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CHAPTER 5

METHODOLOGY VALIDATION

This chapter reports on performance assessment of the AUTOALIGN registration

algorithm developed to align functional Magnetic Resonance Images time series

(fMRI). Performance of the algorithm was preliminarily assessed by fMR brain

images in which controlled motion has been simulated. Further experimentation has

been conducted with real fMRI time series. Rigid-body transformations were

retrieved automatically and the value of motion parameters compared to those

obtained with the Statistical Parametric Mapping (SPM99) and the Automatic

Image Registration (AIR 3.08). Further tests relevant to reliability assessment of

the technique underlying AUTOALIGN algorithm are reported in Appendix B.

5.1 Preliminary Analysis with Simulated Data

A set of preliminary experiments was performed with a T2*-weighted Magnetic

Resonance (MR) volume having sampling resolution of 64 (3.75 mm), 64 (3.75

mm) and 28 (5.00 mm) respectively in the x, y and z directions. Data was obtained

by a G.E. 1.5 T Signa Scanner by echo planar imaging (EPI). The aim of the

experiments was to test how AUTOALIGN estimated motion parameters. fMRI

data were used in which simulated motion was artificially introduced. Rotations at

steps of 0.2° in the [-3°, 3°] range for pitch, roll and yaw angles were simulated.

Also, in another experimental session, translations at steps of 0.2 voxels in the

range [-3; 3] were simulated. The same data was used to perform experiments with
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the Statistical Parametric Mapping (SPM99) and Automatic Image Registration

(AIR3 .08).

Figure 5.1 shows a sample of the three 2D composite views of an original

fMRI volume (a) and the same after rotations of 1.8° have been applied

simultaneously about the three axes (b). For the images shown in figure 5.1, figure

5.2 shows the gradient images together with the three fiducial markers locations

(white) found automatically as described in the previous section. Figure 5.3 shows

the plot estimation results of pitch, roll and yaw for AUTOALIGN (a), SPM99 (b)

and AIR3.08 (c) with the same dataset. Estimations (black) are displayed versus an

ideal line (white) within the [-3°, 3°] range. The "amis" values were computed as

the average of the sum of the absolute differences between desired values and the

obtained performance:

where xi and E(xi) are respectively the i th actual performance and desired

performance (i = 1...n and n = 30).

AUTOALIGN results presented here were obtained after an improvement was

made in the estimation of the yaw angle with respect to the version presented

earlier (Ciulla and Deek, 2001a). The "amis" values are average Euclidean metrics

measuring average misalignment expressed in millimeters and degrees respectively

for x, y, z and pitch, roll, yaw. AUTOALIGN "amis" values obtained in the

experimental session aimed to estimate traslational movements alone were 0.22,

0.22 and 0.43, respectively along x, y and z direction. Figure 5.4 shows difference
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Sagittal 

1.80 Motion (b) 

Figure 5.1 Functional MRI Data Shown in three 2D Composite Views (Axial, 

Sagittal and Coronal) 

An original tMRI (a) and the same after a rotation of 1.8 deg about the three axes 

(pitch, roll and yaw) has been simulated (b) (artificial volume). 
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Figure 5.2 Location of Fiducial Markers into the Artificial fMRI 

The three fiducial markers (white) were found automatically by AUTOALIGN in 

the original fMRI (a) and the artificial volume (b). 



(d)
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Figure	 5.3	 Preliminary

Analysis

Plot of estimation results of

pitch, roll and yaw angles for

the artificial fMRI volumes in

which motion was simulated at

steps of 0.2° in the [-3°, 3°]

range; AUTOALIGN (a),

SPM99 (b), AIR3.08 (c). For

this set of experiments, the

average misalignment ("amis")

was computed as the average of

the sum of absolute differences

between desired values (white

line) and actual estimations

(black lines). Values are shown

in (d) and units are in deg.

AUTOALIGN overestimation

of angles > 12.5°I, relatively to

SPM99 and AIR3.08, might be

attributable to a different

reaction of the algorithm to the

interpolation necessary to

produce the fMRI volumes.
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images between original, as presented in figure 5.1a, and aligned, after tri-linear

interpolation has been applied; Difference images were not exactly equal to zero

showing that motion artifacts are still present even after alignment (Grootoonk et

al. 2000) and that majority of spuriousness are placed along the brain edges (Freire

and Mangin 2001).

5.2 Validation with Real fMRI Time Series

Three fMRI time series consisting of 56, 45 and 55 scans each, which for simplicity

were called 1 st, 2nd and 3 1.d, were collected with sampling axial resolution of 64

(3.75 mm), 64 (3.75 mm) and 21 (5.00 mm) respectively in the x, y and z

directions. These were axial BOLD (Blood Oxygen Level Dependent) MR images

acquired with a G.E. 1.5 T Signa Scanner; pulse sequence: echo planar (EPI); TR

(Time to Repetition): 4000 msec; TE (Time to Echo): 60 msec; FOV (Field of

View): 240 mm. Also, eight time series of 50 scans each with sampling axial

resolution of 64 x 64 x 16 (8.00 mm) were used for experimentation. For simplicity

they were called expl-01, exp-02, exp-04, exp-05, exp-06, exp-07, exp-08 and exp-

09. These were BOLD MR images acquired with a MAGNETOM VISION

Siemens 1.5 T scanner; pulse sequence type: asymmetric spin echo; TR = 2.68

msec, TE = 37.0 msec and FOV = 240 mm (Buckner et al. 2000).

Figures 5.5 and 5.6 show the plot of registration parameters (pitch, roll, yaw in

fig. 5.5 and x, y, z in fig. 5.6) estimated by AUTOALIGN (a), SPM99 (b) and

AIR3.08 (c) with the 3 rd time series consisting of 55 scans. For this set of
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Figure 5.4 tMR Difference Images 

They were computed subtracting from the original (shown in figure S.la), the 

corresponding aligned images obtained after AUTOALIGN motion parameter 

estimation and intensity correction (triliner interpolation). 
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Figure. 5.5 Angles Estimation Plot with Real fMRI Data

AUTOALIGN (a), SPM99 (b) and AIR3.08 (c) estimations of pitch (■), yaw ( ▲ )

and roll (0) angles (units are in deg), with an fMRI time series consisting of 55

scans.
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Fig. 5.6 Translation Estimation Plot with Real fMRI Data

AUTOALIGN (a), SPM99 (b) and AIR3.08 (c) estimates of translational

movements along the three major axis: traslx (■), trasly (▲) and traslz (●) (units

are in millimeters), with an fMRI time series consisting of 55 scans.
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Table 5.1 "Amis" Values

They were computed for couple of techniques to estimate the average motion estimation

discrepancy expressed in degrees (pitch, roll and yaw) or millimeters (x, y and z). Results are

relevant to fMRI time series consisting of 56 (0), 45 (2' 1), 55 (3 rd) and 50 (expl-01, 02, 04-09).
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experiments, "amis" was computed taking into consideration motion parameters

estimated by couple of algorithms (e.g. AUTOALIGN / SPM99) and revealed

minimal differences across algorithms (order of μm) suggesting reliable and

consistent results. Values of "amis" relevant to the eleven time series are shown in

table 5.1.

Table 5.2 AUTOALIGN Accuracy Average Values

They were computed across fMRI scans of time series, after alignment.

Figure 5.7 shows the plot AUTOALIGN's registration accuracy (A) computed

for expl-08 (a) and 3 rd (b). It expresses the measure of worst alignment (Fitzpatrick

et al. 1998) and was obtained at the location of the fiducial markers ("right ear",

"left ear" and "nose"). Accuracy values across the eleven fMRI time series varied

between 0.015 and 0.508 mm ("right ear"), 0.028 and 0.463 mm ("left ear"), 0.08
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Figure 5.7 Plot of Registration Accuracy after AUTOALIGN Motion Correction

Data for 50 (a) and 55 (b) fMRI scans. Accuracy is measured in millimeters at the

location of the three fiducial markers ("right ear", "left ear" and "nose"), which

are the outmost locations with respect with the centroid of alignment and is given

as average value across time series (c).
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and 1.2 mm ("nose"). Average values across series are reported in figure 5.7c and

table 5.2 respectively for expl-08, 3 rd and 1 st, 2nd, exp1-01, 02, 04-07, 09.

Computational time spent by the three algorithms in order to perform registration

and re-slicing of 55 scans was approximately 3 min. (AUTOALIGN), 7 min.

(SPM99) and 15 min. (AIR3.08).

Figure 5.8 shows a sample of three axial slices of exp1-02, respectively

belonging to reference volume (a) and test volume after AUTOALIGN alignment

and trilinear interpolation (b). Figure 5.9 shows gradient images and the three

fiducial markers' location (white) as found automatically by AUTOALIGN,

respectively for reference (a) and test (b) volumes (prior to alignment) where slices

shown in figs. 4a and 4b were respectively contained. Figure 5.10 shows difference

images between reference, as presented in fig. 5.8a and test after alignment and

trilinear interpolation, as presented in fig. 5.8b. Motion parameters were estimated

to be: -0.0187, 0.1275 and 0.064 millimeters respectively for x,y and z; and 0.023,

0.029 and 0.309 deg respectively for pitch, roll and yaw.
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(a) 

(b) 

Figure 5.8 Brain Images Before and After AUTO ALIGN Alignment 

Axial slices of reference (a), and realigned (b) fMRI brain volumes belonging 

to expl-02. 
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(a) (b) 

Figure 5.9 Location of the Three Fiducial Markers into the Real fMRI 

Markers (white) were found automatically by AUTO ALIGN in reference (a) 

and test (b) fMRI brain volumes of exp 1-02. The volumes were those 

containing the axial slices shown respectively in figs. 5.8a and 5.8b. 
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Figure 5.10 Difference Images Obtained with Real tMR 

They were computed subtracting from the reference slices shown in fig. 5.8a, 

those obtained after AUTO ALIGN motion correction and trilinear 

interpolation (shown in fig. 5.8b). Motion related effects are visible. 
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5.3 Robustness to Noise

A set of experiments was conducted in order to investigate the robustness of

AUTOALIGN to noise. The aim was to artificially reproduce changes in signal

intensity that might arise during fMRI recordings due to local inhomogeneities of

the magnetic field. Twenty brain scans of a 64 x 64 x 28 (x, y and z) time series,

previously aligned by SPM99, were used and for each of them the following

procedure was adopted in order to simulate noise. Within a cube of 10 x 10 x 10

voxels, placed at the same location in all volumes, each intensity was increased of a

random quantity such that the resulting value incorporated 2%, 4%, 8%, 16% and

32% of noise signal.

Thus, for each of above noise levels, artificial time series were produced and

aligned to the reference scan. The no-noise condition consisted of the time series

aligned by SPM99 for which no manipulation of signal intensity was done and for

which motion parameters after alignment were assumed to be equal to zero across

scans. Motion parameter values (x, y, z, pitch, roll and yaw), in the noise-condition,

were averaged across a time series to show how differently were estimated with

respect to the no-noise condition (aligned data). By doing so, it was possible to

isolate the effect of random changes in signal intensity on the alignment results and

to keep constant other variables like location of intensity changes and head motion.

These experiments were also extended to SPM99 and AIR3.08 and for the

three algorithms it was found that performance decreases exponentially with

increasing noise level, with AIR3.08 and SPM99 being more robust than

AUTOALIGN. Figure 5.11 shows the plot of average values, across time series, of



123

estimated motion parameters, versus increasing noise levels (2N ; N=1, 2, 3, 4, 5).

This behavior can be understood considering that computation of the tensors of

inertia implies using the full image-information content, which gives

AUTOALIGN characteristics of an intrinsic registration algorithm, but reduces

intensity values to scalars and vectors, thus making the algorithm more sensitive to

noise than SPM99 and AIR3.08 are.

However, better robustness to noise can be obtained simply by making the

algorithm's feature extraction (vectors and scalars) less dependent on the voxel's

intensity. In this regard, an experimental session was performed with the same

fMRI and the eigenvectors of inertia were extracted assuming the mass of each

voxel as unitary. The formulas used were reported in Ciulla and Deek (2001) as (1)

through (9). Though this approach introduces another kind of instability due to the

threshold (T) used for segmentation, it shows higher robustness to noise, given that

an optimal value of T is chosen. On the other hand, extracting the eigenvectors of

inertia considering the voxels' mass equal to the signal intensity, as reported by

Ciulla and Deek (2001) in equations (39) — (44), might be preferred in cases of high

quality fMRI recording (e.g. relatively low noise images). Figure 5.11d displays the

results obtained assuming unitary mass for each voxel (AUTOALIGN-EIGEN with

T=10) and shows approximately an 86% (1-0.24/1.8) increase in robustness to

noise with respect to the original method (figure 5.11a).
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Figure 5.11 Plot of Average Values of Estimated Motion Parameters Versus

Noise Level (2N where N=1, 2, 3, 4, 5)

AUTOALIGN (a), SPM99 (b), AIR3.08 (c) and AUTOALIGN-EIGEN (d). For

each of pitch (■), yaw (▲ ), roll (● ), traslx (white square), trasly (white triangle)

and traslz (white circle), values were computed as differences between noise and

no-noise conditions. Units are in deg and millimeters.
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5.4 Reliability of the Three Points Method

As this research shows, given the physical constraints of the human head, three

points are enough to determine a coordinate system for matching purpose. Also, it

can be observed that the approach proposed here to identify the direction of the axis

of minor resolution of the head coordinate system works better than the tensor-

based method proposed by Faber and Stokely (1988). A pre-aligned (SPM99) 64 x

64 x 28 fMRI time series consisting of 68 scans was sub-sampled in the Z-direction

(minor resolution) such to obtain volumes with 25, 22, 18 and 14 slices.

By using aligned data, it was possible to isolate the effect of sub-sampling on

the determination of the Z-direction of the head coordinate system. Across 68

scans, average values of the unit vectors of the Z-direction were obtained for each

sub-sampled time series with two approaches: (i) Z-eigenvector of the volume's

inertia matrix (Faber and Stokely 1988) and (ii) Z-axis found as perpendicular to

the XY plane (Ciulla and Deek 2001a).

The XY plane is obtained on the basis of X and Y inertia tensors of the

volume. The Z-direction needs to be orthogonal to the XY plane and this is

assumed to be the ideal condition. For both Z-eigenvector and Z-axis, the average

value of the unit vectors obtained with the sub-sampled volume was subtracted

from the average value of the unit vectors obtained with 28 slices. Therefore,

difference values between original (28 slices) and sub-sampled volume unit vector

averages were obtained for volumes having 25, 22, 18 and 14 slices.

Figure 5.12 shows the bar plot of such difference values for unit vectors in the
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x (a), y (b) and z (c) directions. They increase with decreasing resolution in both Z-

eigenvector (e' , fz, gz; white) and Z-axis (1 z, mz, nz; black), but more for the former

than the latter, suggesting that worse alignment would be obtained if the Z-

eigenvector was employed instead of the Z-axis as Z-direction of the head

coordinate system. These results indicate that the estimation of the Z-eigenvector

from the inertia matrix degrades with decreasing resolution more than that of the Z-

axis. This fact agrees with the work of Faber and Stokely (1988) that described loss

of performance with coarser sampling axial resolution and suggests that the three

points technique (Ciulla and Deek 2001a) is more reliable in identifying the Z-

direction along the axis of minor resolution.



Figure 5.12 Bar Plot of Average Difference Values between Unit Vectors of Z-

eigenvector (white) and Z-axis (black)

Values were obtained across time series consisting of 68 fMRI scans. Differences

were obtained subtracting from the value of the unit vectors obtained with the 28

slices volume those computed respectively with sub-sampled volumes having 14,

18, 22 and 25 slices. ez, fz, gz (white) and l z, mz, n, (black) were obtained

respectively (i) extracting the Z-eigenvector of the inertia matrix and (ii)

computing the Z-axis with the three points technique of the AUTOALIGN

algorithm.
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5.5 Performance Comparison with Existing Algorithms

In this section, presented is a comparative evaluation of performance characteristics

based on data presented in chapter 2, that was collected from the literature and that

is relevant to established registration algorithms. For each of the algorithms, three

factors were considered: (i) accuracy; (ii) computational time and (iii) resolution.

Values of these factors are reported in tables 5.3, 5.4 and 5.5 and were scaled to the

range [0 11 in order to compute a performance coefficient in the following form:

Small values of accuracy (a), computational time (r) and resolution (p); all

tend to increase P. Thus, a high value of performance coefficient (P) represents a

weighted index of high accuracy (small a), short computational time (small r) and

small resolution (p). The choice of this formula was motivated by the fact that in

general, registration algorithms needs to be as much accurate as possible,

computationally fast and that small resolution pose limitations to high values of

accuracy. Therefore, a performance coefficient in this form wants to reward

algorithms capable to reach high accuracy of alignment of small resolution brain

volumes, with low computational cost. Tables 5.3, 5.4 and 5.5 show results

obtained computing the P value for each modality and group algorithms in (i)

voxel-based and maximization of mutual information (table 5.3); (ii) surface

(feature, anatomical landmark, segmentation) based (table 5.4) and (iii) fiducial

markers and moment-based algorithms (table 5.5). Though the present approach

proposes an index aimed to measure performance of a registration algorithm, any

comparative evaluation of performance across algorithms needs to be based on
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same brain volumes and same registration (e.g. MRI) or co-registration problem

(e.g. CT-MR). An excellent example of this type is constituted by the work of West

et al. (1997).

Table 5.3 Performance Coefficient (P) of VB and MMI Approaches



Table 5.4 Performance Coefficient (P) of FB, ALB and SB Approaches
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Table 5.5 Performance Coefficient (P) of FIB and MB Approaches



CHAPTER 6

DISCUSSION

6.1 Performance of Algorithms for Brain Image Rigid Registration

Recent investigation (Fitzpatrick et al. 1998a; Fitzpatrick and West 2001; West et

al. 2001) has formulated a mathematical basis for assessing accuracy of fiducial-

based algorithms and has shown that in order to ensure successful registration,

number of markers, markers configuration and localization into the brain images

are the issues to be resolved. Earlier, Maurer et al. (1997) devised a bone implanted

registration method which uses the algorithm proposed by Wang et al. (1996) in

order to automatically localize fiducials and implements the closed-form solution

proposed by Arun et al. (1987) in order to fit two three-dimensional point sets.

Results of Maurer et al. (1997) could then be assessed with the theory provided by

Fitzpatrick et al. (1998a) and used by West et al. (1997) to conduct a comparative

evaluation covering registration performance of several classes of algorithms with

CT-MR and PET-MR data.

Within the evaluation, results of Maurer et al. (1997) constituted the "gold

standard" to which several studies (van den Elsen et al. 1994; Woods et al. 1992,

1993; Collignon et al. 1995a, 1995b; Hill et al. 1993, 1994; Studholme et al. 1995;

Hemler et al. 1995; Maintz et al. 1995, 1996b, 1997; Jiang et al. 1992a, 1992b;

Maguire et al. 1991; Lemoine et al. 1994; Malandain et al. 1994a, 1994b, 1995;

Pellizzari et al. 1989) compared performance of their algorithms. Results of West et

al. (1997) indicated that for CT-MR registration several algorithms: voxel-based
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(van den Elsen et al. 1994), MMI (Collignon et al. al. (1997) indicated that for CT-

MR registration several algorithms: voxel-based (van den Elsen et al. 1994), MMI

(Collignon et al. 1995a, 1995b; Hill et al. 1993, 1994 and Studholme et al. 1995),

feature-based (Hemler et al. 1995), segmentation-based (Lemoine et al. 1994)

cumulated a median accuracy less or equal to 1.6 mm, while for PET-MR

registration a median accuracy less or equal to 2.9 mm was obtained with voxel-

based (Woods et al. 1993) and segmentation-based (Pellizzari et al. 1989)

algorithms.

A subsequent classification made by West et al. (1999) divided registration

methods into two groups: volume-based and surface-based. Techniques that use

relationships between voxel's intensity to perform registration were classified as

volume-based. Techniques that minimize the distance measure between two

corresponding surfaces in the images to be matched were classified as surface-

based. Concurrently, the evaluation reported by West et al. (1999) was based on

results obtained earlier (West et al. 1997) and revealed that volume-based

techniques perform with better accuracy than surface-based techniques within CT-

MR registrations and give slightly better accuracy within PET-MR registrations.

Accordingly, the literature survey done within this dissertation, confirms the

general tendency of voxel-based algorithms to outperform surface-based (e.g.

features, anatomical landmarks) and segmentation-based algorithms. Such tendency

is found within co-registration problems like CT-MR and PET-MR, as West et al.

(1999) reported, but also in within-modality registrations like MRI, fMRI and PET,

as supported by results obtained by Friston et al. (1995).
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Common denominator in the evaluation of West et al. (1997, 1999) was that for

CT-MR registration the most used (van den Elsen et al. 1994; Collignon et al.

1995a, 1995b; Hill et al. 1993, 1994; Studholme et al. 1995; Lemoine et al. 1994)

optimization criterion was the Powell method leading to long computational

sessions (up to 2 hours). Consistently, another comparative evaluation done by

Maes et al. (1999) focused on optimization strategies for multi-resolution mutual

information registration and reported that great advantages in term of reduction of

computational time, with respect to the Powell method (best suited for single

resolution), can be achieved with more efficient iterative processes based on

simplex, conjugate-gradient and Levenberg-Marquardt methods, leading to

registration performed with sub-voxel accuracy in less than 5 min. The Levenberg-

Marquardt method was found to be fast also by other studies (Thevenaz et al.

1998a; and Thevenaz and Unser 2000). Reasonable processing time was reported

using the Newton method as optimization strategy (Woods et al. 1993), though the

size of PET-MR registration is usually smaller than that of CT-MR registration.

Wells et al. (1995, 1996) suggested that mutual information, as similarity

measure derived from joint-entropy, provides some advantages over the latter.

Holden et al. (2000), extending previous work (Woods et al. 1998a; Woods 2000a),

aimed to an evaluation of voxel similarity measures. Using MR volumes they have

shown that measures based on joint-entropy (e.g. mutual information), which do

not require assumptions about the form of relationship between voxel's intensity,

performed better than those based on correlation (which on the other hand require
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linearity of relationship), leading to very high registration performance in terms of

accuracy.

In agreement with Woods (2000a), this dissertation suggests that for within-

modality registration voxel-based algorithms, other than those based on MMI, the

similarity measure that is mostly accompanied by best accuracy (Friston et al.

1995; Hajnal et al. 1995; Nikou et al. 1998) is that based on intensity differences.

On the other hand, mutual information remains one of the most successful voxel's

similarity measures for inter-modality registration (Hill and Hawkes 2000). Though

was reported by Maintz and Viergever (1998) that surface-based techniques are

faster than voxel-based algorithms, computational time data shown in tables 2.2

through 2.6 is not prone to such generalization.

Also, while Maintz and Viergever (1998) reported phantom to be the most

popular among the validation approaches, this dissertation finds most used both

artificial data with controlled motion and images of the Vanderbilt medical

database. While phantom validation is more useful for within-modality studies than

it is for between-modality, controlled motion can be very useful in order to improve

registration performance, but presents the disadvantage of being an approximation

of real settings (Woods 2000b). Finally, this dissertation finds that little work

(Betting and Feldmar 1995) has been done for MR-X-ray co-registration and

suggests that this type of application might require future effort.
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6.2 Creation of the AUTOALIGN Technique

Medical image registration algorithms can be divided into two main categories:

extrinsic and intrinsic. Extrinsic registration is applicable by means of foreign

objects introduced into the imaged space such as fiducial markers methods (Maurer

et al. 1997). Intrinsic registration is applicable through the image transformation as

generated by the subject such as anatomical landmarks (Cox 1996) or by mutual

information (Wells and Viola 1996; Studholme et al. (1996); Maes et al. 1997;

Meyer et al. 1997; Studholme et al. 1997; Thevenaz et al. 1998, 2000; Holden et al.

2000) or by principal axes (Faber and Stokely 1988; Alpert et al. 1990). Since

extrinsic methods by definition cannot include patient-related image

transformation, the nature of the registration transformation is often restricted to

being rigid (translations and rotations). Intrinsic registration methods are more

prone to handle the assumption of motion that is not governed by rigid-body

transformations.

Excellent registration results have been obtained with either two (Dobbins et

al. 1993), or four (Arendsen et al. 1991; Bellers et al. 1993) fiducial markers in the

case of registration of computed radiography (CR), or more in the case of

registration of MRI (Maurer et al. 1997). With automated algorithms, independent

from fiducial or anatomical markers, the general factor limiting the overall

accuracy is image noise (Althof et al. 1997) and interpolation (Grootoonk et al.

2000).

On the basis of the above findings this dissertation has developed and

compared 3-fiducial markers and principal axes transformation algorithms. The
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algorithms are based on the assumption that the human brain is subject to rigid

motion during different scanning periods. This was also assumed by previous

research (Pellizzari et al. 1989; Woods et al. 1992, 1993, 1998a, 1998b). As far as

the determination of the head coordinate system, a method was proposed that use

two anatomical landmarks (the anterior and the posterior commissure) to build a

Talairach-Tournoux coordinate system (Cox 1996). Besl and McKay (1992)

showed that the position of the head into the scanning volume might be determined

by a set of points.

On the other hand, it has been shown that in order to determine a head

coordinate system with high degree of reliability, only 3-fiducial markers are

needed. As far as the registration transformation is concerned, methodologies were

evaluated on the basis of the assumption that given a reference volume, a unique

coordinate transformation can be found, that if applied to the test volume, makes a

perfect alignment to the reference volume (Woods et al. 1992, 1993, 1998a,

1998b). To find the coordinate transformation, the inertia matrix of the volumes

was computed as illustrated in literature (Alpert et al. 1990) and also 3-fiducial

markers were used (Ciulla 2000).

Ciulla and Deek (2001a) obtained good results by the principal axes

transformation method with both low-resolution T2*-weighted Magnetic

Resonance (MR) and T1-weighted MR images. Also, good results were obtained

with high-resolution T1-weighted MR images when the coordinate transformation

was retrieved on the basis of the coordinate system identified by the 3-fiducial

markers (ALIGN). Even though ALIGN method was tested for mono-modal
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images, it is theoretically applicable to cross-modality registration as well as the

principal axes methods (EIGEN and AUTOALIGN) provided that the same amount

of brain or head are included for image matching. The only constraint of ALIGN is

that care must be employed to ensure that the 3-fiducial markers are placed and

localized at the same position for each modality.

It has been seen that previous work (Maurer et al. 1997) uses implanted

fiducial markers to register couple of volumes and therefore an automated

algorithm for the localization of the markers was developed (Wang et al. 1996). On

the basis of above knowledge and considering that common practice (e.g. for

research or diagnosis) markers cannot be implanted nor accurately placed at the

same position all times, a new technique (AUTOALIGN) has been developed that

finds automatically 3-fiducial markers and results of registration for low-resolution

fMRI have been presented (Ciulla and Deek 2001a). Thus, the ALIGN method

assumed only theoretical validity because it showed the accuracy obtainable when

the fiducial markers are placed at the same position at all times. AUTOALIGN on

the other hand, combines the theoretical basis of EIGEN and ALIGN, and

automatically finds three points to be adopted as markers, thus overcoming the

limitations of ALIGN and exploiting the accuracy of EIGEN.

AUTOALIGN technique has been derived by merging together the theoretical

basis used successfully by Ciulla et al. (1996, 1999) in order to define a head

coordinate system, with the work presented by other authors (Faber and Stokely

1988; Alpert et al. 1990; Maurer et al. 1997). The principal axes transformation

method provides with the directions along which we can search for the 3-fiducial
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markers. However such a method is dependent on an arbitrary threshold to roughly

segment the human brain. Therefore, voxel's coordinates were weighted with their

intensity so that the method became independent from any arbitrary thresholds. By

taking the third order gradient of the fMRI volume, the borderline between head

structures and regions of the volume outside the brain has been detected. Scanning

along two of the principal axes directions and finding the intersections between

those directions and the borderline of the head, furnished 3-fiducial markers.

Results obtained by Ciulla and Deek (2001a) with T2*-weighted Magnetic

Resonance (MR) were compared to those obtained by the Statistical Parametric

Mapping (SPM99). It was found that: (i) SPM is more reliable than AUTOALIGN

in the estimation of small movements [-3°; 31; (ii) AUTOALIGN is more reliable

than SPM in the estimation of large movements (>5°).

6.3 AUTOALIGN Algorithm

6.3.1 Background

Earlier Ciulla and Deek (2001a) developed a registration method called ALIGN

that uses a coordinate system obtained by three non-collinear fiducial markers.

Several simulations were performed with both fMRI and MRI data to show how

accurate registration results can be if markers are localized at the same position

across images. Also another registration method called EIGEN was developed and

tested with the same dataset to confirm that fast and reasonably accurate results can

be obtained by moment-based approaches.



139

Thus, in order to devise a new, fast and accurate registration algorithm

(AUTOALIGN), accuracy of point-based registration has been merged with the

speed of computation of tensor-based registration. The gradient (Maintz et al.

1996b) of the fMRI volume has been used to identify the outermost surface of the

head structures, where markers are screwed (Maurer et al. 1997) and localized

(Wang et al. 1996). The tensor-based method (Faber and Stokely 1988) has been

used to identify directions along which to scan and search for three points to be

adopted as fiducial markers. In the present version of the algorithm, trilinear

interpolation has been used to perform intensity correction.

6.3.2 Testing and Validation

AUTOALIGN was preliminarily tested with fMR images in which, simulated and

controlled motion has been introduced. Simulated motion is a very common

intuitive and straightforward validation approach. However, because it is only an

approximation of real settings, it does allow inferring an estimate of quantitative

accuracy for an algorithm but not to compare algorithms' estimates with each other

(Woods 2000). This constitutes a limitation of the testing paradigm and in general

it is attributable to the fact that synthetic data reproduce only by approximation

factors influencing algorithm's accuracy. Since different algorithms might react

differently to these factors, synthetic data contributes to adding another source of

variability to the results. Within the preliminary testing performed by this research,

a factor that has determined an approximation of reality was the interpolation used

to produce (i.e. re-slice) the artificial data.



140

In the context of validation, AUTOALIGN motion estimates with real fMRI

time series were compared to those obtained with the same dataset by the Statistical

Parametric Mapping (Friston et al. 1995) and the Automatic Image Registration

(Woods et al. 1998a, 1998b), which are among the most used methods of motion

correction in functional imaging laboratories. Within this context, above two voxel-

based algorithms assumed then the role of reliable gold standard. Therefore, the

value constituted by the similarity between the motion estimates of the three

algorithms plays in favor of AUTOALIGN, being the latter a less established

method.

6.3.3 Robustness to Noise

Contrary to other voxel-based methods (Friston et al. 1995; Woods et al. 1998a,

1998b), AUTOALIGN does not assume any particular relationships between voxel

intensities across brain images. However, it makes reduction of intensity values to

scalars and vectors, and our simulations show that its performance is affected by

noise sensibly more than SPM99 and AIR3.08, which use the full image

information content.

Simulations aimed to investigate the effect of noise (e.g. magnetic field

inhomogeneity) on the extraction process of similarity measures between brain

images (AIR3.08 and SPM99) and scalars and vectors (AUTOALIGN) and were

performed by keeping constant variables like head motion and location of signal

intensity changes. Similarly, within one of the theoretical models of a mathematical

framework aimed to describe magnetic field inhomogeneities, Andersson et al.



141

(2001) assumed fixed location of signal intensity changes with respect to the

scanner.

However, with regard to the model formulated by Andersson et al. (2001),

which assumed noise due to inhomogeneities distributed across the entire Field of

View, simulations of this research assumed location of intensity changes restricted

to a limited region of the FOV. Such location is shown in Figure 6.1. Though such

an assumption is theoretical in its nature, it allows investigating behavior of the

registration algorithms relatively to a region smaller than the FOV, thus revealing

local robustness. It is expectable to have similar but not necessarily same

robustness if the region of intensity changes is located somewhere else in the FOV.

AUTOALIGN robustness to noise can be increased by computing the tensors

of inertia, used to localize the markers into the brain images, with the assumption

that each voxel has unitary mass (Ciulla and Deek 2001a). As the experiments

suggest, this solution might be preferred in those cases for which fMRI is not of

high quality relatively to noise.

Figure 6.1 Location of Intensity Changes Used for Noise Simulations (N=5)

(a) Original fMRI; (b) Image obtained adding (inside the square) 32% random

noise to the intensity values.
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6.3.4 The Axis of Minor Resolution

It was known that the tensor-based method is sensitive to low sampling axial

resolution (Faber and Stokely 1988). This research performed experimentation,

controlling for head motion, to study the effect of lowering resolution on the

determination of the Z-axis. The latter was the axis of minor resolution of the brain

volumes. It was shown that higher reliability, with respect to the Z-eigenvector, is

obtained by using as Z-axis of the head coordinate system the one found on the

basis of normality constraints.

6.3.5 AUTOALIGN Point-Based Registration

The issue of finding a point-based rigid transformation between brain images has

been fully explored (Fitzpatrick et al. 1998; West et al. 2001) and mathematical

formulation has been given to show that accuracy of fiducial-based registration

depends on number of markers, their configuration and localization error across

images (Fitzpatrick and West 2001).

According to Fitzpatrick et al. (1998), the optimal fiducial configuration is the

one for which fiducials are placed at the ellipsoidal isocontours of TRE 2 (Target

Registration Error). If more fiducials are added to the configuration, TRE 2 gets

smaller only if their root-mean-square distance to the three principal axes of the

configuration remains constant. On the basis of such knowledge and considering

that at least three non-collinear points are necessary to find the matching

transformation (Arun et al. 1987), a simple and straightforward approach to retrieve

a head coordinate system has been developed (Ciulla and Deek 2001).
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AUTOALIGN uses three fiducials that lie on two of the principal axes of their

configuration, and therefore constitutes a practical application in fMRI of a

particular case covered by the work of Fitzpatrick et al. (1998). While previous

research (Wang et al. 1996) developed a method to localize externally attached

markers, this research has used two tensors of inertia to localize automatically

points obtained on the basis of the image content. Thus, AUTOALIGN has been

given some properties of an intrinsic algorithm, though the matching

transformation is found by a point-based approach.

6.3.6 Types of fMRI Motion Related Effects

Friston et al. (1996) made distinction between movement related effects in the

fMR images that are function of the subject's head location in the scan of reference

and the previous scans (e.g. the spin history effect) and clearly showed that motion

related artifacts still exists into the images even if the alignment is ideal (i.e.

perfect).

Given the magnitude (4000 msec) of the TR (Time to Repetition) used for data

collection of the time series named 1 st 2nd and 3"1, motion related effects produced

by the spin history excitation can be considered negligible (Grootoonk et al. 2000).

On the other hand, for those time series named exp 1-01, 02, 04-09, the TR was as

short as 2.68 msec (Buckner et al. 2000). Thus, the spin excitation history might

have had an effect on the fMR images.

AUTOALIGN motion correction concerned with those effects that are relevant

to the subject's head position in the frame of reference. For such motion, the work
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presented by Grootoonk et al. (2000) shows that even in case of ideal alignment,

artifacts are left into the images and are attributable to the approximate nature of

interpolation. Other motion artifacts that are attributable to magnetic field

inhomogeneities at different positions in the scanner were studied by Andersson et

al. (2001), but were not studied by the present research.



CHAPTER 7

CONCLUSION

7.1 Algorithmic Performance in Brain Image Rigid Registration

Comparison between alignment techniques can be done, within either a registration

or a co-registration application (e.g. PET-MR), using exactly the same brain images

with all of the algorithms. This requirement is most likely to be satisfied by planned

experiments of the type done by West et al. (1997, 1999). Also, to assess

performance across algorithms, a reliable reference needs to be adopted. The "gold

standard" of Maurer et al. (1997) constitutes an example of this type. Bearing in

mind above statements, it can be concluded presenting the general trend that has

emerged in this dissertation's literature review. Extrinsic methods based on

fiducials have the potential to offer high accuracy for both registration and co-

registration applications and also their performance characteristics have been

mathematically ascertained (Fitzpatrick et al. 1998a; Fitzpatrick and West 2001;

West et al. 2001). Intrinsic algorithms have more limited capacity, than extrinsic

methods, the latter being constrained by the type of registration problem. Both

voxel-based (e.g. using intensity differences as target function) and mutual

information based algorithms outperform surface-based and segmentation-based

methods and offer best performance respectively in registration and co-registration

applications.

145
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7.2 AUTOALIGN Technique Characteristics

Main aim of this dissertation was to create a new methodology for the alignment of

fMRI time series. In this regard, point-based registration was merged with

moment/principal axes methodologies. Table 7.1 shows the steps involved in each

of the registration methodologies (Faber and Stokely 1988; Alpert et al. 1990;

Maurer et al. 1997) from which AUTOALIGN had been derived. Also, it shows

differences between methodologies at each step.

Literature shows that point-based registration is more accurate than principal-

axes/tensors based registration (Maintz and Viergever 1998). Therefore, "step 3"

shown in table 7.1 and used by Maurer et al. (1997) and Ciulla and Deek (2001a)

allows, at least potentially, obtaining results superior to those of Faber and Stokely

(1988) and Alpert et al. (1990).

In order to free AUTOALIGN from the limitation that arise performing

threshold (T) segmentation (pre-processing "step 1" of table 7.1), it is possible to

compute the eigenvectors of inertia including all voxels in the volume and

considering their mass equal to their intensity. Thus, "step 1" of Faber and Stokely

(1988) and Ciulla and Deek (2001a) avoid such limitation with respect to Alpert et

al. (1990).

To affix/screw markers (Maurer et al. 1997) is not always practical. Thus,

"step 2" of Ciulla and Deek (2001a) and used by AUTOALIGN (table 7.1) serves

the purpose of merging the two methodologies: principal-axes/tensors and point-

based. The advantages of this fusion are: (i) to exploit accuracy of point-based
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registration and speed of computation of moment/principal axes methodologies; (ii)

to determine an automatic approach to localize reference points into the brain

images without the need of affixing/screwing fiducials which, is surely not free of

limitations (Maurer et al. 1997). As far as the threshold (TH) used by

AUTOALIGN to locate fiducials, it does not constitute a limitation in terms of

reliable localization of markers across brain images because TH is used only for the

reference fMRI volume. Similarly, Wang et al. (1996) used a threshold to localize

voxels, into the marker-like objects, to candidate as fiducials.

Table 7.1 Methodology Characteristics Used to Create AUTOALIGN

PROCESSING
STEPS /

AUTHORS

STEP 1
(PRE-PROCESSING)

STEP 2
(FIND MAPPING

TRANSFORMATION)

STEP 3
(ALIGNMENT)

Faber and Stokely
(1988)

Include into computat. of
Inertia components, all

voxels and their intensity
By tensors (moments) as

eigenvectors of Inertia matrix
Matching tensors

and center of gravity
(mass = intensity)

Alpert el al.
(1990);

Include , into computat. of
Inertia components only

those voxels left after
threshold (T) segmentation

(mass = 1).

By tensors (moments) as
eigenvectors of Inertia matrix

Matching tensors
and center of gravity

Maurer et al.
(1997)

Affix / Screw fiducials By automatically localizing
fiducials into brain images

Point-based matching

Ciulla and Deek
(2001)

AUTOALIGN

Include into computat. of
Inertia components, all

voxels and their intensity

By intersection of outermost
brain surface (found with
Gradient-edge-finding
operator) and tensors.

Fiducials are localized at the
intersection by the use of a

threshold (TH)

Point-based matching
(mass = intensity)

7.3 Performance of AUTOALIGN Algorithm for fMRI

Measurements of average accuracy values, obtained with the real fMRI data used

by this dissertation, indicate it to be less than 0.697 mm. Figures 7.1 and 7.2

present plots of across algorithms "amis" values computed from table 5.1 of
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chapter 5. For each of the six registration parameters it is assumed that each

algorithm's estimate (AUTOALIGN, SPM99 and AIR3.08) does not necessarily

constitute the true value of the motion parameter. Three "amis" values of same

motion parameter and experimental session, one for each couple of algorithms (e.g.

AUTOALIGN/SPM99), constitute a tringle within which, the true value of the

motion parameter (e.g. pitch) should be contained. A valid justification to above

assertion can be given considering that if three instruments (e.g. algorithms)

measure differently the same variable (e.g. motion parameter), then the true value

of the variable should lie between the three algorithms' estimate. Triangle's areas

are shown in table 7.2; units are μm2.

Table 7.2 Erone's Triangle Area

A = [p * (p — 61) * (p - 82) * (p - 6 3)] where p is the semi-perimeter of the triangle formed by three

vertices: 8 1 (AA/SPM99), 82 (AA/AIR3.08) and 8 3 (SPM99/AIR3.08) "amis" values of table 5.1 for

same experiment and motion parameter (e.g. pitch). Units are in μm2.
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Figure 7.1 "Amis" Plot across Algorithms for 1 st 2nd and 3 rd Experimental Sessions

"amis" values were reported in table 5.1 of chapter 5, for each of the six

registration parameter's estimate. Their plot show plane triangles within which, the

true value should be contained; (a) x, y, z; (b) pitch, roll, yaw.



Figure 7.2 "Amis" Plot across Algorithms for exp1-01, expl-02 and exp1-04

Experimental Sessions

"amis" values were reported in table 5.1 of chapter 5, for each of the six

registration parameter's estimate. Their plot show plane triangles within which, the

true value should be contained; (a) x, y, z; (b) pitch, roll, yaw.

150
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7.4 Summary

AUTOALIGN is a retrospective technique that performs inter-image motion

correction of fMRI time series. It does not make use of optimization processes of

similarity measures and demonstrates the feasibility of fiducial based registration in

fMRI. It does overcome the serious limitation of affixing markers to the subject's

head, typical of any fiducial based approach. The algorithm allows low

computational cost by using a tensor-based approach to localize markers on the

subject's head.

AUTOALIGN alignment accuracy strictly depends on how precise is the

localization of the three fiducial markers in the brain images of the time series.

Estimation of average values obtained with real fMRI data used for validation

indicates AUTOALIGN to be more than 0.697 mm accurate. Furthermore, it proves

to be accurate for fMRI volumes with low (16-28) sampling resolutions along one

axis. This is accomplished by constructing the head coordinate system by the 3-

fiducial point technique (Ciulla and Deek 2001a). Such a solution allows extending

the applicability of tensor-based registration to problems that could not be solved

successfully earlier (Faber and Stokely 1988).

Comparison of AUTOALIGN motion parameter values with those of SPM99

and AIR3.08 suggests similarity of results. AUTOALIGN is respectively 1:2 and

1:5 faster than the latter two registration algorithms, but its alignment accuracy

drops of about 1:10 with exponentially (2 N) increasing noise. Thus, the benefit of

speed of computation may pay off in cases of low noise fMRI recording.
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7. 5 On the Future of fMRI Alignment Research

This paragraph concludes this dissertation by pointing out a general lesson that has

been learned by comparing performances of AUTOALIGN, SPM99 and AIR3.08.

Results presented in chapter 5, show that AUTOALIGN is faster (1: 2-5), but less

robust to noise than the other two algorithms. Erone's triangles (Table 7.2)

confirmed that as far as the estimation of the 6 rigid-body motion parameters in

fMR volumes with unknown head motion in it, the three algorithms are very much

alike. Therefore, the question that can summarize an overall conclusion is: "Which

one of the three algorithms is the most efficient?"

It is due of mention recent work done in the field by Freire and Mangin (2001)

because of its relevancy in term of diversity of similarity functions (i.e. alignment

algorithms typology) used. The authors brought to the attention of the research

community that when the motion is small relative to the voxel size, it might not be

convenient to resample brain volumes (i.e. apply an interpolation paradigm). This

is because of motion artifacts (i.e. failures in correcting voxel intensity) that the

interpolation itself might introduce into the brain images. This signifies that even

though alignment is performed in order to remove motion, because of the

approximate nature of any interpolation paradigms, it might produce a detrimental

effect especially in those cases in which the motion to remove is very small.

Therefore, according to Freire and Mangin (2001), the overall question that

future research needs to answer is: "How small is the motion that a registration

algorithm can remove without producing artifacts?" To add up to Freire and

Mangin (2001), this dissertation presents in the next paragraph a mathematical
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assertion which claims that for a given interpolation paradigm (e.g. tri-linear) there

is a "region of efficacy" outside which, motion correction is not beneficial. Thus,

the overall question for future research becomes: "Where into the voxel is the

region of efficacy of a motion correction algorithm?"

To answer above question would allow choosing an alignment algorithm for

fMRI time series instead of another on the simple basis that the one that performs

better would be the one that estimate motion within the "region of efficacy" of the

interpolation paradigm and does it so in the shortest computational time.

7.5.1 On the Tri-linear Interpolation Effectiveness

Here is presented a theorem that explains in what circumstances Tri-linear

interpolation paradigm is efficient in correcting intensity at sub-voxel accuracy. It

is auspicial that this knowledge would contribute to future efforts in fMRI

alignment research.

Definition I

Let V 1 = (0, 0, 0), V2 = 0, 0), V3 = (1, 1, 0), V4 = (0, 1, 0) be the quadruple of

vertices of the rectangle a. Let a be lying on a plane i1 of equation C * z + D = 0

to the XY plane of an absolute right handed reference coordinate system (F-i i) of

origin O. Let V5 = (0, 0, 1), V6 = 0, 1), V7 = (1, 1, 1), V8 = (0, 1, 1) be the

quadruple of vertices of the rectangle 13. Let (3 be lying on a plane 1U2 of equation C *

(z + 4 1 ) + D = 0 II to the same XY plane and with 4 1 being a constant. While Vi (i

=1...4) follow each other counter-clock wise on a, Vi (i =5...8) do it on 13. These
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eight vertices are located at the boundary surface E of a parallelepiped (voxel) as

shown by figure 7.3.

Definition II

vertices of the rectangle 6. Let 6 be lying on a plane n3 of equation A * x + D = 0 II

to the ZY plane of E, (absolute right handed reference coordinate system) of origin

vertices of the rectangle y. Let y be lying on a plane π4 of equation A * (x + 42) + D

= 0 II to ZY; with 4 2 being a constant. While V i (i =1, 4, 5, 8) follows each other

counter-clock wise on 6, Vi (i =2, 3, 6, 7) does it on y. Also, these eight vertices are

located at the boundary surface E of a parallelepiped '1' (voxel) as shown by figure

7.3.

Definition III



Definition IV

Let f be a continuous function that takes the form:

Where: f(0,0,0), f( 1,0,0), f( 1 , 1,0), f(0, 1 ,0) and f(0,0, 1 ), f(1,0, 1 ), f(1, 1, 1 ), f(0, 1, 1 ) are

respectively its two quadruple of values at the vertices of the two rectangles a and 13

of the parallelepiped T.

Definition V

derivatives of the function f respectively in xy, xz and yz, where: ωf = [f(1,1,1) -
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Definition VI
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Definition VII

The function f = f (X, Y, Z) is a hyperbolic paraboloid that exists for each (X, Y, Z)

and estimates intensity at sub-voxel locations. Let Ω = {(X, Y, Z) : 8 2f /8x8y

Observation I

Thus, if f is efficient in P = P (X, Y, Z), then from equations (7.2), (7.3) and (7.4) it

follows respectively that:
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Theorem

The function f is efficient if and only if P = (X, Y, Z)

Proof:

Claim (i): If P = (X, Y, Z) C S2, then f is efficient.

Given P = (X, Y, Z) C 0, it follows from definition VII that I 6 2f /δxδy |z=Z = 62f

/δyδx |z=z Z θxy and I 62f /δxδz |y=Y = I 62f /δzδx |y=Y  <=YO,and I 62f /δyδz |x=X =

62f /δzδy |x=X <= X θy z, thus f is efficient in P.

Claim (ii): If f is efficient in P = (X, Y, Z), then P

If f is efficient in P = (X, Y, Z) then from observation I it follows that 6 2f /δxδv 17=7

Now assume the absurd that P = (X, Y, Z) n. Then from Observation I it follows

θyz are not necessarily true, thus the assumption of f being efficient in P = (X, Y, Z)
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is contradicted. Therefore since to assume P = (X, Y, Z) g S) leads to an absurd, it

must be P = (X, Y, Z) E a

7.5.2 Implications for Future Research

It was presented a mathematical assertion claiming that for the tri-linear

interpolation function, there exists a "region of efficacy" outside which, motions

correction is not beneficial. Both size and boundary of such a sub-voxel region

depends on the intensity of the eight neighboring voxels. It is then straightforward

to assume that the "region of efficacy" can be different from voxel to voxel. Thus,

within a brain volume, for given motion estimate, it is suggested that the decision

to re-sample should be made locally (i.e. voxel by voxel) when the motion is

contained within the region of "efficacy" into the voxel.



159

Figure 7.3 Voxel (a), Trilinear Function (b) and Region of Efficacy (c)

(a) Schematic representation of a Voxel. The origin of the coordinate system is at

the center. (b) Plot of the trilinear function f obtained with arbitrary values of

intensity at the eight neighbor voxels. (c) Plot of the "Region of Efficacy"

(equations 7.5 - 7.10) scaled to represent 0 < Z < 0.1, (10% of voxel's size) and

X, Y E [-0.1, 0.1] (20% of voxel's size) and obtained with the values of intensity

used for the plot shown in (b).



APPENDIX A

AUTOALIGN DATA DESCRIPTION

This Appendix lists and describes data that flows within the modules of the

AUTOALIGN computer based system. It also serves as a legend of Chapter 4

pictures.

A.1 AUTOALIGN Level 0 Diagram

Data of Figure 4.6 	 Description

Accuracy Estimation	 Registration accuracy measured at the markers

location

Alignment Parameters	 Three angles (Pitch, Roll and Yaw) and three

Coordinates X, Y and Z

Available Memory	 Workstation Memory

fMRI Volumes	 Brain Images obtained with functional MRI

Hardware (Computation Speed) Platform Dependent

Image Noise	 Signal Detected not attributable to the subject

Sampling Axial Resolution 	 Resolution of the Brain Image along X, Y and Z

Subject's motion	 Head motion

Voxel's Size (X, Y and Z)	 3D brain pixel size

160
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A.2 AUTOALIGN Level 1 Diagram (Two fMRI Scans)

Data of Figure 4.7	 Description

Accuracy Estimation	 Registration accuracy measured at the markers

location

Alignment Parameters	 Three angles (Pitch, Roll and Yaw) and three

Coordinates X, Y and Z

Aligned fMRI Volume	 Test fMRI Volume after alignment

Axis of Head Coord System 	 Numerical values of unit vectors

fMRI Volume ID	 Brain Image's file name

Head Physical Constraints 	 Subject's head-neck constraints

Image Noise	 Signal Detected not attributable to the subject

Misalig of Coord Sys 0	 X, Y and Z Coordinate difference between

reference and test Images

Numerical Display	 Data of Gradient Computation

Origin of Head Coord System 	 Numerical values of X, Y and Z Coordinates

Orthogonal of U Vectors	 Orthogonal Axes of the Head Coord System

Pitch, Roll and Yaw Angles 	 Angles of Rigid-body rotation matrix

Reference Scan Parameters	 Reference Scan Rigid-body Parameters

Sampling Axial Resolution 	 Resolution of the Brain Image along X, Y and Z

Subject's motion	 Head motion
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Test fMRI Volume	 Brain image to align to the reference

User's Interactions	 Mouse and Keyboard usage

Visual Display	 Brain Image Displayed in 3 2D Composite views

Voxel's Size (X,Y and Z)	 3D brain pixel size

3-Fiducial Markers 	 Reference points used to build Coord System

3D plane equations	 Equations of the planes of the Head Coord

System

A.3 AUTOALIGN Level 1 Diagram (All fMRI Scans)

Data of Figure 4.8	 Description

Accuracy Estimation	 Registration accuracy measured at the markers

location

Aligned fMRI Volume 	 Test fMRI Volume after alignment

Alignment Parameters	 Three angles (Pitch, Roll and Yaw) and three

Coordinates X, Y and Z

Axis of Head Coord System	 Numerical values of unit vectors

Brain Images Format 	 Files Format

Head Physical Constraints Subject's head-neck constraints

Image Noise	 Signal Detected not attributable to the subject

Interpolation	 Intensity Correction due to misalignment

No. of fMRI Volumes	 Brain Images file names
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Numerical Display 	 Data of Gradient Computation

Origin of Head Coord System 	 Numerical values of X, Y and Z Coordinates

Orthogonal U Vectors	 Orthogonal Axes of the Head Coord System

Misalig of Coord Sys 0	 X, Y and Z Coordinate difference between

reference and test Images

Pitch, Roll and Yaw Angles 	 Angles of Rigid-body rotation matrix

Reference Scan Parameters	 Reference Scan Rigid-body Parameters

Sampling Axial Resolution 	 Resolution of the Brain Image along X, Y and Z

Subject's motion	 Head motion

Test fMRI Volume	 Brain image to align to the reference

User's Interactions	 Mouse and Keyboard usage

Visual Display	 Brain Image Displayed in 3 2D Composite views

Voxel's Size (X,Y and Z) 	 3D brain pixel size

3-Fiducial Markers	 Reference points used to build Coord System

3D plane equations	 Equations of the planes of the Head Coord

System

A.4 AUTOALIGN Level 2 Diagram (Display Scan)

Data of Figure 4.9 	 Description

Analog Data	 Brain Image data converted into 0-255 scale

Eigenvalues	 Radices of Inertia matrix
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Eigenvectors	 Orthogonal Components extracted from

symmetric Inertia matrix

fMRI Volume ID	 Brain Image's file name

Gradient Brain Image	 Gradient Magnitude Image

Gradient Magnitude	 Sum of squared Gx and Gy values, pixel by pixel

Gx Convolution	 Convolution with a third order operator

Gy Convolution	 Convolution with a third order operator

Image Noise	 Signal Detected not attributable to the subject

Inertia matrix	 Symmetric matrix with inertial components as

entries

Jacobi's Rotation	 90 degrees rotation

Matrix Symmetry 	 Constraint to ensure orthogonal eigenvectors

Orthogonalization	 Constraint

Sampling Axial Resolution 	 Resolution of the Brain Image along X, Y and Z

Scaling of Pixel's Coord	 Scaling to control for sampling axial resolution

Scaling of Pixel's Intensity 	 Scaling to control for pixel intensity

Subject's motion	 Head motion

Threshold	 Threshold

User's Interactions	 Mouse and Keyboard usage

Visual Display	 Brain Image Displayed in 3 2D Composite views



165

Voxel's Size (X, Y and Z) 	 3D brain pixel size

Zero-Crossing 	 Points of null derivative

A.5 AUTOALIGN Level 2 Diagram (Unit Vectors)

Data of Figure 4.10

Determinant Function

Physical Head Constraint

Plane through 3 Points

Plane XY Coefficients

Plane ZY Coefficients

Plane ZX Coefficients

Unit Vectors

2 Points Constraint

3-Fiducial Markers

Description

Routine to compute 2x2 Determinant

Constraint

Constraint

Axy, Bxy, Cxy, Dxy

Azy, Bzy, Czy, Dzy

Azx, Bzx, Czx, Dzx

Unit vectors of head coordinate system

Constraint

Reference points used to build Coord System

A.6 AUTOALIGN Level 2 Diagram (Align Scan)

Data of Figure 4.11	 Description

Accuracy Estimation 	 Accuracy measured at the three markers location

Original grid Coord Val 	 Original grid X, Y and Z values for each pixel

Orthogonalization 	 Constraint

Ref Vol. Center of G 	 Center of gravity of reference brain image
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Rigid-body transf

R Matrix

RT Matrix

Sin, Cos, Atan

Test Vol. Center of G

T Vector

Unit Vectors of Ref Vol.

6 parameters transformation

Rotation Matrix (Pitch, Roll and Yaw)

Rotation-Translation Matrix

Formulas

Center of gravity of test brain image

Translation Vector

Unit vectors of Reference volume head

coordinate system

Unit Vectors of Test Vol.	 Unit vectors of Test volume head coordinate

system

A.7 AUTOALIGN Level 2 Diagram (ReDisplay)

Data of Figure 4.12

Aligned Volume

Analog Conversion

Analog Data

Image Noise

New grid Coord Values

Original grid Coord Val

Parabolic Function

Description

Aligned brain image

Conversion of brain data into 0-255 range

Pixel's intensities in 0-255 range values

Signal Detected not attributable to the subject

Values of coordinates X, Y and Z for each pixel

after alignment

Original grid X, Y and Z values for each pixel

Function used to approximate pixel intensities
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Rigid-body assumption	 Rigid-body	 assumption	 (6	 parameters

transformation)

RT Matrix	 Rotation-Translation matrix

Sampling Axial Resolution 	 Resolution of the Brain Image along X, Y and Z

Subject's motion	 Head motion

Test Volume	 Brain Images obtained with functional MRI

Tri-Linear Interpolation	 First order interpolation scheme

User's Interactions	 Mouse and Keyboard usage

Visual Display	 Brain Image Displayed in 3 2D Composite views

Voxel's Size (X, Y and Z)	 3D brain pixel size

A.8 AUTOALIGN Level 2 Diagram (Dill. Image)

Data of Figure 4.13	 Description

fMRI Volumes	 Brain Images obtained with functional MRI

Image Noise	 Signal Detected not attributable to the subject

Sampling Axial Resolution 	 Resolution of the Brain Image along X, Y and Z

Subject's motion	 Head motion

User's Interactions	 Mouse and Keyboard usage

Visual Display	 Brain Image Displayed in 3 2D Composite views

Voxel's Size (X,Y and Z) 	 3D brain pixel size
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A.9 AUTOALIGN Level 2 Diagram (Align All to Ref.)

Data of Figure 4.14	 Description

Accuracy Estimation	 Registration accuracy measured at the markers

location

Aligned Volume	 Aligned brain image

Alignment Parameters	 Three angles (Pitch, Roll and Yaw) and three

Coordinates X, Y and Z

Analog Data	 Brain Image data converted into 0 - 255 scale

Convolution	 X and Y Convolution with a third order operator

Determinant Function	 Routine to compute 2 x 2 determinant

Gradient	 Gradient Magnitude Image

Inertia	 Symmetric matrix with inertial components as

entries

Eigenvectors	 Eigenvectors of inertia matrix

fMRI Volumes	 Brain Images obtained with functional MRI

Image Noise	 Signal Detected not attributable to the subject

New grid Coord Values 	 Values of coordinates X, Y and Z for each pixel

after alignment

Numerical Display	 Numerical data on the output screen
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Original Grid Coord Val	 Original grid X, Y and Z values for each pixel

Orthogonalization	 Constraint

Parabolic Function	 Function used to approximate pixel intensities

Rigid-body assumption 	 Rigid-body	 assumption	 (6-parameters

transformation)

Sampling Axial Resolution 	 Resolution of the Brain Image along X, Y and Z

Subject's motion	 Head motion

Tri-Linear Interpolation	 First order interpolation scheme

Unit Vectors	 Unit vectors of brain volume head coordinate

system

User's Interactions	 Mouse and Keyboard usage

Voxel's Size (X, Y and Z)	 3D brain pixel size

3-Fiducial Markers 	 Reference points used to build Coord System



APPENDIX B

PRELIMINARY TEST OF THE AUTOALIGN TECHNIQUE

Four experimental sessions are described in this Appendix. They aimed to

preliminary test AUTOALIGN technique and compare results to those obtainable

by SPM99 with same data (Ciulla and Deek 2001a).

It has been used a T2*-weighted Magnetic Resonance volume (fMRI) having

sampling resolution 64 (3.75 mm), 64 (3.75 mm) and 28 (5.00 mm) respectively in

the x, y and z directions. The fMRI volume has been subject of controlled motion

simulation. Artificial volumes were created in which, pitch, roll and yaw rotations

(respectively about x, y and z axes) were introduced at steps of 1° by ROTRA

software system (Ciulla 2000) either individually (e.g. pitch = 0; roll = 0 and yaw C

[400 ; 10°]) or simultaneously (pitch, roll and yaw C [-10°; 10°]).

Tests were conducted to see how the angles were estimated by AUTOALIGN

and SPM99. Results are shown in figures B.1 - B.4. In figures B.1 -B.3, two of the

three angles were expected to be estimated as zero lines (white), as imposed in the

artificial test volumes; while the third angle was expected to be as close as possible

to the ideal line (black). In figure B.1 estimation results for pitch C [-10°; 10°], roll

= 0 and yaw = 0 are plotted respectively for AUTOALIGN (a) and SPM99 (b).

Figures B.2 and B.3 show estimation results of AUTOALIGN (a) and SPM99 (b)

respectively for pitch = 0, roll C [-10°; 10°] and yaw = 0; and pitch = 0, roll = 0 and

yaw C [-10°; 10°]. In general from a visual inspection of the three figures it can be

seen that AUTOALIGN performed similarly to SPM99. "Amis" values (eq. 134,

170



Figure B.1 AUTOALIGN and SPM99 Estimation of Pitch Angles

The white line connects values of the angles that were used to create the artificial

volumes, and represents the ideal performance of the two systems. The rigid body

transformation is applied to the volume at steps of 1° as pitch E [-10 0 ; 101, roll =

0 and yaw = 0. Pitch (■), yaw (▲ ) and roll (● ) express the actual performance of

the two systems: AUTOALIGN (a) and SPM99 (b).



Figure B.2 AUTOALIGN and SPM99 Estimation of Roll Angles
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Figure B.3 AUTOALIGN and SPM99 Estimation of Yaw Angles
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Chapter 5) were computed to measure average misalignment in the estimation of

angles of rotation within [-10 0 ; 10°]. Results of "amis" values are summarized in

table B.1. From table B.1 it can be inferred that within [-10 0 ; 100] SPM99

performed generally better than AUTOALIGN except for the estimation of pitch

and roll angles.

When the experiments were conducted in order to see how AUTOALIGN

and SPM99 performed estimation of the three angles imposed concurrently (pitch,

roll and yaw C [-10°; 10°]), it was discovered that AUTOALIGN performs better

than SPM99 only for large rotations (angles greater than 5° in their absolute value).

These last results are presented in figure B.4 respectively for AUTOALIGN (a) and

SPM99 (b). Similarly, Friston et al. (1995) reported that the Statistical Parametric

Mapping has an accuracy of 10011m, which, decreases when the spatial

misalignments approach the resolution of the brain images.

Figure B.5 shows a sample result of the realignment performed by

AUTOALIGN. An original fMRI slice is shown in (a). The original fMR image has

been realigned (b) after being rotated by 3° about the Z-axis. The mis-estimation of

the yaw angle from the expected value (3°) was 0.07° and the mis-registration

along the Y-axis direction, at the location indicated by the arrow, was 0.08 mm (18

pixels * 3.75 mm * tan (0.07)), which is less than the sampling axial resolution

(3.75 mm). From the figure, it is visible that artifacts are still present after

realignment and they can be attributed, in part, to the nearest neighbor interpolation

scheme adopted at this stage of AUTOALIGN development.
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Figure B.4 AUTOALIGN and SPM99 Estimation of Pitch, Roll and Yaw Angles

Rotations were simulated simultaneously at steps of 1° (pitch, roll and yaw C [-

10°; 10°]) to the 64 x 64 x 28 fMRI volume. Pitch (N), yaw ( ▲ ) and roll (● ) are

the estimations of the two software systems: AUTOALIGN (a), SPM99 (b); and

they are plotted together with the ideal line (white).
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Table B.1 Preliminary Test Results of the AUTOALIGN Technique

For each experiment and for each of the two software systems (AUTOALIGN and SPM99), the

table shows "amis" values. Data can be read together with figures B.1- B4 and they are relevant to

the experiment conducted to estimate pitch, roll and yaw both individually (e.g. pitch E [40 0 ;

1001, roll = 0 and yaw = 0) and concurrently (pitch, roll and yaw C [40 0 ; 101).
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(a) (b) 

Figure B.5 Sample Alignment Result of AUTO ALIGN 

An original 64 x 64 fMRI slice (a) and the same image after manipulation 

(applying a 3° rotation about the Z-axis which, is perpendicular to the image and 

passing through the center of gravity) and alignment (b). The fMR Image shown 

in (b) was processed twice with nearest neighbor interpolation. 
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