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ABSTRACT

A NEW THEORY OF PREMIXED FLAMES IN
NEAR-STOICHIOMETRIC MIXTURES

by
Eliana S. Antoniou

In this dissertation, a new model of premixed flames in near-stoichiometric mixtures is

derived. Unlike most previous theories, which are valid only for very lean or very rich,

i.e. off-stoichiometric conditions, our model remains valid over the entire spectrum

of mixture compositions, from lean to rich, including the near-stoichiometric regime.

Since fuel-mixture composition is known to have a significant effect on flame behavior,

such a model is expected to contribute new insights into classical problems in premixed

combustion.

In the first part of this dissertation, we describe the derivation of a model for

premixed flames in two-reactant mixtures in a formal asymptotic way. Using the

method of matched asymptotics we are able to simplify the complicated governing

equations of combustion and effectively decouple the hydrodynamic equations from

those of heat and mass transport. Our model considers a two reactant mixture in

which one reactant is slightly in excess and the other deficient. We show that, if

the initially excess reactant is less mobile, then it doesn't diffuse as rapidly across a

strained flow field and can be locally deficient, arid hence consumed, at the reaction

zone. This can have a significant effect on burning characteristics of the flame. There

are two major differences between our model and previous models. First, we have an

additional reaction-diffusion equation governing the transport of the second species.

Second, the derived conditions relating the gradients across the reaction sheet are

shown to take one of two different forms, depending on which of the two species is

consumed in the reaction.



In the second part of the thesis, we use our model to study the behavior of planar

and strained flames. For the planar flame in uniform flow, we find that many of the

results of single-reactant theory apply under near-stoichiometric conditions, provided

an effective Lewis number is introduced. On the other hand, for a flame in a non-

uniform flow, the dynamics depend significantly on the mass diffusivities as well as

mixture strength. In particular, we have analyzed the structure of flame in stagnation

point flow and given a complete description of the combustion process including

extinction conditions. Results are shown to compare favorably with experiments.
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CHAPTER 1

INTRODUCTION

1.1 Motivation and Objective

It is well known that fuel-mixture composition can have a significant effect on flame

behavior. For example, flames in light hydrocarbon mixtures are observed to propagate

with a smooth surface when the mixture is lean, while the flame surface takes on a

cellular appearance when the mixture is rich [11. Similarly, a great deal of soot

formation typically occurs in rich mixtures, while substantially less is produced when

the mixture is lean [21. Many technologies employ combustion as a source of energy,

for example engines, furnaces and jets. Important issues regarding efficiency and

pollutants depend significantly on the mixture composition.

Despite the recognized importance of mixture strength in practical combustion

applications, most theoretical studies are based on single reactant models in which the

overall chemical reaction is represented by a one-step irreversible reaction for a single

reactant decomposing into products. All other reactants appear in relatively large

amounts, and so only a minimal amount is consumed. These models are therefore

valid only when the mixture is very lean or very rich, i.e. far from stoichiometric. They

don't exhibit any dependence whatsoever on the mixture strength, usually measured

in terms of the equivalence ratio, which is the ratio of the mass of fuel to oxidant in the

fresh mixture (an equivalence ratio of one corresponds to a stoichiometric mixture).

Many practical combustion systems operate in a regime closer to stoichiometry,

and as noted above, this is a transition regime where flame dynamics can change

dramatically. The subject of this thesis is the development of a new theory of premixed

flames that accounts for the entire spectrum of mixture compositions, from lean to

rich, including the near-stoichiometric regime.
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The equations governing combustion processes are extremely complicated. They

consist of equations of heat and mass transport coupled to the equations of hydro-

dynamics for a viscous compressible fluid. They are also highly nonlinear. Theoretical

advances in combustion have been made by extracting, from this full system, reduced

models that incorporate much of the essential physics of the problem, but can more

easily be analyzed.

The earliest theoretical treatment of premixed flames dates back to Landau

[3] and Darrieus 141 who treated the flame as a surface of density discontinuity,

separating a burned (less dense) from an unburned (more dense) region of gas.

By imposing conditions of mass and momentum conservation across the front, as

well as the condition that the front propagate at a constant rate relative to the

local underlying flow, they were able to study the stability of a planar flame. They

concluded that the flame is unconditionally unstable due to the thermal expansion

(density difference) across the flame. However, their model ignores effects of diffusion

in the flame structure which are potentially stabilizing.

In more recent years, asymptotic methods have been used to formally derive

new models of premixed flames. Since most combustion systems exhibit behavior

that takes place over a range of spatial and temporal scales, the method of matched

asymptotic expansions has proven to be an especially powerful tool to derive reduced

models for these systems. These methods have been used, for example, to derive

corrections to the Landau model that include the effects of the flame structure 15, 61.

In these hydrodynamic models, the flame is assumed large relative to its thickness,

so that the flame structure is quasi-steady and quasi-one-dimensional. As such, these

models allow for the effect of the flame on the flow field, but they ignore the effect of

the flow on the flame.

A second class of asymptotic models that have been formally derived are the

diffusional-thermal, or constant density. models [7]. These models allow for variations
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over spatial scales on the order of the flame thickness. They are derived in the limit of

large activation energy, so that the thin reaction zone can be resolved asymptotically,

and the nonlinear reaction zone is effectively replaced by jump conditions for the

transport variables. Furthermore these treatments also consider weak thermal expan-

sion, or constant density, to decouple the hydrodynamic equations from those of heat

and mass transport. In this way these models consider the effect of the flow on the

flame but ignore the effect of the flame on the flow. Furthermore., these models treat

near-equidiffusional conditions, i.e. the heat and mass diffuse at nearly equal rates.

A third class of models is the Slowly-Varying Flame (SVF) model which is valid

when heat and mass diffuse at unequal rates [8]. A formal asymptotic treatment of the

flame structure, where slow variations in time and the transverse spatial dimensions

are considered, results in a nonlinear equation for the propagation speed of the flame.

All of the models described above have played a major role in advancing theoreti-

cal combustion. They have been used to study flame behavior in various geometrical

configurations, and they have contributed a great deal to our understanding of premi-

xed flame dynamics. For example, mechanisms for instability have been clearly

identified, and other phenomena. such as extinction, have been accurately described.

However, they all consider the mixture to be far removed from stoichiometry. As

such, all results depend on a single Lewis number, which is the ratio of thermal

diffusivity of the mixture to mass diffusivity of the deficient reactant. It has been

shown, for example, that an initially smooth flame will lose stability to a cellular

surface when this Lewis number is less than a critical value, slightly less than unity.

Furthermore, a flame in a nonuniform flow can extinguish when the Lewis number is

greater than one but not otherwise. Therefore, predicted behavior of a given mixture

can be quite different depending on whether conditions are lean or rich. These models

cannot describe the transition from one burning regime to another as stoichiometry is

crossed. For conditions close to stoichiornetry, both fuel and oxidant can be expected
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to play a role in flame characteristics. In this case, both the Lewis numbers as well

as the equivalence ratio are important parameters affecting flame response.

Theoretical investigations of stoichiometric, or near-stoichiometric, flames have

mostly been limited to planar or perturbed planar flames. The flame speed and flame

temperature of planar flames were derived by Sen and Ludford [9] and by Mitani

[10]. Those analyses showed that the flame temperature achieves a maximum value

at stoichiometry, while the flame speed has a maximum slightly on the rich side of

stoichiometry, consistent with experiments. A diffusional-thermal model of perturbed,

planar near-stoichiometric flames was considered by Joulin and Mitani [11]. They

found that the initially deficient reactant was always consumed by the flame, while a

small amount of the abundant species leaks through. The Lewis numbers of both fuel

and oxidant, as well as the equivalence ratio, were found to affect stability. However,

these parameters combined into an effective Lewis number, and conclusions from

the stability analyses of off-stoichiometric flames remained valid near stoichiometry,

with the effective Lewis number replacing that of the deficient reactant. A similar

conclusion was reached by Sivashinsky [12] who considered a perturbed planar flame

at exact stoichiometric conditions. Jackson [13] also found that the only modification

to the hydrodynamic model of a perturbed planar flame was the presence of the

effective Lewis number. Cui, Matalon and Bechtold 14] have recently shown that

hydrodynamic models of flames of arbitrary shape in general flows are modified in

a similar way. Although their model can be used to treat nonplanar flames, the

structure remains quasi-one-dimensional.

All of the theories of near-stoichiometric flames just mentioned are valid for

conditions under which the flame structure is nearly planar, and the Lewis numbers

are close to unity. Under these conditions, temperature perturbations behind the

flame are very weak. As a result, the initially deficient reactant is always consumed

at the front, and the burning characteristics differ only slightly from the planar flame.
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However, when the two species and mass diffuse at unequal rates, that is, their Lewis

numbers are distinct from unity, or when the flame structure is non-planar (as it is

in the diffusional-thermal model) flame behavior is expected to be quite different.

Recently, Bechtold and Matalon [15J derived a new SVF model for two-reactant

flames in near-stoichiometric mixtures. They found that, when a flame is strained or

curved, the rate at which a reactant reaches the reaction zone is strongly affected by

its molecular diffusivity. Further, they showed that it is possible when the initially

excess reactant is less mobile (larger Lewis number) it does not diffuse as readily

across the strained flow and can be locally deficient, and hence consumed, at the

reaction zone. This can have important consequences on the burning characteristics,

such as extinction, of curved and strained flames.

Still lacking is a diffusional-thermal model of near-stoichiometric flames, and

the main goal of this thesis is to fill that void. This new model is derived in a formal

asymptotic way from the full system of equations governing premixed flames in a

two-reactant mixture. Similar to the one-reactant theory, the analysis is carried out

considering the limits of large activation energy and weak thermal expansion. The

former enables the resolution of the nonlinear reaction rate terms, and the latter

limit decouples the equations of hydrodynamics from the transport equations. The

model explicitly demonstrates the importance of the combined effects of straining

and differential diffusion. The model differs from previous models in two crucial

ways. First, it consists of an additional coupled equation governing the transport of

the second species. Second, the derived jump conditions for the gradients across the

reaction sheet can take one of two different forms, depending on which of the two

species is ultimately consumed by the reaction. This can lead to quantitative and

qualitative differences in predicted flame behavior in strained flow fields.

Our model is expressed in a coordinate-free form that is applicable to flames of

arbitrary shapes in general prescribed flow fields. Although the derivation assumes
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conditions close to stoichiometry, we recover the single-reactant off-stoichiometric

results in the appropriate limit, suggesting the applicability of our model over the

complete range of mixture strengths. The model is used to re-examine the burning

characteristics of planar and strained flames. We show that it is possible for a

perturbed planar flame to have some regions burning fuel-lean while neighboring

regions burn fuel-rich. Thus oxidant leaks through the first region, and fuel through

the other. Although the predicted dynamics of the premixed flame is the same in

both regions, such flames can support a trailing diffusion flame where the fuel and

oxidant diffuse together.

The model is also used to study the extinction characteristics of strained flames

in non-uniform flows. In particular, the flame in a stagnation point flow is considered.

This is the simplest example of a positively stretched flame, i.e. one whose surface

area tends to increase as a result of the diverging flow. Such flames are observed to

extinguish when the Lewis number of the deficient reactant is sufficiently less than one.

Thus, for example, lean propane-air and rich hydrogen-air flames are known to behave

in this way. A theoretical description of this problem was given by Buckmaster [16],

using one-reactant diffusional-thermal model. Our new theory uncovers some new

and interesting results. It is shown that the flame standoff distance as a function of

strain rate can either decrease monotonically to the wall (no extinction), or it can

exhibit turning point behavior, in which case the flame extinguishes a finite distance

from the wall. The nature of these curves depends significantly on which of the two

species is ultimately consumed at the reaction zone. For weak stretch, the flame is

shown to reside a large distance from the wall and the initially deficient is always

consumed. For larger strain rates, however, the disparate diffusivities may result in

the initially abundant species to be locally deficient, and hence consumed. In such

cases the predicted flame response can be quite different. A complete description of

the extinction characteristics of these flames is given.
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The thesis is arranged as follows. In chapter 2, we introduce the governing

equations and systematically derive the new model. In chapter 3, the extinction of

uniformly strained premixed flames in stagnation point flow is studied. Finally, a

summary of conclusions and suggestions for future research are presented in chapter

4.



CHAPTER 2

DERIVATION OF A NEW MODEL OF PREMIXED FLAMES

A premixed flame is a wave-like phenomena in which a chemically reacting front

propagates through a. combustible mixture. In the fresh mixture, fuel and oxidant are

mixed at the molecular level prior to reaction. The equations governing this process

are very complicated; they consist of equations governing transport of heat and

species, coupled to the equations of hydrodynamics. The system is highly nonlinear

and no exact solutions exist. However, much combustion phenomena is characterized

by rapid variations over very short spatial and temporal scales, and thus asymptotic

methods have proven to be a useful tool to analyze these systems. In particular, the

method of large activation energy asymptotics has been used to derive from these

equations reduced models that capture much of the essential physics but are more

readily analyzed. In this chapter, we employ this technique to derive a new model of

premixed flames that is valid over a range of mixture strength. In later chapters, the

model will be used to study the dynamics of stretched and non-stretched flames.

2.1 Formulation

Consider a premixed combustible mixture, consisting of an excess (E) and deficient

(D) reactant, in which reaction proceeds according to:

where M i are the chemical symbols for species i and v i are the stoichiometric coeffi-

cients. An important parameter in this analysis is the equivalence ratio

which is the ratio of the mass of the fuel-to-oxidant reactants in the fresh mixture to

their ratio in the stoichiometric mixture. Here Yi denote the mass fractions of species

8
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i and Wi their molecular weights. Values of (I) larger than unity correspond to fuel

rich mixtures, and (I) less than one corresponds to lean mixtures. To avoid discussing

lean and rich mixtures separately it is convenient to introduce a new parameter

which is the ratio of the masses of excess to deficient reactants. As defined, 	 is

always greater than one; it is equal to 1 for rich mixtures and 	 for lean.

The equations governing the transport of heat and species can be written as:

where p , T , -C;: denote density, temperature and species, respectively. The parameters

appearing in these equations include the specific heat, cp , thermal conductivity, ,

heat release, Q, and mass diffusivity, D i . The reaction rate w obeys an Arrhenius

temperature law and it is given by:

where B is the frequency factor, E is the activation energy, and R° the gas constant.

These equations are coupled to the Navier-Stokes equations for a viscous, compressible

fluid. The continuity and momentum equations are given by:
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where V denotes the velocity vector, P denotes the pressure and p, is the kinematic

viscosity. Finally, the equation of state is given by the ideal gas law:

To analyze the above system we will simplify matters and assume constant transport

properties, i.e. constant values of cp , A, ρDi, and IL

2.1.1 Nondimensionalization

We start by nondimensionalizing all variables. The characteristic velocity is chosen

to be the adiabatic flame speed, Sy., i.e. the speed of a conservative planar flame.

The length scale is chosen to be the thermal thickness ID = pu cp S`f) 
and the thermal

time scale is. The remaining variables are scaled with respect to their values in

the fresh mixture. Upon introducing the non-dimensional variables:

our system of equations takes the following form:



Parameters appearing in these equations include the Lewis numbers

which are the ratios of thermal diffusivity of the mixture to mass diffusivity of species

i, the Prandtl number

which is the ratio of viscous to thermal effects and the Mach number

which describes the ratio of flame speed to sound speed. Here -y is the ratio of specific

heats and P, is the characteristic pressure. Additional parameters are the heat release

Ind the stoichiometric coefficient v = 	 The reaction rate term onLip vvp '

the right hand side of (2.8)-(2.9) has the form:

where D is the Damköhler number, a ratio of the flow time to the chemical time,

given by the following:

11

Of interest here are premixed flames that propagate much slower than the sound

Speed. Consequently, the Mach number is small and thus the pressure remains close
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to its ambient value. We therefore introduce the expansion

so that the momentum equation simplifies to

and the equation of state takes the form

2.1.2 Reaction Zone as a Boundary Layer

The above equations are extremely complicated for two reasons. First, the system

is fully coupled. The equations of hydrodynamics couple to the transport processes

because of thermal expansion of the gas. Density variations affect the velocity field

through the continuity equation. The coupling in the other direction occurs through

convection. Secondly, the system is highly nonlinear. In addition to the convective

nonlinearities, there is the extremely nonlinear reaction rate term. The objective

here is to derive from this system a reduced model of premixed flame propagation in

a formal asymptotic way. We first treat the reaction rate term in a manner similar

to that done by Matkowsky and Sivashinsky [7] for a single reactant model.

Both the activation energy (E) and Damkhöler number (D) are large in combu-

stion problems. Dimensionless activation energies are typically on the order of 10 20

while values of D can be much larger than 10 10 . The technique of High Activation

Energy Asymptotics involves rescaling D as:
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where Ta is the adiabatic flame temperature so that with this scaling the reaction

rate term takes the form:

In the realistic limit of large activation energy, the reaction can be readily

shown to be confined to a narrow region in the flow field. Firstly, in regions of the

flow where T < Ta , Q is seen to be exponentially small and can thus be neglegted. In

these regions, the flow is said to be frozen. Secondly, if T were to exceed Ta , then it

must be true that either YE = 0 or YD = 0 to prevent an exponentially large reaction

rate term. Here the flow is in equilibrium. Only where T Ta , or more precisely

where T —T, = O( TIL:: ) will Q be of 0(1). Thus, in the limit of large activation energy,

i.e. E > 1, the chemical reaction is confined to a reactive boundary layer. Within

this boundary layer, gradients are steep and a balance between diffusion and reaction

is maintained. In the outer regions on either side of the reaction sheet, reaction is

negligible and convection balances diffusion. The method of matched asymptotics is

employed to analyze each region separately and the matching procedure results in

jump conditions relating the solutions in the outer regions across the reaction zone.

In this study, we assume near unity Lewis numbers and near-stoichiometric

conditions so that the following expansions are introduced

where c is a small dimensionless parameter, inversely proportional to E, and is defined

shortly. It is also assumed that temperature gradients behind the flame are small.

In analyses such as this, it is convenient to work with the enthalpy functions (or

Shvab-Zel'dovich variables) given by
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The advantage of working with H i is that their governing equations, obtained by

appropriately summing (2.8) and (2.9) with (2.7) are free of the nonlinear reaction

rate term. In particular these equations are

which is used in place of those of Note that once T and H are determined, the

species concentration can easily be determined using the above definitions for H. As

mentioned earlier, temperature gradients are assumed small, i.e. 0(E), behind the

flame. In addition, only an 0(c) amount of species leak through and therefore, the

enthalpy variables can be expanded as

where To is the adiabatic flame temperature. The equations for the enthalpy perturba-

2.1.3 Planar Flame

The steady, one-dimensional form of the system of equations (2.7)- (2.10) can be

analyzed in the limit E >>1 to provide a description of a planar adiabatic flame, c.f.

[9] and 115j. Here, a summary of some of the essential results is given. A uniform

flow, u = 1, is supplied at x = --Do, and only the transport equations need to be
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treated. In particular, steady state profiles for T, Yi in the outer flow on either side

of the reaction zone are found to be

where solutions have been sought in power series in E, i.e.

Note that for the planar flame, the deficient reactant is always consumed behind the

flame. It remains to determine the adiabatic flame speed, Sy, which appears in A,.

This information is obtained by analyzing the reaction zone where we introduce the

stretched variable, x = E , and the expressions

The local enthalpy variables

are found to remain constant throughout the reaction zone and matching to the

burned side determines these constants to be
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The leading-order local equation for the perturbed temperature is then found to be

of the form

Matching to the burned side where 0 0 determines the constant to be

Finally, matching to the unburned side where 9	 eq1713,„ yields an expression for

the burning rate eigenvalue, A's , namely

where Q = ql7D ,_„ and 0 = qYD ,_„0 1 . Using (2.21) and (2.13) we obtain an

expression for the flame speed

where Ta = 1 + Q is the adiabatic flame temperature. This expression for flame speed

has been shown to achieve a maximum value slightly on the rich side of stoichiometry,

consistent with experimental measurements [9], [15].

2.1.4 Analysis of Reaction Zone for a Multi-dimensional Flame.

The analysis of the preceding sub-section can be generalized for flames of arbitrary

shape. We again only treat the transport equations, and upon using the expression



for A s our equations become
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In the limit that € 	 0 the reaction rate term is only important in the narrow

reaction diffusion layer. Outside of this boundary layer, solutions are sought in the

form of power series in c, i.e.

Upon substituting into the expressions, (2.17) and (2.18), we get the following enthalpy

equations on either side of the reaction zone:

From (2.23) the 0(1) temperature is determined from
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By definition, h i are directly related to the temperature perturbations, T1 , and thus

we retain the appropriate equations from (2.23), (2.14), i.e.

An analysis of the reaction zone is needed to relate the outer variables on either

side. We first adopt a coordinate system attached to the front

such that

and the Laplacian operator takes the following form

To examine the structure of the inner layer we introduce a stretched variable e = €(

and then seek solutions of the form:

These expansions are substituted into (2.18), (2.19) and (2.23) to obtain a system

of equations for the local temperature and species profiles. The appropriate leading

order equations are
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Solutions to these equations should match to the outer solutions (2.26)-(2.29). The

matching conditions can be derived by expanding the outer solutions in terms of the

inner variable = e(, to obtain

Similarly, the appropriate expressions for species are

However, we need conditions for the reduced enthalpy variables, which follow from

the definition (2.17) and using the fact that li i0 (0+) = 0. The resulting conditions

are

From (2.37) it follows that
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Similarly, from (2.38) after using the expansion for 0 we get

Upon solving (2.32) and (2.33), we find x and ψ are constant throughout the reaction

zone. Matching to the burned side determines that

and

The equation for the local temperature distribution (2.34) can now be easily integrated.

Upon multiplying through by awe obtain the first integral

where Tb1 = T 1 (0+). Matching now to	 --oc, i.e. the unburned side, yields the

condition for the outer temperature gradient

We note that one or the other species must vanish behind the flame and thus

}DO+) Y1D(0+)	 0. Using this fact, when the expression for x, W, (2.42), (2.43) are
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inserted, condition (2.46) simplifies to

where YLE denotes the locally excess reactant. Recall that, for the planar flame, the

initially deficient reactant is always consumed at the flame, i.e. I' D (0+) = 0 and thus

"'LE - YE(°+) . For a curved flame in non-uniform flow fields, however, it is possible,

due to disparate diffusivities, for the initially excess species to be locally deficient,

and hence, consumed by the reaction. In this case, a small amount of the initially

deficient reactant leaks through, and YLE YD (0+).

This final condition on the temperature gradient depends on the temperature

perturbation behind the flame and the amount of locally excess reactant that leaks

through the flame. Both of these quantities can be expressed in terms of the enthalpy

perturbations behind the flame.

To determine which species is consumed and which leaks through, we re-consider

(2.40) and (2.41). Subtracting one from the other gives

The sign of the right hand side of (2.47) now provides the necessary information.

If the right hand side is positive, then Y = 0 and (2.47) determines the amount

of excess reactant that leaks through. Equation (2.38) then determines the flame

temperature perturbation to be Tb1 hD(0+). When these are inserted into (2.44)

our final jump condition becomes
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On the other hand, if the right hand side of (2.47) is negative, then -1 -40+) = 0

and (2.47) determines the amount of deficient reactant that leaks through. Equation

(2.41) then determines the flame temperature perturbation to be Tb1 	hE(0+)

When these are inserted into (2.46), our final jump condition becomes

To summarize our jump conditions relating the outer variables across the front,

we first note that matching has shown that T°, hD , h0E are all continuous across the

flame sheet. Furthermore, direct integration of the reaction-free equations (2.26)-

(2.27) across the flame yield the jump relations

where the jump	 denotes burned minus unburned quantities. The final jump

condition is either (2.48) or (2.49) depending on the sign of 0 + hE (0+) — h D (0+).

The problem has now been reduced to solving the transport equations (2.7)-(2.9)

subject to the jump conditions (2.50) and (2.51) and the appropriate jump in the

temperature gradient given either by (2.48), if Yd1(0+) = 0 or (2.49), if E (0+) = 0.

These results can now be generalized by recognizing that the normal derivative is

given by:

Since there are no jumps in the transverse, y and z, directions it follows that



The jump conditions can now be written in a generalized coordinate-free form:
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and

The local analysis of the reaction zone has effectively replaced the nonlinear

reaction rate term by jump relations. In particular, the variables are continuous

while their gradients suffer jump discontinuities. For this reason models of this type

have often been referred to as delta-function models.

2.1.5 The constant density approximation

Although we have succeeded in simplifying the nonlinear reaction rate terms appearing

in the original governing equations, solutions of the resulting model are still difficult

to obtain due to the coupling of the hydrodynamic and transport processes. It is

possible to decouple the equations of hydrodynamics by considering weak thermal

expansion. This is a rather crude approximation from a physical standpoint, but it

has proven to be a useful approach to gain qualitative insights into premixed flame

propagation. In this way, we can study the effect of the flow field on the flame, but
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the effect of the flame on the flow field is suppressed. Assuming that density changes

across the flame are small, Q =	 < 1, we expand the transport variables as:

Once these are inserted into our model we obtain the following generalized two

reactant model:

These equations are to be solved subject to

the jump conditions at the flame surface x = f .



and
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The above system is decoupled from the equation for the temperature perturbation T 1 .

Also, the constant density approximation has decoupled the equations of hydrodyna-

mics. In this model, the flow field is prescribed, allowing us to study the effect of the

flow on the flame but ignoring the effect of the flame on the flow.



CHAPTER 3

DYNAMICS OF PLANAR AND STRAINED FLAMES

The model derived in the previous chapter is valid for flames of arbitrary shapes in

general flow fields. In this chapter we will use it to study the behavior of planar and

strained flames.

3.1 Diffusional-Thermal Instability of Planar Flames

Firstly note that for off-stoichiometric mixtures, (I). 1 	oc, it is clear that

and thus the first jump relation, (2.63a) for the temperature gradient is appropriate.

We observe that this condition reduces to

which is identical to that derived in the single-reactant theory. Thus our model

appropriately describes the flame behavior in conditions far removed from stoichiome-

try. When conditions are closer to stoichiometry, both species will play a role in flame

dynamics.

The linear stability of a planar flame in a near-stoichiometric mixture has been

studied previously by Joulin and Mitani, [11], and their results are readily obtained

by linearizing our model. In particular, it is easy to show that hE(0+) = hp (0+) = 0

for the planar flame and thus the first jump relation is again the appropriate one to

use.

Consider a planar flame in a uniform flow field with the prescribed flow field

V = (1, 0, 0) located at 37 = 0. A steady one-dimensional solution to our system
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subject to the jump conditions given by (2.60) -(2.63b) is

27

We impose small arbitrary disturbances on these solutions of the form

where 6 is a small amplitude. The perturbed front location is x = 62iew t e iK Y, where

A is the amplitude of the perturbed front. These expressions are inserted into our

system and the resulting system is linearized. Solutions of the perturbed quantities

are sought in the form

which yields the following system
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such that Re(m+ > 0) and Re(m_ < 0). In order that nontrivial solutions exist, we

find w must satisfy the cubic equation:

where L is a lumped Lewis number given by L = le+4+2Id+0,d°1 This is identical to the

result of the single reactant theory with L appearing in the place of / d . The neutral

stability boundaries of the above dispersion relation, shown in figure 3.1, determine

a range of Lewis number —1 < L < 2(1 + -0) for which planar flames are stable

to disturbances of all wavelength. The left boundary is given by L= —1 — 4K 2 ,

and it is referred to as the cellular boundary because I m(ω) = 0 as well. As L is

decreased below -1 the plane flame will lose stability to a stationary cellular structure.

Along the right stability, Im(ω) 0, and thus the planar flame will lose stability to

pulsations or travelling waves.



Figure 3.1: Neutral Stability Curves

3.2 Extinction of Near-Stoichiometric flames in Stagnation Point Flow

As demonstrated in the previous section, for the planar flame, there is no temperature

perturbation in the burned region, i.e. hE(0+) = hp (0+) = 0, and thus the initially

deficient reactant remains deficient everywhere. Consequently, (h_ + hE — hp > 0 and

the first condition in (2.63a) is always used to determine the jump in the temperature

gradient.

However, it is known that curvature and aerodynamic straining can induce

temperature perturbations behind the flame. When the two species diffuse at unequal

rates, i.e. different Lewis numbers, it is possible that one or the other jump conditions

(2.63a) or (2.63b) is needed.

Here we consider a positively stretched flame in a stagnation point flow. As

shown in figure 3.2 the flow originates at x —Do and impinges against a wall

located at x = 0. This configuration supports a planar flame situated at x = —d.
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The flow remains potential flow in the absense of density variations and is given b ∎

Figure 3.2: Flame in stagnation point flow

We seek steady solutions with no variations in the y direction so that our

governing equations become

These equations are to be solved subject to the following jump conditions which are

all evaluated at x = —d:



where the complimentary error function is defined as

The constants of integration C1  and C2 can be obtained by applying the boundary

condition, (3.23), and the jump condition, (3.20), which yield the solution

We can now solve for the enthalpy variables, h i . First, behind the flame, —d < x < 0,

the only solution satisfying the flux condition at the wall is a constant so that hi =



In the unburned region, x < —d the appropriate governing equations are
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Integrating once more we get the following expression for IV

so that

By imposing the boundary condition at x = —Do, we find .T)' = 0, and the continuity

condition determines Di3 to be

Finally, Di can be obtained using (3.2) and it is given by
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Thus, the steady state solutions for the enthalpy variables are

The final jump condition, (3.22a) or (3.22b), now determines an expression for

the location of the flame, d, versus the strain rate of the flow, k. These jumps result

in the following expressions to determine the flame response.
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and also the parameters

As /3 ranges from zero to infinity, the standoff distance also varies monotonically over

the same range. Thus, the response curve can be constructed in the following manner.

By incrementing fi from zero to infinity, (3.29) or (3.30), depending on the inequality,

determines the strain rate, k. The standoff distance, d, is then found from (3.31).

The curves in the d versus k plane are found to either decrease monotonically to

d = 0, suggesting that the flame can be pushed all the way to the wall, or the curve

possesses a turning point and becomes double valued. In this latter case, the turning

point corresponds to an extinction point.

We have found that the flame response in stagnation point flow is determined

by either (3.29) or (3.30) depending on the values of 0 1 , li and k. For the uniformly

strained flame considered here, i.e. k constant, the same equation determines the

response along the entire flame surface. In other words, for a given set of parameters,

the same species leaks through along the entire flame surface. In more general

systems, however, it may be possible that some portions of the surface burn lean

while neighboring areas burn rich. In such case, both equations play a role in the

overall flame response.

To discuss the response curves for the uniformly strained flame, we will refer

to (3.29) and (3.30) as Case 1 and Case 2, respectively. Case 1 corresponds to the

situation when the initially deficient reactant is consumed by the flame, and Case

2 is appropriate when the initially excess reactant is consumed. Predicted response

curves for different parameter values will now be discussed in turn.
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3.2.1 Off-stoichiometric mixtures

When conditions are far removed from stoichiometry, 	 cc, it is clear that 0 1 +

hE — hp > 0 and thus Case 1 always determines the flame response. In this limit,

p 0 and the single reactant theory of Buckmaster [16] is recovered which depends

only on / d . Typical response curves are shown in figure 3.3 for several different values

of / d . We observe the following: for weak strain rate, the flame resides far from the

stagnation plane, i.e. d 1 and the flame structure resembles that of a planar flame

in a uniform flow. As the strain rate is increased, the flame is pushed closer to the

wall. When the deviation from unity of the deficient Lewis number, l d , is less than

four, the response is monotonic, suggesting that the flame can be pushed all the way

down to the wall before it is extinguished. When 1 d is greater than four, the response

curve becomes double-valued. The turning point observed in the corresponding curves

is regarded as the extinction point. When the strain rate exceeds the critical value

at the turning point, the system can no longer support a planar flame and extinction

occurs. The lower portion of the curve, below the extinction point, is presumed to be

unstable.
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Figure 3.3: Standoff distance versus strain rate for off-stoichiometric mixtures

The flame speed, Sf° defined to be the speed of the flame relative to the under-

lying flow field, is simply the normal velocity of the incoming flow evaluated at the

reaction sheet, i.e. S°f= kd. Curves illustrating the dependence of Sy on k are shown

in figure 3.4 for several values of / d . Again we observe that / d = 4 is the critical

condition determining the response. For / d > 4 the curves are double-valued and

the turning point refers to an extinction point. However, for Id < 4 the flame speed

will eventually be reduced to zero for sufficiently large k. We also observe that the

flame speed of the strained flame will exceed the adiabatic flame speed, Sf° = 1, when

I d is sufficiently small. This is consistent with previous studies of flame response to

straining, c.f. [6].
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Figure 3.4: Flame speed versus strain rate

3.2.2 Weakly-strained flames

When the flame is weakly strained, k < 1, the flame retreats far from the stagnation

plane, and d oc. Equations (3.29) and (3.30) determine that J3 cc, and thus

again the inequality 0 1 + hE — hp > 0 for any non-zero 6 1 . Therefore Case 1 is always

the appropriate condition to determine flame behavior. For weak strain rate, Case 1

and therefore the flame speed takes the form

We see that the flame speed will exceed its adiabatic value when /d —	 < —2.

When conditions are far removed from stoichiometry, ,u	 0, and this inequality

reduces to I d < —2, consistent with the curves shown in figure 3.4. We conclude that
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weakly-strained flames will always be governed by Case 1. These flames reside far

from the stagnation plane and their structure is essentially that of a planar flame in

a uniform flow field. Consequently, the initially deficient reactant remains deficient

everywhere in the flow field and is ultimately consumed at the flame. However, when

0(1) straining is considered, and conditions are close to stoichiometry, it is possible

for the initially deficient reactant to be locally abundant at the reaction sheet. As a

result, a small amount of this reactant leaks through, and Case 2 becomes the relevant

equation to determine flame response. This scenario is discussed next.

3.2.3 Near-stoichiometric strained flames

First, consider the following function appearing in the inequality

The sign of this function determines whether Case 1 or Case 2 is to be used. Recall

that the response curves of d vs. k range from d = 0 to d = o o, and they are generated

by incrementing /3 from 0 to oc. That is, d close to 0 corresponds to /3 	 0 and large

d corresponds to ./3	 The limiting values of F are readily found to be: F -4 1/2

as ;3	 0 and F -4 0 as /3 —>oc. It is possible, then, that for fixed values of and 0 1 ,

the top portion of the curves d vs. k are determined by Case 1 and the lower portion

by Case 2. Different scenarios are discussed next.

As defined. 0 1 is always positive, and we have determined that F is also positive.

Therefore, when I d > I, Case 1 is always valid. The Lewis number of the deficient

reactant is larger, suggesting that this reactant is less mobile than the excess reactant.
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It does not diffuse as readily across the strained flow field and always remains deficient.

Although Case 1 remains valid, both Lewis numbers play a role in the flame behavior.

This is illustrated in figure 3.5 where the flame position is shown as a function of strain

rate for fixed / d = 5.5 and l e = —8.0 with 0 1 = 0.2. The single reactant theory predicts

that this flame response should be double valued, and the flame should extinguish at a

finite distance from the wall (see figure 3.3). However, that conclusion is only valid far

from stoichiometry, and in fact we observe that for conditions closer to stoichiometry,

the response is monotonic and no extinction point is predicted.

Figure 3.5: Standoff distance versus strain rate for 1 d = 5.5, 1 e = —8 and 0 1 = 0.2.

Id < le

The most interesting situation occurs when / d < / e . In this case, the initially

abundant reactant is the less mobile of the two, and will not diffuse as rapidly toward

the reaction sheet. As a result, this reactant can become locally deficient in the

vicinity of the reaction zone. It is therefore consumed, and Case 2 determines the

flame response. Figures 3.6-3.9 show how the flame response is modified by different
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diffusivities. Figures 3.6 and 3.7 are drawn with fixed / d = 4.0 and two different

values of 0 1 for several values of l e . The dashed portion of each curve represents

the segment determined by Case 1, while the solid portions show where Case 2 is

appropriate. We see from Figures 3.6 and 3.7, for example, that for a given 0 1 and

fixed / d Case 1 remains valid along the entire curve provided l e is less than some

critical value. However, once l e exceeds this value, Case 1 is only used to determine

the top part of each curve, while Case 2 becomes the governing condition on the

bottom part.

Figure 3.6: Standoff distance versus strain rate for several 1, with 1, 1 = 4 and
01 = 0.2. The dashed curves indicate the response is determined by (3.29) and solid
curves indicate the response is determined by (3.30)
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Figure 3.7: Standoff distance versus strain rate for several 1 e with / d = 4 and 0 1 = 2.

Figures 3.8 and 3.9 show similar plots, but with fixed 1 e for various 1d. We

observe that Case 2 becomes relevant along the bottom of the curves when 1 d drops

below a critical value. As discussed earlier, F decreases monotonically as d increases

from 0 to Do. Therefore, when Case 2 becomes relevant, it will always be valid on

the lower portion of the curve, i.e. when the flame approaches the wall. The low

mobility of the initially excess reactant prevents it from diffusing quickly enough

across the strained flow field and it becomes locally deficient, and hence consumed,

at the reaction sheet. As the flame moves further away from the wall, Case 1 will

eventually take over as the strain rate is weakened. We note that in situations where

the curve becomes double-valued, the transition from Case 1 to Case 2 may either

occur before or after the turning point. When the transition occurs below the turning

point, extinction will have already occurred, and the transition will in fact not be



43

observed. However, when the transition occurs above the turning point, extinction

will be determined by Case 2.

Figure 3.8: Standoff distance versus strain rate for 1, = 6.5 and (h i = 0.2

Figure 3.9: Standoff distance versus strain rate for 1, = 6.5 and (5 1 = 2
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All the curves seem to indicate that the transition from Case 1 to Case 2 is

quite smooth. However, one must account for this transition to correctly predict the

qualitative flame response. To illustrate this point, we show in figure 3.10 two curves

of flame position versus strain rate for 1 d = —2.0,/, = 6.0 and 0 1 = 3.0. In this case,

the transition occurs at approximately k = 0.78, (denoted by * on the curve), below

which point Case 2 takes over. The solid curve shows that the flame will be pushed

all the way to the wall. However, if Case 1 were used instead, a turning point, and

hence extinction, would be incorrectly predicted.

Figure 3.10: Standoff distance versus strain rate for 1 d = —2, 1 e = 6 and 0 1 = 3. The
* indicates transition from (3.29) to (3.30), i.e. where abundant reactant becomes
deficient
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3.2.4 Effect of Equivalence Ratio

Recall that the effects of stoichiometry are measured in terms of 0 1 , which is the

deviation from unity of the ratio of excess-to-deficient reactants. Also, as defined, 01

is always positive. Note that the deviation from unity of the equivalence ratio, 1 1 , is

related to 0 1 in the following way

For a given fuel mixture, the roles of / d and 1 e are reversed as stoichiometry

is crossed. That is, for lean mixtures l d and 1 e assume the values of IF and l o ,

respectively. However, when the mixture composition is altered to become fuel rich,

/ d = /0 and l e =1 F . It follows from our discussion above, that Case 1 will always be

valid on one side of stoichiometry while Case 2 will be valid on the other, at least in

the immediate vicinity of (1) 1 ti 0. Of course, as conditions move sufficiently far away

from stoichiometry, Case 1 always takes over. As discussed, F assumes its largest

value of 1/2 at d = 0. In order for Case 2 to play a role in the response curve the

following inequality must be satisfied:

As an example, consider a mixture with

For lean mixtures, I d = 6.0, l e = 2.0, and it follows that 0 1 + (/ d — 1,)/2 > 0.

Therefore the entire flame response is determined by Case 1. For rich mixtures,

/ d = 2.0, l e = 6.0, and the above inequality indicates that Case 2 will be used to

generate the lower part of the response curves for 0 < (1) 1 < 2.0. Beyond (D i = 2.0

Case 1 is again always the relevant case. This is illustrated in figure 3.11 where we
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show the extinction standoff distance as a function of the deviation from unity of

equivalence ratio. On the lean side, extinction is determined by Case 1, while on the

Figure 3.11: Standoff distance at extinction versus deviation from unity of the
equivalence ratio for I F = 6, 1 0 = 2

Extinction

It has been shown that extinction can be described by either Case 1 or Case

2. For off-stoichiometric mixtures, we found that I d = 4 is the critical value that

separates the double-valued response (I d > 4) from the single-valued response (/ d < 4).

Here we seek critical conditions for extinction appropriate for conditions closer to

stoichiometry.
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When Case 1 is valid, it follows from (3.29) that the strain rate at which the

flame is at the wall is given by

When a turning point first develops the slope at this point of intersection will be

infinite, and upon differentiating (3.29) we find that this occurs at

The following response is therefore predicted:

When Case 2 is valid, the value of the strain rate when d = 0 is found from (3.30) to

be

We also find the following predicted responses:

Now consider typical response curves as a function of equivalence ratio for the

parameter values 1F = 6.0, to = 0.0. For lean mixtures, / d = 6.0, l e = 0.0, we

have th + (id — l e )/2 > 0 and therefore the entire response is determined by Case
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1. Furthermore, we determined that I d + 2	 > 4, so that the response is always+p,

double-valued. For rich mixtures, td = 0.0, 1, = 6.0, and we find that Case 2

will determine part of the response curve when 0 < (D 1 < 3.0, and Case 1 is valid

otherwise. The above inequalities also determine that the response is double-valued

when 0 < < 2.0. Beyond (D 1 = 2.0 the response is single-valued.

In figure 3.12, we show the extinction and transition stand-off distances as a.

function of equivalence ratio for / F = 6.0 and l0 = 0.0. Recall that (D 1 = (4) — 1)/ЄQ

is equal to —0 1 for lean and +0 1 for rich mixtures. In the figure dT denotes the

flame position at which the transition occurs. The shaded region indicates that Case

2 is used, while in the remaining regions Case 1 valid. The curve d ext shows the

stand-off distance at extinction, i.e. at the turning point. The dashed part of the

curve indicates that Case 1 determines the extinction condition, while the solid part

indicates that Case 2 is valid. Thus, the response is monotonic for all I > 2 and

double-valued for (D i < 2. Extinction is governed by Case 2 for 0 < (D 1 < 2 and by

Case 1 for (D 1 < 0.
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Figure 3.12: Extinction and transition standoff distances versus deviation from the
equivalence ratio for IF = 6 and 10 = 0. In the shaded region, d is determined by
(3.30).

Similar curves are shown in figures 3.13-3.15 for various parameter values. In

general when the Lewis number of the fuel sufficiently exceeds that of the oxidant,

the response is monotonic when the mixture is sufficiently rich, and double-valued

otherwise. The response is typical of heavy hydrocarbons such as propane and butane.

On the other hand, when the fuel Lewis number is less than that of the oxidant, the

response is monotonic only if the mixture is sufficiently lean. These curves showing

dext as a function of equivalence ratio are consistent with the experimental results of

Yamaoka and Tsuji [11 on methane-air flames, as well as the theory presented in [151.
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Figure 3.13: Extinction and transition standoff distances versus deviation from the
equivalence ratio for off stoichiometric mixtures where lF  = 6.5 and to = 3
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Figure 3.14: Extinction and transition standoff distances versus deviation from the
equivalence ratio for off stoichiometric mixtures where / F = —2 and to = 12. The
insert shows a blow up of the plot to the left of I = —5.

Figure 3.15: Extinction and transition standoff distances versus deviation from
equivalence ratio for off stoichiometric mixtures where / F = 6.5 and to = 1.5
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Flame speed 

The flame speed is defined exactly as was done for the off-stoichiometric flames,

i.e. Sy = Ind. Typical plots of 8'1 vs. k are shown in figure 3.16 for several values of

/ d with le. = 6.5 and 0 1 = 2. As before, the dashed segments correspond to Case 1

and the solid segments to Case 2. By comparing the curve in figure 3.4 and 3.16 for

/d = —5, we see that the predicted response can be quite different when conditions

are closer to stoichiometry.

Figure 3.16: Flame speed versus strain rate

3.2.5 Weakly Non-Linear Analysis of Strained Flames

Here the derivation of a non-linear partial differential equation is outlined which

describes the evolution of the strained flame near the cellular stability boundary

(figure 3.1) for our model given by (2.57)-(2.64). A similar analysis was done in [18]
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within the framework of a single reactant theory, and other analyses have been done

for many problems that exhibit long wave instabilities. Here we explore modifications

that may arise due to the competing species. Once we first cross the stability

threshold, linear theory predicts that the flame will lose stability to a cellular structure.

The theory, however, does not determine the ultimate fate of these perturbations. Our

objective here is to perform a non-linear stability analysis about this point for k < 1.

We start by determining the appropriate scaling of our variables. Recall the

transcendental equation obtained earlier, (3.29), that related the strain rate and the

standoff distance for weak stretch where the locally deficient reactant was consumed

behind the flame:

From this equation it follows that for k < 1, 3 must be large which in turn implies

that d is large. Upon substituting the expansion

into (3.29) we get the following:

By further expanding this expression for large 13 we have
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Equation (3.34), together with the definition of fi (3.31) suggests the scaling on the

standoff distance, d, to be

When the stain rate is zero, i.e. k = 0, the standoff distance d	 oo and we essentially

recover the planar flame in uniform flow. In that case, analysis shows that instability

sets in when the following is true:

where p: = 	 . A splitting parameter € is defined as

and the dispersion relation now suggests the following spatial and temporal scales

Finally, the strain rate, k and the mixture strength parameter, 0 1 , are scaled as

The above expansions are inserted into our system and we will look for solutions

in the following form:
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Once we insert the assumed forms of solutions into our system, we obtain the following

equations at O(€2):



. The steady state solutions of this system were derived earlier and are given(100 for
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The jump condition for the temperature gradient is obtained from (2.63a,b). Note

that

and thus the sign of φ + R 0 — So determines which species leaks through the flame

surface. However, with the scalings used here, both jumps lead to the same expression

by (3.1) - (3.3). A solution to the above system can now be constructed yielding the

following:
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Note that the inequality that determines which species leaks through is given

Thus, the curvature of the front plays a large role in determining which species leaks

through. However, since the jump conditions are identical for the two cases at this

order, the flame dynamics will be the same regardless of whether a particular region

burns rich or lean. This is above solution is expressed in terms of the perturbed front

location which is riot yet determined. We must, therefore, go to the next order of

our perturbation scheme. This new system of O(€) is just an inhomogeneous form

of the leading order scheme and it's given by:



A solution can now be constructed yielding the following:

We can now apply the last jump condition of the order 0(c2 ) system, and obtain the



desired evolution equation.
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which can be written in the more convenient form

The above evolution equation is identical to that found using the single-reactant

theory. Even though some portions of the flame burn rich while others burn lean,

the imposed jump conditions (2.63a), (2.63b) reduce to the identical expression using

the above scalings. This is a consequence of examining the weak strain rate limit for

which the flame is essentially that of a planar flame in uniform flow. As a result, the

flame dynamics are not modified despite the local differences in mixture composition

across the front.
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3.3 Trailing diffusion flame

The analysis of the previous section has demonstrated that some regions of flame can

burn rich, while neighboring regions can burn lean. Since the temperature remains

close to its adiabatic value behind the flame, a diffusion flame can exist along the

interface where fuel and oxidant come together. For configurations where this occurs

a complete description of the burned region, including the diffusion flame is needed.

We have been mostly concerned with uniformly strained flames for which the

same species leaks through along the entire flame surface and thus no diffusion flame

will emerge. However, we outline here the basic methodology for analyzing the burned

region for future studies where diffusion flames can be expected to develop.

The governing equations are

where we have used the expession for adiabatic flame speed found in section 2.1.3.

The procedure follows closely the Burke-Schumann analysis of a diffusion flame

at the mouth of a tube in a duct, [1]. The premixed flame surface plays the role of the

mouth of the tube. Fuel emerges on one side, oxidant on the other, and a diffusion

flame emanates from the stoichiometric point.

Similar to the Burke-Schumann analysis, the following assumptions are made:

(a) a uniform flow is assumed.

(b) axial diffusion is negligible compared with diffusion in the transverse directions.
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(c) reaction is confined to a sheet.

The present analysis differs from that in [1] in these important ways:

(i) the boundary of the burned region, i.e. the premixed flame surface, x = f (y),

is not planar.

(ii) the distribution of species on either side is not uniform; rather it is determined

by analysis of the premixed flame.

(iii) the temperature is everywhere within O(€) of its adiabatic value, and both

species appear in O(€) quantities.

Let x, y denote the axial and transverse coordinates respectively, so that the

premixed flame surface lies at x = f (y), and the burned region is given by x > f (y)

as in figure 3.17.

Figure 3.17: Schematic representation of the trailing of a diffusion flame



Upon expanding
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The main objectives here are to determine the shape of the diffusion flame, x = F(y),

and to analyze the extinction behavior. Upon introducing the parameter Z given by

= vE yD we combine (3.44) and (3.45) to obtain

This is to be solved subject to the appropriate boundary conditions at the premixed

surface. At the diffusion flame surface, both y E and y D vanish and so the flame shape

is obtained by simply setting Z = 0.

To analyse the extinction characteristics of the diffusion flame, local analysis

of the reaction zone is needed. The results will depend, through matching, on the

manner in which the species leak through the premixed flame for a given configuration.

The analysis follows closely that of Liñán 119]. By introducing a stretched

yariable in the vicinity of the diffusion flame, the resulting reaction-diffusion equaitons

can be integrated resulting in explicit criteria for extinction. Again, the results are

obtained by matching to the temperature and species profiles in the outer region on
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either side of the diffusion flame, which in turn are determined by conditions at the

premixed front.



CHAPTER 4

CONCLUSIONS AND SUGGESTIONS FOR FUTURE RESEARCH

In this work, we have derived a new theory of premixed flames in near-stoichiometric

Mixtures. The new model is a diffusional thermal model obtained in a rational way

from the original system of equations given by the transport of heat and species

equations, as well as the hydrodynamic equations from fluid dynamics. The method

of large activation asymptotics was used, and the weak thermal expansion limit was

considered to obtain a new system, given by (2.57)-(2.64). This model is decoupled

from the equations of hydrodynamics and it is valid over a range of mixture strength.

Once derived, the model was used to study the behavior of planar flames in strained

flows.

The major differences between our model and the single reactant theory are:

(a) there are now two Lewis numbers that can significantly change the dynamics of

our problem, provided the two species diffuse at unequal rates, (b) a new parameter is

of great importance, the equivalence ratio (4)), which affects fundamental properties

of the flame, such as instabilities and extinction phenomena, (c) the locally deficient

component is not necessarily consumed behind the flame, but rather it is possible

for the initially excess species to be locally deficient and hence, consumed by the

reaction, and (d) as a result of this possibility there are now two jump conditions for

the temperature gradient.

For off-stoichiometric mixtures, our system reduces to the single reactant theory,

showing that our model describes the flame behavior in conditions far removed from

stoichiometry as well. When conditions are closer to stoichiometry, we can capture

new dynamics as the flame response depends in a non-trivial way on which of the two

species is consumed.

64
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To illustrate this phenomena we investigated the extinction of strained flames,

and in particular a stretched flame in stagnation point flow. We were able to construct

complete steady solutions that describe the flame response and depend on the values

of equivalence ratio, Lewis numbers, and strain rate. Results show that the flame

position can decrease monotonically with strain rate suggesting that the flame can be

pushed all the way to the wall, or the response is double-valued suggesting extinction

at a finite distance from the wall. For off-stoichiometric mixtures we recover Buckma-

ster's results from single reactant theory, valid for very lean or very rich conditions.

Also, for weakly-strained flames, we showed that the structure is essentially that of a

planar flame in a uniform flow field.

For near-stoichiometric strained flames, many of the conclusions of the single-

reactant theory are modified as a result of the differing diffusivities of the two species.

In particular, we showed for certain specific parameter values at which the single

reactant theory predicts a double-valued flame response, our theory predicts a mono-

tonic response and no extinction point when conditions are closer to stoichiometry.

The standoff distance at extinction has been calculated as a function of equivalence

ratio, and results are consistent with the experimental measurements of Yamaoka and

Tsuji, [17].

The model derived here paves the way for a number of future studies on flame

dynamics. Thus far, only perturbed planar flames and planar flames in uniformly

strained flames have been analyzed using this model. It is be of interest to study

curved flames as well as strained flames that are not uniformly stretched. Of particular

interest is to determine if and how flame dynamics differ along portions of the front

that burn rich as opposed to to those that burn lean.

Also, it would be of interest to analyze in detail the structure of the trailing

diffusion flame under conditions where concentration gradients exist along the pre-

mixed flame surface. These structures are reminiscent of triple flames which are
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thought to be the mechanism by which quenched regions of turbulent diffusion flames

are re-ignited. The precise conditions under which these structures develop is not yet

fully understood.

Finally, it would be of interest to carry out a full numerical treatment of the

systems considered here to validate our conclusions. This would permit a more

realistic description of chemistry and the flow field.
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